sprect_5.miz
begin
reserve D for non
empty
set,
f for
FinSequence of D,
g for
circular
FinSequence of D,
p,p1,p2,p3,q for
Element of D;
theorem ::
SPRECT_5:1
Th1: q
in (
rng (f
| (p
.. f))) implies (q
.. f)
<= (p
.. f)
proof
assume
A1: q
in (
rng (f
| (p
.. f)));
then (q
.. (f
| (p
.. f)))
= (q
.. f) by
FINSEQ_5: 40;
then
A2: (q
.. f)
<= (
len (f
| (p
.. f))) by
A1,
FINSEQ_4: 21;
(
len (f
| (p
.. f)))
<= (p
.. f) by
FINSEQ_5: 17;
hence thesis by
A2,
XXREAL_0: 2;
end;
theorem ::
SPRECT_5:2
Th2: p
in (
rng f) & q
in (
rng f) & (p
.. f)
<= (q
.. f) implies (q
.. (f
:- p))
= (((q
.. f)
- (p
.. f))
+ 1)
proof
assume that
A1: p
in (
rng f) and
A2: q
in (
rng f) and
A3: (p
.. f)
<= (q
.. f);
A4: f
= ((f
| (p
.. f))
^ (f
/^ (p
.. f))) by
RFINSEQ: 8;
per cases by
A3,
XXREAL_0: 1;
suppose (p
.. f)
= (q
.. f);
then p
= q by
A1,
A2,
FINSEQ_5: 9;
hence thesis by
FINSEQ_6: 79;
end;
suppose
A5: (p
.. f)
< (q
.. f);
(p
.. f)
<= (
len f) by
A1,
FINSEQ_4: 21;
then
A6: (
len (f
| (p
.. f)))
= (p
.. f) by
FINSEQ_1: 59;
A7: not q
in (
rng (f
| (p
.. f))) by
A5,
Th1;
q
in ((
rng (f
| (p
.. f)))
\/ (
rng (f
/^ (p
.. f)))) by
A2,
A4,
FINSEQ_1: 31;
then
A8: q
in (
rng (f
/^ (p
.. f))) by
A7,
XBOOLE_0:def 3;
then q
in ((
rng (f
/^ (p
.. f)))
\ (
rng (f
| (p
.. f)))) by
A7,
XBOOLE_0:def 5;
then
A9: (q
.. f)
= ((p
.. f)
+ (q
.. (f
/^ (p
.. f)))) by
A4,
A6,
FINSEQ_6: 7;
not q
in
{p} by
A5,
TARSKI:def 1;
then not q
in (
rng
<*p*>) by
FINSEQ_1: 38;
then
A10: q
in ((
rng (f
/^ (p
.. f)))
\ (
rng
<*p*>)) by
A8,
XBOOLE_0:def 5;
(f
:- p)
= (
<*p*>
^ (f
/^ (p
.. f))) by
FINSEQ_5:def 2;
hence (q
.. (f
:- p))
= ((
len
<*p*>)
+ (q
.. (f
/^ (p
.. f)))) by
A10,
FINSEQ_6: 7
.= (((q
.. f)
- (p
.. f))
+ 1) by
A9,
FINSEQ_1: 39;
end;
end;
theorem ::
SPRECT_5:3
Th3: p
in (
rng f) & q
in (
rng f) & (p
.. f)
<= (q
.. f) implies (p
.. (f
-: q))
= (p
.. f)
proof
A1: (f
-: q)
= (f
| (q
.. f)) by
FINSEQ_5:def 1;
assume p
in (
rng f) & q
in (
rng f) & (p
.. f)
<= (q
.. f);
then p
in (
rng (f
| (q
.. f))) by
A1,
FINSEQ_5: 46;
hence thesis by
A1,
FINSEQ_5: 40;
end;
theorem ::
SPRECT_5:4
Th4: p
in (
rng f) & q
in (
rng f) & (p
.. f)
<= (q
.. f) implies (q
.. (
Rotate (f,p)))
= (((q
.. f)
- (p
.. f))
+ 1)
proof
assume that
A1: p
in (
rng f) and
A2: q
in (
rng f);
A3: (
Rotate (f,p))
= ((f
:- p)
^ ((f
-: p)
/^ 1)) by
A1,
FINSEQ_6:def 2;
assume
A4: (p
.. f)
<= (q
.. f);
then q
in (
rng (f
:- p)) by
A1,
A2,
FINSEQ_6: 62;
hence (q
.. (
Rotate (f,p)))
= (q
.. (f
:- p)) by
A3,
FINSEQ_6: 6
.= (((q
.. f)
- (p
.. f))
+ 1) by
A1,
A2,
A4,
Th2;
end;
theorem ::
SPRECT_5:5
Th5: p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
<= (p2
.. f) & (p2
.. f)
< (p3
.. f) implies (p2
.. (
Rotate (f,p1)))
< (p3
.. (
Rotate (f,p1)))
proof
assume that
A1: p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
<= (p2
.. f) and
A2: (p2
.. f)
< (p3
.. f);
A3: ((p2
.. f)
- (p1
.. f))
< ((p3
.. f)
- (p1
.. f)) by
A2,
XREAL_1: 9;
(p2
.. (
Rotate (f,p1)))
= (((p2
.. f)
- (p1
.. f))
+ 1) & (p3
.. (
Rotate (f,p1)))
= (((p3
.. f)
- (p1
.. f))
+ 1) by
A1,
A2,
Th4,
XXREAL_0: 2;
hence thesis by
A3,
XREAL_1: 6;
end;
theorem ::
SPRECT_5:6
p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
< (p2
.. f) & (p2
.. f)
<= (p3
.. f) implies (p2
.. (
Rotate (f,p1)))
<= (p3
.. (
Rotate (f,p1)))
proof
assume that
A1: p1
in (
rng f) and
A2: p2
in (
rng f) & p3
in (
rng f) and
A3: (p1
.. f)
< (p2
.. f) and
A4: (p2
.. f)
<= (p3
.. f);
per cases by
A4,
XXREAL_0: 1;
suppose (p2
.. f)
< (p3
.. f);
hence thesis by
A1,
A2,
A3,
Th5;
end;
suppose (p2
.. f)
= (p3
.. f);
hence thesis by
A2,
FINSEQ_5: 9;
end;
end;
theorem ::
SPRECT_5:7
Th7: p
in (
rng g) & (
len g)
> 1 implies (p
.. g)
< (
len g)
proof
assume that
A1: p
in (
rng g) and
A2: (
len g)
> 1 and
A3: (p
.. g)
>= (
len g);
(p
.. g)
<= (
len g) by
A1,
FINSEQ_4: 21;
then (p
.. g)
= (
len g) by
A3,
XXREAL_0: 1;
then
A4: p
= (g
/. (
len g)) by
A1,
FINSEQ_5: 38
.= (g
/. 1) by
FINSEQ_6:def 1;
g is non
empty by
A2,
CARD_1: 27;
hence contradiction by
A2,
A3,
A4,
FINSEQ_6: 43;
end;
begin
reserve f for non
constant
standard
special_circular_sequence,
p,p1,p2,p3,q for
Point of (
TOP-REAL 2);
registration
let f;
cluster (f
/^ 1) ->
one-to-one;
coherence
proof
let x1,x2 be
object such that
A1: x1
in (
dom (f
/^ 1)) and
A2: x2
in (
dom (f
/^ 1)) and
A3: ((f
/^ 1)
. x1)
= ((f
/^ 1)
. x2);
reconsider i = x1, j = x2 as
Nat by
A1,
A2;
1
<= i by
A1,
FINSEQ_3: 25;
then
A4: 1
< (i
+ 1) by
NAT_1: 13;
(i
+ 1)
in (
dom f) by
A1,
FINSEQ_5: 26;
then
A5: (i
+ 1)
<= (
len f) by
FINSEQ_3: 25;
1
<= j by
A2,
FINSEQ_3: 25;
then
A6: 1
< (j
+ 1) by
NAT_1: 13;
(j
+ 1)
in (
dom f) by
A2,
FINSEQ_5: 26;
then
A7: (j
+ 1)
<= (
len f) by
FINSEQ_3: 25;
assume
A8: x1
<> x2;
per cases by
A8,
XXREAL_0: 1;
suppose i
< j;
then
A9: (i
+ 1)
< (j
+ 1) by
XREAL_1: 6;
(f
/. (i
+ 1))
= ((f
/^ 1)
/. i) by
A1,
FINSEQ_5: 27
.= ((f
/^ 1)
. j) by
A1,
A3,
PARTFUN1:def 6
.= ((f
/^ 1)
/. j) by
A2,
PARTFUN1:def 6
.= (f
/. (j
+ 1)) by
A2,
FINSEQ_5: 27;
hence contradiction by
A4,
A7,
A9,
GOBOARD7: 37;
end;
suppose j
< i;
then
A10: (j
+ 1)
< (i
+ 1) by
XREAL_1: 6;
(f
/. (j
+ 1))
= ((f
/^ 1)
/. j) by
A2,
FINSEQ_5: 27
.= ((f
/^ 1)
. i) by
A2,
A3,
PARTFUN1:def 6
.= ((f
/^ 1)
/. i) by
A1,
PARTFUN1:def 6
.= (f
/. (i
+ 1)) by
A1,
FINSEQ_5: 27;
hence contradiction by
A5,
A6,
A10,
GOBOARD7: 37;
end;
end;
end
theorem ::
SPRECT_5:8
Th8: 1
< (q
.. f) & q
in (
rng f) implies ((f
/. 1)
.. (
Rotate (f,q)))
= (((
len f)
+ 1)
- (q
.. f))
proof
assume that
A1: 1
< (q
.. f) and
A2: q
in (
rng f);
set i = ((1
+ (
len f))
-' (q
.. f));
A3: ((q
.. f)
- 1)
>
0 by
A1,
XREAL_1: 50;
A4: (q
.. f)
<= (
len f) by
A2,
FINSEQ_4: 21;
then
A5: (q
.. f)
<= ((
len f)
+ 1) by
NAT_1: 13;
then
A6: i
= ((1
+ (
len f))
- (q
.. f)) by
XREAL_1: 233;
then (i
+ ((q
.. f)
- 1))
= (
len f);
then i
< (
len f) by
A3,
XREAL_1: 29;
then
A7: i
< (
len (
Rotate (f,q))) by
FINSEQ_6: 179;
now
assume ((q
.. f)
+
0 )
>= (
len f);
then
A8: (q
.. f)
= (
len f) by
A4,
XXREAL_0: 1;
q
= (f
/. (q
.. f)) by
A2,
FINSEQ_5: 38
.= (f
/. 1) by
A8,
FINSEQ_6:def 1;
hence contradiction by
A1,
FINSEQ_6: 43;
end;
then
A9: ((
len f)
- (q
.. f))
>
0 by
XREAL_1: 20;
i
= (1
+ ((
len f)
- (q
.. f))) by
A6;
then
A10: (1
+
0 )
< i by
A9,
XREAL_1: 6;
then
A11: i
in (
dom (
Rotate (f,q))) by
A7,
FINSEQ_3: 25;
A12: (f
/. 1)
= ((
Rotate (f,q))
/. ((1
+ (
len f))
-' (q
.. f))) by
A1,
A2,
FINSEQ_6: 183;
then
A13: (f
/. 1)
= ((
Rotate (f,q))
. i) by
A11,
PARTFUN1:def 6;
for j be
object st j
in (
dom (
Rotate (f,q))) & j
<> i holds ((
Rotate (f,q))
. j)
<> (f
/. 1)
proof
let z be
object;
assume that
A14: z
in (
dom (
Rotate (f,q))) and
A15: z
<> i;
reconsider j = z as
Nat by
A14;
per cases by
A15,
XXREAL_0: 1;
suppose
A16: j
< i;
1
<= j by
A14,
FINSEQ_3: 25;
then ((
Rotate (f,q))
/. j)
<> (f
/. 1) by
A12,
A7,
A16,
GOBOARD7: 36;
hence thesis by
A14,
PARTFUN1:def 6;
end;
suppose
A17: i
< j;
j
<= (
len (
Rotate (f,q))) by
A14,
FINSEQ_3: 25;
then ((
Rotate (f,q))
/. j)
<> (f
/. 1) by
A12,
A10,
A17,
GOBOARD7: 37;
hence thesis by
A14,
PARTFUN1:def 6;
end;
end;
then
A18: (
Rotate (f,q))
just_once_values (f
/. 1) by
A11,
A13,
FINSEQ_4: 7;
then ((1
+ (
len f))
-' (q
.. f))
= ((
Rotate (f,q))
<- (f
/. 1)) by
A11,
A13,
FINSEQ_4:def 3;
hence ((f
/. 1)
.. (
Rotate (f,q)))
= ((1
+ (
len f))
-' (q
.. f)) by
A18,
FINSEQ_4: 25
.= (((
len f)
+ 1)
- (q
.. f)) by
A5,
XREAL_1: 233;
end;
theorem ::
SPRECT_5:9
Th9: p
in (
rng f) & q
in (
rng f) & (p
.. f)
< (q
.. f) implies (p
.. (
Rotate (f,q)))
= (((
len f)
+ (p
.. f))
- (q
.. f))
proof
assume that
A1: p
in (
rng f) and
A2: q
in (
rng f);
assume
A3: (p
.. f)
< (q
.. f);
then
A4: (p
.. f)
= (p
.. (f
-: q)) by
A1,
A2,
Th3;
A5: p
in (
rng (f
-: q)) by
A1,
A2,
A3,
FINSEQ_5: 46;
then
A6: (p
.. (f
-: q))
>= 1 by
FINSEQ_4: 21;
A7: (
Rotate (f,q))
= ((f
:- q)
^ ((f
-: q)
/^ 1)) by
A2,
FINSEQ_6:def 2;
per cases by
A6,
A4,
XXREAL_0: 1;
suppose
A8: (p
.. f)
= 1;
then p
= (f
/. 1) by
A1,
FINSEQ_5: 38;
hence thesis by
A2,
A3,
A8,
Th8;
end;
suppose
A9: (p
.. f)
> 1;
then
A10: (p
.. f)
= (1
+ (p
.. ((f
-: q)
/^ 1))) by
A5,
A4,
FINSEQ_6: 56;
not p
in
{q} by
A3,
TARSKI:def 1;
then
A11: not p
in (
rng
<*q*>) by
FINSEQ_1: 38;
A12: q
in (
rng (f
/^ 1)) by
A2,
A3,
A9,
FINSEQ_6: 78;
then (((f
/^ 1)
-| q)
^
<*q*>)
= ((f
/^ 1)
| (q
.. (f
/^ 1))) by
FINSEQ_5: 24
.= ((f
/^ 1)
-: q) by
FINSEQ_5:def 1;
then
A13: (
rng ((f
/^ 1)
-: q))
= ((
rng ((f
/^ 1)
-| q))
\/ (
rng
<*q*>)) by
FINSEQ_1: 31;
A14: (
rng ((f
/^ 1)
-| q))
misses (
rng ((f
/^ 1)
|-- q)) by
A12,
FINSEQ_4: 57;
((f
/^ 1)
:- q)
= (
<*q*>
^ ((f
/^ 1)
|-- q)) by
A12,
FINSEQ_6: 41;
then
A15: (
rng ((f
/^ 1)
:- q))
= ((
rng
<*q*>)
\/ (
rng ((f
/^ 1)
|-- q))) by
FINSEQ_1: 31;
(p
.. (f
-: q))
> 1 by
A1,
A2,
A3,
A9,
Th3;
then
A16: p
in (
rng ((f
-: q)
/^ 1)) by
A5,
FINSEQ_6: 57;
then p
in (
rng ((f
/^ 1)
-: q)) by
A2,
A3,
A9,
FINSEQ_6: 60;
then p
in (
rng ((f
/^ 1)
-| q)) by
A13,
A11,
XBOOLE_0:def 3;
then not p
in (
rng ((f
/^ 1)
|-- q)) by
A14,
XBOOLE_0: 3;
then not p
in (
rng ((f
/^ 1)
:- q)) by
A11,
A15,
XBOOLE_0:def 3;
then not p
in (
rng (f
:- q)) by
A2,
A3,
A9,
FINSEQ_6: 83;
then p
in ((
rng ((f
-: q)
/^ 1))
\ (
rng (f
:- q))) by
A16,
XBOOLE_0:def 5;
hence (p
.. (
Rotate (f,q)))
= ((
len (f
:- q))
+ (p
.. ((f
-: q)
/^ 1))) by
A7,
FINSEQ_6: 7
.= ((((
len f)
- (q
.. f))
+ 1)
+ ((p
.. f)
- 1)) by
A2,
A10,
FINSEQ_5: 50
.= (((
len f)
+ (p
.. f))
- (q
.. f));
end;
end;
theorem ::
SPRECT_5:10
Th10: p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
< (p2
.. f) & (p2
.. f)
< (p3
.. f) implies (p3
.. (
Rotate (f,p2)))
< (p1
.. (
Rotate (f,p2)))
proof
assume that
A1: p1
in (
rng f) and
A2: p2
in (
rng f) and
A3: p3
in (
rng f) and
A4: (p1
.. f)
< (p2
.. f) and
A5: (p2
.. f)
< (p3
.. f);
A6: p1
in (
rng (
Rotate (f,p2))) & p3
in (
rng (
Rotate (f,p2))) by
A1,
A2,
A3,
FINSEQ_6: 90;
1
<= (p1
.. f) & (p3
.. f)
<= (
len f) by
A1,
A3,
FINSEQ_4: 21;
then
A7: ((p3
.. f)
+ 1)
<= ((
len f)
+ (p1
.. f)) by
XREAL_1: 7;
A8: (p3
.. (
Rotate (f,p2)))
= (((p3
.. f)
- (p2
.. f))
+ 1) by
A2,
A3,
A5,
Th4
.= (((p3
.. f)
+ 1)
- (p2
.. f));
(p1
.. (
Rotate (f,p2)))
= (((
len f)
+ (p1
.. f))
- (p2
.. f)) by
A1,
A2,
A4,
Th9;
then (p3
.. (
Rotate (f,p2)))
<= (p1
.. (
Rotate (f,p2))) by
A8,
A7,
XREAL_1: 9;
hence thesis by
A4,
A5,
A6,
FINSEQ_5: 9,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:11
Th11: p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
< (p2
.. f) & (p2
.. f)
< (p3
.. f) implies (p1
.. (
Rotate (f,p3)))
< (p2
.. (
Rotate (f,p3)))
proof
assume that
A1: p1
in (
rng f) and
A2: p2
in (
rng f) and
A3: p3
in (
rng f) and
A4: (p1
.. f)
< (p2
.. f) & (p2
.. f)
< (p3
.. f);
(p1
.. f)
< (p3
.. f) by
A4,
XXREAL_0: 2;
then
A5: (p1
.. (
Rotate (f,p3)))
= (((
len f)
+ (p1
.. f))
- (p3
.. f)) by
A1,
A3,
Th9;
(p2
.. (
Rotate (f,p3)))
= (((
len f)
+ (p2
.. f))
- (p3
.. f)) & ((
len f)
+ (p1
.. f))
< ((
len f)
+ (p2
.. f)) by
A2,
A3,
A4,
Th9,
XREAL_1: 6;
hence thesis by
A5,
XREAL_1: 9;
end;
theorem ::
SPRECT_5:12
p1
in (
rng f) & p2
in (
rng f) & p3
in (
rng f) & (p1
.. f)
<= (p2
.. f) & (p2
.. f)
< (p3
.. f) implies (p1
.. (
Rotate (f,p3)))
<= (p2
.. (
Rotate (f,p3)))
proof
assume that
A1: p1
in (
rng f) & p2
in (
rng f) and
A2: p3
in (
rng f) and
A3: (p1
.. f)
<= (p2
.. f) and
A4: (p2
.. f)
< (p3
.. f);
per cases by
A3,
XXREAL_0: 1;
suppose (p1
.. f)
< (p2
.. f);
hence thesis by
A1,
A2,
A4,
Th11;
end;
suppose (p1
.. f)
= (p2
.. f);
hence thesis by
A1,
FINSEQ_5: 9;
end;
end;
theorem ::
SPRECT_5:13
((
S-min (
L~ f))
.. f)
< (
len f)
proof
(
S-min (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 41,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:14
((
S-max (
L~ f))
.. f)
< (
len f)
proof
(
S-max (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 42,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:15
((
E-min (
L~ f))
.. f)
< (
len f)
proof
(
E-min (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 45,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:16
((
E-max (
L~ f))
.. f)
< (
len f)
proof
(
E-max (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 46,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:17
((
N-min (
L~ f))
.. f)
< (
len f)
proof
(
N-min (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 39,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:18
((
N-max (
L~ f))
.. f)
< (
len f)
proof
(
N-max (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 40,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:19
((
W-max (
L~ f))
.. f)
< (
len f)
proof
(
W-max (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 44,
XXREAL_0: 2;
hence thesis by
Th7;
end;
theorem ::
SPRECT_5:20
((
W-min (
L~ f))
.. f)
< (
len f)
proof
(
W-min (
L~ f))
in (
rng f) & (
len f)
> 1 by
GOBOARD7: 34,
SPRECT_2: 43,
XXREAL_0: 2;
hence thesis by
Th7;
end;
begin
reserve z for
clockwise_oriented non
constant
standard
special_circular_sequence;
Lm1: (z
/. 1)
= (
N-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z) by
SPRECT_2: 71;
hence thesis by
A1,
SPRECT_2: 72,
XXREAL_0: 2;
end;
Lm2: (z
/. 1)
= (
N-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z) by
Lm1;
hence thesis by
A1,
SPRECT_2: 73,
XXREAL_0: 2;
end;
Lm3: (z
/. 1)
= (
N-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z) by
Lm2;
hence thesis by
A1,
SPRECT_2: 74,
XXREAL_0: 2;
end;
Lm4: (z
/. 1)
= (
N-min (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z) by
SPRECT_2: 73;
hence thesis by
A1,
SPRECT_2: 72,
XXREAL_0: 2;
end;
Lm5: (z
/. 1)
= (
N-min (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
E-min (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z) by
Lm4;
hence thesis by
A1,
SPRECT_2: 74,
XXREAL_0: 2;
end;
Lm6: (z
/. 1)
= (
N-min (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z) by
SPRECT_2: 73;
hence thesis by
A1,
SPRECT_2: 74,
XXREAL_0: 2;
end;
Lm7: (z
/. 1)
= (
N-min (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z) by
Lm3;
hence thesis by
A1,
SPRECT_2: 70,
XXREAL_0: 2;
end;
Lm8: (z
/. 1)
= (
N-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
N-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z) by
Lm7;
hence thesis by
A1,
SPRECT_2: 68,
XXREAL_0: 2;
end;
Lm9: (z
/. 1)
= (
N-min (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
N-max (
L~ z))
.. z)
<= ((
E-max (
L~ z))
.. z) by
SPRECT_2: 70;
hence thesis by
A1,
Lm1,
XXREAL_0: 2;
end;
Lm10: (z
/. 1)
= (
N-min (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
N-min (
L~ z));
then ((
N-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z) by
Lm9;
hence thesis by
A1,
SPRECT_2: 73,
XXREAL_0: 2;
end;
theorem ::
SPRECT_5:21
Th21: (f
/. 1)
= (
W-min (
L~ f)) implies ((
W-min (
L~ f))
.. f)
< ((
W-max (
L~ f))
.. f)
proof
assume (f
/. 1)
= (
W-min (
L~ f));
then
A1: ((
W-min (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
A2: (
W-max (
L~ f))
in (
rng f) by
SPRECT_2: 44;
then ((
W-max (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A3: ((
W-max (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
W-min (
L~ f))
in (
rng f) by
SPRECT_2: 43;
then ((
W-min (
L~ f))
.. f)
<> ((
W-max (
L~ f))
.. f) by
A2,
FINSEQ_5: 9,
SPRECT_2: 58;
hence thesis by
A3,
A1,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:22
(f
/. 1)
= (
W-min (
L~ f)) implies ((
W-max (
L~ f))
.. f)
> 1
proof
assume
A1: (f
/. 1)
= (
W-min (
L~ f));
then ((
W-min (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
hence thesis by
A1,
Th21;
end;
theorem ::
SPRECT_5:23
Th23: (z
/. 1)
= (
W-min (
L~ z)) & (
W-max (
L~ z))
<> (
N-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
W-min (
L~ g))
.. g)
> ((
N-min (
L~ g))
.. g) by
Lm8;
assume that
A4: (z
/. 1)
= (
W-min (
L~ z)) and
A5: (
W-max (
L~ z))
<> (
N-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-min (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 44;
(
W-min (
L~ g))
in (
rng g) & ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 43,
SPRECT_2: 75;
hence thesis by
A1,
A6,
A7,
A3,
Th10;
end;
theorem ::
SPRECT_5:24
Th24: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) & ((
N-max (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
Lm7,
SPRECT_2: 68;
A3: (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 43;
assume
A4: (z
/. 1)
= (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
W-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
N-min (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 40;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:25
Th25: (z
/. 1)
= (
W-min (
L~ z)) & (
N-max (
L~ z))
<> (
E-max (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
E-max (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
Lm3;
assume that
A4: (z
/. 1)
= (
W-min (
L~ z)) and
A5: (
N-max (
L~ z))
<> (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-max (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 46;
(
W-min (
L~ g))
in (
rng g) & ((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 43,
SPRECT_2: 70;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:26
Th26: (z
/. 1)
= (
W-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) & ((
E-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
Lm5,
SPRECT_2: 71;
A3: (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 43;
assume
A4: (z
/. 1)
= (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
W-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
E-min (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 45,
SPRECT_2: 46;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:27
Th27: (z
/. 1)
= (
W-min (
L~ z)) & (
E-min (
L~ z))
<> (
S-max (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
S-max (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
Lm6;
assume that
A4: (z
/. 1)
= (
W-min (
L~ z)) and
A5: (
E-min (
L~ z))
<> (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
E-min (
L~ g))
in (
rng g) & (
S-max (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 45;
(
W-min (
L~ g))
in (
rng g) & ((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 43,
SPRECT_2: 72;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:28
(z
/. 1)
= (
W-min (
L~ z)) & (
S-min (
L~ z))
<> (
W-min (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
assume
A2: (z
/. 1)
= (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A3: (
Rotate (g,(
W-min (
L~ z))))
= z by
A2,
FINSEQ_6: 181;
A4: (
S-min (
L~ g))
in (
rng g) & (
S-max (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 42;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A5: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A6: (
W-min (
L~ g))
in (
rng g) & ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
SPRECT_2: 43,
SPRECT_2: 73;
assume (
S-min (
L~ z))
<> (
W-min (
L~ z));
then ((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
SPRECT_2: 74;
hence thesis by
A1,
A3,
A4,
A6,
Th11;
end;
theorem ::
SPRECT_5:29
Th29: (f
/. 1)
= (
S-max (
L~ f)) implies ((
S-max (
L~ f))
.. f)
< ((
S-min (
L~ f))
.. f)
proof
assume (f
/. 1)
= (
S-max (
L~ f));
then
A1: ((
S-max (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
A2: (
S-min (
L~ f))
in (
rng f) by
SPRECT_2: 41;
then ((
S-min (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A3: ((
S-min (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
S-max (
L~ f))
in (
rng f) by
SPRECT_2: 42;
then ((
S-max (
L~ f))
.. f)
<> ((
S-min (
L~ f))
.. f) by
A2,
FINSEQ_5: 9,
SPRECT_2: 56;
hence thesis by
A3,
A1,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:30
(f
/. 1)
= (
S-max (
L~ f)) implies ((
S-min (
L~ f))
.. f)
> 1
proof
assume
A1: (f
/. 1)
= (
S-max (
L~ f));
then ((
S-max (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
hence thesis by
A1,
Th29;
end;
Lm11: (z
/. 1)
= (
W-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z) by
Th26;
hence thesis by
A1,
Th27,
XXREAL_0: 2;
end;
Lm12: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z) by
Th24;
hence thesis by
A1,
Th25,
XXREAL_0: 2;
end;
Lm13: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z) by
Lm12;
hence thesis by
A1,
Lm11,
XXREAL_0: 2;
end;
Lm14: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z) by
Lm11;
hence thesis by
A1,
Th25,
XXREAL_0: 2;
end;
Lm15: (z
/. 1)
= (
W-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z) by
Lm13;
hence thesis by
A1,
Th23,
XXREAL_0: 2;
end;
Lm16: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z) by
Th26;
hence thesis by
A1,
Th25,
XXREAL_0: 2;
end;
Lm17: (z
/. 1)
= (
W-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z) by
Th24;
hence thesis by
A1,
Th25,
XXREAL_0: 2;
end;
Lm18: (z
/. 1)
= (
W-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
W-max (
L~ z))
.. z)
<= ((
N-min (
L~ z))
.. z) by
Th23;
hence thesis by
A1,
Lm17,
XXREAL_0: 2;
end;
Lm19: (z
/. 1)
= (
W-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
W-min (
L~ z));
then ((
W-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z) by
Lm18;
hence thesis by
A1,
Th26,
XXREAL_0: 2;
end;
theorem ::
SPRECT_5:31
Th31: (z
/. 1)
= (
S-max (
L~ z)) & (
S-min (
L~ z))
<> (
W-min (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
S-min (
L~ g))
in (
rng g) & ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
SPRECT_2: 41,
SPRECT_2: 73;
assume that
A4: (z
/. 1)
= (
S-max (
L~ z)) and
A5: (
S-min (
L~ z))
<> (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-min (
L~ g))
in (
rng g) & (
S-max (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 43;
((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 74;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:32
Th32: (z
/. 1)
= (
S-max (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
S-max (
L~ g))
.. g)
> ((
W-max (
L~ g))
.. g) & ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Lm15,
Th21;
A3: (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 43;
assume
A4: (z
/. 1)
= (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
S-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
S-max (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:33
Th33: (z
/. 1)
= (
S-max (
L~ z)) & (
W-max (
L~ z))
<> (
N-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A2: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
N-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
Lm13;
assume that
A4: (z
/. 1)
= (
S-max (
L~ z)) and
A5: (
W-max (
L~ z))
<> (
N-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-max (
L~ g))
in (
rng g) & (
N-min (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 44;
(
S-max (
L~ g))
in (
rng g) & ((
W-max (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th23,
SPRECT_2: 42;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:34
Th34: (z
/. 1)
= (
S-max (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) & ((
N-max (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
Lm14,
Th24;
A3: (
S-max (
L~ g))
in (
rng g) by
SPRECT_2: 42;
assume
A4: (z
/. 1)
= (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
S-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
N-max (
L~ g))
in (
rng g) & (
N-min (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 40;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:35
Th35: (z
/. 1)
= (
S-max (
L~ z)) & (
N-max (
L~ z))
<> (
E-max (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A2: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
E-max (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
Lm11;
assume that
A4: (z
/. 1)
= (
S-max (
L~ z)) and
A5: (
N-max (
L~ z))
<> (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-max (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 46;
(
S-max (
L~ g))
in (
rng g) & ((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th25,
SPRECT_2: 42;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:36
(z
/. 1)
= (
S-max (
L~ z)) & (
E-min (
L~ z))
<> (
S-max (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
assume
A2: (z
/. 1)
= (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A3: (
Rotate (g,(
S-max (
L~ z))))
= z by
A2,
FINSEQ_6: 181;
A4: (
E-min (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 45,
SPRECT_2: 46;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A5: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A6: (
S-max (
L~ g))
in (
rng g) & ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Th26,
SPRECT_2: 42;
assume (
E-min (
L~ z))
<> (
S-max (
L~ z));
then ((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
Th27;
hence thesis by
A1,
A3,
A4,
A6,
Th11;
end;
theorem ::
SPRECT_5:37
Th37: (f
/. 1)
= (
E-max (
L~ f)) implies ((
E-max (
L~ f))
.. f)
< ((
E-min (
L~ f))
.. f)
proof
assume (f
/. 1)
= (
E-max (
L~ f));
then
A1: ((
E-max (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
A2: (
E-min (
L~ f))
in (
rng f) by
SPRECT_2: 45;
then ((
E-min (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A3: ((
E-min (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
E-max (
L~ f))
in (
rng f) by
SPRECT_2: 46;
then ((
E-min (
L~ f))
.. f)
<> ((
E-max (
L~ f))
.. f) by
A2,
FINSEQ_5: 9,
SPRECT_2: 54;
hence thesis by
A3,
A1,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:38
(f
/. 1)
= (
E-max (
L~ f)) implies ((
E-min (
L~ f))
.. f)
> 1
proof
assume
A1: (f
/. 1)
= (
E-max (
L~ f));
then ((
E-max (
L~ f))
.. f)
= 1 by
FINSEQ_6: 43;
hence thesis by
A1,
Th37;
end;
theorem ::
SPRECT_5:39
Th39: (z
/. 1)
= (
E-max (
L~ z)) & (
S-max (
L~ z))
<> (
E-min (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
E-min (
L~ g))
in (
rng g) & ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
SPRECT_2: 45,
SPRECT_2: 71;
assume that
A4: (z
/. 1)
= (
E-max (
L~ z)) and
A5: (
S-max (
L~ z))
<> (
E-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
S-max (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 46;
((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 72;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:40
Th40: (z
/. 1)
= (
E-max (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
E-max (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) & ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
Lm1,
SPRECT_2: 73;
A3: (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41;
assume
A4: (z
/. 1)
= (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
E-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
S-max (
L~ g))
in (
rng g) & (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 46;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
Lm20: (z
/. 1)
= (
S-max (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z) by
Th34;
hence thesis by
A1,
Th35,
XXREAL_0: 2;
end;
Lm21: (z
/. 1)
= (
S-max (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z) by
Lm20;
hence thesis by
A1,
Th33,
XXREAL_0: 2;
end;
Lm22: (z
/. 1)
= (
S-max (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z) by
Th32;
hence thesis by
A1,
Lm21,
XXREAL_0: 2;
end;
Lm23: (z
/. 1)
= (
S-max (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z) by
Th34;
hence thesis by
A1,
Th33,
XXREAL_0: 2;
end;
Lm24: (z
/. 1)
= (
S-max (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z) by
Th32;
hence thesis by
A1,
Th33,
XXREAL_0: 2;
end;
Lm25: (z
/. 1)
= (
S-max (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
S-min (
L~ z))
.. z)
<= ((
W-min (
L~ z))
.. z) by
Th31;
hence thesis by
A1,
Lm24,
XXREAL_0: 2;
end;
Lm26: (z
/. 1)
= (
S-max (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
S-max (
L~ z));
then ((
S-min (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z) by
Lm25;
hence thesis by
A1,
Th34,
XXREAL_0: 2;
end;
theorem ::
SPRECT_5:41
Th41: (z
/. 1)
= (
E-max (
L~ z)) & (
S-min (
L~ z))
<> (
W-min (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A2: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
W-min (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
Lm22;
assume that
A4: (z
/. 1)
= (
E-max (
L~ z)) and
A5: (
S-min (
L~ z))
<> (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
S-min (
L~ g))
in (
rng g) & (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 43;
(
E-max (
L~ g))
in (
rng g) & ((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th31,
SPRECT_2: 46;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:42
Th42: (z
/. 1)
= (
E-max (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) & ((
W-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
Lm21,
Th32;
A3: (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 46;
assume
A4: (z
/. 1)
= (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
E-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
W-max (
L~ g))
in (
rng g) & (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 43,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:43
Th43: (z
/. 1)
= (
E-max (
L~ z)) & (
W-max (
L~ z))
<> (
N-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A2: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
N-min (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
Lm20;
assume that
A4: (z
/. 1)
= (
E-max (
L~ z)) and
A5: (
W-max (
L~ z))
<> (
N-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-max (
L~ g))
in (
rng g) & (
N-min (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 44;
(
E-max (
L~ g))
in (
rng g) & ((
W-max (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th33,
SPRECT_2: 46;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:44
(z
/. 1)
= (
E-max (
L~ z)) & (
N-max (
L~ z))
<> (
E-max (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
assume
A2: (z
/. 1)
= (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A3: (
Rotate (g,(
E-max (
L~ z))))
= z by
A2,
FINSEQ_6: 181;
A4: (
N-max (
L~ g))
in (
rng g) & (
N-min (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 40;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A5: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A6: (
E-max (
L~ g))
in (
rng g) & ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Th34,
SPRECT_2: 46;
assume (
N-max (
L~ z))
<> (
E-max (
L~ z));
then ((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
Th35;
hence thesis by
A1,
A3,
A4,
A6,
Th11;
end;
theorem ::
SPRECT_5:45
(f
/. 1)
= (
N-max (
L~ f)) & (
N-max (
L~ f))
<> (
E-max (
L~ f)) implies ((
N-max (
L~ f))
.. f)
< ((
E-max (
L~ f))
.. f)
proof
assume that
A1: (f
/. 1)
= (
N-max (
L~ f)) and
A2: (
N-max (
L~ f))
<> (
E-max (
L~ f));
A3: (
E-max (
L~ f))
in (
rng f) by
SPRECT_2: 46;
then ((
E-max (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A4: ((
E-max (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
N-max (
L~ f))
in (
rng f) & ((
N-max (
L~ f))
.. f)
= 1 by
A1,
FINSEQ_6: 43,
SPRECT_2: 40;
hence thesis by
A3,
A2,
A4,
FINSEQ_5: 9,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:46
(z
/. 1)
= (
N-max (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
N-max (
L~ g))
.. g)
<= ((
E-max (
L~ g))
.. g) & ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Th25,
Th26;
A3: (
E-max (
L~ g))
in (
rng g) by
SPRECT_2: 46;
assume
A4: (z
/. 1)
= (
N-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
E-min (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 45;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:47
(z
/. 1)
= (
N-max (
L~ z)) & (
E-min (
L~ z))
<> (
S-max (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A2: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
S-max (
L~ g))
in (
rng g) & ((
N-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Lm16,
SPRECT_2: 42;
assume that
A4: (z
/. 1)
= (
N-max (
L~ z)) and
A5: (
E-min (
L~ z))
<> (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
E-min (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 45;
((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th27;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:48
(z
/. 1)
= (
N-max (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) & ((
N-max (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
Lm9,
SPRECT_2: 73;
A3: (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40;
assume
A4: (z
/. 1)
= (
N-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
S-max (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 42;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:49
(z
/. 1)
= (
N-max (
L~ z)) & (
S-min (
L~ z))
<> (
W-min (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
N-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
Lm10;
assume that
A4: (z
/. 1)
= (
N-max (
L~ z)) and
A5: (
S-min (
L~ z))
<> (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-min (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 43;
(
N-max (
L~ g))
in (
rng g) & ((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 40,
SPRECT_2: 74;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:50
(z
/. 1)
= (
N-max (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) & ((
W-max (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Lm23,
Th32;
A3: (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40;
assume
A4: (z
/. 1)
= (
N-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
W-min (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 43,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:51
(z
/. 1)
= (
N-max (
L~ z)) & (
N-min (
L~ z))
<> (
W-max (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A2: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Th34;
assume that
A4: (z
/. 1)
= (
N-max (
L~ z)) and
A5: (
N-min (
L~ z))
<> (
W-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
N-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-min (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 44;
(
N-max (
L~ g))
in (
rng g) & ((
W-max (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th33,
SPRECT_2: 40;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:52
(f
/. 1)
= (
E-min (
L~ f)) & (
E-min (
L~ f))
<> (
S-max (
L~ f)) implies ((
E-min (
L~ f))
.. f)
< ((
S-max (
L~ f))
.. f)
proof
assume that
A1: (f
/. 1)
= (
E-min (
L~ f)) and
A2: (
E-min (
L~ f))
<> (
S-max (
L~ f));
A3: (
S-max (
L~ f))
in (
rng f) by
SPRECT_2: 42;
then ((
S-max (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A4: ((
S-max (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
E-min (
L~ f))
in (
rng f) & ((
E-min (
L~ f))
.. f)
= 1 by
A1,
FINSEQ_6: 43,
SPRECT_2: 45;
hence thesis by
A3,
A2,
A4,
FINSEQ_5: 9,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:53
(z
/. 1)
= (
E-min (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
E-min (
L~ g))
.. g)
<= ((
S-max (
L~ g))
.. g) & ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
SPRECT_2: 72,
SPRECT_2: 73;
A3: (
S-max (
L~ g))
in (
rng g) by
SPRECT_2: 42;
assume
A4: (z
/. 1)
= (
E-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
S-min (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 45;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:54
(z
/. 1)
= (
E-min (
L~ z)) & (
S-min (
L~ z))
<> (
W-min (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
W-min (
L~ g))
in (
rng g) & ((
E-min (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
Lm4,
SPRECT_2: 43;
assume that
A4: (z
/. 1)
= (
E-min (
L~ z)) and
A5: (
S-min (
L~ z))
<> (
W-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
S-min (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 45;
((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 74;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
Lm27: (z
/. 1)
= (
E-max (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
E-max (
L~ z));
then ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z) by
Th40;
hence thesis by
A1,
Th41,
XXREAL_0: 2;
end;
Lm28: (z
/. 1)
= (
E-max (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
E-max (
L~ z));
then ((
E-min (
L~ z))
.. z)
<= ((
S-max (
L~ z))
.. z) by
Th39;
hence thesis by
A1,
Lm27,
XXREAL_0: 2;
end;
Lm29: (z
/. 1)
= (
E-max (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
E-max (
L~ z));
then ((
E-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z) by
Lm28;
hence thesis by
A1,
Th42,
XXREAL_0: 2;
end;
Lm30: (z
/. 1)
= (
E-max (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
assume
A1: (z
/. 1)
= (
E-max (
L~ z));
then ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z) by
Th42;
hence thesis by
A1,
Th41,
XXREAL_0: 2;
end;
theorem ::
SPRECT_5:55
(z
/. 1)
= (
E-min (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) & ((
E-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
Lm28,
Th42;
A3: (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 45;
assume
A4: (z
/. 1)
= (
E-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
W-min (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 43,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:56
(z
/. 1)
= (
E-min (
L~ z)) & (
W-max (
L~ z))
<> (
N-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then
A2: (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
E-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Lm29;
assume that
A4: (z
/. 1)
= (
E-min (
L~ z)) and
A5: (
W-max (
L~ z))
<> (
N-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-min (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 44;
(
E-min (
L~ g))
in (
rng g) & ((
W-max (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th43,
SPRECT_2: 45;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:57
(z
/. 1)
= (
E-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) & ((
N-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Lm16,
Th24;
A3: (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 45;
assume
A4: (z
/. 1)
= (
E-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
N-min (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 40;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:58
(z
/. 1)
= (
E-min (
L~ z)) & (
E-max (
L~ z))
<> (
N-max (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A2: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Th26;
assume that
A4: (z
/. 1)
= (
E-min (
L~ z)) and
A5: (
E-max (
L~ z))
<> (
N-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
E-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
E-max (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 46;
(
E-min (
L~ g))
in (
rng g) & ((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th25,
SPRECT_2: 45;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:59
(f
/. 1)
= (
S-min (
L~ f)) & (
S-min (
L~ f))
<> (
W-min (
L~ f)) implies ((
S-min (
L~ f))
.. f)
< ((
W-min (
L~ f))
.. f)
proof
assume that
A1: (f
/. 1)
= (
S-min (
L~ f)) and
A2: (
S-min (
L~ f))
<> (
W-min (
L~ f));
A3: (
W-min (
L~ f))
in (
rng f) by
SPRECT_2: 43;
then ((
W-min (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A4: ((
W-min (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
S-min (
L~ f))
in (
rng f) & ((
S-min (
L~ f))
.. f)
= 1 by
A1,
FINSEQ_6: 43,
SPRECT_2: 41;
hence thesis by
A3,
A2,
A4,
FINSEQ_5: 9,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:60
(z
/. 1)
= (
S-min (
L~ z)) implies ((
W-min (
L~ z))
.. z)
< ((
W-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
S-min (
L~ g))
.. g)
<= ((
W-min (
L~ g))
.. g) & ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Th41,
Th42;
A3: (
W-min (
L~ g))
in (
rng g) by
SPRECT_2: 43;
assume
A4: (z
/. 1)
= (
S-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
W-max (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:61
(z
/. 1)
= (
S-min (
L~ z)) & (
W-max (
L~ z))
<> (
N-min (
L~ z)) implies ((
W-max (
L~ z))
.. z)
< ((
N-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then
A2: (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
N-min (
L~ g))
in (
rng g) & ((
S-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Lm30,
SPRECT_2: 39;
assume that
A4: (z
/. 1)
= (
S-min (
L~ z)) and
A5: (
W-max (
L~ z))
<> (
N-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-max (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 44;
((
W-max (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th43;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:62
(z
/. 1)
= (
S-min (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) & ((
S-min (
L~ g))
.. g)
< ((
N-min (
L~ g))
.. g) by
Lm25,
Th34;
A3: (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41;
assume
A4: (z
/. 1)
= (
S-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
N-min (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 39,
SPRECT_2: 40;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:63
(z
/. 1)
= (
S-min (
L~ z)) & (
N-max (
L~ z))
<> (
E-max (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A2: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
S-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Lm26;
assume that
A4: (z
/. 1)
= (
S-min (
L~ z)) and
A5: (
N-max (
L~ z))
<> (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
E-max (
L~ g))
in (
rng g) & (
N-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 46;
(
S-min (
L~ g))
in (
rng g) & ((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th35,
SPRECT_2: 41;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:64
(z
/. 1)
= (
S-min (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) & ((
E-min (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
Lm4,
SPRECT_2: 71;
A3: (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41;
assume
A4: (z
/. 1)
= (
S-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
E-max (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 45,
SPRECT_2: 46;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:65
(z
/. 1)
= (
S-min (
L~ z)) & (
S-max (
L~ z))
<> (
E-min (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
N-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
N-min (
L~ z))
in (
rng z) by
SPRECT_2: 39;
then
A2: (g
/. 1)
= (
N-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) by
SPRECT_2: 73;
assume that
A4: (z
/. 1)
= (
S-min (
L~ z)) and
A5: (
S-max (
L~ z))
<> (
E-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
S-min (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
S-max (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 45;
(
S-min (
L~ g))
in (
rng g) & ((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
A2,
SPRECT_2: 41,
SPRECT_2: 72;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;
theorem ::
SPRECT_5:66
(f
/. 1)
= (
W-max (
L~ f)) & (
W-max (
L~ f))
<> (
N-min (
L~ f)) implies ((
W-max (
L~ f))
.. f)
< ((
N-min (
L~ f))
.. f)
proof
assume that
A1: (f
/. 1)
= (
W-max (
L~ f)) and
A2: (
W-max (
L~ f))
<> (
N-min (
L~ f));
A3: (
N-min (
L~ f))
in (
rng f) by
SPRECT_2: 39;
then ((
N-min (
L~ f))
.. f)
in (
dom f) by
FINSEQ_4: 20;
then
A4: ((
N-min (
L~ f))
.. f)
>= 1 by
FINSEQ_3: 25;
(
W-max (
L~ f))
in (
rng f) & ((
W-max (
L~ f))
.. f)
= 1 by
A1,
FINSEQ_6: 43,
SPRECT_2: 44;
hence thesis by
A3,
A2,
A4,
FINSEQ_5: 9,
XXREAL_0: 1;
end;
theorem ::
SPRECT_5:67
(z
/. 1)
= (
W-max (
L~ z)) implies ((
N-min (
L~ z))
.. z)
< ((
N-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
W-max (
L~ g))
.. g)
<= ((
N-min (
L~ g))
.. g) & ((
N-min (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Th33,
Th34;
A3: (
N-min (
L~ g))
in (
rng g) by
SPRECT_2: 39;
assume
A4: (z
/. 1)
= (
W-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
N-max (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 44;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:68
(z
/. 1)
= (
W-max (
L~ z)) & (
N-max (
L~ z))
<> (
E-max (
L~ z)) implies ((
N-max (
L~ z))
.. z)
< ((
E-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
S-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
S-max (
L~ z))
in (
rng z) by
SPRECT_2: 42;
then
A2: (g
/. 1)
= (
S-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: (
E-max (
L~ g))
in (
rng g) & ((
W-max (
L~ g))
.. g)
< ((
N-max (
L~ g))
.. g) by
Lm23,
SPRECT_2: 46;
assume that
A4: (z
/. 1)
= (
W-max (
L~ z)) and
A5: (
N-max (
L~ z))
<> (
E-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
N-max (
L~ g))
in (
rng g) & (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 40,
SPRECT_2: 44;
((
N-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th35;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:69
(z
/. 1)
= (
W-max (
L~ z)) implies ((
E-max (
L~ z))
.. z)
< ((
E-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
E-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) & ((
W-max (
L~ g))
.. g)
< ((
E-max (
L~ g))
.. g) by
Lm18,
Th26;
A3: (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 44;
assume
A4: (z
/. 1)
= (
W-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
E-max (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 45,
SPRECT_2: 46;
hence thesis by
A1,
A5,
A3,
A2,
Th5;
end;
theorem ::
SPRECT_5:70
(z
/. 1)
= (
W-max (
L~ z)) & (
E-min (
L~ z))
<> (
S-max (
L~ z)) implies ((
E-min (
L~ z))
.. z)
< ((
S-max (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
W-min (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
W-min (
L~ z))
in (
rng z) by
SPRECT_2: 43;
then
A2: (g
/. 1)
= (
W-min (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
W-max (
L~ g))
.. g)
< ((
E-min (
L~ g))
.. g) by
Lm19;
assume that
A4: (z
/. 1)
= (
W-max (
L~ z)) and
A5: (
E-min (
L~ z))
<> (
S-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
S-max (
L~ g))
in (
rng g) & (
E-min (
L~ g))
in (
rng g) by
SPRECT_2: 42,
SPRECT_2: 45;
(
W-max (
L~ g))
in (
rng g) & ((
E-min (
L~ g))
.. g)
< ((
S-max (
L~ g))
.. g) by
A1,
A5,
A2,
Th27,
SPRECT_2: 44;
hence thesis by
A1,
A6,
A7,
A3,
Th5;
end;
theorem ::
SPRECT_5:71
(z
/. 1)
= (
W-max (
L~ z)) implies ((
S-max (
L~ z))
.. z)
< ((
S-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A2: ((
S-max (
L~ g))
.. g)
< ((
S-min (
L~ g))
.. g) & ((
S-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Lm30,
Th40;
A3: (
W-max (
L~ g))
in (
rng g) by
SPRECT_2: 44;
assume
A4: (z
/. 1)
= (
W-max (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A5: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
(
S-max (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 42;
hence thesis by
A1,
A5,
A3,
A2,
Th11;
end;
theorem ::
SPRECT_5:72
(z
/. 1)
= (
W-max (
L~ z)) & (
W-min (
L~ z))
<> (
S-min (
L~ z)) implies ((
S-min (
L~ z))
.. z)
< ((
W-min (
L~ z))
.. z)
proof
set g = (
Rotate (z,(
E-max (
L~ z))));
A1: (
L~ z)
= (
L~ g) by
REVROT_1: 33;
(
E-max (
L~ z))
in (
rng z) by
SPRECT_2: 46;
then
A2: (g
/. 1)
= (
E-max (
L~ g)) by
A1,
FINSEQ_6: 92;
then
A3: ((
W-min (
L~ g))
.. g)
< ((
W-max (
L~ g))
.. g) by
Th42;
assume that
A4: (z
/. 1)
= (
W-max (
L~ z)) and
A5: (
W-min (
L~ z))
<> (
S-min (
L~ z));
for i be
Nat st 1
< i & i
< (
len z) holds (z
/. i)
<> (z
/. 1) by
GOBOARD7: 36;
then
A6: (
Rotate (g,(
W-max (
L~ z))))
= z by
A4,
FINSEQ_6: 181;
A7: (
W-min (
L~ g))
in (
rng g) & (
S-min (
L~ g))
in (
rng g) by
SPRECT_2: 41,
SPRECT_2: 43;
(
W-max (
L~ g))
in (
rng g) & ((
S-min (
L~ g))
.. g)
< ((
W-min (
L~ g))
.. g) by
A1,
A5,
A2,
Th41,
SPRECT_2: 44;
hence thesis by
A1,
A6,
A7,
A3,
Th11;
end;