topreal4.miz
    
    begin
    
    reserve P,P1,P2,R for
    Subset of ( 
    TOP-REAL 2), 
    
p,p1,p2,p3,p11,p22,q,q1,q2,q3,q4 for
    Point of ( 
    TOP-REAL 2), 
    
f,h for
    FinSequence of ( 
    TOP-REAL 2), 
    
r for
    Real, 
    
u for
    Point of ( 
    Euclid 2), 
    
n,m,i,j,k for
    Nat, 
    
x,y for
    set;
    
    definition
    
      let P, p, q;
    
      :: 
    
    TOPREAL4:def1
    
      pred P
    
    is_S-P_arc_joining p,q means ex f st f is 
    being_S-Seq & P 
    = ( 
    L~ f) & p 
    = (f 
    /. 1) & q 
    = (f 
    /. ( 
    len f)); 
    
    end
    
    definition
    
      let P;
    
      :: 
    
    TOPREAL4:def2
    
      attr P is
    
    being_special_polygon means ex p1, p2, P1, P2 st p1 
    <> p2 & p1 
    in P & p2 
    in P & P1 
    is_S-P_arc_joining (p1,p2) & P2 
    is_S-P_arc_joining (p1,p2) & (P1 
    /\ P2) 
    =  
    {p1, p2} & P
    = (P1 
    \/ P2); 
    
    end
    
    definition
    
      let T be
    TopStruct, P be 
    Subset of T; 
    
      :: 
    
    TOPREAL4:def3
    
      attr P is
    
    being_Region means P is 
    open
    connected;
    
    end
    
    theorem :: 
    
    TOPREAL4:1
    
    
    
    
    
    Th1: P 
    is_S-P_arc_joining (p,q) implies P is 
    being_S-P_arc;
    
    theorem :: 
    
    TOPREAL4:2
    
    
    
    
    
    Th2: P 
    is_S-P_arc_joining (p,q) implies P 
    is_an_arc_of (p,q) by 
    TOPREAL1: 25;
    
    theorem :: 
    
    TOPREAL4:3
    
    
    
    
    
    Th3: P 
    is_S-P_arc_joining (p,q) implies p 
    in P & q 
    in P 
    
    proof
    
      assume P
    is_S-P_arc_joining (p,q); 
    
      then P
    is_an_arc_of (p,q) by 
    Th2;
    
      hence thesis by
    TOPREAL1: 1;
    
    end;
    
    theorem :: 
    
    TOPREAL4:4
    
    P
    is_S-P_arc_joining (p,q) implies p 
    <> q 
    
    proof
    
      assume that
    
      
    
    A1: P 
    is_S-P_arc_joining (p,q) and 
    
      
    
    A2: p 
    = q; 
    
      consider f such that
    
      
    
    A3: f is 
    being_S-Seq and P 
    = ( 
    L~ f) and 
    
      
    
    A4: p 
    = (f 
    /. 1) & q 
    = (f 
    /. ( 
    len f)) by 
    A1;
    
      (
    len f) 
    >= 2 by 
    A3;
    
      then (
    Seg ( 
    len f)) 
    = ( 
    dom f) & ( 
    len f) 
    >= 1 by 
    FINSEQ_1:def 3,
    XXREAL_0: 2;
    
      then
    
      
    
    A5: ( 
    len f) 
    in ( 
    dom f) & 1 
    in ( 
    dom f) by 
    FINSEQ_1: 1;
    
      f is
    one-to-one & 1 
    <> ( 
    len f) by 
    A3;
    
      hence contradiction by
    A2,
    A4,
    A5,
    PARTFUN2: 10;
    
    end;
    
    theorem :: 
    
    TOPREAL4:5
    
    P is
    being_special_polygon implies P is 
    being_simple_closed_curve
    
    proof
    
      given p1, p2, P1, P2 such that
    
      
    
    A1: p1 
    <> p2 & p1 
    in P & p2 
    in P and 
    
      
    
    A2: P1 
    is_S-P_arc_joining (p1,p2) & P2 
    is_S-P_arc_joining (p1,p2) and 
    
      
    
    A3: (P1 
    /\ P2) 
    =  
    {p1, p2} and
    
      
    
    A4: P 
    = (P1 
    \/ P2); 
    
      reconsider P1, P2 as non
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A3;
    
      P1
    is_an_arc_of (p1,p2) & P2 
    is_an_arc_of (p1,p2) by 
    A2,
    Th2;
    
      hence thesis by
    A1,
    A3,
    A4,
    TOPREAL2: 6;
    
    end;
    
    theorem :: 
    
    TOPREAL4:6
    
    
    
    
    
    Th6: (p 
    `1 ) 
    = (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) & p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) & f 
    =  
    <*p,
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|, q*> implies f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q & ( 
    L~ f) 
    is_S-P_arc_joining (p,q) & ( 
    L~ f) 
    c= ( 
    Ball (u,r)) 
    
    proof
    
      assume that
    
      
    
    A1: (p 
    `1 ) 
    = (q 
    `1 ) and 
    
      
    
    A2: (p 
    `2 ) 
    <> (q 
    `2 ) and 
    
      
    
    A3: p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: f 
    =  
    <*p,
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|, q*>; 
    
      thus
    
      
    
    A5: f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q by 
    A1,
    A2,
    A4,
    TOPREAL3: 36;
    
      p
    =  
    |[(p
    `1 ), (p 
    `2 )]| & q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
      then
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]| 
    in ( 
    Ball (u,r)) by 
    A1,
    A3,
    TOPREAL3: 23;
    
      then
    
      
    
    A6: ( 
    LSeg (p, 
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|)) 
    c= ( 
    Ball (u,r)) & ( 
    LSeg ( 
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|,q)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    TOPREAL3: 21;
    
      thus (
    L~ f) 
    is_S-P_arc_joining (p,q) by 
    A5;
    
      (
    L~ f) 
    = (( 
    LSeg (p, 
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|)) 
    \/ ( 
    LSeg ( 
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|,q))) by 
    A4,
    TOPREAL3: 16;
    
      hence thesis by
    A6,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    TOPREAL4:7
    
    
    
    
    
    Th7: (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    = (q 
    `2 ) & p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) & f 
    =  
    <*p,
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|, q*> implies f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q & ( 
    L~ f) 
    is_S-P_arc_joining (p,q) & ( 
    L~ f) 
    c= ( 
    Ball (u,r)) 
    
    proof
    
      assume that
    
      
    
    A1: (p 
    `1 ) 
    <> (q 
    `1 ) and 
    
      
    
    A2: (p 
    `2 ) 
    = (q 
    `2 ) and 
    
      
    
    A3: p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: f 
    =  
    <*p,
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|, q*>; 
    
      thus
    
      
    
    A5: f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q by 
    A1,
    A2,
    A4,
    TOPREAL3: 37;
    
      p
    =  
    |[(p
    `1 ), (p 
    `2 )]| & q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
      then
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]| 
    in ( 
    Ball (u,r)) by 
    A2,
    A3,
    TOPREAL3: 24;
    
      then
    
      
    
    A6: ( 
    LSeg (p, 
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|)) 
    c= ( 
    Ball (u,r)) & ( 
    LSeg ( 
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|,q)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    TOPREAL3: 21;
    
      thus (
    L~ f) 
    is_S-P_arc_joining (p,q) by 
    A5;
    
      (
    L~ f) 
    = (( 
    LSeg (p, 
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|,q))) by 
    A4,
    TOPREAL3: 16;
    
      hence thesis by
    A6,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    TOPREAL4:8
    
    
    
    
    
    Th8: (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) & p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) & 
    |[(p
    `1 ), (q 
    `2 )]| 
    in ( 
    Ball (u,r)) & f 
    =  
    <*p,
    |[(p
    `1 ), (q 
    `2 )]|, q*> implies f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q & ( 
    L~ f) 
    is_S-P_arc_joining (p,q) & ( 
    L~ f) 
    c= ( 
    Ball (u,r)) 
    
    proof
    
      assume that
    
      
    
    A1: (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) and 
    
      
    
    A2: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: q 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: 
    |[(p
    `1 ), (q 
    `2 )]| 
    in ( 
    Ball (u,r)) and 
    
      
    
    A5: f 
    =  
    <*p,
    |[(p
    `1 ), (q 
    `2 )]|, q*>; 
    
      thus
    
      
    
    A6: f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q by 
    A1,
    A5,
    TOPREAL3: 34;
    
      
    
      
    
    A7: ( 
    LSeg ( 
    |[(p
    `1 ), (q 
    `2 )]|,q)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    A4,
    TOPREAL3: 21;
    
      thus (
    L~ f) 
    is_S-P_arc_joining (p,q) by 
    A6;
    
      (
    L~ f) 
    = (( 
    LSeg (p, 
    |[(p
    `1 ), (q 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(p
    `1 ), (q 
    `2 )]|,q))) & ( 
    LSeg (p, 
    |[(p
    `1 ), (q 
    `2 )]|)) 
    c= ( 
    Ball (u,r)) by 
    A2,
    A4,
    A5,
    TOPREAL3: 16,
    TOPREAL3: 21;
    
      hence thesis by
    A7,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    TOPREAL4:9
    
    
    
    
    
    Th9: (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) & p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) & 
    |[(q
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)) & f 
    =  
    <*p,
    |[(q
    `1 ), (p 
    `2 )]|, q*> implies f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q & ( 
    L~ f) 
    is_S-P_arc_joining (p,q) & ( 
    L~ f) 
    c= ( 
    Ball (u,r)) 
    
    proof
    
      assume that
    
      
    
    A1: (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) and 
    
      
    
    A2: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: q 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: 
    |[(q
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)) and 
    
      
    
    A5: f 
    =  
    <*p,
    |[(q
    `1 ), (p 
    `2 )]|, q*>; 
    
      thus
    
      
    
    A6: f is 
    being_S-Seq & (f 
    /. 1) 
    = p & (f 
    /. ( 
    len f)) 
    = q by 
    A1,
    A5,
    TOPREAL3: 35;
    
      
    
      
    
    A7: ( 
    LSeg ( 
    |[(q
    `1 ), (p 
    `2 )]|,q)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    A4,
    TOPREAL3: 21;
    
      thus (
    L~ f) 
    is_S-P_arc_joining (p,q) by 
    A6;
    
      (
    L~ f) 
    = (( 
    LSeg (p, 
    |[(q
    `1 ), (p 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(q
    `1 ), (p 
    `2 )]|,q))) & ( 
    LSeg (p, 
    |[(q
    `1 ), (p 
    `2 )]|)) 
    c= ( 
    Ball (u,r)) by 
    A2,
    A4,
    A5,
    TOPREAL3: 16,
    TOPREAL3: 21;
    
      hence thesis by
    A7,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    TOPREAL4:10
    
    
    
    
    
    Th10: p 
    <> q & p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)) implies ex P st P 
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) 
    
    proof
    
      assume that
    
      
    
    A1: p 
    <> q and 
    
      
    
    A2: p 
    in ( 
    Ball (u,r)) & q 
    in ( 
    Ball (u,r)); 
    
      now
    
        per cases by
    A1,
    TOPREAL3: 6;
    
          suppose
    
          
    
    A3: (p 
    `1 ) 
    <> (q 
    `1 ); 
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A4: (p 
    `2 ) 
    = (q 
    `2 ); 
    
              reconsider P = (
    L~  
    <*p,
    |[(((p
    `1 ) 
    + (q 
    `1 )) 
    / 2), (p 
    `2 )]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
              take P;
    
              thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A3,
    A4,
    Th7;
    
            end;
    
              suppose
    
              
    
    A5: (p 
    `2 ) 
    <> (q 
    `2 ); 
    
              
    
              
    
    A6: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| & q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
              now
    
                per cases by
    A2,
    A6,
    TOPREAL3: 25;
    
                  suppose
    
                  
    
    A7: 
    |[(p
    `1 ), (q 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
                  reconsider P = (
    L~  
    <*p,
    |[(p
    `1 ), (q 
    `2 )]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
                  take P;
    
                  thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A3,
    A5,
    A7,
    Th8;
    
                end;
    
                  suppose
    
                  
    
    A8: 
    |[(q
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
                  reconsider P = (
    L~  
    <*p,
    |[(q
    `1 ), (p 
    `2 )]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
                  take P;
    
                  thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A3,
    A5,
    A8,
    Th9;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    A9: (p 
    `2 ) 
    <> (q 
    `2 ); 
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A10: (p 
    `1 ) 
    = (q 
    `1 ); 
    
              reconsider P = (
    L~  
    <*p,
    |[(p
    `1 ), (((p 
    `2 ) 
    + (q 
    `2 )) 
    / 2)]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
              take P;
    
              thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A9,
    A10,
    Th6;
    
            end;
    
              suppose
    
              
    
    A11: (p 
    `1 ) 
    <> (q 
    `1 ); 
    
              
    
              
    
    A12: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| & q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
              now
    
                per cases by
    A2,
    A12,
    TOPREAL3: 25;
    
                  suppose
    
                  
    
    A13: 
    |[(p
    `1 ), (q 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
                  reconsider P = (
    L~  
    <*p,
    |[(p
    `1 ), (q 
    `2 )]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
                  take P;
    
                  thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A9,
    A11,
    A13,
    Th8;
    
                end;
    
                  suppose
    
                  
    
    A14: 
    |[(q
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
                  reconsider P = (
    L~  
    <*p,
    |[(q
    `1 ), (p 
    `2 )]|, q*>) as 
    Subset of ( 
    TOP-REAL 2); 
    
                  take P;
    
                  thus P
    is_S-P_arc_joining (p,q) & P 
    c= ( 
    Ball (u,r)) by 
    A2,
    A9,
    A11,
    A14,
    Th9;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    TOPREAL4:11
    
    
    
    
    
    Th11: p 
    <> (f 
    /. 1) & ((f 
    /. 1) 
    `2 ) 
    = (p 
    `2 ) & f is 
    being_S-Seq & p 
    in ( 
    LSeg (f,1)) & h 
    =  
    <*(f
    /. 1), 
    |[((((f
    /. 1) 
    `1 ) 
    + (p 
    `1 )) 
    / 2), ((f 
    /. 1) 
    `2 )]|, p*> implies h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg ((f 
    /. 1),p))) 
    
    proof
    
      assume that
    
      
    
    A1: p 
    <> (f 
    /. 1) and 
    
      
    
    A2: ((f 
    /. 1) 
    `2 ) 
    = (p 
    `2 ) and 
    
      
    
    A3: f is 
    being_S-Seq and 
    
      
    
    A4: p 
    in ( 
    LSeg (f,1)) and 
    
      
    
    A5: h 
    =  
    <*(f
    /. 1), 
    |[((((f
    /. 1) 
    `1 ) 
    + (p 
    `1 )) 
    / 2), ((f 
    /. 1) 
    `2 )]|, p*>; 
    
      set p1 = (f
    /. 1), q = (f 
    /. (1 
    + 1)); 
    
      
    
      
    
    A6: ( 
    L~ h) 
    = (( 
    LSeg (p1, 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|,p))) by 
    A5,
    TOPREAL3: 16;
    
      
    
      
    
    A7: ( 
    len f) 
    >= 2 by 
    A3;
    
      then
    
      
    
    A8: ( 
    LSeg (f,1)) 
    = ( 
    LSeg (p1,q)) by 
    TOPREAL1:def 3;
    
      
    
      
    
    A9: (p1 
    `1 ) 
    <> (p 
    `1 ) by 
    A1,
    A2,
    TOPREAL3: 6;
    
      hence
    
      
    
    A10: h is 
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p by 
    A2,
    A5,
    TOPREAL3: 37;
    
      p1
    in ( 
    LSeg (p1,q)) by 
    RLTOPSP1: 68;
    
      then
    
      
    
    A11: ( 
    LSeg (p1,p)) 
    c= ( 
    LSeg (p1,q)) by 
    A4,
    A8,
    TOPREAL1: 6;
    
      
    
      
    
    A12: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      thus (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A10;
    
      
    
      
    
    A13: ( 
    LSeg (f,1)) 
    c= ( 
    L~ f) by 
    TOPREAL3: 19;
    
      ((
    LSeg (p1, 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|,p))) 
    = ( 
    LSeg (p1,p)) by 
    A2,
    A9,
    TOPREAL1: 5,
    TOPREAL3: 13;
    
      hence (
    L~ h) 
    c= ( 
    L~ f) by 
    A8,
    A11,
    A6,
    A13;
    
      (
    len f) 
    >= 1 by 
    A7,
    XXREAL_0: 2;
    
      then (
    Seg 1) 
    c= ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 5;
    
      then (f
    | 1) 
    = (f 
    | ( 
    Seg 1)) & (( 
    dom f) 
    /\ ( 
    Seg 1)) 
    = ( 
    Seg 1) by 
    A12,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then (
    dom (f 
    | 1)) 
    = ( 
    Seg 1) by 
    RELAT_1: 61;
    
      then (
    len (f 
    | 1)) 
    = 1 by 
    FINSEQ_1:def 3;
    
      then (
    L~ (f 
    | 1)) 
    =  
    {} by 
    TOPREAL1: 22;
    
      hence thesis by
    A2,
    A9,
    A6,
    TOPREAL1: 5,
    TOPREAL3: 13;
    
    end;
    
    theorem :: 
    
    TOPREAL4:12
    
    
    
    
    
    Th12: p 
    <> (f 
    /. 1) & ((f 
    /. 1) 
    `1 ) 
    = (p 
    `1 ) & f is 
    being_S-Seq & p 
    in ( 
    LSeg (f,1)) & h 
    =  
    <*(f
    /. 1), 
    |[((f
    /. 1) 
    `1 ), ((((f 
    /. 1) 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*> implies h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg ((f 
    /. 1),p))) 
    
    proof
    
      set p1 = (f
    /. 1); 
    
      assume that
    
      
    
    A1: p 
    <> p1 and 
    
      
    
    A2: (p1 
    `1 ) 
    = (p 
    `1 ) and 
    
      
    
    A3: f is 
    being_S-Seq and 
    
      
    
    A4: p 
    in ( 
    LSeg (f,1)) and 
    
      
    
    A5: h 
    =  
    <*p1,
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*>; 
    
      
    
      
    
    A6: ( 
    L~ h) 
    = (( 
    LSeg (p1, 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|)) 
    \/ ( 
    LSeg ( 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|,p))) by 
    A5,
    TOPREAL3: 16;
    
      set q = (f
    /. (1 
    + 1)); 
    
      
    
      
    
    A7: ( 
    len f) 
    >= 2 by 
    A3;
    
      then
    
      
    
    A8: ( 
    LSeg (f,1)) 
    = ( 
    LSeg (p1,q)) by 
    TOPREAL1:def 3;
    
      
    
      
    
    A9: (p1 
    `2 ) 
    <> (p 
    `2 ) by 
    A1,
    A2,
    TOPREAL3: 6;
    
      hence
    
      
    
    A10: h is 
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p by 
    A2,
    A5,
    TOPREAL3: 36;
    
      p1
    in ( 
    LSeg (p1,q)) by 
    RLTOPSP1: 68;
    
      then
    
      
    
    A11: ( 
    LSeg (p1,p)) 
    c= ( 
    LSeg (p1,q)) by 
    A4,
    A8,
    TOPREAL1: 6;
    
      
    
      
    
    A12: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      thus (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A10;
    
      
    
      
    
    A13: ( 
    LSeg (f,1)) 
    c= ( 
    L~ f) by 
    TOPREAL3: 19;
    
      ((
    LSeg (p1, 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|)) 
    \/ ( 
    LSeg ( 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|,p))) 
    = ( 
    LSeg (p1,p)) by 
    A2,
    A9,
    TOPREAL1: 5,
    TOPREAL3: 14;
    
      hence (
    L~ h) 
    c= ( 
    L~ f) by 
    A8,
    A11,
    A6,
    A13;
    
      (
    len f) 
    >= 1 by 
    A7,
    XXREAL_0: 2;
    
      then (
    Seg 1) 
    c= ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 5;
    
      then (f
    | 1) 
    = (f 
    | ( 
    Seg 1)) & (( 
    dom f) 
    /\ ( 
    Seg 1)) 
    = ( 
    Seg 1) by 
    A12,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then (
    dom (f 
    | 1)) 
    = ( 
    Seg 1) by 
    RELAT_1: 61;
    
      then (
    len (f 
    | 1)) 
    = 1 by 
    FINSEQ_1:def 3;
    
      then (
    L~ (f 
    | 1)) 
    =  
    {} by 
    TOPREAL1: 22;
    
      hence thesis by
    A2,
    A9,
    A6,
    TOPREAL1: 5,
    TOPREAL3: 14;
    
    end;
    
    theorem :: 
    
    TOPREAL4:13
    
    
    
    
    
    Th13: f is 
    being_S-Seq & i 
    in ( 
    dom f) & (i 
    + 1) 
    in ( 
    dom f) & i 
    > 1 & p 
    in ( 
    LSeg (f,i)) & p 
    <> (f 
    /. i) & h 
    = ((f 
    | i) 
    ^  
    <*p*>) implies h is
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | i)) 
    \/ ( 
    LSeg ((f 
    /. i),p))) 
    
    proof
    
      set p1 = (f
    /. 1), q = (f 
    /. i); 
    
      assume that
    
      
    
    A1: f is 
    being_S-Seq and 
    
      
    
    A2: i 
    in ( 
    dom f) and 
    
      
    
    A3: (i 
    + 1) 
    in ( 
    dom f) and 
    
      
    
    A4: i 
    > 1 and 
    
      
    
    A5: p 
    in ( 
    LSeg (f,i)) and 
    
      
    
    A6: p 
    <> (f 
    /. i) and 
    
      
    
    A7: h 
    = ((f 
    | i) 
    ^  
    <*p*>);
    
      
    
      
    
    A8: f is 
    one-to-one by 
    A1;
    
      set v = (f
    | i); 
    
      
    
      
    
    A9: v 
    = (f 
    | ( 
    Seg i)) by 
    FINSEQ_1:def 15;
    
      then
    
      
    
    A10: ( 
    dom v) 
    = (( 
    dom f) 
    /\ ( 
    Seg i)) by 
    RELAT_1: 61;
    
      
    
      
    
    A11: ( 
    Seg ( 
    len h)) 
    = ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A12: f is 
    unfolded by 
    A1;
    
      
    
      
    
    A13: f is 
    special by 
    A1;
    
      
    
      
    
    A14: f is 
    s.n.c. by 
    A1;
    
      set q1 = (f
    /. i), q2 = (f 
    /. (i 
    + 1)); 
    
      
    
      
    
    A15: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A16: (i 
    + 1) 
    <= ( 
    len f) by 
    A3,
    FINSEQ_1: 1;
    
      then
    
      
    
    A17: p 
    in ( 
    LSeg (q1,q2)) by 
    A4,
    A5,
    TOPREAL1:def 3;
    
      
    
      
    
    A18: ( 
    LSeg (f,i)) 
    = ( 
    LSeg (q1,q2)) by 
    A4,
    A16,
    TOPREAL1:def 3;
    
      
    
      
    
    A19: ( 
    LSeg (f,i)) 
    = ( 
    LSeg (q2,q1)) by 
    A4,
    A16,
    TOPREAL1:def 3;
    
      i
    <> (i 
    + 1); 
    
      then
    
      
    
    A20: q1 
    <> q2 by 
    A2,
    A3,
    A8,
    PARTFUN2: 10;
    
      
    
      
    
    A21: q1 
    in ( 
    LSeg (q1,q2)) by 
    RLTOPSP1: 68;
    
      
    
      
    
    A22: q1 
    =  
    |[(q1
    `1 ), (q1 
    `2 )]| & q2 
    =  
    |[(q2
    `1 ), (q2 
    `2 )]| by 
    EUCLID: 53;
    
      
    
      
    
    A23: i 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      
    
      
    
    A24: i 
    <= ( 
    len f) by 
    A2,
    A15,
    FINSEQ_1: 1;
    
      then (
    Seg i) 
    c= ( 
    dom f) by 
    A15,
    FINSEQ_1: 5;
    
      then
    
      
    
    A25: ( 
    dom v) 
    = ( 
    Seg i) by 
    A10,
    XBOOLE_1: 28;
    
      then
    
      
    
    A26: ( 
    len v) 
    = i by 
    FINSEQ_1:def 3,
    A23;
    
      
    
      then
    
      
    
    A27: ( 
    len h) 
    = (i 
    + ( 
    len  
    <*p*>)) by
    A7,
    FINSEQ_1: 22
    
      .= (i
    + 1) by 
    FINSEQ_1: 39;
    
      then
    
      
    
    A28: (h 
    /. ( 
    len h)) 
    = p by 
    A7,
    A26,
    FINSEQ_4: 67;
    
      
    
      
    
    A29: i 
    in ( 
    dom v) by 
    A4,
    A25,
    FINSEQ_1: 1;
    
      
    
      then
    
      
    
    A30: (h 
    /. i) 
    = (v 
    /. i) by 
    A7,
    FINSEQ_4: 68
    
      .= q1 by
    A29,
    FINSEQ_4: 70;
    
      then
    
      
    
    A31: ( 
    LSeg (h,i)) 
    = ( 
    LSeg (q1,p)) by 
    A4,
    A27,
    A28,
    TOPREAL1:def 3;
    
      
    
      
    
    A32: (1 
    + 1) 
    <= i by 
    A4,
    NAT_1: 13;
    
      thus
    
      
    
    A33: h is 
    being_S-Seq
    
      proof
    
        now
    
          set Z = { m where m be
    Nat : 1 
    <= m & m 
    <= ( 
    len h) }; 
    
          given x,y be
    object such that 
    
          
    
    A34: x 
    in ( 
    dom h) and 
    
          
    
    A35: y 
    in ( 
    dom h) and 
    
          
    
    A36: (h 
    . x) 
    = (h 
    . y) and 
    
          
    
    A37: x 
    <> y; 
    
          x
    in Z by 
    A11,
    A34,
    FINSEQ_1:def 1;
    
          then
    
          consider k1 be
    Nat such that 
    
          
    
    A38: k1 
    = x and 
    
          
    
    A39: 1 
    <= k1 and 
    
          
    
    A40: k1 
    <= ( 
    len h); 
    
          y
    in Z by 
    A11,
    A35,
    FINSEQ_1:def 1;
    
          then
    
          consider k2 be
    Nat such that 
    
          
    
    A41: k2 
    = y and 
    
          
    
    A42: 1 
    <= k2 and 
    
          
    
    A43: k2 
    <= ( 
    len h); 
    
          
    
          
    
    A44: (h 
    /. k1) 
    = (h 
    . y) by 
    A34,
    A36,
    A38,
    PARTFUN1:def 6
    
          .= (h
    /. k2) by 
    A35,
    A41,
    PARTFUN1:def 6;
    
          k2
    <= ( 
    len f) by 
    A27,
    A16,
    A43,
    XXREAL_0: 2;
    
          then
    
          
    
    A45: k2 
    in ( 
    dom f) by 
    A15,
    A42,
    FINSEQ_1: 1;
    
          k1
    <= ( 
    len f) by 
    A27,
    A16,
    A40,
    XXREAL_0: 2;
    
          then
    
          
    
    A46: k1 
    in ( 
    dom f) by 
    A15,
    A39,
    FINSEQ_1: 1;
    
          
    
          
    
    A47: (k1 
    + (1 
    + 1)) 
    = ((k1 
    + 1) 
    + 1); 
    
          
    
          
    
    A48: (k2 
    + (1 
    + 1)) 
    = ((k2 
    + 1) 
    + 1); 
    
          now
    
            per cases by
    A27,
    A40,
    A43,
    XXREAL_0: 1;
    
              suppose k1
    = (i 
    + 1) & k2 
    = (i 
    + 1); 
    
              hence contradiction by
    A37,
    A38,
    A41;
    
            end;
    
              suppose
    
              
    
    A49: k1 
    = (i 
    + 1) & k2 
    < (i 
    + 1); 
    
              then
    
              
    
    A50: (k2 
    + 1) 
    <= k1 by 
    NAT_1: 13;
    
              now
    
                per cases by
    A50,
    XXREAL_0: 1;
    
                  suppose (k2
    + 1) 
    = k1; 
    
                  hence contradiction by
    A6,
    A7,
    A26,
    A30,
    A44,
    A49,
    FINSEQ_4: 67;
    
                end;
    
                  suppose (k2
    + 1) 
    < k1; 
    
                  then
    
                  
    
    A51: (k2 
    + 1) 
    <= i by 
    A49,
    NAT_1: 13;
    
                  now
    
                    per cases by
    A51,
    XXREAL_0: 1;
    
                      suppose
    
                      
    
    A52: (k2 
    + 1) 
    = i; 
    
                      then k2
    <= i by 
    NAT_1: 11;
    
                      then
    
                      
    
    A53: k2 
    in ( 
    dom v) by 
    A25,
    A42,
    FINSEQ_1: 1;
    
                      
    
                      then
    
                      
    
    A54: (h 
    /. k2) 
    = (v 
    /. k2) by 
    A7,
    FINSEQ_4: 68
    
                      .= (f
    /. k2) by 
    A53,
    FINSEQ_4: 70;
    
                      (k2
    + 1) 
    <= ( 
    len f) by 
    A2,
    A15,
    A52,
    FINSEQ_1: 1;
    
                      then
    
                      
    
    A55: (f 
    /. k2) 
    in ( 
    LSeg (f,k2)) by 
    A42,
    TOPREAL1: 21;
    
                      ((
    LSeg (f,k2)) 
    /\ ( 
    LSeg (f,i))) 
    =  
    {(f
    /. i)} by 
    A12,
    A16,
    A42,
    A48,
    A52;
    
                      then (f
    /. k2) 
    in  
    {(f
    /. i)} by 
    A5,
    A27,
    A28,
    A44,
    A49,
    A55,
    A54,
    XBOOLE_0:def 4;
    
                      then
    
                      
    
    A56: (f 
    /. k2) 
    = (f 
    /. i) by 
    TARSKI:def 1;
    
                      k2
    < i by 
    A52,
    NAT_1: 13;
    
                      hence contradiction by
    A2,
    A8,
    A45,
    A56,
    PARTFUN2: 10;
    
                    end;
    
                      suppose
    
                      
    
    A57: (k2 
    + 1) 
    < i; 
    
                      then
    
                      
    
    A58: (k2 
    + 1) 
    <= ( 
    len f) by 
    A24,
    XXREAL_0: 2;
    
                      
    
                      
    
    A59: ( 
    LSeg (f,k2)) 
    misses ( 
    LSeg (f,i)) by 
    A14,
    A57;
    
                      k2
    <= (k2 
    + 1) by 
    NAT_1: 11;
    
                      then k2
    <= i by 
    A57,
    XXREAL_0: 2;
    
                      then
    
                      
    
    A60: k2 
    in ( 
    dom v) by 
    A25,
    A42,
    FINSEQ_1: 1;
    
                      
    
                      then (h
    /. k2) 
    = (v 
    /. k2) by 
    A7,
    FINSEQ_4: 68
    
                      .= (f
    /. k2) by 
    A60,
    FINSEQ_4: 70;
    
                      then p
    in ( 
    LSeg (f,k2)) by 
    A27,
    A28,
    A42,
    A44,
    A49,
    A58,
    TOPREAL1: 21;
    
                      hence contradiction by
    A5,
    A59,
    XBOOLE_0: 3;
    
                    end;
    
                  end;
    
                  hence contradiction;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
              suppose
    
              
    
    A61: k1 
    < (i 
    + 1) & k2 
    = (i 
    + 1); 
    
              then
    
              
    
    A62: (k1 
    + 1) 
    <= k2 by 
    NAT_1: 13;
    
              now
    
                per cases by
    A62,
    XXREAL_0: 1;
    
                  suppose (k1
    + 1) 
    = k2; 
    
                  hence contradiction by
    A6,
    A7,
    A26,
    A30,
    A44,
    A61,
    FINSEQ_4: 67;
    
                end;
    
                  suppose (k1
    + 1) 
    < k2; 
    
                  then
    
                  
    
    A63: (k1 
    + 1) 
    <= i by 
    A61,
    NAT_1: 13;
    
                  now
    
                    per cases by
    A63,
    XXREAL_0: 1;
    
                      suppose
    
                      
    
    A64: (k1 
    + 1) 
    = i; 
    
                      then k1
    <= i by 
    NAT_1: 11;
    
                      then
    
                      
    
    A65: k1 
    in ( 
    dom v) by 
    A25,
    A39,
    FINSEQ_1: 1;
    
                      
    
                      then
    
                      
    
    A66: (h 
    /. k1) 
    = (v 
    /. k1) by 
    A7,
    FINSEQ_4: 68
    
                      .= (f
    /. k1) by 
    A65,
    FINSEQ_4: 70;
    
                      (k1
    + 1) 
    <= ( 
    len f) by 
    A2,
    A15,
    A64,
    FINSEQ_1: 1;
    
                      then
    
                      
    
    A67: (f 
    /. k1) 
    in ( 
    LSeg (f,k1)) by 
    A39,
    TOPREAL1: 21;
    
                      ((
    LSeg (f,k1)) 
    /\ ( 
    LSeg (f,i))) 
    =  
    {(f
    /. i)} by 
    A12,
    A16,
    A39,
    A47,
    A64;
    
                      then (f
    /. k1) 
    in  
    {(f
    /. i)} by 
    A5,
    A27,
    A28,
    A44,
    A61,
    A67,
    A66,
    XBOOLE_0:def 4;
    
                      then
    
                      
    
    A68: (f 
    /. k1) 
    = (f 
    /. i) by 
    TARSKI:def 1;
    
                      k1
    < i by 
    A64,
    NAT_1: 13;
    
                      hence contradiction by
    A2,
    A8,
    A46,
    A68,
    PARTFUN2: 10;
    
                    end;
    
                      suppose
    
                      
    
    A69: (k1 
    + 1) 
    < i; 
    
                      then
    
                      
    
    A70: (k1 
    + 1) 
    <= ( 
    len f) by 
    A24,
    XXREAL_0: 2;
    
                      
    
                      
    
    A71: ( 
    LSeg (f,k1)) 
    misses ( 
    LSeg (f,i)) by 
    A14,
    A69;
    
                      k1
    <= (k1 
    + 1) by 
    NAT_1: 11;
    
                      then k1
    <= i by 
    A69,
    XXREAL_0: 2;
    
                      then
    
                      
    
    A72: k1 
    in ( 
    dom v) by 
    A25,
    A39,
    FINSEQ_1: 1;
    
                      
    
                      then (h
    /. k1) 
    = (v 
    /. k1) by 
    A7,
    FINSEQ_4: 68
    
                      .= (f
    /. k1) by 
    A72,
    FINSEQ_4: 70;
    
                      then p
    in ( 
    LSeg (f,k1)) by 
    A27,
    A28,
    A39,
    A44,
    A61,
    A70,
    TOPREAL1: 21;
    
                      hence contradiction by
    A5,
    A71,
    XBOOLE_0: 3;
    
                    end;
    
                  end;
    
                  hence contradiction;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
              suppose
    
              
    
    A73: k1 
    < (i 
    + 1) & k2 
    < (i 
    + 1); 
    
              then k2
    <= i by 
    NAT_1: 13;
    
              then
    
              
    
    A74: k2 
    in ( 
    dom v) by 
    A25,
    A42,
    FINSEQ_1: 1;
    
              k1
    <= i by 
    A73,
    NAT_1: 13;
    
              then
    
              
    
    A75: k1 
    in ( 
    dom v) by 
    A25,
    A39,
    FINSEQ_1: 1;
    
              
    
              then (f
    . k1) 
    = (v 
    . k1) by 
    A9,
    FUNCT_1: 47
    
              .= (h
    . k1) by 
    A7,
    A75,
    FINSEQ_1:def 7
    
              .= (v
    . k2) by 
    A7,
    A36,
    A38,
    A41,
    A74,
    FINSEQ_1:def 7
    
              .= (f
    . k2) by 
    A9,
    A74,
    FUNCT_1: 47;
    
              hence contradiction by
    A8,
    A37,
    A38,
    A41,
    A46,
    A45,
    FUNCT_1:def 4;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
        hence h is
    one-to-one by 
    FUNCT_1:def 4;
    
        thus (
    len h) 
    >= 2 by 
    A4,
    A27,
    A32,
    XREAL_1: 6;
    
        thus h is
    unfolded
    
        proof
    
          let j be
    Nat such that 
    
          
    
    A76: 1 
    <= j and 
    
          
    
    A77: (j 
    + 2) 
    <= ( 
    len h); 
    
          
    
          
    
    A78: 1 
    <= (j 
    + 1) by 
    NAT_1: 11;
    
          ((j
    + 1) 
    + 1) 
    = (j 
    + (1 
    + 1)); 
    
          then (j
    + 1) 
    <= i by 
    A27,
    A77,
    XREAL_1: 6;
    
          then
    
          
    
    A79: (j 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A78,
    FINSEQ_1: 1;
    
          
    
          then
    
          
    
    A80: (h 
    /. (j 
    + 1)) 
    = (v 
    /. (j 
    + 1)) by 
    A7,
    FINSEQ_4: 68
    
          .= (f
    /. (j 
    + 1)) by 
    A79,
    FINSEQ_4: 70;
    
          ((i
    + 1) 
    + 1) 
    = (i 
    + (1 
    + 1)); 
    
          then (
    len h) 
    <= (i 
    + 2) by 
    A27,
    NAT_1: 11;
    
          then (j
    + 2) 
    <= (i 
    + 2) by 
    A77,
    XXREAL_0: 2;
    
          then j
    <= i by 
    XREAL_1: 6;
    
          then
    
          
    
    A81: j 
    in ( 
    dom v) by 
    A25,
    A76,
    FINSEQ_1: 1;
    
          
    
          then
    
          
    
    A82: ( 
    LSeg (h,j)) 
    = ( 
    LSeg (v,j)) by 
    A7,
    A79,
    TOPREAL3: 18
    
          .= (
    LSeg (f,j)) by 
    A81,
    A79,
    TOPREAL3: 17;
    
          j
    <= (j 
    + 2) by 
    NAT_1: 11;
    
          then
    
          
    
    A83: 1 
    <= (j 
    + (1 
    + 1)) by 
    A76,
    XXREAL_0: 2;
    
          
    
          
    
    A84: (j 
    + (1 
    + 1)) 
    = ((j 
    + 1) 
    + 1); 
    
          (i
    + 1) 
    in ( 
    Seg ( 
    len f)) by 
    A3,
    FINSEQ_1:def 3;
    
          then (
    len h) 
    <= ( 
    len f) by 
    A27,
    FINSEQ_1: 1;
    
          then
    
          
    
    A85: (j 
    + 2) 
    <= ( 
    len f) by 
    A77,
    XXREAL_0: 2;
    
          then
    
          
    
    A86: (( 
    LSeg (f,j)) 
    /\ ( 
    LSeg (f,(j 
    + 1)))) 
    =  
    {(f
    /. (j 
    + 1))} by 
    A12,
    A76;
    
          now
    
            per cases by
    A77,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A87: (j 
    + 2) 
    = ( 
    len h); 
    
              (j
    + 1) 
    <= ((j 
    + 1) 
    + 1) by 
    NAT_1: 11;
    
              then (j
    + 1) 
    <= ( 
    len h) by 
    A77,
    XXREAL_0: 2;
    
              then
    
              
    
    A88: (h 
    /. (j 
    + 1)) 
    in ( 
    LSeg (h,j)) by 
    A76,
    TOPREAL1: 21;
    
              (h
    /. (j 
    + 1)) 
    in ( 
    LSeg (h,(j 
    + 1))) by 
    A77,
    A78,
    A84,
    TOPREAL1: 21;
    
              then (h
    /. (j 
    + 1)) 
    in (( 
    LSeg (h,j)) 
    /\ ( 
    LSeg (h,(j 
    + 1)))) by 
    A88,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A89: 
    {(h
    /. (j 
    + 1))} 
    c= (( 
    LSeg (h,j)) 
    /\ ( 
    LSeg (h,(j 
    + 1)))) by 
    ZFMISC_1: 31;
    
              ((
    LSeg (h,j)) 
    /\ ( 
    LSeg (h,(j 
    + 1)))) 
    c=  
    {(h
    /. (j 
    + 1))} by 
    A27,
    A18,
    A21,
    A17,
    A31,
    A86,
    A82,
    A80,
    A87,
    TOPREAL1: 6,
    XBOOLE_1: 26;
    
              hence thesis by
    A89;
    
            end;
    
              suppose (j
    + 2) 
    < ( 
    len h); 
    
              then (j
    + (1 
    + 1)) 
    <= i by 
    A27,
    NAT_1: 13;
    
              then
    
              
    
    A90: ((j 
    + 1) 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A83,
    FINSEQ_1: 1;
    
              
    
              then (
    LSeg (h,(j 
    + 1))) 
    = ( 
    LSeg (v,(j 
    + 1))) by 
    A7,
    A79,
    TOPREAL3: 18
    
              .= (
    LSeg (f,(j 
    + 1))) by 
    A79,
    A90,
    TOPREAL3: 17;
    
              hence thesis by
    A12,
    A76,
    A85,
    A82,
    A80;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        thus h is
    s.n.c.
    
        proof
    
          let n,m be
    Nat;
    
          assume
    
          
    
    A91: m 
    > (n 
    + 1); 
    
          n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          then
    
          
    
    A92: n 
    <= m by 
    A91,
    XXREAL_0: 2;
    
          
    
          
    
    A93: 1 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          
    
          
    
    A94: ( 
    LSeg (f,n)) 
    misses ( 
    LSeg (f,m)) by 
    A14,
    A91;
    
          now
    
            per cases by
    XXREAL_0: 1;
    
              suppose
    
              
    
    A95: (m 
    + 1) 
    < ( 
    len h); 
    
              
    
              
    
    A96: 1 
    < m by 
    A91,
    A93,
    XXREAL_0: 2;
    
              then
    
              
    
    A97: 1 
    <= (m 
    + 1) by 
    NAT_1: 13;
    
              (m
    + 1) 
    <= i by 
    A27,
    A95,
    NAT_1: 13;
    
              then
    
              
    
    A98: (m 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A97,
    FINSEQ_1: 1;
    
              
    
              
    
    A99: m 
    <= i by 
    A27,
    A95,
    XREAL_1: 6;
    
              then
    
              
    
    A100: m 
    in ( 
    dom v) by 
    A25,
    A96,
    FINSEQ_1: 1;
    
              
    
              then
    
              
    
    A101: ( 
    LSeg (h,m)) 
    = ( 
    LSeg (v,m)) by 
    A7,
    A98,
    TOPREAL3: 18
    
              .= (
    LSeg (f,m)) by 
    A100,
    A98,
    TOPREAL3: 17;
    
              now
    
                per cases ;
    
                  suppose
    0  
    < n; 
    
                  then
    
                  
    
    A102: ( 
    0  
    + 1) 
    <= n by 
    NAT_1: 13;
    
                  (n
    + 1) 
    <= i by 
    A91,
    A99,
    XXREAL_0: 2;
    
                  then
    
                  
    
    A103: (n 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A93,
    FINSEQ_1: 1;
    
                  n
    <= i by 
    A92,
    A99,
    XXREAL_0: 2;
    
                  then
    
                  
    
    A104: n 
    in ( 
    dom v) by 
    A25,
    A102,
    FINSEQ_1: 1;
    
                  
    
                  then (
    LSeg (h,n)) 
    = ( 
    LSeg (v,n)) by 
    A7,
    A103,
    TOPREAL3: 18
    
                  .= (
    LSeg (f,n)) by 
    A104,
    A103,
    TOPREAL3: 17;
    
                  then (
    LSeg (h,n)) 
    misses ( 
    LSeg (h,m)) by 
    A14,
    A91,
    A101;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
                  suppose
    0  
    = n; 
    
                  then (
    LSeg (h,n)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
              end;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
              suppose
    
              
    
    A105: (m 
    + 1) 
    = ( 
    len h); 
    
              
    
              
    
    A106: (( 
    LSeg (f,n)) 
    /\ ( 
    LSeg (f,m))) 
    =  
    {} by 
    A94;
    
              now
    
                per cases ;
    
                  suppose
    0  
    < n; 
    
                  then (
    0  
    + 1) 
    <= n by 
    NAT_1: 13;
    
                  then
    
                  
    
    A107: n 
    in ( 
    dom v) by 
    A25,
    A27,
    A92,
    A105,
    FINSEQ_1: 1;
    
                  
    
                  
    
    A108: (n 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A27,
    A91,
    A93,
    A105,
    FINSEQ_1: 1;
    
                  
    
                  then (
    LSeg (h,n)) 
    = ( 
    LSeg (v,n)) by 
    A7,
    A107,
    TOPREAL3: 18
    
                  .= (
    LSeg (f,n)) by 
    A107,
    A108,
    TOPREAL3: 17;
    
                  
    
                  hence
    {}  
    = (( 
    LSeg (h,m)) 
    /\ (( 
    LSeg (f,m)) 
    /\ ( 
    LSeg (h,n)))) by 
    A106
    
                  .= (((
    LSeg (h,m)) 
    /\ ( 
    LSeg (f,m))) 
    /\ ( 
    LSeg (h,n))) by 
    XBOOLE_1: 16
    
                  .= ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) by 
    A27,
    A18,
    A21,
    A17,
    A31,
    A105,
    TOPREAL1: 6,
    XBOOLE_1: 28;
    
                end;
    
                  suppose
    0  
    = n; 
    
                  then (
    LSeg (h,n)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
              end;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
              suppose (m
    + 1) 
    > ( 
    len h); 
    
              then (
    LSeg (h,m)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
          end;
    
          hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
        end;
    
        let n be
    Nat such that 
    
        
    
    A109: 1 
    <= n and 
    
        
    
    A110: (n 
    + 1) 
    <= ( 
    len h); 
    
        set p3 = (h
    /. n), p4 = (h 
    /. (n 
    + 1)); 
    
        now
    
          per cases by
    A110,
    XXREAL_0: 1;
    
            suppose
    
            
    
    A111: (n 
    + 1) 
    = ( 
    len h); 
    
            
    
            
    
    A112: i 
    in ( 
    dom v) by 
    A4,
    A25,
    FINSEQ_1: 1;
    
            
    
            then
    
            
    
    A113: p3 
    = (v 
    /. i) by 
    A7,
    A27,
    A111,
    FINSEQ_4: 68
    
            .= q1 by
    A112,
    FINSEQ_4: 70;
    
            now
    
              per cases by
    A4,
    A13,
    A16;
    
                suppose
    
                
    
    A114: (q1 
    `1 ) 
    = (q2 
    `1 ); 
    
                then
    
                
    
    A115: (q1 
    `2 ) 
    <> (q2 
    `2 ) by 
    A20,
    TOPREAL3: 6;
    
                now
    
                  per cases by
    A115,
    XXREAL_0: 1;
    
                    suppose (q1
    `2 ) 
    < (q2 
    `2 ); 
    
                    then p
    in { p11 : (p11 
    `1 ) 
    = (q1 
    `1 ) & (q1 
    `2 ) 
    <= (p11 
    `2 ) & (p11 
    `2 ) 
    <= (q2 
    `2 ) } by 
    A5,
    A19,
    A22,
    A114,
    TOPREAL3: 9;
    
                    then ex p11 st p
    = p11 & (p11 
    `1 ) 
    = (q1 
    `1 ) & (q1 
    `2 ) 
    <= (p11 
    `2 ) & (p11 
    `2 ) 
    <= (q2 
    `2 ); 
    
                    hence thesis by
    A7,
    A26,
    A27,
    A111,
    A113,
    FINSEQ_4: 67;
    
                  end;
    
                    suppose (q2
    `2 ) 
    < (q1 
    `2 ); 
    
                    then p
    in { p22 : (p22 
    `1 ) 
    = (q1 
    `1 ) & (q2 
    `2 ) 
    <= (p22 
    `2 ) & (p22 
    `2 ) 
    <= (q1 
    `2 ) } by 
    A5,
    A19,
    A22,
    A114,
    TOPREAL3: 9;
    
                    then ex p11 st p
    = p11 & (p11 
    `1 ) 
    = (q1 
    `1 ) & (q2 
    `2 ) 
    <= (p11 
    `2 ) & (p11 
    `2 ) 
    <= (q1 
    `2 ); 
    
                    hence thesis by
    A7,
    A26,
    A27,
    A111,
    A113,
    FINSEQ_4: 67;
    
                  end;
    
                end;
    
                hence thesis;
    
              end;
    
                suppose
    
                
    
    A116: (q1 
    `2 ) 
    = (q2 
    `2 ); 
    
                then
    
                
    
    A117: (q1 
    `1 ) 
    <> (q2 
    `1 ) by 
    A20,
    TOPREAL3: 6;
    
                now
    
                  per cases by
    A117,
    XXREAL_0: 1;
    
                    suppose (q1
    `1 ) 
    < (q2 
    `1 ); 
    
                    then p
    in { p11 : (p11 
    `2 ) 
    = (q1 
    `2 ) & (q1 
    `1 ) 
    <= (p11 
    `1 ) & (p11 
    `1 ) 
    <= (q2 
    `1 ) } by 
    A5,
    A19,
    A22,
    A116,
    TOPREAL3: 10;
    
                    then ex p11 st p
    = p11 & (p11 
    `2 ) 
    = (q1 
    `2 ) & (q1 
    `1 ) 
    <= (p11 
    `1 ) & (p11 
    `1 ) 
    <= (q2 
    `1 ); 
    
                    hence thesis by
    A7,
    A26,
    A27,
    A111,
    A113,
    FINSEQ_4: 67;
    
                  end;
    
                    suppose (q2
    `1 ) 
    < (q1 
    `1 ); 
    
                    then p
    in { p22 : (p22 
    `2 ) 
    = (q1 
    `2 ) & (q2 
    `1 ) 
    <= (p22 
    `1 ) & (p22 
    `1 ) 
    <= (q1 
    `1 ) } by 
    A5,
    A19,
    A22,
    A116,
    TOPREAL3: 10;
    
                    then ex p11 st p
    = p11 & (p11 
    `2 ) 
    = (q1 
    `2 ) & (q2 
    `1 ) 
    <= (p11 
    `1 ) & (p11 
    `1 ) 
    <= (q1 
    `1 ); 
    
                    hence thesis by
    A7,
    A26,
    A27,
    A111,
    A113,
    FINSEQ_4: 67;
    
                  end;
    
                end;
    
                hence thesis;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
            suppose
    
            
    
    A118: (n 
    + 1) 
    < ( 
    len h); 
    
            
    
            
    
    A119: 1 
    <= (n 
    + 1) by 
    A109,
    NAT_1: 13;
    
            (n
    + 1) 
    <= i by 
    A27,
    A118,
    NAT_1: 13;
    
            then
    
            
    
    A120: (n 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A119,
    FINSEQ_1: 1;
    
            then (h
    /. (n 
    + 1)) 
    = (v 
    /. (n 
    + 1)) by 
    A7,
    FINSEQ_4: 68;
    
            then
    
            
    
    A121: p4 
    = (f 
    /. (n 
    + 1)) by 
    A120,
    FINSEQ_4: 70;
    
            n
    <= i by 
    A27,
    A118,
    XREAL_1: 6;
    
            then
    
            
    
    A122: n 
    in ( 
    dom v) by 
    A25,
    A109,
    FINSEQ_1: 1;
    
            then (h
    /. n) 
    = (v 
    /. n) by 
    A7,
    FINSEQ_4: 68;
    
            then
    
            
    
    A123: p3 
    = (f 
    /. n) by 
    A122,
    FINSEQ_4: 70;
    
            (n
    + 1) 
    <= ( 
    len f) by 
    A27,
    A16,
    A110,
    XXREAL_0: 2;
    
            hence thesis by
    A13,
    A109,
    A123,
    A121;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A124: 1 
    in ( 
    dom v) by 
    A4,
    A25,
    FINSEQ_1: 1;
    
      
    
      then (h
    /. 1) 
    = (v 
    /. 1) by 
    A7,
    FINSEQ_4: 68
    
      .= p1 by
    A124,
    FINSEQ_4: 70;
    
      hence
    
      
    
    A125: (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p by 
    A7,
    A26,
    A27,
    FINSEQ_4: 67;
    
      set Mf = { (
    LSeg (f,j)) : 1 
    <= j & (j 
    + 1) 
    <= ( 
    len f) }, Mv = { ( 
    LSeg (v,n)) : 1 
    <= n & (n 
    + 1) 
    <= ( 
    len v) }, Mh = { ( 
    LSeg (h,m)) : 1 
    <= m & (m 
    + 1) 
    <= ( 
    len h) }; 
    
      
    
      
    
    A126: ( 
    Seg ( 
    len v)) 
    = ( 
    dom v) by 
    FINSEQ_1:def 3;
    
      thus (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A33,
    A125;
    
      
    
    A127: 
    
      now
    
        let x;
    
        assume x
    in ( 
    L~ h); 
    
        then
    
        consider X be
    set such that 
    
        
    
    A128: x 
    in X and 
    
        
    
    A129: X 
    in Mh by 
    TARSKI:def 4;
    
        consider k such that
    
        
    
    A130: X 
    = ( 
    LSeg (h,k)) and 
    
        
    
    A131: 1 
    <= k and 
    
        
    
    A132: (k 
    + 1) 
    <= ( 
    len h) by 
    A129;
    
        
    
        
    
    A133: (k 
    + 1) 
    <= ( 
    len f) by 
    A27,
    A16,
    A132,
    XXREAL_0: 2;
    
        now
    
          per cases by
    A132,
    XXREAL_0: 1;
    
            suppose
    
            
    
    A134: (k 
    + 1) 
    = ( 
    len h); 
    
            then
    
            
    
    A135: ( 
    LSeg (f,k)) 
    in Mf by 
    A27,
    A16,
    A131;
    
            (
    LSeg (h,i)) 
    c= ( 
    LSeg (f,i)) by 
    A5,
    A18,
    A21,
    A31,
    TOPREAL1: 6;
    
            hence x
    in ( 
    L~ f) by 
    A27,
    A128,
    A130,
    A134,
    A135,
    TARSKI:def 4;
    
            thus x
    in (( 
    L~ v) 
    \/ ( 
    LSeg (q1,p))) by 
    A27,
    A31,
    A128,
    A130,
    A134,
    XBOOLE_0:def 3;
    
          end;
    
            suppose
    
            
    
    A136: (k 
    + 1) 
    < ( 
    len h); 
    
            then
    
            
    
    A137: (k 
    + 1) 
    <= ( 
    len v) by 
    A26,
    A27,
    NAT_1: 13;
    
            
    
            
    
    A138: (k 
    + 1) 
    <= i by 
    A27,
    A136,
    NAT_1: 13;
    
            k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
            then k
    <= i by 
    A138,
    XXREAL_0: 2;
    
            then
    
            
    
    A139: k 
    in ( 
    dom v) by 
    A25,
    A131,
    FINSEQ_1: 1;
    
            1
    <= (k 
    + 1) by 
    A131,
    NAT_1: 13;
    
            then
    
            
    
    A140: (k 
    + 1) 
    in ( 
    dom v) by 
    A25,
    A138,
    FINSEQ_1: 1;
    
            
    
            then
    
            
    
    A141: X 
    = ( 
    LSeg (v,k)) by 
    A7,
    A130,
    A139,
    TOPREAL3: 18
    
            .= (
    LSeg (f,k)) by 
    A140,
    A139,
    TOPREAL3: 17;
    
            then X
    in Mf by 
    A131,
    A133;
    
            hence x
    in ( 
    L~ f) by 
    A128,
    TARSKI:def 4;
    
            X
    = ( 
    LSeg (v,k)) by 
    A140,
    A139,
    A141,
    TOPREAL3: 17;
    
            then X
    in Mv by 
    A131,
    A137;
    
            then x
    in ( 
    union Mv) by 
    A128,
    TARSKI:def 4;
    
            hence x
    in (( 
    L~ v) 
    \/ ( 
    LSeg (q1,p))) by 
    XBOOLE_0:def 3;
    
          end;
    
        end;
    
        hence x
    in ( 
    L~ f) & x 
    in (( 
    L~ v) 
    \/ ( 
    LSeg (q1,p))); 
    
      end;
    
      thus (
    L~ h) 
    c= ( 
    L~ f) by 
    A127;
    
      
    
      
    
    A142: i 
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      thus (
    L~ h) 
    c= (( 
    L~ (f 
    | i)) 
    \/ ( 
    LSeg (q,p))) by 
    A127;
    
      let x be
    object such that 
    
      
    
    A143: x 
    in (( 
    L~ v) 
    \/ ( 
    LSeg (q,p))); 
    
      now
    
        per cases by
    A143,
    XBOOLE_0:def 3;
    
          suppose x
    in ( 
    L~ v); 
    
          then
    
          consider X be
    set such that 
    
          
    
    A144: x 
    in X and 
    
          
    
    A145: X 
    in Mv by 
    TARSKI:def 4;
    
          consider k such that
    
          
    
    A146: X 
    = ( 
    LSeg (v,k)) and 
    
          
    
    A147: 1 
    <= k and 
    
          
    
    A148: (k 
    + 1) 
    <= ( 
    len v) by 
    A145;
    
          
    
          
    
    A149: (k 
    + 1) 
    <= ( 
    len h) by 
    A26,
    A27,
    A142,
    A148,
    XXREAL_0: 2;
    
          k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
          then k
    <= ( 
    len v) by 
    A148,
    XXREAL_0: 2;
    
          then
    
          
    
    A150: k 
    in ( 
    Seg ( 
    len v)) by 
    A147,
    FINSEQ_1: 1;
    
          1
    <= (k 
    + 1) by 
    NAT_1: 11;
    
          then (k
    + 1) 
    in ( 
    Seg ( 
    len v)) by 
    A148,
    FINSEQ_1: 1;
    
          then X
    = ( 
    LSeg (h,k)) by 
    A7,
    A126,
    A146,
    A150,
    TOPREAL3: 18;
    
          then X
    in Mh by 
    A147,
    A149;
    
          hence thesis by
    A144,
    TARSKI:def 4;
    
        end;
    
          suppose
    
          
    
    A151: x 
    in ( 
    LSeg (q,p)); 
    
          (
    LSeg (h,i)) 
    in Mh by 
    A4,
    A27;
    
          hence thesis by
    A31,
    A151,
    TARSKI:def 4;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    TOPREAL4:14
    
    
    
    
    
    Th14: (f 
    /. 2) 
    <> (f 
    /. 1) & f is 
    being_S-Seq & ((f 
    /. 2) 
    `2 ) 
    = ((f 
    /. 1) 
    `2 ) & h 
    =  
    <*(f
    /. 1), 
    |[((((f
    /. 1) 
    `1 ) 
    + ((f 
    /. 2) 
    `1 )) 
    / 2), ((f 
    /. 1) 
    `2 )]|, (f 
    /. 2)*> implies h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = (f 
    /. 2) & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),(f 
    /. 2)) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg ((f 
    /. 1),(f 
    /. 2)))) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg ((f 
    /. 2),(f 
    /. 2)))) 
    
    proof
    
      set p1 = (f
    /. 1), p = (f 
    /. 2); 
    
      assume that
    
      
    
    A1: p 
    <> p1 and 
    
      
    
    A2: f is 
    being_S-Seq and 
    
      
    
    A3: (p 
    `2 ) 
    = (p1 
    `2 ) and 
    
      
    
    A4: h 
    =  
    <*p1,
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|, p*>; 
    
      
    
      
    
    A5: (p1 
    `1 ) 
    <> (p 
    `1 ) by 
    A1,
    A3,
    TOPREAL3: 6;
    
      hence
    
      
    
    A6: h is 
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p by 
    A3,
    A4,
    TOPREAL3: 37;
    
      
    
      
    
    A7: (( 
    LSeg (p1, 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|,p))) 
    = ( 
    LSeg (p1,p)) by 
    A3,
    A5,
    TOPREAL1: 5,
    TOPREAL3: 13;
    
      set M = { (
    LSeg ((f 
    | 2),k)) : 1 
    <= k & (k 
    + 1) 
    <= ( 
    len (f 
    | 2)) }; 
    
      
    
      
    
    A8: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A9: ( 
    L~ h) 
    = (( 
    LSeg (p1, 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|,p))) by 
    A4,
    TOPREAL3: 16;
    
      
    
      
    
    A10: ( 
    len f) 
    >= 2 by 
    A2;
    
      then
    
      
    
    A11: (1 
    + 1) 
    in ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 1;
    
      then
    
      
    
    A12: ( 
    LSeg (f,1)) 
    = ( 
    LSeg (p1,p)) by 
    A10,
    TOPREAL1:def 3;
    
      (
    Seg 2) 
    c= ( 
    Seg ( 
    len f)) by 
    A10,
    FINSEQ_1: 5;
    
      then (f
    | 2) 
    = (f 
    | ( 
    Seg 2)) & (( 
    dom f) 
    /\ ( 
    Seg 2)) 
    = ( 
    Seg 2) by 
    A8,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then
    
      
    
    A13: ( 
    dom (f 
    | 2)) 
    = ( 
    Seg 2) by 
    RELAT_1: 61;
    
      then
    
      
    
    A14: 1 
    in ( 
    dom (f 
    | 2)) & 2 
    in ( 
    dom (f 
    | 2)) by 
    FINSEQ_1: 1;
    
      thus
    
      
    
    A15: ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A6;
    
      
    
      
    
    A16: (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) 
    c= ( 
    L~ h) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A17: x 
    in (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))); 
    
        now
    
          per cases by
    A17,
    XBOOLE_0:def 3;
    
            suppose x
    in ( 
    L~ (f 
    | 2)); 
    
            then
    
            consider X be
    set such that 
    
            
    
    A18: x 
    in X and 
    
            
    
    A19: X 
    in M by 
    TARSKI:def 4;
    
            consider m such that
    
            
    
    A20: X 
    = ( 
    LSeg ((f 
    | 2),m)) and 
    
            
    
    A21: 1 
    <= m and 
    
            
    
    A22: (m 
    + 1) 
    <= ( 
    len (f 
    | 2)) by 
    A19;
    
            ((
    len (f 
    | 2)) 
    - 1) 
    = ((1 
    + 1) 
    - 1) by 
    A13,
    FINSEQ_1:def 3
    
            .= 1;
    
            then ((m
    + 1) 
    - 1) 
    <= 1 by 
    A22,
    XREAL_1: 9;
    
            then m
    = 1 by 
    A21,
    XXREAL_0: 1;
    
            hence thesis by
    A11,
    A12,
    A9,
    A7,
    A14,
    A18,
    A20,
    TOPREAL3: 17;
    
          end;
    
            suppose x
    in ( 
    LSeg (p,p)); 
    
            then
    
            
    
    A23: x 
    in  
    {p} by
    RLTOPSP1: 70;
    
            p
    in ( 
    L~ h) by 
    A15,
    Th3;
    
            hence thesis by
    A23,
    TARSKI:def 1;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      (
    LSeg (f,1)) 
    c= ( 
    L~ f) by 
    TOPREAL3: 19;
    
      hence (
    L~ h) 
    c= ( 
    L~ f) by 
    A4,
    A12,
    A7,
    TOPREAL3: 16;
    
      (
    len f) 
    >= 1 by 
    A10,
    XXREAL_0: 2;
    
      then (
    Seg 1) 
    c= ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 5;
    
      then (f
    | 1) 
    = (f 
    | ( 
    Seg 1)) & (( 
    dom f) 
    /\ ( 
    Seg 1)) 
    = ( 
    Seg 1) by 
    A8,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then (
    dom (f 
    | 1)) 
    = ( 
    Seg 1) by 
    RELAT_1: 61;
    
      then (
    len (f 
    | 1)) 
    = 1 by 
    FINSEQ_1:def 3;
    
      then (
    L~ (f 
    | 1)) 
    =  
    {} by 
    TOPREAL1: 22;
    
      hence (
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg (p1,p))) by 
    A3,
    A5,
    A9,
    TOPREAL1: 5,
    TOPREAL3: 13;
    
      
    
      
    
    A24: ( 
    L~ (f 
    | 2)) 
    c= (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) by 
    XBOOLE_1: 7;
    
      
    
      
    
    A25: (1 
    + 1) 
    <= ( 
    len (f 
    | 2)) by 
    A13,
    FINSEQ_1:def 3;
    
      (
    LSeg ((f 
    | 2),1)) 
    = ( 
    LSeg (p1,p)) by 
    A11,
    A12,
    A14,
    TOPREAL3: 17;
    
      then (
    LSeg (p1,p)) 
    in M by 
    A25;
    
      then (
    L~ h) 
    c= ( 
    L~ (f 
    | 2)) by 
    A9,
    A7,
    ZFMISC_1: 74;
    
      then (
    L~ h) 
    c= (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) by 
    A24;
    
      hence thesis by
    A16;
    
    end;
    
    theorem :: 
    
    TOPREAL4:15
    
    
    
    
    
    Th15: (f 
    /. 2) 
    <> (f 
    /. 1) & f is 
    being_S-Seq & ((f 
    /. 2) 
    `1 ) 
    = ((f 
    /. 1) 
    `1 ) & h 
    =  
    <*(f
    /. 1), 
    |[((f
    /. 1) 
    `1 ), ((((f 
    /. 1) 
    `2 ) 
    + ((f 
    /. 2) 
    `2 )) 
    / 2)]|, (f 
    /. 2)*> implies h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = (f 
    /. 2) & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),(f 
    /. 2)) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg ((f 
    /. 1),(f 
    /. 2)))) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg ((f 
    /. 2),(f 
    /. 2)))) 
    
    proof
    
      set p1 = (f
    /. 1), p = (f 
    /. 2); 
    
      assume that
    
      
    
    A1: p 
    <> p1 and 
    
      
    
    A2: f is 
    being_S-Seq and 
    
      
    
    A3: (p 
    `1 ) 
    = (p1 
    `1 ) and 
    
      
    
    A4: h 
    =  
    <*p1,
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*>; 
    
      
    
      
    
    A5: (p1 
    `2 ) 
    <> (p 
    `2 ) by 
    A1,
    A3,
    TOPREAL3: 6;
    
      hence
    
      
    
    A6: h is 
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p by 
    A3,
    A4,
    TOPREAL3: 36;
    
      
    
      
    
    A7: (( 
    LSeg (p1, 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|)) 
    \/ ( 
    LSeg ( 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|,p))) 
    = ( 
    LSeg (p1,p)) by 
    A3,
    A5,
    TOPREAL1: 5,
    TOPREAL3: 14;
    
      set M = { (
    LSeg ((f 
    | 2),k)) : 1 
    <= k & (k 
    + 1) 
    <= ( 
    len (f 
    | 2)) }; 
    
      
    
      
    
    A8: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A9: ( 
    L~ h) 
    = (( 
    LSeg (p1, 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|)) 
    \/ ( 
    LSeg ( 
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|,p))) by 
    A4,
    TOPREAL3: 16;
    
      
    
      
    
    A10: ( 
    len f) 
    >= (1 
    + 1) by 
    A2;
    
      then
    
      
    
    A11: ( 
    LSeg (f,1)) 
    = ( 
    LSeg (p1,p)) by 
    TOPREAL1:def 3;
    
      (
    Seg 2) 
    c= ( 
    Seg ( 
    len f)) by 
    A10,
    FINSEQ_1: 5;
    
      then (f
    | 2) 
    = (f 
    | ( 
    Seg 2)) & (( 
    dom f) 
    /\ ( 
    Seg 2)) 
    = ( 
    Seg 2) by 
    A8,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then
    
      
    
    A12: ( 
    dom (f 
    | 2)) 
    = ( 
    Seg 2) by 
    RELAT_1: 61;
    
      then
    
      
    
    A13: 1 
    in ( 
    dom (f 
    | 2)) & 2 
    in ( 
    dom (f 
    | 2)) by 
    FINSEQ_1: 1;
    
      thus
    
      
    
    A14: ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A6;
    
      
    
      
    
    A15: (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) 
    c= ( 
    L~ h) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A16: x 
    in (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))); 
    
        now
    
          per cases by
    A16,
    XBOOLE_0:def 3;
    
            suppose x
    in ( 
    L~ (f 
    | 2)); 
    
            then
    
            consider X be
    set such that 
    
            
    
    A17: x 
    in X and 
    
            
    
    A18: X 
    in M by 
    TARSKI:def 4;
    
            consider m such that
    
            
    
    A19: X 
    = ( 
    LSeg ((f 
    | 2),m)) and 
    
            
    
    A20: 1 
    <= m and 
    
            
    
    A21: (m 
    + 1) 
    <= ( 
    len (f 
    | 2)) by 
    A18;
    
            ((
    len (f 
    | 2)) 
    - 1) 
    = ((1 
    + 1) 
    - 1) by 
    A12,
    FINSEQ_1:def 3
    
            .= 1;
    
            then ((m
    + 1) 
    - 1) 
    <= 1 by 
    A21,
    XREAL_1: 9;
    
            then m
    = 1 by 
    A20,
    XXREAL_0: 1;
    
            hence thesis by
    A10,
    A11,
    A9,
    A7,
    A13,
    A17,
    A19,
    TOPREAL3: 17;
    
          end;
    
            suppose x
    in ( 
    LSeg (p,p)); 
    
            then
    
            
    
    A22: x 
    in  
    {p} by
    RLTOPSP1: 70;
    
            p
    in ( 
    L~ h) by 
    A14,
    Th3;
    
            hence thesis by
    A22,
    TARSKI:def 1;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      (
    LSeg (f,1)) 
    c= ( 
    L~ f) by 
    TOPREAL3: 19;
    
      hence (
    L~ h) 
    c= ( 
    L~ f) by 
    A4,
    A11,
    A7,
    TOPREAL3: 16;
    
      (
    len f) 
    >= 1 by 
    A10,
    XXREAL_0: 2;
    
      then (
    Seg 1) 
    c= ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 5;
    
      then (f
    | 1) 
    = (f 
    | ( 
    Seg 1)) & (( 
    dom f) 
    /\ ( 
    Seg 1)) 
    = ( 
    Seg 1) by 
    A8,
    FINSEQ_1:def 15,
    XBOOLE_1: 28;
    
      then (
    dom (f 
    | 1)) 
    = ( 
    Seg 1) by 
    RELAT_1: 61;
    
      then (
    len (f 
    | 1)) 
    = 1 by 
    FINSEQ_1:def 3;
    
      then (
    L~ (f 
    | 1)) 
    =  
    {} by 
    TOPREAL1: 22;
    
      hence (
    L~ h) 
    = (( 
    L~ (f 
    | 1)) 
    \/ ( 
    LSeg (p1,p))) by 
    A3,
    A5,
    A9,
    TOPREAL1: 5,
    TOPREAL3: 14;
    
      
    
      
    
    A23: ( 
    L~ (f 
    | 2)) 
    c= (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) by 
    XBOOLE_1: 7;
    
      
    
      
    
    A24: (1 
    + 1) 
    <= ( 
    len (f 
    | 2)) by 
    A12,
    FINSEQ_1:def 3;
    
      (
    LSeg ((f 
    | 2),1)) 
    = ( 
    LSeg (p1,p)) by 
    A10,
    A11,
    A13,
    TOPREAL3: 17;
    
      then (
    LSeg (p1,p)) 
    in M by 
    A24;
    
      then (
    L~ h) 
    c= ( 
    L~ (f 
    | 2)) by 
    A9,
    A7,
    ZFMISC_1: 74;
    
      then (
    L~ h) 
    c= (( 
    L~ (f 
    | 2)) 
    \/ ( 
    LSeg (p,p))) by 
    A23;
    
      hence thesis by
    A15;
    
    end;
    
    theorem :: 
    
    TOPREAL4:16
    
    
    
    
    
    Th16: f is 
    being_S-Seq & i 
    > 2 & i 
    in ( 
    dom f) & h 
    = (f 
    | i) implies h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = (f 
    /. i) & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),(f 
    /. i)) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | i)) 
    \/ ( 
    LSeg ((f 
    /. i),(f 
    /. i)))) 
    
    proof
    
      assume that
    
      
    
    A1: f is 
    being_S-Seq & i 
    > 2 and 
    
      
    
    A2: i 
    in ( 
    dom f) and 
    
      
    
    A3: h 
    = (f 
    | i); 
    
      
    
      
    
    A4: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      then i
    <= ( 
    len f) by 
    A2,
    FINSEQ_1: 1;
    
      then
    
      
    
    A5: ( 
    Seg i) 
    c= ( 
    Seg ( 
    len f)) by 
    FINSEQ_1: 5;
    
      h
    = (f 
    | ( 
    Seg i)) by 
    A3,
    FINSEQ_1:def 15;
    
      then (
    dom h) 
    = (( 
    Seg ( 
    len f)) 
    /\ ( 
    Seg i)) by 
    A4,
    RELAT_1: 61;
    
      then
    
      
    
    A6: ( 
    dom h) 
    = ( 
    Seg i) by 
    A5,
    XBOOLE_1: 28;
    
      1
    <= i by 
    A2,
    A4,
    FINSEQ_1: 1;
    
      then
    
      
    
    A7: 1 
    in ( 
    dom h) & i 
    in ( 
    dom h) by 
    A6,
    FINSEQ_1: 1;
    
      i
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then (
    len h) 
    = i by 
    A6,
    FINSEQ_1:def 3;
    
      hence h is
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = (f 
    /. i) by 
    A1,
    A2,
    A3,
    A7,
    FINSEQ_4: 70,
    TOPREAL3: 33;
    
      hence (
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),(f 
    /. i)) & ( 
    L~ h) 
    c= ( 
    L~ f) by 
    A3,
    TOPREAL3: 20;
    
      then (f
    /. i) 
    in ( 
    L~ (f 
    | i)) by 
    A3,
    Th3;
    
      then (
    LSeg ((f 
    /. i),(f 
    /. i))) 
    =  
    {(f
    /. i)} & 
    {(f
    /. i)} 
    c= ( 
    L~ (f 
    | i)) by 
    RLTOPSP1: 70,
    ZFMISC_1: 31;
    
      hence thesis by
    A3,
    XBOOLE_1: 12;
    
    end;
    
    theorem :: 
    
    TOPREAL4:17
    
    
    
    
    
    Th17: p 
    <> (f 
    /. 1) & f is 
    being_S-Seq & p 
    in ( 
    LSeg (f,n)) implies ex h st h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg ((f 
    /. n),p))) 
    
    proof
    
      set p1 = (f
    /. 1), q = (f 
    /. n); 
    
      assume that
    
      
    
    A1: p 
    <> p1 and 
    
      
    
    A2: f is 
    being_S-Seq and 
    
      
    
    A3: p 
    in ( 
    LSeg (f,n)); 
    
      
    
      
    
    A4: f is 
    special by 
    A2;
    
      
    
      
    
    A5: n 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
      
    
    A6: 
    
      now
    
        assume
    
        
    
    A7: not n 
    in ( 
    dom f) or not (n 
    + 1) 
    in ( 
    dom f); 
    
        now
    
          per cases by
    A7;
    
            suppose not n
    in ( 
    dom f); 
    
            then not (1
    <= n & n 
    <= ( 
    len f)) by 
    FINSEQ_3: 25;
    
            then not (1
    <= n & (n 
    + 1) 
    <= ( 
    len f)) by 
    A5,
    XXREAL_0: 2;
    
            hence contradiction by
    A3,
    TOPREAL1:def 3;
    
          end;
    
            suppose not (n
    + 1) 
    in ( 
    dom f); 
    
            then not (1
    <= (n 
    + 1) & (n 
    + 1) 
    <= ( 
    len f)) by 
    FINSEQ_3: 25;
    
            hence contradiction by
    A3,
    NAT_1: 11,
    TOPREAL1:def 3;
    
          end;
    
        end;
    
        hence contradiction;
    
      end;
    
      
    
      
    
    A8: f is 
    one-to-one by 
    A2;
    
      
    
      
    
    A9: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A10: 1 
    <= n by 
    A6,
    FINSEQ_1: 1;
    
      
    
      
    
    A11: (n 
    + 1) 
    <= ( 
    len f) by 
    A6,
    A9,
    FINSEQ_1: 1;
    
      
    
      
    
    A12: n 
    <= ( 
    len f) by 
    A6,
    A9,
    FINSEQ_1: 1;
    
      now
    
        per cases ;
    
          case (f
    /. n) 
    = p & (f 
    /. (n 
    + 1)) 
    = p; 
    
          then (n
    + 1) 
    = n by 
    A6,
    A8,
    PARTFUN2: 10;
    
          hence contradiction;
    
        end;
    
          case
    
          
    
    A13: (f 
    /. n) 
    = p & (f 
    /. (n 
    + 1)) 
    <> p; 
    
          then 1
    < n by 
    A1,
    A10,
    XXREAL_0: 1;
    
          then
    
          
    
    A14: (1 
    + 1) 
    <= n by 
    NAT_1: 13;
    
          now
    
            per cases by
    A14,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A15: n 
    = (1 
    + 1); 
    
              now
    
                per cases by
    A4,
    A12,
    A13,
    A15;
    
                  suppose
    
                  
    
    A16: (p1 
    `1 ) 
    = (p 
    `1 ); 
    
                  take h =
    <*p1,
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*>; 
    
                  thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A1,
    A2,
    A13,
    A15,
    A16,
    Th15;
    
                end;
    
                  suppose
    
                  
    
    A17: (p1 
    `2 ) 
    = (p 
    `2 ); 
    
                  take h =
    <*p1,
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|, p*>; 
    
                  thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A1,
    A2,
    A13,
    A15,
    A17,
    Th14;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
              suppose
    
              
    
    A18: n 
    > 2; 
    
              take h = (f
    | n); 
    
              thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A2,
    A6,
    A13,
    A18,
    Th16;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
          case
    
          
    
    A19: (f 
    /. n) 
    <> p & (f 
    /. (n 
    + 1)) 
    = p; 
    
          now
    
            per cases by
    A10,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A20: n 
    = 1; 
    
              now
    
                per cases by
    A4,
    A11,
    A19,
    A20;
    
                  suppose
    
                  
    
    A21: (p1 
    `1 ) 
    = (p 
    `1 ); 
    
                  take h =
    <*p1,
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*>; 
    
                  thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A2,
    A19,
    A20,
    A21,
    Th15;
    
                end;
    
                  suppose
    
                  
    
    A22: (p1 
    `2 ) 
    = (p 
    `2 ); 
    
                  take h =
    <*p1,
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|, p*>; 
    
                  thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A2,
    A19,
    A20,
    A22,
    Th14;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
              suppose
    
              
    
    A23: 1 
    < n; 
    
              take h = (f
    | (n 
    + 1)); 
    
              (1
    + 1) 
    < (n 
    + 1) by 
    A23,
    XREAL_1: 6;
    
              hence h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A2,
    A6,
    A19,
    Th16,
    TOPREAL3: 38;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
          case
    
          
    
    A24: (f 
    /. n) 
    <> p & (f 
    /. (n 
    + 1)) 
    <> p; 
    
          now
    
            per cases by
    A10,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A25: n 
    = 1; 
    
              set q1 = (f
    /. (1 
    + 1)); 
    
              
    
              
    
    A26: ( 
    len f) 
    >= (1 
    + 1) by 
    A2;
    
              then
    
              
    
    A27: ( 
    LSeg (f,n)) 
    = ( 
    LSeg (p1,q1)) by 
    A25,
    TOPREAL1:def 3;
    
              now
    
                per cases by
    A4,
    A26;
    
                  suppose
    
                  
    
    A28: (p1 
    `1 ) 
    = (q1 
    `1 ); 
    
                  take h =
    <*p1,
    |[(p1
    `1 ), (((p1 
    `2 ) 
    + (p 
    `2 )) 
    / 2)]|, p*>; 
    
                  (p1
    `1 ) 
    <= (p 
    `1 ) & (p 
    `1 ) 
    <= (q1 
    `1 ) by 
    A3,
    A27,
    A28,
    TOPREAL1: 3;
    
                  then (p1
    `1 ) 
    = (p 
    `1 ) by 
    A28,
    XXREAL_0: 1;
    
                  hence h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A1,
    A2,
    A3,
    A25,
    Th12;
    
                end;
    
                  suppose
    
                  
    
    A29: (p1 
    `2 ) 
    = (q1 
    `2 ); 
    
                  take h =
    <*p1,
    |[(((p1
    `1 ) 
    + (p 
    `1 )) 
    / 2), (p1 
    `2 )]|, p*>; 
    
                  (p1
    `2 ) 
    <= (p 
    `2 ) & (p 
    `2 ) 
    <= (q1 
    `2 ) by 
    A3,
    A27,
    A29,
    TOPREAL1: 4;
    
                  then (p1
    `2 ) 
    = (p 
    `2 ) by 
    A29,
    XXREAL_0: 1;
    
                  hence h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A1,
    A2,
    A3,
    A25,
    Th11;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
              suppose
    
              
    
    A30: 1 
    < n; 
    
              take h = ((f
    | n) 
    ^  
    <*p*>);
    
              thus h is
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) & ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg (q,p))) by 
    A2,
    A3,
    A6,
    A24,
    A30,
    Th13;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    TOPREAL4:18
    
    
    
    
    
    Th18: p 
    <> (f 
    /. 1) & f is 
    being_S-Seq & p 
    in ( 
    L~ f) implies ex h st h is 
    being_S-Seq & (h 
    /. 1) 
    = (f 
    /. 1) & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= ( 
    L~ f) 
    
    proof
    
      set M = { (
    LSeg (f,i)) : 1 
    <= i & (i 
    + 1) 
    <= ( 
    len f) }, p1 = (f 
    /. 1); 
    
      assume that
    
      
    
    A1: p 
    <> p1 & f is 
    being_S-Seq and 
    
      
    
    A2: p 
    in ( 
    L~ f); 
    
      consider X be
    set such that 
    
      
    
    A3: p 
    in X and 
    
      
    
    A4: X 
    in M by 
    A2,
    TARSKI:def 4;
    
      consider n such that
    
      
    
    A5: X 
    = ( 
    LSeg (f,n)) and 1 
    <= n and (n 
    + 1) 
    <= ( 
    len f) by 
    A4;
    
      consider h such that
    
      
    
    A6: h is 
    being_S-Seq & (h 
    /. 1) 
    = p1 & (h 
    /. ( 
    len h)) 
    = p & ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) and ( 
    L~ h) 
    = (( 
    L~ (f 
    | n)) 
    \/ ( 
    LSeg ((f 
    /. n),p))) by 
    A1,
    A3,
    A5,
    Th17;
    
      take h;
    
      thus thesis by
    A6;
    
    end;
    
    theorem :: 
    
    TOPREAL4:19
    
    
    
    
    
    Th19: ((p 
    `1 ) 
    = ((f 
    /. ( 
    len f)) 
    `1 ) & (p 
    `2 ) 
    <> ((f 
    /. ( 
    len f)) 
    `2 ) or (p 
    `1 ) 
    <> ((f 
    /. ( 
    len f)) 
    `1 ) & (p 
    `2 ) 
    = ((f 
    /. ( 
    len f)) 
    `2 )) & (f 
    /. ( 
    len f)) 
    in ( 
    Ball (u,r)) & p 
    in ( 
    Ball (u,r)) & f is 
    being_S-Seq & (( 
    LSeg ((f 
    /. ( 
    len f)),p)) 
    /\ ( 
    L~ f)) 
    =  
    {(f
    /. ( 
    len f))} & h 
    = (f 
    ^  
    <*p*>) implies h is
    being_S-Seq & ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    
    proof
    
      set p1 = (f
    /. 1), p2 = (f 
    /. ( 
    len f)); 
    
      assume
    
      
    
    A1: (p 
    `1 ) 
    = (p2 
    `1 ) & (p 
    `2 ) 
    <> (p2 
    `2 ) or (p 
    `1 ) 
    <> (p2 
    `1 ) & (p 
    `2 ) 
    = (p2 
    `2 ); 
    
      assume that
    
      
    
    A2: p2 
    in ( 
    Ball (u,r)) & p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: f is 
    being_S-Seq and 
    
      
    
    A4: (( 
    LSeg (p2,p)) 
    /\ ( 
    L~ f)) 
    =  
    {p2} and
    
      
    
    A5: h 
    = (f 
    ^  
    <*p*>);
    
      
    
      
    
    A6: not p 
    in ( 
    L~ f) by 
    A1,
    A4,
    TOPREAL3: 40;
    
      
    
      
    
    A7: f is 
    one-to-one by 
    A3;
    
      
    
      
    
    A8: f is 
    unfolded by 
    A3;
    
      
    
      
    
    A9: f is 
    one-to-one by 
    A3;
    
      
    
      
    
    A10: f is 
    s.n.c. by 
    A3;
    
      
    
      
    
    A11: ( 
    Seg ( 
    len h)) 
    = ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      set Mf = { (
    LSeg (f,i)) : 1 
    <= i & (i 
    + 1) 
    <= ( 
    len f) }, Mh = { ( 
    LSeg (h,m)) : 1 
    <= m & (m 
    + 1) 
    <= ( 
    len h) }; 
    
      
    
      
    
    A12: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A13: 2 
    <= ( 
    len f) by 
    A3;
    
      then
    
      
    
    A14: 1 
    <= ( 
    len f) by 
    XXREAL_0: 2;
    
      then
    
      
    
    A15: ( 
    len f) 
    in ( 
    dom f) by 
    A12,
    FINSEQ_1: 1;
    
      then
    
      
    
    A16: (h 
    /. ( 
    len f)) 
    = p2 by 
    A5,
    FINSEQ_4: 68;
    
      
    
      
    
    A17: ( 
    len h) 
    = (( 
    len f) 
    + ( 
    len  
    <*p*>)) by
    A5,
    FINSEQ_1: 22
    
      .= ((
    len f) 
    + 1) by 
    FINSEQ_1: 39;
    
      then
    
      
    
    A18: (h 
    /. ( 
    len h)) 
    = p by 
    A5,
    FINSEQ_4: 67;
    
      then
    
      
    
    A19: ( 
    LSeg (h,( 
    len f))) 
    = ( 
    LSeg (p2,p)) by 
    A17,
    A14,
    A16,
    TOPREAL1:def 3;
    
      
    
      
    
    A20: f is 
    special by 
    A3;
    
      thus
    
      
    
    A21: h is 
    being_S-Seq
    
      proof
    
        now
    
          set Z = { m where m be
    Nat : 1 
    <= m & m 
    <= ( 
    len h) }; 
    
          given x,y be
    object such that 
    
          
    
    A22: x 
    in ( 
    dom h) and 
    
          
    
    A23: y 
    in ( 
    dom h) and 
    
          
    
    A24: (h 
    . x) 
    = (h 
    . y) and 
    
          
    
    A25: x 
    <> y; 
    
          y
    in Z by 
    A11,
    A23,
    FINSEQ_1:def 1;
    
          then
    
          consider k2 be
    Nat such that 
    
          
    
    A26: k2 
    = y and 
    
          
    
    A27: 1 
    <= k2 and 
    
          
    
    A28: k2 
    <= ( 
    len h); 
    
          x
    in Z by 
    A11,
    A22,
    FINSEQ_1:def 1;
    
          then
    
          consider k1 be
    Nat such that 
    
          
    
    A29: k1 
    = x and 
    
          
    
    A30: 1 
    <= k1 and 
    
          
    
    A31: k1 
    <= ( 
    len h); 
    
          
    
          
    
    A32: (h 
    /. k1) 
    = (h 
    . y) by 
    A22,
    A24,
    A29,
    PARTFUN1:def 6
    
          .= (h
    /. k2) by 
    A23,
    A26,
    PARTFUN1:def 6;
    
          now
    
            per cases by
    A17,
    A31,
    A28,
    XXREAL_0: 1;
    
              suppose k1
    = (( 
    len f) 
    + 1) & k2 
    = (( 
    len f) 
    + 1); 
    
              hence contradiction by
    A25,
    A29,
    A26;
    
            end;
    
              suppose
    
              
    
    A33: k1 
    = (( 
    len f) 
    + 1) & k2 
    < (( 
    len f) 
    + 1); 
    
              then
    
              
    
    A34: (k2 
    + 1) 
    <= k1 by 
    NAT_1: 13;
    
              now
    
                per cases by
    A34,
    XXREAL_0: 1;
    
                  suppose (k2
    + 1) 
    = k1; 
    
                  hence contradiction by
    A1,
    A5,
    A16,
    A32,
    A33,
    FINSEQ_4: 67;
    
                end;
    
                  suppose (k2
    + 1) 
    < k1; 
    
                  then
    
                  
    
    A35: k2 
    < ((( 
    len f) 
    + 1) 
    - 1) by 
    A33,
    XREAL_1: 20;
    
                  reconsider k2 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
                  k2
    in ( 
    dom f) by 
    A12,
    A27,
    A35,
    FINSEQ_1: 1;
    
                  then (h
    /. k2) 
    = (f 
    /. k2) by 
    A5,
    FINSEQ_4: 68;
    
                  hence contradiction by
    A5,
    A13,
    A6,
    A27,
    A32,
    A33,
    A35,
    FINSEQ_4: 67,
    TOPREAL3: 39;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
              suppose
    
              
    
    A36: k1 
    < (( 
    len f) 
    + 1) & k2 
    = (( 
    len f) 
    + 1); 
    
              then
    
              
    
    A37: (k1 
    + 1) 
    <= k2 by 
    NAT_1: 13;
    
              now
    
                per cases by
    A37,
    XXREAL_0: 1;
    
                  suppose (k1
    + 1) 
    = k2; 
    
                  hence contradiction by
    A1,
    A5,
    A16,
    A32,
    A36,
    FINSEQ_4: 67;
    
                end;
    
                  suppose (k1
    + 1) 
    < k2; 
    
                  then
    
                  
    
    A38: k1 
    < ((( 
    len f) 
    + 1) 
    - 1) by 
    A36,
    XREAL_1: 20;
    
                  reconsider k1 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
                  k1
    in ( 
    dom f) by 
    A12,
    A30,
    A38,
    FINSEQ_1: 1;
    
                  then (h
    /. k1) 
    = (f 
    /. k1) by 
    A5,
    FINSEQ_4: 68;
    
                  hence contradiction by
    A5,
    A13,
    A6,
    A30,
    A32,
    A36,
    A38,
    FINSEQ_4: 67,
    TOPREAL3: 39;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
              suppose
    
              
    
    A39: k1 
    < (( 
    len f) 
    + 1) & k2 
    < (( 
    len f) 
    + 1); 
    
              then k2
    <= ( 
    len f) by 
    NAT_1: 13;
    
              then
    
              
    
    A40: k2 
    in ( 
    dom f) by 
    A12,
    A27,
    FINSEQ_1: 1;
    
              k1
    <= ( 
    len f) by 
    A39,
    NAT_1: 13;
    
              then
    
              
    
    A41: k1 
    in ( 
    dom f) by 
    A12,
    A30,
    FINSEQ_1: 1;
    
              
    
              then (f
    . k1) 
    = (h 
    . k1) by 
    A5,
    FINSEQ_1:def 7
    
              .= (f
    . k2) by 
    A5,
    A24,
    A29,
    A26,
    A40,
    FINSEQ_1:def 7;
    
              hence contradiction by
    A9,
    A25,
    A29,
    A26,
    A41,
    A40,
    FUNCT_1:def 4;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
        hence h is
    one-to-one by 
    FUNCT_1:def 4;
    
        (2
    + 1) 
    <= (( 
    len f) 
    + 1) by 
    A13,
    XREAL_1: 6;
    
        hence (
    len h) 
    >= 2 by 
    A17,
    XXREAL_0: 2;
    
        thus h is
    unfolded
    
        proof
    
          let j be
    Nat such that 
    
          
    
    A42: 1 
    <= j and 
    
          
    
    A43: (j 
    + 2) 
    <= ( 
    len h); 
    
          
    
          
    
    A44: (j 
    + (1 
    + 1)) 
    = ((j 
    + 1) 
    + 1); 
    
          (j
    + 1) 
    <= (j 
    + 2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A45: (j 
    + 1) 
    <= ( 
    len h) by 
    A43,
    XXREAL_0: 2;
    
          now
    
            per cases by
    A43,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A46: (j 
    + 2) 
    = ( 
    len h); 
    
              then
    
              
    
    A47: (j 
    + ((1 
    + 1) 
    - 1)) 
    = ( 
    len f) by 
    A17;
    
              then j
    <= ( 
    len f) by 
    NAT_1: 13;
    
              then j
    in ( 
    dom f) by 
    A12,
    A42,
    FINSEQ_1: 1;
    
              then
    
              
    
    A48: ( 
    LSeg (h,j)) 
    = ( 
    LSeg (f,j)) by 
    A5,
    A15,
    A47,
    TOPREAL3: 18;
    
              (
    LSeg (h,j)) 
    in Mf by 
    A42,
    A47,
    A48;
    
              then
    
              
    
    A49: ( 
    LSeg (h,j)) 
    = (( 
    LSeg (h,j)) 
    /\ ( 
    L~ f)) by 
    XBOOLE_1: 28,
    ZFMISC_1: 74;
    
              (h
    /. (j 
    + 1)) 
    in ( 
    LSeg (h,j)) by 
    A42,
    A45,
    TOPREAL1: 21;
    
              then
    
              
    
    A50: 
    {(h
    /. (j 
    + 1))} 
    c= ( 
    LSeg (h,j)) by 
    ZFMISC_1: 31;
    
              (
    LSeg (h,(j 
    + 1))) 
    = ( 
    LSeg (p2,p)) by 
    A17,
    A14,
    A18,
    A16,
    A46,
    TOPREAL1:def 3;
    
              
    
              hence ((
    LSeg (h,j)) 
    /\ ( 
    LSeg (h,(j 
    + 1)))) 
    = (( 
    LSeg (h,j)) 
    /\  
    {(h
    /. (j 
    + 1))}) by 
    A4,
    A17,
    A16,
    A46,
    A49,
    XBOOLE_1: 16
    
              .=
    {(h
    /. (j 
    + 1))} by 
    A50,
    XBOOLE_1: 28;
    
            end;
    
              suppose (j
    + 2) 
    < ( 
    len h); 
    
              then
    
              
    
    A51: ((j 
    + (2 
    + 1)) 
    - 1) 
    <= ( 
    len f) by 
    A17,
    NAT_1: 13;
    
              then
    
              
    
    A52: (( 
    LSeg (f,j)) 
    /\ ( 
    LSeg (f,(j 
    + 1)))) 
    =  
    {(f
    /. (j 
    + 1))} by 
    A8,
    A42,
    A43;
    
              1
    <= (j 
    + 2) by 
    A44,
    NAT_1: 11;
    
              then
    
              
    
    A53: ((j 
    + 1) 
    + 1) 
    in ( 
    dom f) by 
    A12,
    A51,
    FINSEQ_1: 1;
    
              (j
    + 1) 
    <= (j 
    + 2) by 
    A44,
    NAT_1: 11;
    
              then
    
              
    
    A54: (j 
    + 1) 
    <= ( 
    len f) by 
    A51,
    XXREAL_0: 2;
    
              1
    <= (j 
    + 1) by 
    NAT_1: 11;
    
              then
    
              
    
    A55: (j 
    + 1) 
    in ( 
    dom f) by 
    A12,
    A54,
    FINSEQ_1: 1;
    
              then
    
              
    
    A56: (h 
    /. (j 
    + 1)) 
    = (f 
    /. (j 
    + 1)) by 
    A5,
    FINSEQ_4: 68;
    
              j
    <= (j 
    + 1) by 
    NAT_1: 11;
    
              then j
    <= ( 
    len f) by 
    A54,
    XXREAL_0: 2;
    
              then j
    in ( 
    dom f) by 
    A12,
    A42,
    FINSEQ_1: 1;
    
              then (
    LSeg (h,j)) 
    = ( 
    LSeg (f,j)) by 
    A5,
    A55,
    TOPREAL3: 18;
    
              hence thesis by
    A5,
    A52,
    A55,
    A53,
    A56,
    TOPREAL3: 18;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        thus h is
    s.n.c.
    
        proof
    
          let n,m be
    Nat such that 
    
          
    
    A57: m 
    > (n 
    + 1); 
    
          n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          then
    
          
    
    A58: n 
    <= m by 
    A57,
    XXREAL_0: 2;
    
          
    
          
    
    A59: ((n 
    + 1) 
    + 1) 
    = (n 
    + (1 
    + 1)); 
    
          
    
          
    
    A60: 1 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          (
    LSeg (f,n)) 
    misses ( 
    LSeg (f,m)) by 
    A10,
    A57;
    
          then
    
          
    
    A61: (( 
    LSeg (f,n)) 
    /\ ( 
    LSeg (f,m))) 
    =  
    {} ; 
    
          now
    
            per cases by
    XXREAL_0: 1;
    
              suppose
    
              
    
    A62: (m 
    + 1) 
    < ( 
    len h); 
    
              then
    
              
    
    A63: (m 
    + 1) 
    <= ( 
    len f) by 
    A17,
    NAT_1: 13;
    
              
    
              
    
    A64: 1 
    < m by 
    A57,
    A60,
    XXREAL_0: 2;
    
              then 1
    <= (m 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A65: (m 
    + 1) 
    in ( 
    dom f) by 
    A12,
    A63,
    FINSEQ_1: 1;
    
              
    
              
    
    A66: m 
    <= ( 
    len f) by 
    A17,
    A62,
    XREAL_1: 6;
    
              then m
    in ( 
    dom f) by 
    A12,
    A64,
    FINSEQ_1: 1;
    
              then
    
              
    
    A67: ( 
    LSeg (h,m)) 
    = ( 
    LSeg (f,m)) by 
    A5,
    A65,
    TOPREAL3: 18;
    
              now
    
                per cases ;
    
                  suppose
    0  
    < n; 
    
                  then
    
                  
    
    A68: ( 
    0  
    + 1) 
    <= n by 
    NAT_1: 13;
    
                  (n
    + 1) 
    <= ( 
    len f) by 
    A57,
    A66,
    XXREAL_0: 2;
    
                  then
    
                  
    
    A69: (n 
    + 1) 
    in ( 
    dom f) by 
    A12,
    A60,
    FINSEQ_1: 1;
    
                  n
    <= ( 
    len f) by 
    A58,
    A66,
    XXREAL_0: 2;
    
                  then n
    in ( 
    dom f) by 
    A12,
    A68,
    FINSEQ_1: 1;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} by 
    A5,
    A61,
    A67,
    A69,
    TOPREAL3: 18;
    
                end;
    
                  suppose
    0  
    = n; 
    
                  then (
    LSeg (h,n)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
              end;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
              suppose
    
              
    
    A70: (m 
    + 1) 
    = ( 
    len h); 
    
              now
    
                per cases ;
    
                  suppose
    
                  
    
    A71: 
    0  
    < n; 
    
                  
    
                  
    
    A72: (n 
    + 1) 
    in ( 
    dom f) by 
    A17,
    A12,
    A57,
    A60,
    A70,
    FINSEQ_1: 1;
    
                  
    
                  
    
    A73: ( 
    0  
    + 1) 
    <= n by 
    A71,
    NAT_1: 13;
    
                  then n
    in ( 
    dom f) by 
    A17,
    A12,
    A58,
    A70,
    FINSEQ_1: 1;
    
                  then
    
                  
    
    A74: ( 
    LSeg (h,n)) 
    = ( 
    LSeg (f,n)) by 
    A5,
    A72,
    TOPREAL3: 18;
    
                  now
    
                    set L = (
    LSeg (f,n)); 
    
                    set x = the
    Element of (( 
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))); 
    
                    assume
    
                    
    
    A75: (( 
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    <>  
    {} ; 
    
                    then
    
                    
    
    A76: x 
    in L by 
    A74,
    XBOOLE_0:def 4;
    
                    
    
                    
    
    A77: x 
    in ( 
    LSeg (p2,p)) by 
    A17,
    A19,
    A70,
    A75,
    XBOOLE_0:def 4;
    
                    L
    in Mf by 
    A17,
    A57,
    A70,
    A73;
    
                    then x
    in ( 
    L~ f) by 
    A76,
    TARSKI:def 4;
    
                    then x
    in  
    {p2} by
    A4,
    A77,
    XBOOLE_0:def 4;
    
                    then
    
                    
    
    A78: x 
    = p2 by 
    TARSKI:def 1;
    
                    
    
                    
    
    A79: ((n 
    + 1) 
    + 1) 
    <= ( 
    len f) by 
    A17,
    A57,
    A70,
    NAT_1: 13;
    
                    now
    
                      per cases by
    A79,
    XXREAL_0: 1;
    
                        suppose
    
                        
    
    A80: ((n 
    + 1) 
    + 1) 
    = ( 
    len f); 
    
                        1
    <= (n 
    + 1) by 
    NAT_1: 11;
    
                        then
    
                        
    
    A81: p2 
    in ( 
    LSeg (f,(n 
    + 1))) by 
    A80,
    TOPREAL1: 21;
    
                        ((
    LSeg (f,n)) 
    /\ ( 
    LSeg (f,(n 
    + 1)))) 
    =  
    {(f
    /. (n 
    + 1))} by 
    A8,
    A59,
    A73,
    A80;
    
                        then p2
    in  
    {(f
    /. (n 
    + 1))} by 
    A76,
    A78,
    A81,
    XBOOLE_0:def 4;
    
                        then (f
    /. ( 
    len f)) 
    = (f 
    /. (n 
    + 1)) by 
    TARSKI:def 1;
    
                        then ((
    len f) 
    + 1) 
    = ( 
    len f) by 
    A15,
    A7,
    A72,
    A80,
    PARTFUN2: 10;
    
                        hence contradiction;
    
                      end;
    
                        suppose
    
                        
    
    A82: ((n 
    + 1) 
    + 1) 
    < ( 
    len f); 
    
                        reconsider j = ((
    len f) 
    - 1) as 
    Element of 
    NAT by 
    A13,
    INT_1: 5,
    XXREAL_0: 2;
    
                        ((n
    + 2) 
    + 1) 
    <= ( 
    len f) by 
    A82,
    NAT_1: 13;
    
                        then (n
    + 2) 
    <= (( 
    len f) 
    - 1) by 
    XREAL_1: 19;
    
                        then (n
    + 1) 
    < j by 
    A59,
    NAT_1: 13;
    
                        then (
    LSeg (f,n)) 
    misses ( 
    LSeg (f,j)) by 
    A10;
    
                        then
    
                        
    
    A83: (( 
    LSeg (f,n)) 
    /\ ( 
    LSeg (f,j))) 
    =  
    {} ; 
    
                        ((1
    + 1) 
    - 1) 
    = 1; 
    
                        then (j
    + 1) 
    = ( 
    len f) & 1 
    <= j by 
    A13,
    XREAL_1: 13;
    
                        then p2
    in ( 
    LSeg (f,j)) by 
    TOPREAL1: 21;
    
                        hence contradiction by
    A76,
    A78,
    A83,
    XBOOLE_0:def 4;
    
                      end;
    
                    end;
    
                    hence contradiction;
    
                  end;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
                  suppose
    0  
    = n; 
    
                  then (
    LSeg (h,n)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
                  hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
                end;
    
              end;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
              suppose (m
    + 1) 
    > ( 
    len h); 
    
              then (
    LSeg (h,m)) 
    =  
    {} by 
    TOPREAL1:def 3;
    
              hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
            end;
    
          end;
    
          hence ((
    LSeg (h,n)) 
    /\ ( 
    LSeg (h,m))) 
    =  
    {} ; 
    
        end;
    
        hereby
    
          let n be
    Nat such that 
    
          
    
    A84: 1 
    <= n and 
    
          
    
    A85: (n 
    + 1) 
    <= ( 
    len h); 
    
          set p3 = (h
    /. n), p4 = (h 
    /. (n 
    + 1)); 
    
          now
    
            per cases by
    A85,
    XXREAL_0: 1;
    
              suppose (n
    + 1) 
    = ( 
    len h); 
    
              hence (p3
    `1 ) 
    = (p4 
    `1 ) or (p3 
    `2 ) 
    = (p4 
    `2 ) by 
    A1,
    A5,
    A17,
    A16,
    FINSEQ_4: 67;
    
            end;
    
              suppose
    
              
    
    A86: (n 
    + 1) 
    < ( 
    len h); 
    
              
    
              
    
    A87: 1 
    <= (n 
    + 1) by 
    A84,
    NAT_1: 13;
    
              (n
    + 1) 
    <= ( 
    len f) by 
    A17,
    A86,
    NAT_1: 13;
    
              then (n
    + 1) 
    in ( 
    dom f) by 
    A12,
    A87,
    FINSEQ_1: 1;
    
              then
    
              
    
    A88: p4 
    = (f 
    /. (n 
    + 1)) by 
    A5,
    FINSEQ_4: 68;
    
              n
    <= ( 
    len f) by 
    A17,
    A86,
    XREAL_1: 6;
    
              then n
    in ( 
    dom f) by 
    A12,
    A84,
    FINSEQ_1: 1;
    
              then
    
              
    
    A89: p3 
    = (f 
    /. n) by 
    A5,
    FINSEQ_4: 68;
    
              (n
    + 1) 
    <= ( 
    len f) by 
    A17,
    A86,
    NAT_1: 13;
    
              hence (p3
    `1 ) 
    = (p4 
    `1 ) or (p3 
    `2 ) 
    = (p4 
    `2 ) by 
    A20,
    A84,
    A89,
    A88;
    
            end;
    
          end;
    
          hence (p3
    `1 ) 
    = (p4 
    `1 ) or (p3 
    `2 ) 
    = (p4 
    `2 ); 
    
        end;
    
      end;
    
      1
    in ( 
    dom f) by 
    A12,
    A14,
    FINSEQ_1: 1;
    
      then (h
    /. 1) 
    = p1 by 
    A5,
    FINSEQ_4: 68;
    
      hence (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A18,
    A21;
    
      let x be
    object;
    
      assume x
    in ( 
    L~ h); 
    
      then
    
      consider X be
    set such that 
    
      
    
    A90: x 
    in X and 
    
      
    
    A91: X 
    in Mh by 
    TARSKI:def 4;
    
      consider k such that
    
      
    
    A92: X 
    = ( 
    LSeg (h,k)) and 
    
      
    
    A93: 1 
    <= k and 
    
      
    
    A94: (k 
    + 1) 
    <= ( 
    len h) by 
    A91;
    
      per cases by
    A94,
    XXREAL_0: 1;
    
        suppose
    
        
    
    A95: (k 
    + 1) 
    = ( 
    len h); 
    
        
    
        
    
    A96: ( 
    Ball (u,r)) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    XBOOLE_1: 7;
    
        X
    c= ( 
    Ball (u,r)) by 
    A2,
    A17,
    A19,
    A92,
    A95,
    TOPREAL3: 21;
    
        hence thesis by
    A90,
    A96;
    
      end;
    
        suppose (k
    + 1) 
    < ( 
    len h); 
    
        then
    
        
    
    A97: (k 
    + 1) 
    <= ( 
    len f) by 
    A17,
    NAT_1: 13;
    
        k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
        then k
    <= ( 
    len f) by 
    A97,
    XXREAL_0: 2;
    
        then
    
        
    
    A98: k 
    in ( 
    dom f) by 
    A12,
    A93,
    FINSEQ_1: 1;
    
        1
    <= (k 
    + 1) by 
    A93,
    NAT_1: 13;
    
        then (k
    + 1) 
    in ( 
    dom f) by 
    A12,
    A97,
    FINSEQ_1: 1;
    
        then X
    = ( 
    LSeg (f,k)) by 
    A5,
    A92,
    A98,
    TOPREAL3: 18;
    
        then X
    in Mf by 
    A93,
    A97;
    
        then x
    in ( 
    union Mf) by 
    A90,
    TARSKI:def 4;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
    end;
    
    theorem :: 
    
    TOPREAL4:20
    
    
    
    
    
    Th20: (f 
    /. ( 
    len f)) 
    in ( 
    Ball (u,r)) & p 
    in ( 
    Ball (u,r)) & 
    |[(p
    `1 ), ((f 
    /. ( 
    len f)) 
    `2 )]| 
    in ( 
    Ball (u,r)) & f is 
    being_S-Seq & (p 
    `1 ) 
    <> ((f 
    /. ( 
    len f)) 
    `1 ) & (p 
    `2 ) 
    <> ((f 
    /. ( 
    len f)) 
    `2 ) & h 
    = (f 
    ^  
    <*
    |[(p
    `1 ), ((f 
    /. ( 
    len f)) 
    `2 )]|, p*>) & ((( 
    LSeg ((f 
    /. ( 
    len f)), 
    |[(p
    `1 ), ((f 
    /. ( 
    len f)) 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(p
    `1 ), ((f 
    /. ( 
    len f)) 
    `2 )]|,p))) 
    /\ ( 
    L~ f)) 
    =  
    {(f
    /. ( 
    len f))} implies ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    
    proof
    
      set p1 = (f
    /. 1), p2 = (f 
    /. ( 
    len f)); 
    
      assume that
    
      
    
    A1: p2 
    in ( 
    Ball (u,r)) and 
    
      
    
    A2: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: 
    |[(p
    `1 ), (p2 
    `2 )]| 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: f is 
    being_S-Seq and 
    
      
    
    A5: (p 
    `1 ) 
    <> (p2 
    `1 ) and 
    
      
    
    A6: (p 
    `2 ) 
    <> (p2 
    `2 ) and 
    
      
    
    A7: h 
    = (f 
    ^  
    <*
    |[(p
    `1 ), (p2 
    `2 )]|, p*>) and 
    
      
    
    A8: ((( 
    LSeg (p2, 
    |[(p
    `1 ), (p2 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(p
    `1 ), (p2 
    `2 )]|,p))) 
    /\ ( 
    L~ f)) 
    =  
    {p2};
    
      set p3 =
    |[(p
    `1 ), (p2 
    `2 )]|, f1 = (f 
    ^  
    <*p3*>), h1 = (f1
    ^  
    <*p*>);
    
      reconsider Lf = (
    L~ f) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A8;
    
      
    
      
    
    A9: p2 
    in ( 
    LSeg (p2,p3)) by 
    RLTOPSP1: 68;
    
      (
    L~ f) 
    is_S-P_arc_joining (p1,p2) by 
    A4;
    
      then Lf
    is_an_arc_of (p1,p2) by 
    Th2;
    
      then p2
    in ( 
    L~ f) by 
    TOPREAL1: 1;
    
      then p2
    in (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) by 
    A9,
    XBOOLE_0:def 4;
    
      then
    
      
    
    A10: (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    c= ((( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    \/ (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f))) & 
    {p2}
    c= (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) by 
    XBOOLE_1: 7,
    ZFMISC_1: 31;
    
      
    {p2}
    = ((( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    \/ (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f))) by 
    A8,
    XBOOLE_1: 23;
    
      then
    
      
    
    A11: (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    =  
    {p2} by
    A10;
    
      
    
      
    
    A12: ( 
    len f1) 
    = (( 
    len f) 
    + ( 
    len  
    <*p3*>)) by
    FINSEQ_1: 22
    
      .= ((
    len f) 
    + 1) by 
    FINSEQ_1: 39;
    
      then
    
      
    
    A13: (f1 
    /. ( 
    len f1)) 
    = p3 by 
    FINSEQ_4: 67;
    
      
    
      
    
    A14: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
      
    
      
    
    A15: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      (
    len f) 
    >= 2 by 
    A4;
    
      then
    
      
    
    A16: 1 
    <= ( 
    len f) by 
    XXREAL_0: 2;
    
      then (
    len f) 
    in ( 
    dom f) by 
    A15,
    FINSEQ_1: 1;
    
      then
    
      
    
    A17: (f1 
    /. ( 
    len f)) 
    = p2 by 
    FINSEQ_4: 68;
    
      
    
      
    
    A18: (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) 
    c=  
    {p3}
    
      proof
    
        set M1 = { (
    LSeg (f1,i)) : 1 
    <= i & (i 
    + 1) 
    <= ( 
    len f1) }, Mf = { ( 
    LSeg (f,j)) : 1 
    <= j & (j 
    + 1) 
    <= ( 
    len f) }; 
    
        assume not thesis;
    
        then
    
        consider x be
    object such that 
    
        
    
    A19: x 
    in (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) and 
    
        
    
    A20: not x 
    in  
    {p3};
    
        x
    in ( 
    L~ f1) by 
    A19,
    XBOOLE_0:def 4;
    
        then
    
        consider X be
    set such that 
    
        
    
    A21: x 
    in X and 
    
        
    
    A22: X 
    in M1 by 
    TARSKI:def 4;
    
        consider k such that
    
        
    
    A23: X 
    = ( 
    LSeg (f1,k)) and 
    
        
    
    A24: 1 
    <= k and 
    
        
    
    A25: (k 
    + 1) 
    <= ( 
    len f1) by 
    A22;
    
        
    
        
    
    A26: x 
    in ( 
    LSeg (p3,p)) by 
    A19,
    XBOOLE_0:def 4;
    
        now
    
          per cases by
    A25,
    XXREAL_0: 1;
    
            suppose (k
    + 1) 
    = ( 
    len f1); 
    
            then (
    LSeg (f1,k)) 
    = ( 
    LSeg (p2,p3)) by 
    A12,
    A13,
    A17,
    A24,
    TOPREAL1:def 3;
    
            then x
    in (( 
    LSeg (p2,p3)) 
    /\ ( 
    LSeg (p3,p))) by 
    A26,
    A21,
    A23,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A20,
    TOPREAL3: 30;
    
          end;
    
            suppose (k
    + 1) 
    < ( 
    len f1); 
    
            then
    
            
    
    A27: (k 
    + 1) 
    <= ( 
    len f) by 
    A12,
    NAT_1: 13;
    
            k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
            then k
    <= ( 
    len f) by 
    A27,
    XXREAL_0: 2;
    
            then
    
            
    
    A28: k 
    in ( 
    dom f) by 
    A15,
    A24,
    FINSEQ_1: 1;
    
            1
    <= (k 
    + 1) by 
    A24,
    NAT_1: 13;
    
            then (k
    + 1) 
    in ( 
    dom f) by 
    A15,
    A27,
    FINSEQ_1: 1;
    
            then X
    = ( 
    LSeg (f,k)) by 
    A23,
    A28,
    TOPREAL3: 18;
    
            then X
    in Mf by 
    A24,
    A27;
    
            then
    
            
    
    A29: x 
    in ( 
    L~ f) by 
    A21,
    TARSKI:def 4;
    
            x
    in (( 
    LSeg (p2,p3)) 
    \/ ( 
    LSeg (p3,p))) by 
    A26,
    XBOOLE_0:def 3;
    
            then x
    in  
    {p2} by
    A8,
    A29,
    XBOOLE_0:def 4;
    
            then x
    = p2 by 
    TARSKI:def 1;
    
            hence contradiction by
    A5,
    A14,
    A26,
    TOPREAL3: 11;
    
          end;
    
        end;
    
        hence contradiction;
    
      end;
    
      
    
      
    
    A30: h1 
    = (f 
    ^ ( 
    <*p3*>
    ^  
    <*p*>)) by
    FINSEQ_1: 32
    
      .= h by
    A7,
    FINSEQ_1:def 9;
    
      
    
      
    
    A31: (p3 
    `2 ) 
    = (p2 
    `2 ) & (p3 
    `1 ) 
    = (p 
    `1 ) by 
    EUCLID: 52;
    
      then
    
      
    
    A32: f1 is 
    being_S-Seq by 
    A1,
    A3,
    A4,
    A5,
    A11,
    Th19;
    
      
    
      
    
    A33: ( 
    L~ f1) 
    is_S-P_arc_joining (p1,p3) by 
    A1,
    A3,
    A4,
    A5,
    A31,
    A11,
    Th19;
    
      then
    
      reconsider Lf1 = (
    L~ f1) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    Th1,
    TOPREAL1: 26;
    
      
    
      
    
    A34: p3 
    in ( 
    LSeg (p3,p)) by 
    RLTOPSP1: 68;
    
      
    
      
    
    A35: (f1 
    /. ( 
    len f1)) 
    = p3 by 
    A12,
    FINSEQ_4: 67;
    
      (
    L~ f1) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A1,
    A3,
    A4,
    A5,
    A31,
    A11,
    Th19;
    
      then ((
    L~ f1) 
    \/ ( 
    Ball (u,r))) 
    c= ((( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    \/ ( 
    Ball (u,r))) by 
    XBOOLE_1: 9;
    
      then
    
      
    
    A36: (( 
    L~ f1) 
    \/ ( 
    Ball (u,r))) 
    c= (( 
    L~ f) 
    \/ (( 
    Ball (u,r)) 
    \/ ( 
    Ball (u,r)))) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A37: (p 
    `1 ) 
    = (p3 
    `1 ) & (p 
    `2 ) 
    <> (p3 
    `2 ) or (p 
    `1 ) 
    <> (p3 
    `1 ) & (p 
    `2 ) 
    = (p3 
    `2 ) by 
    A6,
    EUCLID: 52;
    
      Lf1
    is_an_arc_of (p1,p3) by 
    A33,
    Th2;
    
      then p3
    in ( 
    L~ f1) by 
    TOPREAL1: 1;
    
      then p3
    in (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) by 
    A34,
    XBOOLE_0:def 4;
    
      then
    {p3}
    c= (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) by 
    ZFMISC_1: 31;
    
      then
    
      
    
    A38: (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) 
    =  
    {p3} by
    A18;
    
      1
    in ( 
    dom f) by 
    A15,
    A16,
    FINSEQ_1: 1;
    
      then (f1
    /. 1) 
    = p1 by 
    FINSEQ_4: 68;
    
      hence (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A2,
    A3,
    A37,
    A32,
    A35,
    A38,
    A30,
    Th19;
    
      (
    L~ h1) 
    c= (( 
    L~ f1) 
    \/ ( 
    Ball (u,r))) by 
    A2,
    A3,
    A37,
    A32,
    A35,
    A38,
    Th19;
    
      hence thesis by
    A30,
    A36;
    
    end;
    
    theorem :: 
    
    TOPREAL4:21
    
    
    
    
    
    Th21: (f 
    /. ( 
    len f)) 
    in ( 
    Ball (u,r)) & p 
    in ( 
    Ball (u,r)) & 
    |[((f
    /. ( 
    len f)) 
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)) & f is 
    being_S-Seq & (p 
    `1 ) 
    <> ((f 
    /. ( 
    len f)) 
    `1 ) & (p 
    `2 ) 
    <> ((f 
    /. ( 
    len f)) 
    `2 ) & h 
    = (f 
    ^  
    <*
    |[((f
    /. ( 
    len f)) 
    `1 ), (p 
    `2 )]|, p*>) & ((( 
    LSeg ((f 
    /. ( 
    len f)), 
    |[((f
    /. ( 
    len f)) 
    `1 ), (p 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[((f
    /. ( 
    len f)) 
    `1 ), (p 
    `2 )]|,p))) 
    /\ ( 
    L~ f)) 
    =  
    {(f
    /. ( 
    len f))} implies ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    
    proof
    
      set p1 = (f
    /. 1), p2 = (f 
    /. ( 
    len f)); 
    
      assume that
    
      
    
    A1: p2 
    in ( 
    Ball (u,r)) and 
    
      
    
    A2: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: 
    |[(p2
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: f is 
    being_S-Seq and 
    
      
    
    A5: (p 
    `1 ) 
    <> (p2 
    `1 ) and 
    
      
    
    A6: (p 
    `2 ) 
    <> (p2 
    `2 ) and 
    
      
    
    A7: h 
    = (f 
    ^  
    <*
    |[(p2
    `1 ), (p 
    `2 )]|, p*>) and 
    
      
    
    A8: ((( 
    LSeg (p2, 
    |[(p2
    `1 ), (p 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(p2
    `1 ), (p 
    `2 )]|,p))) 
    /\ ( 
    L~ f)) 
    =  
    {p2};
    
      set p3 =
    |[(p2
    `1 ), (p 
    `2 )]|, f1 = (f 
    ^  
    <*p3*>), h1 = (f1
    ^  
    <*p*>);
    
      reconsider Lf = (
    L~ f) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A8;
    
      
    
      
    
    A9: p2 
    in ( 
    LSeg (p2,p3)) by 
    RLTOPSP1: 68;
    
      (
    L~ f) 
    is_S-P_arc_joining (p1,p2) by 
    A4;
    
      then Lf
    is_an_arc_of (p1,p2) by 
    Th2;
    
      then p2
    in ( 
    L~ f) by 
    TOPREAL1: 1;
    
      then p2
    in (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) by 
    A9,
    XBOOLE_0:def 4;
    
      then
    
      
    
    A10: (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    c= ((( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    \/ (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f))) & 
    {p2}
    c= (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) by 
    XBOOLE_1: 7,
    ZFMISC_1: 31;
    
      
    {p2}
    = ((( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    \/ (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f))) by 
    A8,
    XBOOLE_1: 23;
    
      then
    
      
    
    A11: (( 
    LSeg (p2,p3)) 
    /\ ( 
    L~ f)) 
    =  
    {p2} by
    A10;
    
      
    
      
    
    A12: ( 
    len f1) 
    = (( 
    len f) 
    + ( 
    len  
    <*p3*>)) by
    FINSEQ_1: 22
    
      .= ((
    len f) 
    + 1) by 
    FINSEQ_1: 39;
    
      then
    
      
    
    A13: (f1 
    /. ( 
    len f1)) 
    = p3 by 
    FINSEQ_4: 67;
    
      
    
      
    
    A14: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
      
    
      
    
    A15: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      (
    len f) 
    >= 2 by 
    A4;
    
      then
    
      
    
    A16: 1 
    <= ( 
    len f) by 
    XXREAL_0: 2;
    
      then (
    len f) 
    in ( 
    dom f) by 
    A15,
    FINSEQ_1: 1;
    
      then
    
      
    
    A17: (f1 
    /. ( 
    len f)) 
    = p2 by 
    FINSEQ_4: 68;
    
      
    
      
    
    A18: (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) 
    c=  
    {p3}
    
      proof
    
        set M1 = { (
    LSeg (f1,i)) : 1 
    <= i & (i 
    + 1) 
    <= ( 
    len f1) }, Mf = { ( 
    LSeg (f,j)) : 1 
    <= j & (j 
    + 1) 
    <= ( 
    len f) }; 
    
        assume not thesis;
    
        then
    
        consider x be
    object such that 
    
        
    
    A19: x 
    in (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) and 
    
        
    
    A20: not x 
    in  
    {p3};
    
        x
    in ( 
    L~ f1) by 
    A19,
    XBOOLE_0:def 4;
    
        then
    
        consider X be
    set such that 
    
        
    
    A21: x 
    in X and 
    
        
    
    A22: X 
    in M1 by 
    TARSKI:def 4;
    
        consider k such that
    
        
    
    A23: X 
    = ( 
    LSeg (f1,k)) and 
    
        
    
    A24: 1 
    <= k and 
    
        
    
    A25: (k 
    + 1) 
    <= ( 
    len f1) by 
    A22;
    
        
    
        
    
    A26: x 
    in ( 
    LSeg (p3,p)) by 
    A19,
    XBOOLE_0:def 4;
    
        now
    
          per cases by
    A25,
    XXREAL_0: 1;
    
            suppose (k
    + 1) 
    = ( 
    len f1); 
    
            then (
    LSeg (f1,k)) 
    = ( 
    LSeg (p2,p3)) by 
    A12,
    A13,
    A17,
    A24,
    TOPREAL1:def 3;
    
            then x
    in (( 
    LSeg (p2,p3)) 
    /\ ( 
    LSeg (p3,p))) by 
    A26,
    A21,
    A23,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A20,
    TOPREAL3: 29;
    
          end;
    
            suppose (k
    + 1) 
    < ( 
    len f1); 
    
            then
    
            
    
    A27: (k 
    + 1) 
    <= ( 
    len f) by 
    A12,
    NAT_1: 13;
    
            k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
            then k
    <= ( 
    len f) by 
    A27,
    XXREAL_0: 2;
    
            then
    
            
    
    A28: k 
    in ( 
    dom f) by 
    A15,
    A24,
    FINSEQ_1: 1;
    
            1
    <= (k 
    + 1) by 
    A24,
    NAT_1: 13;
    
            then (k
    + 1) 
    in ( 
    dom f) by 
    A15,
    A27,
    FINSEQ_1: 1;
    
            then X
    = ( 
    LSeg (f,k)) by 
    A23,
    A28,
    TOPREAL3: 18;
    
            then X
    in Mf by 
    A24,
    A27;
    
            then
    
            
    
    A29: x 
    in ( 
    L~ f) by 
    A21,
    TARSKI:def 4;
    
            x
    in (( 
    LSeg (p2,p3)) 
    \/ ( 
    LSeg (p3,p))) by 
    A26,
    XBOOLE_0:def 3;
    
            then x
    in  
    {p2} by
    A8,
    A29,
    XBOOLE_0:def 4;
    
            then x
    = p2 by 
    TARSKI:def 1;
    
            hence contradiction by
    A6,
    A14,
    A26,
    TOPREAL3: 12;
    
          end;
    
        end;
    
        hence contradiction;
    
      end;
    
      
    
      
    
    A30: h1 
    = (f 
    ^ ( 
    <*p3*>
    ^  
    <*p*>)) by
    FINSEQ_1: 32
    
      .= h by
    A7,
    FINSEQ_1:def 9;
    
      
    
      
    
    A31: (p3 
    `2 ) 
    = (p 
    `2 ) & (p3 
    `1 ) 
    = (p2 
    `1 ) by 
    EUCLID: 52;
    
      then
    
      
    
    A32: f1 is 
    being_S-Seq by 
    A1,
    A3,
    A4,
    A6,
    A11,
    Th19;
    
      
    
      
    
    A33: ( 
    L~ f1) 
    is_S-P_arc_joining (p1,p3) by 
    A1,
    A3,
    A4,
    A6,
    A31,
    A11,
    Th19;
    
      then
    
      reconsider Lf1 = (
    L~ f1) as non 
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    Th1,
    TOPREAL1: 26;
    
      
    
      
    
    A34: p3 
    in ( 
    LSeg (p3,p)) by 
    RLTOPSP1: 68;
    
      
    
      
    
    A35: (f1 
    /. ( 
    len f1)) 
    = p3 by 
    A12,
    FINSEQ_4: 67;
    
      (
    L~ f1) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A1,
    A3,
    A4,
    A6,
    A31,
    A11,
    Th19;
    
      then ((
    L~ f1) 
    \/ ( 
    Ball (u,r))) 
    c= ((( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    \/ ( 
    Ball (u,r))) by 
    XBOOLE_1: 9;
    
      then
    
      
    
    A36: (( 
    L~ f1) 
    \/ ( 
    Ball (u,r))) 
    c= (( 
    L~ f) 
    \/ (( 
    Ball (u,r)) 
    \/ ( 
    Ball (u,r)))) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A37: (p 
    `1 ) 
    = (p3 
    `1 ) & (p 
    `2 ) 
    <> (p3 
    `2 ) or (p 
    `1 ) 
    <> (p3 
    `1 ) & (p 
    `2 ) 
    = (p3 
    `2 ) by 
    A5,
    EUCLID: 52;
    
      Lf1
    is_an_arc_of (p1,p3) by 
    A33,
    Th2;
    
      then p3
    in ( 
    L~ f1) by 
    TOPREAL1: 1;
    
      then p3
    in (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) by 
    A34,
    XBOOLE_0:def 4;
    
      then
    {p3}
    c= (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) by 
    ZFMISC_1: 31;
    
      then
    
      
    
    A38: (( 
    LSeg (p3,p)) 
    /\ ( 
    L~ f1)) 
    =  
    {p3} by
    A18;
    
      1
    in ( 
    dom f) by 
    A15,
    A16,
    FINSEQ_1: 1;
    
      then (f1
    /. 1) 
    = p1 by 
    FINSEQ_4: 68;
    
      hence (
    L~ h) 
    is_S-P_arc_joining (p1,p) by 
    A2,
    A3,
    A37,
    A32,
    A35,
    A38,
    A30,
    Th19;
    
      (
    L~ h1) 
    c= (( 
    L~ f1) 
    \/ ( 
    Ball (u,r))) by 
    A2,
    A3,
    A37,
    A32,
    A35,
    A38,
    Th19;
    
      hence thesis by
    A30,
    A36;
    
    end;
    
    theorem :: 
    
    TOPREAL4:22
    
    
    
    
    
    Th22: not (f 
    /. 1) 
    in ( 
    Ball (u,r)) & (f 
    /. ( 
    len f)) 
    in ( 
    Ball (u,r)) & p 
    in ( 
    Ball (u,r)) & f is 
    being_S-Seq & not p 
    in ( 
    L~ f) implies ex h st ( 
    L~ h) 
    is_S-P_arc_joining ((f 
    /. 1),p) & ( 
    L~ h) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    
    proof
    
      set p1 = (f
    /. 1); 
    
      set Mf = { (
    LSeg (f,k)) : 1 
    <= k & (k 
    + 1) 
    <= ( 
    len f) }; 
    
      assume that
    
      
    
    A1: not p1 
    in ( 
    Ball (u,r)) and 
    
      
    
    A2: (f 
    /. ( 
    len f)) 
    in ( 
    Ball (u,r)) and 
    
      
    
    A3: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A4: f is 
    being_S-Seq and 
    
      
    
    A5: not p 
    in ( 
    L~ f); 
    
      
    
      
    
    A6: f is 
    special by 
    A4;
    
      defpred
    
    X[
    Nat] means 1
    <= $1 & $1 
    <= (( 
    len f) 
    - 1) & ( 
    LSeg (f,$1)) 
    meets ( 
    Ball (u,r)); 
    
      
    
      
    
    A7: ( 
    len f) 
    >= 2 by 
    A4;
    
      then
    
      reconsider n = ((
    len f) 
    - 1) as 
    Element of 
    NAT by 
    INT_1: 5,
    XXREAL_0: 2;
    
      2
    = (1 
    + 1); 
    
      then
    
      
    
    A8: 1 
    <= (( 
    len f) 
    - 1) by 
    A7,
    XREAL_1: 19;
    
      (n
    + 1) 
    = ( 
    len f); 
    
      then (f
    /. ( 
    len f)) 
    in ( 
    LSeg (f,n)) by 
    A8,
    TOPREAL1: 21;
    
      then (
    LSeg (f,n)) 
    meets ( 
    Ball (u,r)) by 
    A2,
    XBOOLE_0: 3;
    
      then
    
      
    
    A9: ex n be 
    Nat st 
    X[n] by
    A8;
    
      consider m be
    Nat such that 
    
      
    
    A10: 
    X[m] and
    
      
    
    A11: for i be 
    Nat st 
    X[i] holds m
    <= i from 
    NAT_1:sch 5(
    A9);
    
      reconsider m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      consider q1, q2 such that
    
      
    
    A12: (f 
    /. m) 
    = q1 and 
    
      
    
    A13: (f 
    /. (m 
    + 1)) 
    = q2; 
    
      
    
      
    
    A14: (( 
    LSeg (f,m)) 
    /\ ( 
    Ball (u,r))) 
    <>  
    {} by 
    A10,
    XBOOLE_0:def 7;
    
      
    
      
    
    A15: (m 
    + 1) 
    <= ( 
    len f) by 
    A10,
    XREAL_1: 19;
    
      then
    
      
    
    A16: ( 
    LSeg (f,m)) 
    = ( 
    LSeg (q1,q2)) by 
    A10,
    A12,
    A13,
    TOPREAL1:def 3;
    
      m
    <= (m 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A17: m 
    <= ( 
    len f) by 
    A15,
    XXREAL_0: 2;
    
      
    
      
    
    A18: ( 
    Seg ( 
    len f)) 
    = ( 
    dom f) by 
    FINSEQ_1:def 3;
    
      
    
    A19: 
    
      now
    
        set x = the
    Element of (( 
    Ball (u,r)) 
    /\ ( 
    L~ (f 
    | m))); 
    
        set M = { (
    LSeg ((f 
    | m),i)) : 1 
    <= i & (i 
    + 1) 
    <= ( 
    len (f 
    | m)) }; 
    
        
    
        
    
    A20: ( 
    Seg ( 
    len (f 
    | m))) 
    = ( 
    dom (f 
    | m)) by 
    FINSEQ_1:def 3;
    
        assume
    
        
    
    A21: (( 
    Ball (u,r)) 
    /\ ( 
    L~ (f 
    | m))) 
    <>  
    {} ; 
    
        then
    
        
    
    A22: x 
    in ( 
    Ball (u,r)) by 
    XBOOLE_0:def 4;
    
        x
    in ( 
    L~ (f 
    | m)) by 
    A21,
    XBOOLE_0:def 4;
    
        then
    
        consider X be
    set such that 
    
        
    
    A23: x 
    in X and 
    
        
    
    A24: X 
    in M by 
    TARSKI:def 4;
    
        consider k such that
    
        
    
    A25: X 
    = ( 
    LSeg ((f 
    | m),k)) and 
    
        
    
    A26: 1 
    <= k and 
    
        
    
    A27: (k 
    + 1) 
    <= ( 
    len (f 
    | m)) by 
    A24;
    
        k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
        then k
    <= ( 
    len (f 
    | m)) by 
    A27,
    XXREAL_0: 2;
    
        then
    
        
    
    A28: k 
    in ( 
    Seg ( 
    len (f 
    | m))) by 
    A26,
    FINSEQ_1: 1;
    
        1
    <= (k 
    + 1) by 
    NAT_1: 11;
    
        then (k
    + 1) 
    in ( 
    Seg ( 
    len (f 
    | m))) by 
    A27,
    FINSEQ_1: 1;
    
        then x
    in ( 
    LSeg (f,k)) by 
    A23,
    A25,
    A28,
    A20,
    TOPREAL3: 17;
    
        then
    
        
    
    A29: ( 
    LSeg (f,k)) 
    meets ( 
    Ball (u,r)) by 
    A22,
    XBOOLE_0: 3;
    
        (
    Seg m) 
    c= ( 
    Seg ( 
    len f)) by 
    A17,
    FINSEQ_1: 5;
    
        
    
        then
    
        
    
    A30: ( 
    Seg m) 
    = (( 
    dom f) 
    /\ ( 
    Seg m)) by 
    A18,
    XBOOLE_1: 28
    
        .= (
    dom (f 
    | ( 
    Seg m))) by 
    RELAT_1: 61
    
        .= (
    Seg ( 
    len (f 
    | m))) by 
    A20,
    FINSEQ_1:def 15;
    
        
    
        
    
    A31: ((k 
    + 1) 
    - 1) 
    <= (( 
    len (f 
    | m)) 
    - 1) by 
    A27,
    XREAL_1: 9;
    
        then
    
        
    
    A32: k 
    <= (m 
    - 1) by 
    A30,
    FINSEQ_1: 6;
    
        m
    = ( 
    len (f 
    | m)) by 
    A30,
    FINSEQ_1: 6;
    
        then ((
    len (f 
    | m)) 
    - 1) 
    <= (( 
    len f) 
    - 1) by 
    A17,
    XREAL_1: 9;
    
        then k
    <= (( 
    len f) 
    - 1) by 
    A31,
    XXREAL_0: 2;
    
        then m
    <= k by 
    A11,
    A26,
    A29;
    
        then m
    <= (m 
    - 1) by 
    A32,
    XXREAL_0: 2;
    
        then
    0  
    <= ((m 
    + ( 
    - 1)) 
    - m) by 
    XREAL_1: 48;
    
        hence contradiction;
    
      end;
    
      for i st 1
    <= i 
    <= (( 
    len f) 
    - 1) & (( 
    LSeg (f,i)) 
    /\ ( 
    Ball (u,r))) 
    <>  
    {} holds m 
    <= i by 
    A11,
    XBOOLE_0:def 7;
    
      then
    
      
    
    A33: not q1 
    in ( 
    Ball (u,r)) by 
    A1,
    A10,
    A12,
    TOPREAL3: 26;
    
      set A = ((
    LSeg (f,m)) 
    /\ ( 
    Ball (u,r))); 
    
      
    
      
    
    A34: q1 
    =  
    |[(q1
    `1 ), (q1 
    `2 )]| & q2 
    =  
    |[(q2
    `1 ), (q2 
    `2 )]| by 
    EUCLID: 53;
    
      (m
    + 1) 
    <= (n 
    + 1) by 
    A10,
    XREAL_1: 6;
    
      then (
    LSeg (f,m)) 
    in Mf by 
    A10;
    
      then
    
      
    
    A35: ( 
    LSeg (f,m)) 
    c= ( 
    union Mf) by 
    ZFMISC_1: 74;
    
      now
    
        per cases ;
    
          suppose ex q st q
    in A & ((p 
    `1 ) 
    = (q 
    `1 ) or (p 
    `2 ) 
    = (q 
    `2 )); 
    
          then
    
          consider q such that
    
          
    
    A36: q 
    in A and 
    
          
    
    A37: (p 
    `1 ) 
    = (q 
    `1 ) or (p 
    `2 ) 
    = (q 
    `2 ); 
    
          
    
          
    
    A38: q 
    in ( 
    Ball (u,r)) by 
    A36,
    XBOOLE_0:def 4;
    
          
    
          
    
    A39: q 
    in ( 
    LSeg (q,p)) by 
    RLTOPSP1: 68;
    
          
    
          
    
    A40: q 
    in ( 
    LSeg (f,m)) by 
    A36,
    XBOOLE_0:def 4;
    
          then
    
          consider h such that
    
          
    
    A41: h is 
    being_S-Seq and 
    
          
    
    A42: (h 
    /. 1) 
    = p1 and 
    
          
    
    A43: (h 
    /. ( 
    len h)) 
    = q and 
    
          
    
    A44: ( 
    L~ h) 
    is_S-P_arc_joining (p1,q) and 
    
          
    
    A45: ( 
    L~ h) 
    c= ( 
    L~ f) and 
    
          
    
    A46: ( 
    L~ h) 
    = (( 
    L~ (f 
    | m)) 
    \/ ( 
    LSeg (q1,q))) by 
    A1,
    A4,
    A12,
    A38,
    Th17;
    
          take g = (h
    ^  
    <*p*>);
    
          
    
          
    
    A47: (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A45,
    XBOOLE_1: 9;
    
          
    
          
    
    A48: q 
    in ( 
    L~ f) by 
    A35,
    A40;
    
          
    
    A49: 
    
          now
    
            per cases by
    A37;
    
              suppose (p
    `1 ) 
    = (q 
    `1 ); 
    
              hence (p
    `1 ) 
    = (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) or (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    = (q 
    `2 ) by 
    A5,
    A48,
    TOPREAL3: 6;
    
            end;
    
              suppose (p
    `2 ) 
    = (q 
    `2 ); 
    
              hence (p
    `1 ) 
    = (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ) or (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    = (q 
    `2 ) by 
    A5,
    A48,
    TOPREAL3: 6;
    
            end;
    
          end;
    
          
    
          
    
    A50: (( 
    LSeg (q,p)) 
    /\ ( 
    L~ h)) 
    c=  
    {q}
    
          proof
    
            
    
    A51: 
    
            now
    
              per cases by
    A6,
    A10,
    A15,
    A12,
    A13;
    
                suppose (q1
    `1 ) 
    = (q2 
    `1 ); 
    
                hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A40,
    TOPREAL3: 11;
    
              end;
    
                suppose (q1
    `2 ) 
    = (q2 
    `2 ); 
    
                hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A40,
    TOPREAL3: 12;
    
              end;
    
            end;
    
            (
    LSeg (q,p)) 
    = (( 
    LSeg (q,p)) 
    /\ ( 
    Ball (u,r))) by 
    A3,
    A38,
    TOPREAL3: 21,
    XBOOLE_1: 28;
    
            
    
            then
    
            
    
    A52: (( 
    LSeg (q,p)) 
    /\ (( 
    L~ (f 
    | m)) 
    \/ ( 
    LSeg (q1,q)))) 
    = (((( 
    LSeg (q,p)) 
    /\ ( 
    Ball (u,r))) 
    /\ ( 
    L~ (f 
    | m))) 
    \/ (( 
    LSeg (q,p)) 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 23
    
            .= (((
    LSeg (q,p)) 
    /\ (( 
    Ball (u,r)) 
    /\ ( 
    L~ (f 
    | m)))) 
    \/ (( 
    LSeg (q,p)) 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 16
    
            .= ((
    LSeg (q1,q)) 
    /\ ( 
    LSeg (q,p))) by 
    A19;
    
            
    
    A53: 
    
            now
    
              q1
    in ( 
    LSeg (q1,q2)) by 
    RLTOPSP1: 68;
    
              then
    
              
    
    A54: ( 
    LSeg (q1,q)) 
    c= ( 
    LSeg (f,m)) by 
    A16,
    A40,
    TOPREAL1: 6;
    
              assume p
    in ( 
    LSeg (q1,q)); 
    
              hence contradiction by
    A5,
    A35,
    A54;
    
            end;
    
            let x be
    object;
    
            assume x
    in (( 
    LSeg (q,p)) 
    /\ ( 
    L~ h)); 
    
            hence thesis by
    A3,
    A33,
    A38,
    A49,
    A46,
    A52,
    A53,
    A51,
    TOPREAL3: 42;
    
          end;
    
          q
    in ( 
    L~ h) by 
    A44,
    Th3;
    
          then q
    in (( 
    LSeg (q,p)) 
    /\ ( 
    L~ h)) by 
    A39,
    XBOOLE_0:def 4;
    
          then
    {q}
    c= (( 
    LSeg (q,p)) 
    /\ ( 
    L~ h)) by 
    ZFMISC_1: 31;
    
          then
    
          
    
    A55: (( 
    LSeg (q,p)) 
    /\ ( 
    L~ h)) 
    =  
    {q} by
    A50;
    
          then (
    L~ g) 
    c= (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A38,
    A49,
    A41,
    A43,
    Th19;
    
          hence (
    L~ g) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ g) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A38,
    A49,
    A41,
    A42,
    A43,
    A55,
    A47,
    Th19;
    
        end;
    
          suppose
    
          
    
    A56: for q st q 
    in A holds (p 
    `1 ) 
    <> (q 
    `1 ) & (p 
    `2 ) 
    <> (q 
    `2 ); 
    
          set x = the
    Element of A; 
    
          
    
          
    
    A57: x 
    in ( 
    LSeg (f,m)) by 
    A14,
    XBOOLE_0:def 4;
    
          then
    
          reconsider q = x as
    Point of ( 
    TOP-REAL 2); 
    
          
    
          
    
    A58: (q 
    `1 ) 
    <> (p 
    `1 ) & (q 
    `2 ) 
    <> (p 
    `2 ) by 
    A14,
    A56;
    
          q
    <> p1 by 
    A1,
    A14,
    XBOOLE_0:def 4;
    
          then
    
          consider h such that
    
          
    
    A59: h is 
    being_S-Seq and 
    
          
    
    A60: (h 
    /. 1) 
    = p1 and 
    
          
    
    A61: (h 
    /. ( 
    len h)) 
    = q and 
    
          
    
    A62: ( 
    L~ h) 
    is_S-P_arc_joining (p1,q) and 
    
          
    
    A63: ( 
    L~ h) 
    c= ( 
    L~ f) and 
    
          
    
    A64: ( 
    L~ h) 
    = (( 
    L~ (f 
    | m)) 
    \/ ( 
    LSeg (q1,q))) by 
    A4,
    A12,
    A57,
    Th17;
    
          
    
          
    
    A65: q 
    in ( 
    Ball (u,r)) by 
    A14,
    XBOOLE_0:def 4;
    
          
    
          
    
    A66: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| & p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
          now
    
            per cases by
    A3,
    A65,
    A66,
    TOPREAL3: 25;
    
              suppose
    
              
    
    A67: 
    |[(q
    `1 ), (p 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
              set v =
    |[(q
    `1 ), (p 
    `2 )]|; 
    
              
    
              
    
    A68: ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) 
    c=  
    {q}
    
              proof
    
                let x be
    object;
    
                set L = ((
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))); 
    
                assume
    
                
    
    A69: x 
    in (L 
    /\ ( 
    L~ h)); 
    
                (
    LSeg (q,v)) 
    c= ( 
    Ball (u,r)) & ( 
    LSeg (v,p)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    A65,
    A67,
    TOPREAL3: 21;
    
                then L
    = (L 
    /\ ( 
    Ball (u,r))) by 
    XBOOLE_1: 8,
    XBOOLE_1: 28;
    
                
    
                then
    
                
    
    A70: (L 
    /\ (( 
    L~ (f 
    | m)) 
    \/ ( 
    LSeg (q1,q)))) 
    = (((L 
    /\ ( 
    Ball (u,r))) 
    /\ ( 
    L~ (f 
    | m))) 
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 23
    
                .= ((L
    /\ (( 
    Ball (u,r)) 
    /\ ( 
    L~ (f 
    | m)))) 
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 16
    
                .= (
    {}  
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    A19;
    
                
    
    A71: 
    
                now
    
                  per cases by
    A6,
    A10,
    A15,
    A12,
    A13;
    
                    suppose (q1
    `1 ) 
    = (q2 
    `1 ); 
    
                    hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A57,
    TOPREAL3: 11;
    
                  end;
    
                    suppose (q1
    `2 ) 
    = (q2 
    `2 ); 
    
                    hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A57,
    TOPREAL3: 12;
    
                  end;
    
                end;
    
                now
    
                  per cases by
    A71;
    
                    suppose
    
                    
    
    A72: (q1 
    `1 ) 
    = (q 
    `1 ); 
    
                    now
    
                      q1
    in ( 
    LSeg (q1,q2)) by 
    RLTOPSP1: 68;
    
                      then
    
                      
    
    A73: ( 
    LSeg (q1,q)) 
    c= ( 
    LSeg (f,m)) by 
    A16,
    A57,
    TOPREAL1: 6;
    
                      
    
                      
    
    A74: (v 
    `2 ) 
    = (p 
    `2 ) by 
    EUCLID: 52;
    
                      assume v
    in ( 
    LSeg (q1,q)); 
    
                      then v
    in (( 
    LSeg (f,m)) 
    /\ ( 
    Ball (u,r))) by 
    A67,
    A73,
    XBOOLE_0:def 4;
    
                      hence contradiction by
    A56,
    A74;
    
                    end;
    
                    hence thesis by
    A33,
    A65,
    A58,
    A64,
    A67,
    A70,
    A69,
    A72,
    TOPREAL3: 43;
    
                  end;
    
                    suppose (q1
    `2 ) 
    = (q 
    `2 ); 
    
                    hence thesis by
    A14,
    A56,
    A64,
    A70,
    A69,
    TOPREAL3: 27;
    
                  end;
    
                end;
    
                hence thesis;
    
              end;
    
              take g = (h
    ^  
    <*
    |[(q
    `1 ), (p 
    `2 )]|, p*>); 
    
              q
    in ( 
    LSeg (q,v)) by 
    RLTOPSP1: 68;
    
              then
    
              
    
    A75: q 
    in (( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) by 
    XBOOLE_0:def 3;
    
              
    
              
    
    A76: (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A63,
    XBOOLE_1: 9;
    
              q
    in ( 
    L~ h) by 
    A62,
    Th3;
    
              then q
    in ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) by 
    A75,
    XBOOLE_0:def 4;
    
              then
    {q}
    c= ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) by 
    ZFMISC_1: 31;
    
              then
    
              
    
    A77: ((( 
    LSeg (q, 
    |[(q
    `1 ), (p 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(q
    `1 ), (p 
    `2 )]|,p))) 
    /\ ( 
    L~ h)) 
    =  
    {q} by
    A68;
    
              then (
    L~ g) 
    c= (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A65,
    A58,
    A59,
    A61,
    A67,
    Th21;
    
              hence (
    L~ g) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ g) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A65,
    A58,
    A59,
    A60,
    A61,
    A67,
    A77,
    A76,
    Th21;
    
            end;
    
              suppose
    
              
    
    A78: 
    |[(p
    `1 ), (q 
    `2 )]| 
    in ( 
    Ball (u,r)); 
    
              set v =
    |[(p
    `1 ), (q 
    `2 )]|; 
    
              
    
              
    
    A79: ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) 
    c=  
    {q}
    
              proof
    
                let x be
    object;
    
                set L = ((
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))); 
    
                assume
    
                
    
    A80: x 
    in (L 
    /\ ( 
    L~ h)); 
    
                (
    LSeg (q,v)) 
    c= ( 
    Ball (u,r)) & ( 
    LSeg (v,p)) 
    c= ( 
    Ball (u,r)) by 
    A3,
    A65,
    A78,
    TOPREAL3: 21;
    
                then L
    = (L 
    /\ ( 
    Ball (u,r))) by 
    XBOOLE_1: 8,
    XBOOLE_1: 28;
    
                
    
                then
    
                
    
    A81: (L 
    /\ (( 
    L~ (f 
    | m)) 
    \/ ( 
    LSeg (q1,q)))) 
    = (((L 
    /\ ( 
    Ball (u,r))) 
    /\ ( 
    L~ (f 
    | m))) 
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 23
    
                .= ((L
    /\ (( 
    Ball (u,r)) 
    /\ ( 
    L~ (f 
    | m)))) 
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    XBOOLE_1: 16
    
                .= (
    {}  
    \/ (L 
    /\ ( 
    LSeg (q1,q)))) by 
    A19;
    
                
    
    A82: 
    
                now
    
                  per cases by
    A6,
    A10,
    A15,
    A12,
    A13;
    
                    suppose (q1
    `1 ) 
    = (q2 
    `1 ); 
    
                    hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A57,
    TOPREAL3: 11;
    
                  end;
    
                    suppose (q1
    `2 ) 
    = (q2 
    `2 ); 
    
                    hence (q1
    `1 ) 
    = (q 
    `1 ) or (q1 
    `2 ) 
    = (q 
    `2 ) by 
    A34,
    A16,
    A57,
    TOPREAL3: 12;
    
                  end;
    
                end;
    
                now
    
                  per cases by
    A82;
    
                    suppose (q1
    `1 ) 
    = (q 
    `1 ); 
    
                    hence thesis by
    A14,
    A56,
    A64,
    A81,
    A80,
    TOPREAL3: 28;
    
                  end;
    
                    suppose
    
                    
    
    A83: (q1 
    `2 ) 
    = (q 
    `2 ); 
    
                    now
    
                      q1
    in ( 
    LSeg (q1,q2)) by 
    RLTOPSP1: 68;
    
                      then
    
                      
    
    A84: ( 
    LSeg (q1,q)) 
    c= ( 
    LSeg (f,m)) by 
    A16,
    A57,
    TOPREAL1: 6;
    
                      
    
                      
    
    A85: (v 
    `1 ) 
    = (p 
    `1 ) by 
    EUCLID: 52;
    
                      assume v
    in ( 
    LSeg (q1,q)); 
    
                      then v
    in (( 
    LSeg (f,m)) 
    /\ ( 
    Ball (u,r))) by 
    A78,
    A84,
    XBOOLE_0:def 4;
    
                      hence contradiction by
    A56,
    A85;
    
                    end;
    
                    hence thesis by
    A33,
    A65,
    A58,
    A64,
    A78,
    A81,
    A80,
    A83,
    TOPREAL3: 44;
    
                  end;
    
                end;
    
                hence thesis;
    
              end;
    
              take g = (h
    ^  
    <*
    |[(p
    `1 ), (q 
    `2 )]|, p*>); 
    
              q
    in ( 
    LSeg (q,v)) by 
    RLTOPSP1: 68;
    
              then
    
              
    
    A86: q 
    in (( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) by 
    XBOOLE_0:def 3;
    
              
    
              
    
    A87: (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A63,
    XBOOLE_1: 9;
    
              q
    in ( 
    L~ h) by 
    A62,
    Th3;
    
              then q
    in ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) by 
    A86,
    XBOOLE_0:def 4;
    
              then
    {q}
    c= ((( 
    LSeg (q,v)) 
    \/ ( 
    LSeg (v,p))) 
    /\ ( 
    L~ h)) by 
    ZFMISC_1: 31;
    
              then
    
              
    
    A88: ((( 
    LSeg (q, 
    |[(p
    `1 ), (q 
    `2 )]|)) 
    \/ ( 
    LSeg ( 
    |[(p
    `1 ), (q 
    `2 )]|,p))) 
    /\ ( 
    L~ h)) 
    =  
    {q} by
    A79;
    
              then (
    L~ g) 
    c= (( 
    L~ h) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A65,
    A58,
    A59,
    A61,
    A78,
    Th20;
    
              hence (
    L~ g) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ g) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A3,
    A65,
    A58,
    A59,
    A60,
    A61,
    A78,
    A88,
    A87,
    Th20;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    TOPREAL4:23
    
    
    
    
    
    Th23: for R, p, p1, p2, P, r, u st p 
    <> p1 & P 
    is_S-P_arc_joining (p1,p2) & P 
    c= R & p 
    in ( 
    Ball (u,r)) & p2 
    in ( 
    Ball (u,r)) & ( 
    Ball (u,r)) 
    c= R holds ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p1,p) & P1 
    c= R 
    
    proof
    
      let R, p, p1, p2, P, r, u;
    
      assume that
    
      
    
    A1: p 
    <> p1 and 
    
      
    
    A2: P 
    is_S-P_arc_joining (p1,p2) and 
    
      
    
    A3: P 
    c= R and 
    
      
    
    A4: p 
    in ( 
    Ball (u,r)) and 
    
      
    
    A5: p2 
    in ( 
    Ball (u,r)) and 
    
      
    
    A6: ( 
    Ball (u,r)) 
    c= R; 
    
      consider f such that
    
      
    
    A7: f is 
    being_S-Seq and 
    
      
    
    A8: P 
    = ( 
    L~ f) and 
    
      
    
    A9: p1 
    = (f 
    /. 1) and 
    
      
    
    A10: p2 
    = (f 
    /. ( 
    len f)) by 
    A2;
    
      now
    
        per cases ;
    
          suppose p1
    in ( 
    Ball (u,r)); 
    
          then
    
          consider P1 such that
    
          
    
    A11: P1 
    is_S-P_arc_joining (p1,p) & P1 
    c= ( 
    Ball (u,r)) by 
    A1,
    A4,
    Th10;
    
          reconsider P1 as
    Subset of ( 
    TOP-REAL 2); 
    
          take P1;
    
          thus P1
    is_S-P_arc_joining (p1,p) & P1 
    c= R by 
    A6,
    A11;
    
        end;
    
          suppose
    
          
    
    A12: not p1 
    in ( 
    Ball (u,r)); 
    
          now
    
            per cases ;
    
              suppose p
    in P; 
    
              then
    
              consider h such that h is
    being_S-Seq and (h 
    /. 1) 
    = p1 and (h 
    /. ( 
    len h)) 
    = p and 
    
              
    
    A13: ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) & ( 
    L~ h) 
    c= ( 
    L~ f) by 
    A1,
    A7,
    A8,
    A9,
    Th18;
    
              reconsider P1 = (
    L~ h) as 
    Subset of ( 
    TOP-REAL 2); 
    
              take P1;
    
              thus P1
    is_S-P_arc_joining (p1,p) & P1 
    c= R by 
    A3,
    A8,
    A13;
    
            end;
    
              suppose not p
    in P; 
    
              then
    
              consider h such that
    
              
    
    A14: ( 
    L~ h) 
    is_S-P_arc_joining (p1,p) and 
    
              
    
    A15: ( 
    L~ h) 
    c= (( 
    L~ f) 
    \/ ( 
    Ball (u,r))) by 
    A4,
    A5,
    A7,
    A8,
    A9,
    A10,
    A12,
    Th22;
    
              reconsider P1 = (
    L~ h) as 
    Subset of ( 
    TOP-REAL 2); 
    
              take P1;
    
              thus P1
    is_S-P_arc_joining (p1,p) by 
    A14;
    
              ((
    L~ f) 
    \/ ( 
    Ball (u,r))) 
    c= R by 
    A3,
    A6,
    A8,
    XBOOLE_1: 8;
    
              hence P1
    c= R by 
    A15;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm1: ( 
    TopSpaceMetr ( 
    Euclid 2)) 
    = the TopStruct of ( 
    TOP-REAL 2) by 
    EUCLID:def 8;
    
    reserve P,R for
    Subset of ( 
    TOP-REAL 2); 
    
    theorem :: 
    
    TOPREAL4:24
    
    
    
    
    
    Th24: for p st R is 
    being_Region & P 
    = { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } holds P is 
    open
    
    proof
    
      let p;
    
      assume that
    
      
    
    A1: R is 
    being_Region and 
    
      
    
    A2: P 
    = { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R }; 
    
      reconsider RR = R, PP = P as
    Subset of the TopStruct of ( 
    TOP-REAL 2); 
    
      R is
    open by 
    A1;
    
      then
    
      
    
    A3: RR is 
    open by 
    PRE_TOPC: 30;
    
      now
    
        let u;
    
        reconsider p2 = u as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        assume
    
        
    
    A4: u 
    in P; 
    
        then ex q1 st q1
    = u & q1 
    <> p & q1 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q1) & P1 
    c= R by 
    A2;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A5: r 
    >  
    0 and 
    
        
    
    A6: ( 
    Ball (u,r)) 
    c= RR by 
    A3,
    Lm1,
    TOPMETR: 15;
    
        take r;
    
        thus r
    >  
    0 by 
    A5;
    
        reconsider r9 = r as
    Real;
    
        
    
        
    
    A7: p2 
    in ( 
    Ball (u,r9)) by 
    A5,
    TBSP_1: 11;
    
        thus (
    Ball (u,r)) 
    c= P 
    
        proof
    
          assume not thesis;
    
          then
    
          consider x be
    object such that 
    
          
    
    A8: x 
    in ( 
    Ball (u,r)) and 
    
          
    
    A9: not x 
    in P; 
    
          x
    in R by 
    A6,
    A8;
    
          then
    
          reconsider q = x as
    Point of ( 
    TOP-REAL 2); 
    
          now
    
            per cases by
    A2,
    A6,
    A8,
    A9;
    
              suppose
    
              
    
    A10: q 
    = p; 
    
              
    
    A11: 
    
              now
    
                assume
    
                
    
    A12: q 
    = p2; 
    
                ex p3 st p3
    = p2 & p3 
    <> p & p3 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,p3) & P1 
    c= R by 
    A2,
    A4;
    
                hence contradiction by
    A10,
    A12;
    
              end;
    
              u
    in ( 
    Ball (u,r9)) by 
    A5,
    TBSP_1: 11;
    
              then
    
              
    
    A13: ex P2 be 
    Subset of ( 
    TOP-REAL 2) st P2 
    is_S-P_arc_joining (q,p2) & P2 
    c= ( 
    Ball (u,r9)) by 
    A8,
    A11,
    Th10;
    
               not p2
    in P 
    
              proof
    
                assume p2
    in P; 
    
                then ex q4 st q4
    = p2 & q4 
    <> p & q4 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q4) & P1 
    c= R by 
    A2;
    
                hence contradiction by
    A6,
    A10,
    A13,
    XBOOLE_1: 1;
    
              end;
    
              hence contradiction by
    A4;
    
            end;
    
              suppose
    
              
    
    A14: ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R; 
    
               not p2
    in P 
    
              proof
    
                assume p2
    in P; 
    
                then ex q4 st q4
    = p2 & q4 
    <> p & q4 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q4) & P1 
    c= R by 
    A2;
    
                hence contradiction by
    A6,
    A7,
    A8,
    A14,
    Th23;
    
              end;
    
              hence contradiction by
    A4;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
      end;
    
      then PP is
    open by 
    Lm1,
    TOPMETR: 15;
    
      hence thesis by
    PRE_TOPC: 30;
    
    end;
    
    theorem :: 
    
    TOPREAL4:25
    
    
    
    
    
    Th25: R is 
    being_Region & p 
    in R & P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } implies P is 
    open
    
    proof
    
      assume that
    
      
    
    A1: R is 
    being_Region and 
    
      
    
    A2: p 
    in R and 
    
      
    
    A3: P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R }; 
    
      reconsider RR = R, PP = P as
    Subset of the TopStruct of ( 
    TOP-REAL 2); 
    
      R is
    open by 
    A1;
    
      then
    
      
    
    A4: RR is 
    open by 
    PRE_TOPC: 30;
    
      now
    
        let u;
    
        reconsider p2 = u as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        assume u
    in P; 
    
        then
    
        consider q1 such that
    
        
    
    A5: q1 
    = u and 
    
        
    
    A6: q1 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q1) & P1 
    c= R by 
    A3;
    
        now
    
          per cases by
    A6;
    
            suppose q1
    = p; 
    
            hence p2
    in R by 
    A2,
    A5;
    
          end;
    
            suppose ex P1 be
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q1) & P1 
    c= R; 
    
            then
    
            consider P2 be
    Subset of ( 
    TOP-REAL 2) such that 
    
            
    
    A7: P2 
    is_S-P_arc_joining (p,q1) and 
    
            
    
    A8: P2 
    c= R; 
    
            p2
    in P2 by 
    A5,
    A7,
    Th3;
    
            hence p2
    in R by 
    A8;
    
          end;
    
        end;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A9: r 
    >  
    0 and 
    
        
    
    A10: ( 
    Ball (u,r)) 
    c= RR by 
    A4,
    Lm1,
    TOPMETR: 15;
    
        take r;
    
        thus r
    >  
    0 by 
    A9;
    
        reconsider r9 = r as
    Real;
    
        
    
        
    
    A11: p2 
    in ( 
    Ball (u,r9)) by 
    A9,
    TBSP_1: 11;
    
        thus (
    Ball (u,r)) 
    c= P 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A12: x 
    in ( 
    Ball (u,r)); 
    
          then
    
          reconsider q = x as
    Point of ( 
    TOP-REAL 2) by 
    A10,
    TARSKI:def 3;
    
          now
    
            per cases ;
    
              suppose q
    = p; 
    
              hence thesis by
    A3;
    
            end;
    
              suppose
    
              
    
    A13: q 
    <> p; 
    
              
    
    A14: 
    
              now
    
                assume q1
    = p; 
    
                then p
    in ( 
    Ball (u,r9)) by 
    A5,
    A9,
    TBSP_1: 11;
    
                then
    
                consider P2 be
    Subset of ( 
    TOP-REAL 2) such that 
    
                
    
    A15: P2 
    is_S-P_arc_joining (p,q) and 
    
                
    
    A16: P2 
    c= ( 
    Ball (u,r9)) by 
    A12,
    A13,
    Th10;
    
                reconsider P2 as
    Subset of ( 
    TOP-REAL 2); 
    
                P2
    c= R by 
    A10,
    A16;
    
                hence thesis by
    A3,
    A15;
    
              end;
    
              now
    
                assume q1
    <> p; 
    
                then ex P1 be
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R by 
    A5,
    A6,
    A10,
    A11,
    A12,
    A13,
    Th23;
    
                hence thesis by
    A3;
    
              end;
    
              hence thesis by
    A14;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      then PP is
    open by 
    Lm1,
    TOPMETR: 15;
    
      hence thesis by
    PRE_TOPC: 30;
    
    end;
    
    theorem :: 
    
    TOPREAL4:26
    
    
    
    
    
    Th26: p 
    in R & P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } implies P 
    c= R 
    
    proof
    
      assume that
    
      
    
    A1: p 
    in R and 
    
      
    
    A2: P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R }; 
    
      let x be
    object;
    
      assume x
    in P; 
    
      then
    
      consider q such that
    
      
    
    A3: q 
    = x and 
    
      
    
    A4: q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R by 
    A2;
    
      now
    
        per cases by
    A4;
    
          suppose q
    = p; 
    
          hence thesis by
    A1,
    A3;
    
        end;
    
          suppose ex P1 be
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R; 
    
          then
    
          consider P1 be
    Subset of ( 
    TOP-REAL 2) such that 
    
          
    
    A5: P1 
    is_S-P_arc_joining (p,q) and 
    
          
    
    A6: P1 
    c= R; 
    
          q
    in P1 by 
    A5,
    Th3;
    
          hence thesis by
    A3,
    A6;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    TOPREAL4:27
    
    
    
    
    
    Th27: R is 
    being_Region & p 
    in R & P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } implies R 
    c= P 
    
    proof
    
      assume that
    
      
    
    A1: R is 
    being_Region and 
    
      
    
    A2: p 
    in R and 
    
      
    
    A3: P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R }; 
    
      
    
      
    
    A4: p 
    in P by 
    A3;
    
      set P2 = (R
    \ P); 
    
      reconsider P22 = P2 as
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A5: ( 
    [#] (( 
    TOP-REAL 2) 
    | R)) 
    = R by 
    PRE_TOPC:def 5;
    
      then
    
      reconsider P11 = P, P12 = P22 as
    Subset of (( 
    TOP-REAL 2) 
    | R) by 
    A2,
    A3,
    Th26,
    XBOOLE_1: 36;
    
      (P
    \/ (R 
    \ P)) 
    = (P 
    \/ R) by 
    XBOOLE_1: 39;
    
      then
    
      
    
    A6: ( 
    [#] (( 
    TOP-REAL 2) 
    | R)) 
    = (P11 
    \/ P12) by 
    A5,
    XBOOLE_1: 12;
    
      now
    
        let x be
    object;
    
        
    
    A7: 
    
        now
    
          assume
    
          
    
    A8: x 
    in P2; 
    
          then
    
          reconsider q2 = x as
    Point of ( 
    TOP-REAL 2); 
    
           not x
    in P by 
    A8,
    XBOOLE_0:def 5;
    
          then
    
          
    
    A9: q2 
    <> p & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q2) & P1 
    c= R by 
    A3;
    
          q2
    in R by 
    A8,
    XBOOLE_0:def 5;
    
          hence x
    in { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } by 
    A9;
    
        end;
    
        now
    
          assume x
    in { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R }; 
    
          then
    
          
    
    A10: ex q3 st q3 
    = x & q3 
    <> p & q3 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q3) & P1 
    c= R; 
    
          then not ex q st q
    = x & (q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R); 
    
          then not x
    in P by 
    A3;
    
          hence x
    in P2 by 
    A10,
    XBOOLE_0:def 5;
    
        end;
    
        hence x
    in P2 iff x 
    in { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } by 
    A7;
    
      end;
    
      then P2
    = { q : q 
    <> p & q 
    in R & not ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } by 
    TARSKI: 2;
    
      then P22 is
    open by 
    A1,
    Th24;
    
      then
    
      
    
    A11: P22 
    in the 
    topology of ( 
    TOP-REAL 2) by 
    PRE_TOPC:def 2;
    
      reconsider R9 = R as non
    empty  
    Subset of ( 
    TOP-REAL 2) by 
    A2;
    
      R is
    connected by 
    A1;
    
      then
    
      
    
    A12: (( 
    TOP-REAL 2) 
    | R9) is 
    connected by 
    CONNSP_1:def 3;
    
      P is
    open by 
    A1,
    A2,
    A3,
    Th25;
    
      then
    
      
    
    A13: P 
    in the 
    topology of ( 
    TOP-REAL 2) by 
    PRE_TOPC:def 2;
    
      P11
    = (P 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | R))) by 
    XBOOLE_1: 28;
    
      then P11
    in the 
    topology of (( 
    TOP-REAL 2) 
    | R) by 
    A13,
    PRE_TOPC:def 4;
    
      then
    
      
    
    A14: P11 is 
    open by 
    PRE_TOPC:def 2;
    
      P12
    = (P22 
    /\ ( 
    [#] (( 
    TOP-REAL 2) 
    | R))) by 
    XBOOLE_1: 28;
    
      then P12
    in the 
    topology of (( 
    TOP-REAL 2) 
    | R) by 
    A11,
    PRE_TOPC:def 4;
    
      then
    
      
    
    A15: P12 is 
    open by 
    PRE_TOPC:def 2;
    
      
    
      
    
    A16: P11 
    misses P12 by 
    XBOOLE_1: 79;
    
      then (P11
    /\ P12) 
    = ( 
    {} (( 
    TOP-REAL 2) 
    | R)); 
    
      then P2
    =  
    {} by 
    A4,
    A12,
    A16,
    A6,
    A14,
    A15,
    CONNSP_1: 11;
    
      hence thesis by
    XBOOLE_1: 37;
    
    end;
    
    theorem :: 
    
    TOPREAL4:28
    
    R is
    being_Region & p 
    in R & P 
    = { q : q 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q) & P1 
    c= R } implies R 
    = P by 
    Th27,
    Th26;
    
    theorem :: 
    
    TOPREAL4:29
    
    R is
    being_Region & p 
    in R & q 
    in R & p 
    <> q implies ex P st P 
    is_S-P_arc_joining (p,q) & P 
    c= R 
    
    proof
    
      set RR = { q2 : q2
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q2) & P1 
    c= R }; 
    
      RR
    c= the 
    carrier of ( 
    TOP-REAL 2) 
    
      proof
    
        let x be
    object;
    
        assume x
    in RR; 
    
        then ex q2 st q2
    = x & (q2 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q2) & P1 
    c= R); 
    
        hence thesis;
    
      end;
    
      then
    
      reconsider RR as
    Subset of ( 
    TOP-REAL 2); 
    
      assume that
    
      
    
    A1: R is 
    being_Region & p 
    in R and 
    
      
    
    A2: q 
    in R and 
    
      
    
    A3: p 
    <> q; 
    
      R
    c= RR by 
    A1,
    Th27;
    
      then q
    in RR by 
    A2;
    
      then ex q1 st q1
    = q & (q1 
    = p or ex P1 be 
    Subset of ( 
    TOP-REAL 2) st P1 
    is_S-P_arc_joining (p,q1) & P1 
    c= R); 
    
      hence thesis by
    A3;
    
    end;