sin_cos.miz
begin
reserve q,th,r for
Real,
a,b,p for
Real,
w,z for
Complex,
k,l,m,n,n1,n2 for
Nat,
seq,seq1,seq2,cq1 for
Complex_Sequence,
rseq,rseq1,rseq2 for
Real_Sequence,
rr for
set,
hy1 for
0
-convergent
non-zero
Real_Sequence;
definition
let m,k be
natural
Number;
::
SIN_COS:def1
func
CHK (m,k) ->
Element of
COMPLEX equals
:
Def1: 1 if m
<= k
otherwise
0 ;
correctness
proof
0c
=
0 ;
hence thesis by
COMPLEX1:def 4;
end;
end
registration
let m,k be
natural
Number;
cluster (
CHK (m,k)) ->
real;
coherence by
Def1;
end
scheme ::
SIN_COS:sch1
ExComplexCASE { F(
Nat,
Nat) ->
Complex } :
for k holds ex seq st for n holds (n
<= k implies (seq
. n)
= F(k,n)) & (n
> k implies (seq
. n)
=
0 );
let k;
defpred
P[
object,
object] means ex n st (n
= $1 & (n
<= k implies $2
= F(k,n)) & (n
> k implies $2
=
0c ));
A1:
now
let x be
object;
assume x
in
NAT ;
then
consider n such that
A2: n
= x;
A3:
now
assume n
<= k;
hence ((
CHK (n,k))
* F(k,n))
= (1
* F(k,n)) by
Def1
.= F(k,n);
end;
A4:
now
assume n
> k;
hence ((
CHK (n,k))
* F(k,n))
= (
0
* F(k,n)) by
Def1
.=
0 ;
end;
reconsider y = ((
CHK (n,k))
* F(k,n)) as
object;
take y;
thus
P[x, y] by
A2,
A3,
A4;
end;
consider f be
Function such that
A5: (
dom f)
=
NAT and
A6: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
now
let x be
set;
assume x
in
NAT ;
then ex n st n
= x & (n
<= k implies (f
. x)
= F(k,n)) & (n
> k implies (f
. x)
=
0c ) by
A6;
hence (f
. x) is
Element of
COMPLEX by
XCMPLX_0:def 2;
end;
then
reconsider f as
Complex_Sequence by
A5,
COMSEQ_1: 1;
take seq = f;
let n;
n
in
NAT by
ORDINAL1:def 12;
then
P[n, (f
. n)] by
A6;
then ex l be
Nat st l
= n & (l
<= k implies (seq
. n)
= F(k,l)) & (l
> k implies (seq
. n)
=
0c );
hence thesis;
end;
scheme ::
SIN_COS:sch2
ExRealCASE { F(
Nat,
Nat) ->
Real } :
for k holds ex rseq st for n holds (n
<= k implies (rseq
. n)
= F(k,n)) & (n
> k implies (rseq
. n)
=
0 );
let k;
defpred
P[
object,
object] means ex n st (n
= $1 & (n
<= k implies $2
= F(k,n)) & (n
> k implies $2
=
0 ));
A1:
now
let x be
object;
assume x
in
NAT ;
then
consider n such that
A2: n
= x;
A3:
now
assume n
<= k;
hence ((
CHK (n,k))
* F(k,n))
= (1
* F(k,n)) by
Def1
.= F(k,n);
end;
A4:
now
assume n
> k;
hence ((
CHK (n,k))
* F(k,n))
= (
0
* F(k,n)) by
Def1
.=
0 ;
end;
reconsider y = ((
CHK (n,k))
* F(k,n)) as
object;
take y;
thus
P[x, y] by
A2,
A3,
A4;
end;
consider f be
Function such that
A5: (
dom f)
=
NAT and
A6: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
now
let x be
object;
assume x
in
NAT ;
then ex n st n
= x & (n
<= k implies (f
. x)
= F(k,n)) & (n
> k implies (f
. x)
=
0 ) by
A6;
hence (f
. x) is
real;
end;
then
reconsider f as
Real_Sequence by
A5,
SEQ_1: 1;
take rseq = f;
let n;
n
in
NAT by
ORDINAL1:def 12;
then ex l be
Nat st l
= n & (l
<= k implies (rseq
. n)
= F(k,l)) & (l
> k implies (rseq
. n)
=
0 ) by
A6;
hence thesis;
end;
1
in
NAT ;
then
reconsider jj = 1 as
Element of
REAL by
NUMBERS: 19;
definition
::
SIN_COS:def2
func
Prod_real_n ->
Real_Sequence means
:
Def2: (it
.
0 )
= 1 & for n holds (it
. (n
+ 1))
= ((it
. n)
* (n
+ 1));
existence
proof
deffunc
U(
Nat,
Real) = (
In (($2
* ($1
+ 1)),
REAL ));
consider f be
sequence of
REAL such that
A1: (f
.
0 )
= jj and
A2: for n be
Nat holds (f
. (n
+ 1))
=
U(n,.) from
NAT_1:sch 12;
take f;
thus (f
.
0 )
= 1 by
A1;
let n;
thus (f
. (n
+ 1))
=
U(n,.) by
A2
.= ((f
. n)
* (n
+ 1));
end;
uniqueness
proof
let rseq1, rseq2;
assume that
A3: (rseq1
.
0 )
= 1 and
A4: for n holds (rseq1
. (n
+ 1))
= ((rseq1
. n)
* (n
+ 1)) and
A5: (rseq2
.
0 )
= 1 and
A6: for n holds (rseq2
. (n
+ 1))
= ((rseq2
. n)
* (n
+ 1));
defpred
X[
Nat] means (rseq1
. $1)
= (rseq2
. $1);
A7:
X[
0 ] by
A3,
A5;
A8: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume (rseq1
. k)
= (rseq2
. k);
hence (rseq1
. (k
+ 1))
= ((rseq2
. k)
* (k
+ 1)) by
A4
.= (rseq2
. (k
+ 1)) by
A6;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A7,
A8);
hence rseq1
= rseq2;
end;
end
definition
let n be
Nat;
:: original:
!
redefine
::
SIN_COS:def3
func n
! equals (
Prod_real_n
. n);
compatibility
proof
defpred
X[
Nat] means (
Prod_real_n
. $1)
= ($1
! );
A1:
X[
0 ] by
Def2,
NEWTON: 12;
A2:
now
let l be
Nat;
assume
A3:
X[l];
(
Prod_real_n
. (l
+ 1))
= ((
Prod_real_n
. l)
* (l
+ 1)) by
Def2
.= ((l
+ 1)
! ) by
A3,
NEWTON: 15;
hence
X[(l
+ 1)];
end;
for k be
Nat holds
X[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
end
definition
let z be
Complex;
deffunc
U(
Nat) = ((z
|^ $1)
/ ($1
! ));
::
SIN_COS:def4
func z
ExpSeq ->
Complex_Sequence means
:
Def4: for n holds (it
. n)
= ((z
|^ n)
/ (n
! ));
existence
proof
thus ex s be
Complex_Sequence st for n holds (s
. n)
=
U(n) from
COMSEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Complex_Sequence such that
A1: for x be
Nat holds (s1
. x)
=
U(x) and
A2: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A1
.= (s2
. x) by
A2;
end;
end
definition
let a be
Real;
deffunc
U(
Nat) = ((a
|^ $1)
/ ($1
! ));
::
SIN_COS:def5
func a
rExpSeq ->
Real_Sequence means
:
Def5: for n holds (it
. n)
= ((a
|^ n)
/ (n
! ));
existence
proof
thus ex s be
Real_Sequence st for n holds (s
. n)
=
U(n) from
SEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Real_Sequence such that
A1: for x be
Nat holds (s1
. x)
=
U(x) and
A2: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A1
.= (s2
. x) by
A2;
end;
end
theorem ::
SIN_COS:1
Th1: (
0
! )
= 1 & (n
! )
<>
0 & ((n
+ 1)
! )
= ((n
! )
* (n
+ 1)) by
Def2;
theorem ::
SIN_COS:2
Th2: (
0
< k implies (((k
-' 1)
! )
* k)
= (k
! )) & (k
<= m implies (((m
-' k)
! )
* ((m
+ 1)
- k))
= (((m
+ 1)
-' k)
! ))
proof
A1:
now
let k;
assume
0
< k;
then (
0
+ 1)
<= k by
INT_1: 7;
then ((k
-' 1)
+ 1)
= ((k
- 1)
+ 1) by
XREAL_1: 233
.= k;
hence (k
! )
= (((k
-' 1)
! )
* k) by
Th1;
end;
now
let m, k such that
A2: k
<= m;
m
<= (m
+ 1) by
XREAL_1: 29;
then ((m
+ 1)
-' k)
= ((m
+ 1)
- k) by
A2,
XREAL_1: 233,
XXREAL_0: 2
.= ((m
- k)
+ 1)
.= ((m
-' k)
+ 1) by
A2,
XREAL_1: 233;
hence (((m
+ 1)
-' k)
! )
= (((m
-' k)
! )
* (((m
-' k)
+ 1)
+ (
0
*
<i> ))) by
Th1
.= (((m
-' k)
! )
* (((m
- k)
+ 1)
+ (
0
*
<i> ))) by
A2,
XREAL_1: 233
.= (((m
-' k)
! )
* ((m
+ 1)
- k));
end;
hence thesis by
A1;
end;
definition
let n be
Nat;
::
SIN_COS:def6
func
Coef (n) ->
Complex_Sequence means
:
Def6: for k be
Nat holds (k
<= n implies (it
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (($1
! )
/ (($2
! )
* (($1
-' $2)
! )));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((n
! )
/ ((k
! )
* ((n
-' k)
! ))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
definition
let n be
Nat;
::
SIN_COS:def7
func
Coef_e (n) ->
Complex_Sequence means
:
Def7: for k be
Nat holds (k
<= n implies (it
. k)
= (
1r
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (
1r
/ (($2
! )
* (($1
-' $2)
! )));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= (
1r
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= (
1r
/ ((k
! )
* ((n
-' k)
! )))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (
1r
/ ((k
! )
* ((n
-' k)
! ))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
definition
let seq;
::
SIN_COS:def8
func
Shift seq ->
Complex_Sequence means
:
Def8: (it
.
0 )
=
0 & for k be
Nat holds (it
. (k
+ 1))
= (seq
. k);
existence
proof
deffunc
U(
Nat,
Element of
COMPLEX ) = (seq
. $1);
consider f be
sequence of
COMPLEX such that
A1: (f
.
0 )
=
0c & for n be
Nat holds (f
. (n
+ 1))
=
U(n,.) from
NAT_1:sch 12;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let seq1, seq2;
assume that
A2: (seq1
.
0 )
=
0 and
A3: for n holds (seq1
. (n
+ 1))
= (seq
. n) and
A4: (seq2
.
0 )
=
0 and
A5: for n holds (seq2
. (n
+ 1))
= (seq
. n);
defpred
X[
Nat] means (seq1
. $1)
= (seq2
. $1);
A6:
X[
0 ] by
A2,
A4;
A7: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume (seq1
. k)
= (seq2
. k);
thus (seq1
. (k
+ 1))
= (seq
. k) by
A3
.= (seq2
. (k
+ 1)) by
A5;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A6,
A7);
hence seq1
= seq2;
end;
end
definition
let n;
let z,w be
Complex;
::
SIN_COS:def9
func
Expan (n,z,w) ->
Complex_Sequence means
:
Def9: for k be
Nat holds (k
<= n implies (it
. k)
= ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (n
< k implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = ((((
Coef $1)
. $2)
* (z
|^ $2))
* (w
|^ ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
definition
let n;
let z,w be
Complex;
::
SIN_COS:def10
func
Expan_e (n,z,w) ->
Complex_Sequence means
:
Def10: for k be
Nat holds (k
<= n implies (it
. k)
= ((((
Coef_e n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (n
< k implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = ((((
Coef_e $1)
. $2)
* (z
|^ $2))
* (w
|^ ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= ((((
Coef_e n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= ((((
Coef_e n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= ((((
Coef_e n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
definition
let n;
let z,w be
Complex;
::
SIN_COS:def11
func
Alfa (n,z,w) ->
Complex_Sequence means
:
Def11: for k be
Nat holds (k
<= n implies (it
. k)
= (((z
ExpSeq )
. k)
* ((
Partial_Sums (w
ExpSeq ))
. (n
-' k)))) & (n
< k implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (((z
ExpSeq )
. $2)
* ((
Partial_Sums (w
ExpSeq ))
. ($1
-' $2)));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= (((z
ExpSeq )
. k)
* ((
Partial_Sums (w
ExpSeq ))
. (n
-' k)))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= (((z
ExpSeq )
. k)
* ((
Partial_Sums (w
ExpSeq ))
. (n
-' k)))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (((z
ExpSeq )
. k)
* ((
Partial_Sums (w
ExpSeq ))
. (n
-' k))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
definition
let a,b be
Real;
let n be
Nat;
::
SIN_COS:def12
func
Conj (n,a,b) ->
Real_Sequence means for k be
Nat holds (k
<= n implies (it
. k)
= (((a
rExpSeq )
. k)
* (((
Partial_Sums (b
rExpSeq ))
. n)
- ((
Partial_Sums (b
rExpSeq ))
. (n
-' k))))) & (n
< k implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (((a
rExpSeq )
. $2)
* (((
Partial_Sums (b
rExpSeq ))
. $1)
- ((
Partial_Sums (b
rExpSeq ))
. ($1
-' $2))));
for n holds ex rseq st for k holds (k
<= n implies (rseq
. k)
=
U(n,k)) & (k
> n implies (rseq
. k)
=
0 ) from
ExRealCASE;
hence thesis;
end;
uniqueness
proof
let rseq1, rseq2;
assume that
A1: for k holds (k
<= n implies (rseq1
. k)
= (((a
rExpSeq )
. k)
* (((
Partial_Sums (b
rExpSeq ))
. n)
- ((
Partial_Sums (b
rExpSeq ))
. (n
-' k))))) & (k
> n implies (rseq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (rseq2
. k)
= (((a
rExpSeq )
. k)
* (((
Partial_Sums (b
rExpSeq ))
. n)
- ((
Partial_Sums (b
rExpSeq ))
. (n
-' k))))) & (k
> n implies (rseq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (rseq1
. k)
= (((a
rExpSeq )
. k)
* (((
Partial_Sums (b
rExpSeq ))
. n)
- ((
Partial_Sums (b
rExpSeq ))
. (n
-' k)))) by
A1
.= (rseq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (rseq1
. k)
=
0 by
A1
.= (rseq2
. k) by
A2,
A4;
end;
end;
hence rseq1
= rseq2;
end;
end
definition
let z,w be
Complex;
let n be
Nat;
::
SIN_COS:def13
func
Conj (n,z,w) ->
Complex_Sequence means
:
Def13: for k be
Nat holds (k
<= n implies (it
. k)
= (((z
ExpSeq )
. k)
* (((
Partial_Sums (w
ExpSeq ))
. n)
- ((
Partial_Sums (w
ExpSeq ))
. (n
-' k))))) & (n
< k implies (it
. k)
=
0 );
existence
proof
deffunc
U(
Nat,
Nat) = (((z
ExpSeq )
. $2)
* (((
Partial_Sums (w
ExpSeq ))
. $1)
- ((
Partial_Sums (w
ExpSeq ))
. ($1
-' $2))));
for n holds ex seq st for k holds (k
<= n implies (seq
. k)
=
U(n,k)) & (k
> n implies (seq
. k)
=
0 ) from
ExComplexCASE;
hence thesis;
end;
uniqueness
proof
let seq1, seq2;
assume that
A1: for k holds (k
<= n implies (seq1
. k)
= (((z
ExpSeq )
. k)
* (((
Partial_Sums (w
ExpSeq ))
. n)
- ((
Partial_Sums (w
ExpSeq ))
. (n
-' k))))) & (k
> n implies (seq1
. k)
=
0 ) and
A2: for k holds (k
<= n implies (seq2
. k)
= (((z
ExpSeq )
. k)
* (((
Partial_Sums (w
ExpSeq ))
. n)
- ((
Partial_Sums (w
ExpSeq ))
. (n
-' k))))) & (k
> n implies (seq2
. k)
=
0 );
now
let k be
Element of
NAT ;
per cases ;
suppose
A3: k
<= n;
hence (seq1
. k)
= (((z
ExpSeq )
. k)
* (((
Partial_Sums (w
ExpSeq ))
. n)
- ((
Partial_Sums (w
ExpSeq ))
. (n
-' k)))) by
A1
.= (seq2
. k) by
A2,
A3;
end;
suppose
A4: k
> n;
hence (seq1
. k)
=
0c by
A1
.= (seq2
. k) by
A2,
A4;
end;
end;
hence seq1
= seq2;
end;
end
Lm1: for p1,p2,g1,g2 be
Real holds ((p1
+ (g1
*
<i> ))
* (p2
+ (g2
*
<i> )))
= (((p1
* p2)
- (g1
* g2))
+ (((p1
* g2)
+ (p2
* g1))
*
<i> )) & ((p2
+ (g2
*
<i> ))
*' )
= (p2
+ ((
- g2)
*
<i> ))
proof
let p1,p2,g1,g2 be
Real;
thus ((p1
+ (g1
*
<i> ))
* (p2
+ (g2
*
<i> )))
= (((p1
* p2)
- (g1
* g2))
+ (((p1
* g2)
+ (p2
* g1))
*
<i> ));
thus ((p2
+ (g2
*
<i> ))
*' )
= (p2
- ((
Im (p2
+ (g2
*
<i> )))
*
<i> )) by
COMPLEX1: 12
.= (p2
- (g2
*
<i> )) by
COMPLEX1: 12
.= (p2
+ ((
- g2)
*
<i> ));
end;
theorem ::
SIN_COS:3
Th3: for z be
Complex holds ((z
ExpSeq )
. (n
+ 1))
= ((((z
ExpSeq )
. n)
* z)
/ ((n
+ 1)
+ (
0
*
<i> ))) & ((z
ExpSeq )
.
0 )
= 1 &
|.((z
ExpSeq )
. n).|
= ((
|.z.|
rExpSeq )
. n)
proof
let z be
Complex;
A1:
now
let n be
Nat;
thus ((z
ExpSeq )
. (n
+ 1))
= ((z
|^ (n
+ 1))
/ ((n
+ 1)
! )) by
Def4
.= ((((z
GeoSeq )
. n)
* z)
/ ((n
+ 1)
! )) by
COMSEQ_3:def 1
.= (((z
|^ n)
* z)
/ ((n
! )
* ((n
+ 1)
+ (
0
*
<i> )))) by
Th1
.= (((z
|^ n)
/ (n
! ))
* (z
/ ((n
+ 1)
+ (
0
*
<i> )))) by
XCMPLX_1: 76
.= ((((z
|^ n)
/ (n
! ))
* z)
/ ((n
+ 1)
+ (
0
*
<i> )))
.= ((((z
ExpSeq )
. n)
* z)
/ ((n
+ 1)
+ (
0
*
<i> ))) by
Def4;
end;
A2: ((z
ExpSeq )
.
0 )
= ((z
|^
0 )
/ (
0
! )) by
Def4
.= 1 by
Th1,
COMSEQ_3:def 1;
defpred
X[
Nat] means
|.((z
ExpSeq )
. $1).|
= ((
|.z.|
rExpSeq )
. $1);
((
|.z.|
rExpSeq )
.
0 )
= ((
|.z.|
|^
0 )
/ (
0
! )) by
Def5
.= (1
/ (
Prod_real_n
.
0 )) by
NEWTON: 4
.= (1
/ 1) by
Def2
.= 1;
then
A3:
X[
0 ] by
A2,
COMPLEX1: 48;
A4:
now
let n such that
A5:
X[n];
A6:
|.((n
+ 1)
+ (
0
*
<i> )).|
= (n
+ 1) by
ABSVALUE:def 1;
|.((z
ExpSeq )
. (n
+ 1)).|
=
|.((((z
ExpSeq )
. n)
* z)
/ ((n
+ 1)
+ (
0
*
<i> ))).| by
A1
.= (
|.(((z
ExpSeq )
. n)
* z).|
/
|.((n
+ 1)
+ (
0
*
<i> )).|) by
COMPLEX1: 67
.= ((((
|.z.|
rExpSeq )
. n)
*
|.z.|)
/
|.((n
+ 1)
+ (
0
*
<i> )).|) by
A5,
COMPLEX1: 65
.= ((((
|.z.|
|^ n)
/ (n
! ))
*
|.z.|)
/
|.((n
+ 1)
+ (
0
*
<i> )).|) by
Def5
.= (((
|.z.|
|^ n)
*
|.z.|)
/ ((n
! )
*
|.((n
+ 1)
+ (
0
*
<i> )).|)) by
XCMPLX_1: 83
.= (((
|.z.|
|^ n)
*
|.z.|)
/ ((n
+ 1)
! )) by
A6,
NEWTON: 15
.= ((
|.z.|
|^ (n
+ 1))
/ ((n
+ 1)
! )) by
NEWTON: 6
.= ((
|.z.|
rExpSeq )
. (n
+ 1)) by
Def5;
hence
X[(n
+ 1)];
end;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A4);
hence thesis by
A1,
A2;
end;
theorem ::
SIN_COS:4
Th4:
0
< k implies ((
Shift seq)
. k)
= (seq
. (k
-' 1))
proof
assume
A1:
0
< k;
A2: (
0
+ 1)
<= k by
INT_1: 7,
A1;
consider m be
Nat such that
A3: (m
+ 1)
= k by
A1,
NAT_1: 6;
A4: m
= (k
- 1) by
A3;
thus ((
Shift seq)
. k)
= (seq
. m) by
A3,
Def8
.= (seq
. (k
-' 1)) by
A2,
A4,
XREAL_1: 233;
end;
theorem ::
SIN_COS:5
Th5: ((
Partial_Sums seq)
. k)
= (((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k))
proof
defpred
X[
Nat] means ((
Partial_Sums seq)
. $1)
= (((
Partial_Sums (
Shift seq))
. $1)
+ (seq
. $1));
((
Partial_Sums seq)
.
0 )
= (
0c
+ (seq
.
0 )) by
SERIES_1:def 1
.= (((
Shift seq)
.
0 )
+ (seq
.
0 )) by
Def8
.= (((
Partial_Sums (
Shift seq))
.
0 )
+ (seq
.
0 )) by
SERIES_1:def 1;
then
A1:
X[
0 ];
A2: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A3: ((
Partial_Sums seq)
. k)
= (((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k));
thus ((
Partial_Sums seq)
. (k
+ 1))
= ((((
Partial_Sums (
Shift seq))
. k)
+ (seq
. k))
+ (seq
. (k
+ 1))) by
A3,
SERIES_1:def 1
.= ((((
Partial_Sums (
Shift seq))
. k)
+ ((
Shift seq)
. (k
+ 1)))
+ (seq
. (k
+ 1))) by
Def8
.= (((
Partial_Sums (
Shift seq))
. (k
+ 1))
+ (seq
. (k
+ 1))) by
SERIES_1:def 1;
end;
for k holds
X[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
SIN_COS:6
Th6: ((z
+ w)
|^ n)
= ((
Partial_Sums (
Expan (n,z,w)))
. n)
proof
A1: (
0
-'
0 )
=
0 by
XREAL_1: 232;
defpred
X[
Nat] means ((z
+ w)
|^ $1)
= ((
Partial_Sums (
Expan ($1,z,w)))
. $1);
((
Partial_Sums (
Expan (
0 ,z,w)))
.
0 )
= ((
Expan (
0 ,z,w))
.
0 ) by
SERIES_1:def 1
.= ((((
Coef
0 )
.
0 )
* (z
|^
0 ))
* (w
|^
0 )) by
A1,
Def9
.= (((1
/ (1
* 1))
* (z
|^
0 ))
* (w
|^
0 )) by
A1,
Def6,
Th1
.= (
1r
* ((w
GeoSeq )
.
0 )) by
COMSEQ_3:def 1
.=
1r by
COMSEQ_3:def 1;
then
A2:
X[
0 ] by
COMSEQ_3:def 1;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A4: ((z
+ w)
|^ n)
= ((
Partial_Sums (
Expan (n,z,w)))
. n);
A5: n
in
NAT by
ORDINAL1:def 12;
A6: ((z
+ w)
|^ (n
+ 1))
= ((((z
+ w)
GeoSeq )
. n)
* (z
+ w)) by
COMSEQ_3:def 1
.= (((z
+ w)
(#) (
Partial_Sums (
Expan (n,z,w))))
. n) by
A4,
VALUED_1: 6
.= ((
Partial_Sums ((z
+ w)
(#) (
Expan (n,z,w))))
. n) by
COMSEQ_3: 29;
now
let k be
Element of
NAT ;
thus (((z
+ w)
(#) (
Expan (n,z,w)))
. k)
= ((z
+ w)
* ((
Expan (n,z,w))
. k)) by
VALUED_1: 6
.= ((z
* ((
Expan (n,z,w))
. k))
+ (w
* ((
Expan (n,z,w))
. k)))
.= (((z
(#) (
Expan (n,z,w)))
. k)
+ (w
* ((
Expan (n,z,w))
. k))) by
VALUED_1: 6
.= (((z
(#) (
Expan (n,z,w)))
. k)
+ ((w
(#) (
Expan (n,z,w)))
. k)) by
VALUED_1: 6
.= (((z
(#) (
Expan (n,z,w)))
+ (w
(#) (
Expan (n,z,w))))
. k) by
VALUED_1: 1;
end;
then ((z
+ w)
(#) (
Expan (n,z,w)))
= ((z
(#) (
Expan (n,z,w)))
+ (w
(#) (
Expan (n,z,w))));
then
A7: ((z
+ w)
|^ (n
+ 1))
= (((
Partial_Sums (z
(#) (
Expan (n,z,w))))
+ (
Partial_Sums (w
(#) (
Expan (n,z,w)))))
. n) by
A6,
COMSEQ_3: 27
.= (((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. n)
+ ((
Partial_Sums (w
(#) (
Expan (n,z,w))))
. n)) by
VALUED_1: 1,
A5;
A8: ((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. (n
+ 1))
= (((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. n)
+ ((z
(#) (
Expan (n,z,w)))
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. n)
+ (z
* ((
Expan (n,z,w))
. (n
+ 1)))) by
VALUED_1: 6;
n
< (n
+ 1) by
XREAL_1: 29;
then
A9: ((
Expan (n,z,w))
. (n
+ 1))
=
0c by
Def9;
A10: ((
Partial_Sums (w
(#) (
Expan (n,z,w))))
. (n
+ 1))
= (((
Partial_Sums (w
(#) (
Expan (n,z,w))))
. n)
+ ((w
(#) (
Expan (n,z,w)))
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (w
(#) (
Expan (n,z,w))))
. n)
+ (w
* ((
Expan (n,z,w))
. (n
+ 1)))) by
VALUED_1: 6;
A11: ((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. (n
+ 1))
= (((
Partial_Sums (
Shift (z
(#) (
Expan (n,z,w)))))
. (n
+ 1))
+ ((z
(#) (
Expan (n,z,w)))
. (n
+ 1))) by
Th5;
(
0
+ n)
< (n
+ 1) by
XREAL_1: 29;
then ((
Expan (n,z,w))
. (n
+ 1))
=
0c by
Def9;
then (z
* ((
Expan (n,z,w))
. (n
+ 1)))
=
0c ;
then
A12: ((
Partial_Sums (z
(#) (
Expan (n,z,w))))
. (n
+ 1))
= (((
Partial_Sums (
Shift (z
(#) (
Expan (n,z,w)))))
. (n
+ 1))
+
0c ) by
A11,
VALUED_1: 6
.= ((
Partial_Sums (
Shift (z
(#) (
Expan (n,z,w)))))
. (n
+ 1));
now
let k be
Element of
NAT ;
A13:
now
assume
A14: (n
+ 1)
< k;
A15: (
0
+ 1)
<= (n
+ 1) by
XREAL_1: 6;
A16: ((n
+ 1)
- 1)
< (k
- 1) by
A14,
XREAL_1: 9;
then
A17: (n
+
0 )
< ((k
- 1)
+ 1) by
XREAL_1: 8;
A18: (k
- 1)
= (k
-' 1) by
A14,
A15,
XREAL_1: 233,
XXREAL_0: 2;
(((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= (((w
(#) (
Expan (n,z,w)))
. k)
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. k)) by
VALUED_1: 1
.= ((w
* ((
Expan (n,z,w))
. k))
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. k)) by
VALUED_1: 6
.= ((w
* ((
Expan (n,z,w))
. k))
+ ((z
(#) (
Expan (n,z,w)))
. (k
-' 1))) by
A17,
Th4
.= ((w
* ((
Expan (n,z,w))
. k))
+ (z
* ((
Expan (n,z,w))
. (k
-' 1)))) by
VALUED_1: 6
.= ((w
*
0c )
+ (z
* ((
Expan (n,z,w))
. (k
-' 1)))) by
A17,
Def9
.= (
0c
+ (z
*
0c )) by
A16,
A18,
Def9
.=
0c ;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A14,
Def9;
end;
now
assume
A19: k
<= (n
+ 1);
A20:
now
assume
A21: k
= (n
+ 1);
A22: n
< (n
+ 1) by
XREAL_1: 29;
A23: (n
-' n)
= (n
- n) by
XREAL_1: 233
.=
0 ;
A24: ((n
+ 1)
-' (n
+ 1))
= ((n
+ 1)
- (n
+ 1)) by
XREAL_1: 233
.=
0 ;
A25: ((
Coef n)
. n)
= ((n
! )
/ ((n
! )
* (
0
! ))) by
A23,
Def6
.= 1 by
Th1,
XCMPLX_1: 60;
A26: ((
Coef (n
+ 1))
. (n
+ 1))
= (((n
+ 1)
! )
/ (((n
+ 1)
! )
* (
0
! ))) by
A24,
Def6
.= 1 by
Th1,
XCMPLX_1: 60;
(((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= (((w
(#) (
Expan (n,z,w)))
. (n
+ 1))
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. (n
+ 1))) by
A21,
VALUED_1: 1
.= ((w
* ((
Expan (n,z,w))
. (n
+ 1)))
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. (n
+ 1))) by
VALUED_1: 6
.= ((w
*
0c )
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. (n
+ 1))) by
A22,
Def9
.= ((z
(#) (
Expan (n,z,w)))
. n) by
Def8
.= (z
* ((
Expan (n,z,w))
. n)) by
VALUED_1: 6
.= (z
* ((((
Coef n)
. n)
* (z
|^ n))
* (w
|^ (n
-' n)))) by
Def9
.= ((((
Coef n)
. n)
* (((z
GeoSeq )
. n)
* z))
* (w
|^ (n
-' n)))
.= ((((
Coef (n
+ 1))
. (n
+ 1))
* (z
|^ (n
+ 1)))
* (w
|^ (n
-' n))) by
A25,
A26,
COMSEQ_3:def 1
.= ((
Expan ((n
+ 1),z,w))
. k) by
A21,
A23,
A24,
Def9;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
now
assume
A27: k
< (n
+ 1);
A28:
now
assume
A29: k
=
0 ;
A30: (n
-'
0 )
= (n
-
0 ) by
XREAL_1: 233;
A31: ((n
+ 1)
-'
0 )
= ((n
+ 1)
-
0 ) by
XREAL_1: 233;
A32: ((
Coef n)
.
0 )
= ((n
! )
/ ((
0
! )
* (n
! ))) by
A30,
Def6
.= 1 by
Th1,
XCMPLX_1: 60;
A33: ((
Coef (n
+ 1))
.
0 )
= (((n
+ 1)
! )
/ ((
0
! )
* ((n
+ 1)
! ))) by
A31,
Def6
.= 1 by
Th1,
XCMPLX_1: 60;
(((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= (((w
(#) (
Expan (n,z,w)))
.
0 )
+ ((
Shift (z
(#) (
Expan (n,z,w))))
.
0 )) by
A29,
VALUED_1: 1
.= ((w
* ((
Expan (n,z,w))
.
0 ))
+ ((
Shift (z
(#) (
Expan (n,z,w))))
.
0 )) by
VALUED_1: 6
.= ((w
* ((
Expan (n,z,w))
.
0 ))
+
0c ) by
Def8
.= (w
* ((((
Coef n)
.
0 )
* (z
|^
0 ))
* (w
|^ (n
-'
0 )))) by
Def9
.= ((((
Coef n)
.
0 )
* (z
|^
0 ))
* (((w
GeoSeq )
. n)
* w)) by
A30
.= ((((
Coef (n
+ 1))
.
0 )
* (z
|^
0 ))
* (w
|^ ((n
+ 1)
-'
0 ))) by
A31,
A32,
A33,
COMSEQ_3:def 1
.= ((
Expan ((n
+ 1),z,w))
. k) by
A29,
Def9;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
now
assume
A34: k
<>
0 ;
then
A35: (
0
+ 1)
<= k by
INT_1: 7;
A36: ((k
+ 1)
- 1)
<= ((n
+ 1)
- 1) by
A27,
INT_1: 7;
k
< (k
+ 1) by
XREAL_1: 29;
then (k
- 1)
<= ((k
+ 1)
- 1) by
XREAL_1: 9;
then (k
- 1)
<= n by
A36,
XXREAL_0: 2;
then
A37: (k
-' 1)
<= n by
A35,
XREAL_1: 233;
A38: (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= (((w
(#) (
Expan (n,z,w)))
. k)
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. k)) by
VALUED_1: 1
.= ((w
* ((
Expan (n,z,w))
. k))
+ ((
Shift (z
(#) (
Expan (n,z,w))))
. k)) by
VALUED_1: 6
.= ((w
* ((
Expan (n,z,w))
. k))
+ ((z
(#) (
Expan (n,z,w)))
. (k
-' 1))) by
A34,
Th4
.= ((w
* ((
Expan (n,z,w))
. k))
+ (z
* ((
Expan (n,z,w))
. (k
-' 1)))) by
VALUED_1: 6
.= ((w
* ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k))))
+ (z
* ((
Expan (n,z,w))
. (k
-' 1)))) by
A36,
Def9
.= (((w
* (((
Coef n)
. k)
* (z
|^ k)))
* (w
|^ (n
-' k)))
+ (z
* ((((
Coef n)
. (k
-' 1))
* (z
|^ (k
-' 1)))
* (w
|^ (n
-' (k
-' 1)))))) by
A37,
Def9
.= ((((
Coef n)
. k)
* ((w
* (z
|^ k))
* (w
|^ (n
-' k))))
+ (((
Coef n)
. (k
-' 1))
* (((z
|^ (k
-' 1))
* z)
* (w
|^ (n
-' (k
-' 1))))));
A39: ((n
-' k)
+ 1)
= ((n
- k)
+ 1) by
A36,
XREAL_1: 233
.= ((n
+ 1)
- k)
.= ((n
+ 1)
-' k) by
A27,
XREAL_1: 233;
A40: (n
-' (k
-' 1))
= (n
- (k
-' 1)) by
A37,
XREAL_1: 233
.= (n
- (k
- 1)) by
A35,
XREAL_1: 233
.= ((n
+ 1)
- k)
.= ((n
+ 1)
-' k) by
A27,
XREAL_1: 233;
((k
-' 1)
+ 1)
= ((k
- 1)
+ 1) by
A35,
XREAL_1: 233
.= k;
then
A41: ((w
|^ (n
-' k))
* w)
= (w
|^ ((n
-' k)
+ 1)) & ((z
|^ (k
-' 1))
* z)
= (z
|^ k) by
COMSEQ_3:def 1;
A42: (((
Coef n)
. k)
+ ((
Coef n)
. (k
-' 1)))
= (((n
! )
/ ((k
! )
* ((n
-' k)
! )))
+ ((
Coef n)
. (k
-' 1))) by
A36,
Def6
.= (((n
! )
/ ((k
! )
* ((n
-' k)
! )))
+ ((n
! )
/ (((k
-' 1)
! )
* ((n
-' (k
-' 1))
! )))) by
A37,
Def6;
A43: (((k
! )
* ((n
-' k)
! ))
* (((n
+ 1)
- k)
+ (
0
*
<i> )))
= ((k
! )
* (((n
-' k)
! )
* (((n
+ 1)
- k)
+ (
0
*
<i> ))));
A44: ((((k
-' 1)
! )
* ((n
-' (k
-' 1))
! ))
* (k
+ (
0
*
<i> )))
= (((k
+ (
0
*
<i> ))
* ((k
-' 1)
! ))
* ((n
-' (k
-' 1))
! ))
.= ((k
! )
* (((n
+ 1)
-' k)
! )) by
A34,
A40,
Th2;
(((n
+ 1)
- k)
+ (
0
*
<i> ))
<>
0c by
A27;
then
A45: ((n
! )
/ ((k
! )
* ((n
-' k)
! )))
= (((n
! )
* (((n
+ 1)
- k)
+ (
0
*
<i> )))
/ (((k
! )
* ((n
-' k)
! ))
* (((n
+ 1)
- k)
+ (
0
*
<i> )))) by
XCMPLX_1: 91
.= (((n
! )
* (((n
+ 1)
- k)
+ (
0
*
<i> )))
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A36,
A43,
Th2;
((n
! )
/ (((k
-' 1)
! )
* ((n
-' (k
-' 1))
! )))
= (((n
! )
* (k
+ (
0
*
<i> )))
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A34,
A44,
XCMPLX_1: 91;
then (((
Coef n)
. k)
+ ((
Coef n)
. (k
-' 1)))
= (((n
! )
* ((((n
+ 1)
- k)
+ k)
+ ((
0
+
0 )
*
<i> )))
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
A42,
A45
.= (((n
+ 1)
! )
/ ((k
! )
* (((n
+ 1)
-' k)
! ))) by
Th1
.= ((
Coef (n
+ 1))
. k) by
A27,
Def6;
then (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((((
Coef (n
+ 1))
. k)
* (z
|^ k))
* (w
|^ ((n
+ 1)
-' k))) by
A38,
A39,
A40,
A41
.= ((
Expan ((n
+ 1),z,w))
. k) by
A27,
Def9;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k);
end;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A28;
end;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A19,
A20,
XXREAL_0: 1;
end;
hence (((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
. k)
= ((
Expan ((n
+ 1),z,w))
. k) by
A13;
end;
then
A46: ((w
(#) (
Expan (n,z,w)))
+ (
Shift (z
(#) (
Expan (n,z,w)))))
= (
Expan ((n
+ 1),z,w));
thus ((z
+ w)
|^ (n
+ 1))
= (((
Partial_Sums (w
(#) (
Expan (n,z,w))))
+ (
Partial_Sums (
Shift (z
(#) (
Expan (n,z,w))))))
. (n
+ 1)) by
A7,
A8,
A9,
A10,
A12,
VALUED_1: 1
.= ((
Partial_Sums (
Expan ((n
+ 1),z,w)))
. (n
+ 1)) by
A46,
COMSEQ_3: 27;
end;
for n holds
X[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
theorem ::
SIN_COS:7
Th7: (
Expan_e (n,z,w))
= ((
1r
/ (n
! ))
(#) (
Expan (n,z,w)))
proof
now
let k be
Element of
NAT ;
A1:
now
assume
A2: n
< k;
hence ((
Expan_e (n,z,w))
. k)
= ((
1r
/ (n
! ))
*
0c ) by
Def10
.= ((
1r
/ (n
! ))
* ((
Expan (n,z,w))
. k)) by
A2,
Def9
.= (((
1r
/ (n
! ))
(#) (
Expan (n,z,w)))
. k) by
VALUED_1: 6;
end;
now
assume
A3: k
<= n;
then
A4: ((
Expan_e (n,z,w))
. k)
= ((((
Coef_e n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k))) by
Def10
.= (((
1r
/ ((k
! )
* ((n
-' k)
! )))
* (z
|^ k))
* (w
|^ (n
-' k))) by
A3,
Def7;
(
1r
/ ((k
! )
* ((n
-' k)
! )))
= ((((n
! )
*
1r )
/ (n
! ))
/ ((k
! )
* ((n
-' k)
! ))) by
XCMPLX_1: 60
.= (((
1r
/ (n
! ))
* (n
! ))
/ ((k
! )
* ((n
-' k)
! )));
hence ((
Expan_e (n,z,w))
. k)
= ((((
1r
/ (n
! ))
* (n
! ))
/ ((k
! )
* ((n
-' k)
! )))
* ((z
|^ k)
* (w
|^ (n
-' k)))) by
A4
.= ((
1r
/ (n
! ))
* ((((n
! )
/ ((k
! )
* ((n
-' k)
! )))
* (z
|^ k))
* (w
|^ (n
-' k))))
.= ((
1r
/ (n
! ))
* ((((
Coef n)
. k)
* (z
|^ k))
* (w
|^ (n
-' k)))) by
A3,
Def6
.= ((
1r
/ (n
! ))
* ((
Expan (n,z,w))
. k)) by
A3,
Def9
.= (((
1r
/ (n
! ))
(#) (
Expan (n,z,w)))
. k) by
VALUED_1: 6;
end;
hence ((
Expan_e (n,z,w))
. k)
= (((
1r
/ (n
! ))
(#) (
Expan (n,z,w)))
. k) by
A1;
end;
hence thesis;
end;
theorem ::
SIN_COS:8
Th8: (((z
+ w)
|^ n)
/ (n
! ))
= ((
Partial_Sums (
Expan_e (n,z,w)))
. n)
proof
thus (((z
+ w)
|^ n)
/ (n
! ))
= (((
Partial_Sums (
Expan (n,z,w)))
. n)
* (
1r
/ (n
! ))) by
Th6
.= (((
1r
/ (n
! ))
(#) (
Partial_Sums (
Expan (n,z,w))))
. n) by
VALUED_1: 6
.= ((
Partial_Sums ((
1r
/ (n
! ))
(#) (
Expan (n,z,w))))
. n) by
COMSEQ_3: 29
.= ((
Partial_Sums (
Expan_e (n,z,w)))
. n) by
Th7;
end;
theorem ::
SIN_COS:9
Th9: ((
0c qua
Complex
ExpSeq ) is
absolutely_summable) & (
Sum (
0c qua
Complex
ExpSeq ))
=
1r
proof
defpred
X[
set] means ((
Partial_Sums
|.(
0c qua
Complex
ExpSeq ).|)
. $1)
= jj;
((
Partial_Sums
|.(
0c qua
Complex
ExpSeq ).|)
.
0 )
= (
|.(
0c qua
Complex
ExpSeq ).|
.
0 ) by
SERIES_1:def 1
.=
|.((
0c qua
Complex
ExpSeq )
.
0 ).| by
VALUED_1: 18
.= 1 by
Th3,
COMPLEX1: 48;
then
A1:
X[
0 ];
A2: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A3: ((
Partial_Sums
|.(
0c qua
Complex
ExpSeq ).|)
. n)
= jj;
thus ((
Partial_Sums
|.(
0c qua
Complex
ExpSeq ).|)
. (n
+ 1))
= (1
+ (
|.(
0c qua
Complex
ExpSeq ).|
. (n
+ 1))) by
A3,
SERIES_1:def 1
.= (1
+
|.((
0c qua
Complex
ExpSeq )
. (n
+ 1)).|) by
VALUED_1: 18
.= (1
+
|.((((
0c qua
Complex
ExpSeq )
. n)
*
0c )
/ ((n
+ 1)
+ (
0
*
<i> ))).|) by
Th3
.= jj by
COMPLEX1: 44;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A1,
A2);
then (
Partial_Sums
|.(
0c qua
Complex
ExpSeq ).|) is
constant by
VALUED_0:def 18;
then
A4:
|.(
0c qua
Complex
ExpSeq ).| is
summable by
SERIES_1:def 2;
defpred
X[
set] means ((
Partial_Sums (
0c qua
Complex
ExpSeq ))
. $1)
= 1;
((
Partial_Sums (
0c qua
Complex
ExpSeq ))
.
0 )
= ((
0c qua
Complex
ExpSeq )
.
0 ) by
SERIES_1:def 1
.= 1 by
Th3;
then
A5:
X[
0 ];
A6: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A7: ((
Partial_Sums (
0c qua
Complex
ExpSeq ))
. n)
= 1;
thus ((
Partial_Sums (
0c qua
Complex
ExpSeq ))
. (n
+ 1))
= (
1r
+ ((
0c qua
Complex
ExpSeq )
. (n
+ 1))) by
A7,
SERIES_1:def 1
.= (
1r
+ ((((
0c qua
Complex
ExpSeq )
. n)
*
0c )
/ ((n
+ 1)
+ (
0
*
<i> )))) by
Th3
.= 1;
end;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A6);
hence thesis by
A4,
COMSEQ_2: 10;
end;
registration
let z be
Complex;
cluster (z
ExpSeq ) ->
absolutely_summable;
coherence
proof
now
assume
A1: z
<>
0c ;
defpred
X[
set] means ((z
ExpSeq )
. $1)
<>
0c ;
A2:
X[
0 ] by
Th3;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A4: ((z
ExpSeq )
. n)
<>
0c ;
thus ((z
ExpSeq )
. (n
+ 1))
<>
0c
proof
assume ((z
ExpSeq )
. (n
+ 1))
=
0c ;
then
A5: ((((z
ExpSeq )
. n)
* z)
/ ((n
+ 1)
+ (
0
*
<i> )))
=
0c by
Th3;
0c
= (
0c
/ z)
.= ((((z
ExpSeq )
. n)
* z)
/ z) by
A5,
XCMPLX_1: 50
.= (((z
ExpSeq )
. n)
* (z
/ z))
.= (((z
ExpSeq )
. n)
* 1) by
A1,
XCMPLX_1: 60
.= ((z
ExpSeq )
. n);
hence contradiction by
A4;
end;
end;
deffunc
U(
Nat) = ((
|.(z
ExpSeq ).|
. ($1
+ 1))
/ (
|.(z
ExpSeq ).|
. $1));
thus
A6: for n holds
X[n] from
NAT_1:sch 2(
A2,
A3);
ex rseq st for n holds (rseq
. n)
=
U(n) from
SEQ_1:sch 1;
then
consider rseq such that
A7: for n holds (rseq
. n)
= ((
|.(z
ExpSeq ).|
. (n
+ 1))
/ (
|.(z
ExpSeq ).|
. n));
now
let n;
thus (rseq
. n)
= ((
|.(z
ExpSeq ).|
. (n
+ 1))
/ (
|.(z
ExpSeq ).|
. n)) by
A7
.= (
|.((z
ExpSeq )
. (n
+ 1)).|
/ (
|.(z
ExpSeq ).|
. n)) by
VALUED_1: 18
.= (
|.((z
ExpSeq )
. (n
+ 1)).|
/
|.((z
ExpSeq )
. n).|) by
VALUED_1: 18
.=
|.(((z
ExpSeq )
. (n
+ 1))
/ ((z
ExpSeq )
. n)).| by
COMPLEX1: 67
.=
|.(((((z
ExpSeq )
. n)
* z)
/ ((n
+ 1)
+ (
0
*
<i> )))
/ ((z
ExpSeq )
. n)).| by
Th3
.=
|.((((z
ExpSeq )
. n)
* (z
/ ((n
+ 1)
+ (
0
*
<i> ))))
/ ((z
ExpSeq )
. n)).|
.=
|.(z
/ ((n
+ 1)
+ (
0
*
<i> ))).| by
A6,
XCMPLX_1: 89
.= (
|.z.|
/
|.(n
+ 1).|) by
COMPLEX1: 67
.= (
|.z.|
/ (n
+ 1)) by
ABSVALUE:def 1;
end;
then rseq is
convergent & (
lim rseq)
< 1 by
SEQ_4: 31;
hence thesis by
A6,
A7,
COMSEQ_3: 75;
end;
hence thesis by
Th9;
end;
end
theorem ::
SIN_COS:10
Th10: ((z
ExpSeq )
.
0 )
= 1 & ((
Expan (
0 ,z,w))
.
0 )
= 1
proof
thus ((z
ExpSeq )
.
0 )
= ((z
|^
0 )
/ (
0
! )) by
Def4
.= 1 by
Th1,
COMSEQ_3:def 1;
A1: (
0
-'
0 )
=
0 by
XREAL_1: 232;
hence ((
Expan (
0 ,z,w))
.
0 )
= ((((
Coef
0 )
.
0 )
* (z
|^
0 ))
* (w
|^
0 )) by
Def9
.= (((1
/ (1
* 1))
* (z
|^
0 ))
* (w
|^
0 )) by
A1,
Def6,
Th1
.= (
1r
* ((w
GeoSeq )
.
0 )) by
COMSEQ_3:def 1
.= 1 by
COMSEQ_3:def 1;
end;
theorem ::
SIN_COS:11
Th11: l
<= k implies ((
Alfa ((k
+ 1),z,w))
. l)
= (((
Alfa (k,z,w))
. l)
+ ((
Expan_e ((k
+ 1),z,w))
. l))
proof
assume
A1: l
<= k;
A2: k
< (k
+ 1) by
XREAL_1: 29;
then
A3: l
<= (k
+ 1) by
A1,
XXREAL_0: 2;
((k
+ 1)
-' l)
= ((k
+ 1)
- l) by
A1,
A2,
XREAL_1: 233,
XXREAL_0: 2;
then
A4: ((k
+ 1)
-' l)
= ((k
- l)
+ 1)
.= ((k
-' l)
+ 1) by
A1,
XREAL_1: 233;
then
A5: ((
Alfa ((k
+ 1),z,w))
. l)
= (((z
ExpSeq )
. l)
* ((
Partial_Sums (w
ExpSeq ))
. ((k
-' l)
+ 1))) by
A3,
Def11
.= (((z
ExpSeq )
. l)
* (((
Partial_Sums (w
ExpSeq ))
. (k
-' l))
+ ((w
ExpSeq )
. ((k
+ 1)
-' l)))) by
A4,
SERIES_1:def 1
.= ((((z
ExpSeq )
. l)
* ((
Partial_Sums (w
ExpSeq ))
. (k
-' l)))
+ (((z
ExpSeq )
. l)
* ((w
ExpSeq )
. ((k
+ 1)
-' l))))
.= (((
Alfa (k,z,w))
. l)
+ (((z
ExpSeq )
. l)
* ((w
ExpSeq )
. ((k
+ 1)
-' l)))) by
A1,
Def11;
(((z
ExpSeq )
. l)
* ((w
ExpSeq )
. ((k
+ 1)
-' l)))
= (((z
|^ l)
/ (l
! ))
* ((w
ExpSeq )
. ((k
+ 1)
-' l))) by
Def4
.= (((z
|^ l)
/ (l
! ))
* ((w
|^ ((k
+ 1)
-' l))
/ (((k
+ 1)
-' l)
! ))) by
Def4
.= ((((z
|^ l)
* (w
|^ ((k
+ 1)
-' l)))
*
1r )
/ ((l
! )
* (((k
+ 1)
-' l)
! ))) by
XCMPLX_1: 76
.= (((z
|^ l)
* (w
|^ ((k
+ 1)
-' l)))
* (
1r
/ ((l
! )
* (((k
+ 1)
-' l)
! ))))
.= (((
Coef_e (k
+ 1))
. l)
* ((z
|^ l)
* (w
|^ ((k
+ 1)
-' l)))) by
A3,
Def7
.= ((((
Coef_e (k
+ 1))
. l)
* (z
|^ l))
* (w
|^ ((k
+ 1)
-' l)))
.= ((
Expan_e ((k
+ 1),z,w))
. l) by
A3,
Def10;
hence thesis by
A5;
end;
theorem ::
SIN_COS:12
Th12: ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
= (((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k))
proof
A1: k
in
NAT by
ORDINAL1:def 12;
now
let l be
Nat;
A2: l
in
NAT by
ORDINAL1:def 12;
assume l
<= k;
hence ((
Alfa ((k
+ 1),z,w))
. l)
= (((
Alfa (k,z,w))
. l)
+ ((
Expan_e ((k
+ 1),z,w))
. l)) by
Th11
.= (((
Alfa (k,z,w))
+ (
Expan_e ((k
+ 1),z,w)))
. l) by
VALUED_1: 1,
A2;
end;
hence ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
= ((
Partial_Sums ((
Alfa (k,z,w))
+ (
Expan_e ((k
+ 1),z,w))))
. k) by
COMSEQ_3: 35
.= (((
Partial_Sums (
Alfa (k,z,w)))
+ (
Partial_Sums (
Expan_e ((k
+ 1),z,w))))
. k) by
COMSEQ_3: 27
.= (((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)) by
VALUED_1: 1,
A1;
end;
theorem ::
SIN_COS:13
Th13: ((z
ExpSeq )
. k)
= ((
Expan_e (k,z,w))
. k)
proof
A1:
0
= (k
- k);
then
A2: (k
-' k)
=
0 by
XREAL_1: 233;
A3: ((k
-' k)
! )
= 1 by
A1,
Th1,
XREAL_1: 233;
thus ((
Expan_e (k,z,w))
. k)
= ((((
Coef_e k)
. k)
* (z
|^ k))
* (w
|^
0 )) by
A2,
Def10
.= ((((
Coef_e k)
. k)
* (z
|^ k))
*
1r ) by
COMSEQ_3: 11
.= ((
1r
/ ((k
! )
*
1r ))
* (z
|^ k)) by
A3,
Def7
.= (((z
|^ k)
*
1r )
/ (k
! ))
.= ((z
ExpSeq )
. k) by
Def4;
end;
theorem ::
SIN_COS:14
Th14: ((
Partial_Sums ((z
+ w)
ExpSeq ))
. n)
= ((
Partial_Sums (
Alfa (n,z,w)))
. n)
proof
A1: ((
Partial_Sums ((z
+ w)
ExpSeq ))
.
0 )
= (((z
+ w)
ExpSeq )
.
0 ) by
SERIES_1:def 1
.= 1 by
Th10;
defpred
X[
Nat] means ((
Partial_Sums ((z
+ w)
ExpSeq ))
. $1)
= ((
Partial_Sums (
Alfa ($1,z,w)))
. $1);
A2: (
0
-'
0 )
=
0 by
XREAL_1: 232;
((
Partial_Sums (
Alfa (
0 ,z,w)))
.
0 )
= ((
Alfa (
0 ,z,w))
.
0 ) by
SERIES_1:def 1
.= (((z
ExpSeq )
.
0 )
* ((
Partial_Sums (w
ExpSeq ))
.
0 )) by
A2,
Def11
.= (((z
ExpSeq )
.
0 )
* ((w
ExpSeq )
.
0 )) by
SERIES_1:def 1
.= (
1r
* ((w
ExpSeq )
.
0 )) by
Th10
.= 1 by
Th10;
then
A3:
X[
0 ] by
A1;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A5: ((
Partial_Sums ((z
+ w)
ExpSeq ))
. k)
= ((
Partial_Sums (
Alfa (k,z,w)))
. k);
A6: ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1))
= (((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (
Alfa (k,z,w)))
. k)
+ ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k))
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))) by
Th12
.= (((
Partial_Sums ((z
+ w)
ExpSeq ))
. k)
+ (((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1)))) by
A5;
((k
+ 1)
-' (k
+ 1))
=
0 by
XREAL_1: 232;
then ((
Alfa ((k
+ 1),z,w))
. (k
+ 1))
= (((z
ExpSeq )
. (k
+ 1))
* ((
Partial_Sums (w
ExpSeq ))
.
0 )) by
Def11
.= (((z
ExpSeq )
. (k
+ 1))
* ((w
ExpSeq )
.
0 )) by
SERIES_1:def 1
.= (((z
ExpSeq )
. (k
+ 1))
* 1) by
Th10
.= ((
Expan_e ((k
+ 1),z,w))
. (k
+ 1)) by
Th13;
then (((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. k)
+ ((
Alfa ((k
+ 1),z,w))
. (k
+ 1)))
= ((
Partial_Sums (
Expan_e ((k
+ 1),z,w)))
. (k
+ 1)) by
SERIES_1:def 1
.= (((z
+ w)
|^ (k
+ 1))
/ ((k
+ 1)
! )) by
Th8;
then ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1))
= (((
Partial_Sums ((z
+ w)
ExpSeq ))
. k)
+ (((z
+ w)
ExpSeq )
. (k
+ 1))) by
A6,
Def4
.= ((
Partial_Sums ((z
+ w)
ExpSeq ))
. (k
+ 1)) by
SERIES_1:def 1;
hence ((
Partial_Sums ((z
+ w)
ExpSeq ))
. (k
+ 1))
= ((
Partial_Sums (
Alfa ((k
+ 1),z,w)))
. (k
+ 1));
end;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A4);
hence thesis;
end;
theorem ::
SIN_COS:15
Th15: ((((
Partial_Sums (z
ExpSeq ))
. k)
* ((
Partial_Sums (w
ExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
ExpSeq ))
. k))
= ((
Partial_Sums (
Conj (k,z,w)))
. k)
proof
A1: k
in
NAT by
ORDINAL1:def 12;
A2: ((((
Partial_Sums (z
ExpSeq ))
. k)
* ((
Partial_Sums (w
ExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
ExpSeq ))
. k))
= ((((
Partial_Sums (z
ExpSeq ))
. k)
* ((
Partial_Sums (w
ExpSeq ))
. k))
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
Th14
.= (((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (
Partial_Sums (z
ExpSeq )))
. k)
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
VALUED_1: 6
.= (((
Partial_Sums (((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq )))
. k)
- ((
Partial_Sums (
Alfa (k,z,w)))
. k)) by
COMSEQ_3: 29
.= (((
Partial_Sums (((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq )))
. k)
+ ((
- (
Partial_Sums (
Alfa (k,z,w))))
. k)) by
VALUED_1: 8
.= (((
Partial_Sums (((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq )))
- (
Partial_Sums (
Alfa (k,z,w))))
. k) by
VALUED_1: 1,
A1
.= ((
Partial_Sums ((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq ))
- (
Alfa (k,z,w))))
. k) by
COMSEQ_3: 28;
for l be
Nat st l
<= k holds (((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq ))
- (
Alfa (k,z,w)))
. l)
= ((
Conj (k,z,w))
. l)
proof
let l be
Nat such that
A3: l
<= k;
A4: l
in
NAT by
ORDINAL1:def 12;
thus (((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq ))
- (
Alfa (k,z,w)))
. l)
= (((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq ))
. l)
+ ((
- (
Alfa (k,z,w)))
. l)) by
VALUED_1: 1,
A4
.= (((((
Partial_Sums (w
ExpSeq ))
. k)
(#) (z
ExpSeq ))
. l)
- ((
Alfa (k,z,w))
. l)) by
VALUED_1: 8
.= ((((
Partial_Sums (w
ExpSeq ))
. k)
* ((z
ExpSeq )
. l))
- ((
Alfa (k,z,w))
. l)) by
VALUED_1: 6
.= ((((z
ExpSeq )
. l)
* ((
Partial_Sums (w
ExpSeq ))
. k))
- (((z
ExpSeq )
. l)
* ((
Partial_Sums (w
ExpSeq ))
. (k
-' l)))) by
A3,
Def11
.= (((z
ExpSeq )
. l)
* (((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))))
.= ((
Conj (k,z,w))
. l) by
A3,
Def13;
end;
hence thesis by
A2,
COMSEQ_3: 35;
end;
theorem ::
SIN_COS:16
Th16:
|.((
Partial_Sums (z
ExpSeq ))
. k).|
<= ((
Partial_Sums (
|.z.|
rExpSeq ))
. k) & ((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
<= (
Sum (
|.z.|
rExpSeq )) &
|.((
Partial_Sums (z
ExpSeq ))
. k).|
<= (
Sum (
|.z.|
rExpSeq ))
proof
defpred
X[
Nat] means
|.((
Partial_Sums (z
ExpSeq ))
. $1).|
<= ((
Partial_Sums (
|.z.|
rExpSeq ))
. $1);
A1:
|.((
Partial_Sums (z
ExpSeq ))
.
0 ).|
=
|.((z
ExpSeq )
.
0 ).| by
SERIES_1:def 1
.=
|.((z
|^
0 )
/ (
0
! )).| by
Def4
.= 1 by
Th1,
COMPLEX1: 48,
COMSEQ_3:def 1;
((
Partial_Sums (
|.z.|
rExpSeq ))
.
0 )
= ((
|.z.|
rExpSeq )
.
0 ) by
SERIES_1:def 1
.= ((
|.z.|
|^
0 )
/ (
0
! )) by
Def5
.= 1 by
NEWTON: 4,
NEWTON: 12;
then
A2:
X[
0 ] by
A1;
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A4:
|.((
Partial_Sums (z
ExpSeq ))
. k).|
<= ((
Partial_Sums (
|.z.|
rExpSeq ))
. k);
|.((
Partial_Sums (z
ExpSeq ))
. (k
+ 1)).|
=
|.(((
Partial_Sums (z
ExpSeq ))
. k)
+ ((z
ExpSeq )
. (k
+ 1))).| &
|.(((
Partial_Sums (z
ExpSeq ))
. k)
+ ((z
ExpSeq )
. (k
+ 1))).|
<= (
|.((
Partial_Sums (z
ExpSeq ))
. k).|
+
|.((z
ExpSeq )
. (k
+ 1)).|) by
COMPLEX1: 56,
SERIES_1:def 1;
then
A5:
|.((
Partial_Sums (z
ExpSeq ))
. (k
+ 1)).|
<= (
|.((
Partial_Sums (z
ExpSeq ))
. k).|
+ ((
|.z.|
rExpSeq )
. (k
+ 1))) by
Th3;
A6: (
|.((
Partial_Sums (z
ExpSeq ))
. k).|
+ ((
|.z.|
rExpSeq )
. (k
+ 1)))
<= (((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
+ ((
|.z.|
rExpSeq )
. (k
+ 1))) by
A4,
XREAL_1: 6;
(((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
+ ((
|.z.|
rExpSeq )
. (k
+ 1)))
= ((
Partial_Sums (
|.z.|
rExpSeq ))
. (k
+ 1)) by
SERIES_1:def 1;
hence thesis by
A5,
A6,
XXREAL_0: 2;
end;
A7: for k holds
X[k] from
NAT_1:sch 2(
A2,
A3);
hence
|.((
Partial_Sums (z
ExpSeq ))
. k).|
<= ((
Partial_Sums (
|.z.|
rExpSeq ))
. k);
now
let k be
object such that
A8: k
in
NAT ;
thus (
|.(z
ExpSeq ).|
. k)
=
|.((z
ExpSeq )
. k).| by
VALUED_1: 18
.= ((
|.z.|
rExpSeq )
. k) by
A8,
Th3;
end;
then
A9:
|.(z
ExpSeq ).|
= (
|.z.|
rExpSeq );
then ((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
<= (
lim (
Partial_Sums (
|.z.|
rExpSeq ))) by
SEQ_4: 37;
hence ((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
<= (
Sum (
|.z.|
rExpSeq )) by
SERIES_1:def 3;
A10:
now
let k;
(
lim (
Partial_Sums (
|.z.|
rExpSeq )))
= (
Sum (
|.z.|
rExpSeq )) by
SERIES_1:def 3;
hence ((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
<= (
Sum (
|.z.|
rExpSeq )) by
A9,
SEQ_4: 37;
end;
A11:
|.((
Partial_Sums (z
ExpSeq ))
. k).|
<= ((
Partial_Sums (
|.z.|
rExpSeq ))
. k) by
A7;
((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
<= (
Sum (
|.z.|
rExpSeq )) by
A10;
hence thesis by
A11,
XXREAL_0: 2;
end;
theorem ::
SIN_COS:17
Th17: 1
<= (
Sum (
|.z.|
rExpSeq ))
proof
|.((
Partial_Sums (z
ExpSeq ))
.
0 ).|
=
|.((z
ExpSeq )
.
0 ).| by
SERIES_1:def 1
.= 1 by
Th3,
COMPLEX1: 48;
hence thesis by
Th16;
end;
theorem ::
SIN_COS:18
Th18:
0
<= ((
|.z.|
rExpSeq )
. n)
proof
((
|.z.|
rExpSeq )
. n)
=
|.((z
ExpSeq )
. n).| by
Th3;
hence thesis by
COMPLEX1: 46;
end;
theorem ::
SIN_COS:19
Th19:
|.((
Partial_Sums (
|.z.|
rExpSeq ))
. n).|
= ((
Partial_Sums (
|.z.|
rExpSeq ))
. n) & (n
<= m implies
|.(((
Partial_Sums (
|.z.|
rExpSeq ))
. m)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n)).|
= (((
Partial_Sums (
|.z.|
rExpSeq ))
. m)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n)))
proof
for n holds
0
<= ((
|.z.|
rExpSeq )
. n) by
Th18;
hence thesis by
COMSEQ_3: 9;
end;
theorem ::
SIN_COS:20
Th20:
|.((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n).|
= ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n)
proof
A1:
now
let n;
(
|.(
Conj (k,z,w)).|
. n)
=
|.((
Conj (k,z,w))
. n).| by
VALUED_1: 18;
hence
0
<= (
|.(
Conj (k,z,w)).|
. n) by
COMPLEX1: 46;
end;
A2: ((
Partial_Sums
|.(
Conj (k,z,w)).|)
.
0 )
<= ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n) & ((
Partial_Sums
|.(
Conj (k,z,w)).|)
.
0 )
= (
|.(
Conj (k,z,w)).|
.
0 ) by
SEQM_3: 6,
SERIES_1:def 1;
0
<= (
|.(
Conj (k,z,w)).|
.
0 ) by
A1;
hence thesis by
A2,
ABSVALUE:def 1;
end;
theorem ::
SIN_COS:21
Th21: for p be
Real st p
>
0 holds ex n st for k st n
<= k holds
|.((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k).|
< p
proof
let p be
Real such that
A1: p
>
0 ;
reconsider pp = p as
Real;
A2: 1
<= (
Sum (
|.z.|
rExpSeq )) by
Th17;
A3:
0
< (
Sum (
|.w.|
rExpSeq )) by
Th17;
set p1 = (
min ((pp
/ (4
* (
Sum (
|.z.|
rExpSeq )))),(pp
/ (4
* (
Sum (
|.w.|
rExpSeq ))))));
A4: p1
>
0 by
A1,
A2,
A3,
XXREAL_0: 15;
now
let k be
object such that
A5: k
in
NAT ;
thus (
|.(z
ExpSeq ).|
. k)
=
|.((z
ExpSeq )
. k).| by
VALUED_1: 18
.= ((
|.z.|
rExpSeq )
. k) by
A5,
Th3;
end;
then
|.(z
ExpSeq ).|
= (
|.z.|
rExpSeq );
then
consider n1 such that
A6: for k,l be
Nat st n1
<= k & n1
<= l holds
|.(((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. l)).|
< p1 by
A4,
COMSEQ_3: 4;
consider n2 be
Nat such that
A7: for k,l be
Nat st n2
<= k & n2
<= l holds
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. l)).|
< p1 by
A4,
COMSEQ_3: 47;
set n3 = (n1
+ n2);
take n4 = (n3
+ n3);
A8:
now
let n;
let k;
now
let l be
Nat such that
A9: l
<= k;
thus (
|.(
Conj (k,z,w)).|
. l)
=
|.((
Conj (k,z,w))
. l).| by
VALUED_1: 18
.=
|.(((z
ExpSeq )
. l)
* (((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l)))).| by
A9,
Def13
.= (
|.((z
ExpSeq )
. l).|
*
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|) by
COMPLEX1: 65
.= (((
|.z.|
rExpSeq )
. l)
*
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|) by
Th3;
end;
hence for l be
Nat st l
<= k holds (
|.(
Conj (k,z,w)).|
. l)
= (((
|.z.|
rExpSeq )
. l)
*
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|);
end;
A10:
now
let k;
now
let l be
Nat;
assume l
<= k;
then
A11: (
|.(
Conj (k,z,w)).|
. l)
= (((
|.z.|
rExpSeq )
. l)
*
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|) by
A8;
|.((
Partial_Sums (w
ExpSeq ))
. k).|
<= (
Sum (
|.w.|
rExpSeq )) by
Th16;
then
A12: (
|.((
Partial_Sums (w
ExpSeq ))
. k).|
+
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|)
<= ((
Sum (
|.w.|
rExpSeq ))
+
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|) by
XREAL_1: 6;
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|
<= (
Sum (
|.w.|
rExpSeq )) by
Th16;
then ((
Sum (
|.w.|
rExpSeq ))
+
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|)
<= ((
Sum (
|.w.|
rExpSeq ))
+ (
Sum (
|.w.|
rExpSeq ))) by
XREAL_1: 6;
then
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|
<= (
|.((
Partial_Sums (w
ExpSeq ))
. k).|
+
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|) & (
|.((
Partial_Sums (w
ExpSeq ))
. k).|
+
|.((
Partial_Sums (w
ExpSeq ))
. (k
-' l)).|)
<= (2
* (
Sum (
|.w.|
rExpSeq ))) by
A12,
COMPLEX1: 57,
XXREAL_0: 2;
then
A13:
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|
<= (2
* (
Sum (
|.w.|
rExpSeq ))) by
XXREAL_0: 2;
0
<= ((
|.z.|
rExpSeq )
. l) by
Th18;
hence (
|.(
Conj (k,z,w)).|
. l)
<= (((
|.z.|
rExpSeq )
. l)
* (2
* (
Sum (
|.w.|
rExpSeq )))) by
A11,
A13,
XREAL_1: 64;
end;
hence for l be
Nat st l
<= k holds (
|.(
Conj (k,z,w)).|
. l)
<= (((
|.z.|
rExpSeq )
. l)
* (2
* (
Sum (
|.w.|
rExpSeq ))));
end;
now
let k such that
A14: n4
<= k;
A15: (
0
+ n3)
<= (n3
+ n3) by
XREAL_1: 6;
then
A16: n3
<= k by
A14,
XXREAL_0: 2;
A17: (n1
+
0 )
<= (n1
+ n2) by
XREAL_1: 6;
then
A18: n1
<= k by
A16,
XXREAL_0: 2;
now
let l be
Nat;
assume
A19: l
<= n3;
then
A20: (k
-' l)
= (k
- l) by
A16,
XREAL_1: 233,
XXREAL_0: 2;
A21: (
0
+ n2)
<= (n1
+ n2) by
XREAL_1: 6;
A22: (n4
- l)
<= (k
- l) by
A14,
XREAL_1: 9;
((n3
+ n3)
- n3)
<= ((n3
+ n3)
- l) by
A19,
XREAL_1: 10;
then n3
<= (k
- l) by
A22,
XXREAL_0: 2;
then
A23: n2
<= (k
-' l) by
A20,
A21,
XXREAL_0: 2;
(
0
+ n3)
<= (n3
+ n3) by
XREAL_1: 6;
then n2
<= n4 by
A21,
XXREAL_0: 2;
then n2
<= k by
A14,
XXREAL_0: 2;
then
A24:
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|
< p1 by
A7,
A23;
0
<= ((
|.z.|
rExpSeq )
. l) by
Th18;
then (((
|.z.|
rExpSeq )
. l)
*
|.(((
Partial_Sums (w
ExpSeq ))
. k)
- ((
Partial_Sums (w
ExpSeq ))
. (k
-' l))).|)
<= (((
|.z.|
rExpSeq )
. l)
* p1) by
A24,
XREAL_1: 64;
hence (
|.(
Conj (k,z,w)).|
. l)
<= (p1
* ((
|.z.|
rExpSeq )
. l)) by
A8,
A16,
A19,
XXREAL_0: 2;
end;
then
A25: ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3)
<= (((
Partial_Sums (
|.z.|
rExpSeq ))
. n3)
* p1) by
COMSEQ_3: 7;
(((
Partial_Sums (
|.z.|
rExpSeq ))
. n3)
* p1)
<= ((
Sum (
|.z.|
rExpSeq ))
* p1) by
A4,
Th16,
XREAL_1: 64;
then
A26: ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3)
<= ((
Sum (
|.z.|
rExpSeq ))
* p1) by
A25,
XXREAL_0: 2;
A27: ((
Sum (
|.z.|
rExpSeq ))
* p1)
<= ((
Sum (
|.z.|
rExpSeq ))
* (p
/ (4
* (
Sum (
|.z.|
rExpSeq ))))) by
A2,
XREAL_1: 64,
XXREAL_0: 17;
A28:
0
<> (
Sum (
|.z.|
rExpSeq )) by
Th17;
((
Sum (
|.z.|
rExpSeq ))
* (p
/ (4
* (
Sum (
|.z.|
rExpSeq )))))
= (((
Sum (
|.z.|
rExpSeq ))
* p)
/ (4
* (
Sum (
|.z.|
rExpSeq ))))
.= (p
/ 4) by
A28,
XCMPLX_1: 91;
then
A29: ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3)
<= (p
/ 4) by
A26,
A27,
XXREAL_0: 2;
(
0
+ (p
/ 4))
< ((p
/ 4)
+ (p
/ 4)) by
A1,
XREAL_1: 6;
then
A30: ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3)
< (p
/ 2) by
A29,
XXREAL_0: 2;
(k
-' n3)
= (k
- n3) by
A14,
A15,
XREAL_1: 233,
XXREAL_0: 2;
then
A31: k
= ((k
-' n3)
+ n3);
for l be
Nat st l
<= k holds (
|.(
Conj (k,z,w)).|
. l)
<= ((2
* (
Sum (
|.w.|
rExpSeq )))
* ((
|.z.|
rExpSeq )
. l)) by
A10;
then
A32: (((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k)
- ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3))
<= ((((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n3))
* (2
* (
Sum (
|.w.|
rExpSeq )))) by
A31,
COMSEQ_3: 8;
|.(((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n3)).|
<= p1 by
A6,
A17,
A18;
then (((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n3))
<= p1 by
A14,
A15,
Th19,
XXREAL_0: 2;
then ((((
Partial_Sums (
|.z.|
rExpSeq ))
. k)
- ((
Partial_Sums (
|.z.|
rExpSeq ))
. n3))
* (2
* (
Sum (
|.w.|
rExpSeq ))))
<= (p1
* (2
* (
Sum (
|.w.|
rExpSeq )))) by
A3,
XREAL_1: 64;
then
A33: (((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k)
- ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3))
<= (p1
* (2
* (
Sum (
|.w.|
rExpSeq )))) by
A32,
XXREAL_0: 2;
A34: ((2
* (
Sum (
|.w.|
rExpSeq )))
* p1)
<= ((2
* (
Sum (
|.w.|
rExpSeq )))
* (p
/ (4
* (
Sum (
|.w.|
rExpSeq ))))) by
A3,
XREAL_1: 64,
XXREAL_0: 17;
A35:
0
<> (
Sum (
|.w.|
rExpSeq )) by
Th17;
((2
* (
Sum (
|.w.|
rExpSeq )))
* (p
/ (4
* (
Sum (
|.w.|
rExpSeq )))))
= (((2
* p)
* (
Sum (
|.w.|
rExpSeq )))
/ (4
* (
Sum (
|.w.|
rExpSeq ))))
.= ((p
+ p)
/ 4) by
A35,
XCMPLX_1: 91
.= (p
/ 2);
then (((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k)
- ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3))
<= (p
/ 2) by
A33,
A34,
XXREAL_0: 2;
then ((((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k)
- ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3))
+ ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. n3))
< ((p
/ 2)
+ (p
/ 2)) by
A30,
XREAL_1: 8;
hence
|.((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k).|
< p by
Th20;
end;
hence thesis;
end;
theorem ::
SIN_COS:22
Th22: (for k holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k)) implies seq is
convergent & (
lim seq)
=
0
proof
now
let seq such that
A1: for k holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k);
A2:
now
let k;
|.(seq
. k).|
=
|.((
Partial_Sums (
Conj (k,z,w)))
. k).| by
A1;
hence
|.(seq
. k).|
<= ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k) by
COMSEQ_3: 30;
end;
deffunc
U(
Nat) = ((
Partial_Sums
|.(
Conj ($1,z,w)).|)
. $1);
ex rseq be
Real_Sequence st for k holds (rseq
. k)
=
U(k) from
SEQ_1:sch 1;
then
consider rseq be
Real_Sequence such that
A3: for k holds (rseq
. k)
= ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k);
A4:
now
let k;
|.(seq
. k).|
<= ((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k) by
A2;
hence
|.(seq
. k).|
<= (rseq
. k) by
A3;
end;
A5:
now
let p be
Real;
assume p
>
0 ;
then
consider n such that
A6: for k st n
<= k holds
|.((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k).|
< p by
Th21;
take n;
now
let k such that
A7: n
<= k;
|.((rseq
. k)
-
0 ).|
=
|.((
Partial_Sums
|.(
Conj (k,z,w)).|)
. k).| by
A3;
hence
|.((rseq
. k)
-
0 ).|
< p by
A6,
A7;
end;
hence for k st n
<= k holds
|.((rseq
. k)
-
0 ).|
< p;
end;
then
A8: rseq is
convergent by
SEQ_2:def 6;
then (
lim rseq)
=
0 by
A5,
SEQ_2:def 7;
hence seq is
convergent & (
lim seq)
=
0c by
A4,
A8,
COMSEQ_3: 48;
end;
hence thesis;
end;
Lm2: for z,w be
Complex holds ((
Sum (z
ExpSeq ))
* (
Sum (w
ExpSeq )))
= (
Sum ((z
+ w)
ExpSeq ))
proof
let z0,w0 be
Complex;
reconsider z = z0, w = w0 as
Element of
COMPLEX by
XCMPLX_0:def 2;
deffunc
U(
Nat) = ((
Partial_Sums (
Conj ($1,z,w)))
. $1);
ex seq st for k holds (seq
. k)
=
U(k) from
COMSEQ_1:sch 1;
then
consider seq such that
A1: for k holds (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k);
now
let k be
Element of
NAT ;
thus (seq
. k)
= ((
Partial_Sums (
Conj (k,z,w)))
. k) by
A1
.= ((((
Partial_Sums (z
ExpSeq ))
. k)
* ((
Partial_Sums (w
ExpSeq ))
. k))
- ((
Partial_Sums ((z
+ w)
ExpSeq ))
. k)) by
Th15
.= ((((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq )))
. k)
- ((
Partial_Sums ((z
+ w)
ExpSeq ))
. k)) by
VALUED_1: 5
.= ((((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq )))
. k)
+ ((
- (
Partial_Sums ((z
+ w)
ExpSeq )))
. k)) by
VALUED_1: 8
.= ((((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq )))
- (
Partial_Sums ((z
+ w)
ExpSeq )))
. k) by
VALUED_1: 1;
end;
then
A2: seq
= (((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq )))
- (
Partial_Sums ((z
+ w)
ExpSeq )));
A3: ((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq ))) is
convergent & (
lim ((
Partial_Sums (z
ExpSeq ))
(#) (
Partial_Sums (w
ExpSeq ))))
= ((
lim (
Partial_Sums (z
ExpSeq )))
* (
lim (
Partial_Sums (w
ExpSeq )))) by
COMSEQ_2: 30;
(
lim seq)
=
0c by
A1,
Th22;
hence thesis by
A2,
A3,
COMSEQ_3: 10;
end;
begin
definition
::
SIN_COS:def14
func
exp ->
Function of
COMPLEX ,
COMPLEX means
:
Def14: for z be
Complex holds (it
. z)
= (
Sum (z
ExpSeq ));
existence
proof
deffunc
U(
Element of
COMPLEX ) = (
Sum ($1
ExpSeq ));
consider f be
Function of
COMPLEX ,
COMPLEX such that
A1: for x be
Element of
COMPLEX holds (f
. x)
=
U(x) from
FUNCT_2:sch 4;
take f;
let z be
Complex;
z
in
COMPLEX by
XCMPLX_0:def 2;
hence thesis by
A1;
end;
uniqueness
proof
let f1,f2 be
Function of
COMPLEX ,
COMPLEX ;
assume
A2: for z be
Complex holds (f1
. z)
= (
Sum (z
ExpSeq ));
assume
A3: for z be
Complex holds (f2
. z)
= (
Sum (z
ExpSeq ));
for z be
Element of
COMPLEX holds (f1
. z)
= (f2
. z)
proof
let z be
Element of
COMPLEX ;
thus (f1
. z)
= (
Sum (z
ExpSeq )) by
A2
.= (f2
. z) by
A3;
end;
hence f1
= f2;
end;
end
definition
let z be
Complex;
::
SIN_COS:def15
func
exp z ->
Complex equals (
exp
. z);
coherence ;
end
definition
let z be
Complex;
:: original:
exp
redefine
func
exp z ->
Element of
COMPLEX ;
coherence by
XCMPLX_0:def 2;
end
theorem ::
SIN_COS:23
for z1,z2 be
Complex holds (
exp (z1
+ z2))
= ((
exp z1)
* (
exp z2))
proof
let z1,z2 be
Complex;
(
exp (z1
+ z2))
= (
Sum ((z1
+ z2)
ExpSeq )) by
Def14
.= ((
Sum (z1
ExpSeq ))
* (
Sum (z2
ExpSeq ))) by
Lm2
.= ((
exp z1)
* (
Sum (z2
ExpSeq ))) by
Def14
.= ((
exp z1)
* (
exp z2)) by
Def14;
hence thesis;
end;
begin
reserve d for
Real;
definition
::
SIN_COS:def16
func
sin ->
Function of
REAL ,
REAL means
:
Def16: for d holds (it
. d)
= (
Im (
Sum ((d
*
<i> )
ExpSeq )));
existence
proof
deffunc
U(
Real) = (
Im (
Sum (($1
*
<i> )
ExpSeq )));
consider f be
Function of
REAL ,
REAL such that
A1: for x be
Element of
REAL holds (f
. x)
=
U(x) from
FUNCT_2:sch 4;
take f;
let x be
Real;
reconsider x as
Element of
REAL by
XREAL_0:def 1;
(f
. x)
=
U(x) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d holds (f1
. d)
= (
Im (
Sum ((d
*
<i> )
ExpSeq )));
assume
A3: for d holds (f2
. d)
= (
Im (
Sum ((d
*
<i> )
ExpSeq )));
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (
Im (
Sum ((d
*
<i> )
ExpSeq ))) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2;
end;
end
definition
let th be
Real;
::
SIN_COS:def17
func
sin th ->
number equals (
sin
. th);
coherence ;
end
registration
let th be
Real;
cluster (
sin th) ->
real;
coherence ;
end
definition
::
SIN_COS:def18
func
cos ->
Function of
REAL ,
REAL means
:
Def18: for d holds (it
. d)
= (
Re (
Sum ((d
*
<i> )
ExpSeq )));
existence
proof
deffunc
U(
Real) = (
Re (
Sum (($1
*
<i> )
ExpSeq )));
consider f be
Function of
REAL ,
REAL such that
A1: for x be
Element of
REAL holds (f
. x)
=
U(x) from
FUNCT_2:sch 4;
take f;
let d;
reconsider d as
Element of
REAL by
XREAL_0:def 1;
(f
. d)
=
U(d) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d holds (f1
. d)
= (
Re (
Sum ((d
*
<i> )
ExpSeq )));
assume
A3: for d holds (f2
. d)
= (
Re (
Sum ((d
*
<i> )
ExpSeq )));
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (
Re (
Sum ((d
*
<i> )
ExpSeq ))) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2;
end;
end
definition
let th be
Real;
::
SIN_COS:def19
func
cos th ->
number equals (
cos
. th);
coherence ;
end
registration
let th be
Real;
cluster (
cos th) ->
real;
coherence ;
end
theorem ::
SIN_COS:24
Th24: (
dom
sin )
=
REAL & (
dom
cos )
=
REAL by
FUNCT_2:def 1;
Lm3: (
Sum ((th
*
<i> )
ExpSeq ))
= ((
cos
. th)
+ ((
sin
. th)
*
<i> ))
proof
(
Im (
Sum ((th
*
<i> )
ExpSeq )))
= (
sin
. th) & (
Re (
Sum ((th
*
<i> )
ExpSeq )))
= (
cos
. th) by
Def16,
Def18;
hence thesis by
COMPLEX1: 13;
end;
theorem ::
SIN_COS:25
(
exp (th
*
<i> ))
= ((
cos th)
+ ((
sin th)
*
<i> ))
proof
(
exp (th
*
<i> ))
= (
Sum ((th
*
<i> )
ExpSeq )) by
Def14
.= ((
cos th)
+ ((
sin th)
*
<i> )) by
Lm3;
hence thesis;
end;
Lm4: ((
Sum ((th
*
<i> )
ExpSeq ))
*' )
= (
Sum ((
- (th
*
<i> ))
ExpSeq ))
proof
((
Partial_Sums ((th
*
<i> )
ExpSeq ))
*' )
= (
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
proof
A1: for n holds ((((th
*
<i> )
ExpSeq )
. n)
*' )
= (((
- (th
*
<i> ))
ExpSeq )
. n)
proof
defpred
X[
Nat] means ((((th
*
<i> )
ExpSeq )
. $1)
*' )
= (((
- (th
*
<i> ))
ExpSeq )
. $1);
((((th
*
<i> )
ExpSeq )
.
0 )
*' )
=
1r by
Th3,
COMPLEX1: 30
.= (((
- (th
*
<i> ))
ExpSeq )
.
0 ) by
Th3;
then
A2:
X[
0 ];
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A4: ((((th
*
<i> )
ExpSeq )
. n)
*' )
= (((
- (th
*
<i> ))
ExpSeq )
. n);
thus ((((th
*
<i> )
ExpSeq )
. (n
+ 1))
*' )
= ((((((th
*
<i> )
ExpSeq )
. n)
* (th
*
<i> ))
/ ((n
+ 1)
+ (
0
*
<i> )))
*' ) by
Th3
.= (((((th
*
<i> )
ExpSeq )
. n)
* ((th
*
<i> )
/ ((n
+ 1)
+ (
0
*
<i> ))))
*' )
.= ((((
- (th
*
<i> ))
ExpSeq )
. n)
* (((th
*
<i> )
/ (n
+ 1))
*' )) by
A4,
COMPLEX1: 35
.= ((((
- (th
*
<i> ))
ExpSeq )
. n)
* (((
0
+ (th
*
<i> ))
*' )
/ ((n
+ 1)
*' ))) by
COMPLEX1: 37
.= ((((
- (th
*
<i> ))
ExpSeq )
. n)
* ((
0
+ ((
- th)
*
<i> ))
/ (((n
+ 1)
+ (
0
*
<i> ))
*' ))) by
Lm1
.= ((((
- (th
*
<i> ))
ExpSeq )
. n)
* ((
0
+ ((
- th)
*
<i> ))
/ ((n
+ 1)
+ ((
-
0 )
*
<i> )))) by
Lm1
.= (((((
- (th
*
<i> ))
ExpSeq )
. n)
* (
- (th
*
<i> )))
/ ((n
+ 1)
+ (
0
*
<i> )))
.= (((
- (th
*
<i> ))
ExpSeq )
. (n
+ 1)) by
Th3;
end;
thus for n holds
X[n] from
NAT_1:sch 2(
A2,
A3);
end;
defpred
X[
Nat] means (((
Partial_Sums ((th
*
<i> )
ExpSeq ))
*' )
. $1)
= ((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
. $1);
(((
Partial_Sums ((th
*
<i> )
ExpSeq ))
*' )
.
0 )
= (((
Partial_Sums ((th
*
<i> )
ExpSeq ))
.
0 )
*' ) by
COMSEQ_2:def 2
.= ((((th
*
<i> )
ExpSeq )
.
0 )
*' ) by
SERIES_1:def 1
.= 1 by
Th3,
COMPLEX1: 30
.= (((
- (th
*
<i> ))
ExpSeq )
.
0 ) by
Th3
.= ((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
.
0 ) by
SERIES_1:def 1;
then
A5:
X[
0 ];
A6: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A7: (((
Partial_Sums ((th
*
<i> )
ExpSeq ))
*' )
. n)
= ((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
. n);
A8: n
in
NAT by
ORDINAL1:def 12;
thus (((
Partial_Sums ((th
*
<i> )
ExpSeq ))
*' )
. (n
+ 1))
= (((
Partial_Sums ((th
*
<i> )
ExpSeq ))
. (n
+ 1))
*' ) by
COMSEQ_2:def 2
.= ((((
Partial_Sums ((th
*
<i> )
ExpSeq ))
. n)
+ (((th
*
<i> )
ExpSeq )
. (n
+ 1)))
*' ) by
SERIES_1:def 1
.= ((((
Partial_Sums ((th
*
<i> )
ExpSeq ))
. n)
*' )
+ ((((th
*
<i> )
ExpSeq )
. (n
+ 1))
*' )) by
COMPLEX1: 32
.= (((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
. n)
+ ((((th
*
<i> )
ExpSeq )
. (n
+ 1))
*' )) by
A7,
COMSEQ_2:def 2,
A8
.= (((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
. n)
+ (((
- (th
*
<i> ))
ExpSeq )
. (n
+ 1))) by
A1
.= ((
Partial_Sums ((
- (th
*
<i> ))
ExpSeq ))
. (n
+ 1)) by
SERIES_1:def 1;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A5,
A6);
hence thesis;
end;
hence thesis by
COMSEQ_2: 12;
end;
theorem ::
SIN_COS:26
((
exp (th
*
<i> ))
*' )
= (
exp (
- (th
*
<i> )))
proof
((
exp (th
*
<i> ))
*' )
= ((
Sum ((th
*
<i> )
ExpSeq ))
*' ) by
Def14
.= (
Sum ((
- (th
*
<i> ))
ExpSeq )) by
Lm4
.= (
exp (
- (th
*
<i> ))) by
Def14;
hence thesis;
end;
Lm5: for th1 be
Real st th
= th1 holds
|.(
Sum ((th
*
<i> )
ExpSeq )).|
= 1 &
|.(
sin
. th1).|
<= 1 &
|.(
cos
. th1).|
<= 1
proof
let th1 be
Real such that
A1: th
= th1;
A2: ((
Sum ((th
*
<i> )
ExpSeq ))
* (
Sum ((
- (th
*
<i> ))
ExpSeq )))
= (
Sum (((th
*
<i> )
+ (
- (th
*
<i> )))
ExpSeq )) by
Lm2
.=
1r by
Th9;
(
|.(
Sum ((th
*
<i> )
ExpSeq )).|
*
|.(
Sum ((th
*
<i> )
ExpSeq )).|)
=
|.((
Sum ((th
*
<i> )
ExpSeq ))
* (
Sum ((th
*
<i> )
ExpSeq ))).| by
COMPLEX1: 65
.=
|.((
Sum ((th
*
<i> )
ExpSeq ))
* ((
Sum ((th
*
<i> )
ExpSeq ))
*' )).| by
COMPLEX1: 69
.= 1 by
A2,
Lm4,
COMPLEX1: 48;
then
A3:
|.(
Sum ((th
*
<i> )
ExpSeq )).|
= (1
/
|.(
Sum ((th
*
<i> )
ExpSeq )).|) &
|.(
Sum ((th
*
<i> )
ExpSeq )).|
<>
0 by
XCMPLX_1: 73;
|.(
Sum ((th
*
<i> )
ExpSeq )).|
<> (
- 1) by
COMPLEX1: 46;
hence
A4:
|.(
Sum ((th
*
<i> )
ExpSeq )).|
= 1 by
A3,
XCMPLX_1: 199;
|.(
sin
. th).|
=
|.(
Im (
Sum ((th
*
<i> )
ExpSeq ))).| &
|.(
cos
. th).|
=
|.(
Re (
Sum ((th
*
<i> )
ExpSeq ))).| by
Def16,
Def18;
hence thesis by
A1,
A4,
COMSEQ_3: 13;
end;
theorem ::
SIN_COS:27
|.(
exp (th
*
<i> )).|
= 1 & for th be
Real holds
|.(
sin th).|
<= 1 &
|.(
cos th).|
<= 1
proof
thus
|.(
exp (th
*
<i> )).|
=
|.(
Sum ((th
*
<i> )
ExpSeq )).| by
Def14
.= 1 by
Lm5;
let th be
Real;
thus
|.(
sin th).|
<= 1 by
Lm5;
thus thesis by
Lm5;
end;
reserve th,th1,th2 for
Real;
theorem ::
SIN_COS:28
Th28: (((
cos
. th)
^2 )
+ ((
sin
. th)
^2 ))
= 1 & (((
cos
. th)
* (
cos
. th))
+ ((
sin
. th)
* (
sin
. th)))
= 1
proof
reconsider th1 = th as
Real;
A1: ((
Sum ((th1
*
<i> )
ExpSeq ))
* (
Sum ((
- (th1
*
<i> ))
ExpSeq )))
= (
Sum (((th1
*
<i> )
+ (
- (th1
*
<i> )))
ExpSeq )) by
Lm2
.=
1r by
Th9;
thus (((
cos
. th)
^2 )
+ ((
sin
. th)
^2 ))
= (((
Re (
Sum ((th1
*
<i> )
ExpSeq )))
^2 )
+ ((
sin
. th)
^2 )) by
Def18
.= (((
Re (
Sum ((th1
*
<i> )
ExpSeq )))
^2 )
+ ((
Im (
Sum ((th1
*
<i> )
ExpSeq )))
^2 )) by
Def16
.=
|.((
Sum ((th1
*
<i> )
ExpSeq ))
* (
Sum ((th1
*
<i> )
ExpSeq ))).| by
COMPLEX1: 68
.=
|.((
Sum ((th1
*
<i> )
ExpSeq ))
* ((
Sum ((th1
*
<i> )
ExpSeq ))
*' )).| by
COMPLEX1: 69
.= 1 by
A1,
Lm4,
COMPLEX1: 48;
hence thesis;
end;
theorem ::
SIN_COS:29
(((
cos th)
^2 )
+ ((
sin th)
^2 ))
= 1 & (((
cos th)
* (
cos th))
+ ((
sin th)
* (
sin th)))
= 1 by
Th28;
theorem ::
SIN_COS:30
Th30: (
cos
.
0 )
= 1 & (
sin
.
0 )
=
0 & (
cos
. (
- th))
= (
cos
. th) & (
sin
. (
- th))
= (
- (
sin
. th))
proof
thus (
cos
.
0 )
= (
Re (
Sum ((
0
*
<i> )
ExpSeq ))) by
Def18
.= 1 by
Th9,
COMPLEX1: 6;
thus (
sin
.
0 )
= (
Im (
Sum ((
0
*
<i> )
ExpSeq ))) by
Def16
.=
0 by
Th9,
COMPLEX1: 6;
reconsider th1 = th as
Real;
thus (
cos
. (
- th))
= (
Re (
Sum (((
-
0 )
+ ((
- th1)
*
<i> ))
ExpSeq ))) by
Def18
.= (
Re (
Sum ((
- (th1
*
<i> ))
ExpSeq )))
.= (
Re ((
Sum ((th1
*
<i> )
ExpSeq ))
*' )) by
Lm4
.= (
Re (((
cos
. th)
+ ((
sin
. th)
*
<i> ))
*' )) by
Lm3
.= (
Re ((
cos
. th)
+ ((
- (
sin
. th))
*
<i> ))) by
Lm1
.= (
cos
. th) by
COMPLEX1: 12;
thus (
sin
. (
- th))
= (
Im (
Sum (((
-
0 )
+ ((
- th1)
*
<i> ))
ExpSeq ))) by
Def16
.= (
Im (
Sum ((
- (th1
*
<i> ))
ExpSeq )))
.= (
Im ((
Sum ((th1
*
<i> )
ExpSeq ))
*' )) by
Lm4
.= (
Im (((
cos
. th)
+ ((
sin
. th)
*
<i> ))
*' )) by
Lm3
.= (
Im ((
cos
. th)
+ ((
- (
sin
. th))
*
<i> ))) by
Lm1
.= (
- (
sin
. th)) by
COMPLEX1: 12;
end;
theorem ::
SIN_COS:31
(
cos
0 )
= 1 & (
sin
0 )
=
0 & (
cos (
- th))
= (
cos th) & (
sin (
- th))
= (
- (
sin th)) by
Th30;
definition
let th be
Real;
deffunc
U(
Nat) = ((((
- 1)
|^ $1)
* (th
|^ ((2
* $1)
+ 1)))
/ (((2
* $1)
+ 1)
! ));
::
SIN_COS:def20
func th
P_sin ->
Real_Sequence means
:
Def20: for n holds (it
. n)
= ((((
- 1)
|^ n)
* (th
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! ));
existence
proof
thus ex s be
Real_Sequence st for n holds (s
. n)
=
U(n) from
SEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Real_Sequence such that
A1: for x be
Nat holds (s1
. x)
=
U(x) and
A2: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A1
.= (s2
. x) by
A2;
end;
deffunc
U(
Nat) = ((((
- 1)
|^ $1)
* (th
|^ (2
* $1)))
/ ((2
* $1)
! ));
::
SIN_COS:def21
func th
P_cos ->
Real_Sequence means
:
Def21: for n holds (it
. n)
= ((((
- 1)
|^ n)
* (th
|^ (2
* n)))
/ ((2
* n)
! ));
existence
proof
thus ex s be
Real_Sequence st for n holds (s
. n)
=
U(n) from
SEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Real_Sequence such that
A3: for x be
Nat holds (s1
. x)
=
U(x) and
A4: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A3
.= (s2
. x) by
A4;
end;
end
theorem ::
SIN_COS:32
Th32: for z be
Complex, k holds (z
|^ (2
* k))
= ((z
|^ k)
|^ 2) & (z
|^ (2
* k))
= ((z
|^ 2)
|^ k)
proof
let z be
Complex, k;
defpred
X[
Nat] means (z
|^ (2
* $1))
= ((z
|^ $1)
|^ 2) & (z
|^ (2
* $1))
= ((z
|^ 2)
|^ $1);
A1: (z
|^ (2
*
0 ))
= (1
* 1) by
NEWTON: 4
.= ((1
|^ 1)
* 1)
.= (1
|^ (1
+ 1))
.= ((z
|^
0 )
|^ 2) by
NEWTON: 4;
(z
|^ (2
*
0 ))
= 1 by
NEWTON: 4
.= ((z
|^ 2)
|^
0 ) by
NEWTON: 4;
then
A2:
X[
0 ] by
A1;
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume that
A4: (z
|^ (2
* k))
= ((z
|^ k)
|^ 2) and
A5: (z
|^ (2
* k))
= ((z
|^ 2)
|^ k);
A6: (z
|^ (2
* (k
+ 1)))
= ((z
GeoSeq )
. (((2
* k)
+ 1)
+ 1))
.= (((z
GeoSeq )
. ((2
* k)
+ 1))
* z) by
COMSEQ_3:def 1
.= (((z
|^ (2
* k))
* z)
* z) by
COMSEQ_3:def 1;
then
A7: (z
|^ (2
* (k
+ 1)))
= (((((z
|^ k)
GeoSeq )
. (1
+ 1))
* z)
* z) by
A4
.= ((((((z
|^ k)
GeoSeq )
. (
0
+ 1))
* (z
|^ k))
* z)
* z) by
COMSEQ_3:def 1
.= (((((((z
|^ k)
GeoSeq )
.
0 )
* (z
|^ k))
* (z
|^ k))
* z)
* z) by
COMSEQ_3:def 1
.= ((((
1r
* (z
|^ k))
* (z
|^ k))
* z)
* z) by
COMSEQ_3:def 1
.= ((
1r
* (((z
GeoSeq )
. k)
* z))
* ((z
|^ k)
* z))
.= ((
1r
* ((z
GeoSeq )
. (k
+ 1)))
* (((z
GeoSeq )
. k)
* z)) by
COMSEQ_3:def 1
.= ((
1r
* (z
|^ (k
+ 1)))
* ((z
GeoSeq )
. (k
+ 1))) by
COMSEQ_3:def 1
.= (((((z
|^ (k
+ 1))
GeoSeq )
.
0 )
* (z
|^ (k
+ 1)))
* (z
|^ (k
+ 1))) by
COMSEQ_3:def 1
.= ((((z
|^ (k
+ 1))
GeoSeq )
. (
0
+ 1))
* (z
|^ (k
+ 1))) by
COMSEQ_3:def 1
.= (((z
|^ (k
+ 1))
GeoSeq )
. ((
0
+ 1)
+ 1)) by
COMSEQ_3:def 1
.= ((z
|^ (k
+ 1))
|^ 2);
(z
|^ (2
* (k
+ 1)))
= (((z
|^ 2)
|^ k)
* ((
1r
* z)
* z)) by
A5,
A6
.= (((z
|^ 2)
|^ k)
* ((((z
GeoSeq )
.
0 )
* z)
* z)) by
COMSEQ_3:def 1
.= (((z
|^ 2)
|^ k)
* (((z
GeoSeq )
. (
0
+ 1))
* z)) by
COMSEQ_3:def 1
.= (((z
|^ 2)
|^ k)
* ((z
GeoSeq )
. ((
0
+ 1)
+ 1))) by
COMSEQ_3:def 1
.= ((z
|^ 2)
|^ (k
+ 1)) by
COMSEQ_3:def 1;
hence thesis by
A7;
end;
for k holds
X[k] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
theorem ::
SIN_COS:33
Th33: for th holds ((th
*
<i> )
|^ (2
* k))
= (((
- 1)
|^ k)
* (th
|^ (2
* k))) & ((th
*
<i> )
|^ ((2
* k)
+ 1))
= ((((
- 1)
|^ k)
* (th
|^ ((2
* k)
+ 1)))
*
<i> )
proof
let th;
A1: ((((
- 1)
|^
0 )
* (th
|^ (2
*
0 )))
*
<i> )
= ((((
- 1)
|^
0 )
* ((th
GeoSeq )
.
0 ))
*
<i> ) by
PREPOWER:def 1
.= ((((
- 1)
|^
0 )
* 1)
*
<i> ) by
PREPOWER: 3
.= ((((
- 1)
GeoSeq )
.
0 )
*
<i> ) by
PREPOWER:def 1
.= (1
*
<i> ) by
PREPOWER: 3;
defpred
X[
Nat] means ((th
*
<i> )
|^ (2
* $1))
= (((
- 1)
|^ $1)
* (th
|^ (2
* $1))) & ((th
*
<i> )
|^ ((2
* $1)
+ 1))
= ((((
- 1)
|^ $1)
* (th
|^ ((2
* $1)
+ 1)))
*
<i> );
((((
- 1)
|^
0 )
* (th
|^ ((2
*
0 )
+ 1)))
*
<i> )
= ((((
- 1)
|^
0 )
* ((th
GeoSeq )
. ((2
*
0 )
+ 1)))
*
<i> ) by
PREPOWER:def 1
.= ((((
- 1)
|^
0 )
* (((th
GeoSeq )
.
0 )
* th))
*
<i> ) by
PREPOWER: 3
.= ((((
- 1)
|^
0 )
* (1
* th))
*
<i> ) by
PREPOWER: 3
.= (((((
- 1)
GeoSeq )
.
0 )
* th)
*
<i> ) by
PREPOWER:def 1
.= ((1
* th)
*
<i> ) by
PREPOWER: 3
.= (th
*
<i> );
then
A2:
X[
0 ] by
A1,
COMSEQ_3:def 1;
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume that
A4: ((th
*
<i> )
|^ (2
* k))
= (((
- 1)
|^ k)
* (th
|^ (2
* k))) and
A5: ((th
*
<i> )
|^ ((2
* k)
+ 1))
= ((((
- 1)
|^ k)
* (th
|^ ((2
* k)
+ 1)))
*
<i> );
A6: ((th
*
<i> )
|^ (2
* (k
+ 1)))
= (((th
*
<i> )
|^ 2)
|^ (k
+ 1)) by
Th32
.= ((((th
*
<i> )
|^ 2)
|^ k)
* ((th
*
<i> )
|^ 2)) by
COMSEQ_3:def 1
.= ((((
- 1)
|^ k)
* (th
|^ (2
* k)))
* (((th
*
<i> )
GeoSeq )
. (1
+ 1))) by
A4,
Th32
.= ((((
- 1)
|^ k)
* (th
|^ (2
* k)))
* ((((th
*
<i> )
GeoSeq )
. (
0
+ 1))
* (th
*
<i> ))) by
COMSEQ_3:def 1
.= ((((
- 1)
|^ k)
* (th
|^ (2
* k)))
* (((((th
*
<i> )
GeoSeq )
.
0 )
* (th
*
<i> ))
* (th
*
<i> ))) by
COMSEQ_3:def 1
.= ((((
- 1)
|^ k)
* (th
|^ (2
* k)))
* ((
1r
* (th
*
<i> ))
* (th
*
<i> ))) by
COMSEQ_3:def 1
.= ((((((
- 1)
|^ k)
* (
- 1))
* (th
|^ (2
* k)))
* th)
* th)
.= (((((((
- 1)
GeoSeq )
. k)
* (
- 1))
* (th
|^ (2
* k)))
* th)
* th) by
PREPOWER:def 1
.= ((((((
- 1)
GeoSeq )
. (k
+ 1))
* (th
|^ (2
* k)))
* th)
* th) by
PREPOWER: 3
.= (((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* k)))
* th)
* th) by
PREPOWER:def 1
.= (((((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. (2
* k)))
* th)
* th) by
PREPOWER:def 1
.= ((((
- 1)
|^ (k
+ 1))
* (((th
GeoSeq )
. (2
* k))
* th))
* th)
.= ((((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. ((2
* k)
+ 1)))
* th) by
PREPOWER: 3
.= (((
- 1)
|^ (k
+ 1))
* (((th
GeoSeq )
. ((2
* k)
+ 1))
* th))
.= (((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. (((2
* k)
+ 1)
+ 1))) by
PREPOWER: 3
.= (((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1)))) by
PREPOWER:def 1;
((th
*
<i> )
|^ ((2
* (k
+ 1))
+ 1))
= ((((th
*
<i> )
GeoSeq )
. (((2
* k)
+ 1)
+ 1))
* (th
*
<i> )) by
COMSEQ_3:def 1
.= (((((th
*
<i> )
GeoSeq )
. ((2
* k)
+ 1))
* (th
*
<i> ))
* (th
*
<i> )) by
COMSEQ_3:def 1
.= (((((((
- 1)
|^ k)
* (
- 1))
* (th
|^ ((2
* k)
+ 1)))
* th)
* th)
*
<i> ) by
A5
.= ((((((((
- 1)
GeoSeq )
. k)
* (
- 1))
* (th
|^ ((2
* k)
+ 1)))
* th)
* th)
*
<i> ) by
PREPOWER:def 1
.= (((((((
- 1)
GeoSeq )
. (k
+ 1))
* (th
|^ ((2
* k)
+ 1)))
* th)
* th)
*
<i> ) by
PREPOWER: 3
.= ((((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* k)
+ 1)))
* th)
* th)
*
<i> ) by
PREPOWER:def 1
.= ((((((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. ((2
* k)
+ 1)))
* th)
* th)
*
<i> ) by
PREPOWER:def 1
.= (((((
- 1)
|^ (k
+ 1))
* (((th
GeoSeq )
. ((2
* k)
+ 1))
* th))
* th)
*
<i> )
.= (((((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. (((2
* k)
+ 1)
+ 1)))
* th)
*
<i> ) by
PREPOWER: 3
.= ((((
- 1)
|^ (k
+ 1))
* (((th
GeoSeq )
. (((2
* k)
+ 1)
+ 1))
* th))
*
<i> )
.= ((((
- 1)
|^ (k
+ 1))
* ((th
GeoSeq )
. ((2
* (k
+ 1))
+ 1)))
*
<i> ) by
PREPOWER: 3
.= ((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* (k
+ 1))
+ 1)))
*
<i> ) by
PREPOWER:def 1;
hence thesis by
A6;
end;
for k holds
X[k] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
::$Canceled
theorem ::
SIN_COS:35
Th34: for th holds ((
Partial_Sums (th
P_sin ))
. n)
= ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* n)
+ 1)) & ((
Partial_Sums (th
P_cos ))
. n)
= ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* n))
proof
let th;
now
A1: ((
Partial_Sums (th
P_sin ))
.
0 )
= ((th
P_sin )
.
0 ) by
SERIES_1:def 1
.= ((((
- 1)
|^
0 )
* (th
|^ ((2
*
0 )
+ 1)))
/ (((2
*
0 )
+ 1)
! )) by
Def20;
A2: (((2
*
0 )
+ 1)
! )
= ((
0
! )
* 1) by
NEWTON: 15
.= 1 by
NEWTON: 12;
A3: ((
- 1)
|^
0 )
= (((
- 1)
GeoSeq )
.
0 ) by
PREPOWER:def 1
.= 1 by
PREPOWER: 3;
A4: ((
Partial_Sums (th
P_cos ))
.
0 )
= ((th
P_cos )
.
0 ) by
SERIES_1:def 1
.= ((((
- 1)
|^
0 )
* (th
|^ (2
*
0 )))
/ ((2
*
0 )
! )) by
Def21
.= ((1
* ((th
GeoSeq )
.
0 ))
/ 1) by
A3,
NEWTON: 12,
PREPOWER:def 1
.= 1 by
PREPOWER: 3;
A5: ((
Im ((th
*
<i> )
ExpSeq ))
.
0 )
= (
Im (((th
*
<i> )
ExpSeq )
.
0 )) & ((
Im ((th
*
<i> )
ExpSeq ))
. 1)
= (
Im (((th
*
<i> )
ExpSeq )
. 1)) by
COMSEQ_3:def 6;
A6: (th
*
<i> )
= (
0
+ (th
*
<i> ));
A7: ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
*
0 )
+ 1))
= (((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
.
0 )
+ ((
Im ((th
*
<i> )
ExpSeq ))
. 1)) by
SERIES_1:def 1
.= (((
Im ((th
*
<i> )
ExpSeq ))
.
0 )
+ ((
Im ((th
*
<i> )
ExpSeq ))
. 1)) by
SERIES_1:def 1
.= (
0
+ (
Im (((th
*
<i> )
ExpSeq )
. (
0
+ 1)))) by
A5,
Th3,
COMPLEX1: 6
.= (
0
+ (
Im (((((th
*
<i> )
ExpSeq )
.
0 )
* (th
*
<i> ))
/ ((
0
+ 1)
+ (
0
*
<i> ))))) by
Th3
.= (
Im ((1
* (th
*
<i> ))
/ 1)) by
Th3
.= th by
A6,
COMPLEX1: 12;
defpred
X[
Nat] means ((
Partial_Sums (th
P_sin ))
. $1)
= ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* $1)
+ 1)) & ((
Partial_Sums (th
P_cos ))
. $1)
= ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* $1));
((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
*
0 ))
= ((
Re ((th
*
<i> )
ExpSeq ))
.
0 ) by
SERIES_1:def 1
.= (
Re (((th
*
<i> )
ExpSeq )
.
0 )) by
COMSEQ_3:def 5
.= 1 by
Th3,
COMPLEX1: 6;
then
A8:
X[
0 ] by
A1,
A2,
A3,
A4,
A7;
A9: for k st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume that
A10: ((
Partial_Sums (th
P_sin ))
. k)
= ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* k)
+ 1)) and
A11: ((
Partial_Sums (th
P_cos ))
. k)
= ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* k));
((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* (k
+ 1))
+ 1))
= (((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. (((2
* k)
+ 1)
+ 1))
+ ((
Im ((th
*
<i> )
ExpSeq ))
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ ((
Im ((th
*
<i> )
ExpSeq ))
. (2
* (k
+ 1))))
+ ((
Im ((th
*
<i> )
ExpSeq ))
. ((2
* (k
+ 1))
+ 1))) by
A10,
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im (((th
*
<i> )
ExpSeq )
. (2
* (k
+ 1)))))
+ ((
Im ((th
*
<i> )
ExpSeq ))
. ((2
* (k
+ 1))
+ 1))) by
COMSEQ_3:def 6
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im (((th
*
<i> )
ExpSeq )
. (2
* (k
+ 1)))))
+ (
Im (((th
*
<i> )
ExpSeq )
. ((2
* (k
+ 1))
+ 1)))) by
COMSEQ_3:def 6
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im (((th
*
<i> )
|^ (2
* (k
+ 1)))
/ ((2
* (k
+ 1))
! ))))
+ (
Im (((th
*
<i> )
ExpSeq )
. ((2
* (k
+ 1))
+ 1)))) by
Def4
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im (((th
*
<i> )
|^ (2
* (k
+ 1)))
/ ((2
* (k
+ 1))
! ))))
+ (
Im (((th
*
<i> )
|^ ((2
* (k
+ 1))
+ 1))
/ (((2
* (k
+ 1))
+ 1)
! )))) by
Def4
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im ((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))))
+ (
Im (((th
*
<i> )
|^ ((2
* (k
+ 1))
+ 1))
/ (((2
* (k
+ 1))
+ 1)
! )))) by
Th33
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im ((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))))
+ (
Im (((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* (k
+ 1))
+ 1)))
*
<i> )
/ (((2
* (k
+ 1))
+ 1)
! )))) by
Th33;
then ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* (k
+ 1))
+ 1))
= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
Im (((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))
+ ((
0
/ ((2
* (k
+ 1))
! ))
*
<i> ))))
+ (
Im (((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* (k
+ 1))
+ 1)))
*
<i> )
/ (((2
* (k
+ 1))
+ 1)
! ))));
then ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* (k
+ 1))
+ 1))
= ((((
Partial_Sums (th
P_sin ))
. k)
+
0 )
+ (
Im ((
0
/ (((2
* (k
+ 1))
+ 1)
! ))
+ (((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* (k
+ 1))
+ 1)))
/ (((2
* (k
+ 1))
+ 1)
! ))
*
<i> )))) by
COMPLEX1: 12
.= ((((
Partial_Sums (th
P_sin ))
. k)
+ (
0
/ ((2
* (k
+ 1))
! )))
+ ((((
- 1)
|^ (k
+ 1))
* (th
|^ ((2
* (k
+ 1))
+ 1)))
/ (((2
* (k
+ 1))
+ 1)
! ))) by
COMPLEX1: 12;
then
A12: ((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* (k
+ 1))
+ 1))
= (((
Partial_Sums (th
P_sin ))
. k)
+ ((th
P_sin )
. (k
+ 1))) by
Def20
.= ((
Partial_Sums (th
P_sin ))
. (k
+ 1)) by
SERIES_1:def 1;
((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* (k
+ 1)))
= (((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. ((2
* k)
+ 1))
+ ((
Re ((th
*
<i> )
ExpSeq ))
. (((2
* k)
+ 1)
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ ((
Re ((th
*
<i> )
ExpSeq ))
. ((2
* k)
+ 1)))
+ ((
Re ((th
*
<i> )
ExpSeq ))
. (((2
* k)
+ 1)
+ 1))) by
A11,
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((th
*
<i> )
ExpSeq )
. ((2
* k)
+ 1))))
+ ((
Re ((th
*
<i> )
ExpSeq ))
. (((2
* k)
+ 1)
+ 1))) by
COMSEQ_3:def 5
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((th
*
<i> )
ExpSeq )
. ((2
* k)
+ 1))))
+ (
Re (((th
*
<i> )
ExpSeq )
. (((2
* k)
+ 1)
+ 1)))) by
COMSEQ_3:def 5
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((th
*
<i> )
|^ ((2
* k)
+ 1))
/ (((2
* k)
+ 1)
! ))))
+ (
Re (((th
*
<i> )
ExpSeq )
. (((2
* k)
+ 1)
+ 1)))) by
Def4
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((th
*
<i> )
|^ ((2
* k)
+ 1))
/ (((2
* k)
+ 1)
! ))))
+ (
Re (((th
*
<i> )
|^ (2
* (k
+ 1)))
/ ((((2
* k)
+ 1)
+ 1)
! )))) by
Def4
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((((
- 1)
|^ k)
* (th
|^ ((2
* k)
+ 1)))
*
<i> )
/ (((2
* k)
+ 1)
! ))))
+ (
Re (((th
*
<i> )
|^ (2
* (k
+ 1)))
/ ((2
* (k
+ 1))
! )))) by
Th33
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re (((((
- 1)
|^ k)
* (th
|^ ((2
* k)
+ 1)))
*
<i> )
/ (((2
* k)
+ 1)
! ))))
+ (
Re ((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! )))) by
Th33;
then ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* (k
+ 1)))
= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
Re ((
0
/ (((2
* k)
+ 1)
! ))
+ (((((
- 1)
|^ k)
* (th
|^ ((2
* k)
+ 1)))
/ (((2
* k)
+ 1)
! ))
*
<i> ))))
+ (
Re ((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))));
then ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* (k
+ 1)))
= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
0
/ (((2
* k)
+ 1)
! )))
+ (
Re (((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))
+ ((
0
/ ((2
* (k
+ 1))
! ))
*
<i> )))) by
COMPLEX1: 12
.= ((((
Partial_Sums (th
P_cos ))
. k)
+ (
0
/ (((2
* k)
+ 1)
! )))
+ ((((
- 1)
|^ (k
+ 1))
* (th
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))) by
COMPLEX1: 12;
then ((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* (k
+ 1)))
= (((
Partial_Sums (th
P_cos ))
. k)
+ ((th
P_cos )
. (k
+ 1))) by
Def21
.= ((
Partial_Sums (th
P_cos ))
. (k
+ 1)) by
SERIES_1:def 1;
hence thesis by
A12;
end;
thus for n holds
X[n] from
NAT_1:sch 2(
A8,
A9);
end;
hence thesis;
end;
theorem ::
SIN_COS:36
Th35: for th holds (
Partial_Sums (th
P_sin )) is
convergent & (
Sum (th
P_sin ))
= (
Im (
Sum ((th
*
<i> )
ExpSeq ))) & (
Partial_Sums (th
P_cos )) is
convergent & (
Sum (th
P_cos ))
= (
Re (
Sum ((th
*
<i> )
ExpSeq )))
proof
let th;
A1: (
Sum ((th
*
<i> )
ExpSeq ))
= ((
Sum (
Re ((th
*
<i> )
ExpSeq )))
+ ((
Sum (
Im ((th
*
<i> )
ExpSeq )))
*
<i> )) by
COMSEQ_3: 53;
then
A2: (
Sum (
Re ((th
*
<i> )
ExpSeq )))
= (
Re (
Sum ((th
*
<i> )
ExpSeq ))) by
COMPLEX1: 12;
A3: (
Sum (
Im ((th
*
<i> )
ExpSeq )))
= (
Im (
Sum ((th
*
<i> )
ExpSeq ))) by
A1,
COMPLEX1: 12;
A4: (
Partial_Sums (
Re ((th
*
<i> )
ExpSeq ))) is
convergent & (
lim (
Partial_Sums (
Re ((th
*
<i> )
ExpSeq ))))
= (
Re (
Sum ((th
*
<i> )
ExpSeq ))) by
A2,
SERIES_1:def 2,
SERIES_1:def 3;
A5: (
Partial_Sums (
Im ((th
*
<i> )
ExpSeq ))) is
convergent & (
lim (
Partial_Sums (
Im ((th
*
<i> )
ExpSeq ))))
= (
Im (
Sum ((th
*
<i> )
ExpSeq ))) by
A3,
SERIES_1:def 2,
SERIES_1:def 3;
A6:
now
let p be
Real;
assume p
>
0 ;
then
consider n such that
A7: for k st n
<= k holds
|.(((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. k)
- (
Re (
Sum ((th
*
<i> )
ExpSeq )))).|
< p by
A4,
SEQ_2:def 7;
take n;
now
let k such that
A8: n
<= k;
|.(((
Partial_Sums (th
P_cos ))
. k)
- (
Re (
Sum ((th
*
<i> )
ExpSeq )))).|
=
|.(((
Partial_Sums (
Re ((th
*
<i> )
ExpSeq )))
. (2
* k))
- (
Re (
Sum ((th
*
<i> )
ExpSeq )))).| & (2
* k)
= (k
+ k) by
Th34;
hence
|.(((
Partial_Sums (th
P_cos ))
. k)
- (
Re (
Sum ((th
*
<i> )
ExpSeq )))).|
< p by
A7,
A8,
NAT_1: 12;
end;
hence for k st n
<= k holds
|.(((
Partial_Sums (th
P_cos ))
. k)
- (
Re (
Sum ((th
*
<i> )
ExpSeq )))).|
< p;
end;
then (
Partial_Sums (th
P_cos )) is
convergent by
SEQ_2:def 6;
then
A9: (
lim (
Partial_Sums (th
P_cos )))
= (
Re (
Sum ((th
*
<i> )
ExpSeq ))) by
A6,
SEQ_2:def 7;
A10:
now
let p be
Real;
assume p
>
0 ;
then
consider n such that
A11: for k st n
<= k holds
|.(((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. k)
- (
Im (
Sum ((th
*
<i> )
ExpSeq )))).|
< p by
A5,
SEQ_2:def 7;
take n;
now
let k such that
A12: n
<= k;
A13:
|.(((
Partial_Sums (th
P_sin ))
. k)
- (
Im (
Sum ((th
*
<i> )
ExpSeq )))).|
=
|.(((
Partial_Sums (
Im ((th
*
<i> )
ExpSeq )))
. ((2
* k)
+ 1))
- (
Im (
Sum ((th
*
<i> )
ExpSeq )))).| by
Th34;
(2
* k)
= (k
+ k);
then n
<= (2
* k) by
A12,
NAT_1: 12;
then n
< ((2
* k)
+ 1) by
NAT_1: 13;
hence
|.(((
Partial_Sums (th
P_sin ))
. k)
- (
Im (
Sum ((th
*
<i> )
ExpSeq )))).|
< p by
A11,
A13;
end;
hence for k st n
<= k holds
|.(((
Partial_Sums (th
P_sin ))
. k)
- (
Im (
Sum ((th
*
<i> )
ExpSeq )))).|
< p;
end;
then (
Partial_Sums (th
P_sin )) is
convergent by
SEQ_2:def 6;
then (
lim (
Partial_Sums (th
P_sin )))
= (
Im (
Sum ((th
*
<i> )
ExpSeq ))) by
A10,
SEQ_2:def 7;
hence thesis by
A6,
A9,
A10,
SEQ_2:def 6,
SERIES_1:def 3;
end;
theorem ::
SIN_COS:37
Th36: (
cos
. th)
= (
Sum (th
P_cos )) & (
sin
. th)
= (
Sum (th
P_sin ))
proof
reconsider th as
Real;
(
sin
. th)
= (
Im (
Sum ((th
*
<i> )
ExpSeq ))) & (
cos
. th)
= (
Re (
Sum ((th
*
<i> )
ExpSeq ))) by
Def16,
Def18;
hence thesis by
Th35;
end;
theorem ::
SIN_COS:38
for p, th, rseq st rseq is
convergent & (
lim rseq)
= th & (for n holds (rseq
. n)
>= p) holds th
>= p by
PREPOWER: 1;
deffunc
U(
Real) = ((2
* $1)
+ 1);
consider bq be
Real_Sequence such that
Lm6: for n holds (bq
. n)
=
U(n) from
SEQ_1:sch 1;
bq is
increasing
sequence of
NAT
proof
A1: for n, k st n
< k holds (bq
. n)
< (bq
. k)
proof
let n, k;
assume n
< k;
then (2
* n)
< (2
* k) by
XREAL_1: 68;
then ((2
* n)
+ 1)
< ((2
* k)
+ 1) by
XREAL_1: 6;
then (bq
. n)
< ((2
* k)
+ 1) by
Lm6;
hence thesis by
Lm6;
end;
for n holds (bq
. n) is
Element of
NAT
proof
let n;
((2
* n)
+ 1) is
Element of
NAT ;
hence thesis by
Lm6;
end;
hence thesis by
A1,
SEQM_3: 1,
SEQM_3: 13;
end;
then
reconsider bq as
increasing
sequence of
NAT ;
Lm7: for th,th1,th2,th3 be
Real holds (th
|^ (2
* n))
= ((th
|^ n)
|^ 2) & ((
- 1)
|^ (2
* n))
= 1 & ((
- 1)
|^ ((2
* n)
+ 1))
= (
- 1)
proof
let th,th1,th2,th3 be
Real;
reconsider 2n = (2
* n) as
Element of
NAT by
ORDINAL1:def 12;
thus (th
|^ (2
* n))
= ((th
|^ n)
|^ 2) by
NEWTON: 9;
((
- 1)
|^ 2n)
= (1
|^ 2n) by
POWER: 1
.= 1;
hence
A1: ((
- 1)
|^ (2
* n))
= 1;
thus ((
- 1)
|^ ((2
* n)
+ 1))
= (((
- 1)
|^ (2
* n))
* (
- 1)) by
NEWTON: 6
.= (
- 1) by
A1;
end;
theorem ::
SIN_COS:39
Th38: n
<= k implies (n
! )
<= (k
! )
proof
assume
A1: n
<= k;
A2: for m holds 1
<= (m
+ 1)
proof
let m;
(
0
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
hence thesis;
end;
deffunc
U(
Nat) = ($1
! );
consider rseq such that
A3: for l holds (rseq
. l)
=
U(l) from
SEQ_1:sch 1;
for l holds (rseq
. l)
<= (rseq
. (l
+ 1)) & (rseq
. l)
>
0
proof
let l;
defpred
X[
Nat] means (rseq
. $1)
<= (rseq
. ($1
+ 1)) & (rseq
. $1)
>
0 ;
(rseq
. (
0
+ 1))
= ((
0
+ 1)
! ) by
A3
.= ((
0
! )
* 1) by
NEWTON: 15
.= 1 by
NEWTON: 12;
then
A4:
X[
0 ] by
A3,
NEWTON: 12;
A5: for l st
X[l] holds
X[(l
+ 1)]
proof
let l;
assume
A6: (rseq
. l)
<= (rseq
. (l
+ 1)) & (rseq
. l)
>
0 ;
(rseq
. ((l
+ 1)
+ 1))
= (((l
+ 1)
+ 1)
! ) by
A3
.= (((l
+ 1)
! )
* ((l
+ 1)
+ 1)) by
NEWTON: 15
.= ((rseq
. (l
+ 1))
* ((l
+ 1)
+ 1)) by
A3;
hence thesis by
A2,
A6,
XREAL_1: 151;
end;
for l holds
X[l] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
then
A7: rseq is
non-decreasing;
(n
! )
= (rseq
. n) & (k
! )
= (rseq
. k) by
A3;
hence thesis by
A1,
A7,
SEQM_3: 6;
end;
theorem ::
SIN_COS:40
Th39:
0
<= th & th
<= 1 & n
<= k implies (th
|^ k)
<= (th
|^ n)
proof
assume that
A1:
0
<= th and
A2: th
<= 1 and
A3: n
<= k;
for m holds ((th
GeoSeq )
. (m
+ 1))
<= ((th
GeoSeq )
. m) & ((th
GeoSeq )
. m)
>=
0
proof
let m;
defpred
X[
Nat] means ((th
GeoSeq )
. ($1
+ 1))
<= ((th
GeoSeq )
. $1) & ((th
GeoSeq )
. $1)
>=
0 ;
((th
GeoSeq )
. (
0
+ 1))
= (((th
GeoSeq )
.
0 )
* th) by
PREPOWER: 3
.= (1
* th) by
PREPOWER: 3
.= th;
then
A4:
X[
0 ] by
A2,
PREPOWER: 3;
A5: for m st
X[m] holds
X[(m
+ 1)]
proof
let m;
assume that ((th
GeoSeq )
. (m
+ 1))
<= ((th
GeoSeq )
. m) and
A6: ((th
GeoSeq )
. m)
>=
0 ;
((th
GeoSeq )
. ((m
+ 1)
+ 1))
= (((th
GeoSeq )
. (m
+ 1))
* th) & ((th
GeoSeq )
. (m
+ 1))
= (((th
GeoSeq )
. m)
* th) by
PREPOWER: 3;
hence thesis by
A1,
A2,
A6,
XREAL_1: 153;
end;
for m holds
X[m] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
then
A7: (th
GeoSeq ) is
non-increasing;
(th
|^ k)
= ((th
GeoSeq )
. k) & (th
|^ n)
= ((th
GeoSeq )
. n) by
PREPOWER:def 1;
hence thesis by
A3,
A7,
SEQM_3: 8;
end;
::$Canceled
theorem ::
SIN_COS:42
Th41: for p be
Real holds (
Im (
Sum (p
ExpSeq )))
=
0
proof
let p be
Real;
A1: for n holds ((
Partial_Sums (
Im (p
ExpSeq )))
. n)
=
0
proof
let n;
defpred
X[
Nat] means ((
Partial_Sums (
Im (p
ExpSeq )))
. $1)
=
0 ;
((
Partial_Sums (
Im (p
ExpSeq )))
.
0 )
= ((
Im (p
ExpSeq ))
.
0 ) by
SERIES_1:def 1
.= (
Im ((p
ExpSeq )
.
0 )) by
COMSEQ_3:def 6
.=
0 by
Th3,
COMPLEX1: 6;
then
A2:
X[
0 ];
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume ((
Partial_Sums (
Im (p
ExpSeq )))
. k)
=
0 ;
then ((
Partial_Sums (
Im (p
ExpSeq )))
. (k
+ 1))
= (
0
+ ((
Im (p
ExpSeq ))
. (k
+ 1))) by
SERIES_1:def 1
.= (
Im ((p
ExpSeq )
. (k
+ 1))) by
COMSEQ_3:def 6
.= (
Im ((p
|^ (k
+ 1))
/ ((k
+ 1)
! ))) by
Def4
.= (
Im (((p
|^ (k
+ 1))
/ ((k
+ 1)
! ))
+ (
0
*
<i> )))
.=
0 by
COMPLEX1: 12;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
for n,m be
Nat holds ((
Partial_Sums (
Im (p
ExpSeq )))
. n)
= ((
Partial_Sums (
Im (p
ExpSeq )))
. m)
proof
let n,m be
Nat;
m
in
NAT & ((
Partial_Sums (
Im (p
ExpSeq )))
. n)
=
0 by
A1,
ORDINAL1:def 12;
hence thesis by
A1;
end;
then
A4: (
lim (
Partial_Sums (
Im (p
ExpSeq ))))
= ((
Partial_Sums (
Im (p
ExpSeq )))
.
0 ) by
SEQ_4: 26,
VALUED_0: 24
.=
0 by
A1;
(
Im (
Sum (p
ExpSeq )))
= (
Im ((
Sum (
Re (p
ExpSeq )))
+ ((
Sum (
Im (p
ExpSeq )))
*
<i> ))) by
COMSEQ_3: 53
.= (
Sum (
Im (p
ExpSeq ))) by
COMPLEX1: 12;
hence thesis by
A4,
SERIES_1:def 3;
end;
theorem ::
SIN_COS:43
Th42: (
cos
. 1)
>
0 & (
sin
. 1)
>
0 & (
cos
. 1)
< (
sin
. 1)
proof
A1: (
Partial_Sums (1
P_cos )) is
convergent by
Th35;
A2: (
cos
. 1)
= (
Sum (1
P_cos )) by
Th36;
(
lim ((
Partial_Sums (1
P_cos ))
* bq))
= (
lim (
Partial_Sums (1
P_cos ))) by
A1,
SEQ_4: 17;
then
A3: (
lim ((
Partial_Sums (1
P_cos ))
* bq))
= (
cos
. 1) by
A2,
SERIES_1:def 3;
for n holds (((
Partial_Sums (1
P_cos ))
* bq)
. n)
>= (1
/ 2)
proof
let n;
defpred
X[
Nat] means (((
Partial_Sums (1
P_cos ))
* bq)
. $1)
>= (1
/ 2);
(((
Partial_Sums (1
P_cos ))
* bq)
.
0 )
= ((
Partial_Sums (1
P_cos ))
. (bq
.
0 )) by
FUNCT_2: 15
.= ((
Partial_Sums (1
P_cos ))
. ((2
*
0 )
+ 1)) by
Lm6
.= (((
Partial_Sums (1
P_cos ))
.
0 )
+ ((1
P_cos )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((1
P_cos )
.
0 )
+ ((1
P_cos )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((((
- 1)
|^
0 )
* (1
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((1
P_cos )
. 1)) by
Def21
.= (((((
- 1)
|^
0 )
* (1
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((((
- 1)
|^ 1)
* (1
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
Def21
.= (((1
* (1
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((((
- 1)
|^ 1)
* (1
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
Lm7
.= ((1
/ 1)
+ ((((
- 1)
|^ 1)
* (1
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
NEWTON: 12
.= (1
+ (((
- 1)
* (1
|^ (2
* 1)))
/ ((2
* 1)
! )))
.= (1
+ (((
- 1)
* 1)
/ ((2
* 1)
! )))
.= (1
+ ((
- 1)
/ ((1
! )
* (1
+ 1)))) by
NEWTON: 15
.= (1
+ ((
- 1)
/ (((
0
! )
* (
0
+ 1))
* 2))) by
NEWTON: 15
.= (1
/ 2) by
NEWTON: 12;
then
A4:
X[
0 ];
A5: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
A6: k
in
NAT by
ORDINAL1:def 12;
assume
A7: (((
Partial_Sums (1
P_cos ))
* bq)
. k)
>= (1
/ 2);
(((
Partial_Sums (1
P_cos ))
* bq)
. (k
+ 1))
= ((
Partial_Sums (1
P_cos ))
. (bq
. (k
+ 1))) by
FUNCT_2: 15
.= ((
Partial_Sums (1
P_cos ))
. ((2
* (k
+ 1))
+ 1)) by
Lm6
.= (((
Partial_Sums (1
P_cos ))
. (((2
* k)
+ 1)
+ 1))
+ ((1
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (1
P_cos ))
. ((2
* k)
+ 1))
+ ((1
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (1
P_cos ))
. (bq
. k))
+ ((1
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
Lm6
.= (((((
Partial_Sums (1
P_cos ))
* bq)
. k)
+ ((1
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
FUNCT_2: 15,
A6;
then
A8: ((((
Partial_Sums (1
P_cos ))
* bq)
. (k
+ 1))
- (((
Partial_Sums (1
P_cos ))
* bq)
. k))
= (((1
P_cos )
. (((2
* k)
+ 1)
+ 1))
+ ((1
P_cos )
. ((2
* (k
+ 1))
+ 1)));
A9: ((1
P_cos )
. (((2
* k)
+ 1)
+ 1))
= ((((
- 1)
|^ (2
* (k
+ 1)))
* (1
|^ (2
* (2
* (k
+ 1)))))
/ ((2
* (2
* (k
+ 1)))
! )) by
Def21
.= ((1
* (1
|^ (2
* (2
* (k
+ 1)))))
/ ((2
* (2
* (k
+ 1)))
! )) by
Lm7
.= (1
/ ((2
* (2
* (k
+ 1)))
! ));
A10: ((1
P_cos )
. ((2
* (k
+ 1))
+ 1))
= ((((
- 1)
|^ ((2
* (k
+ 1))
+ 1))
* (1
|^ (2
* ((2
* (k
+ 1))
+ 1))))
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )) by
Def21
.= (((
- 1)
* (1
|^ (2
* ((2
* (k
+ 1))
+ 1))))
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )) by
Lm7
.= (((
- 1)
* 1)
/ ((2
* ((2
* (k
+ 1))
+ 1))
! ))
.= ((
- 1)
/ ((2
* ((2
* (k
+ 1))
+ 1))
! ));
(2
* (2
* (k
+ 1)))
< (2
* ((2
* (k
+ 1))
+ 1)) by
XREAL_1: 29,
XREAL_1: 68;
then ((2
* (2
* (k
+ 1)))
! )
<= ((2
* ((2
* (k
+ 1))
+ 1))
! ) by
Th38;
then (1
/ ((2
* (2
* (k
+ 1)))
! ))
>= (1
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )) by
XREAL_1: 85;
then ((1
/ ((2
* (2
* (k
+ 1)))
! ))
- (1
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )))
>=
0 by
XREAL_1: 48;
then (((
Partial_Sums (1
P_cos ))
* bq)
. (k
+ 1))
>= (((
Partial_Sums (1
P_cos ))
* bq)
. k) by
A8,
A9,
A10,
XREAL_1: 49;
hence thesis by
A7,
XXREAL_0: 2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
then
A11: (
cos
. 1)
>= (1
/ 2) by
A1,
A3,
PREPOWER: 1,
SEQ_4: 16;
A12: (
Partial_Sums (1
P_sin )) is
convergent by
Th35;
A13: (
sin
. 1)
= (
Sum (1
P_sin )) by
Th36;
(
lim ((
Partial_Sums (1
P_sin ))
* bq))
= (
lim (
Partial_Sums (1
P_sin ))) by
A12,
SEQ_4: 17;
then
A14: (
lim ((
Partial_Sums (1
P_sin ))
* bq))
= (
sin
. 1) by
A13,
SERIES_1:def 3;
for n holds (((
Partial_Sums (1
P_sin ))
* bq)
. n)
>= (5
/ 6)
proof
let n;
defpred
X[
Nat] means (((
Partial_Sums (1
P_sin ))
* bq)
. $1)
>= (5
/ 6);
(((
Partial_Sums (1
P_sin ))
* bq)
.
0 )
= ((
Partial_Sums (1
P_sin ))
. (bq
.
0 )) by
FUNCT_2: 15
.= ((
Partial_Sums (1
P_sin ))
. ((2
*
0 )
+ 1)) by
Lm6
.= (((
Partial_Sums (1
P_sin ))
.
0 )
+ ((1
P_sin )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((1
P_sin )
.
0 )
+ ((1
P_sin )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((((
- 1)
|^
0 )
* (1
|^ ((2
*
0 )
+ 1)))
/ (((2
*
0 )
+ 1)
! ))
+ ((1
P_sin )
. 1)) by
Def20
.= (((((
- 1)
|^
0 )
* (1
|^ ((2
*
0 )
+ 1)))
/ (((2
*
0 )
+ 1)
! ))
+ ((((
- 1)
|^ 1)
* (1
|^ ((2
* 1)
+ 1)))
/ (((2
* 1)
+ 1)
! ))) by
Def20
.= (((1
* (1
|^ ((2
*
0 )
+ 1)))
/ (((2
*
0 )
+ 1)
! ))
+ ((((
- 1)
|^ 1)
* (1
|^ ((2
* 1)
+ 1)))
/ (((2
* 1)
+ 1)
! ))) by
Lm7
.= ((1
/ ((
0
+ 1)
! ))
+ ((((
- 1)
|^ 1)
* (1
|^ ((2
* 1)
+ 1)))
/ (((2
* 1)
+ 1)
! )))
.= ((1
/ ((
0
! )
* 1))
+ ((((
- 1)
|^ 1)
* (1
|^ ((2
* 1)
+ 1)))
/ (((2
* 1)
+ 1)
! ))) by
NEWTON: 15
.= (1
+ (((
- 1)
* (1
|^ ((2
* 1)
+ 1)))
/ (((2
* 1)
+ 1)
! ))) by
NEWTON: 12
.= (1
+ (((
- 1)
* 1)
/ (((2
* 1)
+ 1)
! )))
.= (1
+ ((
- 1)
/ (((2
* 1)
! )
* ((2
* 1)
+ 1)))) by
NEWTON: 15
.= (1
+ ((
- 1)
/ (((1
! )
* (1
+ 1))
* 3))) by
NEWTON: 15
.= (1
+ ((
- 1)
/ (((
0
+ 1)
! )
* (2
* 3))))
.= (1
+ ((
- 1)
/ ((1
* 1)
* 6))) by
NEWTON: 12,
NEWTON: 15
.= (5
/ 6);
then
A15:
X[
0 ];
A16: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
A17: k
in
NAT by
ORDINAL1:def 12;
assume
A18: (((
Partial_Sums (1
P_sin ))
* bq)
. k)
>= (5
/ 6);
(((
Partial_Sums (1
P_sin ))
* bq)
. (k
+ 1))
= ((
Partial_Sums (1
P_sin ))
. (bq
. (k
+ 1))) by
FUNCT_2: 15
.= ((
Partial_Sums (1
P_sin ))
. ((2
* (k
+ 1))
+ 1)) by
Lm6
.= (((
Partial_Sums (1
P_sin ))
. (((2
* k)
+ 1)
+ 1))
+ ((1
P_sin )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (1
P_sin ))
. ((2
* k)
+ 1))
+ ((1
P_sin )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_sin )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (1
P_sin ))
. (bq
. k))
+ ((1
P_sin )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_sin )
. ((2
* (k
+ 1))
+ 1))) by
Lm6
.= (((((
Partial_Sums (1
P_sin ))
* bq)
. k)
+ ((1
P_sin )
. (((2
* k)
+ 1)
+ 1)))
+ ((1
P_sin )
. ((2
* (k
+ 1))
+ 1))) by
FUNCT_2: 15,
A17;
then
A19: ((((
Partial_Sums (1
P_sin ))
* bq)
. (k
+ 1))
- (((
Partial_Sums (1
P_sin ))
* bq)
. k))
= (((1
P_sin )
. (((2
* k)
+ 1)
+ 1))
+ ((1
P_sin )
. ((2
* (k
+ 1))
+ 1)));
A20: ((1
P_sin )
. (((2
* k)
+ 1)
+ 1))
= ((((
- 1)
|^ (2
* (k
+ 1)))
* (1
|^ ((2
* (2
* (k
+ 1)))
+ 1)))
/ (((2
* (2
* (k
+ 1)))
+ 1)
! )) by
Def20
.= ((1
* (1
|^ ((2
* (2
* (k
+ 1)))
+ 1)))
/ (((2
* (2
* (k
+ 1)))
+ 1)
! )) by
Lm7
.= (1
/ (((2
* (2
* (k
+ 1)))
+ 1)
! ));
A21: ((1
P_sin )
. ((2
* (k
+ 1))
+ 1))
= ((((
- 1)
|^ ((2
* (k
+ 1))
+ 1))
* (1
|^ ((2
* ((2
* (k
+ 1))
+ 1))
+ 1)))
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! )) by
Def20
.= (((
- 1)
* (1
|^ ((2
* ((2
* (k
+ 1))
+ 1))
+ 1)))
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! )) by
Lm7
.= (((
- 1)
* 1)
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! ))
.= ((
- 1)
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! ));
(2
* (2
* (k
+ 1)))
< (2
* ((2
* (k
+ 1))
+ 1)) by
XREAL_1: 29,
XREAL_1: 68;
then ((2
* (2
* (k
+ 1)))
+ 1)
< ((2
* ((2
* (k
+ 1))
+ 1))
+ 1) by
XREAL_1: 6;
then (((2
* (2
* (k
+ 1)))
+ 1)
! )
<= (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! ) by
Th38;
then (1
/ (((2
* (2
* (k
+ 1)))
+ 1)
! ))
>= (1
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! )) by
XREAL_1: 85;
then ((1
/ (((2
* (2
* (k
+ 1)))
+ 1)
! ))
- (1
/ (((2
* ((2
* (k
+ 1))
+ 1))
+ 1)
! )))
>=
0 by
XREAL_1: 48;
then (((
Partial_Sums (1
P_sin ))
* bq)
. (k
+ 1))
>= (((
Partial_Sums (1
P_sin ))
* bq)
. k) by
A19,
A20,
A21,
XREAL_1: 49;
hence thesis by
A18,
XXREAL_0: 2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A15,
A16);
hence thesis;
end;
then
A22: (
sin
. 1)
>= (5
/ 6) by
A12,
A14,
PREPOWER: 1,
SEQ_4: 16;
A23: (((
cos
. 1)
^2 )
+ ((
sin
. 1)
^2 ))
= 1 by
Th28;
A24: ((
sin
. 1)
^2 )
>= ((5
/ 6)
^2 ) by
A22,
SQUARE_1: 15;
then (1
- (1
- ((
cos
. 1)
^2 )))
<= (1
- (25
/ 36)) by
A23,
XREAL_1: 10;
then ((
cos
. 1)
^2 )
< (25
/ 36) by
XXREAL_0: 2;
then ((
sin
. 1)
^2 )
> ((
cos
. 1)
^2 ) by
A24,
XXREAL_0: 2;
then
A25: (
sqrt ((
cos
. 1)
^2 ))
< (
sqrt ((
sin
. 1)
^2 )) by
SQUARE_1: 27,
XREAL_1: 63;
(
sqrt ((
cos
. 1)
^2 ))
= (
cos
. 1) by
A11,
SQUARE_1: 22;
hence thesis by
A11,
A22,
A25,
SQUARE_1: 22;
end;
theorem ::
SIN_COS:44
Th43: for th holds (th
rExpSeq )
= (
Re (th
ExpSeq ))
proof
let th;
for n be
Element of
NAT holds ((th
rExpSeq )
. n)
= ((
Re (th
ExpSeq ))
. n)
proof
let n be
Element of
NAT ;
((
Re (th
ExpSeq ))
. n)
= (
Re ((th
ExpSeq )
. n)) by
COMSEQ_3:def 5
.= (
Re ((th
|^ n)
/ ((n
! )
+ (
0
*
<i> )))) by
Def4
.= (
Re (((th
|^ n)
/ (n
! ))
+ (
0
*
<i> )))
.= ((th
|^ n)
/ (n
! )) by
COMPLEX1: 12
.= ((th
rExpSeq )
. n) by
Def5;
hence thesis;
end;
hence thesis;
end;
theorem ::
SIN_COS:45
Th44: for th holds (th
rExpSeq ) is
summable & (
Sum (th
rExpSeq ))
= (
Re (
Sum (th
ExpSeq )))
proof
let th;
(
Sum (th
ExpSeq ))
= ((
Sum (
Re (th
ExpSeq )))
+ ((
Sum (
Im (th
ExpSeq )))
*
<i> )) & (
Sum (th
rExpSeq ))
= (
Sum (
Re (th
ExpSeq ))) by
Th43,
COMSEQ_3: 53;
hence thesis by
Th43,
COMPLEX1: 12;
end;
Lm8: for z be
Complex holds ((z
ExpSeq )
. 1)
= z & ((z
ExpSeq )
.
0 )
=
1r &
|.(z
|^ n).|
= (
|.z.|
|^ n)
proof
let z be
Complex;
(z
|^ 1)
= z;
then
A1: ((z
ExpSeq )
. 1)
= (z
/ (1
! )) by
Def4
.= z by
NEWTON: 13;
A2: ((z
ExpSeq )
.
0 )
= ((z
|^
0 )
/ (
0
! )) by
Def4
.=
1r by
Th1,
COMSEQ_3: 11;
|.(z
|^ n).|
= (
|.z.|
|^ n)
proof
defpred
X[
Nat] means
|.(z
|^ $1).|
= (
|.z.|
|^ $1);
|.(z
|^
0 ).|
= 1 by
COMPLEX1: 48,
COMSEQ_3:def 1;
then
A3:
X[
0 ] by
NEWTON: 4;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A5:
|.(z
|^ k).|
= (
|.z.|
|^ k);
|.(z
|^ (k
+ 1)).|
=
|.(z
* ((z
GeoSeq )
. k)).| by
COMSEQ_3:def 1
.= ((
|.z.|
|^ k)
*
|.z.|) by
A5,
COMPLEX1: 65
.= (
|.z.|
|^ (k
+ 1)) by
NEWTON: 6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A4);
hence thesis;
end;
hence thesis by
A1,
A2;
end;
Lm9: for th holds (
Sum (th
ExpSeq ))
= (
Sum (th
rExpSeq ))
proof
let th;
A1: for n be
Nat holds ((
Im (
Partial_Sums (th
ExpSeq )))
. n)
= (
In (
0 ,
REAL ))
proof
defpred
X[
Nat] means ((
Im (
Partial_Sums (th
ExpSeq )))
. $1)
=
0 ;
((
Im (
Partial_Sums (th
ExpSeq )))
.
0 )
= (
Im ((
Partial_Sums (th
ExpSeq ))
.
0 )) by
COMSEQ_3:def 6
.= (
Im ((th
ExpSeq )
.
0 )) by
SERIES_1:def 1
.=
0 by
Lm8,
COMPLEX1: 6;
then
A2:
X[
0 ];
A3: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat such that
A4: ((
Im (
Partial_Sums (th
ExpSeq )))
. n)
=
0 ;
((
Im (
Partial_Sums (th
ExpSeq )))
. (n
+ 1))
= (
Im ((
Partial_Sums (th
ExpSeq ))
. (n
+ 1))) by
COMSEQ_3:def 6
.= (
Im (((
Partial_Sums (th
ExpSeq ))
. n)
+ ((th
ExpSeq )
. (n
+ 1)))) by
SERIES_1:def 1
.= ((
Im ((
Partial_Sums (th
ExpSeq ))
. n))
+ (
Im ((th
ExpSeq )
. (n
+ 1)))) by
COMPLEX1: 8
.= (
0
+ (
Im ((th
ExpSeq )
. (n
+ 1)))) by
A4,
COMSEQ_3:def 6
.= (
Im (((th
|^ (n
+ 1))
/ ((n
+ 1)
! ))
+ (
0
*
<i> ))) by
Def4
.=
0 by
COMPLEX1: 12;
hence thesis;
end;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
then (
Im (
Partial_Sums (th
ExpSeq ))) is
constant by
VALUED_0:def 18;
then (
lim (
Im (
Partial_Sums (th
ExpSeq ))))
= ((
Im (
Partial_Sums (th
ExpSeq )))
.
0 ) by
SEQ_4: 26
.=
0 by
A1;
then (
Im (
Sum (th
ExpSeq )))
=
0 by
COMSEQ_3: 41;
then (
Sum (th
ExpSeq ))
= ((
Re (
Sum (th
ExpSeq )))
+ (
0
*
<i> )) by
COMPLEX1: 13
.= (
Sum (th
rExpSeq )) by
Th44;
hence thesis;
end;
theorem ::
SIN_COS:46
Th45: for p,q be
Real holds (
Sum ((p
+ q)
rExpSeq ))
= ((
Sum (p
rExpSeq ))
* (
Sum (q
rExpSeq )))
proof
let p,q be
Real;
reconsider p, q as
Real;
(
Sum ((p
+ q)
rExpSeq ))
= (
Re (
Sum ((p
+ q)
ExpSeq ))) by
Th44
.= (
Re ((
Sum (p
ExpSeq ))
* (
Sum (q
ExpSeq )))) by
Lm2
.= (
Re (((
Re (
Sum (p
ExpSeq )))
+ ((
Im (
Sum (p
ExpSeq )))
*
<i> ))
* (
Sum (q
ExpSeq )))) by
COMPLEX1: 13
.= (
Re (((
Re (
Sum (p
ExpSeq )))
+ ((
Im (
Sum (p
ExpSeq )))
*
<i> ))
* ((
Re (
Sum (q
ExpSeq )))
+ ((
Im (
Sum (q
ExpSeq )))
*
<i> )))) by
COMPLEX1: 13
.= (
Re (((
Sum (p
rExpSeq ))
+ ((
Im (
Sum (p
ExpSeq )))
*
<i> ))
* ((
Re (
Sum (q
ExpSeq )))
+ ((
Im (
Sum (q
ExpSeq )))
*
<i> )))) by
Th44
.= (
Re (((
Sum (p
rExpSeq ))
+ (
0
*
<i> ))
* ((
Re (
Sum (q
ExpSeq )))
+ ((
Im (
Sum (q
ExpSeq )))
*
<i> )))) by
Th41
.= (
Re ((
Sum (p
rExpSeq ))
* ((
Sum (q
rExpSeq ))
+ ((
Im (
Sum (q
ExpSeq )))
*
<i> )))) by
Th44
.= (
Re ((
Sum (p
rExpSeq ))
* ((
Sum (q
rExpSeq ))
+ (
0
*
<i> )))) by
Th41
.= (
Re (((
Sum (p
rExpSeq ))
* (
Sum (q
rExpSeq )))
+ (
0
*
<i> )))
.= ((
Sum (p
rExpSeq ))
* (
Sum (q
rExpSeq ))) by
COMPLEX1: 12;
hence thesis;
end;
definition
::
SIN_COS:def22
func
exp_R ->
Function of
REAL ,
REAL means
:
Def22: for d be
Real holds (it
. d)
= (
Sum (d
rExpSeq ));
existence
proof
deffunc
U(
Real) = (
In ((
Sum ($1
rExpSeq )),
REAL ));
consider f be
Function of
REAL ,
REAL such that
A1: for d be
Element of
REAL holds (f
. d)
=
U(d) from
FUNCT_2:sch 4;
take f;
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (f
. d)
=
U(d) by
A1;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
Function of
REAL ,
REAL ;
assume
A2: for d be
Real holds (f1
. d)
= (
Sum (d
rExpSeq ));
assume
A3: for d be
Real holds (f2
. d)
= (
Sum (d
rExpSeq ));
for d be
Element of
REAL holds (f1
. d)
= (f2
. d)
proof
let d be
Element of
REAL ;
thus (f1
. d)
= (
Sum (d
rExpSeq )) by
A2
.= (f2
. d) by
A3;
end;
hence f1
= f2;
end;
end
definition
let th be
Real;
::
SIN_COS:def23
func
exp_R th ->
number equals (
exp_R
. th);
coherence ;
end
registration
let th be
Real;
cluster (
exp_R th) ->
real;
coherence ;
end
theorem ::
SIN_COS:47
Th46: (
dom
exp_R )
=
REAL by
FUNCT_2:def 1;
theorem ::
SIN_COS:48
Th47: for th holds (
exp_R
. th)
= (
Re (
Sum (th
ExpSeq )))
proof
let th;
(
exp_R
. th)
= (
Sum (th
rExpSeq )) by
Def22;
hence thesis by
Th44;
end;
theorem ::
SIN_COS:49
for th holds (
exp th)
= (
exp_R th)
proof
let th;
thus (
exp th)
= (
Sum (th
ExpSeq )) by
Def14
.= (
Sum (th
rExpSeq )) by
Lm9
.= (
exp_R th) by
Def22;
end;
Lm10: for p,q be
Real holds (
exp_R
. (p
+ q))
= ((
exp_R
. p)
* (
exp_R
. q))
proof
let p,q be
Real;
(
exp_R
. (p
+ q))
= (
Sum ((p
+ q)
rExpSeq )) by
Def22
.= ((
Sum (p
rExpSeq ))
* (
Sum (q
rExpSeq ))) by
Th45
.= ((
exp_R
. p)
* (
Sum (q
rExpSeq ))) by
Def22
.= ((
exp_R
. p)
* (
exp_R
. q)) by
Def22;
hence thesis;
end;
theorem ::
SIN_COS:50
for p,q be
Real holds (
exp_R (p
+ q))
= ((
exp_R p)
* (
exp_R q)) by
Lm10;
Lm11: (
exp_R
.
0 )
= 1
proof
(
exp_R
.
0 )
= (
Sum (
0
rExpSeq )) by
Def22
.= 1 by
Th9,
Th44,
COMPLEX1: 6;
hence thesis;
end;
theorem ::
SIN_COS:51
(
exp_R
0 )
= 1 by
Lm11;
theorem ::
SIN_COS:52
Th51: th
>
0 implies (
exp_R
. th)
>= 1
proof
assume
A1: th
>
0 ;
A2: for n holds ((
Partial_Sums (th
rExpSeq ))
. n)
>= 1
proof
defpred
X[
Nat] means ((
Partial_Sums (th
rExpSeq ))
. $1)
>= 1;
((
Partial_Sums (th
rExpSeq ))
.
0 )
= ((th
rExpSeq )
.
0 ) by
SERIES_1:def 1
.= ((th
|^
0 )
/ (
0
! )) by
Def5
.= 1 by
NEWTON: 4,
NEWTON: 12;
then
A3:
X[
0 ];
A4: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A5: ((
Partial_Sums (th
rExpSeq ))
. n)
>= 1;
A6: ((
Partial_Sums (th
rExpSeq ))
. (n
+ 1))
= (((
Partial_Sums (th
rExpSeq ))
. n)
+ ((th
rExpSeq )
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (th
rExpSeq ))
. n)
+ ((th
|^ (n
+ 1))
/ ((n
+ 1)
! ))) by
Def5;
(th
|^ (n
+ 1))
>
0 & ((n
+ 1)
! )
>
0 by
A1,
PREPOWER: 6;
then (((
Partial_Sums (th
rExpSeq ))
. n)
+ ((th
|^ (n
+ 1))
/ ((n
+ 1)
! )))
> ((
Partial_Sums (th
rExpSeq ))
. n) by
XREAL_1: 29;
hence thesis by
A5,
A6,
XXREAL_0: 2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A4);
hence thesis;
end;
(th
rExpSeq ) is
summable by
Th44;
then
A7: (
Partial_Sums (th
rExpSeq )) is
convergent by
SERIES_1:def 2;
(
lim (
Partial_Sums (th
rExpSeq )))
= (
Sum (th
rExpSeq )) by
SERIES_1:def 3;
then (
Sum (th
rExpSeq ))
>= 1 by
A2,
A7,
PREPOWER: 1;
hence thesis by
Def22;
end;
theorem ::
SIN_COS:53
Th52: th
<
0 implies
0
< (
exp_R
. th) & (
exp_R
. th)
<= 1
proof
assume th
<
0 ;
then
A1: (
exp_R
. (
- th))
>= 1 by
Th51;
A2: ((
exp_R
. (
- th))
* (
exp_R
. th))
= (
exp_R
. ((
- th)
+ th)) by
Lm10
.= 1 by
Lm11;
then
A3: (
exp_R
. th)
= (1
/ (
exp_R
. (
- th))) by
XCMPLX_1: 73;
thus
0
< (
exp_R
. th) by
A1,
A2;
thus thesis by
A1,
A3,
XREAL_1: 211;
end;
theorem ::
SIN_COS:54
Th53: (
exp_R
. th)
>
0
proof
now
per cases ;
suppose th
=
0 ;
hence thesis by
Lm11;
end;
suppose
A1: th
<>
0 ;
now
per cases by
A1;
suppose th
<
0 ;
hence thesis by
Th52;
end;
suppose th
>
0 ;
hence thesis by
Th51;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
SIN_COS:55
(
exp_R th)
>
0 by
Th53;
begin
definition
let z be
Complex;
deffunc
U(
Nat) = ((z
|^ ($1
+ 1))
/ (($1
+ 2)
! ));
::
SIN_COS:def24
func z
P_dt ->
Complex_Sequence means
:
Def24: for n holds (it
. n)
= ((z
|^ (n
+ 1))
/ ((n
+ 2)
! ));
existence
proof
thus ex s be
Complex_Sequence st for n holds (s
. n)
=
U(n) from
COMSEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Complex_Sequence such that
A1: for x be
Nat holds (s1
. x)
=
U(x) and
A2: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A1
.= (s2
. x) by
A2;
end;
deffunc
U(
Nat) = ((z
|^ $1)
/ (($1
+ 2)
! ));
::
SIN_COS:def25
func z
P_t ->
Complex_Sequence means for n holds (it
. n)
= ((z
|^ n)
/ ((n
+ 2)
! ));
existence
proof
thus ex s be
Complex_Sequence st for n holds (s
. n)
=
U(n) from
COMSEQ_1:sch 1;
end;
uniqueness
proof
let s1,s2 be
Complex_Sequence such that
A3: for x be
Nat holds (s1
. x)
=
U(x) and
A4: for x be
Nat holds (s2
. x)
=
U(x);
let x be
Element of
NAT ;
thus (s1
. x)
=
U(x) by
A3
.= (s2
. x) by
A4;
end;
end
Lm12: for p be
Real, z be
Complex holds (
Re ((p
*
<i> )
* z))
= (
- (p
* (
Im z))) & (
Im ((p
*
<i> )
* z))
= (p
* (
Re z)) & (
Re (p
* z))
= (p
* (
Re z)) & (
Im (p
* z))
= (p
* (
Im z))
proof
let p be
Real, z be
Complex;
A1: ((p
*
<i> )
* z)
= ((p
*
<i> )
* ((
Re z)
+ ((
Im z)
*
<i> ))) by
COMPLEX1: 13
.= ((
- (p
* (
Im z)))
+ ((p
* (
Re z))
*
<i> ));
(p
* z)
= (p
* ((
Re z)
+ ((
Im z)
*
<i> ))) by
COMPLEX1: 13
.= ((p
* (
Re z))
+ ((p
* (
Im z))
*
<i> ));
hence thesis by
A1,
COMPLEX1: 12;
end;
Lm13: for p be
Real, z be
Complex st p
>
0 holds (
Re (z
/ (p
*
<i> )))
= ((
Im z)
/ p) & (
Im (z
/ (p
*
<i> )))
= (
- ((
Re z)
/ p)) &
|.(z
/ p).|
= (
|.z.|
/ p)
proof
let p be
Real, z be
Complex such that
A1: p
>
0 ;
A2: (
Re (
0
+ (p
*
<i> )))
=
0 & (
Im (
0
+ (p
*
<i> )))
= p by
COMPLEX1: 12;
A3: (
Im (p
+ (
0
*
<i> )))
=
0 by
COMPLEX1: 12;
A4: (z
/ (p
*
<i> ))
= (((((
Re z)
*
0 )
+ ((
Im z)
* p))
/ ((
0
^2 )
+ (p
^2 )))
+ ((((
0
* (
Im z))
- ((
Re z)
* p))
/ ((
0
^2 )
+ (p
^2 )))
*
<i> )) by
A2,
COMPLEX1: 86
.= ((((
Im z)
* p)
/ (p
* p))
+ ((((
- (
Re z))
* p)
/ (p
* p))
*
<i> ))
.= ((((
Im z)
* p)
/ (p
* p))
+ (((
- (
Re z))
/ p)
*
<i> )) by
A1,
XCMPLX_1: 91
.= (((
Im z)
/ p)
+ ((
- ((
Re z)
/ p))
*
<i> )) by
A1,
XCMPLX_1: 91;
|.(z
/ p).|
= (
|.z.|
/
|.p.|) by
COMPLEX1: 67
.= (
|.z.|
/ (
sqrt (p
^2 ))) by
A3,
COMPLEX1: 12;
hence thesis by
A1,
A4,
COMPLEX1: 12,
SQUARE_1: 22;
end;
theorem ::
SIN_COS:56
Th55: for z be
Complex holds (z
P_dt ) is
absolutely_summable
proof
let z be
Complex;
ex r st for n holds ((
Partial_Sums
|.(z
P_dt ).|)
. n)
< r
proof
A1: for n holds ((
Partial_Sums
|.(z
P_dt ).|)
. n)
< ((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
proof
let n;
((
Partial_Sums
|.(z
P_dt ).|)
.
0 )
= (
|.(z
P_dt ).|
.
0 ) by
SERIES_1:def 1
.=
|.((z
P_dt )
.
0 ).| by
VALUED_1: 18
.=
|.((z
|^ (
0
+ 1))
/ ((
0
+ 2)
! )).| by
Def24
.=
|.(z
/ 2).| by
NEWTON: 14;
then
A2: ((
Partial_Sums
|.(z
P_dt ).|)
.
0 )
= (
|.z.|
/ 2) by
Lm13;
((
Partial_Sums
|.(z
ExpSeq ).|)
. (
0
+ 1))
= (((
Partial_Sums
|.(z
ExpSeq ).|)
.
0 )
+ (
|.(z
ExpSeq ).|
. (
0
+ 1))) by
SERIES_1:def 1
.= ((
|.(z
ExpSeq ).|
.
0 )
+ (
|.(z
ExpSeq ).|
. 1)) by
SERIES_1:def 1
.= ((
|.(z
ExpSeq ).|
.
0 )
+
|.((z
ExpSeq )
. 1).|) by
VALUED_1: 18
.= (
|.((z
ExpSeq )
.
0 ).|
+
|.((z
ExpSeq )
. 1).|) by
VALUED_1: 18
.= (
|.((z
ExpSeq )
.
0 ).|
+
|.z.|) by
Lm8
.= (1
+
|.z.|) by
Lm8,
COMPLEX1: 48;
then
A3: (((
Partial_Sums
|.(z
ExpSeq ).|)
. (
0
+ 1))
- ((
Partial_Sums
|.(z
P_dt ).|)
.
0 ))
= (1
+ (
|.z.|
- (
|.z.|
/ 2))) by
A2;
defpred
X[
Nat] means ((
Partial_Sums
|.(z
P_dt ).|)
. $1)
< ((
Partial_Sums
|.(z
ExpSeq ).|)
. ($1
+ 1));
0
<=
|.z.| by
COMPLEX1: 46;
then
A4:
X[
0 ] by
A3,
XREAL_1: 47;
A5: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A6: ((
Partial_Sums
|.(z
P_dt ).|)
. n)
< ((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1));
((
Partial_Sums
|.(z
P_dt ).|)
. (n
+ 1))
= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+ (
|.(z
P_dt ).|
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+
|.((z
P_dt )
. (n
+ 1)).|) by
VALUED_1: 18
.= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+
|.((z
|^ ((n
+ 1)
+ 1))
/ (((n
+ 1)
+ 2)
! )).|) by
Def24
.= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+
|.((z
|^ (n
+ 2))
/ ((n
+ 3)
! )).|);
then
A7: ((
Partial_Sums
|.(z
P_dt ).|)
. (n
+ 1))
= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 3)
! ))) by
Lm13;
((
Partial_Sums
|.(z
ExpSeq ).|)
. ((n
+ 1)
+ 1))
= (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+ (
|.(z
ExpSeq ).|
. (n
+ (1
+ 1)))) by
SERIES_1:def 1
.= (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+
|.((z
ExpSeq )
. (n
+ 2)).|) by
VALUED_1: 18
.= (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+
|.((z
|^ (n
+ 2))
/ ((n
+ 2)
! )).|) by
Def4
.= (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+
|.((z
|^ (n
+ 2))
/ ((n
+ 2)
! )).|);
then
A8: ((
Partial_Sums
|.(z
ExpSeq ).|)
. ((n
+ 1)
+ 1))
= (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 2)
! ))) by
Lm13;
(n
+ 2)
< (n
+ 3) by
XREAL_1: 6;
then
A9: ((n
+ 2)
! )
<= ((n
+ 3)
! ) by
Th38;
|.(z
|^ (n
+ 2)).|
>=
0 by
COMPLEX1: 46;
then (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 2)
! ))
>= (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 3)
! )) by
A9,
XREAL_1: 118;
then
A10: (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 3)
! )))
<= (((
Partial_Sums
|.(z
P_dt ).|)
. n)
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 2)
! ))) by
XREAL_1: 6;
(((
Partial_Sums
|.(z
P_dt ).|)
. n)
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 2)
! )))
< (((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1))
+ (
|.(z
|^ (n
+ 2)).|
/ ((n
+ 2)
! ))) by
A6,
XREAL_1: 6;
hence thesis by
A7,
A8,
A10,
XXREAL_0: 2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
consider r be
Real such that
A11: for n holds ((
Partial_Sums
|.(z
ExpSeq ).|)
. n)
< r by
SEQ_2:def 3;
A12: for n holds ((
Partial_Sums
|.(z
P_dt ).|)
. n)
< r
proof
let n;
((
Partial_Sums
|.(z
P_dt ).|)
. n)
< ((
Partial_Sums
|.(z
ExpSeq ).|)
. (n
+ 1)) by
A1;
hence thesis by
A11,
XXREAL_0: 2;
end;
take r;
thus thesis by
A12;
end;
then (
Partial_Sums
|.(z
P_dt ).|) is
bounded_above by
SEQ_2:def 3;
hence thesis by
COMSEQ_3: 61;
end;
theorem ::
SIN_COS:57
Th56: for z be
Complex holds (z
* (
Sum (z
P_dt )))
= (((
Sum (z
ExpSeq ))
-
1r )
- z)
proof
let z be
Complex;
A1: for z be
Complex holds (z
(#) (z
P_dt ))
= ((z
ExpSeq )
^\ 2)
proof
let z be
Complex;
for n be
Element of
NAT holds ((z
(#) (z
P_dt ))
. n)
= (((z
ExpSeq )
^\ 2)
. n)
proof
let n be
Element of
NAT ;
((z
(#) (z
P_dt ))
. n)
= (z
* ((z
P_dt )
. n)) by
VALUED_1: 6
.= (z
* ((z
|^ (n
+ 1))
/ ((n
+ 2)
! ))) by
Def24;
then ((z
(#) (z
P_dt ))
. n)
= ((z
* (z
|^ (n
+ 1)))
/ ((n
+ 2)
! ))
.= ((z
|^ ((n
+ 1)
+ 1))
/ ((n
+ 2)
! )) by
NEWTON: 6
.= ((z
ExpSeq )
. (n
+ 2)) by
Def4
.= (((z
ExpSeq )
^\ 2)
. n) by
NAT_1:def 3;
hence thesis;
end;
hence thesis;
end;
(
Sum (z
ExpSeq ))
= (((
Partial_Sums (z
ExpSeq ))
. 1)
+ (
Sum ((z
ExpSeq )
^\ (1
+ 1)))) by
COMSEQ_3: 60
.= (((
Partial_Sums (z
ExpSeq ))
. 1)
+ (
Sum ((z
ExpSeq )
^\ 2)));
then
A2: (
Sum (z
(#) (z
P_dt )))
= ((
Sum (z
ExpSeq ))
- ((
Partial_Sums (z
ExpSeq ))
. (
0
+ 1))) by
A1
.= ((
Sum (z
ExpSeq ))
- (((
Partial_Sums (z
ExpSeq ))
.
0 )
+ ((z
ExpSeq )
. 1))) by
SERIES_1:def 1
.= ((
Sum (z
ExpSeq ))
- (((z
ExpSeq )
.
0 )
+ ((z
ExpSeq )
. 1))) by
SERIES_1:def 1
.= ((
Sum (z
ExpSeq ))
- (
1r
+ ((z
ExpSeq )
. 1))) by
Lm8
.= ((
Sum (z
ExpSeq ))
- (
1r
+ z)) by
Lm8
.= (((
Sum (z
ExpSeq ))
-
1r )
- z);
reconsider BBB = (z
P_dt ) as
absolutely_summable
Complex_Sequence by
Th55;
BBB is
summable;
hence thesis by
A2,
COMSEQ_3: 56;
end;
theorem ::
SIN_COS:58
Th57: for p st p
>
0 holds ex q st q
>
0 & for z be
Complex st
|.z.|
< q holds
|.(
Sum (z
P_dt )).|
< p
proof
A1: for z holds
|.(
Sum (z
P_dt )).|
<= (
Sum
|.(z
P_dt ).|)
proof
let z;
A2: for k holds (
|.(
Partial_Sums (z
P_dt )).|
. k)
<= ((
Partial_Sums
|.(z
P_dt ).|)
. k)
proof
let k;
|.((
Partial_Sums (z
P_dt ))
. k).|
= (
|.(
Partial_Sums (z
P_dt )).|
. k) by
VALUED_1: 18;
hence thesis by
COMSEQ_3: 30;
end;
A3: (z
P_dt ) is
absolutely_summable by
Th55;
A4: (z
P_dt ) is
summable by
Th55,
COMSEQ_3: 63;
A5: (
lim
|.(
Partial_Sums (z
P_dt )).|)
=
|.(
lim (
Partial_Sums (z
P_dt ))).| by
A4,
SEQ_2: 27;
(
lim
|.(
Partial_Sums (z
P_dt )).|)
<= (
lim (
Partial_Sums
|.(z
P_dt ).|)) by
A2,
A3,
SEQ_2: 18;
hence thesis by
A5,
SERIES_1:def 3;
end;
A6: for z, n holds (
|.(z
P_dt ).|
. n)
<= (
|.z.|
* ((
|.z.|
GeoSeq )
. n))
proof
let z, n;
(
|.(z
P_dt ).|
. n)
=
|.((z
P_dt )
. n).| by
VALUED_1: 18
.=
|.((z
|^ (n
+ 1))
/ ((n
+ 2)
! )).| by
Def24
.=
|.((z
|^ (n
+ 1))
/ ((n
+ 2)
! )).|;
then
A7: (
|.(z
P_dt ).|
. n)
= (
|.(z
|^ (n
+ 1)).|
/ ((n
+ 2)
! )) by
Lm13
.= ((
|.z.|
|^ (n
+ 1))
/ ((n
+ 2)
! )) by
Lm8;
A8: (
|.z.|
* ((
|.z.|
GeoSeq )
. n))
= (
|.z.|
* (
|.z.|
|^ n)) by
PREPOWER:def 1
.= (
|.z.|
|^ (n
+ 1)) by
NEWTON: 6;
((n
+ 2)
! )
>= 1 & (
|.z.|
|^ (n
+ 1))
>=
0 by
Th38,
COMPLEX1: 46,
NEWTON: 12,
POWER: 3;
then ((
|.z.|
|^ (n
+ 1))
/ 1)
>= ((
|.z.|
|^ (n
+ 1))
/ ((n
+ 2)
! )) by
XREAL_1: 118;
hence thesis by
A7,
A8;
end;
let p0 be
Real;
assume
A9: p0
>
0 ;
reconsider p = p0 as
Real;
consider q such that
A10: q
= (p
/ (p
+ 1));
(p
+ 1)
> p by
XREAL_1: 29;
then
A11: q
< 1 by
A9,
A10,
XREAL_1: 189;
A12: for z st
|.z.|
< q holds
|.(
Sum (z
P_dt )).|
< p
proof
let z;
assume
A13:
|.z.|
< q;
then
A14:
|.z.|
< 1 by
A11,
XXREAL_0: 2;
A15:
|.
|.z.|.|
< 1 by
A11,
A13,
XXREAL_0: 2;
then
A16: (
|.z.|
GeoSeq ) is
summable by
SERIES_1: 24;
A17: (
Sum (
|.z.|
GeoSeq ))
= (1
/ (1
-
|.z.|)) by
A15,
SERIES_1: 24;
A18: (
|.z.|
(#) (
|.z.|
GeoSeq )) is
summable by
A16,
SERIES_1: 10;
A19: for n holds (
|.(z
P_dt ).|
. n)
<= ((
|.z.|
(#) (
|.z.|
GeoSeq ))
. n)
proof
let n;
(
|.(z
P_dt ).|
. n)
<= (
|.z.|
* ((
|.z.|
GeoSeq )
. n)) by
A6;
hence thesis by
SEQ_1: 9;
end;
for n holds
0
<= (
|.(z
P_dt ).|
. n)
proof
let n;
(
|.(z
P_dt ).|
. n)
=
|.((z
P_dt )
. n).| by
VALUED_1: 18;
hence thesis by
COMPLEX1: 46;
end;
then
A20: (
Sum
|.(z
P_dt ).|)
<= (
Sum (
|.z.|
(#) (
|.z.|
GeoSeq ))) by
A18,
A19,
SERIES_1: 20;
A21: (
Sum (
|.z.|
(#) (
|.z.|
GeoSeq )))
= (
|.z.|
/ (1
-
|.z.|)) by
A16,
A17,
SERIES_1: 10;
A22: (
|.z.|
* (p
+ 1))
< ((p
/ (p
+ 1))
* (p
+ 1)) by
A9,
A10,
A13,
XREAL_1: 68;
((p
/ (p
+ 1))
* (p
+ 1))
= p by
A9,
XCMPLX_1: 87;
then
A23: (((p
*
|.z.|)
+
|.z.|)
- (p
*
|.z.|))
< (p
- (p
*
|.z.|)) by
A22,
XREAL_1: 9;
A24: (1
-
|.z.|)
>
0 by
A14,
XREAL_1: 50;
then (
|.z.|
/ (1
-
|.z.|))
< ((p
* (1
-
|.z.|))
/ (1
-
|.z.|)) by
A23,
XREAL_1: 74;
then (
|.z.|
/ (1
-
|.z.|))
< p by
A24,
XCMPLX_1: 89;
then
A25: (
Sum
|.(z
P_dt ).|)
< p by
A20,
A21,
XXREAL_0: 2;
|.(
Sum (z
P_dt )).|
<= (
Sum
|.(z
P_dt ).|) by
A1;
hence thesis by
A25,
XXREAL_0: 2;
end;
take q;
thus q
>
0 by
A9,
A10;
let z be
Complex;
thus thesis by
A12;
end;
theorem ::
SIN_COS:59
Th58: for z,z1 be
Complex holds ((
Sum ((z1
+ z)
ExpSeq ))
- (
Sum (z1
ExpSeq )))
= (((
Sum (z1
ExpSeq ))
* z)
+ ((z
* (
Sum (z
P_dt )))
* (
Sum (z1
ExpSeq ))))
proof
let z,z1 be
Complex;
((
Sum ((z1
+ z)
ExpSeq ))
- (
Sum (z1
ExpSeq )))
= (((
Sum (z1
ExpSeq ))
* (
Sum (z
ExpSeq )))
- ((
Sum (z1
ExpSeq ))
*
1r )) by
Lm2
.= ((
Sum (z1
ExpSeq ))
* ((((
Sum (z
ExpSeq ))
-
1r )
- z)
+ z))
.= ((
Sum (z1
ExpSeq ))
* ((z
* (
Sum (z
P_dt )))
+ z)) by
Th56
.= (((
Sum (z1
ExpSeq ))
* z)
+ ((z
* (
Sum (z
P_dt )))
* (
Sum (z1
ExpSeq ))));
hence thesis;
end;
theorem ::
SIN_COS:60
Th59: for p,q be
Real holds ((
cos
. (p
+ q))
- (
cos
. p))
= ((
- (q
* (
sin
. p)))
- (q
* (
Im ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))))
proof
let p,q be
Real;
((
cos
. (p
+ q))
- (
cos
. p))
= ((
cos
. (p
+ q))
- (
Re (
Sum ((p
*
<i> )
ExpSeq )))) by
Def18
.= ((
Re (
Sum (((p
+ q)
*
<i> )
ExpSeq )))
- (
Re (
Sum ((p
*
<i> )
ExpSeq )))) by
Def18
.= (
Re ((
Sum (((p
*
<i> )
+ (q
*
<i> ))
ExpSeq ))
- (
Sum ((p
*
<i> )
ExpSeq )))) by
COMPLEX1: 19
.= (
Re (((
Sum ((p
*
<i> )
ExpSeq ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* (
Sum ((p
*
<i> )
ExpSeq ))))) by
Th58
.= (
Re ((((
cos
. p)
+ ((
sin
. p)
*
<i> ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* (
Sum ((p
*
<i> )
ExpSeq ))))) by
Lm3
.= (
Re ((((
cos
. p)
+ ((
sin
. p)
*
<i> ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
Lm3
.= ((
Re ((
- (q
* (
sin
. p)))
+ ((q
* (
cos
. p))
*
<i> )))
+ (
Re (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
COMPLEX1: 8
.= ((
- (q
* (
sin
. p)))
+ (
Re ((q
*
<i> )
* ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
COMPLEX1: 12
.= ((
- (q
* (
sin
. p)))
- (q
* (
Im ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
Lm12;
hence thesis;
end;
theorem ::
SIN_COS:61
Th60: for p,q be
Real holds ((
sin
. (p
+ q))
- (
sin
. p))
= ((q
* (
cos
. p))
+ (q
* (
Re ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))))
proof
let p,q be
Real;
((
sin
. (p
+ q))
- (
sin
. p))
= ((
sin
. (p
+ q))
- (
Im (
Sum ((p
*
<i> )
ExpSeq )))) by
Def16
.= ((
Im (
Sum (((p
+ q)
*
<i> )
ExpSeq )))
- (
Im (
Sum ((p
*
<i> )
ExpSeq )))) by
Def16
.= (
Im ((
Sum (((p
*
<i> )
+ (q
*
<i> ))
ExpSeq ))
- (
Sum ((p
*
<i> )
ExpSeq )))) by
COMPLEX1: 19
.= (
Im (((
Sum ((p
*
<i> )
ExpSeq ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* (
Sum ((p
*
<i> )
ExpSeq ))))) by
Th58
.= (
Im ((((
cos
. p)
+ ((
sin
. p)
*
<i> ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* (
Sum ((p
*
<i> )
ExpSeq ))))) by
Lm3
.= (
Im ((((
cos
. p)
+ ((
sin
. p)
*
<i> ))
* (q
*
<i> ))
+ (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
Lm3
.= ((
Im ((
- (q
* (
sin
. p)))
+ ((q
* (
cos
. p))
*
<i> )))
+ (
Im (((q
*
<i> )
* (
Sum ((q
*
<i> )
P_dt )))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
COMPLEX1: 8
.= ((q
* (
cos
. p))
+ (
Im ((q
*
<i> )
* ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
COMPLEX1: 12
.= ((q
* (
cos
. p))
+ (q
* (
Re ((
Sum ((q
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
Lm12;
hence thesis;
end;
theorem ::
SIN_COS:62
Th61: for p,q be
Real holds ((
exp_R
. (p
+ q))
- (
exp_R
. p))
= ((q
* (
exp_R
. p))
+ ((q
* (
exp_R
. p))
* (
Re (
Sum (q
P_dt )))))
proof
let p,q be
Real;
((
exp_R
. (p
+ q))
- (
exp_R
. p))
= ((
exp_R
. (p
+ q))
- (
Re (
Sum (p
ExpSeq )))) by
Th47
.= ((
Re (
Sum ((p
+ q)
ExpSeq )))
- (
Re (
Sum (p
ExpSeq )))) by
Th47
.= (
Re ((
Sum ((p
+ q)
ExpSeq ))
- (
Sum (p
ExpSeq )))) by
COMPLEX1: 19
.= (
Re (((
Sum (p
ExpSeq ))
* q)
+ ((q
* (
Sum (q
P_dt )))
* (
Sum (p
ExpSeq ))))) by
Th58
.= ((
Re ((
Sum (p
ExpSeq ))
* q))
+ (
Re ((q
* (
Sum (q
P_dt )))
* (
Sum (p
ExpSeq ))))) by
COMPLEX1: 8
.= ((q
* (
Re (
Sum (p
ExpSeq ))))
+ (
Re ((q
* (
Sum (q
P_dt )))
* (
Sum (p
ExpSeq ))))) by
Lm12
.= ((q
* (
exp_R
. p))
+ (
Re (q
* ((
Sum (q
P_dt ))
* (
Sum (p
ExpSeq )))))) by
Th47
.= ((q
* (
exp_R
. p))
+ (q
* (
Re ((
Sum (q
P_dt ))
* (
Sum (p
ExpSeq )))))) by
Lm12
.= ((q
* (
exp_R
. p))
+ (q
* (
Re ((
Sum (q
P_dt ))
* (
Sum (p
rExpSeq )))))) by
Lm9
.= ((q
* (
exp_R
. p))
+ (q
* (
Re ((
Sum (q
P_dt ))
* ((
exp_R
. p)
+ (
0
*
<i> )))))) by
Def22
.= ((q
* (
exp_R
. p))
+ (q
* ((
exp_R
. p)
* (
Re (
Sum (q
P_dt )))))) by
Lm12
.= ((q
* (
exp_R
. p))
+ ((q
* (
exp_R
. p))
* (
Re (
Sum (q
P_dt )))));
hence thesis;
end;
theorem ::
SIN_COS:63
Th62:
cos
is_differentiable_in p & (
diff (
cos ,p))
= (
- (
sin
. p))
proof
reconsider p as
Element of
REAL by
XREAL_0:def 1;
deffunc
U(
Real) = (
In ((
- ($1
* (
Im ((
Sum (($1
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))),
REAL ));
consider Cr be
Function of
REAL ,
REAL such that
A1: for th be
Element of
REAL holds (Cr
. th)
=
U(th) from
FUNCT_2:sch 4;
for hy1 holds ((hy1
" )
(#) (Cr
/* hy1)) is
convergent & (
lim ((hy1
" )
(#) (Cr
/* hy1)))
=
0
proof
let hy1;
A2: for n holds (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))
proof
let n;
A3: n
in
NAT by
ORDINAL1:def 12;
A4: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
" )
. n)
* ((Cr
/* hy1)
. n)) by
SEQ_1: 8
.= (((hy1
. n)
" )
* ((Cr
/* hy1)
. n)) by
VALUED_1: 10;
(
dom Cr)
=
REAL by
FUNCT_2:def 1;
then (
rng hy1)
c= (
dom Cr);
then
A5: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
. n)
" )
* (Cr
. (hy1
. n))) by
A4,
FUNCT_2: 108,
A3
.= (((hy1
. n)
" )
*
U(.)) by
A1
.= (
- ((((hy1
. n)
" )
* (hy1
. n))
* (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))));
(hy1
. n)
<>
0 by
SEQ_1: 5;
then (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (
- (1
* (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
A5,
XCMPLX_0:def 7
.= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))));
hence thesis;
end;
deffunc
U(
Real) = (
- (
Im ((
Sum (((hy1
. $1)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))));
consider rseq such that
A6: for n holds (rseq
. n)
=
U(n) from
SEQ_1:sch 1;
deffunc
U(
Nat) = ((
Sum (((hy1
. $1)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )));
consider cq1 such that
A7: for n holds (cq1
. n)
=
U(n) from
COMSEQ_1:sch 1;
A8: for q be
Real st q
>
0 holds ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
let q be
Real such that
A9: q
>
0 ;
ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
consider r such that
A10: r
>
0 and
A11: for z be
Complex st
|.z.|
< r holds
|.(
Sum (z
P_dt )).|
< q by
A9,
Th57;
hy1 is
convergent & (
lim hy1)
=
0 ;
then
consider k such that
A12: for m st k
<= m holds
|.((hy1
. m)
-
0 ).|
< r by
A10,
SEQ_2:def 7;
A13:
now
let m such that
A14: k
<= m;
A15:
|.((cq1
. m)
-
0c ).|
=
|.((
Sum (((hy1
. m)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))).| by
A7
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
*
|.((
cos
. p)
+ ((
sin
. p)
*
<i> )).|) by
COMPLEX1: 65
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
*
|.(
Sum ((p
*
<i> )
ExpSeq )).|) by
Lm3
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
* 1) by
Lm5
.=
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|;
A16:
|.((hy1
. m)
-
0 ).|
< r by
A12,
A14;
((hy1
. m)
*
<i> )
= (
0
+ ((hy1
. m)
*
<i> ));
then (
Re ((hy1
. m)
*
<i> ))
=
0 & (
Im ((hy1
. m)
*
<i> ))
= (hy1
. m) by
COMPLEX1: 12;
then
|.((hy1
. m)
*
<i> ).|
=
|.(hy1
. m).| by
COMPLEX1: 72;
hence
|.((cq1
. m)
-
0c ).|
< q by
A11,
A15,
A16;
end;
take k;
thus thesis by
A13;
end;
hence thesis;
end;
then
A17: cq1 is
convergent by
COMSEQ_2:def 5;
then (
lim cq1)
=
0c by
A8,
COMSEQ_2:def 6;
then
A18: (
lim (
- cq1))
= (
-
0c ) by
A17,
COMSEQ_2: 22;
A19: for n be
Element of
NAT holds ((
Im (
- cq1))
. n)
= (rseq
. n)
proof
A20: for n holds ((
Im (
- cq1))
. n)
= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))
proof
let n;
((
Im (
- cq1))
. n)
= (
Im ((
- cq1)
. n)) by
COMSEQ_3:def 6
.= (
Im (
- (cq1
. n))) by
VALUED_1: 8
.= (
Im (
- ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
A7
.= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
COMPLEX1: 17;
hence thesis;
end;
let n;
(rseq
. n)
= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
A6;
hence thesis by
A20;
end;
for n be
Element of
NAT holds (rseq
. n)
= (((hy1
" )
(#) (Cr
/* hy1))
. n)
proof
let n be
Element of
NAT ;
(rseq
. n)
= (
- (
Im ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
A6;
hence thesis by
A2;
end;
then rseq
= ((hy1
" )
(#) (Cr
/* hy1));
then ((hy1
" )
(#) (Cr
/* hy1))
= (
Im (
- cq1)) by
A19;
hence thesis by
A17,
A18,
COMPLEX1: 4,
COMSEQ_3: 41;
end;
then
reconsider PR = Cr as
RestFunc by
FDIFF_1:def 2;
deffunc
U1(
Real) = (
In ((
- ($1
* (
sin
. p))),
REAL ));
consider CL be
Function of
REAL ,
REAL such that
A21: for th be
Element of
REAL holds (CL
. th)
=
U1(th) from
FUNCT_2:sch 4;
ex r st for q holds (CL
. q)
= (r
* q)
proof
A22: for q holds (CL
. q)
= ((
- (
sin
. p))
* q)
proof
let q;
reconsider qq = q as
Element of
REAL by
XREAL_0:def 1;
(CL
. qq)
=
U1(q) by
A21
.= ((
- (
sin
. p))
* q);
hence thesis;
end;
take (
- (
sin
. p));
thus thesis by
A22;
end;
then
reconsider PL = CL as
LinearFunc by
FDIFF_1:def 3;
A23: ex N be
Neighbourhood of p st N
c= (
dom
cos ) & for r st r
in N holds ((
cos
. r)
- (
cos
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
A24: for r st r
in
].(p
- 1), (p
+ 1).[ holds ((
cos
. r)
- (
cos
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
let r;
A25: (r
- p)
in
REAL by
XREAL_0:def 1;
r
= (p
+ (r
- p));
then ((
cos
. r)
- (
cos
. p))
= ((
- ((r
- p)
* (
sin
. p)))
- ((r
- p)
* (
Im ((
Sum (((r
- p)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
Th59
.= ((
- ((r
- p)
* (
sin
. p)))
+
U(-))
.= ((
- ((r
- p)
* (
sin
. p)))
+ (Cr
. (r
- p))) by
A1,
A25
.= (
U1(-)
+ (Cr
. (r
- p)))
.= ((PL
. (r
- p))
+ (PR
. (r
- p))) by
A21,
A25;
hence thesis;
end;
take
].(p
- 1), (p
+ 1).[;
thus thesis by
A24,
Th24,
RCOMP_1:def 6;
end;
then
A26:
cos
is_differentiable_in p by
FDIFF_1:def 4;
(PL
. jj)
=
U1() by
A21
.= (
- (
sin
. p));
hence thesis by
A23,
A26,
FDIFF_1:def 5;
end;
theorem ::
SIN_COS:64
Th63:
sin
is_differentiable_in p & (
diff (
sin ,p))
= (
cos
. p)
proof
reconsider p as
Real;
deffunc
U(
Real) = (
In (($1
* (
Re ((
Sum (($1
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))),
REAL ));
consider Cr be
Function of
REAL ,
REAL such that
A1: for th be
Element of
REAL holds (Cr
. th)
=
U(th) from
FUNCT_2:sch 4;
for hy1 holds ((hy1
" )
(#) (Cr
/* hy1)) is
convergent & (
lim ((hy1
" )
(#) (Cr
/* hy1)))
=
0
proof
let hy1;
A2: for n holds (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))
proof
let n;
A3: n
in
NAT by
ORDINAL1:def 12;
A4: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
" )
. n)
* ((Cr
/* hy1)
. n)) by
SEQ_1: 8
.= (((hy1
. n)
" )
* ((Cr
/* hy1)
. n)) by
VALUED_1: 10;
(
dom Cr)
=
REAL by
FUNCT_2:def 1;
then (
rng hy1)
c= (
dom Cr);
then
A5: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
. n)
" )
* (Cr
. (hy1
. n))) by
A4,
FUNCT_2: 108,
A3
.= (((hy1
. n)
" )
*
U(.)) by
A1
.= ((((hy1
. n)
" )
* (hy1
. n))
* (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))));
(hy1
. n)
<>
0 by
SEQ_1: 5;
then (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (1
* (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))))) by
A5,
XCMPLX_0:def 7
.= (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))));
hence thesis;
end;
deffunc
U(
Real) = (
Re ((
Sum (((hy1
. $1)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))));
consider rseq such that
A6: for n holds (rseq
. n)
=
U(n) from
SEQ_1:sch 1;
deffunc
U(
Nat) = ((
Sum (((hy1
. $1)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )));
consider cq1 such that
A7: for n holds (cq1
. n)
=
U(n) from
COMSEQ_1:sch 1;
A8: for q be
Real st q
>
0 holds ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
let q be
Real such that
A9: q
>
0 ;
ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
consider r such that
A10: r
>
0 and
A11: for z be
Complex st
|.z.|
< r holds
|.(
Sum (z
P_dt )).|
< q by
A9,
Th57;
hy1 is
convergent & (
lim hy1)
=
0 ;
then
consider k such that
A12: for m st k
<= m holds
|.((hy1
. m)
-
0 ).|
< r by
A10,
SEQ_2:def 7;
A13:
now
let m such that
A14: k
<= m;
A15:
|.((cq1
. m)
-
0c ).|
=
|.((
Sum (((hy1
. m)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> ))).| by
A7
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
*
|.((
cos
. p)
+ ((
sin
. p)
*
<i> )).|) by
COMPLEX1: 65
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
*
|.(
Sum ((p
*
<i> )
ExpSeq )).|) by
Lm3
.= (
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|
* 1) by
Lm5
.=
|.(
Sum (((hy1
. m)
*
<i> )
P_dt )).|;
A16:
|.((hy1
. m)
-
0 ).|
< r by
A12,
A14;
((hy1
. m)
*
<i> )
= (
0
+ ((hy1
. m)
*
<i> ));
then (
Re ((hy1
. m)
*
<i> ))
=
0 & (
Im ((hy1
. m)
*
<i> ))
= (hy1
. m) by
COMPLEX1: 12;
then
|.((hy1
. m)
*
<i> ).|
=
|.(hy1
. m).| by
COMPLEX1: 72;
hence
|.((cq1
. m)
-
0c ).|
< q by
A11,
A15,
A16;
end;
take k;
thus thesis by
A13;
end;
hence thesis;
end;
then
A17: cq1 is
convergent by
COMSEQ_2:def 5;
then
A18: (
lim cq1)
=
0c by
A8,
COMSEQ_2:def 6;
A19: for n be
Element of
NAT holds ((
Re cq1)
. n)
= (rseq
. n)
proof
let n be
Element of
NAT ;
((
Re cq1)
. n)
= (
Re (cq1
. n)) by
COMSEQ_3:def 5
.= (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))) by
A7;
hence thesis by
A6;
end;
for n be
Element of
NAT holds (rseq
. n)
= (((hy1
" )
(#) (Cr
/* hy1))
. n)
proof
let n be
Element of
NAT ;
(rseq
. n)
= (
Re ((
Sum (((hy1
. n)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))) by
A6;
hence thesis by
A2;
end;
then rseq
= ((hy1
" )
(#) (Cr
/* hy1));
then ((hy1
" )
(#) (Cr
/* hy1))
= (
Re cq1) by
A19;
hence thesis by
A17,
A18,
COMPLEX1: 4,
COMSEQ_3: 41;
end;
then
reconsider PR = Cr as
RestFunc by
FDIFF_1:def 2;
deffunc
U1(
Real) = (
In (($1
* (
cos
. p)),
REAL ));
consider CL be
Function of
REAL ,
REAL such that
A20: for th be
Element of
REAL holds (CL
. th)
=
U1(th) from
FUNCT_2:sch 4;
A21: for d be
Real holds (CL
. d)
= (d
* (
cos
. p))
proof
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (CL
. d)
=
U1(d) by
A20;
hence thesis;
end;
ex r st for q holds (CL
. q)
= (r
* q)
proof
take (
cos
. p);
thus thesis by
A21;
end;
then
reconsider PL = CL as
LinearFunc by
FDIFF_1:def 3;
A22: ex N be
Neighbourhood of p st N
c= (
dom
sin ) & for r st r
in N holds ((
sin
. r)
- (
sin
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
A23: for r st r
in
].(p
- 1), (p
+ 1).[ holds ((
sin
. r)
- (
sin
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
let r;
A24: (r
- p)
in
REAL by
XREAL_0:def 1;
r
= (p
+ (r
- p));
then ((
sin
. r)
- (
sin
. p))
= (((r
- p)
* (
cos
. p))
+ ((r
- p)
* (
Re ((
Sum (((r
- p)
*
<i> )
P_dt ))
* ((
cos
. p)
+ ((
sin
. p)
*
<i> )))))) by
Th60
.= (((r
- p)
* (
cos
. p))
+
U(-))
.= (((r
- p)
* (
cos
. p))
+ (Cr
. (r
- p))) by
A1,
A24
.= ((PL
. (r
- p))
+ (PR
. (r
- p))) by
A21;
hence thesis;
end;
take
].(p
- 1), (p
+ 1).[;
thus thesis by
A23,
Th24,
RCOMP_1:def 6;
end;
then
A25:
sin
is_differentiable_in p by
FDIFF_1:def 4;
(PL
. 1)
= (1
* (
cos
. p)) by
A21;
hence thesis by
A22,
A25,
FDIFF_1:def 5;
end;
theorem ::
SIN_COS:65
Th64:
exp_R
is_differentiable_in p & (
diff (
exp_R ,p))
= (
exp_R
. p)
proof
deffunc
U(
Real) = (
In ((($1
* (
exp_R
. p))
* (
Re (
Sum ($1
P_dt )))),
REAL ));
consider Cr be
Function of
REAL ,
REAL such that
A1: for th be
Element of
REAL holds (Cr
. th)
=
U(th) from
FUNCT_2:sch 4;
for hy1 holds ((hy1
" )
(#) (Cr
/* hy1)) is
convergent & (
lim ((hy1
" )
(#) (Cr
/* hy1)))
=
0
proof
let hy1;
A2: for n holds (((hy1
" )
(#) (Cr
/* hy1))
. n)
= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt ))))
proof
let n;
A3: n
in
NAT by
ORDINAL1:def 12;
A4: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
" )
. n)
* ((Cr
/* hy1)
. n)) by
SEQ_1: 8
.= (((hy1
. n)
" )
* ((Cr
/* hy1)
. n)) by
VALUED_1: 10;
(
dom Cr)
=
REAL by
FUNCT_2:def 1;
then (
rng hy1)
c= (
dom Cr);
then
A5: (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (((hy1
. n)
" )
* (Cr
. (hy1
. n))) by
A4,
FUNCT_2: 108,
A3
.= (((hy1
. n)
" )
*
U(.)) by
A1
.= ((((hy1
. n)
" )
* (hy1
. n))
* ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt )))));
(hy1
. n)
<>
0 by
SEQ_1: 5;
then (((hy1
" )
(#) (Cr
/* hy1))
. n)
= (1
* ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt ))))) by
A5,
XCMPLX_0:def 7
.= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt ))));
hence thesis;
end;
deffunc
U(
Real) = ((
exp_R
. p)
* (
Re (
Sum ((hy1
. $1)
P_dt ))));
consider rseq such that
A6: for n holds (rseq
. n)
=
U(n) from
SEQ_1:sch 1;
deffunc
U(
Nat) = ((
Sum ((hy1
. $1)
P_dt ))
* (
exp_R
. p));
consider cq1 such that
A7: for n holds (cq1
. n)
=
U(n) from
COMSEQ_1:sch 1;
A8: for q be
Real st q
>
0 holds ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
let q be
Real such that
A9: q
>
0 ;
ex k st for m st k
<= m holds
|.((cq1
. m)
-
0c ).|
< q
proof
(
exp_R
. p)
>
0 by
Th53;
then
consider r such that
A10: r
>
0 and
A11: for z be
Complex st
|.z.|
< r holds
|.(
Sum (z
P_dt )).|
< (q
/ (
exp_R
. p)) by
A9,
Th57;
hy1 is
convergent & (
lim hy1)
=
0 ;
then
consider k such that
A12: for m st k
<= m holds
|.((hy1
. m)
-
0 ).|
< r by
A10,
SEQ_2:def 7;
A13:
now
let m such that
A14: k
<= m;
A15:
|.((cq1
. m)
-
0c ).|
=
|.((
Sum ((hy1
. m)
P_dt ))
* (
exp_R
. p)).| by
A7
.= (
|.(
Sum ((hy1
. m)
P_dt )).|
*
|.(
exp_R
. p).|) by
COMPLEX1: 65
.= (
|.(
Sum ((hy1
. m)
P_dt )).|
* (
sqrt (((
Re (
exp_R
. p))
^2 )
+ ((
Im (
exp_R
. p))
^2 ))));
(
exp_R
. p)
= ((
exp_R
. p)
+ (
0
*
<i> ));
then
A16: (
Re (
exp_R
. p))
= (
exp_R
. p) & (
Im (
exp_R
. p))
=
0 by
COMPLEX1: 12;
A17: (
exp_R
. p)
>
0 by
Th53;
then
A18:
|.((cq1
. m)
-
0c ).|
= (
|.(
Sum ((hy1
. m)
P_dt )).|
* (
exp_R
. p)) by
A15,
A16,
SQUARE_1: 22;
|.((hy1
. m)
-
0 ).|
< r by
A12,
A14;
then
|.((cq1
. m)
-
0c ).|
< ((q
/ (
exp_R
. p))
* (
exp_R
. p)) by
A11,
A17,
A18,
XREAL_1: 68;
hence
|.((cq1
. m)
-
0c ).|
< q by
A17,
XCMPLX_1: 87;
end;
take k;
thus thesis by
A13;
end;
hence thesis;
end;
then
A19: cq1 is
convergent by
COMSEQ_2:def 5;
then
A20: (
lim cq1)
=
0c by
A8,
COMSEQ_2:def 6;
A21: for n be
Element of
NAT holds ((
Re cq1)
. n)
= (rseq
. n)
proof
A22: for n holds ((
Re cq1)
. n)
= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt ))))
proof
let n;
((
Re cq1)
. n)
= (
Re (cq1
. n)) by
COMSEQ_3:def 5
.= (
Re ((
Sum ((hy1
. n)
P_dt ))
* (
exp_R
. p))) by
A7
.= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt )))) by
Lm12;
hence thesis;
end;
let n;
(rseq
. n)
= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt )))) by
A6;
hence thesis by
A22;
end;
for n be
Element of
NAT holds (rseq
. n)
= (((hy1
" )
(#) (Cr
/* hy1))
. n)
proof
let n be
Element of
NAT ;
(rseq
. n)
= ((
exp_R
. p)
* (
Re (
Sum ((hy1
. n)
P_dt )))) by
A6;
hence thesis by
A2;
end;
then rseq
= ((hy1
" )
(#) (Cr
/* hy1));
then ((hy1
" )
(#) (Cr
/* hy1))
= (
Re cq1) by
A21;
hence thesis by
A19,
A20,
COMPLEX1: 4,
COMSEQ_3: 41;
end;
then
reconsider PR = Cr as
RestFunc by
FDIFF_1:def 2;
deffunc
U1(
Real) = (
In (($1
* (
exp_R
. p)),
REAL ));
consider CL be
Function of
REAL ,
REAL such that
A23: for th be
Element of
REAL holds (CL
. th)
=
U1(th) from
FUNCT_2:sch 4;
A24: for d be
Real holds (CL
. d)
= (d
* (
exp_R
. p))
proof
let d be
Real;
d
in
REAL by
XREAL_0:def 1;
then (CL
. d)
=
U1(d) by
A23;
hence thesis;
end;
ex r st for q holds (CL
. q)
= (r
* q)
proof
take (
exp_R
. p);
thus thesis by
A24;
end;
then
reconsider PL = CL as
LinearFunc by
FDIFF_1:def 3;
A25: ex N be
Neighbourhood of p st N
c= (
dom
exp_R ) & for r st r
in N holds ((
exp_R
. r)
- (
exp_R
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
A26: for r st r
in
].(p
- 1), (p
+ 1).[ holds ((
exp_R
. r)
- (
exp_R
. p))
= ((PL
. (r
- p))
+ (PR
. (r
- p)))
proof
let r;
reconsider p as
Real;
A27: (r
- p)
in
REAL by
XREAL_0:def 1;
r
= (p
+ (r
- p));
then ((
exp_R
. r)
- (
exp_R
. p))
= (((r
- p)
* (
exp_R
. p))
+ (((r
- p)
* (
exp_R
. p))
* (
Re (
Sum ((r
- p)
P_dt ))))) by
Th61
.= (((r
- p)
* (
exp_R
. p))
+
U(-))
.= (((r
- p)
* (
exp_R
. p))
+ (Cr
. (r
- p))) by
A1,
A27
.= ((PL
. (r
- p))
+ (PR
. (r
- p))) by
A24;
hence thesis;
end;
take
].(p
- 1), (p
+ 1).[;
thus thesis by
A26,
Th46,
RCOMP_1:def 6;
end;
then
A28:
exp_R
is_differentiable_in p by
FDIFF_1:def 4;
(PL
. 1)
= (1
* (
exp_R
. p)) by
A24;
hence thesis by
A25,
A28,
FDIFF_1:def 5;
end;
theorem ::
SIN_COS:66
Th65:
exp_R
is_differentiable_on
REAL & (
diff (
exp_R ,th))
= (
exp_R
. th)
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL &
REAL
c= (
dom
exp_R ) by
FUNCT_2:def 1;
for r st r
in
REAL holds
exp_R
is_differentiable_in r by
Th64;
hence thesis by
A1,
Th64,
FDIFF_1: 9;
end;
theorem ::
SIN_COS:67
Th66:
cos
is_differentiable_on
REAL & (
diff (
cos ,th))
= (
- (
sin
. th))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL &
REAL
c= (
dom
cos ) by
FUNCT_2:def 1;
for r st r
in
REAL holds
cos
is_differentiable_in r by
Th62;
hence thesis by
A1,
Th62,
FDIFF_1: 9;
end;
theorem ::
SIN_COS:68
Th67:
sin
is_differentiable_on
REAL & (
diff (
sin ,th))
= (
cos
. th)
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL &
REAL
c= (
dom
sin ) by
FUNCT_2:def 1;
for r st r
in
REAL holds
sin
is_differentiable_in r by
Th63;
hence thesis by
A1,
Th63,
FDIFF_1: 9;
end;
theorem ::
SIN_COS:69
Th68: th
in
[.
0 , 1.] implies
0
< (
cos
. th) & (
cos
. th)
>= (1
/ 2)
proof
assume th
in
[.
0 , 1.];
then
A1:
0
<= th & th
<= 1 by
XXREAL_1: 1;
A2: (
Partial_Sums (th
P_cos )) is
convergent by
Th35;
A3: (
cos
. th)
= (
Sum (th
P_cos )) by
Th36;
(
lim ((
Partial_Sums (th
P_cos ))
* bq))
= (
lim (
Partial_Sums (th
P_cos ))) by
A2,
SEQ_4: 17;
then
A4: (
lim ((
Partial_Sums (th
P_cos ))
* bq))
= (
cos
. th) by
A3,
SERIES_1:def 3;
for n holds (((
Partial_Sums (th
P_cos ))
* bq)
. n)
>= (1
/ 2)
proof
let n;
A5: (((
Partial_Sums (th
P_cos ))
* bq)
.
0 )
= ((
Partial_Sums (th
P_cos ))
. (bq
.
0 )) by
FUNCT_2: 15
.= ((
Partial_Sums (th
P_cos ))
. ((2
*
0 )
+ 1)) by
Lm6
.= (((
Partial_Sums (th
P_cos ))
.
0 )
+ ((th
P_cos )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((th
P_cos )
.
0 )
+ ((th
P_cos )
. (
0
+ 1))) by
SERIES_1:def 1
.= (((((
- 1)
|^
0 )
* (th
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((th
P_cos )
. 1)) by
Def21
.= (((((
- 1)
|^
0 )
* (th
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((((
- 1)
|^ 1)
* (th
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
Def21
.= (((1
* (th
|^ (2
*
0 )))
/ ((2
*
0 )
! ))
+ ((((
- 1)
|^ 1)
* (th
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
Lm7
.= ((1
/ 1)
+ ((((
- 1)
|^ 1)
* (th
|^ (2
* 1)))
/ ((2
* 1)
! ))) by
NEWTON: 4,
NEWTON: 12
.= (1
+ (((
- 1)
* (th
|^ (2
* 1)))
/ ((2
* 1)
! )))
.= (1
+ (((
- 1)
* (th
* th))
/ ((2
* 1)
! ))) by
NEWTON: 81
.= (1
- ((th
^2 )
/ 2)) by
NEWTON: 14;
defpred
X[
Nat] means (((
Partial_Sums (th
P_cos ))
* bq)
. $1)
>= (1
/ 2);
(th
^2 )
<= (1
^2 ) by
A1,
SQUARE_1: 15;
then (1
- (1
/ 2))
= (1
/ 2) & ((th
^2 )
/ 2)
<= (1
/ 2) by
XREAL_1: 72;
then
A6:
X[
0 ] by
A5,
XREAL_1: 10;
A7: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
A8: k
in
NAT by
ORDINAL1:def 12;
assume
A9: (((
Partial_Sums (th
P_cos ))
* bq)
. k)
>= (1
/ 2);
(((
Partial_Sums (th
P_cos ))
* bq)
. (k
+ 1))
= ((
Partial_Sums (th
P_cos ))
. (bq
. (k
+ 1))) by
FUNCT_2: 15
.= ((
Partial_Sums (th
P_cos ))
. ((2
* (k
+ 1))
+ 1)) by
Lm6
.= (((
Partial_Sums (th
P_cos ))
. (((2
* k)
+ 1)
+ 1))
+ ((th
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_cos ))
. ((2
* k)
+ 1))
+ ((th
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((th
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (th
P_cos ))
. (bq
. k))
+ ((th
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((th
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
Lm6
.= (((((
Partial_Sums (th
P_cos ))
* bq)
. k)
+ ((th
P_cos )
. (((2
* k)
+ 1)
+ 1)))
+ ((th
P_cos )
. ((2
* (k
+ 1))
+ 1))) by
FUNCT_2: 15,
A8;
then
A10: ((((
Partial_Sums (th
P_cos ))
* bq)
. (k
+ 1))
- (((
Partial_Sums (th
P_cos ))
* bq)
. k))
= (((th
P_cos )
. (((2
* k)
+ 1)
+ 1))
+ ((th
P_cos )
. ((2
* (k
+ 1))
+ 1)));
A11: ((th
P_cos )
. (((2
* k)
+ 1)
+ 1))
= ((((
- 1)
|^ (2
* (k
+ 1)))
* (th
|^ (2
* (2
* (k
+ 1)))))
/ ((2
* (2
* (k
+ 1)))
! )) by
Def21
.= ((1
* (th
|^ (2
* (2
* (k
+ 1)))))
/ ((2
* (2
* (k
+ 1)))
! )) by
Lm7
.= ((th
|^ (2
* (2
* (k
+ 1))))
/ ((2
* (2
* (k
+ 1)))
! ));
A12: ((th
P_cos )
. ((2
* (k
+ 1))
+ 1))
= ((((
- 1)
|^ ((2
* (k
+ 1))
+ 1))
* (th
|^ (2
* ((2
* (k
+ 1))
+ 1))))
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )) by
Def21
.= (((
- 1)
* (th
|^ (2
* ((2
* (k
+ 1))
+ 1))))
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )) by
Lm7;
A13: (2
* (2
* (k
+ 1)))
< (2
* ((2
* (k
+ 1))
+ 1)) by
XREAL_1: 29,
XREAL_1: 68;
then
A14: ((2
* (2
* (k
+ 1)))
! )
<= ((2
* ((2
* (k
+ 1))
+ 1))
! ) by
Th38;
A15: (th
|^ (2
* ((2
* (k
+ 1))
+ 1)))
<= (th
|^ (2
* (2
* (k
+ 1)))) by
A1,
A13,
Th39;
A16:
0
<= (th
|^ (2
* ((2
* (k
+ 1))
+ 1))) & ((2
* ((2
* (k
+ 1))
+ 1))
! )
>
0 by
POWER: 3;
(1
/ ((2
* ((2
* (k
+ 1))
+ 1))
! ))
<= (1
/ ((2
* (2
* (k
+ 1)))
! )) by
A14,
XREAL_1: 85;
then ((th
|^ (2
* ((2
* (k
+ 1))
+ 1)))
* (1
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )))
<= ((th
|^ (2
* (2
* (k
+ 1))))
* (1
/ ((2
* (2
* (k
+ 1)))
! ))) by
A15,
A16,
XREAL_1: 66;
then ((((th
|^ (2
* (2
* (k
+ 1))))
* 1)
/ ((2
* (2
* (k
+ 1)))
! ))
- (((th
|^ (2
* ((2
* (k
+ 1))
+ 1)))
* 1)
/ ((2
* ((2
* (k
+ 1))
+ 1))
! )))
>=
0 by
XREAL_1: 48;
then (((
Partial_Sums (th
P_cos ))
* bq)
. (k
+ 1))
>= (((
Partial_Sums (th
P_cos ))
* bq)
. k) by
A10,
A11,
A12,
XREAL_1: 49;
hence thesis by
A9,
XXREAL_0: 2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A7);
hence thesis;
end;
hence thesis by
A2,
A4,
PREPOWER: 1,
SEQ_4: 16;
end;
definition
::
SIN_COS:def26
func
tan ->
PartFunc of
REAL ,
REAL equals (
sin
/
cos );
coherence ;
::
SIN_COS:def27
func
cot ->
PartFunc of
REAL ,
REAL equals (
cos
/
sin );
coherence ;
end
theorem ::
SIN_COS:70
Th69:
[.
0 , 1.]
c= (
dom
tan ) &
].
0 , 1.[
c= (
dom
tan )
proof
A1: (
[.
0 , 1.]
\ (
cos
"
{
0 }))
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
Th24,
XBOOLE_1: 33;
(
[.
0 , 1.]
/\ (
cos
"
{
0 }))
=
{}
proof
assume (
[.
0 , 1.]
/\ (
cos
"
{
0 }))
<>
{} ;
then
consider rr be
object such that
A2: rr
in (
[.
0 , 1.]
/\ (
cos
"
{
0 })) by
XBOOLE_0:def 1;
A3: rr
in
[.
0 , 1.] by
A2,
XBOOLE_0:def 4;
A4: rr
in (
cos
"
{
0 }) by
A2,
XBOOLE_0:def 4;
A5: (
cos
. rr)
<>
0 by
A3,
Th68;
(
cos
. rr)
in
{
0 } by
A4,
FUNCT_1:def 7;
hence contradiction by
A5,
TARSKI:def 1;
end;
then
[.
0 , 1.]
misses (
cos
"
{
0 }) by
XBOOLE_0:def 7;
then
[.
0 , 1.]
c= ((
dom
cos )
\ (
cos
"
{
0 })) by
A1,
XBOOLE_1: 83;
then
[.
0 , 1.]
c= ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
Th24,
XBOOLE_1: 19;
then
A6:
[.
0 , 1.]
c= (
dom
tan ) by
RFUNCT_1:def 1;
].
0 , 1.[
c=
[.
0 , 1.] by
XXREAL_1: 25;
hence thesis by
A6,
XBOOLE_1: 1;
end;
Lm14: (
dom (
tan
|
[.
0 , 1.]))
=
[.
0 , 1.] & for th st th
in
[.
0 , 1.] holds ((
tan
|
[.
0 , 1.])
. th)
= (
tan
. th)
proof
(
dom (
tan
|
[.
0 , 1.]))
= ((
dom
tan )
/\
[.
0 , 1.]) by
RELAT_1: 61;
then (
dom (
tan
|
[.
0 , 1.]))
=
[.
0 , 1.] by
Th69,
XBOOLE_1: 28;
hence thesis by
FUNCT_1: 47;
end;
Lm15:
tan
is_differentiable_on
].
0 , 1.[ & for th st th
in
].
0 , 1.[ holds (
diff (
tan ,th))
>
0
proof
A1:
sin
is_differentiable_on
].
0 , 1.[ &
cos
is_differentiable_on
].
0 , 1.[ by
Th66,
Th67,
FDIFF_1: 26;
A2: for th st th
in
].
0 , 1.[ holds (
cos
. th)
<>
0
proof
let th such that
A3: th
in
].
0 , 1.[;
].
0 , 1.[
c=
[.
0 , 1.] by
XXREAL_1: 25;
hence thesis by
A3,
Th68;
end;
for th st th
in
].
0 , 1.[ holds (
diff (
tan ,th))
>
0
proof
let th such that
A4: th
in
].
0 , 1.[;
A5: th is
Real &
cos
is_differentiable_in th by
Th62;
A6:
sin
is_differentiable_in th by
Th63;
A7: (
cos
. th)
<>
0 by
A2,
A4;
then
A8: (
diff (
tan ,th))
= ((((
diff (
sin ,th))
* (
cos
. th))
- ((
diff (
cos ,th))
* (
sin
. th)))
/ ((
cos
. th)
^2 )) by
A5,
A6,
FDIFF_2: 14
.= ((((
cos
. th)
* (
cos
. th))
- ((
diff (
cos ,th))
* (
sin
. th)))
/ ((
cos
. th)
^2 )) by
Th63
.= ((((
cos
. th)
* (
cos
. th))
- ((
- (
sin
. th))
* (
sin
. th)))
/ ((
cos
. th)
^2 )) by
Th62
.= ((((
cos
. th)
^2 )
+ ((
sin
. th)
* (
sin
. th)))
/ ((
cos
. th)
^2 ))
.= (1
/ ((
cos
. th)
^2 )) by
Th28;
((
cos
. th)
^2 )
>
0 by
A7,
SQUARE_1: 12;
hence thesis by
A8;
end;
hence thesis by
A1,
A2,
FDIFF_2: 21;
end;
theorem ::
SIN_COS:71
Th70: (
tan
|
[.
0 , 1.]) is
continuous
proof
for th be
Real st th
in (
dom (
tan
|
[.
0 , 1.])) holds (
tan
|
[.
0 , 1.])
is_continuous_in th
proof
let th be
Real;
assume
A1: th
in (
dom (
tan
|
[.
0 , 1.]));
then
A2: th
in
[.
0 , 1.] by
RELAT_1: 57;
(
dom
sin )
=
REAL by
FUNCT_2:def 1;
then
A3: th
in (
dom
sin ) by
XREAL_0:def 1;
A4: th
in (
[#]
REAL ) by
XREAL_0:def 1;
then
sin
is_differentiable_in th by
Th67,
FDIFF_1: 9;
then
A5:
sin
is_continuous_in th by
FDIFF_1: 24;
cos
is_differentiable_in th by
A4,
Th66,
FDIFF_1: 9;
then
A6:
cos
is_continuous_in th by
FDIFF_1: 24;
(
cos
. th)
<>
0 by
A2,
Th68;
then
A7:
tan
is_continuous_in th by
A3,
A5,
A6,
FCONT_1: 11;
now
let rseq;
assume that
A8: (
rng rseq)
c= (
dom (
tan
|
[.
0 , 1.])) and
A9: rseq is
convergent & (
lim rseq)
= th;
A10: (
rng rseq)
c= (
dom
tan ) by
A8,
Lm14,
Th69,
XBOOLE_1: 1;
then
A11: (
tan
. th)
= (
lim (
tan
/* rseq)) by
A7,
A9,
FCONT_1:def 1;
now
let k1 be
Element of
NAT ;
(
dom rseq)
=
NAT by
SEQ_1: 1;
then (rseq
. k1)
in (
rng rseq) by
FUNCT_1:def 3;
then
A12: ((
tan
|
[.
0 , 1.])
. (rseq
. k1))
= (
tan
. (rseq
. k1)) by
A8,
Lm14;
((
tan
|
[.
0 , 1.])
. (rseq
. k1))
= (((
tan
|
[.
0 , 1.])
/* rseq)
. k1) by
A8,
FUNCT_2: 108;
hence (((
tan
|
[.
0 , 1.])
/* rseq)
. k1)
= ((
tan
/* rseq)
. k1) by
A8,
A12,
Lm14,
Th69,
FUNCT_2: 108,
XBOOLE_1: 1;
end;
then ((
tan
|
[.
0 , 1.])
/* rseq)
= (
tan
/* rseq);
hence ((
tan
|
[.
0 , 1.])
/* rseq) is
convergent & ((
tan
|
[.
0 , 1.])
. th)
= (
lim ((
tan
|
[.
0 , 1.])
/* rseq)) by
A1,
A7,
A9,
A10,
A11,
Lm14,
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 1;
end;
hence thesis by
FCONT_1:def 2;
end;
theorem ::
SIN_COS:72
Th71: th1
in
].
0 , 1.[ & th2
in
].
0 , 1.[ & (
tan
. th1)
= (
tan
. th2) implies th1
= th2
proof
assume that
A1: th1
in
].
0 , 1.[ and
A2: th2
in
].
0 , 1.[ and
A3: (
tan
. th1)
= (
tan
. th2);
A4:
0
< th1 by
A1,
XXREAL_1: 4;
A5: th1
< 1 by
A1,
XXREAL_1: 4;
A6:
0
< th2 by
A2,
XXREAL_1: 4;
A7: th2
< 1 by
A2,
XXREAL_1: 4;
assume
A8: th1
<> th2;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A9: th1
< th2;
A10: for th be
Element of
REAL st th
in
].th1, th2.[ holds th
in
].
0 , 1.[
proof
let th be
Element of
REAL ;
assume
A11: th
in
].th1, th2.[;
then
A12: th1
< th by
XXREAL_1: 4;
th
< th2 by
A11,
XXREAL_1: 4;
then th
< 1 by
A7,
XXREAL_0: 2;
hence thesis by
A4,
A12,
XXREAL_1: 4;
end;
A13: for th be
Element of
REAL st th
in
[.th1, th2.] holds th
in
[.
0 , 1.]
proof
let th be
Element of
REAL ;
assume
A14: th
in
[.th1, th2.];
then
A15: th1
<= th by
XXREAL_1: 1;
th
<= th2 by
A14,
XXREAL_1: 1;
then th
<= 1 by
A7,
XXREAL_0: 2;
hence thesis by
A4,
A15,
XXREAL_1: 1;
end;
].th1, th2.[
c=
].
0 , 1.[ by
A10,
SUBSET_1: 2;
then
A16:
tan
is_differentiable_on
].th1, th2.[ by
Lm15,
FDIFF_1: 26;
[.th1, th2.]
c=
[.
0 , 1.] & (
tan
|
[.th1, th2.]) is
continuous by
A13,
Th70,
FCONT_1: 16,
SUBSET_1: 2;
then
consider r such that
A17: r
in
].th1, th2.[ & (
diff (
tan ,r))
=
0 by
A3,
A9,
A16,
Th69,
ROLLE: 1,
XBOOLE_1: 1;
take th = r;
thus th
in
].
0 , 1.[ & (
diff (
tan ,th))
=
0 by
A10,
A17;
end;
suppose
A18: th2
< th1;
A19: for th be
Element of
REAL st th
in
].th2, th1.[ holds th
in
].
0 , 1.[
proof
let th be
Element of
REAL ;
assume
A20: th
in
].th2, th1.[;
then
A21: th2
< th by
XXREAL_1: 4;
th
< th1 by
A20,
XXREAL_1: 4;
then th
< 1 by
A5,
XXREAL_0: 2;
hence thesis by
A6,
A21,
XXREAL_1: 4;
end;
A22: for th be
Element of
REAL st th
in
[.th2, th1.] holds th
in
[.
0 , 1.]
proof
let th be
Element of
REAL ;
assume
A23: th
in
[.th2, th1.];
then
A24: th2
<= th by
XXREAL_1: 1;
th
<= th1 by
A23,
XXREAL_1: 1;
then th
<= 1 by
A5,
XXREAL_0: 2;
hence thesis by
A6,
A24,
XXREAL_1: 1;
end;
].th2, th1.[
c=
].
0 , 1.[ by
A19,
SUBSET_1: 2;
then
A25:
tan
is_differentiable_on
].th2, th1.[ by
Lm15,
FDIFF_1: 26;
[.th2, th1.]
c=
[.
0 , 1.] & (
tan
|
[.th2, th1.]) is
continuous by
A22,
Th70,
FCONT_1: 16,
SUBSET_1: 2;
then
consider r such that
A26: r
in
].th2, th1.[ & (
diff (
tan ,r))
=
0 by
A3,
A18,
A25,
Th69,
ROLLE: 1,
XBOOLE_1: 1;
take th = r;
thus th
in
].
0 , 1.[ & (
diff (
tan ,th))
=
0 by
A19,
A26;
end;
end;
hence thesis by
Lm15;
end;
Lm16: (
tan
.
0 )
=
0 & (
tan
. 1)
> 1
proof
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A1: (
tan
.
0 )
= ((
sin
.
0 )
* ((
cos
.
0 )
" )) by
Th69,
RFUNCT_1:def 1
.=
0 by
Th30;
1
in
[.
0 , 1.] by
XXREAL_1: 1;
then (
tan
. 1)
= ((
sin
. 1)
/ (
cos
. 1)) by
Th69,
RFUNCT_1:def 1;
hence thesis by
A1,
Th42,
XREAL_1: 187;
end;
begin
definition
::
SIN_COS:def28
func
PI ->
Real means
:
Def28: (
tan
. (it
/ 4))
= 1 & it
in
].
0 , 4.[;
existence
proof
A1:
[.(
tan
.
0 ), (
tan
. 1).]
= { r : (
tan
.
0 )
<= r & r
<= (
tan
. 1) } by
RCOMP_1:def 1;
[.(
tan
. 1), (
tan
.
0 ).]
=
{} by
Lm16,
XXREAL_1: 29;
then 1
in (
[.(
tan
.
0 ), (
tan
. 1).]
\/
[.(
tan
. 1), (
tan
.
0 ).]) by
A1,
Lm16;
then
consider th such that
A2: th
in
[.
0 , 1.] and
A3: (
tan
. th)
= 1 by
Th69,
Th70,
FCONT_2: 15;
A4:
0
<= th by
A2,
XXREAL_1: 1;
A5: th
<= 1 by
A2,
XXREAL_1: 1;
A6:
0
< th by
A3,
A4,
Lm16;
A7: th
< 1 by
A3,
A5,
Lm16,
XXREAL_0: 1;
take th1 = (th
* 4);
thus (
tan
. (th1
/ 4))
= 1 by
A3;
(th
* 4)
< (1
* 4) by
A7,
XREAL_1: 68;
hence thesis by
A6,
XXREAL_1: 4;
end;
uniqueness
proof
let th1,th2 be
Real such that
A8: (
tan
. (th1
/ 4))
= 1 and
A9: th1
in
].
0 , 4.[ and
A10: (
tan
. (th2
/ 4))
= 1 and
A11: th2
in
].
0 , 4.[;
A12:
0
< th1 by
A9,
XXREAL_1: 4;
th1
< 4 by
A9,
XXREAL_1: 4;
then (th1
/ 4)
< (4
/ 4) by
XREAL_1: 74;
then
A13: (th1
/ 4)
in
].
0 , 1.[ by
A12,
XXREAL_1: 4;
A14:
0
< th2 by
A11,
XXREAL_1: 4;
th2
< 4 by
A11,
XXREAL_1: 4;
then (th2
/ 4)
< (4
/ 4) by
XREAL_1: 74;
then (th2
/ 4)
in
].
0 , 1.[ by
A14,
XXREAL_1: 4;
then (th1
/ 4)
= (th2
/ 4) by
A8,
A10,
A13,
Th71;
hence thesis;
end;
end
theorem ::
SIN_COS:73
Th72: (
sin
. (
PI
/ 4))
= (
cos
. (
PI
/ 4))
proof
A1:
PI
in
].
0 , 4.[ by
Def28;
then
A2:
0
<
PI by
XXREAL_1: 4;
PI
< 4 by
A1,
XXREAL_1: 4;
then (
PI
/ 4)
< (4
/ 4) by
XREAL_1: 74;
then
A3: (
PI
/ 4)
in
].
0 , 1.[ by
A2,
XXREAL_1: 4;
(
tan
. (
PI
/ 4))
= 1 by
Def28;
then ((
sin
. (
PI
/ 4))
* ((
cos
. (
PI
/ 4))
" ))
= 1 by
A3,
Th69,
RFUNCT_1:def 1;
hence thesis by
XCMPLX_1: 209;
end;
begin
theorem ::
SIN_COS:74
Th73: (
sin
. (th1
+ th2))
= (((
sin
. th1)
* (
cos
. th2))
+ ((
cos
. th1)
* (
sin
. th2))) & (
cos
. (th1
+ th2))
= (((
cos
. th1)
* (
cos
. th2))
- ((
sin
. th1)
* (
sin
. th2)))
proof
reconsider th1, th2 as
Real;
A1: ((th1
+ th2)
*
<i> )
= ((
0
+
0 )
+ ((th1
+ th2)
*
<i> ));
A2: ((
Sum ((th1
*
<i> )
ExpSeq ))
* (
Sum ((th2
*
<i> )
ExpSeq )))
= (
Sum (((th1
*
<i> )
+ (th2
*
<i> ))
ExpSeq )) by
Lm2
.= ((
cos
. (th1
+ th2))
+ ((
sin
. (th1
+ th2))
*
<i> )) by
A1,
Lm3;
((
Sum ((th1
*
<i> )
ExpSeq ))
* (
Sum ((th2
*
<i> )
ExpSeq )))
= (((
cos
. th1)
+ ((
sin
. th1)
*
<i> ))
* (
Sum ((th2
*
<i> )
ExpSeq ))) by
Lm3
.= (((
cos
. th1)
+ ((
sin
. th1)
*
<i> ))
* ((
cos
. th2)
+ ((
sin
. th2)
*
<i> ))) by
Lm3
.= ((((
cos
. th1)
* (
cos
. th2))
- ((
sin
. th1)
* (
sin
. th2)))
+ ((((
sin
. th1)
* (
cos
. th2))
+ ((
cos
. th1)
* (
sin
. th2)))
*
<i> ));
hence thesis by
A2,
COMPLEX1: 77;
end;
theorem ::
SIN_COS:75
(
sin (th1
+ th2))
= (((
sin th1)
* (
cos th2))
+ ((
cos th1)
* (
sin th2))) & (
cos (th1
+ th2))
= (((
cos th1)
* (
cos th2))
- ((
sin th1)
* (
sin th2))) by
Th73;
theorem ::
SIN_COS:76
Th75: (
cos
. (
PI
/ 2))
=
0 & (
sin
. (
PI
/ 2))
= 1 & (
cos
.
PI )
= (
- 1) & (
sin
.
PI )
=
0 & (
cos
. (
PI
+ (
PI
/ 2)))
=
0 & (
sin
. (
PI
+ (
PI
/ 2)))
= (
- 1) & (
cos
. (2
*
PI ))
= 1 & (
sin
. (2
*
PI ))
=
0
proof
thus
A1: (
cos
. (
PI
/ 2))
= (
cos
. ((
PI
/ 4)
+ (
PI
/ 4)))
.= (((
cos
. (
PI
/ 4))
* (
cos
. (
PI
/ 4)))
- ((
cos
. (
PI
/ 4))
* (
cos
. (
PI
/ 4)))) by
Th72,
Th73
.=
0 ;
thus
A2: (
sin
. (
PI
/ 2))
= (
sin
. ((
PI
/ 4)
+ (
PI
/ 4)))
.= (((
cos
. (
PI
/ 4))
* (
cos
. (
PI
/ 4)))
+ ((
sin
. (
PI
/ 4))
* (
sin
. (
PI
/ 4)))) by
Th72,
Th73
.= 1 by
Th28;
thus
A3: (
cos
.
PI )
= (
cos
. ((
PI
/ 2)
+ (
PI
/ 2)))
.= ((
0
*
0 )
- ((
sin
. (
PI
/ 2))
* (
sin
. (
PI
/ 2)))) by
A1,
Th73
.= (
- 1) by
A2;
thus
A4: (
sin
.
PI )
= (
sin
. ((
PI
/ 2)
+ (
PI
/ 2)))
.= (((
sin
. (
PI
/ 2))
* (
cos
. (
PI
/ 2)))
+ ((
cos
. (
PI
/ 2))
* (
sin
. (
PI
/ 2)))) by
Th73
.=
0 by
A1;
thus (
cos
. (
PI
+ (
PI
/ 2)))
= (((
cos
.
PI )
* (
cos
. (
PI
/ 2)))
- ((
sin
.
PI )
* (
sin
. (
PI
/ 2)))) by
Th73
.=
0 by
A1,
A4;
thus (
sin
. (
PI
+ (
PI
/ 2)))
= (((
sin
.
PI )
* (
cos
. (
PI
/ 2)))
+ ((
cos
.
PI )
* (
sin
. (
PI
/ 2)))) by
Th73
.= (
- 1) by
A1,
A2,
A3;
thus (
cos
. (2
*
PI ))
= (
cos
. (
PI
+
PI ))
.= (((
- 1)
* (
- 1))
- ((
sin
.
PI )
* (
sin
.
PI ))) by
A3,
Th73
.= 1 by
A4;
thus (
sin
. (2
*
PI ))
= (
sin
. (
PI
+
PI ))
.= (((
sin
.
PI )
* (
cos
.
PI ))
+ ((
cos
.
PI )
* (
sin
.
PI ))) by
Th73
.=
0 by
A4;
end;
theorem ::
SIN_COS:77
(
cos (
PI
/ 2))
=
0 & (
sin (
PI
/ 2))
= 1 & (
cos
PI )
= (
- 1) & (
sin
PI )
=
0 & (
cos (
PI
+ (
PI
/ 2)))
=
0 & (
sin (
PI
+ (
PI
/ 2)))
= (
- 1) & (
cos (2
*
PI ))
= 1 & (
sin (2
*
PI ))
=
0 by
Th75;
theorem ::
SIN_COS:78
Th77: (
sin
. (th
+ (2
*
PI )))
= (
sin
. th) & (
cos
. (th
+ (2
*
PI )))
= (
cos
. th) & (
sin
. ((
PI
/ 2)
- th))
= (
cos
. th) & (
cos
. ((
PI
/ 2)
- th))
= (
sin
. th) & (
sin
. ((
PI
/ 2)
+ th))
= (
cos
. th) & (
cos
. ((
PI
/ 2)
+ th))
= (
- (
sin
. th)) & (
sin
. (
PI
+ th))
= (
- (
sin
. th)) & (
cos
. (
PI
+ th))
= (
- (
cos
. th))
proof
thus (
sin
. (th
+ (2
*
PI )))
= (((
sin
. th)
* 1)
+ ((
cos
. th)
*
0 )) by
Th73,
Th75
.= (
sin
. th);
thus (
cos
. (th
+ (2
*
PI )))
= (((
cos
. th)
* 1)
- ((
sin
. th)
*
0 )) by
Th73,
Th75
.= (
cos
. th);
thus (
sin
. ((
PI
/ 2)
- th))
= (((
sin
. (
PI
/ 2))
* (
cos
. (
- th)))
+ ((
cos
. (
PI
/ 2))
* (
sin
. (
- th)))) by
Th73
.= (
cos
. th) by
Th30,
Th75;
thus (
cos
. ((
PI
/ 2)
- th))
= (((
cos
. (
PI
/ 2))
* (
cos
. (
- th)))
- ((
sin
. (
PI
/ 2))
* (
sin
. (
- th)))) by
Th73
.= (
0
- (1
* (
- (
sin
. th)))) by
Th30,
Th75
.= (
sin
. th);
thus (
sin
. ((
PI
/ 2)
+ th))
= ((1
* (
cos
. th))
+ (
0
* (
sin
. th))) by
Th73,
Th75
.= (
cos
. th);
thus (
cos
. ((
PI
/ 2)
+ th))
= (((
cos
. (
PI
/ 2))
* (
cos
. th))
- ((
sin
. (
PI
/ 2))
* (
sin
. th))) by
Th73
.= (
- (
sin
. th)) by
Th75;
thus (
sin
. (
PI
+ th))
= (((
sin
.
PI )
* (
cos
. th))
+ ((
cos
.
PI )
* (
sin
. th))) by
Th73
.= (
- (
sin
. th)) by
Th75;
thus (
cos
. (
PI
+ th))
= (((
- 1)
* (
cos
. th))
- (
0
* (
sin
. th))) by
Th73,
Th75
.= (
- (
cos
. th));
end;
theorem ::
SIN_COS:79
(
sin (th
+ (2
*
PI )))
= (
sin th) & (
cos (th
+ (2
*
PI )))
= (
cos th) & (
sin ((
PI
/ 2)
- th))
= (
cos th) & (
cos ((
PI
/ 2)
- th))
= (
sin th) & (
sin ((
PI
/ 2)
+ th))
= (
cos th) & (
cos ((
PI
/ 2)
+ th))
= (
- (
sin th)) & (
sin (
PI
+ th))
= (
- (
sin th)) & (
cos (
PI
+ th))
= (
- (
cos th)) by
Th77;
Lm17: th
in
[.
0 , 1.] implies (
sin
. th)
>=
0
proof
assume
A1: th
in
[.
0 , 1.];
then
A2: th
<= 1 by
XXREAL_1: 1;
(
sin
. th)
>= (
sin
.
0 )
proof
now
per cases by
A1,
XXREAL_1: 1;
suppose th
=
0 ;
hence thesis;
end;
suppose
A3:
0
< th;
(
sin
|
REAL ) is
continuous by
Th67,
FDIFF_1: 25;
then (
sin
|
[.
0 , th.]) is
continuous by
FCONT_1: 16;
then
consider r such that
A4: r
in
].
0 , th.[ and
A5: (
diff (
sin ,r))
= (((
sin
. th)
- (
sin
.
0 ))
/ (th
-
0 )) by
A3,
Th24,
Th67,
FDIFF_1: 26,
ROLLE: 3;
A6: r
< th by
A4,
XXREAL_1: 4;
A7:
0
< r by
A4,
XXREAL_1: 4;
r
< 1 by
A2,
A6,
XXREAL_0: 2;
then r
in
[.
0 , 1.] by
A7,
XXREAL_1: 1;
then (
cos
. r)
>
0 by
Th68;
then ((
sin
. th)
- (
sin
.
0 ))
>
0 by
A3,
A5,
Th67;
hence thesis by
XREAL_1: 47;
end;
end;
hence thesis;
end;
hence thesis by
Th30;
end;
theorem ::
SIN_COS:80
Th79: th
in
].
0 , (
PI
/ 2).[ implies (
cos
. th)
>
0
proof
assume that
A1: th
in
].
0 , (
PI
/ 2).[ and
A2: (
cos
. th)
<=
0 ;
(
cos
|
REAL ) is
continuous by
Th66,
FDIFF_1: 25;
then
A3: (
cos
|
[.
0 , th.]) is
continuous by
FCONT_1: 16;
A4:
0
< th by
A1,
XXREAL_1: 4;
(
[.(
cos
.
0 ), (
cos
. th).]
\/
[.(
cos
. th), (
cos
.
0 ).])
=
[.(
cos
. th), (
cos
.
0 ).] &
0
in
[.(
cos
. th), (
cos
.
0 ).] by
A2,
Th30,
XXREAL_1: 1,
XXREAL_1: 222;
then ex th2 st th2
in
[.
0 , th.] & (
cos
. th2)
=
0 by
A3,
A4,
Th24,
FCONT_2: 15;
then
consider th2 be
Real such that
A5: th2
in
[.
0 , th.] and
0
< th and
A6: (
cos
. th2)
=
0 by
A4;
A7:
0
<= th2 by
A5,
XXREAL_1: 1;
A8: th2
<= th by
A5,
XXREAL_1: 1;
A9: th
< (
PI
/ 2) by
A1,
XXREAL_1: 4;
A10:
0
< th2 by
A6,
A7,
Th30;
th2
< (
PI
/ 2) by
A8,
A9,
XXREAL_0: 2;
then
A11: (th2
/ 2)
< ((
PI
/ 2)
/ 2) by
XREAL_1: 74;
PI
in
].
0 , 4.[ by
Def28;
then
PI
< 4 by
XXREAL_1: 4;
then (
PI
/ 4)
< (4
/ 4) by
XREAL_1: 74;
then
A12: (th2
/ 2)
< 1 by
A11,
XXREAL_0: 2;
0
= (
cos
. ((th2
/ 2)
+ (th2
/ 2))) by
A6
.= (((
cos
. (th2
/ 2))
^2 )
- ((
sin
. (th2
/ 2))
* (
sin
. (th2
/ 2)))) by
Th73
.= (((
cos
. (th2
/ 2))
- (
sin
. (th2
/ 2)))
* ((
cos
. (th2
/ 2))
+ (
sin
. (th2
/ 2))));
then
A13: ((
cos
. (th2
/ 2))
- (
sin
. (th2
/ 2)))
=
0 or ((
cos
. (th2
/ 2))
+ (
sin
. (th2
/ 2)))
=
0 ;
A14: (th2
/ 2)
in
].
0 , 1.[ by
A10,
A12,
XXREAL_1: 4;
].
0 , 1.[
c=
[.
0 , 1.] by
XXREAL_1: 25;
then
A15: (
cos
. (th2
/ 2))
>
0 & (
sin
. (th2
/ 2))
>= (
-
0 ) by
A14,
Lm17,
Th68;
(4
* (th2
/ 2))
< (4
* 1) by
A12,
XREAL_1: 68;
then
A16: (2
* th2)
in
].
0 , 4.[ by
A10,
XXREAL_1: 4;
((
sin
. (th2
/ 2))
* ((
cos
. (th2
/ 2))
" ))
= 1 by
A13,
A15,
XCMPLX_0:def 7;
then (
tan
. ((2
* th2)
/ 4))
= 1 by
A14,
Th69,
RFUNCT_1:def 1;
then (2
* th2)
=
PI by
A16,
Def28;
hence contradiction by
A1,
A8,
XXREAL_1: 4;
end;
theorem ::
SIN_COS:81
th
in
].
0 , (
PI
/ 2).[ implies (
cos th)
>
0 by
Th79;
begin
theorem ::
SIN_COS:82
(
sin (a
- b))
= (((
sin a)
* (
cos b))
- ((
cos a)
* (
sin b)))
proof
thus (
sin (a
- b))
= (((
sin
. a)
* (
cos
. (
- b)))
+ ((
cos
. a)
* (
sin
. (
- b)))) by
Th73
.= (((
sin
. a)
* (
cos
. b))
+ ((
cos
. a)
* (
sin
. (
- b)))) by
Th30
.= (((
sin
. a)
* (
cos
. b))
+ ((
cos
. a)
* (
- (
sin
. b)))) by
Th30
.= (((
sin a)
* (
cos b))
- ((
cos a)
* (
sin b)));
end;
theorem ::
SIN_COS:83
(
cos (a
- b))
= (((
cos a)
* (
cos b))
+ ((
sin a)
* (
sin b)))
proof
thus (
cos (a
- b))
= (((
cos
. a)
* (
cos
. (
- b)))
- ((
sin
. a)
* (
sin
. (
- b)))) by
Th73
.= (((
cos
. a)
* (
cos
. b))
- ((
sin
. a)
* (
sin
. (
- b)))) by
Th30
.= (((
cos
. a)
* (
cos
. b))
- ((
sin
. a)
* (
- (
sin
. b)))) by
Th30
.= (((
cos a)
* (
cos b))
+ ((
sin a)
* (
sin b)));
end;
registration
cluster
sin ->
continuous;
coherence
proof
(
dom
sin )
=
REAL & (
sin
|
REAL ) is
continuous by
Th67,
FDIFF_1: 25,
FUNCT_2:def 1;
hence thesis by
RELAT_1: 69;
end;
cluster
cos ->
continuous;
coherence
proof
(
dom
cos )
=
REAL & (
cos
|
REAL ) is
continuous by
Th66,
FDIFF_1: 25,
FUNCT_2:def 1;
hence thesis by
RELAT_1: 69;
end;
cluster
exp_R ->
continuous;
coherence
proof
(
dom
exp_R )
=
REAL & (
exp_R
|
REAL ) is
continuous by
Th65,
FDIFF_1: 25,
FUNCT_2:def 1;
hence thesis by
RELAT_1: 69;
end;
end