sin_cos4.miz
begin
reserve th,th1,th2,th3 for
Real;
definition
let th be
Real;
::
SIN_COS4:def1
func
tan (th) ->
Real equals ((
sin th)
/ (
cos th));
correctness ;
end
definition
let th be
Real;
::
SIN_COS4:def2
func
cot (th) ->
Real equals ((
cos th)
/ (
sin th));
correctness ;
end
definition
let th be
Real;
::
SIN_COS4:def3
func
cosec (th) ->
Real equals (1
/ (
sin th));
correctness ;
end
definition
let th be
Real;
::
SIN_COS4:def4
func
sec (th) ->
Real equals (1
/ (
cos th));
correctness ;
end
theorem ::
SIN_COS4:1
(
tan (
- th))
= (
- (
tan th))
proof
(
tan (
- th))
= ((
sin (
- th))
/ (
cos th)) by
SIN_COS: 31
.= ((
- (
sin th))
/ (
cos th)) by
SIN_COS: 31
.= (
- (
tan th)) by
XCMPLX_1: 187;
hence thesis;
end;
theorem ::
SIN_COS4:2
(
cosec (
- th))
= (
- (1
/ (
sin th)))
proof
(
cosec (
- th))
= (1
/ (
- (
sin th))) by
SIN_COS: 31
.= (
- (1
/ (
sin th))) by
XCMPLX_1: 188;
hence thesis;
end;
theorem ::
SIN_COS4:3
(
cot (
- th))
= (
- (
cot th))
proof
(
cot (
- th))
= ((
cos th)
/ (
sin (
- th))) by
SIN_COS: 31
.= ((
cos th)
/ (
- (
sin th))) by
SIN_COS: 31
.= (
- (
cot th)) by
XCMPLX_1: 188;
hence thesis;
end;
theorem ::
SIN_COS4:4
Th4: ((
sin th)
* (
sin th))
= (1
- ((
cos th)
* (
cos th)))
proof
((
sin th)
* (
sin th))
= (((
sin th)
* (
sin th))
+ (1
- 1))
.= (((
sin th)
* (
sin th))
+ (1
- (
- (
- (((
sin th)
* (
sin th))
+ ((
cos th)
* (
cos th))))))) by
SIN_COS: 29
.= (1
- ((
cos th)
* (
cos th)));
hence thesis;
end;
theorem ::
SIN_COS4:5
Th5: ((
cos th)
* (
cos th))
= (1
- ((
sin th)
* (
sin th)))
proof
((
cos th)
* (
cos th))
= (((
cos th)
* (
cos th))
+ (1
- 1))
.= (((
cos th)
* (
cos th))
+ (1
- (
- (
- (((
sin th)
* (
sin th))
+ ((
cos th)
* (
cos th))))))) by
SIN_COS: 29
.= (1
- ((
sin th)
* (
sin th)));
hence thesis;
end;
theorem ::
SIN_COS4:6
Th6: (
cos th)
<>
0 implies (
sin th)
= ((
cos th)
* (
tan th))
proof
assume (
cos th)
<>
0 ;
then (
sin th)
= (((
cos th)
/ (
cos th))
* (
sin th)) by
XCMPLX_1: 88
.= ((
cos th)
* (
tan th)) by
XCMPLX_1: 75;
hence thesis;
end;
theorem ::
SIN_COS4:7
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies (
tan (th1
+ th2))
= (((
tan th1)
+ (
tan th2))
/ (1
- ((
tan th1)
* (
tan th2))))
proof
assume that
A1: (
cos th1)
<>
0 and
A2: (
cos th2)
<>
0 ;
(
tan (th1
+ th2))
= (((
sin (th1
+ th2))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ th2))
/ ((
cos th1)
* (
cos th2)))) by
A1,
A2,
XCMPLX_1: 55
.= (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ th2))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 75
.= (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 75
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))) by
XCMPLX_1: 62
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 120
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
XCMPLX_1: 76
.= ((((
sin th1)
/ (
cos th1))
+ (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
+ ((
sin th2)
/ (
cos th2)))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A1,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
+ ((
sin th2)
/ (
cos th2)))
/ (((
cos th1)
/ (
cos th1))
- (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= (((
tan th1)
+ (
tan th2))
/ (1
- ((
tan th1)
* (
tan th2)))) by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
SIN_COS4:8
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies (
tan (th1
- th2))
= (((
tan th1)
- (
tan th2))
/ (1
+ ((
tan th1)
* (
tan th2))))
proof
assume that
A1: (
cos th1)
<>
0 and
A2: (
cos th2)
<>
0 ;
(
tan (th1
- th2))
= (((
sin (th1
+ (
- th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ (
- th2)))
/ ((
cos th1)
* (
cos th2)))) by
A1,
A2,
XCMPLX_1: 55
.= (((((
sin th1)
* (
cos (
- th2)))
+ ((
cos th1)
* (
sin (
- th2))))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ (
- th2)))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 75
.= (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin (
- th2))))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ (
- th2)))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 31
.= (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
- (
sin th2))))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
+ (
- th2)))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 31
.= (((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((((
cos th1)
* (
cos (
- th2)))
- ((
sin th1)
* (
sin (
- th2))))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 75
.= (((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin (
- th2))))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 31
.= (((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
- (
sin th2))))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 31
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))) by
XCMPLX_1: 120
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 62
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
- (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
XCMPLX_1: 76
.= ((((
sin th1)
/ (
cos th1))
- (((
sin th2)
/ (
cos th2))
* ((
cos th1)
/ (
cos th1))))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
- ((
sin th2)
/ (
cos th2)))
/ ((((
cos th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A1,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
- ((
sin th2)
/ (
cos th2)))
/ (((
cos th1)
/ (
cos th1))
+ (((
sin th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= (((
tan th1)
- (
tan th2))
/ (1
+ ((
tan th1)
* (
tan th2)))) by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
SIN_COS4:9
(
sin th1)
<>
0 & (
sin th2)
<>
0 implies (
cot (th1
+ th2))
= ((((
cot th1)
* (
cot th2))
- 1)
/ ((
cot th2)
+ (
cot th1)))
proof
assume that
A1: (
sin th1)
<>
0 and
A2: (
sin th2)
<>
0 ;
(
cot (th1
+ th2))
= (((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2)))
/ ((
sin (th1
+ th2))
/ ((
sin th1)
* (
sin th2)))) by
A1,
A2,
XCMPLX_1: 55
.= (((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))
/ ((
sin (th1
+ th2))
/ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 75
.= (((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))
/ ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 75
.= (((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))) by
XCMPLX_1: 120
.= (((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 62
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- ((
sin th1)
/ (
sin th1)))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A2,
XCMPLX_1: 88
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- 1)
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A1,
XCMPLX_1: 60
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- 1)
/ (((
cos th2)
/ (
sin th2))
+ (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A1,
XCMPLX_1: 88
.= ((((
cot th1)
* (
cot th2))
- 1)
/ ((
cot th2)
+ (
cot th1))) by
A2,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:10
(
sin th1)
<>
0 & (
sin th2)
<>
0 implies (
cot (th1
- th2))
= ((((
cot th1)
* (
cot th2))
+ 1)
/ ((
cot th2)
- (
cot th1)))
proof
assume that
A1: (
sin th1)
<>
0 and
A2: (
sin th2)
<>
0 ;
(
cot (th1
- th2))
= (((
cos (th1
- th2))
/ ((
sin th1)
* (
sin th2)))
/ ((
sin (th1
- th2))
/ ((
sin th1)
* (
sin th2)))) by
A1,
A2,
XCMPLX_1: 55
.= (((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))
/ ((
sin (th1
- th2))
/ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 83
.= (((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))
/ ((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 82
.= (((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2)))) by
XCMPLX_1: 62
.= (((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 120
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ (((
sin th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
XCMPLX_1: 76
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ ((
sin th1)
/ (
sin th1)))
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A2,
XCMPLX_1: 88
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ 1)
/ ((((
sin th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
- (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A1,
XCMPLX_1: 60
.= (((((
cos th1)
/ (
sin th1))
* ((
cos th2)
/ (
sin th2)))
+ 1)
/ (((
cos th2)
/ (
sin th2))
- (((
cos th1)
/ (
sin th1))
* ((
sin th2)
/ (
sin th2))))) by
A1,
XCMPLX_1: 88
.= ((((
cot th1)
* (
cot th2))
+ 1)
/ ((
cot th2)
- (
cot th1))) by
A2,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:11
Th11: (
cos th1)
<>
0 & (
cos th2)
<>
0 & (
cos th3)
<>
0 implies (
sin ((th1
+ th2)
+ th3))
= ((((
cos th1)
* (
cos th2))
* (
cos th3))
* ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))))
proof
assume that
A1: (
cos th1)
<>
0 and
A2: (
cos th2)
<>
0 and
A3: (
cos th3)
<>
0 ;
(
sin ((th1
+ th2)
+ th3))
= (
sin (th1
+ (th2
+ th3)))
.= (((
sin th1)
* (
cos (th2
+ th3)))
+ ((
cos th1)
* (
sin (th2
+ th3)))) by
SIN_COS: 75
.= (((
sin th1)
* (((
cos th2)
* (
cos th3))
- ((
sin th2)
* (
sin th3))))
+ ((
cos th1)
* (
sin (th2
+ th3)))) by
SIN_COS: 75
.= ((((
sin th1)
* ((
cos th2)
* (
cos th3)))
- ((
sin th1)
* ((
sin th2)
* (
sin th3))))
+ ((
cos th1)
* (((
sin th2)
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
SIN_COS: 75
.= (((((
cos th1)
* (
tan th1))
* ((
cos th2)
* (
cos th3)))
- ((
sin th1)
* ((
sin th2)
* (
sin th3))))
+ (((
cos th1)
* ((
sin th2)
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* (
sin th3))))) by
A1,
Th6
.= (((((
cos th1)
* (
tan th1))
* ((
cos th2)
* (
cos th3)))
- (((
cos th1)
* (
tan th1))
* ((
sin th2)
* (
sin th3))))
+ (((
cos th1)
* ((
sin th2)
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* (
sin th3))))) by
A1,
Th6
.= (((((
cos th1)
* (
tan th1))
* ((
cos th2)
* (
cos th3)))
- (((
cos th1)
* (
tan th1))
* (((
cos th2)
* (
tan th2))
* (
sin th3))))
+ (((
cos th1)
* ((
sin th2)
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* (
sin th3))))) by
A2,
Th6
.= (((((
cos th1)
* (
tan th1))
* ((
cos th2)
* (
cos th3)))
- (((
cos th1)
* (
tan th1))
* (((
cos th2)
* (
tan th2))
* ((
cos th3)
* (
tan th3)))))
+ (((
cos th1)
* ((
sin th2)
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* (
sin th3))))) by
A3,
Th6
.= (((((
cos th1)
* (
tan th1))
* ((
cos th2)
* (
cos th3)))
- (((
cos th1)
* (
tan th1))
* (((
cos th2)
* (
tan th2))
* ((
cos th3)
* (
tan th3)))))
+ (((
cos th1)
* (((
cos th2)
* (
tan th2))
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* (
sin th3))))) by
A2,
Th6
.= (((((
cos th1)
* (
cos th2))
* ((
cos th3)
* (
tan th1)))
- ((((
cos th1)
* (
cos th2))
* ((
tan th1)
* (
tan th2)))
* ((
cos th3)
* (
tan th3))))
+ (((
cos th1)
* (((
cos th2)
* (
tan th2))
* (
cos th3)))
+ ((
cos th1)
* ((
cos th2)
* ((
cos th3)
* (
tan th3)))))) by
A3,
Th6
.= ((((
cos th1)
* (
cos th2))
* (
cos th3))
* ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))));
hence thesis;
end;
theorem ::
SIN_COS4:12
Th12: (
cos th1)
<>
0 & (
cos th2)
<>
0 & (
cos th3)
<>
0 implies (
cos ((th1
+ th2)
+ th3))
= ((((
cos th1)
* (
cos th2))
* (
cos th3))
* (((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2))))
proof
assume that
A1: (
cos th1)
<>
0 and
A2: (
cos th2)
<>
0 and
A3: (
cos th3)
<>
0 ;
(
cos ((th1
+ th2)
+ th3))
= (
cos (th1
+ (th2
+ th3)))
.= (((
cos th1)
* (
cos (th2
+ th3)))
- ((
sin th1)
* (
sin (th2
+ th3)))) by
SIN_COS: 75
.= (((
cos th1)
* (((
cos th2)
* (
cos th3))
- ((
sin th2)
* (
sin th3))))
- ((
sin th1)
* (
sin (th2
+ th3)))) by
SIN_COS: 75
.= ((((
cos th1)
* ((
cos th2)
* (
cos th3)))
- ((
cos th1)
* ((
sin th2)
* (
sin th3))))
- ((
sin th1)
* (((
sin th2)
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
SIN_COS: 75
.= ((((
cos th1)
* ((
cos th2)
* (
cos th3)))
- ((
cos th1)
* (((
cos th2)
* (
tan th2))
* (
sin th3))))
- ((
sin th1)
* (((
sin th2)
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
A2,
Th6
.= ((((
cos th1)
* ((
cos th2)
* (
cos th3)))
- ((
cos th1)
* (((
cos th2)
* (
tan th2))
* ((
cos th3)
* (
tan th3)))))
- ((
sin th1)
* (((
sin th2)
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
A3,
Th6
.= ((((
cos th1)
* ((
cos th2)
* (
cos th3)))
- ((
cos th1)
* (((
cos th2)
* (
tan th2))
* ((
cos th3)
* (
tan th3)))))
- (((
cos th1)
* (
tan th1))
* (((
sin th2)
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
A1,
Th6
.= ((((
cos th1)
* ((
cos th2)
* (
cos th3)))
- ((
cos th1)
* (((
cos th2)
* (
tan th2))
* ((
cos th3)
* (
tan th3)))))
- (((
cos th1)
* (
tan th1))
* ((((
cos th2)
* (
tan th2))
* (
cos th3))
+ ((
cos th2)
* (
sin th3))))) by
A2,
Th6
.= (((((
cos th1)
* (
cos th2))
* (
cos th3))
- ((((
cos th1)
* (
cos th2))
* (
cos th3))
* ((
tan th2)
* (
tan th3))))
- (((
cos th1)
* (
tan th1))
* ((((
cos th2)
* (
cos th3))
* (
tan th2))
+ ((
cos th2)
* ((
cos th3)
* (
tan th3)))))) by
A3,
Th6
.= ((((
cos th1)
* (
cos th2))
* (
cos th3))
* (((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2))));
hence thesis;
end;
theorem ::
SIN_COS4:13
(
cos th1)
<>
0 & (
cos th2)
<>
0 & (
cos th3)
<>
0 implies (
tan ((th1
+ th2)
+ th3))
= (((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3)))
/ (((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2))))
proof
assume that
A1: (
cos th1)
<>
0 & (
cos th2)
<>
0 and
A2: (
cos th3)
<>
0 ;
A3: ((
cos th1)
* (
cos th2))
<>
0 by
A1;
(
tan ((th1
+ th2)
+ th3))
= (((((
cos th1)
* (
cos th2))
* (
cos th3))
* ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))))
/ (
cos ((th1
+ th2)
+ th3))) by
A1,
A2,
Th11
.= (((((
cos th1)
* (
cos th2))
* (
cos th3))
* ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))))
/ ((((
cos th1)
* (
cos th2))
* (
cos th3))
* (((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2))))) by
A1,
A2,
Th12
.= (((((
cos th1)
* (
cos th2))
* (
cos th3))
/ (((
cos th1)
* (
cos th2))
* (
cos th3)))
/ ((((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2)))
/ ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))))) by
XCMPLX_1: 84
.= (1
/ ((((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2)))
/ ((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3))))) by
A2,
A3,
XCMPLX_1: 60
.= (((((
tan th1)
+ (
tan th2))
+ (
tan th3))
- (((
tan th1)
* (
tan th2))
* (
tan th3)))
/ (((1
- ((
tan th2)
* (
tan th3)))
- ((
tan th3)
* (
tan th1)))
- ((
tan th1)
* (
tan th2)))) by
XCMPLX_1: 57;
hence thesis;
end;
theorem ::
SIN_COS4:14
(
sin th1)
<>
0 & (
sin th2)
<>
0 & (
sin th3)
<>
0 implies (
cot ((th1
+ th2)
+ th3))
= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((((
cot th2)
* (
cot th3))
+ ((
cot th3)
* (
cot th1)))
+ ((
cot th1)
* (
cot th2)))
- 1))
proof
assume that
A1: (
sin th1)
<>
0 and
A2: (
sin th2)
<>
0 and
A3: (
sin th3)
<>
0 ;
A4: ((
sin th1)
* (
sin th2))
<>
0 by
A1,
A2;
(
cot ((th1
+ th2)
+ th3))
= ((((
cos (th1
+ th2))
* (
cos th3))
- ((
sin (th1
+ th2))
* (
sin th3)))
/ (
sin ((th1
+ th2)
+ th3))) by
SIN_COS: 75
.= ((((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
* (
cos th3))
- ((
sin (th1
+ th2))
* (
sin th3)))
/ (
sin ((th1
+ th2)
+ th3))) by
SIN_COS: 75
.= ((((
cos th3)
* (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))))
- ((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))))
/ (
sin ((th1
+ th2)
+ th3))) by
SIN_COS: 75
.= (((((
cos th3)
* (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))))
- ((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
A3,
A4,
XCMPLX_1: 55
.= (((((
cos th3)
* (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))))
/ ((
sin th3)
* ((
sin th1)
* (
sin th2))))
- (((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2))))
/ ((
sin th3)
* ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
XCMPLX_1: 120
.= ((((
cot th3)
* ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2))))
- (((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2))))
/ ((
sin th3)
* ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
XCMPLX_1: 76
.= ((((
cot th3)
* ((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
- (((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2))))
/ ((
sin th3)
* ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
XCMPLX_1: 120
.= ((((
cot th3)
* (((
cot th1)
* ((
cos th2)
/ (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
- (((
sin th3)
* (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2))))
/ ((
sin th3)
* ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
XCMPLX_1: 76
.= ((((
cot th3)
* (((
cot th1)
* (
cot th2))
- 1))
- (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
* (
sin th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
A1,
A2,
XCMPLX_1: 60
.= ((((
cot th3)
* (((
cot th1)
* (
cot th2))
- 1))
- ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
A3,
XCMPLX_1: 91
.= ((((
cot th3)
* (((
cot th1)
* (
cot th2))
- 1))
- ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
XCMPLX_1: 62
.= ((((
cot th3)
* (((
cot th1)
* (
cot th2))
- 1))
- (((
cos th2)
/ (
sin th2))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
A1,
XCMPLX_1: 91
.= ((((
cot th3)
* (((
cot th1)
* (
cot th2))
- 1))
- ((
cot th2)
+ ((
cos th1)
/ (
sin th1))))
/ ((
sin ((th1
+ th2)
+ th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
A2,
XCMPLX_1: 91
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ ((((
sin (th1
+ th2))
* (
cos th3))
+ ((
cos (th1
+ th2))
* (
sin th3)))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))) by
SIN_COS: 75
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ ((((
sin (th1
+ th2))
* (
cos th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))
+ (((
cos (th1
+ th2))
* (
sin th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3))))) by
XCMPLX_1: 62
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ ((((
sin (th1
+ th2))
* (
cos th3))
/ (((
sin th1)
* (
sin th2))
* (
sin th3)))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
A3,
XCMPLX_1: 91
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
sin (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 76
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2))))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
SIN_COS: 75
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((((
sin th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
XCMPLX_1: 62
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* (((
cos th2)
/ (
sin th2))
+ (((
cos th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
A1,
XCMPLX_1: 91
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
cot th2)
+ ((
cos th1)
/ (
sin th1))))
+ ((
cos (th1
+ th2))
/ ((
sin th1)
* (
sin th2))))) by
A2,
XCMPLX_1: 91
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
cot th2)
+ (
cot th1)))
+ ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
sin th1)
* (
sin th2))))) by
SIN_COS: 75
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
cot th2)
+ (
cot th1)))
+ ((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- (((
sin th1)
* (
sin th2))
/ ((
sin th1)
* (
sin th2)))))) by
XCMPLX_1: 120
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
cot th2)
+ (
cot th1)))
+ ((((
cos th1)
* (
cos th2))
/ ((
sin th1)
* (
sin th2)))
- 1))) by
A1,
A2,
XCMPLX_1: 60
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((
cot th3)
* ((
cot th2)
+ (
cot th1)))
+ (((
cot th1)
* ((
cos th2)
/ (
sin th2)))
- 1))) by
XCMPLX_1: 76
.= (((((((
cot th1)
* (
cot th2))
* (
cot th3))
- (
cot th1))
- (
cot th2))
- (
cot th3))
/ (((((
cot th2)
* (
cot th3))
+ ((
cot th3)
* (
cot th1)))
+ ((
cot th1)
* (
cot th2)))
- 1));
hence thesis;
end;
theorem ::
SIN_COS4:15
Th15: ((
sin th1)
+ (
sin th2))
= (2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
proof
((
sin th1)
+ (
sin th2))
= ((
sin ((th1
/ 2)
+ (th1
/ 2)))
+ (
sin ((th2
/ 2)
+ (th2
/ 2))))
.= ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
cos (th1
/ 2))
* (
sin (th1
/ 2))))
+ (
sin ((th2
/ 2)
+ (th2
/ 2)))) by
SIN_COS: 75
.= ((2
* ((
sin (th1
/ 2))
* (
cos (th1
/ 2))))
+ (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th2
/ 2))
* (
cos (th2
/ 2))))) by
SIN_COS: 75
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* 1)
+ ((
sin (th2
/ 2))
* (
cos (th2
/ 2)))))
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))
+ (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
* 1))) by
SIN_COS: 29
.= (2
* (((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))
+ (((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))
+ (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))) by
SIN_COS: 29
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th2
/ 2)))
+ ((
cos (th1
/ 2))
* (
sin (th2
/ 2))))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th2
/ 2))))))
.= (2
* ((
sin ((th1
/ 2)
+ (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 75
.= (2
* ((
cos ((th1
/ 2)
- (th2
/ 2)))
* (
sin ((th1
+ th2)
/ 2)))) by
SIN_COS: 83
.= (2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))));
hence thesis;
end;
theorem ::
SIN_COS4:16
Th16: ((
sin th1)
- (
sin th2))
= (2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
proof
((
sin th1)
- (
sin th2))
= ((
sin ((th1
/ 2)
+ (th1
/ 2)))
- (
sin ((th2
/ 2)
+ (th2
/ 2))))
.= ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
cos (th1
/ 2))
* (
sin (th1
/ 2))))
- (
sin ((th2
/ 2)
+ (th2
/ 2)))) by
SIN_COS: 75
.= ((2
* ((
sin (th1
/ 2))
* (
cos (th1
/ 2))))
- (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th2
/ 2))
* (
cos (th2
/ 2))))) by
SIN_COS: 75
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* 1)
- ((
sin (th2
/ 2))
* (
cos (th2
/ 2)))))
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))
- (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
* 1))) by
SIN_COS: 29
.= (2
* (((((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))
+ (((
sin (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))
- (((
sin (th2
/ 2))
* (
cos (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))) by
SIN_COS: 29
.= (2
* ((((
sin (th1
/ 2))
* (
cos (th2
/ 2)))
- ((
cos (th1
/ 2))
* (
sin (th2
/ 2))))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th2
/ 2)))))))
.= (2
* ((
sin ((th1
/ 2)
- (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th1
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 82
.= (2
* ((
sin ((th1
- th2)
/ 2))
* (
cos ((th1
/ 2)
+ (th2
/ 2))))) by
SIN_COS: 75
.= (2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))));
hence thesis;
end;
theorem ::
SIN_COS4:17
Th17: ((
cos th1)
+ (
cos th2))
= (2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))
proof
((
cos th1)
+ (
cos th2))
= ((
cos ((th1
/ 2)
+ (th1
/ 2)))
+ (
cos ((th2
/ 2)
+ (th2
/ 2))))
.= ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))
+ (
cos ((th2
/ 2)
+ (th2
/ 2)))) by
SIN_COS: 75
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ (1
+ (
- 1)))
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))) by
SIN_COS: 75
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ 1)
+ ((
- 1)
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))))
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ (((
sin (th1
/ 2))
* (
sin (th1
/ 2)))
+ ((
cos (th1
/ 2))
* (
cos (th1
/ 2)))))
+ ((
- 1)
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 29
.= ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((((
sin (th1
/ 2))
* (
sin (th1
/ 2)))
- (
- (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))
+ ((
cos (th1
/ 2))
* (
cos (th1
/ 2)))))
+ ((
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
+ ((
cos (th2
/ 2))
* (
cos (th2
/ 2)))))
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 29
.= (2
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
* 1)))
.= (2
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))) by
SIN_COS: 29
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* (1
- (
- (
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))))
+ (
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
* ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))))
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* ((((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))
- (
- (
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))))
+ (
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
* ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))) by
SIN_COS: 29
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th2
/ 2))))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th2
/ 2)))))))
.= (2
* ((
cos ((th1
/ 2)
- (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th1
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 83
.= (2
* ((
cos ((th1
- th2)
/ 2))
* (
cos ((th1
/ 2)
+ (th2
/ 2))))) by
SIN_COS: 75
.= (2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))));
hence thesis;
end;
theorem ::
SIN_COS4:18
Th18: ((
cos th1)
- (
cos th2))
= (
- (2
* ((
sin ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2)))))
proof
((
cos th1)
- (
cos th2))
= ((
cos ((th1
/ 2)
+ (th1
/ 2)))
- (
cos ((th2
/ 2)
+ (th2
/ 2))))
.= ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))
- (
cos ((th2
/ 2)
+ (th2
/ 2)))) by
SIN_COS: 75
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ (1
+ (
- 1)))
- (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
- ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))) by
SIN_COS: 75
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ 1)
+ ((
- 1)
+ ((
- ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))))
.= (((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))
+ (((
sin (th1
/ 2))
* (
sin (th1
/ 2)))
+ ((
cos (th1
/ 2))
* (
cos (th1
/ 2)))))
+ ((
- 1)
+ ((
- ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 29
.= ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((((
sin (th1
/ 2))
* (
sin (th1
/ 2)))
- (
- (
- ((
sin (th1
/ 2))
* (
sin (th1
/ 2))))))
+ ((
cos (th1
/ 2))
* (
cos (th1
/ 2)))))
+ ((
- (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
+ ((
cos (th2
/ 2))
* (
cos (th2
/ 2)))))
+ ((
- ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))
+ ((
sin (th2
/ 2))
* (
sin (th2
/ 2)))))) by
SIN_COS: 29
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* 1)
- ((
cos (th2
/ 2))
* (
cos (th2
/ 2)))))
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* (((
sin (th2
/ 2))
* (
sin (th2
/ 2)))
+ ((
cos (th2
/ 2))
* (
cos (th2
/ 2)))))
- ((
cos (th2
/ 2))
* (
cos (th2
/ 2))))) by
SIN_COS: 29
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- (
- (
- 1))))))
.= (2
* ((((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
* ((
sin (th2
/ 2))
* (
sin (th2
/ 2))))
+ (((
cos (th2
/ 2))
* (
cos (th2
/ 2)))
* (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
- (
- (
- (((
cos (th1
/ 2))
* (
cos (th1
/ 2)))
+ ((
sin (th1
/ 2))
* (
sin (th1
/ 2)))))))))) by
SIN_COS: 29
.= (
- (2
* ((((
sin (th1
/ 2))
* (
cos (th2
/ 2)))
- (
- (
- ((
cos (th1
/ 2))
* (
sin (th2
/ 2))))))
* (((
sin (th1
/ 2))
* (
cos (th2
/ 2)))
+ ((
cos (th1
/ 2))
* (
sin (th2
/ 2)))))))
.= (
- (2
* ((
sin ((th1
/ 2)
+ (th2
/ 2)))
* (((
sin (th1
/ 2))
* (
cos (th2
/ 2)))
- ((
cos (th1
/ 2))
* (
sin (th2
/ 2))))))) by
SIN_COS: 75
.= (
- (2
* ((
sin ((th1
+ th2)
/ 2))
* (
sin ((th1
/ 2)
- (th2
/ 2)))))) by
SIN_COS: 82
.= (
- (2
* ((
sin ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2)))));
hence thesis;
end;
theorem ::
SIN_COS4:19
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies ((
tan th1)
+ (
tan th2))
= ((
sin (th1
+ th2))
/ ((
cos th1)
* (
cos th2)))
proof
assume (
cos th1)
<>
0 & (
cos th2)
<>
0 ;
then ((
tan th1)
+ (
tan th2))
= ((((
sin th1)
* (
cos th2))
+ ((
sin th2)
* (
cos th1)))
/ ((
cos th1)
* (
cos th2))) by
XCMPLX_1: 116
.= ((
sin (th1
+ th2))
/ ((
cos th1)
* (
cos th2))) by
SIN_COS: 75;
hence thesis;
end;
theorem ::
SIN_COS4:20
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies ((
tan th1)
- (
tan th2))
= ((
sin (th1
- th2))
/ ((
cos th1)
* (
cos th2)))
proof
assume (
cos th1)
<>
0 & (
cos th2)
<>
0 ;
then ((
tan th1)
- (
tan th2))
= ((((
sin th1)
* (
cos th2))
- ((
sin th2)
* (
cos th1)))
/ ((
cos th1)
* (
cos th2))) by
XCMPLX_1: 130
.= ((
sin (th1
- th2))
/ ((
cos th1)
* (
cos th2))) by
SIN_COS: 82;
hence thesis;
end;
theorem ::
SIN_COS4:21
(
cos th1)
<>
0 & (
sin th2)
<>
0 implies ((
tan th1)
+ (
cot th2))
= ((
cos (th1
- th2))
/ ((
cos th1)
* (
sin th2)))
proof
assume (
cos th1)
<>
0 & (
sin th2)
<>
0 ;
then ((
tan th1)
+ (
cot th2))
= ((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
sin th2))) by
XCMPLX_1: 116
.= ((
cos (th1
- th2))
/ ((
cos th1)
* (
sin th2))) by
SIN_COS: 83;
hence thesis;
end;
theorem ::
SIN_COS4:22
(
cos th1)
<>
0 & (
sin th2)
<>
0 implies ((
tan th1)
- (
cot th2))
= (
- ((
cos (th1
+ th2))
/ ((
cos th1)
* (
sin th2))))
proof
assume (
cos th1)
<>
0 & (
sin th2)
<>
0 ;
then ((
tan th1)
- (
cot th2))
= ((((
sin th1)
* (
sin th2))
- (
- (
- ((
cos th1)
* (
cos th2)))))
/ ((
cos th1)
* (
sin th2))) by
XCMPLX_1: 130
.= ((
- (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))))
/ ((
cos th1)
* (
sin th2)))
.= (
- ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
sin th2)))) by
XCMPLX_1: 187
.= (
- ((
cos (th1
+ th2))
/ ((
cos th1)
* (
sin th2)))) by
SIN_COS: 75;
hence thesis;
end;
theorem ::
SIN_COS4:23
(
sin th1)
<>
0 & (
sin th2)
<>
0 implies ((
cot th1)
+ (
cot th2))
= ((
sin (th1
+ th2))
/ ((
sin th1)
* (
sin th2)))
proof
assume (
sin th1)
<>
0 & (
sin th2)
<>
0 ;
then ((
cot th1)
+ (
cot th2))
= ((((
cos th1)
* (
sin th2))
+ ((
cos th2)
* (
sin th1)))
/ ((
sin th1)
* (
sin th2))) by
XCMPLX_1: 116
.= ((
sin (th1
+ th2))
/ ((
sin th1)
* (
sin th2))) by
SIN_COS: 75;
hence thesis;
end;
theorem ::
SIN_COS4:24
(
sin th1)
<>
0 & (
sin th2)
<>
0 implies ((
cot th1)
- (
cot th2))
= (
- ((
sin (th1
- th2))
/ ((
sin th1)
* (
sin th2))))
proof
assume (
sin th1)
<>
0 & (
sin th2)
<>
0 ;
then ((
cot th1)
- (
cot th2))
= ((((
cos th1)
* (
sin th2))
- (
- (
- ((
cos th2)
* (
sin th1)))))
/ ((
sin th1)
* (
sin th2))) by
XCMPLX_1: 130
.= ((
- (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2))))
/ ((
sin th1)
* (
sin th2)))
.= ((
- (
sin (th1
- th2)))
/ ((
sin th1)
* (
sin th2))) by
SIN_COS: 82
.= (
- ((
sin (th1
- th2))
/ ((
sin th1)
* (
sin th2)))) by
XCMPLX_1: 187;
hence thesis;
end;
theorem ::
SIN_COS4:25
((
sin (th1
+ th2))
+ (
sin (th1
- th2)))
= (2
* ((
sin th1)
* (
cos th2)))
proof
((
sin (th1
+ th2))
+ (
sin (th1
- th2)))
= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
+ (
sin (th1
- th2))) by
SIN_COS: 75
.= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
+ (((
sin th1)
* (
cos th2))
- (
- (
- ((
cos th1)
* (
sin th2)))))) by
SIN_COS: 82
.= (2
* ((
sin th1)
* (
cos th2)));
hence thesis;
end;
theorem ::
SIN_COS4:26
((
sin (th1
+ th2))
- (
sin (th1
- th2)))
= (2
* ((
cos th1)
* (
sin th2)))
proof
((
sin (th1
+ th2))
- (
sin (th1
- th2)))
= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
- (
sin (th1
- th2))) by
SIN_COS: 75
.= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
- (
- (
- (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))))) by
SIN_COS: 82
.= (2
* ((
cos th1)
* (
sin th2)));
hence thesis;
end;
theorem ::
SIN_COS4:27
((
cos (th1
+ th2))
+ (
cos (th1
- th2)))
= (2
* ((
cos th1)
* (
cos th2)))
proof
((
cos (th1
+ th2))
+ (
cos (th1
- th2)))
= ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
+ (
cos (th1
- th2))) by
SIN_COS: 75
.= ((((
cos th1)
* (
cos th2))
+ (
- ((
sin th1)
* (
sin th2))))
+ (((
sin th1)
* (
sin th2))
+ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 83
.= (2
* ((
cos th1)
* (
cos th2)));
hence thesis;
end;
theorem ::
SIN_COS4:28
((
cos (th1
+ th2))
- (
cos (th1
- th2)))
= (
- (2
* ((
sin th1)
* (
sin th2))))
proof
((
cos (th1
+ th2))
- (
cos (th1
- th2)))
= ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
- (
cos (th1
- th2))) by
SIN_COS: 75
.= ((((
cos th1)
* (
cos th2))
+ (
- ((
sin th1)
* (
sin th2))))
- (((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 83
.= (
- (2
* ((
sin th1)
* (
sin th2))));
hence thesis;
end;
theorem ::
SIN_COS4:29
Th29: ((
sin th1)
* (
sin th2))
= (
- ((1
/ 2)
* ((
cos (th1
+ th2))
- (
cos (th1
- th2)))))
proof
((
sin th1)
* (
sin th2))
= ((((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
- ((
cos th1)
* (
cos th2)))
+ ((
sin th1)
* (
sin th2)))
/ 2)
.= ((((((
cos th1)
* (
cos (
- th2)))
+ ((
sin th1)
* (
sin th2)))
- ((
cos th1)
* (
cos th2)))
+ ((
sin th1)
* (
sin th2)))
/ 2) by
SIN_COS: 31
.= ((((((
cos th1)
* (
cos (
- th2)))
- ((
sin th1)
* (
- (
sin th2))))
- ((
cos th1)
* (
cos th2)))
+ ((
sin th1)
* (
sin th2)))
/ 2)
.= ((((((
cos th1)
* (
cos (
- th2)))
- ((
sin th1)
* (
sin (
- th2))))
- ((
cos th1)
* (
cos th2)))
+ ((
sin th1)
* (
sin th2)))
/ 2) by
SIN_COS: 31
.= ((((
cos (th1
+ (
- th2)))
- ((
cos th1)
* (
cos th2)))
+ ((
sin th1)
* (
sin th2)))
/ 2) by
SIN_COS: 75
.= (((
cos (th1
- th2))
- (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))))
/ 2)
.= (((
cos (th1
- th2))
- (
cos (th1
+ th2)))
/ (2
/ 1)) by
SIN_COS: 75
.= (
- ((1
/ 2)
* ((
cos (th1
+ th2))
- (
cos (th1
- th2)))));
hence thesis;
end;
theorem ::
SIN_COS4:30
Th30: ((
sin th1)
* (
cos th2))
= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (
sin (th1
- th2))))
proof
((
sin th1)
* (
cos th2))
= ((1
/ 2)
* ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
+ (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))))
.= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
- (
sin th2)))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (((
sin th1)
* (
cos (
- th2)))
+ ((
cos th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (
sin (th1
+ (
- th2))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
sin (th1
+ th2))
+ (
sin (th1
- th2))));
hence thesis;
end;
theorem ::
SIN_COS4:31
Th31: ((
cos th1)
* (
sin th2))
= ((1
/ 2)
* ((
sin (th1
+ th2))
- (
sin (th1
- th2))))
proof
((
cos th1)
* (
sin th2))
= ((1
/ 2)
* ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
- (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))))
.= ((1
/ 2)
* ((
sin (th1
+ th2))
- (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
- (
sin th2)))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
sin (th1
+ th2))
- (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
sin (th1
+ th2))
- (((
sin th1)
* (
cos (
- th2)))
+ ((
cos th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
sin (th1
+ th2))
- (
sin (th1
+ (
- th2))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
sin (th1
+ th2))
- (
sin (th1
- th2))));
hence thesis;
end;
theorem ::
SIN_COS4:32
Th32: ((
cos th1)
* (
cos th2))
= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (
cos (th1
- th2))))
proof
((
cos th1)
* (
cos th2))
= ((1
/ 2)
* ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
+ (((
cos th1)
* (
cos th2))
- (
- ((
sin th1)
* (
sin th2))))))
.= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
- (
sin th2)))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (((
cos th1)
* (
cos (
- th2)))
- ((
sin th1)
* (
sin (
- th2)))))) by
SIN_COS: 31
.= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (
cos (th1
+ (
- th2))))) by
SIN_COS: 75
.= ((1
/ 2)
* ((
cos (th1
+ th2))
+ (
cos (th1
- th2))));
hence thesis;
end;
theorem ::
SIN_COS4:33
(((
sin th1)
* (
sin th2))
* (
sin th3))
= ((1
/ 4)
* ((((
sin ((th1
+ th2)
- th3))
+ (
sin ((th2
+ th3)
- th1)))
+ (
sin ((th3
+ th1)
- th2)))
- (
sin ((th1
+ th2)
+ th3))))
proof
(((
sin th1)
* (
sin th2))
* (
sin th3))
= ((
- ((1
/ 2)
* ((
cos (th1
+ th2))
- (
cos (th1
- th2)))))
* (
sin th3)) by
Th29
.= ((1
/ 2)
* (((
cos (th1
- th2))
* (
sin th3))
- ((
cos (th1
+ th2))
* (
sin th3))))
.= ((1
/ 2)
* (((1
/ 2)
* ((
sin ((th1
- th2)
+ th3))
- (
sin ((th1
- th2)
- th3))))
- ((
cos (th1
+ th2))
* (
sin th3)))) by
Th31
.= ((1
/ 2)
* (((1
/ 2)
* ((
sin ((th1
- th2)
+ th3))
- (
sin ((th1
- th2)
- th3))))
- ((1
/ 2)
* ((
sin ((th1
+ th2)
+ th3))
- (
sin ((th1
+ th2)
- th3)))))) by
Th31
.= ((1
/ (2
* 2))
* (((
sin ((th1
- th2)
+ th3))
+ (
- (
sin ((th1
- th2)
- th3))))
+ ((
sin ((th1
+ th2)
- th3))
- (
sin ((th1
+ th2)
+ th3)))))
.= ((1
/ (2
* 2))
* (((
sin ((th1
- th2)
+ th3))
+ (
sin (
- ((th1
- th2)
- th3))))
+ ((
sin ((th1
+ th2)
- th3))
- (
sin ((th1
+ th2)
+ th3))))) by
SIN_COS: 31
.= ((1
/ (2
* 2))
* ((((
sin ((th1
+ th2)
- th3))
+ (
sin ((th2
+ th3)
- th1)))
+ (
sin ((th3
+ th1)
- th2)))
- (
sin ((th1
+ th2)
+ th3))));
hence thesis;
end;
theorem ::
SIN_COS4:34
(((
sin th1)
* (
sin th2))
* (
cos th3))
= ((1
/ 4)
* ((((
- (
cos ((th1
+ th2)
- th3)))
+ (
cos ((th2
+ th3)
- th1)))
+ (
cos ((th3
+ th1)
- th2)))
- (
cos ((th1
+ th2)
+ th3))))
proof
(((
sin th1)
* (
sin th2))
* (
cos th3))
= ((
- ((1
/ 2)
* ((
cos (th1
+ th2))
- (
cos (th1
- th2)))))
* (
cos th3)) by
Th29
.= ((1
/ 2)
* (((
cos (th1
- th2))
* (
cos th3))
- ((
cos (th1
+ th2))
* (
cos th3))))
.= ((1
/ 2)
* (((1
/ 2)
* ((
cos ((th1
- th2)
+ th3))
+ (
cos ((th1
- th2)
- th3))))
- ((
cos (th1
+ th2))
* (
cos th3)))) by
Th32
.= ((1
/ 2)
* (((1
/ 2)
* ((
cos ((th1
- th2)
+ th3))
+ (
cos ((th1
- th2)
- th3))))
- ((1
/ 2)
* ((
cos ((th1
+ th2)
+ th3))
+ (
cos ((th1
+ th2)
- th3)))))) by
Th32
.= ((1
/ (2
* 2))
* (((
- (
cos ((th1
+ th2)
- th3)))
+ (
cos (
- ((th2
- th1)
+ th3))))
+ ((
cos ((th3
+ th1)
+ (
- th2)))
+ (
- (
cos ((th1
+ th2)
+ th3))))))
.= ((1
/ (2
* 2))
* (((
- (
cos ((th1
+ th2)
- th3)))
+ (
cos ((th2
- th1)
+ th3)))
+ ((
cos ((th3
+ th1)
+ (
- th2)))
+ (
- (
cos ((th1
+ th2)
+ th3)))))) by
SIN_COS: 31
.= ((1
/ (2
* 2))
* ((((
- (
cos ((th1
+ th2)
- th3)))
+ (
cos ((th2
+ th3)
- th1)))
+ (
cos ((th3
+ th1)
- th2)))
- (
cos ((th1
+ th2)
+ th3))));
hence thesis;
end;
theorem ::
SIN_COS4:35
(((
sin th1)
* (
cos th2))
* (
cos th3))
= ((1
/ 4)
* ((((
sin ((th1
+ th2)
- th3))
- (
sin ((th2
+ th3)
- th1)))
+ (
sin ((th3
+ th1)
- th2)))
+ (
sin ((th1
+ th2)
+ th3))))
proof
(((
sin th1)
* (
cos th2))
* (
cos th3))
= (((1
/ 2)
* ((
sin (th1
+ th2))
+ (
sin (th1
- th2))))
* (
cos th3)) by
Th30
.= ((1
/ 2)
* (((
sin (th1
+ th2))
* (
cos th3))
+ ((
sin (th1
- th2))
* (
cos th3))))
.= ((1
/ 2)
* (((1
/ 2)
* ((
sin ((th1
+ th2)
+ th3))
+ (
sin ((th1
+ th2)
- th3))))
+ ((
sin (th1
- th2))
* (
cos th3)))) by
Th30
.= ((1
/ 2)
* (((1
/ 2)
* ((
sin ((th1
+ th2)
+ th3))
+ (
sin ((th1
+ th2)
- th3))))
+ ((1
/ 2)
* ((
sin ((th1
- th2)
+ th3))
+ (
sin ((th1
- th2)
- th3)))))) by
Th30
.= ((1
/ (2
* 2))
* (((
sin ((th1
+ th2)
+ th3))
+ (
sin ((th1
+ th2)
- th3)))
+ ((
sin ((th1
+ (
- th2))
+ th3))
+ (
sin (
- ((th2
- th1)
+ th3))))))
.= ((1
/ (2
* 2))
* (((
sin ((th1
+ th2)
+ th3))
+ (
sin ((th1
+ th2)
- th3)))
+ ((
- (
sin ((th2
- th1)
+ th3)))
+ (
sin ((th3
+ th1)
+ (
- th2)))))) by
SIN_COS: 31
.= ((1
/ (2
* 2))
* ((((
sin ((th1
+ th2)
- th3))
- (
sin ((th2
+ th3)
- th1)))
+ (
sin ((th3
+ th1)
- th2)))
+ (
sin ((th1
+ th2)
+ th3))));
hence thesis;
end;
theorem ::
SIN_COS4:36
(((
cos th1)
* (
cos th2))
* (
cos th3))
= ((1
/ 4)
* ((((
cos ((th1
+ th2)
- th3))
+ (
cos ((th2
+ th3)
- th1)))
+ (
cos ((th3
+ th1)
- th2)))
+ (
cos ((th1
+ th2)
+ th3))))
proof
(((
cos th1)
* (
cos th2))
* (
cos th3))
= (((1
/ 2)
* ((
cos (th1
+ th2))
+ (
cos (th1
- th2))))
* (
cos th3)) by
Th32
.= ((1
/ 2)
* (((
cos (th1
+ th2))
* (
cos th3))
+ ((
cos (th1
- th2))
* (
cos th3))))
.= ((1
/ 2)
* (((1
/ 2)
* ((
cos ((th1
+ th2)
+ th3))
+ (
cos ((th1
+ th2)
- th3))))
+ ((
cos (th1
- th2))
* (
cos th3)))) by
Th32
.= ((1
/ 2)
* (((1
/ 2)
* ((
cos ((th1
+ th2)
+ th3))
+ (
cos ((th1
+ th2)
- th3))))
+ ((1
/ 2)
* ((
cos ((th1
- th2)
+ th3))
+ (
cos ((th1
- th2)
- th3)))))) by
Th32
.= ((1
/ (2
* 2))
* (((
cos ((th1
+ th2)
+ th3))
+ (
cos ((th1
+ th2)
- th3)))
+ ((
cos ((th3
+ th1)
+ (
- th2)))
+ (
cos (
- ((th2
- th1)
+ th3))))))
.= ((1
/ (2
* 2))
* (((
cos ((th1
+ th2)
+ th3))
+ (
cos ((th1
+ th2)
- th3)))
+ ((
cos ((th3
+ th1)
- th2))
+ (
cos ((th2
+ th3)
+ (
- th1)))))) by
SIN_COS: 31
.= ((1
/ (2
* 2))
* ((((
cos ((th1
+ th2)
- th3))
+ (
cos ((th2
+ th3)
- th1)))
+ (
cos ((th3
+ th1)
- th2)))
+ (
cos ((th1
+ th2)
+ th3))));
hence thesis;
end;
theorem ::
SIN_COS4:37
Th37: ((
sin (th1
+ th2))
* (
sin (th1
- th2)))
= (((
sin th1)
* (
sin th1))
- ((
sin th2)
* (
sin th2)))
proof
((
sin (th1
+ th2))
* (
sin (th1
- th2)))
= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
* (
sin (th1
- th2))) by
SIN_COS: 75
.= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
* (((
sin th1)
* (
cos th2))
- (
- (
- ((
cos th1)
* (
sin th2)))))) by
SIN_COS: 82
.= ((((
sin th1)
* (
sin th1))
* ((
cos th2)
* (
cos th2)))
- ((((
cos th1)
* (
sin th2))
* (
cos th1))
* (
sin th2)))
.= ((((
sin th1)
* (
sin th1))
* (1
- ((
sin th2)
* (
sin th2))))
- ((((
cos th1)
* (
cos th1))
* (
sin th2))
* (
sin th2))) by
Th5
.= ((((
sin th1)
* (
sin th1))
* (1
+ (
- ((
sin th2)
* (
sin th2)))))
- (((1
- (
- (
- ((
sin th1)
* (
sin th1)))))
* (
sin th2))
* (
sin th2))) by
Th5
.= (((
sin th1)
* (
sin th1))
- ((
sin th2)
* (
sin th2)));
hence thesis;
end;
theorem ::
SIN_COS4:38
((
sin (th1
+ th2))
* (
sin (th1
- th2)))
= (((
cos th2)
* (
cos th2))
- ((
cos th1)
* (
cos th1)))
proof
((
sin (th1
+ th2))
* (
sin (th1
- th2)))
= (((
sin th1)
* (
sin th1))
- ((
sin th2)
* (
sin th2))) by
Th37
.= ((1
- ((
cos th1)
* (
cos th1)))
- ((
sin th2)
* (
sin th2))) by
Th4
.= ((1
- (
- (
- ((
cos th1)
* (
cos th1)))))
- (
- (
- (1
- ((
cos th2)
* (
cos th2)))))) by
Th4
.= (((
cos th2)
* (
cos th2))
- ((
cos th1)
* (
cos th1)));
hence thesis;
end;
theorem ::
SIN_COS4:39
Th39: ((
sin (th1
+ th2))
* (
cos (th1
- th2)))
= (((
sin th1)
* (
cos th1))
+ ((
sin th2)
* (
cos th2)))
proof
((
sin (th1
+ th2))
* (
cos (th1
- th2)))
= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
* (
cos (th1
- th2))) by
SIN_COS: 75
.= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
* (((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 83
.= ((((
sin th1)
* (
cos th1))
* (((
sin th2)
* (
sin th2))
+ ((
cos th2)
* (
cos th2))))
+ ((((
sin th2)
* (
cos th2))
* ((
sin th1)
* (
sin th1)))
+ (((
sin th2)
* (
cos th2))
* ((
cos th1)
* (
cos th1)))))
.= ((((
sin th1)
* (
cos th1))
* 1)
+ (((
sin th2)
* (
cos th2))
* (((
sin th1)
* (
sin th1))
+ ((
cos th1)
* (
cos th1))))) by
SIN_COS: 29
.= (((
sin th1)
* (
cos th1))
+ (((
sin th2)
* (
cos th2))
* (1
/ 1))) by
SIN_COS: 29
.= (((
sin th1)
* (
cos th1))
+ ((
sin th2)
* (
cos th2)));
hence thesis;
end;
theorem ::
SIN_COS4:40
((
cos (th1
+ th2))
* (
sin (th1
- th2)))
= (((
sin th1)
* (
cos th1))
- ((
sin th2)
* (
cos th2)))
proof
((
cos (th1
+ th2))
* (
sin (th1
- th2)))
= ((
sin (th1
+ (
- th2)))
* (
cos (th1
- (
- th2))))
.= (((
sin th1)
* (
cos th1))
+ ((
sin (
- th2))
* (
cos (
- th2)))) by
Th39
.= (((
sin th1)
* (
cos th1))
+ ((
sin (
- th2))
* (
cos th2))) by
SIN_COS: 31
.= (((
sin th1)
* (
cos th1))
+ ((
- (
sin th2))
* (
cos th2))) by
SIN_COS: 31
.= (((
sin th1)
* (
cos th1))
- ((
sin th2)
* (
cos th2)));
hence thesis;
end;
theorem ::
SIN_COS4:41
Th41: ((
cos (th1
+ th2))
* (
cos (th1
- th2)))
= (((
cos th1)
* (
cos th1))
- ((
sin th2)
* (
sin th2)))
proof
((
cos (th1
+ th2))
* (
cos (th1
- th2)))
= ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
* (
cos (th1
- th2))) by
SIN_COS: 75
.= ((((
cos th1)
* (
cos th2))
+ (
- ((
sin th1)
* (
sin th2))))
* (((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))) by
SIN_COS: 83
.= ((((((
cos th1)
* (
cos th1))
* ((
cos th2)
* (
cos th2)))
+ (((
cos th1)
* (
cos th2))
* ((
sin th1)
* (
sin th2))))
+ (
- (((
sin th1)
* (
sin th2))
* ((
cos th1)
* (
cos th2)))))
+ (
- ((((
sin th1)
* (
sin th1))
* (
sin th2))
* (
sin th2))))
.= ((((
cos th1)
* (
cos th1))
* (1
- (
- (
- ((
sin th2)
* (
sin th2))))))
+ (
- (((
sin th1)
* (
sin th1))
* ((
sin th2)
* (
sin th2))))) by
Th5
.= ((((
cos th1)
* (
cos th1))
* 1)
+ (((
sin th2)
* (
sin th2))
* (
- (((
cos th1)
* (
cos th1))
+ ((
sin th1)
* (
sin th1))))))
.= ((((
cos th1)
* (
cos th1))
* 1)
+ (((
sin th2)
* (
sin th2))
* (
- 1))) by
SIN_COS: 29
.= (((
cos th1)
* (
cos th1))
- ((
sin th2)
* (
sin th2)));
hence thesis;
end;
theorem ::
SIN_COS4:42
((
cos (th1
+ th2))
* (
cos (th1
- th2)))
= (((
cos th2)
* (
cos th2))
- ((
sin th1)
* (
sin th1)))
proof
((
cos (th1
+ th2))
* (
cos (th1
- th2)))
= (((
cos th1)
* (
cos th1))
- ((
sin th2)
* (
sin th2))) by
Th41
.= ((1
- ((
sin th1)
* (
sin th1)))
- ((
sin th2)
* (
sin th2))) by
Th5
.= ((1
- ((
sin th1)
* (
sin th1)))
- (1
- ((
cos th2)
* (
cos th2)))) by
Th4
.= (((
cos th2)
* (
cos th2))
- ((
sin th1)
* (
sin th1)));
hence thesis;
end;
theorem ::
SIN_COS4:43
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies ((
sin (th1
+ th2))
/ (
sin (th1
- th2)))
= (((
tan th1)
+ (
tan th2))
/ ((
tan th1)
- (
tan th2)))
proof
assume that
A1: (
cos th1)
<>
0 and
A2: (
cos th2)
<>
0 ;
((
sin (th1
+ th2))
/ (
sin (th1
- th2)))
= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ (
sin (th1
- th2))) by
SIN_COS: 75
.= ((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ (((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))) by
SIN_COS: 82
.= (((((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((((
sin th1)
* (
cos th2))
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))) by
A1,
A2,
XCMPLX_1: 55
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
sin th1)
* (
cos th2))
+ (
- ((
cos th1)
* (
sin th2))))
/ ((
cos th1)
* (
cos th2)))) by
XCMPLX_1: 62
.= (((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ ((
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 62
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ ((
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))
/ ((((
sin th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ ((
- ((
cos th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))
/ ((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
* (
- (
sin th2)))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 76
.= (((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))
/ ((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
- (
sin th2))
/ (
cos th2))))) by
XCMPLX_1: 76
.= ((((
sin th1)
/ (
cos th1))
+ (((
cos th1)
/ (
cos th1))
* ((
sin th2)
/ (
cos th2))))
/ ((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
- (
sin th2))
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
+ ((
sin th2)
/ (
cos th2)))
/ ((((
sin th1)
/ (
cos th1))
* ((
cos th2)
/ (
cos th2)))
+ (((
cos th1)
/ (
cos th1))
* ((
- (
sin th2))
/ (
cos th2))))) by
A1,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
+ ((
sin th2)
/ (
cos th2)))
/ (((
sin th1)
/ (
cos th1))
+ (((
cos th1)
/ (
cos th1))
* ((
- (
sin th2))
/ (
cos th2))))) by
A2,
XCMPLX_1: 88
.= ((((
sin th1)
/ (
cos th1))
+ ((
sin th2)
/ (
cos th2)))
/ (((
sin th1)
/ (
cos th1))
+ ((
- (
sin th2))
/ (
cos th2)))) by
A1,
XCMPLX_1: 88
.= (((
tan th1)
+ (
tan th2))
/ ((
tan th1)
+ (
- ((
sin th2)
/ (
cos th2))))) by
XCMPLX_1: 187
.= (((
tan th1)
+ (
tan th2))
/ ((
tan th1)
- (
tan th2)));
hence thesis;
end;
theorem ::
SIN_COS4:44
(
cos th1)
<>
0 & (
cos th2)
<>
0 implies ((
cos (th1
+ th2))
/ (
cos (th1
- th2)))
= ((1
- ((
tan th1)
* (
tan th2)))
/ (1
+ ((
tan th1)
* (
tan th2))))
proof
assume
A1: (
cos th1)
<>
0 & (
cos th2)
<>
0 ;
((
cos (th1
+ th2))
/ (
cos (th1
- th2)))
= ((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ (
cos (th1
- th2))) by
SIN_COS: 75
.= (((((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))
/ ((
cos (th1
- th2))
/ ((
cos th1)
* (
cos th2)))) by
A1,
XCMPLX_1: 55
.= (((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((
cos (th1
- th2))
/ ((
cos th1)
* (
cos th2)))) by
XCMPLX_1: 120
.= ((1
- (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))
/ ((
cos (th1
- th2))
/ ((
cos th1)
* (
cos th2)))) by
A1,
XCMPLX_1: 60
.= ((1
- ((
tan th1)
* ((
sin th2)
/ (
cos th2))))
/ ((
cos (th1
- th2))
/ ((
cos th1)
* (
cos th2)))) by
XCMPLX_1: 76
.= ((1
- ((
tan th1)
* (
tan th2)))
/ ((((
cos th1)
* (
cos th2))
+ ((
sin th1)
* (
sin th2)))
/ ((
cos th1)
* (
cos th2)))) by
SIN_COS: 83
.= ((1
- ((
tan th1)
* (
tan th2)))
/ ((((
cos th1)
* (
cos th2))
/ ((
cos th1)
* (
cos th2)))
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
XCMPLX_1: 62
.= ((1
- ((
tan th1)
* (
tan th2)))
/ (1
+ (((
sin th1)
* (
sin th2))
/ ((
cos th1)
* (
cos th2))))) by
A1,
XCMPLX_1: 60
.= ((1
- ((
tan th1)
* (
tan th2)))
/ (1
+ ((
tan th1)
* (
tan th2)))) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS4:45
(((
sin th1)
+ (
sin th2))
/ ((
sin th1)
- (
sin th2)))
= ((
tan ((th1
+ th2)
/ 2))
* (
cot ((th1
- th2)
/ 2)))
proof
(((
sin th1)
+ (
sin th2))
/ ((
sin th1)
- (
sin th2)))
= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ ((
sin th1)
- (
sin th2))) by
Th15
.= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ (2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))) by
Th16
.= ((2
/ 2)
* (((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2)))
/ ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))) by
XCMPLX_1: 76
.= ((
tan ((th1
+ th2)
/ 2))
* (
cot ((th1
- th2)
/ 2))) by
XCMPLX_1: 76;
hence thesis;
end;
theorem ::
SIN_COS4:46
(
cos ((th1
- th2)
/ 2))
<>
0 implies (((
sin th1)
+ (
sin th2))
/ ((
cos th1)
+ (
cos th2)))
= (
tan ((th1
+ th2)
/ 2))
proof
assume
A1: (
cos ((th1
- th2)
/ 2))
<>
0 ;
(((
sin th1)
+ (
sin th2))
/ ((
cos th1)
+ (
cos th2)))
= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ ((
cos th1)
+ (
cos th2))) by
Th15
.= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ (2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))) by
Th17
.= ((2
/ 2)
* (((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2)))
/ ((
cos ((th1
- th2)
/ 2))
* (
cos ((th1
+ th2)
/ 2))))) by
XCMPLX_1: 76
.= (((
cos ((th1
- th2)
/ 2))
/ (
cos ((th1
- th2)
/ 2)))
* ((
sin ((th1
+ th2)
/ 2))
/ (
cos ((th1
+ th2)
/ 2)))) by
XCMPLX_1: 76
.= (
tan ((th1
+ th2)
/ 2)) by
A1,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:47
(
cos ((th1
+ th2)
/ 2))
<>
0 implies (((
sin th1)
- (
sin th2))
/ ((
cos th1)
+ (
cos th2)))
= (
tan ((th1
- th2)
/ 2))
proof
assume
A1: (
cos ((th1
+ th2)
/ 2))
<>
0 ;
(((
sin th1)
- (
sin th2))
/ ((
cos th1)
+ (
cos th2)))
= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ ((
cos th1)
+ (
cos th2))) by
Th16
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ (2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))) by
Th17
.= ((2
/ 2)
* (((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2)))
/ ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))) by
XCMPLX_1: 76
.= (((
cos ((th1
+ th2)
/ 2))
/ (
cos ((th1
+ th2)
/ 2)))
* ((
sin ((th1
- th2)
/ 2))
/ (
cos ((th1
- th2)
/ 2)))) by
XCMPLX_1: 76
.= (
tan ((th1
- th2)
/ 2)) by
A1,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:48
(
sin ((th1
+ th2)
/ 2))
<>
0 implies (((
sin th1)
+ (
sin th2))
/ ((
cos th2)
- (
cos th1)))
= (
cot ((th1
- th2)
/ 2))
proof
assume
A1: (
sin ((th1
+ th2)
/ 2))
<>
0 ;
(((
sin th1)
+ (
sin th2))
/ ((
cos th2)
- (
cos th1)))
= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ ((
cos th2)
- (
cos th1))) by
Th15
.= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ (
- (2
* ((
sin ((th2
+ th1)
/ 2))
* (
sin ((th2
- th1)
/ 2)))))) by
Th18
.= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ (2
* ((
sin ((th2
+ th1)
/ 2))
* (
- (
sin ((th2
- th1)
/ 2))))))
.= ((2
* ((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2))))
/ (2
* ((
sin ((th2
+ th1)
/ 2))
* (
sin (
- ((th2
- th1)
/ 2)))))) by
SIN_COS: 31
.= ((2
/ 2)
* (((
cos ((th1
- th2)
/ 2))
* (
sin ((th1
+ th2)
/ 2)))
/ ((
sin ((th2
+ th1)
/ 2))
* (
sin ((th1
- th2)
/ 2))))) by
XCMPLX_1: 76
.= (((
cos ((th1
- th2)
/ 2))
/ (
sin ((th1
- th2)
/ 2)))
* ((
sin ((th1
+ th2)
/ 2))
/ (
sin ((th2
+ th1)
/ 2)))) by
XCMPLX_1: 76
.= (
cot ((th1
- th2)
/ 2)) by
A1,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:49
(
sin ((th1
- th2)
/ 2))
<>
0 implies (((
sin th1)
- (
sin th2))
/ ((
cos th2)
- (
cos th1)))
= (
cot ((th1
+ th2)
/ 2))
proof
assume
A1: (
sin ((th1
- th2)
/ 2))
<>
0 ;
(((
sin th1)
- (
sin th2))
/ ((
cos th2)
- (
cos th1)))
= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ ((
cos th2)
- (
cos th1))) by
Th16
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ (
- (2
* ((
sin ((th2
+ th1)
/ 2))
* (
sin ((th2
- th1)
/ 2)))))) by
Th18
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ (2
* ((
sin ((th2
+ th1)
/ 2))
* (
- (
sin ((th2
- th1)
/ 2))))))
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2))))
/ (2
* ((
sin ((th2
+ th1)
/ 2))
* (
sin (
- ((th2
- th1)
/ 2)))))) by
SIN_COS: 31
.= ((2
/ 2)
* (((
cos ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2)))
/ ((
sin ((th2
+ th1)
/ 2))
* (
sin ((th1
- th2)
/ 2))))) by
XCMPLX_1: 76
.= (((
cos ((th1
+ th2)
/ 2))
/ (
sin ((th2
+ th1)
/ 2)))
* ((
sin ((th1
- th2)
/ 2))
/ (
sin ((th1
- th2)
/ 2)))) by
XCMPLX_1: 76
.= (
cot ((th1
+ th2)
/ 2)) by
A1,
XCMPLX_1: 88;
hence thesis;
end;
theorem ::
SIN_COS4:50
(((
cos th1)
+ (
cos th2))
/ ((
cos th1)
- (
cos th2)))
= ((
cot ((th1
+ th2)
/ 2))
* (
cot ((th2
- th1)
/ 2)))
proof
(((
cos th1)
+ (
cos th2))
/ ((
cos th1)
- (
cos th2)))
= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))
/ ((
cos th1)
- (
cos th2))) by
Th17
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))
/ (
- (2
* ((
sin ((th1
+ th2)
/ 2))
* (
sin ((th1
- th2)
/ 2)))))) by
Th18
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))
/ (2
* ((
sin ((th1
+ th2)
/ 2))
* (
- (
sin ((th1
- th2)
/ 2))))))
.= ((2
* ((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2))))
/ (2
* ((
sin ((th1
+ th2)
/ 2))
* (
sin (
- ((th1
- th2)
/ 2)))))) by
SIN_COS: 31
.= ((2
/ 2)
* (((
cos ((th1
+ th2)
/ 2))
* (
cos ((th1
- th2)
/ 2)))
/ ((
sin ((th1
+ th2)
/ 2))
* (
sin ((th2
- th1)
/ 2))))) by
XCMPLX_1: 76
.= (((
cos ((th1
+ th2)
/ 2))
/ (
sin ((th1
+ th2)
/ 2)))
* ((
cos (
- ((th2
- th1)
/ 2)))
/ (
sin ((th2
- th1)
/ 2)))) by
XCMPLX_1: 76
.= ((
cot ((th1
+ th2)
/ 2))
* (
cot ((th2
- th1)
/ 2))) by
SIN_COS: 31;
hence thesis;
end;