goboard7.miz
begin
reserve f for non
empty
FinSequence of (
TOP-REAL 2),
i,j,k,k1,k2,n,i1,i2,j1,j2 for
Nat,
r,s,r1,r2 for
Real,
p,q,p1,q1 for
Point of (
TOP-REAL 2),
G for
Go-board;
theorem ::
GOBOARD7:1
Th1:
|.(r1
- r2).|
> s implies (r1
+ s)
< r2 or (r2
+ s)
< r1
proof
assume
A1:
|.(r1
- r2).|
> s;
now
per cases ;
case r1
< r2;
then (r1
- r2)
<
0 by
XREAL_1: 49;
then
|.(r1
- r2).|
= (
- (r1
- r2)) by
ABSVALUE:def 1
.= (r2
- r1);
hence (r1
+ s)
< r2 by
A1,
XREAL_1: 20;
end;
case r2
<= r1;
then (r1
- r2)
>=
0 by
XREAL_1: 48;
then
|.(r1
- r2).|
= (r1
- r2) by
ABSVALUE:def 1;
hence (r2
+ s)
< r1 by
A1,
XREAL_1: 20;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:2
Th2:
|.(r
- s).|
=
0 iff r
= s
proof
hereby
assume
|.(r
- s).|
=
0 ;
then (r
- s)
=
0 by
ABSVALUE: 2;
hence r
= s;
end;
assume r
= s;
hence thesis by
ABSVALUE: 2;
end;
theorem ::
GOBOARD7:3
Th3: for p,p1,q be
Point of (
TOP-REAL n) st (p
+ p1)
= (q
+ p1) holds p
= q
proof
let p,p1,q be
Point of (
TOP-REAL n) such that
A1: (p
+ p1)
= (q
+ p1);
thus p
= (p
+ (
0. (
TOP-REAL n))) by
RLVECT_1: 4
.= (p
+ (p1
- p1)) by
RLVECT_1: 5
.= ((p
+ p1)
- p1) by
RLVECT_1:def 3
.= (q
+ (p1
- p1)) by
A1,
RLVECT_1:def 3
.= (q
+ (
0. (
TOP-REAL n))) by
RLVECT_1: 5
.= q by
RLVECT_1: 4;
end;
theorem ::
GOBOARD7:4
for p,p1,q be
Point of (
TOP-REAL n) st (p1
+ p)
= (p1
+ q) holds p
= q by
Th3;
theorem ::
GOBOARD7:5
Th5: p1
in (
LSeg (p,q)) & (p
`1 )
= (q
`1 ) implies (p1
`1 )
= (q
`1 )
proof
assume p1
in (
LSeg (p,q));
then
consider r such that
A1: p1
= (((1
- r)
* p)
+ (r
* q)) and
0
<= r and r
<= 1;
assume
A2: (p
`1 )
= (q
`1 );
(p1
`1 )
= ((((1
- r)
* p)
`1 )
+ ((r
* q)
`1 )) by
A1,
TOPREAL3: 2
.= ((((1
- r)
* p)
`1 )
+ (r
* (q
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p
`1 ))
+ (r
* (q
`1 ))) by
TOPREAL3: 4;
hence thesis by
A2;
end;
theorem ::
GOBOARD7:6
Th6: p1
in (
LSeg (p,q)) & (p
`2 )
= (q
`2 ) implies (p1
`2 )
= (q
`2 )
proof
assume p1
in (
LSeg (p,q));
then
consider r such that
A1: p1
= (((1
- r)
* p)
+ (r
* q)) and
0
<= r and r
<= 1;
assume
A2: (p
`2 )
= (q
`2 );
(p1
`2 )
= ((((1
- r)
* p)
`2 )
+ ((r
* q)
`2 )) by
A1,
TOPREAL3: 2
.= ((((1
- r)
* p)
`2 )
+ (r
* (q
`2 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p
`2 ))
+ (r
* (q
`2 ))) by
TOPREAL3: 4;
hence thesis by
A2;
end;
theorem ::
GOBOARD7:7
Th7: (p
`1 )
= (q
`1 ) & (q
`1 )
= (p1
`1 ) & (p
`2 )
<= (q
`2 ) & (q
`2 )
<= (p1
`2 ) implies q
in (
LSeg (p,p1))
proof
assume that
A1: (p
`1 )
= (q
`1 ) and
A2: (q
`1 )
= (p1
`1 ) and
A3: (p
`2 )
<= (q
`2 ) & (q
`2 )
<= (p1
`2 );
A4: (p
`2 )
<= (p1
`2 ) by
A3,
XXREAL_0: 2;
per cases by
A4,
XXREAL_0: 1;
suppose
A5: (p
`2 )
= (p1
`2 );
then (p
`2 )
= (q
`2 ) by
A3,
XXREAL_0: 1;
then
A6: q
=
|[(p
`1 ), (p
`2 )]| by
A1,
EUCLID: 53
.= p by
EUCLID: 53;
p
=
|[(p1
`1 ), (p1
`2 )]| by
A1,
A2,
A5,
EUCLID: 53
.= p1 by
EUCLID: 53;
then (
LSeg (p,p1))
=
{p} by
RLTOPSP1: 70;
hence thesis by
A6,
TARSKI:def 1;
end;
suppose
A7: (p
`2 )
< (p1
`2 );
A8: q
in { q1 : (q1
`1 )
= (q
`1 ) & (p
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (p1
`2 ) } by
A3;
p
=
|[(q
`1 ), (p
`2 )]| & p1
=
|[(q
`1 ), (p1
`2 )]| by
A1,
A2,
EUCLID: 53;
hence thesis by
A7,
A8,
TOPREAL3: 9;
end;
end;
theorem ::
GOBOARD7:8
Th8: (p
`1 )
<= (q
`1 ) & (q
`1 )
<= (p1
`1 ) & (p
`2 )
= (q
`2 ) & (q
`2 )
= (p1
`2 ) implies q
in (
LSeg (p,p1))
proof
assume that
A1: (p
`1 )
<= (q
`1 ) & (q
`1 )
<= (p1
`1 ) and
A2: (p
`2 )
= (q
`2 ) and
A3: (q
`2 )
= (p1
`2 );
A4: (p
`1 )
<= (p1
`1 ) by
A1,
XXREAL_0: 2;
per cases by
A4,
XXREAL_0: 1;
suppose
A5: (p
`1 )
= (p1
`1 );
then (p
`1 )
= (q
`1 ) by
A1,
XXREAL_0: 1;
then
A6: q
=
|[(p
`1 ), (p
`2 )]| by
A2,
EUCLID: 53
.= p by
EUCLID: 53;
p
=
|[(p1
`1 ), (p1
`2 )]| by
A2,
A3,
A5,
EUCLID: 53
.= p1 by
EUCLID: 53;
then (
LSeg (p,p1))
=
{p} by
RLTOPSP1: 70;
hence thesis by
A6,
TARSKI:def 1;
end;
suppose
A7: (p
`1 )
< (p1
`1 );
A8: q
in { q1 : (q1
`2 )
= (q
`2 ) & (p
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (p1
`1 ) } by
A1;
p
=
|[(p
`1 ), (q
`2 )]| & p1
=
|[(p1
`1 ), (q
`2 )]| by
A2,
A3,
EUCLID: 53;
hence thesis by
A7,
A8,
TOPREAL3: 10;
end;
end;
theorem ::
GOBOARD7:9
1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
= ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
A5: j
< (
width G) by
A4,
NAT_1: 13;
A6: 1
<= (j
+ 1) by
NAT_1: 11;
A7: 1
<= (i
+ 1) by
NAT_1: 11;
then
A8: ((G
* ((i
+ 1),j))
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A2,
A3,
A5,
GOBOARD5: 2
.= ((G
* ((i
+ 1),(j
+ 1)))
`1 ) by
A2,
A4,
A7,
A6,
GOBOARD5: 2;
A9: i
< (
len G) by
A2,
NAT_1: 13;
then
A10: ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A3,
A5,
GOBOARD5: 2
.= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A9,
A6,
GOBOARD5: 2;
A11: ((G
* ((i
+ 1),(j
+ 1)))
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A2,
A4,
A7,
A6,
GOBOARD5: 1
.= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A4,
A9,
A6,
GOBOARD5: 1;
A12: ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A3,
A9,
A5,
GOBOARD5: 1
.= ((G
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A7,
A5,
GOBOARD5: 1;
A13: (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
`2 )
= ((1
/ 2)
* (((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
`2 )) by
TOPREAL3: 4
.= ((1
/ 2)
* (((G
* (i,j))
`2 )
+ ((G
* ((i
+ 1),(j
+ 1)))
`2 ))) by
TOPREAL3: 2
.= ((1
/ 2)
* (((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`2 )) by
A12,
A11,
TOPREAL3: 2
.= (((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))))
`2 ) by
TOPREAL3: 4;
(((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
`1 )
= ((1
/ 2)
* (((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
`1 )) by
TOPREAL3: 4
.= ((1
/ 2)
* (((G
* (i,j))
`1 )
+ ((G
* ((i
+ 1),(j
+ 1)))
`1 ))) by
TOPREAL3: 2
.= ((1
/ 2)
* (((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`1 )) by
A10,
A8,
TOPREAL3: 2
.= (((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))))
`1 ) by
TOPREAL3: 4;
hence ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
=
|[(((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))))
`1 ), (((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))))
`2 )]| by
A13,
EUCLID: 53
.= ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))) by
EUCLID: 53;
end;
theorem ::
GOBOARD7:10
Th10: (
LSeg (f,k)) is
horizontal implies ex j st 1
<= j & j
<= (
width (
GoB f)) & for p st p
in (
LSeg (f,k)) holds (p
`2 )
= (((
GoB f)
* (1,j))
`2 )
proof
assume
A1: (
LSeg (f,k)) is
horizontal;
per cases ;
suppose
A2: 1
<= k & (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A2,
XXREAL_0: 2;
then k
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i, j such that
A3:
[i, j]
in (
Indices (
GoB f)) and
A4: (f
/. k)
= ((
GoB f)
* (i,j)) by
GOBOARD2: 14;
take j;
thus
A5: 1
<= j & j
<= (
width (
GoB f)) by
A3,
MATRIX_0: 32;
A6: (f
/. k)
in (
LSeg (f,k)) by
A2,
TOPREAL1: 21;
let p;
A7: 1
<= i & i
<= (
len (
GoB f)) by
A3,
MATRIX_0: 32;
assume p
in (
LSeg (f,k));
hence (p
`2 )
= ((f
/. k)
`2 ) by
A1,
A6,
SPPOL_1:def 2
.= (((
GoB f)
* (1,j))
`2 ) by
A4,
A5,
A7,
GOBOARD5: 1;
end;
suppose
A8: not (1
<= k & (k
+ 1)
<= (
len f));
take 1;
(
width (
GoB f))
<>
0 by
MATRIX_0:def 10;
hence 1
<= 1 & 1
<= (
width (
GoB f)) by
NAT_1: 14;
thus thesis by
A8,
TOPREAL1:def 3;
end;
end;
theorem ::
GOBOARD7:11
Th11: (
LSeg (f,k)) is
vertical implies ex i st 1
<= i & i
<= (
len (
GoB f)) & for p st p
in (
LSeg (f,k)) holds (p
`1 )
= (((
GoB f)
* (i,1))
`1 )
proof
assume
A1: (
LSeg (f,k)) is
vertical;
per cases ;
suppose
A2: 1
<= k & (k
+ 1)
<= (
len f);
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A2,
XXREAL_0: 2;
then k
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i, j such that
A3:
[i, j]
in (
Indices (
GoB f)) and
A4: (f
/. k)
= ((
GoB f)
* (i,j)) by
GOBOARD2: 14;
take i;
thus
A5: 1
<= i & i
<= (
len (
GoB f)) by
A3,
MATRIX_0: 32;
A6: (f
/. k)
in (
LSeg (f,k)) by
A2,
TOPREAL1: 21;
let p;
A7: 1
<= j & j
<= (
width (
GoB f)) by
A3,
MATRIX_0: 32;
assume p
in (
LSeg (f,k));
hence (p
`1 )
= ((f
/. k)
`1 ) by
A1,
A6,
SPPOL_1:def 3
.= (((
GoB f)
* (i,1))
`1 ) by
A4,
A5,
A7,
GOBOARD5: 2;
end;
suppose
A8: not (1
<= k & (k
+ 1)
<= (
len f));
take 1;
0
<> (
len (
GoB f)) by
MATRIX_0:def 10;
hence 1
<= 1 & 1
<= (
len (
GoB f)) by
NAT_1: 14;
thus thesis by
A8,
TOPREAL1:def 3;
end;
end;
theorem ::
GOBOARD7:12
f is
special & i
<= (
len (
GoB f)) & j
<= (
width (
GoB f)) implies (
Int (
cell ((
GoB f),i,j)))
misses (
L~ f)
proof
assume that
A1: f is
special and
A2: i
<= (
len (
GoB f)) and
A3: j
<= (
width (
GoB f));
A4: (
Int (
cell ((
GoB f),i,j)))
= (
Int ((
v_strip ((
GoB f),i))
/\ (
h_strip ((
GoB f),j)))) by
GOBOARD5:def 3
.= ((
Int (
v_strip ((
GoB f),i)))
/\ (
Int (
h_strip ((
GoB f),j)))) by
TOPS_1: 17;
assume (
Int (
cell ((
GoB f),i,j)))
meets (
L~ f);
then
consider x be
object such that
A5: x
in (
Int (
cell ((
GoB f),i,j))) and
A6: x
in (
L~ f) by
XBOOLE_0: 3;
(
L~ f)
= (
union { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider X be
set such that
A7: x
in X and
A8: X
in { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) } by
A6,
TARSKI:def 4;
consider k such that
A9: X
= (
LSeg (f,k)) and 1
<= k and (k
+ 1)
<= (
len f) by
A8;
reconsider p = x as
Point of (
TOP-REAL 2) by
A7,
A9;
per cases by
A1,
SPPOL_1: 19;
suppose (
LSeg (f,k)) is
horizontal;
then
consider j0 be
Nat such that
A10: 1
<= j0 and
A11: j0
<= (
width (
GoB f)) and
A12: for p st p
in (
LSeg (f,k)) holds (p
`2 )
= (((
GoB f)
* (1,j0))
`2 ) by
Th10;
now
A13: j0
> j implies j0
>= (j
+ 1) by
NAT_1: 13;
assume
A14: p
in (
Int (
h_strip ((
GoB f),j)));
per cases by
A13,
XXREAL_0: 1;
suppose
A15: j0
< j;
0
<> (
len (
GoB f)) by
MATRIX_0:def 10;
then 1
<= (
len (
GoB f)) by
NAT_1: 14;
then
A16: (((
GoB f)
* (1,j))
`2 )
> (((
GoB f)
* (1,j0))
`2 ) by
A3,
A10,
A15,
GOBOARD5: 4;
j
>= 1 by
A10,
A15,
XXREAL_0: 2;
then (p
`2 )
> (((
GoB f)
* (1,j))
`2 ) by
A3,
A14,
GOBOARD6: 27;
hence contradiction by
A7,
A9,
A12,
A16;
end;
suppose j0
= j;
then (p
`2 )
> (((
GoB f)
* (1,j0))
`2 ) by
A10,
A11,
A14,
GOBOARD6: 27;
hence contradiction by
A7,
A9,
A12;
end;
suppose
A17: j0
> (j
+ 1);
then (j
+ 1)
<= (
width (
GoB f)) by
A11,
XXREAL_0: 2;
then j
< (
width (
GoB f)) by
NAT_1: 13;
then
A18: (p
`2 )
< (((
GoB f)
* (1,(j
+ 1)))
`2 ) by
A14,
GOBOARD6: 28;
0
<> (
len (
GoB f)) by
MATRIX_0:def 10;
then
A19: 1
<= (
len (
GoB f)) by
NAT_1: 14;
(j
+ 1)
>= 1 by
NAT_1: 11;
then (((
GoB f)
* (1,(j
+ 1)))
`2 )
< (((
GoB f)
* (1,j0))
`2 ) by
A11,
A17,
A19,
GOBOARD5: 4;
hence contradiction by
A7,
A9,
A12,
A18;
end;
suppose
A20: j0
= (j
+ 1);
then j
< (
width (
GoB f)) by
A11,
NAT_1: 13;
then (p
`2 )
< (((
GoB f)
* (1,j0))
`2 ) by
A14,
A20,
GOBOARD6: 28;
hence contradiction by
A7,
A9,
A12;
end;
end;
hence contradiction by
A5,
A4,
XBOOLE_0:def 4;
end;
suppose (
LSeg (f,k)) is
vertical;
then
consider i0 be
Nat such that
A21: 1
<= i0 and
A22: i0
<= (
len (
GoB f)) and
A23: for p st p
in (
LSeg (f,k)) holds (p
`1 )
= (((
GoB f)
* (i0,1))
`1 ) by
Th11;
now
A24: i0
> i implies i0
>= (i
+ 1) by
NAT_1: 13;
assume
A25: p
in (
Int (
v_strip ((
GoB f),i)));
per cases by
A24,
XXREAL_0: 1;
suppose
A26: i0
< i;
0
<> (
width (
GoB f)) by
MATRIX_0:def 10;
then 1
<= (
width (
GoB f)) by
NAT_1: 14;
then
A27: (((
GoB f)
* (i,1))
`1 )
> (((
GoB f)
* (i0,1))
`1 ) by
A2,
A21,
A26,
GOBOARD5: 3;
i
>= 1 by
A21,
A26,
XXREAL_0: 2;
then (p
`1 )
> (((
GoB f)
* (i,1))
`1 ) by
A2,
A25,
GOBOARD6: 29;
hence contradiction by
A7,
A9,
A23,
A27;
end;
suppose i0
= i;
then (p
`1 )
> (((
GoB f)
* (i0,1))
`1 ) by
A21,
A22,
A25,
GOBOARD6: 29;
hence contradiction by
A7,
A9,
A23;
end;
suppose
A28: i0
> (i
+ 1);
then (i
+ 1)
<= (
len (
GoB f)) by
A22,
XXREAL_0: 2;
then i
< (
len (
GoB f)) by
NAT_1: 13;
then
A29: (p
`1 )
< (((
GoB f)
* ((i
+ 1),1))
`1 ) by
A25,
GOBOARD6: 30;
0
<> (
width (
GoB f)) by
MATRIX_0:def 10;
then
A30: 1
<= (
width (
GoB f)) by
NAT_1: 14;
(i
+ 1)
>= 1 by
NAT_1: 11;
then (((
GoB f)
* ((i
+ 1),1))
`1 )
< (((
GoB f)
* (i0,1))
`1 ) by
A22,
A28,
A30,
GOBOARD5: 3;
hence contradiction by
A7,
A9,
A23,
A29;
end;
suppose
A31: i0
= (i
+ 1);
then i
< (
len (
GoB f)) by
A22,
NAT_1: 13;
then (p
`1 )
< (((
GoB f)
* (i0,1))
`1 ) by
A25,
A31,
GOBOARD6: 30;
hence contradiction by
A7,
A9,
A23;
end;
end;
hence contradiction by
A5,
A4,
XBOOLE_0:def 4;
end;
end;
begin
theorem ::
GOBOARD7:13
Th13: 1
<= i & i
<= (
len G) & 1
<= j & (j
+ 2)
<= (
width G) implies ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* (i,(j
+ 2))))))
=
{(G
* (i,(j
+ 1)))}
proof
assume that
A1: 1
<= i & i
<= (
len G) and
A2: 1
<= j and
A3: (j
+ 2)
<= (
width G);
now
let x be
object;
hereby
assume
A4: x
in ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* (i,(j
+ 2))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A5: x
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) by
A4,
XBOOLE_0:def 4;
A6: p
in (
LSeg ((G
* (i,(j
+ 1))),(G
* (i,(j
+ 2))))) by
A4,
XBOOLE_0:def 4;
j
<= (j
+ 2) by
NAT_1: 11;
then
A7: j
<= (
width G) by
A3,
XXREAL_0: 2;
A8: (j
+ 1)
< (j
+ 2) by
XREAL_1: 6;
then
A9: (j
+ 1)
<= (
width G) by
A3,
XXREAL_0: 2;
A10: 1
<= (j
+ 1) by
NAT_1: 11;
then ((G
* (i,(j
+ 1)))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A9,
GOBOARD5: 2
.= ((G
* (i,j))
`1 ) by
A1,
A2,
A7,
GOBOARD5: 2;
then
A11: (p
`1 )
= ((G
* (i,(j
+ 1)))
`1 ) by
A5,
Th5;
j
< (j
+ 1) by
XREAL_1: 29;
then ((G
* (i,j))
`2 )
< ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A2,
A9,
GOBOARD5: 4;
then
A12: (p
`2 )
<= ((G
* (i,(j
+ 1)))
`2 ) by
A5,
TOPREAL1: 4;
((G
* (i,(j
+ 1)))
`2 )
< ((G
* (i,(j
+ 2)))
`2 ) by
A1,
A3,
A8,
A10,
GOBOARD5: 4;
then (p
`2 )
>= ((G
* (i,(j
+ 1)))
`2 ) by
A6,
TOPREAL1: 4;
then (p
`2 )
= ((G
* (i,(j
+ 1)))
`2 ) by
A12,
XXREAL_0: 1;
hence x
= (G
* (i,(j
+ 1))) by
A11,
TOPREAL3: 6;
end;
assume x
= (G
* (i,(j
+ 1)));
then x
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) & x
in (
LSeg ((G
* (i,(j
+ 1))),(G
* (i,(j
+ 2))))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* (i,(j
+ 2)))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:14
Th14: 1
<= i & (i
+ 2)
<= (
len G) & 1
<= j & j
<= (
width G) implies ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 2),j)))))
=
{(G
* ((i
+ 1),j))}
proof
assume that
A1: 1
<= i and
A2: (i
+ 2)
<= (
len G) and
A3: 1
<= j & j
<= (
width G);
now
let x be
object;
hereby
assume
A4: x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 2),j)))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A5: x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) by
A4,
XBOOLE_0:def 4;
A6: p
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 2),j)))) by
A4,
XBOOLE_0:def 4;
i
<= (i
+ 2) by
NAT_1: 11;
then
A7: i
<= (
len G) by
A2,
XXREAL_0: 2;
A8: (i
+ 1)
< (i
+ 2) by
XREAL_1: 6;
then
A9: (i
+ 1)
<= (
len G) by
A2,
XXREAL_0: 2;
A10: 1
<= (i
+ 1) by
NAT_1: 11;
then ((G
* ((i
+ 1),j))
`2 )
= ((G
* (1,j))
`2 ) by
A3,
A9,
GOBOARD5: 1
.= ((G
* (i,j))
`2 ) by
A1,
A3,
A7,
GOBOARD5: 1;
then
A11: (p
`2 )
= ((G
* ((i
+ 1),j))
`2 ) by
A5,
Th6;
i
< (i
+ 1) by
XREAL_1: 29;
then ((G
* (i,j))
`1 )
< ((G
* ((i
+ 1),j))
`1 ) by
A1,
A3,
A9,
GOBOARD5: 3;
then
A12: (p
`1 )
<= ((G
* ((i
+ 1),j))
`1 ) by
A5,
TOPREAL1: 3;
((G
* ((i
+ 1),j))
`1 )
< ((G
* ((i
+ 2),j))
`1 ) by
A2,
A3,
A8,
A10,
GOBOARD5: 3;
then (p
`1 )
>= ((G
* ((i
+ 1),j))
`1 ) by
A6,
TOPREAL1: 3;
then (p
`1 )
= ((G
* ((i
+ 1),j))
`1 ) by
A12,
XXREAL_0: 1;
hence x
= (G
* ((i
+ 1),j)) by
A11,
TOPREAL3: 6;
end;
assume x
= (G
* ((i
+ 1),j));
then x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) & x
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 2),j)))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 2),j))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:15
Th15: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))))
=
{(G
* (i,(j
+ 1)))}
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
now
let x be
object;
hereby
assume
A5: x
in ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A6: x
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A7: p
in (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
i
<= (i
+ 1) by
NAT_1: 11;
then
A9: i
<= (
len G) by
A2,
XXREAL_0: 2;
A10: 1
<= (j
+ 1) by
NAT_1: 11;
then ((G
* (i,(j
+ 1)))
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A1,
A4,
A9,
GOBOARD5: 1
.= ((G
* ((i
+ 1),(j
+ 1)))
`2 ) by
A2,
A4,
A10,
A8,
GOBOARD5: 1;
then
A11: (p
`2 )
= ((G
* (i,(j
+ 1)))
`2 ) by
A7,
Th6;
j
< (j
+ 1) by
XREAL_1: 29;
then j
<= (
width G) by
A4,
XXREAL_0: 2;
then ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A3,
A9,
GOBOARD5: 2
.= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A9,
A10,
GOBOARD5: 2;
then (p
`1 )
= ((G
* (i,(j
+ 1)))
`1 ) by
A6,
Th5;
hence x
= (G
* (i,(j
+ 1))) by
A11,
TOPREAL3: 6;
end;
assume x
= (G
* (i,(j
+ 1)));
then x
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) & x
in (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))
/\ (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1)))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:16
Th16: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1)))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))))
=
{(G
* ((i
+ 1),(j
+ 1)))}
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
now
let x be
object;
hereby
assume
A5: x
in ((
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1)))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A6: x
in (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A7: p
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
A9: 1
<= (i
+ 1) by
NAT_1: 11;
A10: 1
<= (j
+ 1) by
NAT_1: 11;
j
< (j
+ 1) by
XREAL_1: 29;
then j
<= (
width G) by
A4,
XXREAL_0: 2;
then ((G
* ((i
+ 1),j))
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A2,
A3,
A8,
GOBOARD5: 2
.= ((G
* ((i
+ 1),(j
+ 1)))
`1 ) by
A2,
A4,
A10,
A9,
GOBOARD5: 2;
then
A11: (p
`1 )
= ((G
* ((i
+ 1),(j
+ 1)))
`1 ) by
A7,
Th5;
i
<= (i
+ 1) by
NAT_1: 11;
then i
<= (
len G) by
A2,
XXREAL_0: 2;
then ((G
* (i,(j
+ 1)))
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A1,
A4,
A10,
GOBOARD5: 1
.= ((G
* ((i
+ 1),(j
+ 1)))
`2 ) by
A2,
A4,
A10,
A8,
GOBOARD5: 1;
then (p
`2 )
= ((G
* ((i
+ 1),(j
+ 1)))
`2 ) by
A6,
Th6;
hence x
= (G
* ((i
+ 1),(j
+ 1))) by
A11,
TOPREAL3: 6;
end;
assume x
= (G
* ((i
+ 1),(j
+ 1)));
then x
in (
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1))))) & x
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,(j
+ 1))),(G
* ((i
+ 1),(j
+ 1)))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1)))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:17
Th17: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))))
=
{(G
* (i,j))}
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
now
let x be
object;
hereby
assume
A5: x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A6: x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) by
A5,
XBOOLE_0:def 4;
A7: p
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
A9: 1
<= (j
+ 1) by
NAT_1: 11;
j
< (j
+ 1) by
XREAL_1: 29;
then
A10: j
<= (
width G) by
A4,
XXREAL_0: 2;
i
<= (i
+ 1) by
NAT_1: 11;
then
A11: i
<= (
len G) by
A2,
XXREAL_0: 2;
then ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A3,
A10,
GOBOARD5: 2
.= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A11,
A9,
GOBOARD5: 2;
then
A12: (p
`1 )
= ((G
* (i,j))
`1 ) by
A7,
Th5;
((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A3,
A11,
A10,
GOBOARD5: 1
.= ((G
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A8,
A10,
GOBOARD5: 1;
then (p
`2 )
= ((G
* (i,j))
`2 ) by
A6,
Th6;
hence x
= (G
* (i,j)) by
A12,
TOPREAL3: 6;
end;
assume x
= (G
* (i,j));
then x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) & x
in (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1))))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* (i,j)),(G
* (i,(j
+ 1)))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:18
Th18: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))))
=
{(G
* ((i
+ 1),j))}
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
now
let x be
object;
hereby
assume
A5: x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
A6: x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) by
A5,
XBOOLE_0:def 4;
A7: p
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))) by
A5,
XBOOLE_0:def 4;
A8: 1
<= (j
+ 1) & 1
<= (i
+ 1) by
NAT_1: 11;
j
< (j
+ 1) by
XREAL_1: 29;
then
A9: j
<= (
width G) by
A4,
XXREAL_0: 2;
A10: 1
<= (i
+ 1) by
NAT_1: 11;
then ((G
* ((i
+ 1),j))
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A2,
A3,
A9,
GOBOARD5: 2
.= ((G
* ((i
+ 1),(j
+ 1)))
`1 ) by
A2,
A4,
A8,
GOBOARD5: 2;
then
A11: (p
`1 )
= ((G
* ((i
+ 1),j))
`1 ) by
A7,
Th5;
i
<= (i
+ 1) by
NAT_1: 11;
then i
<= (
len G) by
A2,
XXREAL_0: 2;
then ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A3,
A9,
GOBOARD5: 1
.= ((G
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A10,
A9,
GOBOARD5: 1;
then (p
`2 )
= ((G
* ((i
+ 1),j))
`2 ) by
A6,
Th6;
hence x
= (G
* ((i
+ 1),j)) by
A11,
TOPREAL3: 6;
end;
assume x
= (G
* ((i
+ 1),j));
then x
in (
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j)))) & x
in (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 68;
hence x
in ((
LSeg ((G
* (i,j)),(G
* ((i
+ 1),j))))
/\ (
LSeg ((G
* ((i
+ 1),j)),(G
* ((i
+ 1),(j
+ 1)))))) by
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GOBOARD7:19
Th19: for i1,j1,i2,j2 be
Nat st 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & i2
<= (
len G) & 1
<= j2 & (j2
+ 1)
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) holds i1
= i2 &
|.(j1
- j2).|
<= 1
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 & i1
<= (
len G) and
A2: 1
<= j1 and
A3: (j1
+ 1)
<= (
width G) and
A4: 1
<= i2 & i2
<= (
len G) and
A5: 1
<= j2 and
A6: (j2
+ 1)
<= (
width G);
A7: 1
<= (j1
+ 1) by
A2,
NAT_1: 13;
A8: j1
< (
width G) by
A3,
NAT_1: 13;
assume (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))));
then
consider x be
object such that
A9: x
in (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1))))) and
A10: x
in (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) by
XBOOLE_0: 3;
reconsider p = x as
Point of (
TOP-REAL 2) by
A9;
consider r1 such that
A11: p
= (((1
- r1)
* (G
* (i1,j1)))
+ (r1
* (G
* (i1,(j1
+ 1))))) and
A12: r1
>=
0 and
A13: r1
<= 1 by
A9;
consider r2 such that
A14: p
= (((1
- r2)
* (G
* (i2,j2)))
+ (r2
* (G
* (i2,(j2
+ 1))))) and
A15: r2
>=
0 and
A16: r2
<= 1 by
A10;
A17: 1
<= (j2
+ 1) by
A5,
NAT_1: 13;
A18: j2
< (
width G) by
A6,
NAT_1: 13;
assume
A19: not thesis;
per cases by
A19;
suppose i1
<> i2;
then
A20: i1
< i2 or i2
< i1 by
XXREAL_0: 1;
A21: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A4,
A5,
A18,
GOBOARD5: 2
.= ((G
* (i2,(j2
+ 1)))
`1 ) by
A4,
A6,
A17,
GOBOARD5: 2;
((G
* (i1,j1))
`1 )
= ((G
* (i1,1))
`1 ) by
A1,
A2,
A8,
GOBOARD5: 2
.= ((G
* (i1,(j1
+ 1)))
`1 ) by
A1,
A3,
A7,
GOBOARD5: 2;
then (1
* ((G
* (i1,j1))
`1 ))
= (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`1 )))
.= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ (r1
* ((G
* (i1,(j1
+ 1)))
`1 ))) by
TOPREAL3: 4
.= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ ((r1
* (G
* (i1,(j1
+ 1))))
`1 )) by
TOPREAL3: 4
.= (p
`1 ) by
A11,
TOPREAL3: 2
.= ((((1
- r2)
* (G
* (i2,j2)))
`1 )
+ ((r2
* (G
* (i2,(j2
+ 1))))
`1 )) by
A14,
TOPREAL3: 2
.= (((1
- r2)
* ((G
* (i2,j2))
`1 ))
+ ((r2
* (G
* (i2,(j2
+ 1))))
`1 )) by
TOPREAL3: 4
.= (((1
- r2)
* ((G
* (i2,j2))
`1 ))
+ (r2
* ((G
* (i2,(j2
+ 1)))
`1 ))) by
TOPREAL3: 4
.= ((G
* (i2,1))
`1 ) by
A4,
A6,
A17,
A21,
GOBOARD5: 2
.= ((G
* (i2,j1))
`1 ) by
A2,
A4,
A8,
GOBOARD5: 2;
hence contradiction by
A1,
A2,
A4,
A8,
A20,
GOBOARD5: 3;
end;
suppose
A22:
|.(j1
- j2).|
> 1;
A23: ((G
* (i2,(j2
+ 1)))
`2 )
= ((G
* (1,(j2
+ 1)))
`2 ) by
A4,
A6,
A17,
GOBOARD5: 1
.= ((G
* (i1,(j2
+ 1)))
`2 ) by
A1,
A6,
A17,
GOBOARD5: 1;
A24: ((G
* (i2,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A4,
A5,
A18,
GOBOARD5: 1
.= ((G
* (i1,j2))
`2 ) by
A1,
A5,
A18,
GOBOARD5: 1;
A25: (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`2 )))
= ((((1
- r1)
* (G
* (i1,j1)))
`2 )
+ (r1
* ((G
* (i1,(j1
+ 1)))
`2 ))) by
TOPREAL3: 4
.= ((((1
- r1)
* (G
* (i1,j1)))
`2 )
+ ((r1
* (G
* (i1,(j1
+ 1))))
`2 )) by
TOPREAL3: 4
.= (p
`2 ) by
A11,
TOPREAL3: 2
.= ((((1
- r2)
* (G
* (i2,j2)))
`2 )
+ ((r2
* (G
* (i2,(j2
+ 1))))
`2 )) by
A14,
TOPREAL3: 2
.= (((1
- r2)
* ((G
* (i2,j2))
`2 ))
+ ((r2
* (G
* (i2,(j2
+ 1))))
`2 )) by
TOPREAL3: 4
.= (((1
- r2)
* ((G
* (i1,j2))
`2 ))
+ (r2
* ((G
* (i1,(j2
+ 1)))
`2 ))) by
A23,
A24,
TOPREAL3: 4;
now
per cases by
A22,
Th1;
suppose
A26: (j1
+ 1)
< j2;
j2
< (j2
+ 1) by
XREAL_1: 29;
then ((G
* (i1,j2))
`2 )
< ((G
* (i1,(j2
+ 1)))
`2 ) by
A1,
A5,
A6,
GOBOARD5: 4;
then (((1
- r2)
* ((G
* (i1,j2))
`2 ))
+ (r2
* ((G
* (i1,j2))
`2 )))
= (1
* ((G
* (i1,j2))
`2 )) & (r2
* ((G
* (i1,j2))
`2 ))
<= (r2
* ((G
* (i1,(j2
+ 1)))
`2 )) by
A15,
XREAL_1: 64;
then
A27: ((G
* (i1,j2))
`2 )
<= (((1
- r2)
* ((G
* (i1,j2))
`2 ))
+ (r2
* ((G
* (i1,(j2
+ 1)))
`2 ))) by
XREAL_1: 6;
j1
< (j1
+ 1) by
XREAL_1: 29;
then
A28: ((G
* (i1,j1))
`2 )
<= ((G
* (i1,(j1
+ 1)))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
(1
- r1)
>=
0 by
A13,
XREAL_1: 48;
then (((1
- r1)
* ((G
* (i1,(j1
+ 1)))
`2 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`2 )))
= (1
* ((G
* (i1,(j1
+ 1)))
`2 )) & ((1
- r1)
* ((G
* (i1,j1))
`2 ))
<= ((1
- r1)
* ((G
* (i1,(j1
+ 1)))
`2 )) by
A28,
XREAL_1: 64;
then
A29: (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`2 )))
<= ((G
* (i1,(j1
+ 1)))
`2 ) by
XREAL_1: 6;
((G
* (i1,(j1
+ 1)))
`2 )
< ((G
* (i1,j2))
`2 ) by
A1,
A7,
A18,
A26,
GOBOARD5: 4;
hence contradiction by
A25,
A29,
A27,
XXREAL_0: 2;
end;
suppose
A30: (j2
+ 1)
< j1;
j1
< (j1
+ 1) by
XREAL_1: 29;
then ((G
* (i1,j1))
`2 )
< ((G
* (i1,(j1
+ 1)))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
then (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ (r1
* ((G
* (i1,j1))
`2 )))
= (1
* ((G
* (i1,j1))
`2 )) & (r1
* ((G
* (i1,j1))
`2 ))
<= (r1
* ((G
* (i1,(j1
+ 1)))
`2 )) by
A12,
XREAL_1: 64;
then
A31: ((G
* (i1,j1))
`2 )
<= (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`2 ))) by
XREAL_1: 6;
j2
< (j2
+ 1) by
XREAL_1: 29;
then
A32: ((G
* (i1,j2))
`2 )
<= ((G
* (i1,(j2
+ 1)))
`2 ) by
A1,
A5,
A6,
GOBOARD5: 4;
(1
- r2)
>=
0 by
A16,
XREAL_1: 48;
then (((1
- r2)
* ((G
* (i1,(j2
+ 1)))
`2 ))
+ (r2
* ((G
* (i1,(j2
+ 1)))
`2 )))
= (1
* ((G
* (i1,(j2
+ 1)))
`2 )) & ((1
- r2)
* ((G
* (i1,j2))
`2 ))
<= ((1
- r2)
* ((G
* (i1,(j2
+ 1)))
`2 )) by
A32,
XREAL_1: 64;
then
A33: (((1
- r2)
* ((G
* (i1,j2))
`2 ))
+ (r2
* ((G
* (i1,(j2
+ 1)))
`2 )))
<= ((G
* (i1,(j2
+ 1)))
`2 ) by
XREAL_1: 6;
((G
* (i1,(j2
+ 1)))
`2 )
< ((G
* (i1,j1))
`2 ) by
A1,
A8,
A17,
A30,
GOBOARD5: 4;
hence contradiction by
A25,
A33,
A31,
XXREAL_0: 2;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:20
Th20: for i1,j1,i2,j2 be
Nat st 1
<= i1 & (i1
+ 1)
<= (
len G) & 1
<= j1 & j1
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) holds j1
= j2 &
|.(i1
- i2).|
<= 1
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 and
A2: (i1
+ 1)
<= (
len G) and
A3: 1
<= j1 & j1
<= (
width G) and
A4: 1
<= i2 and
A5: (i2
+ 1)
<= (
len G) and
A6: 1
<= j2 & j2
<= (
width G);
A7: 1
<= (i1
+ 1) by
A1,
NAT_1: 13;
A8: i1
< (
len G) by
A2,
NAT_1: 13;
assume (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
then
consider x be
object such that
A9: x
in (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1)))) and
A10: x
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) by
XBOOLE_0: 3;
reconsider p = x as
Point of (
TOP-REAL 2) by
A9;
consider r1 such that
A11: p
= (((1
- r1)
* (G
* (i1,j1)))
+ (r1
* (G
* ((i1
+ 1),j1)))) and
A12: r1
>=
0 and
A13: r1
<= 1 by
A9;
consider r2 such that
A14: p
= (((1
- r2)
* (G
* (i2,j2)))
+ (r2
* (G
* ((i2
+ 1),j2)))) and
A15: r2
>=
0 and
A16: r2
<= 1 by
A10;
A17: 1
<= (i2
+ 1) by
A4,
NAT_1: 13;
A18: i2
< (
len G) by
A5,
NAT_1: 13;
assume
A19: not thesis;
per cases by
A19;
suppose j1
<> j2;
then
A20: j1
< j2 or j2
< j1 by
XXREAL_0: 1;
A21: ((G
* (i2,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A4,
A6,
A18,
GOBOARD5: 1
.= ((G
* ((i2
+ 1),j2))
`2 ) by
A5,
A6,
A17,
GOBOARD5: 1;
((G
* (i1,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A1,
A3,
A8,
GOBOARD5: 1
.= ((G
* ((i1
+ 1),j1))
`2 ) by
A2,
A3,
A7,
GOBOARD5: 1;
then (1
* ((G
* (i1,j1))
`2 ))
= (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ (r1
* ((G
* ((i1
+ 1),j1))
`2 )))
.= ((((1
- r1)
* (G
* (i1,j1)))
`2 )
+ (r1
* ((G
* ((i1
+ 1),j1))
`2 ))) by
TOPREAL3: 4
.= ((((1
- r1)
* (G
* (i1,j1)))
`2 )
+ ((r1
* (G
* ((i1
+ 1),j1)))
`2 )) by
TOPREAL3: 4
.= (p
`2 ) by
A11,
TOPREAL3: 2
.= ((((1
- r2)
* (G
* (i2,j2)))
`2 )
+ ((r2
* (G
* ((i2
+ 1),j2)))
`2 )) by
A14,
TOPREAL3: 2
.= (((1
- r2)
* ((G
* (i2,j2))
`2 ))
+ ((r2
* (G
* ((i2
+ 1),j2)))
`2 )) by
TOPREAL3: 4
.= (((1
- r2)
* ((G
* (i2,j2))
`2 ))
+ (r2
* ((G
* ((i2
+ 1),j2))
`2 ))) by
TOPREAL3: 4
.= ((G
* (1,j2))
`2 ) by
A5,
A6,
A17,
A21,
GOBOARD5: 1
.= ((G
* (i1,j2))
`2 ) by
A1,
A6,
A8,
GOBOARD5: 1;
hence contradiction by
A1,
A3,
A6,
A8,
A20,
GOBOARD5: 4;
end;
suppose
A22:
|.(i1
- i2).|
> 1;
A23: ((G
* ((i2
+ 1),j2))
`1 )
= ((G
* ((i2
+ 1),1))
`1 ) by
A5,
A6,
A17,
GOBOARD5: 2
.= ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A5,
A17,
GOBOARD5: 2;
A24: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A4,
A6,
A18,
GOBOARD5: 2
.= ((G
* (i2,j1))
`1 ) by
A3,
A4,
A18,
GOBOARD5: 2;
A25: (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* ((i1
+ 1),j1))
`1 )))
= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ (r1
* ((G
* ((i1
+ 1),j1))
`1 ))) by
TOPREAL3: 4
.= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ ((r1
* (G
* ((i1
+ 1),j1)))
`1 )) by
TOPREAL3: 4
.= (p
`1 ) by
A11,
TOPREAL3: 2
.= ((((1
- r2)
* (G
* (i2,j2)))
`1 )
+ ((r2
* (G
* ((i2
+ 1),j2)))
`1 )) by
A14,
TOPREAL3: 2
.= (((1
- r2)
* ((G
* (i2,j2))
`1 ))
+ ((r2
* (G
* ((i2
+ 1),j2)))
`1 )) by
TOPREAL3: 4
.= (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 ))) by
A23,
A24,
TOPREAL3: 4;
now
per cases by
A22,
Th1;
suppose
A26: (i1
+ 1)
< i2;
i2
< (i2
+ 1) by
XREAL_1: 29;
then ((G
* (i2,j1))
`1 )
< ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A4,
A5,
GOBOARD5: 3;
then (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* (i2,j1))
`1 )))
= (1
* ((G
* (i2,j1))
`1 )) & (r2
* ((G
* (i2,j1))
`1 ))
<= (r2
* ((G
* ((i2
+ 1),j1))
`1 )) by
A15,
XREAL_1: 64;
then
A27: ((G
* (i2,j1))
`1 )
<= (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 ))) by
XREAL_1: 6;
i1
< (i1
+ 1) by
XREAL_1: 29;
then
A28: ((G
* (i1,j1))
`1 )
<= ((G
* ((i1
+ 1),j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
(1
- r1)
>=
0 by
A13,
XREAL_1: 48;
then (((1
- r1)
* ((G
* ((i1
+ 1),j1))
`1 ))
+ (r1
* ((G
* ((i1
+ 1),j1))
`1 )))
= (1
* ((G
* ((i1
+ 1),j1))
`1 )) & ((1
- r1)
* ((G
* (i1,j1))
`1 ))
<= ((1
- r1)
* ((G
* ((i1
+ 1),j1))
`1 )) by
A28,
XREAL_1: 64;
then
A29: (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* ((i1
+ 1),j1))
`1 )))
<= ((G
* ((i1
+ 1),j1))
`1 ) by
XREAL_1: 6;
((G
* ((i1
+ 1),j1))
`1 )
< ((G
* (i2,j1))
`1 ) by
A3,
A7,
A18,
A26,
GOBOARD5: 3;
hence contradiction by
A25,
A29,
A27,
XXREAL_0: 2;
end;
suppose
A30: (i2
+ 1)
< i1;
i1
< (i1
+ 1) by
XREAL_1: 29;
then ((G
* (i1,j1))
`1 )
< ((G
* ((i1
+ 1),j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
then (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* (i1,j1))
`1 )))
= (1
* ((G
* (i1,j1))
`1 )) & (r1
* ((G
* (i1,j1))
`1 ))
<= (r1
* ((G
* ((i1
+ 1),j1))
`1 )) by
A12,
XREAL_1: 64;
then
A31: ((G
* (i1,j1))
`1 )
<= (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* ((i1
+ 1),j1))
`1 ))) by
XREAL_1: 6;
i2
< (i2
+ 1) by
XREAL_1: 29;
then
A32: ((G
* (i2,j1))
`1 )
<= ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A4,
A5,
GOBOARD5: 3;
(1
- r2)
>=
0 by
A16,
XREAL_1: 48;
then (((1
- r2)
* ((G
* ((i2
+ 1),j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 )))
= (1
* ((G
* ((i2
+ 1),j1))
`1 )) & ((1
- r2)
* ((G
* (i2,j1))
`1 ))
<= ((1
- r2)
* ((G
* ((i2
+ 1),j1))
`1 )) by
A32,
XREAL_1: 64;
then
A33: (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 )))
<= ((G
* ((i2
+ 1),j1))
`1 ) by
XREAL_1: 6;
((G
* ((i2
+ 1),j1))
`1 )
< ((G
* (i1,j1))
`1 ) by
A3,
A8,
A17,
A30,
GOBOARD5: 3;
hence contradiction by
A25,
A33,
A31,
XXREAL_0: 2;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:21
Th21: for i1,j1,i2,j2 be
Nat st 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) holds (i1
= i2 or i1
= (i2
+ 1)) & (j1
= j2 or (j1
+ 1)
= j2)
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 and
A2: i1
<= (
len G) and
A3: 1
<= j1 and
A4: (j1
+ 1)
<= (
width G) and
A5: 1
<= i2 and
A6: (i2
+ 1)
<= (
len G) and
A7: 1
<= j2 and
A8: j2
<= (
width G);
assume (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
then
consider x be
object such that
A9: x
in (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1))))) and
A10: x
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) by
XBOOLE_0: 3;
reconsider p = x as
Point of (
TOP-REAL 2) by
A9;
consider r1 such that
A11: p
= (((1
- r1)
* (G
* (i1,j1)))
+ (r1
* (G
* (i1,(j1
+ 1))))) and
A12: r1
>=
0 and
A13: r1
<= 1 by
A9;
consider r2 such that
A14: p
= (((1
- r2)
* (G
* (i2,j2)))
+ (r2
* (G
* ((i2
+ 1),j2)))) and
A15: r2
>=
0 and
A16: r2
<= 1 by
A10;
A17: i2
< (
len G) by
A6,
NAT_1: 13;
A18: 1
<= (j1
+ 1) by
A3,
NAT_1: 13;
then
A19: ((G
* (i1,(j1
+ 1)))
`2 )
= ((G
* (1,(j1
+ 1)))
`2 ) by
A1,
A2,
A4,
GOBOARD5: 1
.= ((G
* (i2,(j1
+ 1)))
`2 ) by
A4,
A5,
A18,
A17,
GOBOARD5: 1;
A20: j1
< (
width G) by
A4,
NAT_1: 13;
then
A21: ((G
* (i1,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 1
.= ((G
* (i2,j1))
`2 ) by
A3,
A5,
A20,
A17,
GOBOARD5: 1;
A22: (((1
- r2)
* ((G
* (i2,j2))
`2 ))
+ (r2
* ((G
* ((i2
+ 1),j2))
`2 )))
= ((((1
- r2)
* (G
* (i2,j2)))
`2 )
+ (r2
* ((G
* ((i2
+ 1),j2))
`2 ))) by
TOPREAL3: 4
.= ((((1
- r2)
* (G
* (i2,j2)))
`2 )
+ ((r2
* (G
* ((i2
+ 1),j2)))
`2 )) by
TOPREAL3: 4
.= (p
`2 ) by
A14,
TOPREAL3: 2
.= ((((1
- r1)
* (G
* (i1,j1)))
`2 )
+ ((r1
* (G
* (i1,(j1
+ 1))))
`2 )) by
A11,
TOPREAL3: 2
.= (((1
- r1)
* ((G
* (i1,j1))
`2 ))
+ ((r1
* (G
* (i1,(j1
+ 1))))
`2 )) by
TOPREAL3: 4
.= (((1
- r1)
* ((G
* (i2,j1))
`2 ))
+ (r1
* ((G
* (i2,(j1
+ 1)))
`2 ))) by
A19,
A21,
TOPREAL3: 4;
A23: 1
<= (i2
+ 1) by
A5,
NAT_1: 13;
thus i1
= i2 or i1
= (i2
+ 1)
proof
A24: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A5,
A7,
A8,
A17,
GOBOARD5: 2
.= ((G
* (i2,j1))
`1 ) by
A3,
A5,
A20,
A17,
GOBOARD5: 2;
A25: ((G
* ((i2
+ 1),j2))
`1 )
= ((G
* ((i2
+ 1),1))
`1 ) by
A6,
A7,
A8,
A23,
GOBOARD5: 2
.= ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A6,
A20,
A23,
GOBOARD5: 2;
A26: (((1
- r1)
* ((G
* (i1,j1))
`1 ))
+ (r1
* ((G
* (i1,(j1
+ 1)))
`1 )))
= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ (r1
* ((G
* (i1,(j1
+ 1)))
`1 ))) by
TOPREAL3: 4
.= ((((1
- r1)
* (G
* (i1,j1)))
`1 )
+ ((r1
* (G
* (i1,(j1
+ 1))))
`1 )) by
TOPREAL3: 4
.= (p
`1 ) by
A11,
TOPREAL3: 2
.= ((((1
- r2)
* (G
* (i2,j2)))
`1 )
+ ((r2
* (G
* ((i2
+ 1),j2)))
`1 )) by
A14,
TOPREAL3: 2
.= (((1
- r2)
* ((G
* (i2,j2))
`1 ))
+ ((r2
* (G
* ((i2
+ 1),j2)))
`1 )) by
TOPREAL3: 4
.= (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 ))) by
A25,
A24,
TOPREAL3: 4;
A27: ((G
* (i1,j1))
`1 )
= ((G
* (i1,1))
`1 ) by
A1,
A2,
A3,
A20,
GOBOARD5: 2
.= ((G
* (i1,(j1
+ 1)))
`1 ) by
A1,
A2,
A4,
A18,
GOBOARD5: 2;
assume
A28: not thesis;
per cases by
A28,
XXREAL_0: 1;
suppose
A29: i1
< i2 & i1
< (i2
+ 1);
i2
< (i2
+ 1) by
XREAL_1: 29;
then ((G
* (i2,j1))
`1 )
< ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A5,
A6,
A20,
GOBOARD5: 3;
then
A30: (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* (i2,j1))
`1 )))
= (1
* ((G
* (i2,j1))
`1 )) & (r2
* ((G
* (i2,j1))
`1 ))
<= (r2
* ((G
* ((i2
+ 1),j1))
`1 )) by
A15,
XREAL_1: 64;
((G
* (i1,j1))
`1 )
< ((G
* (i2,j1))
`1 ) by
A1,
A3,
A20,
A17,
A29,
GOBOARD5: 3;
hence contradiction by
A26,
A27,
A30,
XREAL_1: 6;
end;
suppose i1
< i2 & (i2
+ 1)
< i1;
hence thesis by
NAT_1: 13;
end;
suppose i2
< i1 & i1
< (i2
+ 1);
hence thesis by
NAT_1: 13;
end;
suppose
A31: (i2
+ 1)
< i1;
i2
< (i2
+ 1) by
XREAL_1: 29;
then
A32: ((G
* (i2,j1))
`1 )
<= ((G
* ((i2
+ 1),j1))
`1 ) by
A3,
A5,
A6,
A20,
GOBOARD5: 3;
(1
- r2)
>=
0 by
A16,
XREAL_1: 48;
then (((1
- r2)
* ((G
* ((i2
+ 1),j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 )))
= (1
* ((G
* ((i2
+ 1),j1))
`1 )) & ((1
- r2)
* ((G
* (i2,j1))
`1 ))
<= ((1
- r2)
* ((G
* ((i2
+ 1),j1))
`1 )) by
A32,
XREAL_1: 64;
then (((1
- r2)
* ((G
* (i2,j1))
`1 ))
+ (r2
* ((G
* ((i2
+ 1),j1))
`1 )))
<= ((G
* ((i2
+ 1),j1))
`1 ) by
XREAL_1: 6;
hence contradiction by
A2,
A3,
A20,
A23,
A26,
A27,
A31,
GOBOARD5: 3;
end;
end;
A33: ((G
* (i2,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A5,
A7,
A8,
A17,
GOBOARD5: 1
.= ((G
* ((i2
+ 1),j2))
`2 ) by
A6,
A7,
A8,
A23,
GOBOARD5: 1;
assume
A34: not thesis;
per cases by
A34,
XXREAL_0: 1;
suppose
A35: j2
< j1 & j2
< (j1
+ 1);
j1
< (j1
+ 1) by
XREAL_1: 29;
then ((G
* (i2,j1))
`2 )
< ((G
* (i2,(j1
+ 1)))
`2 ) by
A3,
A4,
A5,
A17,
GOBOARD5: 4;
then
A36: (((1
- r1)
* ((G
* (i2,j1))
`2 ))
+ (r1
* ((G
* (i2,j1))
`2 )))
= (1
* ((G
* (i2,j1))
`2 )) & (r1
* ((G
* (i2,j1))
`2 ))
<= (r1
* ((G
* (i2,(j1
+ 1)))
`2 )) by
A12,
XREAL_1: 64;
((G
* (i2,j2))
`2 )
< ((G
* (i2,j1))
`2 ) by
A5,
A7,
A20,
A17,
A35,
GOBOARD5: 4;
hence contradiction by
A22,
A33,
A36,
XREAL_1: 6;
end;
suppose j2
< j1 & (j1
+ 1)
< j2;
hence thesis by
NAT_1: 13;
end;
suppose j1
< j2 & j2
< (j1
+ 1);
hence thesis by
NAT_1: 13;
end;
suppose
A37: (j1
+ 1)
< j2;
j1
< (j1
+ 1) by
XREAL_1: 29;
then
A38: ((G
* (i2,j1))
`2 )
<= ((G
* (i2,(j1
+ 1)))
`2 ) by
A3,
A4,
A5,
A17,
GOBOARD5: 4;
(1
- r1)
>=
0 by
A13,
XREAL_1: 48;
then (((1
- r1)
* ((G
* (i2,(j1
+ 1)))
`2 ))
+ (r1
* ((G
* (i2,(j1
+ 1)))
`2 )))
= (1
* ((G
* (i2,(j1
+ 1)))
`2 )) & ((1
- r1)
* ((G
* (i2,j1))
`2 ))
<= ((1
- r1)
* ((G
* (i2,(j1
+ 1)))
`2 )) by
A38,
XREAL_1: 64;
then (((1
- r1)
* ((G
* (i2,j1))
`2 ))
+ (r1
* ((G
* (i2,(j1
+ 1)))
`2 )))
<= ((G
* (i2,(j1
+ 1)))
`2 ) by
XREAL_1: 6;
hence contradiction by
A5,
A8,
A18,
A17,
A22,
A33,
A37,
GOBOARD5: 4;
end;
end;
theorem ::
GOBOARD7:22
for i1,j1,i2,j2 be
Nat st 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & i2
<= (
len G) & 1
<= j2 & (j2
+ 1)
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) holds j1
= j2 & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
= (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) or j1
= (j2
+ 1) & ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))))
=
{(G
* (i1,j1))} or (j1
+ 1)
= j2 & ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))))
=
{(G
* (i2,j2))}
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 & i1
<= (
len G) and
A2: 1
<= j1 and
A3: (j1
+ 1)
<= (
width G) and
A4: 1
<= i2 & i2
<= (
len G) and
A5: 1
<= j2 and
A6: (j2
+ 1)
<= (
width G) and
A7: (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))));
A8: i1
= i2 by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
Th19;
A9: ((j1
+ 1)
+ 1)
= (j1
+ (1
+ 1));
A10: ((j2
+ 1)
+ 1)
= (j2
+ (1
+ 1));
A11:
|.(j1
- j2).|
=
0 or
|.(j1
- j2).|
= 1 by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
Th19,
NAT_1: 25;
per cases by
A11,
Th2,
SEQM_3: 41;
case j1
= j2;
hence thesis by
A8;
end;
case j1
= (j2
+ 1);
hence thesis by
A1,
A3,
A5,
A8,
A10,
Th13;
end;
case (j1
+ 1)
= j2;
hence thesis by
A1,
A2,
A6,
A8,
A9,
Th13;
end;
end;
theorem ::
GOBOARD7:23
for i1,j1,i2,j2 be
Nat st 1
<= i1 & (i1
+ 1)
<= (
len G) & 1
<= j1 & j1
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) holds i1
= i2 & (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
= (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) or i1
= (i2
+ 1) & ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))))
=
{(G
* (i1,j1))} or (i1
+ 1)
= i2 & ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))))
=
{(G
* (i2,j2))}
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 and
A2: (i1
+ 1)
<= (
len G) and
A3: 1
<= j1 & j1
<= (
width G) and
A4: 1
<= i2 and
A5: (i2
+ 1)
<= (
len G) and
A6: 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
A7: j1
= j2 by
A1,
A2,
A3,
A4,
A5,
A6,
Th20;
A8: ((i1
+ 1)
+ 1)
= (i1
+ (1
+ 1));
A9: ((i2
+ 1)
+ 1)
= (i2
+ (1
+ 1));
A10:
|.(i1
- i2).|
=
0 or
|.(i1
- i2).|
= 1 by
A1,
A2,
A3,
A4,
A5,
A6,
Th20,
NAT_1: 25;
per cases by
A10,
Th2,
SEQM_3: 41;
case i1
= i2;
hence thesis by
A7;
end;
case i1
= (i2
+ 1);
hence thesis by
A2,
A3,
A4,
A7,
A9,
Th14;
end;
case (i1
+ 1)
= i2;
hence thesis by
A1,
A3,
A5,
A7,
A8,
Th14;
end;
end;
theorem ::
GOBOARD7:24
for i1,j1,i2,j2 be
Nat st 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) holds j1
= j2 & ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))))
=
{(G
* (i1,j1))} or (j1
+ 1)
= j2 & ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))))
=
{(G
* (i1,(j1
+ 1)))}
proof
let i1,j1,i2,j2 be
Nat such that
A1: 1
<= i1 & i1
<= (
len G) and
A2: 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) and
A3: 1
<= j2 & j2
<= (
width G) & (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
per cases by
A1,
A2,
A3,
Th21;
case
A4: j1
= j2;
now
per cases by
A1,
A2,
A3,
Th21;
suppose i1
= i2;
hence thesis by
A2,
A4,
Th17;
end;
suppose i1
= (i2
+ 1);
hence thesis by
A2,
A4,
Th18;
end;
end;
hence thesis;
end;
case
A5: (j1
+ 1)
= j2;
now
per cases by
A1,
A2,
A3,
Th21;
suppose i1
= i2;
hence thesis by
A2,
A5,
Th15;
end;
suppose i1
= (i2
+ 1);
hence thesis by
A2,
A5,
Th16;
end;
end;
hence thesis;
end;
end;
Lm1: (1
- (1
/ 2))
= (1
/ 2);
theorem ::
GOBOARD7:25
Th25: 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) & 1
<= i2 & i2
<= (
len G) & 1
<= j2 & (j2
+ 1)
<= (
width G) & ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1)))))
in (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) implies i1
= i2 & j1
= j2
proof
assume that
A1: 1
<= i1 & i1
<= (
len G) and
A2: 1
<= j1 and
A3: (j1
+ 1)
<= (
width G) and
A4: 1
<= i2 & i2
<= (
len G) and
A5: 1
<= j2 and
A6: (j2
+ 1)
<= (
width G);
set mi = ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1)))));
A7: (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1))))) by
RLVECT_1:def 5;
then
A8: mi
in (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1))))) by
Lm1;
assume
A9: mi
in (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))));
then
A10: (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) by
A8,
XBOOLE_0: 3;
hence
A11: i1
= i2 by
A1,
A2,
A3,
A4,
A5,
A6,
Th19;
now
j1
< (j1
+ 1) by
XREAL_1: 29;
then
A12: ((G
* (i1,(j1
+ 1)))
`2 )
> ((G
* (i1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
assume
A13:
|.(j1
- j2).|
= 1;
per cases by
A13,
SEQM_3: 41;
suppose
A14: j1
= (j2
+ 1);
then ((
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))))
/\ (
LSeg ((G
* (i2,(j2
+ 1))),(G
* (i2,(j2
+ 2))))))
=
{(G
* (i2,(j2
+ 1)))} by
A3,
A4,
A5,
Th13;
then mi
in
{(G
* (i1,j1))} by
A9,
A8,
A11,
A14,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then ((1
/ 2)
* (G
* (i1,j1)))
= ((1
/ 2)
* (G
* (i1,(j1
+ 1)))) by
Th3;
hence contradiction by
A12,
RLVECT_1: 36;
end;
suppose
A15: (j1
+ 1)
= j2;
then ((
LSeg ((G
* (i2,j1)),(G
* (i2,(j1
+ 1)))))
/\ (
LSeg ((G
* (i2,(j1
+ 1))),(G
* (i2,(j1
+ 2))))))
=
{(G
* (i2,(j1
+ 1)))} by
A2,
A4,
A6,
Th13;
then mi
in
{(G
* (i1,j2))} by
A9,
A8,
A11,
A15,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,j2)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j2))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j2)))
+ ((1
/ 2)
* (G
* (i1,j2)))) by
RLVECT_1:def 6;
then ((1
/ 2)
* (G
* (i1,j1)))
= ((1
/ 2)
* (G
* (i1,(j1
+ 1)))) by
A15,
Th3;
hence contradiction by
A12,
RLVECT_1: 36;
end;
end;
then
|.(j1
- j2).|
=
0 by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
Th19,
NAT_1: 25;
hence thesis by
Th2;
end;
theorem ::
GOBOARD7:26
Th26: 1
<= i1 & (i1
+ 1)
<= (
len G) & 1
<= j1 & j1
<= (
width G) & 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1))))
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) implies i1
= i2 & j1
= j2
proof
assume that
A1: 1
<= i1 and
A2: (i1
+ 1)
<= (
len G) and
A3: 1
<= j1 & j1
<= (
width G) and
A4: 1
<= i2 and
A5: (i2
+ 1)
<= (
len G) and
A6: 1
<= j2 & j2
<= (
width G);
set mi = ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1))));
A7: (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1)))) by
RLVECT_1:def 5;
then
A8: mi
in (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1)))) by
Lm1;
assume
A9: mi
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
then
A10: (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) by
A8,
XBOOLE_0: 3;
then
A11: j1
= j2 by
A1,
A2,
A3,
A4,
A5,
A6,
Th20;
now
i1
< (i1
+ 1) by
XREAL_1: 29;
then
A12: ((G
* ((i1
+ 1),j1))
`1 )
> ((G
* (i1,j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
assume
A13:
|.(i1
- i2).|
= 1;
per cases by
A13,
SEQM_3: 41;
suppose
A14: i1
= (i2
+ 1);
then ((
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))))
/\ (
LSeg ((G
* ((i2
+ 1),j2)),(G
* ((i2
+ 2),j2)))))
=
{(G
* ((i2
+ 1),j2))} by
A2,
A4,
A6,
Th14;
then mi
in
{(G
* (i1,j1))} by
A9,
A8,
A11,
A14,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then ((1
/ 2)
* (G
* (i1,j1)))
= ((1
/ 2)
* (G
* ((i1
+ 1),j1))) by
Th3;
hence contradiction by
A12,
RLVECT_1: 36;
end;
suppose
A15: (i1
+ 1)
= i2;
then ((
LSeg ((G
* (i1,j2)),(G
* ((i1
+ 1),j2))))
/\ (
LSeg ((G
* ((i1
+ 1),j2)),(G
* ((i1
+ 2),j2)))))
=
{(G
* ((i1
+ 1),j2))} by
A1,
A5,
A6,
Th14;
then mi
in
{(G
* (i2,j1))} by
A9,
A8,
A11,
A15,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* (i2,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i2,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i2,j1)))
+ ((1
/ 2)
* (G
* (i2,j1)))) by
RLVECT_1:def 6;
then ((1
/ 2)
* (G
* (i1,j1)))
= ((1
/ 2)
* (G
* ((i1
+ 1),j1))) by
A15,
Th3;
hence contradiction by
A12,
RLVECT_1: 36;
end;
end;
then
|.(i1
- i2).|
=
0 by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
Th20,
NAT_1: 25;
hence i1
= i2 by
Th2;
thus thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
Th20;
end;
theorem ::
GOBOARD7:27
Th27: 1
<= i1 & (i1
+ 1)
<= (
len G) & 1
<= j1 & j1
<= (
width G) implies not ex i2, j2 st 1
<= i2 & i2
<= (
len G) & 1
<= j2 & (j2
+ 1)
<= (
width G) & ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1))))
in (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))))
proof
assume that
A1: 1
<= i1 & (i1
+ 1)
<= (
len G) and
A2: 1
<= j1 & j1
<= (
width G);
A3: i1
< (i1
+ 1) by
XREAL_1: 29;
set mi = ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1))));
given i2, j2 such that
A4: 1
<= i2 & i2
<= (
len G) and
A5: 1
<= j2 & (j2
+ 1)
<= (
width G) and
A6: mi
in (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1)))));
A7: (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* ((i1
+ 1),j1)))) by
RLVECT_1:def 5;
then
A8: mi
in (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1)))) by
Lm1;
then
A9: (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
meets (
LSeg ((G
* (i2,j2)),(G
* (i2,(j2
+ 1))))) by
A6,
XBOOLE_0: 3;
per cases by
A1,
A2,
A4,
A5,
A9,
Th21;
suppose
A10: j1
= j2 & i1
= i2;
then ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* (i1,(j1
+ 1))),(G
* (i1,j1)))))
=
{(G
* (i1,j1))} by
A1,
A5,
Th17;
then mi
in
{(G
* (i1,j1))} by
A6,
A8,
A10,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then
A11: ((1
/ 2)
* (G
* ((i1
+ 1),j1)))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* ((i1
+ 1),j1))
`1 )
> ((G
* (i1,j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
hence contradiction by
A11,
RLVECT_1: 36;
end;
suppose
A12: j1
= j2 & (i1
+ 1)
= i2;
then ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* ((i1
+ 1),(j1
+ 1))),(G
* ((i1
+ 1),j1)))))
=
{(G
* ((i1
+ 1),j1))} by
A1,
A5,
Th18;
then mi
in
{(G
* ((i1
+ 1),j1))} by
A6,
A8,
A12,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* ((i1
+ 1),j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* ((i1
+ 1),j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* ((i1
+ 1),j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1)))) by
RLVECT_1:def 6;
then
A13: ((1
/ 2)
* (G
* ((i1
+ 1),j1)))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* ((i1
+ 1),j1))
`1 )
> ((G
* (i1,j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
hence contradiction by
A13,
RLVECT_1: 36;
end;
suppose
A14: j1
= (j2
+ 1) & i1
= i2;
then ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* (i1,j1)),(G
* (i1,j2)))))
=
{(G
* (i1,j1))} by
A1,
A5,
Th15;
then mi
in
{(G
* (i1,j1))} by
A6,
A8,
A14,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then
A15: ((1
/ 2)
* (G
* ((i1
+ 1),j1)))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* ((i1
+ 1),j1))
`1 )
> ((G
* (i1,j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
hence contradiction by
A15,
RLVECT_1: 36;
end;
suppose
A16: j1
= (j2
+ 1) & (i1
+ 1)
= i2;
then ((
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1))))
/\ (
LSeg ((G
* ((i1
+ 1),j1)),(G
* ((i1
+ 1),j2)))))
=
{(G
* ((i1
+ 1),j1))} by
A1,
A5,
Th16;
then mi
in
{(G
* ((i1
+ 1),j1))} by
A6,
A8,
A16,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1))))
= (G
* ((i1
+ 1),j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* ((i1
+ 1),j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* ((i1
+ 1),j1)))
+ ((1
/ 2)
* (G
* ((i1
+ 1),j1)))) by
RLVECT_1:def 6;
then
A17: ((1
/ 2)
* (G
* ((i1
+ 1),j1)))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* ((i1
+ 1),j1))
`1 )
> ((G
* (i1,j1))
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
hence contradiction by
A17,
RLVECT_1: 36;
end;
end;
theorem ::
GOBOARD7:28
Th28: 1
<= i1 & i1
<= (
len G) & 1
<= j1 & (j1
+ 1)
<= (
width G) implies not ex i2, j2 st 1
<= i2 & (i2
+ 1)
<= (
len G) & 1
<= j2 & j2
<= (
width G) & ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1)))))
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))))
proof
assume that
A1: 1
<= i1 & i1
<= (
len G) and
A2: 1
<= j1 & (j1
+ 1)
<= (
width G);
A3: j1
< (j1
+ 1) by
XREAL_1: 29;
set mi = ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1)))));
given i2, j2 such that
A4: 1
<= i2 & (i2
+ 1)
<= (
len G) and
A5: 1
<= j2 & j2
<= (
width G) and
A6: mi
in (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2))));
A7: (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= ((1
/ 2)
* ((G
* (i1,j1))
+ (G
* (i1,(j1
+ 1))))) by
RLVECT_1:def 5;
then
A8: mi
in (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1))))) by
Lm1;
then
A9: (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
meets (
LSeg ((G
* (i2,j2)),(G
* ((i2
+ 1),j2)))) by
A6,
XBOOLE_0: 3;
per cases by
A1,
A2,
A4,
A5,
A9,
Th21;
suppose
A10: i1
= i2 & j1
= j2;
then ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* ((i1
+ 1),j1)),(G
* (i1,j1)))))
=
{(G
* (i1,j1))} by
A2,
A4,
Th17;
then mi
in
{(G
* (i1,j1))} by
A6,
A8,
A10,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then
A11: ((1
/ 2)
* (G
* (i1,(j1
+ 1))))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* (i1,(j1
+ 1)))
`2 )
> ((G
* (i1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
hence contradiction by
A11,
RLVECT_1: 36;
end;
suppose
A12: i1
= i2 & (j1
+ 1)
= j2;
then ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* ((i1
+ 1),(j1
+ 1))),(G
* (i1,(j1
+ 1))))))
=
{(G
* (i1,(j1
+ 1)))} by
A2,
A4,
Th15;
then mi
in
{(G
* (i1,(j1
+ 1)))} by
A6,
A8,
A12,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,(j1
+ 1))) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,(j1
+ 1)))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,(j1
+ 1))))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1))))) by
RLVECT_1:def 6;
then
A13: ((1
/ 2)
* (G
* (i1,(j1
+ 1))))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* (i1,(j1
+ 1)))
`2 )
> ((G
* (i1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
hence contradiction by
A13,
RLVECT_1: 36;
end;
suppose
A14: i1
= (i2
+ 1) & j1
= j2;
then ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i1,j1)),(G
* (i2,j1)))))
=
{(G
* (i1,j1))} by
A2,
A4,
Th18;
then mi
in
{(G
* (i1,j1))} by
A6,
A8,
A14,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,j1)) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,j1))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,j1)))) by
RLVECT_1:def 6;
then
A15: ((1
/ 2)
* (G
* (i1,(j1
+ 1))))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* (i1,(j1
+ 1)))
`2 )
> ((G
* (i1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
hence contradiction by
A15,
RLVECT_1: 36;
end;
suppose
A16: i1
= (i2
+ 1) & (j1
+ 1)
= j2;
then ((
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1)))))
/\ (
LSeg ((G
* (i1,(j1
+ 1))),(G
* (i2,(j1
+ 1))))))
=
{(G
* (i1,(j1
+ 1)))} by
A2,
A4,
Th16;
then mi
in
{(G
* (i1,(j1
+ 1)))} by
A6,
A8,
A16,
XBOOLE_0:def 4;
then (((1
/ 2)
* (G
* (i1,j1)))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1)))))
= (G
* (i1,(j1
+ 1))) by
A7,
TARSKI:def 1
.= (((1
/ 2)
+ (1
/ 2))
* (G
* (i1,(j1
+ 1)))) by
RLVECT_1:def 8
.= (((1
/ 2)
* (G
* (i1,(j1
+ 1))))
+ ((1
/ 2)
* (G
* (i1,(j1
+ 1))))) by
RLVECT_1:def 6;
then
A17: ((1
/ 2)
* (G
* (i1,(j1
+ 1))))
= ((1
/ 2)
* (G
* (i1,j1))) by
Th3;
((G
* (i1,(j1
+ 1)))
`2 )
> ((G
* (i1,j1))
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
hence contradiction by
A17,
RLVECT_1: 36;
end;
end;
begin
reserve f for non
constant
standard
special_circular_sequence;
Lm2: (
len f)
> 1
proof
consider n1,n2 be
object such that
A1: n1
in (
dom f) and
A2: n2
in (
dom f) & (f
. n1)
<> (f
. n2) by
FUNCT_1:def 10;
reconsider df = (
dom f) as
finite
set;
A3:
now
assume
A4: (
card df)
<= 1;
per cases by
A4,
NAT_1: 25;
suppose (
card df)
=
0 ;
hence contradiction by
A1;
end;
suppose (
card df)
= 1;
then
consider x be
object such that
A5: (
dom f)
=
{x} by
CARD_2: 42;
n1
= x by
A1,
A5,
TARSKI:def 1;
hence contradiction by
A2,
A5,
TARSKI:def 1;
end;
end;
(
dom f)
= (
Seg (
len f)) by
FINSEQ_1:def 3;
hence thesis by
A3,
FINSEQ_1: 57;
end;
theorem ::
GOBOARD7:29
Th29: for f be
standard non
empty
FinSequence of (
TOP-REAL 2) st i
in (
dom f) & (i
+ 1)
in (
dom f) holds (f
/. i)
<> (f
/. (i
+ 1))
proof
A1:
|.
0 .|
=
0 by
ABSVALUE: 2;
let f be
standard non
empty
FinSequence of (
TOP-REAL 2) such that
A2: i
in (
dom f) and
A3: (i
+ 1)
in (
dom f);
A4: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
then
consider i1, j1 such that
A5:
[i1, j1]
in (
Indices (
GoB f)) & (f
/. i)
= ((
GoB f)
* (i1,j1)) by
A2,
GOBOARD1:def 9;
consider i2, j2 such that
A6:
[i2, j2]
in (
Indices (
GoB f)) and
A7: (f
/. (i
+ 1))
= ((
GoB f)
* (i2,j2)) by
A3,
A4,
GOBOARD1:def 9;
assume
A8: (f
/. i)
= (f
/. (i
+ 1));
then j1
= j2 by
A5,
A6,
A7,
GOBOARD1: 5;
then
A9: (j1
- j2)
=
0 ;
i1
= i2 by
A5,
A6,
A7,
A8,
GOBOARD1: 5;
then (i1
- i2)
=
0 ;
then (
|.
0 .|
+
|.
0 .|)
= 1 by
A2,
A3,
A4,
A5,
A7,
A9,
GOBOARD1:def 9;
hence contradiction by
A1;
end;
theorem ::
GOBOARD7:30
Th30: ex i st i
in (
dom f) & ((f
/. i)
`1 )
<> ((f
/. 1)
`1 )
proof
assume
A1: for i st i
in (
dom f) holds ((f
/. i)
`1 )
= ((f
/. 1)
`1 );
A2: (
len f)
> 1 by
Lm2;
then
A3: (
len f)
>= (1
+ 1) by
NAT_1: 13;
then
A4: (1
+ 1)
in (
dom f) by
FINSEQ_3: 25;
A5:
now
assume
A6: ((f
/. 2)
`2 )
= ((f
/. 1)
`2 );
((f
/. 2)
`1 )
= ((f
/. 1)
`1 ) by
A1,
A4;
then (f
/. 2)
=
|[((f
/. 1)
`1 ), ((f
/. 1)
`2 )]| by
A6,
EUCLID: 53
.= (f
/. 1) by
EUCLID: 53;
hence contradiction by
A4,
Th29,
FINSEQ_5: 6;
end;
(
len f)
= 2 implies (f
/. 2)
= (f
/. 1) by
FINSEQ_6:def 1;
then
A7: 2
< (
len f) by
A3,
A5,
XXREAL_0: 1;
per cases by
A5,
XXREAL_0: 1;
suppose
A8: ((f
/. 2)
`2 )
< ((f
/. 1)
`2 );
defpred
P[
Nat] means 2
<= $1 & $1
< (
len f) implies ((f
/. $1)
`2 )
<= ((f
/. 2)
`2 ) & ((f
/. ($1
+ 1))
`2 )
< ((f
/. $1)
`2 );
A9: for j st
P[j] holds
P[(j
+ 1)]
proof
let j such that
A10: 2
<= j & j
< (
len f) implies ((f
/. j)
`2 )
<= ((f
/. 2)
`2 ) & ((f
/. (j
+ 1))
`2 )
< ((f
/. j)
`2 ) and
A11: 2
<= (j
+ 1) and
A12: (j
+ 1)
< (
len f);
(1
+ 1)
<= (j
+ 1) by
A11;
then
A13: 1
<= j by
XREAL_1: 6;
thus ((f
/. (j
+ 1))
`2 )
<= ((f
/. 2)
`2 )
proof
per cases by
A11,
XXREAL_0: 1;
suppose 2
= (j
+ 1);
hence thesis;
end;
suppose 2
< (j
+ 1);
hence thesis by
A10,
A12,
NAT_1: 13,
XXREAL_0: 2;
end;
end;
A14: ((j
+ 1)
+ 1)
<= (
len f) by
A12,
NAT_1: 13;
A15:
now
per cases by
A11,
XXREAL_0: 1;
suppose (1
+ 1)
= (j
+ 1);
hence ((f
/. (j
+ 1))
`2 )
< ((f
/. j)
`2 ) by
A8;
end;
suppose 2
< (j
+ 1);
hence ((f
/. (j
+ 1))
`2 )
< ((f
/. j)
`2 ) by
A10,
A12,
NAT_1: 13;
end;
end;
A16: 1
<= (j
+ 1) by
NAT_1: 11;
then
A17: (j
+ 1)
in (
dom f) by
A12,
FINSEQ_3: 25;
then
A18: ((f
/. (j
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1;
j
< (
len f) by
A12,
NAT_1: 13;
then
A19: j
in (
dom f) by
A13,
FINSEQ_3: 25;
then
A20: ((f
/. j)
`1 )
= ((f
/. 1)
`1 ) by
A1;
1
<= ((j
+ 1)
+ 1) by
NAT_1: 11;
then
A21: ((j
+ 1)
+ 1)
in (
dom f) by
A14,
FINSEQ_3: 25;
then
A22: ((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1;
assume
A23: ((f
/. ((j
+ 1)
+ 1))
`2 )
>= ((f
/. (j
+ 1))
`2 );
per cases by
A23,
XXREAL_0: 1;
suppose
A24: ((f
/. ((j
+ 1)
+ 1))
`2 )
> ((f
/. (j
+ 1))
`2 );
now
per cases ;
suppose ((f
/. j)
`2 )
<= ((f
/. ((j
+ 1)
+ 1))
`2 );
then (f
/. j)
in (
LSeg ((f
/. (j
+ 1)),(f
/. ((j
+ 1)
+ 1)))) by
A15,
A20,
A18,
A22,
Th7;
then
A25: (f
/. j)
in (
LSeg (f,(j
+ 1))) by
A14,
A16,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A26: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A14,
A13,
TOPREAL1:def 6;
(f
/. j)
in (
LSeg (f,j)) by
A12,
A13,
TOPREAL1: 21;
then (f
/. j)
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A25,
XBOOLE_0:def 4;
then (f
/. j)
= (f
/. (j
+ 1)) by
A26,
TARSKI:def 1;
hence contradiction by
A19,
A17,
Th29;
end;
suppose ((f
/. j)
`2 )
>= ((f
/. ((j
+ 1)
+ 1))
`2 );
then (f
/. ((j
+ 1)
+ 1))
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A20,
A18,
A22,
A24,
Th7;
then
A27: (f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,j)) by
A12,
A13,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A28: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A14,
A13,
TOPREAL1:def 6;
(f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,(j
+ 1))) by
A14,
A16,
TOPREAL1: 21;
then (f
/. ((j
+ 1)
+ 1))
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A27,
XBOOLE_0:def 4;
then (f
/. ((j
+ 1)
+ 1))
= (f
/. (j
+ 1)) by
A28,
TARSKI:def 1;
hence contradiction by
A17,
A21,
Th29;
end;
end;
hence contradiction;
end;
suppose
A29: ((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. (j
+ 1))
`2 );
((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1,
A21
.= ((f
/. (j
+ 1))
`1 ) by
A1,
A17;
then (f
/. ((j
+ 1)
+ 1))
=
|[((f
/. (j
+ 1))
`1 ), ((f
/. (j
+ 1))
`2 )]| by
A29,
EUCLID: 53
.= (f
/. (j
+ 1)) by
EUCLID: 53;
hence contradiction by
A17,
A21,
Th29;
end;
end;
A30: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
XREAL_1: 235;
then
A31: 2
<= ((
len f)
-' 1) & ((
len f)
-' 1)
< (
len f) by
A7,
NAT_1: 13;
A32:
P[
0 ];
A33: for j holds
P[j] from
NAT_1:sch 2(
A32,
A9);
then
A34: ((f
/. ((
len f)
-' 1))
`2 )
<= ((f
/. 2)
`2 ) by
A31;
((f
/. (
len f))
`2 )
< ((f
/. ((
len f)
-' 1))
`2 ) by
A33,
A30,
A31;
then ((f
/. (
len f))
`2 )
< ((f
/. 2)
`2 ) by
A34,
XXREAL_0: 2;
hence contradiction by
A8,
FINSEQ_6:def 1;
end;
suppose
A35: ((f
/. 2)
`2 )
> ((f
/. 1)
`2 );
defpred
P[
Nat] means 2
<= $1 & $1
< (
len f) implies ((f
/. $1)
`2 )
>= ((f
/. 2)
`2 ) & ((f
/. ($1
+ 1))
`2 )
> ((f
/. $1)
`2 );
A36: for j st
P[j] holds
P[(j
+ 1)]
proof
let j such that
A37: 2
<= j & j
< (
len f) implies ((f
/. j)
`2 )
>= ((f
/. 2)
`2 ) & ((f
/. (j
+ 1))
`2 )
> ((f
/. j)
`2 ) and
A38: 2
<= (j
+ 1) and
A39: (j
+ 1)
< (
len f);
(1
+ 1)
<= (j
+ 1) by
A38;
then
A40: 1
<= j by
XREAL_1: 6;
thus ((f
/. (j
+ 1))
`2 )
>= ((f
/. 2)
`2 )
proof
per cases by
A38,
XXREAL_0: 1;
suppose 2
= (j
+ 1);
hence thesis;
end;
suppose 2
< (j
+ 1);
hence thesis by
A37,
A39,
NAT_1: 13,
XXREAL_0: 2;
end;
end;
A41: ((j
+ 1)
+ 1)
<= (
len f) by
A39,
NAT_1: 13;
A42:
now
per cases by
A38,
XXREAL_0: 1;
suppose (1
+ 1)
= (j
+ 1);
hence ((f
/. (j
+ 1))
`2 )
> ((f
/. j)
`2 ) by
A35;
end;
suppose 2
< (j
+ 1);
hence ((f
/. (j
+ 1))
`2 )
> ((f
/. j)
`2 ) by
A37,
A39,
NAT_1: 13;
end;
end;
A43: 1
<= (j
+ 1) by
NAT_1: 11;
then
A44: (j
+ 1)
in (
dom f) by
A39,
FINSEQ_3: 25;
then
A45: ((f
/. (j
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1;
j
< (
len f) by
A39,
NAT_1: 13;
then
A46: j
in (
dom f) by
A40,
FINSEQ_3: 25;
then
A47: ((f
/. j)
`1 )
= ((f
/. 1)
`1 ) by
A1;
1
<= ((j
+ 1)
+ 1) by
NAT_1: 11;
then
A48: ((j
+ 1)
+ 1)
in (
dom f) by
A41,
FINSEQ_3: 25;
then
A49: ((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1;
assume
A50: ((f
/. ((j
+ 1)
+ 1))
`2 )
<= ((f
/. (j
+ 1))
`2 );
per cases by
A50,
XXREAL_0: 1;
suppose
A51: ((f
/. ((j
+ 1)
+ 1))
`2 )
< ((f
/. (j
+ 1))
`2 );
now
per cases ;
suppose ((f
/. j)
`2 )
>= ((f
/. ((j
+ 1)
+ 1))
`2 );
then (f
/. j)
in (
LSeg ((f
/. (j
+ 1)),(f
/. ((j
+ 1)
+ 1)))) by
A42,
A47,
A45,
A49,
Th7;
then
A52: (f
/. j)
in (
LSeg (f,(j
+ 1))) by
A41,
A43,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A53: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A41,
A40,
TOPREAL1:def 6;
(f
/. j)
in (
LSeg (f,j)) by
A39,
A40,
TOPREAL1: 21;
then (f
/. j)
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A52,
XBOOLE_0:def 4;
then (f
/. j)
= (f
/. (j
+ 1)) by
A53,
TARSKI:def 1;
hence contradiction by
A46,
A44,
Th29;
end;
suppose ((f
/. j)
`2 )
<= ((f
/. ((j
+ 1)
+ 1))
`2 );
then (f
/. ((j
+ 1)
+ 1))
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A47,
A45,
A49,
A51,
Th7;
then
A54: (f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,j)) by
A39,
A40,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A55: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A41,
A40,
TOPREAL1:def 6;
(f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,(j
+ 1))) by
A41,
A43,
TOPREAL1: 21;
then (f
/. ((j
+ 1)
+ 1))
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A54,
XBOOLE_0:def 4;
then (f
/. ((j
+ 1)
+ 1))
= (f
/. (j
+ 1)) by
A55,
TARSKI:def 1;
hence contradiction by
A44,
A48,
Th29;
end;
end;
hence contradiction;
end;
suppose
A56: ((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. (j
+ 1))
`2 );
((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. 1)
`1 ) by
A1,
A48
.= ((f
/. (j
+ 1))
`1 ) by
A1,
A44;
then (f
/. ((j
+ 1)
+ 1))
=
|[((f
/. (j
+ 1))
`1 ), ((f
/. (j
+ 1))
`2 )]| by
A56,
EUCLID: 53
.= (f
/. (j
+ 1)) by
EUCLID: 53;
hence contradiction by
A44,
A48,
Th29;
end;
end;
A57: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
XREAL_1: 235;
then
A58: 2
<= ((
len f)
-' 1) & ((
len f)
-' 1)
< (
len f) by
A7,
NAT_1: 13;
A59:
P[
0 ];
A60: for j holds
P[j] from
NAT_1:sch 2(
A59,
A36);
then
A61: ((f
/. ((
len f)
-' 1))
`2 )
>= ((f
/. 2)
`2 ) by
A58;
((f
/. (
len f))
`2 )
> ((f
/. ((
len f)
-' 1))
`2 ) by
A60,
A57,
A58;
then ((f
/. (
len f))
`2 )
> ((f
/. 2)
`2 ) by
A61,
XXREAL_0: 2;
hence contradiction by
A35,
FINSEQ_6:def 1;
end;
end;
theorem ::
GOBOARD7:31
Th31: ex i st i
in (
dom f) & ((f
/. i)
`2 )
<> ((f
/. 1)
`2 )
proof
assume
A1: for i st i
in (
dom f) holds ((f
/. i)
`2 )
= ((f
/. 1)
`2 );
A2: (
len f)
> 1 by
Lm2;
then
A3: (
len f)
>= (1
+ 1) by
NAT_1: 13;
then
A4: (1
+ 1)
in (
dom f) by
FINSEQ_3: 25;
A5:
now
assume
A6: ((f
/. 2)
`1 )
= ((f
/. 1)
`1 );
((f
/. 2)
`2 )
= ((f
/. 1)
`2 ) by
A1,
A4;
then (f
/. 2)
=
|[((f
/. 1)
`1 ), ((f
/. 1)
`2 )]| by
A6,
EUCLID: 53
.= (f
/. 1) by
EUCLID: 53;
hence contradiction by
A4,
Th29,
FINSEQ_5: 6;
end;
(
len f)
= 2 implies (f
/. 2)
= (f
/. 1) by
FINSEQ_6:def 1;
then
A7: 2
< (
len f) by
A3,
A5,
XXREAL_0: 1;
per cases by
A5,
XXREAL_0: 1;
suppose
A8: ((f
/. 2)
`1 )
< ((f
/. 1)
`1 );
defpred
P[
Nat] means 2
<= $1 & $1
< (
len f) implies ((f
/. $1)
`1 )
<= ((f
/. 2)
`1 ) & ((f
/. ($1
+ 1))
`1 )
< ((f
/. $1)
`1 );
A9: for j st
P[j] holds
P[(j
+ 1)]
proof
let j such that
A10: 2
<= j & j
< (
len f) implies ((f
/. j)
`1 )
<= ((f
/. 2)
`1 ) & ((f
/. (j
+ 1))
`1 )
< ((f
/. j)
`1 ) and
A11: 2
<= (j
+ 1) and
A12: (j
+ 1)
< (
len f);
(1
+ 1)
<= (j
+ 1) by
A11;
then
A13: 1
<= j by
XREAL_1: 6;
thus ((f
/. (j
+ 1))
`1 )
<= ((f
/. 2)
`1 )
proof
per cases by
A11,
XXREAL_0: 1;
suppose 2
= (j
+ 1);
hence thesis;
end;
suppose 2
< (j
+ 1);
hence thesis by
A10,
A12,
NAT_1: 13,
XXREAL_0: 2;
end;
end;
A14: ((j
+ 1)
+ 1)
<= (
len f) by
A12,
NAT_1: 13;
A15:
now
per cases by
A11,
XXREAL_0: 1;
suppose (1
+ 1)
= (j
+ 1);
hence ((f
/. (j
+ 1))
`1 )
< ((f
/. j)
`1 ) by
A8;
end;
suppose 2
< (j
+ 1);
hence ((f
/. (j
+ 1))
`1 )
< ((f
/. j)
`1 ) by
A10,
A12,
NAT_1: 13;
end;
end;
A16: 1
<= (j
+ 1) by
NAT_1: 11;
then
A17: (j
+ 1)
in (
dom f) by
A12,
FINSEQ_3: 25;
then
A18: ((f
/. (j
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1;
j
< (
len f) by
A12,
NAT_1: 13;
then
A19: j
in (
dom f) by
A13,
FINSEQ_3: 25;
then
A20: ((f
/. j)
`2 )
= ((f
/. 1)
`2 ) by
A1;
1
<= ((j
+ 1)
+ 1) by
NAT_1: 11;
then
A21: ((j
+ 1)
+ 1)
in (
dom f) by
A14,
FINSEQ_3: 25;
then
A22: ((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1;
assume
A23: ((f
/. ((j
+ 1)
+ 1))
`1 )
>= ((f
/. (j
+ 1))
`1 );
per cases by
A23,
XXREAL_0: 1;
suppose
A24: ((f
/. ((j
+ 1)
+ 1))
`1 )
> ((f
/. (j
+ 1))
`1 );
now
per cases ;
suppose ((f
/. j)
`1 )
<= ((f
/. ((j
+ 1)
+ 1))
`1 );
then (f
/. j)
in (
LSeg ((f
/. (j
+ 1)),(f
/. ((j
+ 1)
+ 1)))) by
A15,
A20,
A18,
A22,
Th8;
then
A25: (f
/. j)
in (
LSeg (f,(j
+ 1))) by
A14,
A16,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A26: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A14,
A13,
TOPREAL1:def 6;
(f
/. j)
in (
LSeg (f,j)) by
A12,
A13,
TOPREAL1: 21;
then (f
/. j)
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A25,
XBOOLE_0:def 4;
then (f
/. j)
= (f
/. (j
+ 1)) by
A26,
TARSKI:def 1;
hence contradiction by
A19,
A17,
Th29;
end;
suppose ((f
/. j)
`1 )
>= ((f
/. ((j
+ 1)
+ 1))
`1 );
then (f
/. ((j
+ 1)
+ 1))
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A20,
A18,
A22,
A24,
Th8;
then
A27: (f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,j)) by
A12,
A13,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A28: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A14,
A13,
TOPREAL1:def 6;
(f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,(j
+ 1))) by
A14,
A16,
TOPREAL1: 21;
then (f
/. ((j
+ 1)
+ 1))
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A27,
XBOOLE_0:def 4;
then (f
/. ((j
+ 1)
+ 1))
= (f
/. (j
+ 1)) by
A28,
TARSKI:def 1;
hence contradiction by
A17,
A21,
Th29;
end;
end;
hence contradiction;
end;
suppose
A29: ((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. (j
+ 1))
`1 );
((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1,
A21
.= ((f
/. (j
+ 1))
`2 ) by
A1,
A17;
then (f
/. ((j
+ 1)
+ 1))
=
|[((f
/. (j
+ 1))
`1 ), ((f
/. (j
+ 1))
`2 )]| by
A29,
EUCLID: 53
.= (f
/. (j
+ 1)) by
EUCLID: 53;
hence contradiction by
A17,
A21,
Th29;
end;
end;
A30: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
XREAL_1: 235;
then
A31: 2
<= ((
len f)
-' 1) & ((
len f)
-' 1)
< (
len f) by
A7,
NAT_1: 13;
A32:
P[
0 ];
A33: for j holds
P[j] from
NAT_1:sch 2(
A32,
A9);
then
A34: ((f
/. ((
len f)
-' 1))
`1 )
<= ((f
/. 2)
`1 ) by
A31;
((f
/. (
len f))
`1 )
< ((f
/. ((
len f)
-' 1))
`1 ) by
A33,
A30,
A31;
then ((f
/. (
len f))
`1 )
< ((f
/. 2)
`1 ) by
A34,
XXREAL_0: 2;
hence contradiction by
A8,
FINSEQ_6:def 1;
end;
suppose
A35: ((f
/. 2)
`1 )
> ((f
/. 1)
`1 );
defpred
P[
Nat] means 2
<= $1 & $1
< (
len f) implies ((f
/. $1)
`1 )
>= ((f
/. 2)
`1 ) & ((f
/. ($1
+ 1))
`1 )
> ((f
/. $1)
`1 );
A36: for j st
P[j] holds
P[(j
+ 1)]
proof
let j such that
A37: 2
<= j & j
< (
len f) implies ((f
/. j)
`1 )
>= ((f
/. 2)
`1 ) & ((f
/. (j
+ 1))
`1 )
> ((f
/. j)
`1 ) and
A38: 2
<= (j
+ 1) and
A39: (j
+ 1)
< (
len f);
(1
+ 1)
<= (j
+ 1) by
A38;
then
A40: 1
<= j by
XREAL_1: 6;
thus ((f
/. (j
+ 1))
`1 )
>= ((f
/. 2)
`1 )
proof
per cases by
A38,
XXREAL_0: 1;
suppose 2
= (j
+ 1);
hence thesis;
end;
suppose 2
< (j
+ 1);
hence thesis by
A37,
A39,
NAT_1: 13,
XXREAL_0: 2;
end;
end;
A41: ((j
+ 1)
+ 1)
<= (
len f) by
A39,
NAT_1: 13;
A42:
now
per cases by
A38,
XXREAL_0: 1;
suppose (1
+ 1)
= (j
+ 1);
hence ((f
/. (j
+ 1))
`1 )
> ((f
/. j)
`1 ) by
A35;
end;
suppose 2
< (j
+ 1);
hence ((f
/. (j
+ 1))
`1 )
> ((f
/. j)
`1 ) by
A37,
A39,
NAT_1: 13;
end;
end;
A43: 1
<= (j
+ 1) by
NAT_1: 11;
then
A44: (j
+ 1)
in (
dom f) by
A39,
FINSEQ_3: 25;
then
A45: ((f
/. (j
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1;
j
< (
len f) by
A39,
NAT_1: 13;
then
A46: j
in (
dom f) by
A40,
FINSEQ_3: 25;
then
A47: ((f
/. j)
`2 )
= ((f
/. 1)
`2 ) by
A1;
1
<= ((j
+ 1)
+ 1) by
NAT_1: 11;
then
A48: ((j
+ 1)
+ 1)
in (
dom f) by
A41,
FINSEQ_3: 25;
then
A49: ((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1;
assume
A50: ((f
/. ((j
+ 1)
+ 1))
`1 )
<= ((f
/. (j
+ 1))
`1 );
per cases by
A50,
XXREAL_0: 1;
suppose
A51: ((f
/. ((j
+ 1)
+ 1))
`1 )
< ((f
/. (j
+ 1))
`1 );
now
per cases ;
suppose ((f
/. j)
`1 )
>= ((f
/. ((j
+ 1)
+ 1))
`1 );
then (f
/. j)
in (
LSeg ((f
/. (j
+ 1)),(f
/. ((j
+ 1)
+ 1)))) by
A42,
A47,
A45,
A49,
Th8;
then
A52: (f
/. j)
in (
LSeg (f,(j
+ 1))) by
A41,
A43,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A53: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A41,
A40,
TOPREAL1:def 6;
(f
/. j)
in (
LSeg (f,j)) by
A39,
A40,
TOPREAL1: 21;
then (f
/. j)
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A52,
XBOOLE_0:def 4;
then (f
/. j)
= (f
/. (j
+ 1)) by
A53,
TARSKI:def 1;
hence contradiction by
A46,
A44,
Th29;
end;
suppose ((f
/. j)
`1 )
<= ((f
/. ((j
+ 1)
+ 1))
`1 );
then (f
/. ((j
+ 1)
+ 1))
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A47,
A45,
A49,
A51,
Th8;
then
A54: (f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,j)) by
A39,
A40,
TOPREAL1:def 3;
((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A55: ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A41,
A40,
TOPREAL1:def 6;
(f
/. ((j
+ 1)
+ 1))
in (
LSeg (f,(j
+ 1))) by
A41,
A43,
TOPREAL1: 21;
then (f
/. ((j
+ 1)
+ 1))
in ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A54,
XBOOLE_0:def 4;
then (f
/. ((j
+ 1)
+ 1))
= (f
/. (j
+ 1)) by
A55,
TARSKI:def 1;
hence contradiction by
A44,
A48,
Th29;
end;
end;
hence contradiction;
end;
suppose
A56: ((f
/. ((j
+ 1)
+ 1))
`1 )
= ((f
/. (j
+ 1))
`1 );
((f
/. ((j
+ 1)
+ 1))
`2 )
= ((f
/. 1)
`2 ) by
A1,
A48
.= ((f
/. (j
+ 1))
`2 ) by
A1,
A44;
then (f
/. ((j
+ 1)
+ 1))
=
|[((f
/. (j
+ 1))
`1 ), ((f
/. (j
+ 1))
`2 )]| by
A56,
EUCLID: 53
.= (f
/. (j
+ 1)) by
EUCLID: 53;
hence contradiction by
A44,
A48,
Th29;
end;
end;
A57: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
XREAL_1: 235;
then
A58: 2
<= ((
len f)
-' 1) & ((
len f)
-' 1)
< (
len f) by
A7,
NAT_1: 13;
A59:
P[
0 ];
A60: for j holds
P[j] from
NAT_1:sch 2(
A59,
A36);
then
A61: ((f
/. ((
len f)
-' 1))
`1 )
>= ((f
/. 2)
`1 ) by
A58;
((f
/. (
len f))
`1 )
> ((f
/. ((
len f)
-' 1))
`1 ) by
A60,
A57,
A58;
then ((f
/. (
len f))
`1 )
> ((f
/. 2)
`1 ) by
A61,
XXREAL_0: 2;
hence contradiction by
A35,
FINSEQ_6:def 1;
end;
end;
theorem ::
GOBOARD7:32
(
len (
GoB f))
> 1
proof
A1: (
len (
GoB f))
<>
0 by
MATRIX_0:def 10;
1
in (
dom f) by
FINSEQ_5: 6;
then
consider i2, j2 such that
A2:
[i2, j2]
in (
Indices (
GoB f)) and
A3: (f
/. 1)
= ((
GoB f)
* (i2,j2)) by
GOBOARD2: 14;
A4: 1
<= i2 by
A2,
MATRIX_0: 32;
assume (
len (
GoB f))
<= 1;
then
A5: (
len (
GoB f))
= 1 by
A1,
NAT_1: 25;
then i2
<= 1 by
A2,
MATRIX_0: 32;
then
A6: i2
= 1 by
A4,
XXREAL_0: 1;
consider i such that
A7: i
in (
dom f) and
A8: ((f
/. i)
`1 )
<> ((f
/. 1)
`1 ) by
Th30;
consider i1, j1 such that
A9:
[i1, j1]
in (
Indices (
GoB f)) and
A10: (f
/. i)
= ((
GoB f)
* (i1,j1)) by
A7,
GOBOARD2: 14;
A11: 1
<= j1 & j1
<= (
width (
GoB f)) by
A9,
MATRIX_0: 32;
A12: 1
<= i1 by
A9,
MATRIX_0: 32;
i1
<= 1 by
A5,
A9,
MATRIX_0: 32;
then i1
= 1 by
A12,
XXREAL_0: 1;
then
A13: (((
GoB f)
* (i1,j1))
`1 )
= (((
GoB f)
* (1,1))
`1 ) by
A5,
A11,
GOBOARD5: 2;
1
<= j2 & j2
<= (
width (
GoB f)) by
A2,
MATRIX_0: 32;
hence contradiction by
A5,
A8,
A10,
A3,
A13,
A6,
GOBOARD5: 2;
end;
theorem ::
GOBOARD7:33
(
width (
GoB f))
> 1
proof
A1: (
width (
GoB f))
<>
0 by
MATRIX_0:def 10;
1
in (
dom f) by
FINSEQ_5: 6;
then
consider i2, j2 such that
A2:
[i2, j2]
in (
Indices (
GoB f)) and
A3: (f
/. 1)
= ((
GoB f)
* (i2,j2)) by
GOBOARD2: 14;
A4: 1
<= j2 by
A2,
MATRIX_0: 32;
assume (
width (
GoB f))
<= 1;
then
A5: (
width (
GoB f))
= 1 by
A1,
NAT_1: 25;
then j2
<= 1 by
A2,
MATRIX_0: 32;
then
A6: j2
= 1 by
A4,
XXREAL_0: 1;
consider i such that
A7: i
in (
dom f) and
A8: ((f
/. i)
`2 )
<> ((f
/. 1)
`2 ) by
Th31;
consider i1, j1 such that
A9:
[i1, j1]
in (
Indices (
GoB f)) and
A10: (f
/. i)
= ((
GoB f)
* (i1,j1)) by
A7,
GOBOARD2: 14;
A11: 1
<= i1 & i1
<= (
len (
GoB f)) by
A9,
MATRIX_0: 32;
A12: 1
<= j1 by
A9,
MATRIX_0: 32;
j1
<= 1 by
A5,
A9,
MATRIX_0: 32;
then j1
= 1 by
A12,
XXREAL_0: 1;
then
A13: (((
GoB f)
* (i1,j1))
`2 )
= (((
GoB f)
* (1,1))
`2 ) by
A5,
A11,
GOBOARD5: 1;
1
<= i2 & i2
<= (
len (
GoB f)) by
A2,
MATRIX_0: 32;
hence contradiction by
A5,
A8,
A10,
A3,
A13,
A6,
GOBOARD5: 1;
end;
theorem ::
GOBOARD7:34
Th34: (
len f)
> 4
proof
assume
A1: (
len f)
<= 4;
A2: (
len f)
> 1 by
Lm2;
then
A3: 1
in (
dom f) by
FINSEQ_3: 25;
A4: (
len f)
>= (1
+ 1) by
A2,
NAT_1: 13;
then
A5: 2
in (
dom f) by
FINSEQ_3: 25;
consider i2 such that
A6: i2
in (
dom f) and
A7: ((f
/. i2)
`2 )
<> ((f
/. 1)
`2 ) by
Th31;
consider i1 such that
A8: i1
in (
dom f) and
A9: ((f
/. i1)
`1 )
<> ((f
/. 1)
`1 ) by
Th30;
per cases by
A4,
TOPREAL1:def 5;
suppose
A10: ((f
/. (1
+ 1))
`1 )
= ((f
/. 1)
`1 );
A11: i1
<= (
len f) by
A8,
FINSEQ_3: 25;
A12: (f
/. (
len f))
= (f
/. 1) by
FINSEQ_6:def 1;
A13: i1
<>
0 by
A8,
FINSEQ_3: 25;
now
i1
<= 4 by
A1,
A11,
XXREAL_0: 2;
then i1
=
0 or ... or i1
= 4;
per cases by
A9,
A10,
A13;
suppose
A14: i1
= 3;
A15:
now
assume ((f
/. (1
+ 1))
`2 )
= ((f
/. 1)
`2 );
then (f
/. (1
+ 1))
=
|[((f
/. 1)
`1 ), ((f
/. 1)
`2 )]| by
A10,
EUCLID: 53
.= (f
/. 1) by
EUCLID: 53;
hence contradiction by
A3,
A5,
Th29;
end;
A16: (
len f)
>= 3 by
A8,
A14,
FINSEQ_3: 25;
then (
len f)
> 3 by
A9,
A12,
A14,
XXREAL_0: 1;
then
A17: (
len f)
>= (3
+ 1) by
NAT_1: 13;
then
A18: ((f
/. 3)
`1 )
= ((f
/. (3
+ 1))
`1 ) or ((f
/. 3)
`2 )
= ((f
/. (3
+ 1))
`2 ) by
TOPREAL1:def 5;
A19: (
len f)
= 4 by
A1,
A17,
XXREAL_0: 1;
((f
/. 2)
`2 )
= ((f
/. (2
+ 1))
`2 ) by
A9,
A10,
A14,
A16,
TOPREAL1:def 5;
hence contradiction by
A9,
A14,
A19,
A15,
A18,
FINSEQ_6:def 1;
end;
suppose i1
= 4;
hence contradiction by
A1,
A9,
A11,
A12,
XXREAL_0: 1;
end;
end;
hence contradiction;
end;
suppose
A20: ((f
/. (1
+ 1))
`2 )
= ((f
/. 1)
`2 );
A21: i2
<= (
len f) by
A6,
FINSEQ_3: 25;
A22: (f
/. (
len f))
= (f
/. 1) by
FINSEQ_6:def 1;
A23: i2
<>
0 by
A6,
FINSEQ_3: 25;
now
i2
<= 4 by
A1,
A21,
XXREAL_0: 2;
then i2
=
0 or ... or i2
= 4;
per cases by
A7,
A20,
A23;
suppose
A24: i2
= 3;
A25:
now
assume ((f
/. (1
+ 1))
`1 )
= ((f
/. 1)
`1 );
then (f
/. (1
+ 1))
=
|[((f
/. 1)
`1 ), ((f
/. 1)
`2 )]| by
A20,
EUCLID: 53
.= (f
/. 1) by
EUCLID: 53;
hence contradiction by
A3,
A5,
Th29;
end;
A26: (
len f)
>= 3 by
A6,
A24,
FINSEQ_3: 25;
then (
len f)
> 3 by
A7,
A22,
A24,
XXREAL_0: 1;
then
A27: (
len f)
>= (3
+ 1) by
NAT_1: 13;
then
A28: ((f
/. 3)
`2 )
= ((f
/. (3
+ 1))
`2 ) or ((f
/. 3)
`1 )
= ((f
/. (3
+ 1))
`1 ) by
TOPREAL1:def 5;
A29: (
len f)
= 4 by
A1,
A27,
XXREAL_0: 1;
((f
/. 2)
`1 )
= ((f
/. (2
+ 1))
`1 ) by
A7,
A20,
A24,
A26,
TOPREAL1:def 5;
hence contradiction by
A7,
A24,
A29,
A25,
A28,
FINSEQ_6:def 1;
end;
suppose i2
= 4;
hence contradiction by
A1,
A7,
A21,
A22,
XXREAL_0: 1;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:35
Th35: for f be
circular
s.c.c.
FinSequence of (
TOP-REAL 2) st (
len f)
> 4 holds for i,j be
Nat st 1
<= i & i
< j & j
< (
len f) holds (f
/. i)
<> (f
/. j)
proof
let f be
circular
s.c.c.
FinSequence of (
TOP-REAL 2) such that
A1: (
len f)
> 4;
let i,j be
Nat such that
A2: 1
<= i and
A3: i
< j and
A4: j
< (
len f) and
A5: (f
/. i)
= (f
/. j);
A6: (j
+ 1)
<= (
len f) by
A4,
NAT_1: 13;
A7: (i
+ 1)
<= j & i
<>
0 by
A2,
A3,
NAT_1: 13;
1
<= j by
A2,
A3,
XXREAL_0: 2;
then
A8: (f
/. j)
in (
LSeg (f,j)) by
A6,
TOPREAL1: 21;
A9: i
< (
len f) by
A3,
A4,
XXREAL_0: 2;
then (i
+ 1)
<= (
len f) by
NAT_1: 13;
then
A10: (f
/. i)
in (
LSeg (f,i)) by
A2,
TOPREAL1: 21;
i
<= 2 implies i
=
0 or ... or i
= 2;
per cases by
A7,
XXREAL_0: 1;
suppose that
A11: (i
+ 1)
= j and
A12: i
= 1;
A13: (((
len f)
-' 1)
+ 1)
= (
len f) by
A1,
XREAL_1: 235,
XXREAL_0: 2;
((j
+ 1)
+ 1)
< (
len f) by
A1,
A11,
A12;
then
A14: (j
+ 1)
< ((
len f)
-' 1) by
A13,
XREAL_1: 6;
((
len f)
-' 1)
< (
len f) by
A13,
XREAL_1: 29;
then (
LSeg (f,j))
misses (
LSeg (f,((
len f)
-' 1))) by
A11,
A12,
A14,
GOBOARD5:def 4;
then
A15: ((
LSeg (f,j))
/\ (
LSeg (f,((
len f)
-' 1))))
=
{} by
XBOOLE_0:def 7;
A16: (f
/. i)
= (f
/. (
len f)) by
A12,
FINSEQ_6:def 1;
(1
+ 1)
<= (
len f) by
A1,
XXREAL_0: 2;
then 1
<= ((
len f)
-' 1) by
A13,
XREAL_1: 6;
then (f
/. i)
in (
LSeg (f,((
len f)
-' 1))) by
A13,
A16,
TOPREAL1: 21;
hence contradiction by
A5,
A8,
A15,
XBOOLE_0:def 4;
end;
suppose that
A17: (i
+ 1)
= j and
A18: i
= (1
+ 1);
A19: ((i
-' 1)
+ 1)
= i by
A2,
XREAL_1: 235;
(j
+ 1)
< (
len f) by
A1,
A17,
A18;
then (
LSeg (f,(i
-' 1)))
misses (
LSeg (f,j)) by
A3,
A19,
GOBOARD5:def 4;
then
A20: ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,j)))
=
{} by
XBOOLE_0:def 7;
(f
/. i)
in (
LSeg (f,(i
-' 1))) by
A9,
A18,
A19,
TOPREAL1: 21;
hence contradiction by
A5,
A8,
A20,
XBOOLE_0:def 4;
end;
suppose that
A21: i
> (1
+ 1);
A22: ((i
-' 1)
+ 1)
= i by
A2,
XREAL_1: 235;
then
A23: 1
< (i
-' 1) by
A21,
XREAL_1: 6;
then (
LSeg (f,(i
-' 1)))
misses (
LSeg (f,j)) by
A3,
A4,
A22,
GOBOARD5:def 4;
then
A24: ((
LSeg (f,(i
-' 1)))
/\ (
LSeg (f,j)))
=
{} by
XBOOLE_0:def 7;
(f
/. i)
in (
LSeg (f,(i
-' 1))) by
A9,
A22,
A23,
TOPREAL1: 21;
hence contradiction by
A5,
A8,
A24,
XBOOLE_0:def 4;
end;
suppose that
A25: (i
+ 1)
< j and
A26: i
<> 1;
1
< i by
A2,
A26,
XXREAL_0: 1;
then (
LSeg (f,i))
misses (
LSeg (f,j)) by
A4,
A25,
GOBOARD5:def 4;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} by
XBOOLE_0:def 7;
hence contradiction by
A5,
A8,
A10,
XBOOLE_0:def 4;
end;
suppose that
A27: (i
+ 1)
< j and
A28: (j
+ 1)
<> (
len f);
(j
+ 1)
< (
len f) by
A6,
A28,
XXREAL_0: 1;
then (
LSeg (f,i))
misses (
LSeg (f,j)) by
A27,
GOBOARD5:def 4;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} by
XBOOLE_0:def 7;
hence contradiction by
A5,
A8,
A10,
XBOOLE_0:def 4;
end;
suppose that
A29: (i
+ 1)
< j and
A30: i
= 1 and
A31: (j
+ 1)
= (
len f);
A32: j
< (
len f) by
A31,
NAT_1: 13;
A33: ((j
-' 1)
+ 1)
= j by
A2,
A3,
XREAL_1: 235,
XXREAL_0: 2;
then
A34: (i
+ 1)
<= (j
-' 1) by
A29,
NAT_1: 13;
(i
+ 1)
<> (j
-' 1) by
A1,
A30,
A31,
A33;
then (i
+ 1)
< (j
-' 1) by
A34,
XXREAL_0: 1;
then (
LSeg (f,1))
misses (
LSeg (f,(j
-' 1))) by
A30,
A33,
A32,
GOBOARD5:def 4;
then
A35: ((
LSeg (f,1))
/\ (
LSeg (f,(j
-' 1))))
=
{} by
XBOOLE_0:def 7;
1
<= (j
-' 1) by
A30,
A34,
XXREAL_0: 2;
then (f
/. j)
in (
LSeg (f,(j
-' 1))) by
A4,
A33,
TOPREAL1: 21;
hence contradiction by
A5,
A10,
A30,
A35,
XBOOLE_0:def 4;
end;
end;
theorem ::
GOBOARD7:36
Th36: for i,j be
Nat st 1
<= i & i
< j & j
< (
len f) holds (f
/. i)
<> (f
/. j)
proof
(
len f)
> 4 by
Th34;
hence thesis by
Th35;
end;
theorem ::
GOBOARD7:37
Th37: for i,j be
Nat st 1
< i & i
< j & j
<= (
len f) holds (f
/. i)
<> (f
/. j)
proof
let i,j be
Nat such that
A1: 1
< i and
A2: i
< j and
A3: j
<= (
len f);
per cases by
A3,
XXREAL_0: 1;
suppose j
< (
len f);
hence thesis by
A1,
A2,
Th36;
end;
suppose j
= (
len f);
then
A4: (f
/. j)
= (f
/. 1) by
FINSEQ_6:def 1;
i
< (
len f) by
A2,
A3,
XXREAL_0: 2;
hence thesis by
A1,
A4,
Th36;
end;
end;
theorem ::
GOBOARD7:38
Th38: for i be
Nat st 1
< i & i
<= (
len f) & (f
/. i)
= (f
/. 1) holds i
= (
len f)
proof
let i be
Nat such that
A1: 1
< i and
A2: i
<= (
len f) and
A3: (f
/. i)
= (f
/. 1);
assume i
<> (
len f);
then i
< (
len f) by
A2,
XXREAL_0: 1;
hence contradiction by
A1,
A3,
Th36;
end;
theorem ::
GOBOARD7:39
Th39: 1
<= i & i
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))))
in (
L~ f) implies ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k))
proof
set mi = ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))));
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) and
A2: ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))))
in (
L~ f);
(
L~ f)
= (
union { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider x be
set such that
A3: ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))))
in x and
A4: x
in { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) } by
A2,
TARSKI:def 4;
consider k such that
A5: x
= (
LSeg (f,k)) and
A6: 1
<= k and
A7: (k
+ 1)
<= (
len f) by
A4;
A8: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
A9: mi
in (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A3,
A5,
A6,
A7,
TOPREAL1:def 3;
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A7,
XXREAL_0: 2;
then
A10: k
in (
dom f) by
A6,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. k)
= ((
GoB f)
* (i1,j1)) by
A8,
GOBOARD1:def 9;
A13: 1
<= i1 by
A11,
MATRIX_0: 32;
take k;
thus 1
<= k & (k
+ 1)
<= (
len f) by
A6,
A7;
1
<= (k
+ 1) by
NAT_1: 11;
then
A14: (k
+ 1)
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A15:
[i2, j2]
in (
Indices (
GoB f)) and
A16: (f
/. (k
+ 1))
= ((
GoB f)
* (i2,j2)) by
A8,
GOBOARD1:def 9;
A17: 1
<= i2 by
A15,
MATRIX_0: 32;
A18: j2
<= (
width (
GoB f)) by
A15,
MATRIX_0: 32;
(
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A8,
A10,
A11,
A12,
A14,
A15,
A16,
GOBOARD1:def 9;
then
A19:
|.(i1
- i2).|
= 1 & j1
= j2 or
|.(j1
- j2).|
= 1 & i1
= i2 by
SEQM_3: 42;
A20: i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
A21: j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
A22: 1
<= j1 by
A11,
MATRIX_0: 32;
A23: i2
<= (
len (
GoB f)) by
A15,
MATRIX_0: 32;
A24: 1
<= j2 by
A15,
MATRIX_0: 32;
per cases by
A19,
SEQM_3: 41;
suppose
A25: j1
= j2 & i1
= (i2
+ 1);
then mi
in (
LSeg (((
GoB f)
* (i2,j2)),((
GoB f)
* ((i2
+ 1),j2)))) by
A3,
A5,
A6,
A7,
A12,
A16,
TOPREAL1:def 3;
hence thesis by
A1,
A20,
A17,
A24,
A18,
A25,
Th28;
end;
suppose
A26: j1
= j2 & (i1
+ 1)
= i2;
then mi
in (
LSeg (((
GoB f)
* (i1,j1)),((
GoB f)
* ((i1
+ 1),j1)))) by
A3,
A5,
A6,
A7,
A12,
A16,
TOPREAL1:def 3;
hence thesis by
A1,
A13,
A22,
A21,
A23,
A26,
Th28;
end;
suppose
A27: j1
= (j2
+ 1) & i1
= i2;
then i
= i2 & j
= j2 by
A1,
A12,
A16,
A13,
A20,
A21,
A24,
A9,
Th25;
hence thesis by
A6,
A7,
A12,
A16,
A27,
TOPREAL1:def 3;
end;
suppose
A28: (j1
+ 1)
= j2 & i1
= i2;
then i
= i1 & j
= j1 by
A1,
A12,
A16,
A13,
A20,
A22,
A18,
A9,
Th25;
hence thesis by
A6,
A7,
A12,
A16,
A28,
TOPREAL1:def 3;
end;
end;
theorem ::
GOBOARD7:40
Th40: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) & ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))))
in (
L~ f) implies ex k st 1
<= k & (k
+ 1)
<= (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k))
proof
set mi = ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))));
assume that
A1: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) and
A2: ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))))
in (
L~ f);
(
L~ f)
= (
union { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider x be
set such that
A3: ((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))))
in x and
A4: x
in { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) } by
A2,
TARSKI:def 4;
consider k such that
A5: x
= (
LSeg (f,k)) and
A6: 1
<= k and
A7: (k
+ 1)
<= (
len f) by
A4;
A8: f
is_sequence_on (
GoB f) by
GOBOARD5:def 5;
A9: mi
in (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A3,
A5,
A6,
A7,
TOPREAL1:def 3;
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A7,
XXREAL_0: 2;
then
A10: k
in (
dom f) by
A6,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A11:
[i1, j1]
in (
Indices (
GoB f)) and
A12: (f
/. k)
= ((
GoB f)
* (i1,j1)) by
A8,
GOBOARD1:def 9;
A13: 1
<= j1 by
A11,
MATRIX_0: 32;
take k;
thus 1
<= k & (k
+ 1)
<= (
len f) by
A6,
A7;
1
<= (k
+ 1) by
NAT_1: 11;
then
A14: (k
+ 1)
in (
dom f) by
A7,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A15:
[i2, j2]
in (
Indices (
GoB f)) and
A16: (f
/. (k
+ 1))
= ((
GoB f)
* (i2,j2)) by
A8,
GOBOARD1:def 9;
A17: 1
<= j2 by
A15,
MATRIX_0: 32;
A18: i2
<= (
len (
GoB f)) by
A15,
MATRIX_0: 32;
(
|.(j1
- j2).|
+
|.(i1
- i2).|)
= 1 by
A8,
A10,
A11,
A12,
A14,
A15,
A16,
GOBOARD1:def 9;
then
A19:
|.(j1
- j2).|
= 1 & i1
= i2 or
|.(i1
- i2).|
= 1 & j1
= j2 by
SEQM_3: 42;
A20: j1
<= (
width (
GoB f)) by
A11,
MATRIX_0: 32;
A21: i1
<= (
len (
GoB f)) by
A11,
MATRIX_0: 32;
A22: 1
<= i1 by
A11,
MATRIX_0: 32;
A23: j2
<= (
width (
GoB f)) by
A15,
MATRIX_0: 32;
A24: 1
<= i2 by
A15,
MATRIX_0: 32;
per cases by
A19,
SEQM_3: 41;
suppose
A25: i1
= i2 & j1
= (j2
+ 1);
then mi
in (
LSeg (((
GoB f)
* (i2,j2)),((
GoB f)
* (i2,(j2
+ 1))))) by
A3,
A5,
A6,
A7,
A12,
A16,
TOPREAL1:def 3;
hence thesis by
A1,
A20,
A17,
A24,
A18,
A25,
Th27;
end;
suppose
A26: i1
= i2 & (j1
+ 1)
= j2;
then mi
in (
LSeg (((
GoB f)
* (i1,j1)),((
GoB f)
* (i1,(j1
+ 1))))) by
A3,
A5,
A6,
A7,
A12,
A16,
TOPREAL1:def 3;
hence thesis by
A1,
A13,
A22,
A21,
A23,
A26,
Th27;
end;
suppose
A27: i1
= (i2
+ 1) & j1
= j2;
then j
= j2 & i
= i2 by
A1,
A12,
A16,
A13,
A20,
A21,
A24,
A9,
Th26;
hence thesis by
A6,
A7,
A12,
A16,
A27,
TOPREAL1:def 3;
end;
suppose
A28: (i1
+ 1)
= i2 & j1
= j2;
then j
= j1 & i
= i1 by
A1,
A12,
A16,
A13,
A20,
A22,
A18,
A9,
Th26;
hence thesis by
A6,
A7,
A12,
A16,
A28,
TOPREAL1:def 3;
end;
end;
theorem ::
GOBOARD7:41
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: 1
<= (j
+ 1) by
NAT_1: 11;
A10: i
< (i
+ 1) by
NAT_1: 13;
A11: 1
<= (i
+ 1) by
NAT_1: 11;
j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
then (((
GoB f)
* ((i
+ 1),j))
`1 )
= (((
GoB f)
* ((i
+ 1),1))
`1 ) by
A2,
A3,
A11,
GOBOARD5: 2
.= (((
GoB f)
* ((i
+ 1),(j
+ 1)))
`1 ) by
A2,
A4,
A9,
A11,
GOBOARD5: 2;
then
A12: ((
GoB f)
* (i,(j
+ 1)))
<> ((
GoB f)
* ((i
+ 1),j)) by
A1,
A2,
A4,
A9,
A10,
GOBOARD5: 3;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:42
1
<= i & i
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
< (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))
proof
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) & 1
<= j and
A2: (j
+ 1)
< (
width (
GoB f)) and
A3: 1
<= k and
A4: (k
+ 1)
< (
len f) and
A5: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg (f,k)) and
A6: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A7: 1
<= (k
+ 1) by
NAT_1: 11;
A8: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A4,
NAT_1: 13;
then
A9: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A6,
A8,
A7,
TOPREAL1:def 3;
then
A10: ((
GoB f)
* (i,j))
= (f
/. (k
+ 2)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A11: j
< (j
+ 2) by
XREAL_1: 29;
(j
+ (1
+ 1))
= ((j
+ 1)
+ 1);
then (j
+ 2)
<= (
width (
GoB f)) by
A2,
NAT_1: 13;
then
A12: (((
GoB f)
* (i,j))
`2 )
< (((
GoB f)
* (i,(j
+ 2)))
`2 ) by
A1,
A11,
GOBOARD5: 4;
A13: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A3,
A4,
A5,
TOPREAL1:def 3;
then ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. k) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) by
A9,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A13,
A10,
A12,
SPPOL_1: 8;
thus thesis by
A13,
A10,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:43
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A10: j
< (j
+ 1) by
NAT_1: 13;
A11: 1
<= (i
+ 1) by
NAT_1: 11;
i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
then (((
GoB f)
* (i,j))
`2 )
= (((
GoB f)
* (1,j))
`2 ) by
A1,
A3,
A9,
GOBOARD5: 1
.= (((
GoB f)
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A11,
A9,
GOBOARD5: 1;
then
A12: ((
GoB f)
* (i,j))
<> ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A2,
A3,
A4,
A11,
A10,
GOBOARD5: 4;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* (i,j))
= (f
/. (k
+ 2)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:44
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: 1
<= (i
+ 1) by
NAT_1: 11;
A10: j
< (j
+ 1) by
NAT_1: 13;
A11: 1
<= (j
+ 1) by
NAT_1: 11;
i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
then (((
GoB f)
* (i,(j
+ 1)))
`2 )
= (((
GoB f)
* (1,(j
+ 1)))
`2 ) by
A1,
A4,
A11,
GOBOARD5: 1
.= (((
GoB f)
* ((i
+ 1),(j
+ 1)))
`2 ) by
A2,
A4,
A9,
A11,
GOBOARD5: 1;
then
A12: ((
GoB f)
* ((i
+ 1),j))
<> ((
GoB f)
* (i,(j
+ 1))) by
A2,
A3,
A4,
A9,
A10,
GOBOARD5: 4;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:45
1
<= i & (i
+ 1)
< (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
< (
len (
GoB f)) and
A3: 1
<= j & j
<= (
width (
GoB f)) and
A4: 1
<= k and
A5: (k
+ 1)
< (
len f) and
A6: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg (f,k)) and
A7: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,(k
+ 1)));
A8: i
< (i
+ 2) by
XREAL_1: 29;
(i
+ (1
+ 1))
= ((i
+ 1)
+ 1);
then (i
+ 2)
<= (
len (
GoB f)) by
A2,
NAT_1: 13;
then
A9: (((
GoB f)
* (i,j))
`1 )
< (((
GoB f)
* ((i
+ 2),j))
`1 ) by
A1,
A3,
A8,
GOBOARD5: 3;
A10: 1
<= (k
+ 1) by
NAT_1: 11;
A11: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A5,
NAT_1: 13;
then
A12: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A7,
A11,
A10,
TOPREAL1:def 3;
then
A13: ((
GoB f)
* (i,j))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A14: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A4,
A5,
A6,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. k) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) by
A12,
A9,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A14,
A13,
A9,
SPPOL_1: 8;
thus thesis by
A14,
A13,
A9,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:46
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,(k
+ 1)));
A9: i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
A10: i
< (i
+ 1) by
NAT_1: 13;
A11: 1
<= (j
+ 1) by
NAT_1: 11;
j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
then (((
GoB f)
* (i,j))
`1 )
= (((
GoB f)
* (i,1))
`1 ) by
A1,
A3,
A9,
GOBOARD5: 2
.= (((
GoB f)
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A11,
A9,
GOBOARD5: 2;
then
A12: ((
GoB f)
* (i,j))
<> ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A1,
A2,
A4,
A11,
A10,
GOBOARD5: 3;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* (i,j))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:47
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: 1
<= (j
+ 1) by
NAT_1: 11;
A10: i
< (i
+ 1) by
NAT_1: 13;
A11: 1
<= (i
+ 1) by
NAT_1: 11;
j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
then (((
GoB f)
* ((i
+ 1),j))
`1 )
= (((
GoB f)
* ((i
+ 1),1))
`1 ) by
A2,
A3,
A11,
GOBOARD5: 2
.= (((
GoB f)
* ((i
+ 1),(j
+ 1)))
`1 ) by
A2,
A4,
A9,
A11,
GOBOARD5: 2;
then
A12: ((
GoB f)
* (i,(j
+ 1)))
<> ((
GoB f)
* ((i
+ 1),j)) by
A1,
A2,
A4,
A9,
A10,
GOBOARD5: 3;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:48
1
<= i & i
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
< (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2)))
proof
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) & 1
<= j and
A2: (j
+ 1)
< (
width (
GoB f)) and
A3: 1
<= k and
A4: (k
+ 1)
< (
len f) and
A5: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k)) and
A6: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg (f,(k
+ 1)));
A7: 1
<= (k
+ 1) by
NAT_1: 11;
A8: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A4,
NAT_1: 13;
then
A9: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A6,
A8,
A7,
TOPREAL1:def 3;
then
A10: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k
+ 2)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A11: j
< (j
+ 2) by
XREAL_1: 29;
(j
+ (1
+ 1))
= ((j
+ 1)
+ 1);
then (j
+ 2)
<= (
width (
GoB f)) by
A2,
NAT_1: 13;
then
A12: (((
GoB f)
* (i,j))
`2 )
< (((
GoB f)
* (i,(j
+ 2)))
`2 ) by
A1,
A11,
GOBOARD5: 4;
A13: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A3,
A4,
A5,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,j)) by
A9,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A13,
A10,
A12,
SPPOL_1: 8;
thus thesis by
A13,
A10,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:49
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A10: j
< (j
+ 1) by
NAT_1: 13;
A11: 1
<= (i
+ 1) by
NAT_1: 11;
i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
then (((
GoB f)
* (i,j))
`2 )
= (((
GoB f)
* (1,j))
`2 ) by
A1,
A3,
A9,
GOBOARD5: 1
.= (((
GoB f)
* ((i
+ 1),j))
`2 ) by
A2,
A3,
A11,
A9,
GOBOARD5: 1;
then
A12: ((
GoB f)
* (i,j))
<> ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A2,
A3,
A4,
A11,
A10,
GOBOARD5: 4;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 2)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,j)) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:50
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: 1
<= (i
+ 1) by
NAT_1: 11;
A10: j
< (j
+ 1) by
NAT_1: 13;
A11: 1
<= (j
+ 1) by
NAT_1: 11;
i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
then (((
GoB f)
* (i,(j
+ 1)))
`2 )
= (((
GoB f)
* (1,(j
+ 1)))
`2 ) by
A1,
A4,
A11,
GOBOARD5: 1
.= (((
GoB f)
* ((i
+ 1),(j
+ 1)))
`2 ) by
A2,
A4,
A9,
A11,
GOBOARD5: 1;
then
A12: ((
GoB f)
* ((i
+ 1),j))
<> ((
GoB f)
* (i,(j
+ 1))) by
A2,
A3,
A4,
A9,
A10,
GOBOARD5: 4;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:51
1
<= i & (i
+ 1)
< (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
< (
len (
GoB f)) and
A3: 1
<= j & j
<= (
width (
GoB f)) and
A4: 1
<= k and
A5: (k
+ 1)
< (
len f) and
A6: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k)) and
A7: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg (f,(k
+ 1)));
A8: i
< (i
+ 2) by
XREAL_1: 29;
(i
+ (1
+ 1))
= ((i
+ 1)
+ 1);
then (i
+ 2)
<= (
len (
GoB f)) by
A2,
NAT_1: 13;
then
A9: (((
GoB f)
* (i,j))
`1 )
< (((
GoB f)
* ((i
+ 2),j))
`1 ) by
A1,
A3,
A8,
GOBOARD5: 3;
A10: 1
<= (k
+ 1) by
NAT_1: 11;
A11: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A5,
NAT_1: 13;
then
A12: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A7,
A11,
A10,
TOPREAL1:def 3;
then
A13: ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k
+ 2)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A14: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A4,
A5,
A6,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,j)) by
A12,
A9,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A14,
A13,
A9,
SPPOL_1: 8;
thus thesis by
A14,
A13,
A9,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:52
1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & 1
<= k & (k
+ 1)
< (
len f) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k)) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1))) implies (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: 1
<= k and
A6: (k
+ 1)
< (
len f) and
A7: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k)) and
A8: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,(k
+ 1)));
A9: i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
A10: i
< (i
+ 1) by
NAT_1: 13;
A11: 1
<= (j
+ 1) by
NAT_1: 11;
j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
then (((
GoB f)
* (i,j))
`1 )
= (((
GoB f)
* (i,1))
`1 ) by
A1,
A3,
A9,
GOBOARD5: 2
.= (((
GoB f)
* (i,(j
+ 1)))
`1 ) by
A1,
A4,
A11,
A9,
GOBOARD5: 2;
then
A12: ((
GoB f)
* (i,j))
<> ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A1,
A2,
A4,
A11,
A10,
GOBOARD5: 3;
A13: 1
<= (k
+ 1) by
NAT_1: 11;
A14: (k
+ (1
+ 1))
= ((k
+ 1)
+ 1);
then (k
+ 2)
<= (
len f) by
A6,
NAT_1: 13;
then
A15: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg ((f
/. (k
+ 1)),(f
/. (k
+ 2)))) by
A8,
A14,
A13,
TOPREAL1:def 3;
then
A16: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 2)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k
+ 2)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) by
SPPOL_1: 8;
A17: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg ((f
/. k),(f
/. (k
+ 1)))) by
A5,
A6,
A7,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k) by
SPPOL_1: 8;
hence (f
/. k)
= ((
GoB f)
* (i,j)) by
A15,
A12,
SPPOL_1: 8;
thus (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A16,
A12,
SPPOL_1: 8;
thus thesis by
A17,
A16,
A12,
SPPOL_1: 8;
end;
theorem ::
GOBOARD7:53
Th53: 1
<= i & i
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
< (
width (
GoB f)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. 2)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)))
proof
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) and
A2: 1
<= j and
A3: (j
+ 1)
< (
width (
GoB f)) and
A4: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) and
A5: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
c= (
L~ f);
A6: 1
<= (j
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))))
in (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k1 such that
A7: 1
<= k1 and
A8: (k1
+ 1)
<= (
len f) and
A9: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k1)) by
A1,
A2,
A3,
A4,
Th39;
A10: k1
< (
len f) by
A8,
NAT_1: 13;
A11:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A12: j
< (
width (
GoB f)) by
A3,
NAT_1: 13;
A13: (j
+ (1
+ 1))
= ((j
+ 1)
+ 1);
then
A14: 1
<= (j
+ 2) by
NAT_1: 11;
A15: (j
+ 2)
<= (
width (
GoB f)) by
A3,
A13,
NAT_1: 13;
((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* (i,(j
+ 2)))))
in (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2))))) by
RLTOPSP1: 69;
then
consider k2 such that
A16: 1
<= k2 and
A17: (k2
+ 1)
<= (
len f) and
A18: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
= (
LSeg (f,k2)) by
A1,
A5,
A6,
A13,
A15,
Th39;
A19: k2
< (
len f) by
A17,
NAT_1: 13;
A20:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A21: k1
= 1 or k1
> 1 by
A7,
XXREAL_0: 1;
now
per cases by
A16,
A11,
A20,
A21,
XXREAL_0: 1;
case that
A22: k1
= 1 and
A23: k2
= 2;
A24: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A17,
A23,
TOPREAL1:def 3;
then
A25: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. 2) by
A18,
A23,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A17,
A23,
NAT_1: 13;
A26: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A27: (f
/. 1)
<> (f
/. 3) by
Th36;
A28: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A8,
A22,
TOPREAL1:def 3;
then
A29: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A9,
A22,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A25,
A26,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,j)) by
A18,
A23,
A29,
A24,
A27,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) by
A9,
A22,
A28,
A25,
A27,
SPPOL_1: 8;
end;
case that
A30: k1
= 1 and
A31: k2
> 2;
A32: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A8,
A30,
TOPREAL1:def 3;
then
A33: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A9,
A30,
SPPOL_1: 8;
A34: 2
< (k2
+ 1) by
A31,
NAT_1: 13;
then
A35: (f
/. (k2
+ 1))
<> (f
/. 2) by
A17,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A36: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A37: (f
/. k2)
<> (f
/. 2) by
A19,
A31,
Th36;
hence (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A9,
A30,
A32,
A36,
A35,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,j)) by
A9,
A30,
A32,
A36,
A37,
A35,
SPPOL_1: 8;
A38: k2
> 1 by
A31,
XXREAL_0: 2;
then
A39: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A17,
A19,
A31,
A33,
A36,
A38,
A34,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A39,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 2))) by
A19,
A31,
A33,
A36,
A38,
Th36;
end;
case that
A40: k2
= 1 and
A41: k1
= 2;
A42: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A8,
A41,
TOPREAL1:def 3;
then
A43: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,j))
= (f
/. (2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. 2) by
A9,
A41,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A8,
A41,
NAT_1: 13;
A44: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A45: (f
/. 1)
<> (f
/. 3) by
Th36;
A46: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A40,
TOPREAL1:def 3;
then
A47: ((
GoB f)
* (i,(j
+ 2)))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 2)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A18,
A40,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A43,
A44,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,(j
+ 2))) by
A9,
A41,
A47,
A42,
A45,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A40,
A46,
A43,
A45,
SPPOL_1: 8;
end;
case that
A48: k2
= 1 and
A49: k1
> 2;
A50: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A48,
TOPREAL1:def 3;
then
A51: ((
GoB f)
* (i,(j
+ 2)))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 2)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A18,
A48,
SPPOL_1: 8;
A52: 2
< (k1
+ 1) by
A49,
NAT_1: 13;
then
A53: (f
/. (k1
+ 1))
<> (f
/. 2) by
A8,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then
A54: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A9,
SPPOL_1: 8;
A55: (f
/. k1)
<> (f
/. 2) by
A10,
A49,
Th36;
hence (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A18,
A48,
A50,
A54,
A53,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,(j
+ 2))) by
A18,
A48,
A50,
A54,
A55,
A53,
SPPOL_1: 8;
A56: k1
> 1 by
A49,
XXREAL_0: 2;
then
A57: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A8,
A10,
A49,
A51,
A54,
A56,
A52,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A57,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j)) by
A10,
A49,
A51,
A54,
A56,
Th36;
end;
case k1
= k2;
then
A58: ((
GoB f)
* (i,j))
= ((
GoB f)
* (i,(j
+ 2))) or ((
GoB f)
* (i,j))
= ((
GoB f)
* (i,(j
+ 1))) by
A9,
A18,
SPPOL_1: 8;
A59:
[i, (j
+ 2)]
in (
Indices (
GoB f)) by
A1,
A15,
A14,
MATRIX_0: 30;
[i, j]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A6,
A12,
MATRIX_0: 30;
then j
= (j
+ 1) or j
= (j
+ 2) by
A58,
A59,
GOBOARD1: 5;
hence contradiction;
end;
case that
A60: k1
> 1 and
A61: k2
> k1;
A62: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A60,
A61,
NAT_1: 13,
XREAL_1: 6;
A63: k1
< (k2
+ 1) by
A61,
NAT_1: 13;
then
A64: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A17,
A60,
Th37;
A65: (k1
+ 1)
<= k2 by
A61,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A66: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 2)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A67: k2
< (
len f) by
A17,
NAT_1: 13;
then
A68: (f
/. k1)
<> (f
/. k2) by
A60,
A61,
Th37;
A69: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) by
A9,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A17,
A60,
A61,
A66,
A63,
A67,
A62,
Th37;
then
A70: (k1
+ 1)
= k2 by
A65,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A17,
A60,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A9,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* (i,j)) by
A9,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) by
A9,
A69,
A66,
A64,
A70,
SPPOL_1: 8;
end;
case that
A71: k2
> 1 and
A72: k1
> k2;
A73: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A71,
A72,
NAT_1: 13,
XREAL_1: 6;
A74: k2
< (k1
+ 1) by
A72,
NAT_1: 13;
then
A75: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A8,
A71,
Th37;
A76: (k2
+ 1)
<= k1 by
A72,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then
A77: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A9,
SPPOL_1: 8;
A78: k1
< (
len f) by
A8,
NAT_1: 13;
then
A79: (f
/. k2)
<> (f
/. k1) by
A71,
A72,
Th37;
A80: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then ((
GoB f)
* (i,(j
+ 2)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 2)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A8,
A71,
A72,
A77,
A74,
A78,
A73,
Th37;
then
A81: (k2
+ 1)
= k1 by
A76,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A8,
A71,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* (i,(j
+ 2))) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A80,
A77,
A75,
A81,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:54
Th54: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) and
A6: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A7: i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
A8: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A9: 1
<= (i
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* (i,(j
+ 1)))))
in (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k1 such that
A10: 1
<= k1 and
A11: (k1
+ 1)
<= (
len f) and
A12: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
= (
LSeg (f,k1)) by
A1,
A3,
A4,
A5,
A7,
Th39;
A13: k1
< (
len f) by
A11,
NAT_1: 13;
A14:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A15: 1
<= (j
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k2 such that
A16: 1
<= k2 and
A17: (k2
+ 1)
<= (
len f) and
A18: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k2)) by
A1,
A2,
A4,
A6,
A15,
Th40;
A19: k2
< (
len f) by
A17,
NAT_1: 13;
A20:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A21: k1
= 1 or k1
> 1 by
A10,
XXREAL_0: 1;
now
per cases by
A16,
A14,
A20,
A21,
XXREAL_0: 1;
case that
A22: k1
= 1 and
A23: k2
= 2;
A24: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A17,
A23,
TOPREAL1:def 3;
then
A25: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) by
A18,
A23,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A17,
A23,
NAT_1: 13;
A26: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A27: (f
/. 1)
<> (f
/. 3) by
Th36;
A28: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A11,
A22,
TOPREAL1:def 3;
then
A29: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A12,
A22,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A25,
A26,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,j)) by
A18,
A23,
A29,
A24,
A27,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A22,
A28,
A25,
A27,
SPPOL_1: 8;
end;
case that
A30: k1
= 1 and
A31: k2
> 2;
A32: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A11,
A30,
TOPREAL1:def 3;
then
A33: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A12,
A30,
SPPOL_1: 8;
A34: 2
< (k2
+ 1) by
A31,
NAT_1: 13;
then
A35: (f
/. (k2
+ 1))
<> (f
/. 2) by
A17,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A36: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A37: (f
/. k2)
<> (f
/. 2) by
A19,
A31,
Th36;
hence (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A12,
A30,
A32,
A36,
A35,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,j)) by
A12,
A30,
A32,
A36,
A37,
A35,
SPPOL_1: 8;
A38: k2
> 1 by
A31,
XXREAL_0: 2;
then
A39: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A17,
A19,
A31,
A33,
A36,
A38,
A34,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A39,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A19,
A31,
A33,
A36,
A38,
Th36;
end;
case that
A40: k2
= 1 and
A41: k1
= 2;
A42: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A11,
A41,
TOPREAL1:def 3;
then
A43: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,j))
= (f
/. (2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. 2) by
A12,
A41,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A11,
A41,
NAT_1: 13;
A44: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A45: (f
/. 1)
<> (f
/. 3) by
Th36;
A46: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A40,
TOPREAL1:def 3;
then
A47: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A18,
A40,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A43,
A44,
Th36;
thus (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A41,
A47,
A42,
A45,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A40,
A46,
A43,
A45,
SPPOL_1: 8;
end;
case that
A48: k2
= 1 and
A49: k1
> 2;
A50: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A48,
TOPREAL1:def 3;
then
A51: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) by
A18,
A48,
SPPOL_1: 8;
A52: 2
< (k1
+ 1) by
A49,
NAT_1: 13;
then
A53: (f
/. (k1
+ 1))
<> (f
/. 2) by
A11,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then
A54: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A12,
SPPOL_1: 8;
A55: (f
/. k1)
<> (f
/. 2) by
A13,
A49,
Th36;
hence (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A18,
A48,
A50,
A54,
A53,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A18,
A48,
A50,
A54,
A55,
A53,
SPPOL_1: 8;
A56: k1
> 1 by
A49,
XXREAL_0: 2;
then
A57: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A11,
A13,
A49,
A51,
A54,
A56,
A52,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A57,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j)) by
A13,
A49,
A51,
A54,
A56,
Th36;
end;
case k1
= k2;
then
A58: ((
GoB f)
* (i,j))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or ((
GoB f)
* (i,j))
= ((
GoB f)
* (i,(j
+ 1))) by
A12,
A18,
SPPOL_1: 8;
A59:
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A2,
A4,
A15,
A9,
MATRIX_0: 30;
[i, j]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A3,
A4,
A15,
A8,
A7,
MATRIX_0: 30;
then j
= (j
+ 1) by
A58,
A59,
GOBOARD1: 5;
hence contradiction;
end;
case that
A60: k1
> 1 and
A61: k2
> k1;
A62: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A60,
A61,
NAT_1: 13,
XREAL_1: 6;
A63: k1
< (k2
+ 1) by
A61,
NAT_1: 13;
then
A64: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A17,
A60,
Th37;
A65: (k1
+ 1)
<= k2 by
A61,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A66: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A67: k2
< (
len f) by
A17,
NAT_1: 13;
then
A68: (f
/. k1)
<> (f
/. k2) by
A60,
A61,
Th37;
A69: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) by
A12,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A17,
A60,
A61,
A66,
A63,
A67,
A62,
Th37;
then
A70: (k1
+ 1)
= k2 by
A65,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A17,
A60,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A12,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* (i,j)) by
A12,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A69,
A66,
A64,
A70,
SPPOL_1: 8;
end;
case that
A71: k2
> 1 and
A72: k1
> k2;
A73: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A71,
A72,
NAT_1: 13,
XREAL_1: 6;
A74: k2
< (k1
+ 1) by
A72,
NAT_1: 13;
then
A75: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A11,
A71,
Th37;
A76: (k2
+ 1)
<= k1 by
A72,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then
A77: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A12,
SPPOL_1: 8;
A78: k1
< (
len f) by
A11,
NAT_1: 13;
then
A79: (f
/. k2)
<> (f
/. k1) by
A71,
A72,
Th37;
A80: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A11,
A71,
A72,
A77,
A74,
A78,
A73,
Th37;
then
A81: (k2
+ 1)
= k1 by
A76,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A11,
A71,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A80,
A77,
A75,
A81,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:55
Th55: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. 2)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 1)))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) and
A6: (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f);
A7: 1
<= (j
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k1 such that
A8: 1
<= k1 and
A9: (k1
+ 1)
<= (
len f) and
A10: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k1)) by
A1,
A2,
A4,
A5,
A7,
Th40;
A11: k1
< (
len f) by
A9,
NAT_1: 13;
A12:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A13: j
< (
width (
GoB f)) & i
< (
len (
GoB f)) by
A2,
A4,
NAT_1: 13;
A14: 1
<= (i
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 1),j)))) by
RLTOPSP1: 69;
then
consider k2 such that
A15: 1
<= k2 and
A16: (k2
+ 1)
<= (
len f) and
A17: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k2)) by
A2,
A3,
A4,
A6,
A14,
Th39;
A18: k2
< (
len f) by
A16,
NAT_1: 13;
A19:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A20: k1
= 1 or k1
> 1 by
A8,
XXREAL_0: 1;
now
per cases by
A15,
A12,
A19,
A20,
XXREAL_0: 1;
case that
A21: k1
= 1 and
A22: k2
= 2;
A23: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A16,
A22,
TOPREAL1:def 3;
then
A24: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) by
A17,
A22,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A16,
A22,
NAT_1: 13;
A25: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A26: (f
/. 1)
<> (f
/. 3) by
Th36;
A27: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A9,
A21,
TOPREAL1:def 3;
then
A28: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A10,
A21,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A24,
A25,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A22,
A28,
A23,
A26,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A10,
A21,
A27,
A24,
A26,
SPPOL_1: 8;
end;
case that
A29: k1
= 1 and
A30: k2
> 2;
A31: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A9,
A29,
TOPREAL1:def 3;
then
A32: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A10,
A29,
SPPOL_1: 8;
A33: 2
< (k2
+ 1) by
A30,
NAT_1: 13;
then
A34: (f
/. (k2
+ 1))
<> (f
/. 2) by
A16,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then
A35: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) by
A17,
SPPOL_1: 8;
A36: (f
/. k2)
<> (f
/. 2) by
A18,
A30,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A29,
A31,
A35,
A34,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1))) by
A10,
A29,
A31,
A35,
A36,
A34,
SPPOL_1: 8;
A37: k2
> 1 by
A30,
XXREAL_0: 2;
then
A38: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A16,
A18,
A30,
A32,
A35,
A37,
A33,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A38,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A18,
A30,
A32,
A35,
A37,
Th36;
end;
case that
A39: k2
= 1 and
A40: k1
= 2;
A41: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A9,
A40,
TOPREAL1:def 3;
then
A42: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) by
A10,
A40,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A9,
A40,
NAT_1: 13;
A43: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A44: (f
/. 1)
<> (f
/. 3) by
Th36;
A45: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A16,
A39,
TOPREAL1:def 3;
then
A46: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A17,
A39,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A42,
A43,
Th36;
thus (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A10,
A40,
A46,
A41,
A44,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A39,
A45,
A42,
A44,
SPPOL_1: 8;
end;
case that
A47: k2
= 1 and
A48: k1
> 2;
A49: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A16,
A47,
TOPREAL1:def 3;
then
A50: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A17,
A47,
SPPOL_1: 8;
A51: 2
< (k1
+ 1) by
A48,
NAT_1: 13;
then
A52: (f
/. (k1
+ 1))
<> (f
/. 2) by
A9,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then
A53: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) by
A10,
SPPOL_1: 8;
A54: (f
/. k1)
<> (f
/. 2) by
A11,
A48,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A47,
A49,
A53,
A52,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A47,
A49,
A53,
A54,
A52,
SPPOL_1: 8;
A55: k1
> 1 by
A48,
XXREAL_0: 2;
then
A56: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A9,
A11,
A48,
A50,
A53,
A55,
A51,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A56,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A11,
A48,
A50,
A53,
A55,
Th36;
end;
case k1
= k2;
then
A57: ((
GoB f)
* (i,(j
+ 1)))
= ((
GoB f)
* ((i
+ 1),j)) or ((
GoB f)
* (i,(j
+ 1)))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A17,
SPPOL_1: 8;
A58:
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A2,
A4,
A7,
A14,
MATRIX_0: 30;
[(i
+ 1), j]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A7,
A14,
A13,
MATRIX_0: 30;
then i
= (i
+ 1) or j
= (j
+ 1) by
A57,
A58,
GOBOARD1: 5;
hence contradiction;
end;
case that
A59: k1
> 1 and
A60: k2
> k1;
A61: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A59,
A60,
NAT_1: 13,
XREAL_1: 6;
A62: k1
< (k2
+ 1) by
A60,
NAT_1: 13;
then
A63: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A16,
A59,
Th37;
A64: (k1
+ 1)
<= k2 by
A60,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then
A65: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) by
A17,
SPPOL_1: 8;
A66: k2
< (
len f) by
A16,
NAT_1: 13;
then
A67: (f
/. k1)
<> (f
/. k2) by
A59,
A60,
Th37;
A68: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) by
A10,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A16,
A59,
A60,
A65,
A62,
A66,
A61,
Th37;
then
A69: (k1
+ 1)
= k2 by
A64,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A16,
A59,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A68,
A65,
A63,
A67,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* (i,(j
+ 1))) by
A10,
A68,
A65,
A63,
A67,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A10,
A68,
A65,
A63,
A69,
SPPOL_1: 8;
end;
case that
A70: k2
> 1 and
A71: k1
> k2;
A72: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A70,
A71,
NAT_1: 13,
XREAL_1: 6;
A73: k2
< (k1
+ 1) by
A71,
NAT_1: 13;
then
A74: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A9,
A70,
Th37;
A75: (k2
+ 1)
<= k1 by
A71,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then
A76: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k1) by
A10,
SPPOL_1: 8;
A77: k1
< (
len f) by
A9,
NAT_1: 13;
then
A78: (f
/. k2)
<> (f
/. k1) by
A70,
A71,
Th37;
A79: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A17,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A9,
A70,
A71,
A76,
A73,
A77,
A72,
Th37;
then
A80: (k2
+ 1)
= k1 by
A75,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A9,
A70,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A79,
A76,
A74,
A78,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A79,
A76,
A74,
A78,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A79,
A76,
A74,
A80,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:56
Th56: 1
<= i & (i
+ 1)
< (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. 2)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
< (
len (
GoB f)) and
A3: 1
<= j & j
<= (
width (
GoB f)) and
A4: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) and
A5: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
c= (
L~ f);
A6: 1
<= (i
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))))
in (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j)))) by
RLTOPSP1: 69;
then
consider k1 such that
A7: 1
<= k1 and
A8: (k1
+ 1)
<= (
len f) and
A9: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k1)) by
A1,
A2,
A3,
A4,
Th40;
A10: k1
< (
len f) by
A8,
NAT_1: 13;
A11:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A12: i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
A13: (i
+ (1
+ 1))
= ((i
+ 1)
+ 1);
then
A14: 1
<= (i
+ 2) by
NAT_1: 11;
A15: (i
+ 2)
<= (
len (
GoB f)) by
A2,
A13,
NAT_1: 13;
((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 2),j))))
in (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j)))) by
RLTOPSP1: 69;
then
consider k2 such that
A16: 1
<= k2 and
A17: (k2
+ 1)
<= (
len f) and
A18: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
= (
LSeg (f,k2)) by
A3,
A5,
A6,
A13,
A15,
Th40;
A19: k2
< (
len f) by
A17,
NAT_1: 13;
A20:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A21: k1
= 1 or k1
> 1 by
A7,
XXREAL_0: 1;
now
per cases by
A16,
A11,
A20,
A21,
XXREAL_0: 1;
case that
A22: k1
= 1 and
A23: k2
= 2;
A24: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A17,
A23,
TOPREAL1:def 3;
then
A25: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. 2) by
A18,
A23,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A17,
A23,
NAT_1: 13;
A26: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A27: (f
/. 1)
<> (f
/. 3) by
Th36;
A28: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A8,
A22,
TOPREAL1:def 3;
then
A29: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A9,
A22,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A25,
A26,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,j)) by
A18,
A23,
A29,
A24,
A27,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) by
A9,
A22,
A28,
A25,
A27,
SPPOL_1: 8;
end;
case that
A30: k1
= 1 and
A31: k2
> 2;
A32: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A8,
A30,
TOPREAL1:def 3;
then
A33: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A9,
A30,
SPPOL_1: 8;
A34: 2
< (k2
+ 1) by
A31,
NAT_1: 13;
then
A35: (f
/. (k2
+ 1))
<> (f
/. 2) by
A17,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A36: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A37: (f
/. k2)
<> (f
/. 2) by
A19,
A31,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A9,
A30,
A32,
A36,
A35,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,j)) by
A9,
A30,
A32,
A36,
A37,
A35,
SPPOL_1: 8;
A38: k2
> 1 by
A31,
XXREAL_0: 2;
then
A39: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A17,
A19,
A31,
A33,
A36,
A38,
A34,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A39,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 2),j)) by
A19,
A31,
A33,
A36,
A38,
Th36;
end;
case that
A40: k2
= 1 and
A41: k1
= 2;
A42: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A8,
A41,
TOPREAL1:def 3;
then
A43: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* (i,j))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. 2) by
A9,
A41,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A8,
A41,
NAT_1: 13;
A44: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A45: (f
/. 1)
<> (f
/. 3) by
Th36;
A46: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A40,
TOPREAL1:def 3;
then
A47: ((
GoB f)
* ((i
+ 2),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* ((i
+ 2),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A18,
A40,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A43,
A44,
Th36;
thus (f
/. 1)
= ((
GoB f)
* ((i
+ 2),j)) by
A9,
A41,
A47,
A42,
A45,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A40,
A46,
A43,
A45,
SPPOL_1: 8;
end;
case that
A48: k2
= 1 and
A49: k1
> 2;
A50: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A48,
TOPREAL1:def 3;
then
A51: ((
GoB f)
* ((i
+ 2),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* ((i
+ 2),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A18,
A48,
SPPOL_1: 8;
A52: 2
< (k1
+ 1) by
A49,
NAT_1: 13;
then
A53: (f
/. (k1
+ 1))
<> (f
/. 2) by
A8,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then
A54: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A9,
SPPOL_1: 8;
A55: (f
/. k1)
<> (f
/. 2) by
A10,
A49,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A18,
A48,
A50,
A54,
A53,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* ((i
+ 2),j)) by
A18,
A48,
A50,
A54,
A55,
A53,
SPPOL_1: 8;
A56: k1
> 1 by
A49,
XXREAL_0: 2;
then
A57: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A8,
A10,
A49,
A51,
A54,
A56,
A52,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A57,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j)) by
A10,
A49,
A51,
A54,
A56,
Th36;
end;
case k1
= k2;
then
A58: ((
GoB f)
* (i,j))
= ((
GoB f)
* ((i
+ 2),j)) or ((
GoB f)
* (i,j))
= ((
GoB f)
* ((i
+ 1),j)) by
A9,
A18,
SPPOL_1: 8;
A59:
[(i
+ 2), j]
in (
Indices (
GoB f)) by
A3,
A15,
A14,
MATRIX_0: 30;
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A6,
A12,
MATRIX_0: 30;
then i
= (i
+ 1) or i
= (i
+ 2) by
A58,
A59,
GOBOARD1: 5;
hence contradiction;
end;
case that
A60: k1
> 1 and
A61: k2
> k1;
A62: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A60,
A61,
NAT_1: 13,
XREAL_1: 6;
A63: k1
< (k2
+ 1) by
A61,
NAT_1: 13;
then
A64: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A17,
A60,
Th37;
A65: (k1
+ 1)
<= k2 by
A61,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A66: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 2),j))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A67: k2
< (
len f) by
A17,
NAT_1: 13;
then
A68: (f
/. k1)
<> (f
/. k2) by
A60,
A61,
Th37;
A69: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) by
A9,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A17,
A60,
A61,
A66,
A63,
A67,
A62,
Th37;
then
A70: (k1
+ 1)
= k2 by
A65,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A17,
A60,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A9,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* (i,j)) by
A9,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) by
A9,
A69,
A66,
A64,
A70,
SPPOL_1: 8;
end;
case that
A71: k2
> 1 and
A72: k1
> k2;
A73: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A71,
A72,
NAT_1: 13,
XREAL_1: 6;
A74: k2
< (k1
+ 1) by
A72,
NAT_1: 13;
then
A75: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A8,
A71,
Th37;
A76: (k2
+ 1)
<= k1 by
A72,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A7,
A8,
TOPREAL1:def 3;
then
A77: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A9,
SPPOL_1: 8;
A78: k1
< (
len f) by
A8,
NAT_1: 13;
then
A79: (f
/. k2)
<> (f
/. k1) by
A71,
A72,
Th37;
A80: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 2),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 2),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) by
A18,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A8,
A71,
A72,
A77,
A74,
A78,
A73,
Th37;
then
A81: (k2
+ 1)
= k1 by
A76,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A8,
A71,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* ((i
+ 2),j)) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A80,
A77,
A75,
A81,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:57
Th57: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) and
A6: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A7: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A8: i
< (
len (
GoB f)) by
A2,
NAT_1: 13;
A9: 1
<= (j
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,j))
+ ((
GoB f)
* ((i
+ 1),j))))
in (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j)))) by
RLTOPSP1: 69;
then
consider k1 such that
A10: 1
<= k1 and
A11: (k1
+ 1)
<= (
len f) and
A12: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
= (
LSeg (f,k1)) by
A1,
A2,
A3,
A5,
A7,
Th40;
A13: k1
< (
len f) by
A11,
NAT_1: 13;
A14:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A15: 1
<= (i
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k2 such that
A16: 1
<= k2 and
A17: (k2
+ 1)
<= (
len f) and
A18: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k2)) by
A2,
A3,
A4,
A6,
A15,
Th39;
A19: k2
< (
len f) by
A17,
NAT_1: 13;
A20:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A21: k1
= 1 or k1
> 1 by
A10,
XXREAL_0: 1;
now
per cases by
A16,
A14,
A20,
A21,
XXREAL_0: 1;
case that
A22: k1
= 1 and
A23: k2
= 2;
A24: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A17,
A23,
TOPREAL1:def 3;
then
A25: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) by
A18,
A23,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A17,
A23,
NAT_1: 13;
A26: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A27: (f
/. 1)
<> (f
/. 3) by
Th36;
A28: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A11,
A22,
TOPREAL1:def 3;
then
A29: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A12,
A22,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A25,
A26,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,j)) by
A18,
A23,
A29,
A24,
A27,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A22,
A28,
A25,
A27,
SPPOL_1: 8;
end;
case that
A30: k1
= 1 and
A31: k2
> 2;
A32: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A11,
A30,
TOPREAL1:def 3;
then
A33: ((
GoB f)
* (i,j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* (i,j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A12,
A30,
SPPOL_1: 8;
A34: 2
< (k2
+ 1) by
A31,
NAT_1: 13;
then
A35: (f
/. (k2
+ 1))
<> (f
/. 2) by
A17,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A36: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A37: (f
/. k2)
<> (f
/. 2) by
A19,
A31,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A12,
A30,
A32,
A36,
A35,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,j)) by
A12,
A30,
A32,
A36,
A37,
A35,
SPPOL_1: 8;
A38: k2
> 1 by
A31,
XXREAL_0: 2;
then
A39: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A17,
A19,
A31,
A33,
A36,
A38,
A34,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A39,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A19,
A31,
A33,
A36,
A38,
Th36;
end;
case that
A40: k2
= 1 and
A41: k1
= 2;
A42: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A11,
A41,
TOPREAL1:def 3;
then
A43: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* (i,j))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. 2) by
A12,
A41,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A11,
A41,
NAT_1: 13;
A44: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A45: (f
/. 1)
<> (f
/. 3) by
Th36;
A46: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A40,
TOPREAL1:def 3;
then
A47: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A18,
A40,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A43,
A44,
Th36;
thus (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A41,
A47,
A42,
A45,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A40,
A46,
A43,
A45,
SPPOL_1: 8;
end;
case that
A48: k2
= 1 and
A49: k1
> 2;
A50: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A17,
A48,
TOPREAL1:def 3;
then
A51: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) by
A18,
A48,
SPPOL_1: 8;
A52: 2
< (k1
+ 1) by
A49,
NAT_1: 13;
then
A53: (f
/. (k1
+ 1))
<> (f
/. 2) by
A11,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then
A54: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A12,
SPPOL_1: 8;
A55: (f
/. k1)
<> (f
/. 2) by
A13,
A49,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A18,
A48,
A50,
A54,
A53,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A18,
A48,
A50,
A54,
A55,
A53,
SPPOL_1: 8;
A56: k1
> 1 by
A49,
XXREAL_0: 2;
then
A57: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A11,
A13,
A49,
A51,
A54,
A56,
A52,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A57,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,j)) by
A13,
A49,
A51,
A54,
A56,
Th36;
end;
case k1
= k2;
then
A58: ((
GoB f)
* (i,j))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or ((
GoB f)
* (i,j))
= ((
GoB f)
* ((i
+ 1),j)) by
A12,
A18,
SPPOL_1: 8;
A59:
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A2,
A4,
A15,
A9,
MATRIX_0: 30;
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A15,
A8,
A7,
MATRIX_0: 30;
then i
= (i
+ 1) by
A58,
A59,
GOBOARD1: 5;
hence contradiction;
end;
case that
A60: k1
> 1 and
A61: k2
> k1;
A62: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A60,
A61,
NAT_1: 13,
XREAL_1: 6;
A63: k1
< (k2
+ 1) by
A61,
NAT_1: 13;
then
A64: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A17,
A60,
Th37;
A65: (k1
+ 1)
<= k2 by
A61,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then
A66: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A18,
SPPOL_1: 8;
A67: k2
< (
len f) by
A17,
NAT_1: 13;
then
A68: (f
/. k1)
<> (f
/. k2) by
A60,
A61,
Th37;
A69: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then ((
GoB f)
* (i,j))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) by
A12,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A17,
A60,
A61,
A66,
A63,
A67,
A62,
Th37;
then
A70: (k1
+ 1)
= k2 by
A65,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A17,
A60,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A12,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* (i,j)) by
A12,
A69,
A66,
A64,
A68,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A12,
A69,
A66,
A64,
A70,
SPPOL_1: 8;
end;
case that
A71: k2
> 1 and
A72: k1
> k2;
A73: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A71,
A72,
NAT_1: 13,
XREAL_1: 6;
A74: k2
< (k1
+ 1) by
A72,
NAT_1: 13;
then
A75: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A11,
A71,
Th37;
A76: (k2
+ 1)
<= k1 by
A72,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A10,
A11,
TOPREAL1:def 3;
then
A77: ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) & ((
GoB f)
* (i,j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* (i,j))
= (f
/. k1) by
A12,
SPPOL_1: 8;
A78: k1
< (
len f) by
A11,
NAT_1: 13;
then
A79: (f
/. k2)
<> (f
/. k1) by
A71,
A72,
Th37;
A80: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A16,
A17,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k2) by
A18,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A11,
A71,
A72,
A77,
A74,
A78,
A73,
Th37;
then
A81: (k2
+ 1)
= k1 by
A76,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A11,
A71,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A18,
A80,
A77,
A75,
A79,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A18,
A80,
A77,
A75,
A81,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:58
Th58: 1
<= i & (i
+ 1)
<= (
len (
GoB f)) & 1
<= j & (j
+ 1)
<= (
width (
GoB f)) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) implies (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. 2)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),j))) or ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) and
A6: (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f);
A7: 1
<= (i
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* ((i
+ 1),j))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k1 such that
A8: 1
<= k1 and
A9: (k1
+ 1)
<= (
len f) and
A10: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k1)) by
A2,
A3,
A4,
A5,
A7,
Th39;
A11: k1
< (
len f) by
A9,
NAT_1: 13;
A12:
now
assume k1
> 1;
then k1
>= (1
+ 1) by
NAT_1: 13;
hence k1
= 2 or k1
> 2 by
XXREAL_0: 1;
end;
A13: i
< (
len (
GoB f)) & j
< (
width (
GoB f)) by
A2,
A4,
NAT_1: 13;
A14: 1
<= (j
+ 1) by
NAT_1: 11;
((1
/ 2)
* (((
GoB f)
* (i,(j
+ 1)))
+ ((
GoB f)
* ((i
+ 1),(j
+ 1)))))
in (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* (i,(j
+ 1))))) by
RLTOPSP1: 69;
then
consider k2 such that
A15: 1
<= k2 and
A16: (k2
+ 1)
<= (
len f) and
A17: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
= (
LSeg (f,k2)) by
A1,
A2,
A4,
A6,
A14,
Th40;
A18: k2
< (
len f) by
A16,
NAT_1: 13;
A19:
now
assume k2
> 1;
then k2
>= (1
+ 1) by
NAT_1: 13;
hence k2
= 2 or k2
> 2 by
XXREAL_0: 1;
end;
A20: k1
= 1 or k1
> 1 by
A8,
XXREAL_0: 1;
now
per cases by
A15,
A12,
A19,
A20,
XXREAL_0: 1;
case that
A21: k1
= 1 and
A22: k2
= 2;
A23: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A16,
A22,
TOPREAL1:def 3;
then
A24: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) by
A17,
A22,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A16,
A22,
NAT_1: 13;
A25: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A26: (f
/. 1)
<> (f
/. 3) by
Th36;
A27: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A9,
A21,
TOPREAL1:def 3;
then
A28: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A10,
A21,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A24,
A25,
Th36;
thus (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A22,
A28,
A23,
A26,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A10,
A21,
A27,
A24,
A26,
SPPOL_1: 8;
end;
case that
A29: k1
= 1 and
A30: k2
> 2;
A31: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A9,
A29,
TOPREAL1:def 3;
then
A32: ((
GoB f)
* ((i
+ 1),j))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A10,
A29,
SPPOL_1: 8;
A33: 2
< (k2
+ 1) by
A30,
NAT_1: 13;
then
A34: (f
/. (k2
+ 1))
<> (f
/. 2) by
A16,
Th37;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then
A35: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) by
A17,
SPPOL_1: 8;
A36: (f
/. k2)
<> (f
/. 2) by
A18,
A30,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A29,
A31,
A35,
A34,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j)) by
A10,
A29,
A31,
A35,
A36,
A34,
SPPOL_1: 8;
A37: k2
> 1 by
A30,
XXREAL_0: 2;
then
A38: (k2
+ 1)
> 1 by
NAT_1: 13;
then (k2
+ 1)
= (
len f) by
A16,
A18,
A30,
A32,
A35,
A37,
A33,
Th37,
Th38;
then (k2
+ 1)
= (((
len f)
-' 1)
+ 1) by
A38,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 1))) by
A18,
A30,
A32,
A35,
A37,
Th36;
end;
case that
A39: k2
= 1 and
A40: k1
= 2;
A41: (
LSeg (f,2))
= (
LSeg ((f
/. 2),(f
/. (2
+ 1)))) by
A9,
A40,
TOPREAL1:def 3;
then
A42: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (2
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. 2) by
A10,
A40,
SPPOL_1: 8;
thus 1
<= 1 & (1
+ 1)
< (
len f) by
A9,
A40,
NAT_1: 13;
A43: 3
< (
len f) by
Th34,
XXREAL_0: 2;
then
A44: (f
/. 1)
<> (f
/. 3) by
Th36;
A45: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A16,
A39,
TOPREAL1:def 3;
then
A46: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A17,
A39,
SPPOL_1: 8;
hence (f
/. (1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A42,
A43,
Th36;
thus (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) by
A10,
A40,
A46,
A41,
A44,
SPPOL_1: 8;
thus (f
/. (1
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A39,
A45,
A42,
A44,
SPPOL_1: 8;
end;
case that
A47: k2
= 1 and
A48: k1
> 2;
A49: (
LSeg (f,1))
= (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
A16,
A47,
TOPREAL1:def 3;
then
A50: ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 2) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. 2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. 1) by
A17,
A47,
SPPOL_1: 8;
A51: 2
< (k1
+ 1) by
A48,
NAT_1: 13;
then
A52: (f
/. (k1
+ 1))
<> (f
/. 2) by
A9,
Th37;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then
A53: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) by
A10,
SPPOL_1: 8;
A54: (f
/. k1)
<> (f
/. 2) by
A11,
A48,
Th36;
hence (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A47,
A49,
A53,
A52,
SPPOL_1: 8;
thus (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A47,
A49,
A53,
A54,
A52,
SPPOL_1: 8;
A55: k1
> 1 by
A48,
XXREAL_0: 2;
then
A56: (k1
+ 1)
> 1 by
NAT_1: 13;
then (k1
+ 1)
= (
len f) by
A9,
A11,
A48,
A50,
A53,
A55,
A51,
Th37,
Th38;
then (k1
+ 1)
= (((
len f)
-' 1)
+ 1) by
A56,
XREAL_1: 235;
hence (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),j)) by
A11,
A48,
A50,
A53,
A55,
Th36;
end;
case k1
= k2;
then
A57: ((
GoB f)
* ((i
+ 1),j))
= ((
GoB f)
* (i,(j
+ 1))) or ((
GoB f)
* ((i
+ 1),j))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A17,
SPPOL_1: 8;
A58:
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A2,
A4,
A7,
A14,
MATRIX_0: 30;
[i, (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A7,
A14,
A13,
MATRIX_0: 30;
then j
= (j
+ 1) or i
= (i
+ 1) by
A57,
A58,
GOBOARD1: 5;
hence contradiction;
end;
case that
A59: k1
> 1 and
A60: k2
> k1;
A61: 1
< (k1
+ 1) & (k1
+ 1)
< (k2
+ 1) by
A59,
A60,
NAT_1: 13,
XREAL_1: 6;
A62: k1
< (k2
+ 1) by
A60,
NAT_1: 13;
then
A63: (f
/. k1)
<> (f
/. (k2
+ 1)) by
A16,
A59,
Th37;
A64: (k1
+ 1)
<= k2 by
A60,
NAT_1: 13;
(
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then
A65: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) by
A17,
SPPOL_1: 8;
A66: k2
< (
len f) by
A16,
NAT_1: 13;
then
A67: (f
/. k1)
<> (f
/. k2) by
A59,
A60,
Th37;
A68: (
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) by
A10,
SPPOL_1: 8;
then (k1
+ 1)
>= k2 by
A16,
A59,
A60,
A65,
A62,
A66,
A61,
Th37;
then
A69: (k1
+ 1)
= k2 by
A64,
XXREAL_0: 1;
hence 1
<= k1 & (k1
+ 1)
< (
len f) by
A16,
A59,
NAT_1: 13;
thus (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A10,
A68,
A65,
A63,
A67,
SPPOL_1: 8;
thus (f
/. k1)
= ((
GoB f)
* ((i
+ 1),j)) by
A10,
A68,
A65,
A63,
A67,
SPPOL_1: 8;
thus (f
/. (k1
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A10,
A68,
A65,
A63,
A69,
SPPOL_1: 8;
end;
case that
A70: k2
> 1 and
A71: k1
> k2;
A72: 1
< (k2
+ 1) & (k2
+ 1)
< (k1
+ 1) by
A70,
A71,
NAT_1: 13,
XREAL_1: 6;
A73: k2
< (k1
+ 1) by
A71,
NAT_1: 13;
then
A74: (f
/. k2)
<> (f
/. (k1
+ 1)) by
A9,
A70,
Th37;
A75: (k2
+ 1)
<= k1 by
A71,
NAT_1: 13;
(
LSeg (f,k1))
= (
LSeg ((f
/. k1),(f
/. (k1
+ 1)))) by
A8,
A9,
TOPREAL1:def 3;
then
A76: ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k1) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. (k1
+ 1)) or ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k1
+ 1)) & ((
GoB f)
* ((i
+ 1),j))
= (f
/. k1) by
A10,
SPPOL_1: 8;
A77: k1
< (
len f) by
A9,
NAT_1: 13;
then
A78: (f
/. k2)
<> (f
/. k1) by
A70,
A71,
Th37;
A79: (
LSeg (f,k2))
= (
LSeg ((f
/. k2),(f
/. (k2
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
then ((
GoB f)
* (i,(j
+ 1)))
= (f
/. k2) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. (k2
+ 1)) or ((
GoB f)
* (i,(j
+ 1)))
= (f
/. (k2
+ 1)) & ((
GoB f)
* ((i
+ 1),(j
+ 1)))
= (f
/. k2) by
A17,
SPPOL_1: 8;
then (k2
+ 1)
>= k1 by
A9,
A70,
A71,
A76,
A73,
A77,
A72,
Th37;
then
A80: (k2
+ 1)
= k1 by
A75,
XXREAL_0: 1;
hence 1
<= k2 & (k2
+ 1)
< (
len f) by
A9,
A70,
NAT_1: 13;
thus (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) by
A17,
A79,
A76,
A74,
A78,
SPPOL_1: 8;
thus (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1))) by
A17,
A79,
A76,
A74,
A78,
SPPOL_1: 8;
thus (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A17,
A79,
A76,
A74,
A80,
SPPOL_1: 8;
end;
end;
hence thesis;
end;
theorem ::
GOBOARD7:59
1
<= i & i
< (
len (
GoB f)) & 1
<= j & (j
+ 1)
< (
width (
GoB f)) implies not ((
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f))
proof
assume that
A1: 1
<= i and
A2: i
< (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
< (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* (i,(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* (i,(j
+ 2)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A6: (i
+ 1)
<= (
len (
GoB f)) by
A2,
NAT_1: 13;
(j
+ (1
+ 1))
= ((j
+ 1)
+ 1);
then
A7: (j
+ 2)
<= (
width (
GoB f)) by
A4,
NAT_1: 13;
A8: 1
<= (j
+ 1) by
NAT_1: 11;
A9: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A10: 1
<= (i
+ 1) by
NAT_1: 11;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A11: 1
<= (j
+ 2) by
A8,
XXREAL_0: 2;
per cases by
A1,
A2,
A3,
A4,
A5,
A6,
Th53,
Th54;
suppose
A12: (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A12,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A13: (f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then i
= (i
+ 1) by
A13,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A14: (f
/. 2)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. 2)
= ((
GoB f)
* (i,j));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A9,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 2) by
A14,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A15: (f
/. 2)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A15,
GOBOARD1: 5;
hence contradiction;
end;
suppose that
A16: (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1))) and
A17: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)));
consider k such that
A18: 1
<= k and
A19: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) and (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) by
A17;
1
< (k
+ 1) by
A18,
NAT_1: 13;
hence contradiction by
A16,
A19,
Th36;
end;
suppose that
A20: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))) and
A21: (f
/. 1)
= ((
GoB f)
* (i,(j
+ 1)));
consider k such that
A22: 1
<= k and
A23: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) and (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) by
A20;
1
< (k
+ 1) by
A22,
NAT_1: 13;
hence contradiction by
A21,
A23,
Th36;
end;
suppose that
A24: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))) and
A25: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)));
consider k1 such that 1
<= k1 and
A26: (k1
+ 1)
< (
len f) and
A27: (f
/. (k1
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) and
A28: (f
/. k1)
= ((
GoB f)
* (i,j)) & (f
/. (k1
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) or (f
/. k1)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k1
+ 2))
= ((
GoB f)
* (i,j)) by
A24;
consider k2 such that 1
<= k2 and
A29: (k2
+ 1)
< (
len f) and
A30: (f
/. (k2
+ 1))
= ((
GoB f)
* (i,(j
+ 1))) and
A31: (f
/. k2)
= ((
GoB f)
* (i,j)) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A25;
A32:
now
assume
A33: k1
<> k2;
per cases by
A33,
XXREAL_0: 1;
suppose k1
< k2;
then (k1
+ 1)
< (k2
+ 1) by
XREAL_1: 6;
hence contradiction by
A27,
A29,
A30,
Th36,
NAT_1: 11;
end;
suppose k2
< k1;
then (k2
+ 1)
< (k1
+ 1) by
XREAL_1: 6;
hence contradiction by
A26,
A27,
A30,
Th36,
NAT_1: 11;
end;
end;
now
per cases by
A28,
A31;
suppose
A34: (f
/. (k1
+ 2))
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A34,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A35: (f
/. k1)
= ((
GoB f)
* (i,j)) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A35,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A36: (f
/. k1)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. k2)
= ((
GoB f)
* (i,j));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A9,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 2) by
A32,
A36,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A37: (f
/. k1)
= ((
GoB f)
* (i,(j
+ 2))) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A37,
GOBOARD1: 5;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:60
1
<= i & i
< (
len (
GoB f)) & 1
<= j & (j
+ 1)
< (
width (
GoB f)) implies not ((
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 2)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f))
proof
assume that
A1: 1
<= i and
A2: i
< (
len (
GoB f)) and
A3: 1
<= j and
A4: (j
+ 1)
< (
width (
GoB f)) and
A5: (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 2)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A6: (i
+ 1)
<= (
len (
GoB f)) by
A2,
NAT_1: 13;
(j
+ (1
+ 1))
= ((j
+ 1)
+ 1);
then
A7: (j
+ 2)
<= (
width (
GoB f)) by
A4,
NAT_1: 13;
A8: 1
<= (j
+ 1) by
NAT_1: 11;
A9: j
< (
width (
GoB f)) by
A4,
NAT_1: 13;
A10: 1
<= (i
+ 1) by
NAT_1: 11;
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A11: 1
<= (j
+ 2) by
A8,
XXREAL_0: 2;
per cases by
A1,
A3,
A4,
A5,
A6,
A10,
Th53,
Th55;
suppose
A12: (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), j]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then i
= (i
+ 1) by
A12,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A13: (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A13,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A14: (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A14,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A15: (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A3,
A6,
A10,
A9,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 2) by
A15,
GOBOARD1: 5;
hence contradiction;
end;
suppose that
A16: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A17: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))));
consider k such that
A18: 1
<= k and
A19: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A17;
1
< (k
+ 1) by
A18,
NAT_1: 13;
hence contradiction by
A16,
A19,
Th36;
end;
suppose that
A20: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j))) and
A21: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
consider k such that
A22: 1
<= k and
A23: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A20;
1
< (k
+ 1) by
A22,
NAT_1: 13;
hence contradiction by
A21,
A23,
Th36;
end;
suppose that
A24: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j))) and
A25: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))));
consider k1 such that 1
<= k1 and
A26: (k1
+ 1)
< (
len f) and
A27: (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A28: (f
/. k1)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) or (f
/. k1)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A24;
consider k2 such that 1
<= k2 and
A29: (k2
+ 1)
< (
len f) and
A30: (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A31: (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) or (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k2
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A25;
A32:
now
assume
A33: k1
<> k2;
per cases by
A33,
XXREAL_0: 1;
suppose k1
< k2;
then (k1
+ 1)
< (k2
+ 1) by
XREAL_1: 6;
hence contradiction by
A27,
A29,
A30,
Th36,
NAT_1: 11;
end;
suppose k2
< k1;
then (k2
+ 1)
< (k1
+ 1) by
XREAL_1: 6;
hence contradiction by
A26,
A27,
A30,
Th36,
NAT_1: 11;
end;
end;
now
per cases by
A28,
A31;
suppose
A34: (f
/. k1)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), j]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A34,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A35: (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. (k2
+ 2))
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A35,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A36: (f
/. k1)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 1) by
A32,
A36,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A37: (f
/. k1)
= ((
GoB f)
* ((i
+ 1),(j
+ 2))) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 1), (j
+ 2)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A3,
A6,
A10,
A9,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 2) by
A32,
A37,
GOBOARD1: 5;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:61
1
<= j & j
< (
width (
GoB f)) & 1
<= i & (i
+ 1)
< (
len (
GoB f)) implies not ((
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f))
proof
assume that
A1: 1
<= j and
A2: j
< (
width (
GoB f)) and
A3: 1
<= i and
A4: (i
+ 1)
< (
len (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,j)),((
GoB f)
* ((i
+ 1),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 2),j))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A6: (j
+ 1)
<= (
width (
GoB f)) by
A2,
NAT_1: 13;
(i
+ (1
+ 1))
= ((i
+ 1)
+ 1);
then
A7: (i
+ 2)
<= (
len (
GoB f)) by
A4,
NAT_1: 13;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
A9: i
< (
len (
GoB f)) by
A4,
NAT_1: 13;
A10: 1
<= (j
+ 1) by
NAT_1: 11;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A11: 1
<= (i
+ 2) by
A8,
XXREAL_0: 2;
per cases by
A1,
A2,
A3,
A4,
A5,
A6,
Th56,
Th57;
suppose
A12: (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A12,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A13: (f
/. 2)
= ((
GoB f)
* (i,j)) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then j
= (j
+ 1) by
A13,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A14: (f
/. 2)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. 2)
= ((
GoB f)
* (i,j));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A9,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 2) by
A14,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A15: (f
/. 2)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A15,
GOBOARD1: 5;
hence contradiction;
end;
suppose that
A16: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j)) and
A17: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)));
consider k such that
A18: 1
<= k and
A19: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) and (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) by
A17;
1
< (k
+ 1) by
A18,
NAT_1: 13;
hence contradiction by
A16,
A19,
Th36;
end;
suppose that
A20: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))) and
A21: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),j));
consider k such that
A22: 1
<= k and
A23: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) and (f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)) by
A20;
1
< (k
+ 1) by
A22,
NAT_1: 13;
hence contradiction by
A21,
A23,
Th36;
end;
suppose that
A24: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j))) and
A25: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) & ((f
/. k)
= ((
GoB f)
* (i,j)) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,j)));
consider k1 such that 1
<= k1 and
A26: (k1
+ 1)
< (
len f) and
A27: (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) and
A28: (f
/. k1)
= ((
GoB f)
* (i,j)) & (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) or (f
/. k1)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k1
+ 2))
= ((
GoB f)
* (i,j)) by
A24;
consider k2 such that 1
<= k2 and
A29: (k2
+ 1)
< (
len f) and
A30: (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),j)) and
A31: (f
/. k2)
= ((
GoB f)
* (i,j)) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) or (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & (f
/. (k2
+ 2))
= ((
GoB f)
* (i,j)) by
A25;
A32:
now
assume
A33: k1
<> k2;
per cases by
A33,
XXREAL_0: 1;
suppose k1
< k2;
then (k1
+ 1)
< (k2
+ 1) by
XREAL_1: 6;
hence contradiction by
A27,
A29,
A30,
Th36,
NAT_1: 11;
end;
suppose k2
< k1;
then (k2
+ 1)
< (k1
+ 1) by
XREAL_1: 6;
hence contradiction by
A26,
A27,
A30,
Th36,
NAT_1: 11;
end;
end;
now
per cases by
A28,
A31;
suppose
A34: (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A34,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A35: (f
/. k1)
= ((
GoB f)
* (i,j)) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[i, j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A35,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A36: (f
/. k1)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. k2)
= ((
GoB f)
* (i,j));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A9,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 2) by
A32,
A36,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A37: (f
/. k1)
= ((
GoB f)
* ((i
+ 2),j)) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
[(i
+ 2), j]
in (
Indices (
GoB f)) &
[(i
+ 1), (j
+ 1)]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A37,
GOBOARD1: 5;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:62
1
<= j & j
< (
width (
GoB f)) & 1
<= i & (i
+ 1)
< (
len (
GoB f)) implies not ((
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 2),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f))
proof
assume that
A1: 1
<= j and
A2: j
< (
width (
GoB f)) and
A3: 1
<= i and
A4: (i
+ 1)
< (
len (
GoB f)) and
A5: (
LSeg (((
GoB f)
* (i,(j
+ 1))),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),(j
+ 1))),((
GoB f)
* ((i
+ 2),(j
+ 1)))))
c= (
L~ f) & (
LSeg (((
GoB f)
* ((i
+ 1),j)),((
GoB f)
* ((i
+ 1),(j
+ 1)))))
c= (
L~ f);
A6: (j
+ 1)
<= (
width (
GoB f)) by
A2,
NAT_1: 13;
(i
+ (1
+ 1))
= ((i
+ 1)
+ 1);
then
A7: (i
+ 2)
<= (
len (
GoB f)) by
A4,
NAT_1: 13;
A8: 1
<= (i
+ 1) by
NAT_1: 11;
A9: i
< (
len (
GoB f)) by
A4,
NAT_1: 13;
A10: 1
<= (j
+ 1) by
NAT_1: 11;
(i
+ 1)
<= (i
+ 2) by
XREAL_1: 6;
then
A11: 1
<= (i
+ 2) by
A8,
XXREAL_0: 2;
per cases by
A1,
A3,
A4,
A5,
A6,
A10,
Th56,
Th58;
suppose
A12: (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j));
[i, (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then j
= (j
+ 1) by
A12,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A13: (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. ((
len f)
-' 1))
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A13,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A14: (f
/. 2)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. 2)
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A14,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A15: (f
/. 2)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. 2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A3,
A6,
A10,
A9,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 2) by
A15,
GOBOARD1: 5;
hence contradiction;
end;
suppose that
A16: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A17: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)));
consider k such that
A18: 1
<= k and
A19: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and (f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A17;
1
< (k
+ 1) by
A18,
NAT_1: 13;
hence contradiction by
A16,
A19,
Th36;
end;
suppose that
A20: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1)))) and
A21: (f
/. 1)
= ((
GoB f)
* ((i
+ 1),(j
+ 1)));
consider k such that
A22: 1
<= k and
A23: (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A20;
1
< (k
+ 1) by
A22,
NAT_1: 13;
hence contradiction by
A21,
A23,
Th36;
end;
suppose that
A24: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. k)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1)))) and
A25: ex k st 1
<= k & (k
+ 1)
< (
len f) & (f
/. (k
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) & ((f
/. k)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. k)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k
+ 2))
= ((
GoB f)
* ((i
+ 1),j)));
consider k1 such that 1
<= k1 and
A26: (k1
+ 1)
< (
len f) and
A27: (f
/. (k1
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A28: (f
/. k1)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) or (f
/. k1)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k1
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) by
A24;
consider k2 such that 1
<= k2 and
A29: (k2
+ 1)
< (
len f) and
A30: (f
/. (k2
+ 1))
= ((
GoB f)
* ((i
+ 1),(j
+ 1))) and
A31: (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j)) & (f
/. (k2
+ 2))
= ((
GoB f)
* (i,(j
+ 1))) or (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),j)) by
A25;
A32:
now
assume
A33: k1
<> k2;
per cases by
A33,
XXREAL_0: 1;
suppose k1
< k2;
then (k1
+ 1)
< (k2
+ 1) by
XREAL_1: 6;
hence contradiction by
A27,
A29,
A30,
Th36,
NAT_1: 11;
end;
suppose k2
< k1;
then (k2
+ 1)
< (k1
+ 1) by
XREAL_1: 6;
hence contradiction by
A26,
A27,
A30,
Th36,
NAT_1: 11;
end;
end;
now
per cases by
A28,
A31;
suppose
A34: (f
/. k1)
= ((
GoB f)
* (i,(j
+ 1))) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j));
[i, (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A3,
A4,
A6,
A10,
A9,
A8,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A34,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A35: (f
/. (k1
+ 2))
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. (k2
+ 2))
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A35,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A36: (f
/. k1)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k2)
= ((
GoB f)
* ((i
+ 1),j));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[(i
+ 1), j]
in (
Indices (
GoB f)) by
A1,
A2,
A4,
A6,
A10,
A8,
A7,
A11,
MATRIX_0: 30;
then j
= (j
+ 1) by
A32,
A36,
GOBOARD1: 5;
hence contradiction;
end;
suppose
A37: (f
/. k1)
= ((
GoB f)
* ((i
+ 2),(j
+ 1))) & (f
/. k2)
= ((
GoB f)
* (i,(j
+ 1)));
[(i
+ 2), (j
+ 1)]
in (
Indices (
GoB f)) &
[i, (j
+ 1)]
in (
Indices (
GoB f)) by
A3,
A6,
A10,
A9,
A7,
A11,
MATRIX_0: 30;
then i
= (i
+ 2) by
A32,
A37,
GOBOARD1: 5;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
theorem ::
GOBOARD7:63
for p,q,p1,q1 be
Point of (
TOP-REAL 2) st (
LSeg (p,q)) is
vertical & (
LSeg (p1,q1)) is
vertical & (p
`1 )
= (p1
`1 ) & (p
`2 )
<= (p1
`2 ) & (p1
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (q
`2 ) holds (
LSeg (p1,q1))
c= (
LSeg (p,q))
proof
let p,q,p1,q1 be
Point of (
TOP-REAL 2);
assume that
A1: (
LSeg (p,q)) is
vertical and
A2: (
LSeg (p1,q1)) is
vertical and
A3: (p
`1 )
= (p1
`1 ) and
A4: (p
`2 )
<= (p1
`2 ) and
A5: (p1
`2 )
<= (q1
`2 ) and
A6: (q1
`2 )
<= (q
`2 );
A7: (p
`1 )
= (q
`1 ) by
A1,
SPPOL_1: 16;
let x be
object;
assume
A8: x
in (
LSeg (p1,q1));
then
reconsider r = x as
Point of (
TOP-REAL 2);
(p1
`2 )
<= (r
`2 ) by
A5,
A8,
TOPREAL1: 4;
then
A9: (p
`2 )
<= (r
`2 ) by
A4,
XXREAL_0: 2;
(r
`2 )
<= (q1
`2 ) by
A5,
A8,
TOPREAL1: 4;
then
A10: (r
`2 )
<= (q
`2 ) by
A6,
XXREAL_0: 2;
(p1
`1 )
= (r
`1 ) by
A2,
A8,
SPPOL_1: 41;
hence thesis by
A3,
A7,
A9,
A10,
Th7;
end;
theorem ::
GOBOARD7:64
for p,q,p1,q1 be
Point of (
TOP-REAL 2) st (
LSeg (p,q)) is
horizontal & (
LSeg (p1,q1)) is
horizontal & (p
`2 )
= (p1
`2 ) & (p
`1 )
<= (p1
`1 ) & (p1
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (q
`1 ) holds (
LSeg (p1,q1))
c= (
LSeg (p,q))
proof
let p,q,p1,q1 be
Point of (
TOP-REAL 2);
assume that
A1: (
LSeg (p,q)) is
horizontal and
A2: (
LSeg (p1,q1)) is
horizontal and
A3: (p
`2 )
= (p1
`2 ) and
A4: (p
`1 )
<= (p1
`1 ) and
A5: (p1
`1 )
<= (q1
`1 ) and
A6: (q1
`1 )
<= (q
`1 );
A7: (p
`2 )
= (q
`2 ) by
A1,
SPPOL_1: 15;
let x be
object;
assume
A8: x
in (
LSeg (p1,q1));
then
reconsider r = x as
Point of (
TOP-REAL 2);
(p1
`1 )
<= (r
`1 ) by
A5,
A8,
TOPREAL1: 3;
then
A9: (p
`1 )
<= (r
`1 ) by
A4,
XXREAL_0: 2;
(r
`1 )
<= (q1
`1 ) by
A5,
A8,
TOPREAL1: 3;
then
A10: (r
`1 )
<= (q
`1 ) by
A6,
XXREAL_0: 2;
(p1
`2 )
= (r
`2 ) by
A2,
A8,
SPPOL_1: 40;
hence thesis by
A3,
A7,
A9,
A10,
Th8;
end;