topreal3.miz
begin
reserve p,p1,p2,p3,p11,p22,q,q1,q2 for
Point of (
TOP-REAL 2),
f,h for
FinSequence of (
TOP-REAL 2),
r,r1,r2,s,s1,s2 for
Real,
u,u1,u2,u5 for
Point of (
Euclid 2),
n,m,i,j,k for
Nat,
N for
Nat,
x,y,z for
set;
begin
::$Canceled
Th1: for x,y,z be
object holds 1
in (
dom
<*x, y, z*>) & 2
in (
dom
<*x, y, z*>) & 3
in (
dom
<*x, y, z*>) by
FINSEQ_1: 81;
theorem ::
TOPREAL3:2
Th2: ((p1
+ p2)
`1 )
= ((p1
`1 )
+ (p2
`1 )) & ((p1
+ p2)
`2 )
= ((p1
`2 )
+ (p2
`2 ))
proof
(p1
+ p2)
=
|[((p1
`1 )
+ (p2
`1 )), ((p1
`2 )
+ (p2
`2 ))]| by
EUCLID: 55;
hence thesis by
EUCLID: 52;
end;
theorem ::
TOPREAL3:3
((p1
- p2)
`1 )
= ((p1
`1 )
- (p2
`1 )) & ((p1
- p2)
`2 )
= ((p1
`2 )
- (p2
`2 ))
proof
(p1
- p2)
=
|[((p1
`1 )
- (p2
`1 )), ((p1
`2 )
- (p2
`2 ))]| by
EUCLID: 61;
hence thesis by
EUCLID: 52;
end;
theorem ::
TOPREAL3:4
Th4: ((r
* p)
`1 )
= (r
* (p
`1 )) & ((r
* p)
`2 )
= (r
* (p
`2 ))
proof
(r
* p)
=
|[(r
* (p
`1 )), (r
* (p
`2 ))]| by
EUCLID: 57;
hence thesis by
EUCLID: 52;
end;
theorem ::
TOPREAL3:5
Th5: p1
=
<*r1, s1*> & p2
=
<*r2, s2*> implies (p1
+ p2)
=
<*(r1
+ r2), (s1
+ s2)*> & (p1
- p2)
=
<*(r1
- r2), (s1
- s2)*>
proof
A1: (
|[r1, s1]|
`1 )
= r1 & (
|[r1, s1]|
`2 )
= s1 by
EUCLID: 52;
A2: (
|[r2, s2]|
`1 )
= r2 & (
|[r2, s2]|
`2 )
= s2 by
EUCLID: 52;
assume p1
=
<*r1, s1*> & p2
=
<*r2, s2*>;
hence thesis by
A1,
A2,
EUCLID: 55,
EUCLID: 61;
end;
theorem ::
TOPREAL3:6
Th6: (p
`1 )
= (q
`1 ) & (p
`2 )
= (q
`2 ) implies p
= q
proof
assume (p
`1 )
= (q
`1 ) & (p
`2 )
= (q
`2 );
hence p
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53
.= q by
EUCLID: 53;
end;
theorem ::
TOPREAL3:7
Th7: u1
= p1 & u2
= p2 implies ((
Pitag_dist 2)
. (u1,u2))
= (
sqrt ((((p1
`1 )
- (p2
`1 ))
^2 )
+ (((p1
`2 )
- (p2
`2 ))
^2 )))
proof
assume that
A1: u1
= p1 and
A2: u2
= p2;
reconsider v1 = u1, v2 = u2 as
Element of (
REAL 2);
reconsider p11 = (p1
`1 ), p21 = (p2
`1 ), p12 = (p1
`2 ), p22 = (p2
`2 ) as
Element of
REAL by
XREAL_0:def 1;
p1
=
|[(p1
`1 ), (p1
`2 )]| & u2
=
<*(p2
`1 ), (p2
`2 )*> by
A2,
EUCLID: 53;
then (v1
- v2)
=
<*(
diffreal
. (p11,p21)), (
diffreal
. (p12,p22))*> by
A1,
FINSEQ_2: 75
.=
<*((p1
`1 )
- (p2
`1 )), (
diffreal
. ((p1
`2 ),(p2
`2 )))*> by
BINOP_2:def 10
.=
<*((p1
`1 )
- (p2
`1 )), ((p1
`2 )
- (p2
`2 ))*> by
BINOP_2:def 10;
then (
abs (v1
- v2))
=
<*(
absreal
. ((p1
`1 )
- (p2
`1 ))), (
absreal
. ((p1
`2 )
- (p2
`2 )))*> by
FINSEQ_2: 36
.=
<*
|.((p1
`1 )
- (p2
`1 )).|, (
absreal
. ((p1
`2 )
- (p2
`2 )))*> by
EUCLID:def 2
.=
<*
|.((p1
`1 )
- (p2
`1 )).|,
|.((p1
`2 )
- (p2
`2 )).|*> by
EUCLID:def 2;
then
A3: (
sqr (
abs (v1
- v2)))
=
<*(
sqrreal
.
|.((p1
`1 )
- (p2
`1 )).|), (
sqrreal
.
|.((p1
`2 )
- (p2
`2 )).|)*> by
FINSEQ_2: 36
.=
<*(
|.((p1
`1 )
- (p2
`1 )).|
^2 ), (
sqrreal
.
|.((p1
`2 )
- (p2
`2 )).|)*> by
RVSUM_1:def 2
.=
<*(
|.((p1
`1 )
- (p2
`1 )).|
^2 ), (
|.((p1
`2 )
- (p2
`2 )).|
^2 )*> by
RVSUM_1:def 2
.=
<*(((p1
`1 )
- (p2
`1 ))
^2 ), (
|.((p1
`2 )
- (p2
`2 )).|
^2 )*> by
COMPLEX1: 75
.=
<*(((p1
`1 )
- (p2
`1 ))
^2 ), (((p1
`2 )
- (p2
`2 ))
^2 )*> by
COMPLEX1: 75;
((
Pitag_dist 2)
. (u1,u2))
=
|.(v1
- v2).| by
EUCLID:def 6
.= (
sqrt (
Sum (
sqr (
abs (v1
- v2))))) by
EUCLID: 25;
hence thesis by
A3,
RVSUM_1: 77;
end;
theorem ::
TOPREAL3:8
Th8: for n be
Nat holds the
carrier of (
TOP-REAL n)
= the
carrier of (
Euclid n) by
EUCLID: 22;
reserve lambda for
Real;
theorem ::
TOPREAL3:9
Th9: r1
<= s1 implies { p1 : (p1
`1 )
= r & r1
<= (p1
`2 ) & (p1
`2 )
<= s1 }
= (
LSeg (
|[r, r1]|,
|[r, s1]|))
proof
set L = { p3 : (p3
`1 )
= r & r1
<= (p3
`2 ) & (p3
`2 )
<= s1 }, p =
|[r, r1]|, q =
|[r, s1]|;
A1: (p
`1 )
= r by
EUCLID: 52;
assume
A2: r1
<= s1;
then
A3: (s1
- r1)
>= (r1
- r1) by
XREAL_1: 13;
A4: (q
`2 )
= s1 by
EUCLID: 52;
A5: (p
`2 )
= r1 by
EUCLID: 52;
A6: (q
`1 )
= r by
EUCLID: 52;
thus L
c= (
LSeg (p,q))
proof
per cases by
A2,
XXREAL_0: 1;
suppose
A7: r1
= s1;
L
c=
{p}
proof
let x be
object;
assume x
in L;
then
consider p2 such that
A8: x
= p2 and
A9: (p2
`1 )
= r and
A10: r1
<= (p2
`2 ) & (p2
`2 )
<= s1;
(p
`2 )
= (p2
`2 ) by
A5,
A7,
A10,
XXREAL_0: 1;
then p2
= p by
A1,
A9,
Th6;
hence thesis by
A8,
TARSKI:def 1;
end;
hence thesis by
A7,
RLTOPSP1: 70;
end;
suppose
A11: r1
< s1;
let x be
object;
assume x
in L;
then
consider p2 such that
A12: x
= p2 and
A13: (p2
`1 )
= r and
A14: r1
<= (p2
`2 ) and
A15: (p2
`2 )
<= s1;
set t = (p2
`2 ), l = ((t
- r1)
/ (s1
- r1));
A16: (s1
- r1)
>
0 by
A11,
XREAL_1: 50;
then
A17: (1
- l)
= (((1
* (s1
- r1))
- (t
- r1))
/ (s1
- r1)) by
XCMPLX_1: 127
.= ((s1
- t)
/ (s1
- r1));
(t
- r1)
<= (s1
- r1) by
A15,
XREAL_1: 9;
then l
<= ((s1
- r1)
/ (s1
- r1)) by
A16,
XREAL_1: 72;
then
A18: l
<= 1 by
A16,
XCMPLX_1: 60;
A19: ((((1
- l)
* p)
+ (l
* q))
`1 )
= ((((1
- l)
* p)
`1 )
+ ((l
* q)
`1 )) by
Th2
.= (((1
- l)
* (p
`1 ))
+ ((l
* q)
`1 )) by
Th4
.= (((1
- l)
* r)
+ (l
* r)) by
A1,
A6,
Th4
.= (p2
`1 ) by
A13;
((((1
- l)
* p)
+ (l
* q))
`2 )
= ((((1
- l)
* p)
`2 )
+ ((l
* q)
`2 )) by
Th2
.= (((1
- l)
* (p
`2 ))
+ ((l
* q)
`2 )) by
Th4
.= (((1
- l)
* (p
`2 ))
+ (l
* (q
`2 ))) by
Th4
.= ((((s1
- t)
* (p
`2 ))
/ (s1
- r1))
+ (l
* (q
`2 ))) by
A17,
XCMPLX_1: 74
.= ((((s1
- t)
* (p
`2 ))
/ (s1
- r1))
+ (((t
- r1)
* (q
`2 ))
/ (s1
- r1))) by
XCMPLX_1: 74
.= ((((s1
* r1)
- (t
* r1))
+ ((t
- r1)
* s1))
/ (s1
- r1)) by
A5,
A4,
XCMPLX_1: 62
.= ((t
* (s1
- r1))
/ (s1
- r1))
.= (t
* ((s1
- r1)
/ (s1
- r1))) by
XCMPLX_1: 74
.= (t
* 1) by
A16,
XCMPLX_1: 60
.= (p2
`2 );
then
A20: p2
= (((1
- l)
* p)
+ (l
* q)) by
A19,
Th6;
(r1
- r1)
<= (t
- r1) by
A14,
XREAL_1: 9;
hence thesis by
A16,
A12,
A18,
A20;
end;
end;
let x be
object;
assume x
in (
LSeg (p,q));
then
consider lambda such that
A21: (((1
- lambda)
* p)
+ (lambda
* q))
= x and
A22:
0
<= lambda and
A23: lambda
<= 1;
A24: (r1
+
0 )
<= (r1
+ (lambda
* (s1
- r1))) by
A3,
A22,
XREAL_1: 7;
(lambda
* (s1
- r1))
<= (1
* (s1
- r1)) by
A3,
A23,
XREAL_1: 64;
then
A25: (r1
+ (lambda
* (s1
- r1)))
<= ((s1
- r1)
+ r1) by
XREAL_1: 7;
set p2 = (((1
- lambda)
* p)
+ (lambda
* q));
A26: (p2
`2 )
= ((((1
- lambda)
* p)
`2 )
+ ((lambda
* q)
`2 )) by
Th2
.= (((1
- lambda)
* (p
`2 ))
+ ((lambda
* q)
`2 )) by
Th4
.= (((1
* r1)
- (lambda
* r1))
+ (lambda
* s1)) by
A5,
A4,
Th4
.= (r1
+ (lambda
* (s1
- r1)));
(p2
`1 )
= ((((1
- lambda)
* p)
`1 )
+ ((lambda
* q)
`1 )) by
Th2
.= (((1
- lambda)
* (p
`1 ))
+ ((lambda
* q)
`1 )) by
Th4
.= (((1
- lambda)
* r)
+ (lambda
* r)) by
A1,
A6,
Th4
.= (1
* r);
hence thesis by
A21,
A26,
A24,
A25;
end;
theorem ::
TOPREAL3:10
Th10: r1
<= s1 implies { p1 : (p1
`2 )
= r & r1
<= (p1
`1 ) & (p1
`1 )
<= s1 }
= (
LSeg (
|[r1, r]|,
|[s1, r]|))
proof
set L = { p3 : (p3
`2 )
= r & r1
<= (p3
`1 ) & (p3
`1 )
<= s1 }, p =
|[r1, r]|, q =
|[s1, r]|;
A1: (p
`1 )
= r1 by
EUCLID: 52;
assume
A2: r1
<= s1;
then
A3: (s1
- r1)
>= (r1
- r1) by
XREAL_1: 13;
A4: (q
`2 )
= r by
EUCLID: 52;
A5: (p
`2 )
= r by
EUCLID: 52;
A6: (q
`1 )
= s1 by
EUCLID: 52;
thus L
c= (
LSeg (p,q))
proof
per cases by
A2,
XXREAL_0: 1;
suppose
A7: r1
= s1;
L
c=
{p}
proof
let x be
object;
assume x
in L;
then
consider p2 such that
A8: x
= p2 and
A9: (p2
`2 )
= r and
A10: r1
<= (p2
`1 ) & (p2
`1 )
<= s1;
(p
`1 )
= (p2
`1 ) by
A1,
A7,
A10,
XXREAL_0: 1;
then p2
= p by
A5,
A9,
Th6;
hence thesis by
A8,
TARSKI:def 1;
end;
hence thesis by
A7,
RLTOPSP1: 70;
end;
suppose
A11: r1
< s1;
let x be
object;
assume x
in L;
then
consider p2 such that
A12: x
= p2 and
A13: (p2
`2 )
= r and
A14: r1
<= (p2
`1 ) and
A15: (p2
`1 )
<= s1;
set t = (p2
`1 ), l = ((t
- r1)
/ (s1
- r1));
A16: (s1
- r1)
>
0 by
A11,
XREAL_1: 50;
then
A17: (1
- l)
= (((1
* (s1
- r1))
- (t
- r1))
/ (s1
- r1)) by
XCMPLX_1: 127
.= ((s1
- t)
/ (s1
- r1));
(t
- r1)
<= (s1
- r1) by
A15,
XREAL_1: 9;
then l
<= ((s1
- r1)
/ (s1
- r1)) by
A16,
XREAL_1: 72;
then
A18: l
<= 1 by
A16,
XCMPLX_1: 60;
A19: ((((1
- l)
* p)
+ (l
* q))
`2 )
= ((((1
- l)
* p)
`2 )
+ ((l
* q)
`2 )) by
Th2
.= (((1
- l)
* (p
`2 ))
+ ((l
* q)
`2 )) by
Th4
.= (((1
- l)
* r)
+ (l
* r)) by
A5,
A4,
Th4
.= (p2
`2 ) by
A13;
((((1
- l)
* p)
+ (l
* q))
`1 )
= ((((1
- l)
* p)
`1 )
+ ((l
* q)
`1 )) by
Th2
.= (((1
- l)
* (p
`1 ))
+ ((l
* q)
`1 )) by
Th4
.= (((1
- l)
* (p
`1 ))
+ (l
* (q
`1 ))) by
Th4
.= ((((s1
- t)
* (p
`1 ))
/ (s1
- r1))
+ (l
* (q
`1 ))) by
A17,
XCMPLX_1: 74
.= ((((s1
- t)
* (p
`1 ))
/ (s1
- r1))
+ (((t
- r1)
* (q
`1 ))
/ (s1
- r1))) by
XCMPLX_1: 74
.= ((((s1
* r1)
- (t
* r1))
+ ((t
- r1)
* s1))
/ (s1
- r1)) by
A1,
A6,
XCMPLX_1: 62
.= ((t
* (s1
- r1))
/ (s1
- r1))
.= (t
* ((s1
- r1)
/ (s1
- r1))) by
XCMPLX_1: 74
.= (t
* 1) by
A16,
XCMPLX_1: 60
.= (p2
`1 );
then
A20: p2
= (((1
- l)
* p)
+ (l
* q)) by
A19,
Th6;
(r1
- r1)
<= (t
- r1) by
A14,
XREAL_1: 9;
hence thesis by
A16,
A12,
A18,
A20;
end;
end;
let x be
object;
assume x
in (
LSeg (p,q));
then
consider lambda such that
A21: (((1
- lambda)
* p)
+ (lambda
* q))
= x and
A22:
0
<= lambda and
A23: lambda
<= 1;
A24: (r1
+
0 )
<= (r1
+ (lambda
* (s1
- r1))) by
A3,
A22,
XREAL_1: 7;
(lambda
* (s1
- r1))
<= (1
* (s1
- r1)) by
A3,
A23,
XREAL_1: 64;
then
A25: (r1
+ (lambda
* (s1
- r1)))
<= ((s1
- r1)
+ r1) by
XREAL_1: 7;
set p2 = (((1
- lambda)
* p)
+ (lambda
* q));
A26: (p2
`1 )
= ((((1
- lambda)
* p)
`1 )
+ ((lambda
* q)
`1 )) by
Th2
.= (((1
- lambda)
* (p
`1 ))
+ ((lambda
* q)
`1 )) by
Th4
.= (((1
* r1)
- (lambda
* r1))
+ (lambda
* s1)) by
A1,
A6,
Th4
.= (r1
+ (lambda
* (s1
- r1)));
(p2
`2 )
= ((((1
- lambda)
* p)
`2 )
+ ((lambda
* q)
`2 )) by
Th2
.= (((1
- lambda)
* (p
`2 ))
+ ((lambda
* q)
`2 )) by
Th4
.= (((1
- lambda)
* r)
+ (lambda
* r)) by
A5,
A4,
Th4
.= r;
hence thesis by
A21,
A26,
A24,
A25;
end;
theorem ::
TOPREAL3:11
p
in (
LSeg (
|[r, r1]|,
|[r, s1]|)) implies (p
`1 )
= r
proof
assume
A1: p
in (
LSeg (
|[r, r1]|,
|[r, s1]|));
per cases by
XXREAL_0: 1;
suppose r1
< s1;
then (
LSeg (
|[r, r1]|,
|[r, s1]|))
= { q : (q
`1 )
= r & r1
<= (q
`2 ) & (q
`2 )
<= s1 } by
Th9;
then ex p1 st p1
= p & (p1
`1 )
= r & r1
<= (p1
`2 ) & (p1
`2 )
<= s1 by
A1;
hence thesis;
end;
suppose r1
= s1;
then p
in
{
|[r, r1]|} by
A1,
RLTOPSP1: 70;
then p
=
|[r, r1]| by
TARSKI:def 1;
hence thesis by
EUCLID: 52;
end;
suppose r1
> s1;
then (
LSeg (
|[r, r1]|,
|[r, s1]|))
= { q : (q
`1 )
= r & s1
<= (q
`2 ) & (q
`2 )
<= r1 } by
Th9;
then ex p1 st p1
= p & (p1
`1 )
= r & s1
<= (p1
`2 ) & (p1
`2 )
<= r1 by
A1;
hence thesis;
end;
end;
theorem ::
TOPREAL3:12
p
in (
LSeg (
|[r1, r]|,
|[s1, r]|)) implies (p
`2 )
= r
proof
assume
A1: p
in (
LSeg (
|[r1, r]|,
|[s1, r]|));
per cases by
XXREAL_0: 1;
suppose r1
< s1;
then (
LSeg (
|[r1, r]|,
|[s1, r]|))
= { q : (q
`2 )
= r & r1
<= (q
`1 ) & (q
`1 )
<= s1 } by
Th10;
then ex p1 st p1
= p & (p1
`2 )
= r & r1
<= (p1
`1 ) & (p1
`1 )
<= s1 by
A1;
hence thesis;
end;
suppose r1
= s1;
then p
in
{
|[r1, r]|} by
A1,
RLTOPSP1: 70;
then p
=
|[r1, r]| by
TARSKI:def 1;
hence thesis by
EUCLID: 52;
end;
suppose r1
> s1;
then (
LSeg (
|[r1, r]|,
|[s1, r]|))
= { q : (q
`2 )
= r & s1
<= (q
`1 ) & (q
`1 )
<= r1 } by
Th10;
then ex p1 st p1
= p & (p1
`2 )
= r & s1
<= (p1
`1 ) & (p1
`1 )
<= r1 by
A1;
hence thesis;
end;
end;
theorem ::
TOPREAL3:13
(p
`1 )
<> (q
`1 ) & (p
`2 )
= (q
`2 ) implies
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|
in (
LSeg (p,q))
proof
set p1 =
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|;
assume that
A1: (p
`1 )
<> (q
`1 ) and
A2: (p
`2 )
= (q
`2 );
A3: p
=
|[(p
`1 ), (p
`2 )]| & q
=
|[(q
`1 ), (p
`2 )]| by
A2,
EUCLID: 53;
A4: (p1
`1 )
= (((p
`1 )
+ (q
`1 ))
/ 2) & (p1
`2 )
= (p
`2 ) by
EUCLID: 52;
per cases by
A1,
XXREAL_0: 1;
suppose
A5: (p
`1 )
< (q
`1 );
then (p
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2) & (((p
`1 )
+ (q
`1 ))
/ 2)
<= (q
`1 ) by
XREAL_1: 226;
then p1
in { p2 : (p2
`2 )
= (p
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 ) } by
A4;
hence thesis by
A3,
A5,
Th10;
end;
suppose
A6: (p
`1 )
> (q
`1 );
then (q
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2) & (((p
`1 )
+ (q
`1 ))
/ 2)
<= (p
`1 ) by
XREAL_1: 226;
then p1
in { p2 : (p2
`2 )
= (p
`2 ) & (q
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 ) } by
A4;
hence thesis by
A3,
A6,
Th10;
end;
end;
theorem ::
TOPREAL3:14
(p
`1 )
= (q
`1 ) & (p
`2 )
<> (q
`2 ) implies
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|
in (
LSeg (p,q))
proof
set p1 =
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|;
assume that
A1: (p
`1 )
= (q
`1 ) and
A2: (p
`2 )
<> (q
`2 );
A3: p
=
|[(p
`1 ), (p
`2 )]| & q
=
|[(p
`1 ), (q
`2 )]| by
A1,
EUCLID: 53;
A4: (p1
`1 )
= (p
`1 ) & (p1
`2 )
= (((p
`2 )
+ (q
`2 ))
/ 2) by
EUCLID: 52;
per cases by
A2,
XXREAL_0: 1;
suppose
A5: (p
`2 )
< (q
`2 );
then (p
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2) & (((p
`2 )
+ (q
`2 ))
/ 2)
<= (q
`2 ) by
XREAL_1: 226;
then p1
in { p2 : (p2
`1 )
= (p
`1 ) & (p
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 ) } by
A4;
hence thesis by
A3,
A5,
Th9;
end;
suppose
A6: (p
`2 )
> (q
`2 );
then (q
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2) & (((p
`2 )
+ (q
`2 ))
/ 2)
<= (p
`2 ) by
XREAL_1: 226;
then p1
in { p2 : (p2
`1 )
= (p
`1 ) & (q
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 ) } by
A4;
hence thesis by
A3,
A6,
Th9;
end;
end;
theorem ::
TOPREAL3:15
Th15: for i,j be
Nat holds f
=
<*p, p1, q*> & i
<>
0 & j
> (i
+ 1) implies (
LSeg (f,j))
=
{}
proof
let i,j be
Nat;
assume that
A1: f
=
<*p, p1, q*> and
A2: i
<>
0 and
A3: j
> (i
+ 1);
i
>= (
0
+ 1) by
A2,
NAT_1: 13;
then (1
+ i)
>= (1
+ 1) by
XREAL_1: 7;
then j
> 2 by
A3,
XXREAL_0: 2;
then j
>= (2
+ 1) by
NAT_1: 13;
then
A4: (j
+ 1)
> 3 by
NAT_1: 13;
(
len f)
= 3 by
A1,
FINSEQ_1: 45;
hence thesis by
A4,
TOPREAL1:def 3;
end;
theorem ::
TOPREAL3:16
f
=
<*p1, p2, p3*> implies (
L~ f)
= ((
LSeg (p1,p2))
\/ (
LSeg (p2,p3)))
proof
set M = { (
LSeg (f,i)) : 1
<= i & (i
+ 1)
<= (
len f) };
assume
A1: f
=
<*p1, p2, p3*>;
then
A2: (
len f)
= (2
+ 1) by
FINSEQ_1: 45;
A3: (f
/. 3)
= p3 by
A1,
FINSEQ_4: 18;
A4: (f
/. 1)
= p1 by
A1,
FINSEQ_4: 18;
A5: (f
/. 2)
= p2 by
A1,
FINSEQ_4: 18;
A6: (1
+ 1)
in (
dom f) by
A1,
Th1;
M
=
{(
LSeg (p1,p2)), (
LSeg (p2,p3))}
proof
thus M
c=
{(
LSeg (p1,p2)), (
LSeg (p2,p3))}
proof
let x be
object;
assume x
in M;
then
consider j such that
A7: x
= (
LSeg (f,j)) and
A8: 1
<= j and
A9: (j
+ 1)
<= (
len f);
j
<= 2 by
A2,
A9,
XREAL_1: 6;
then j
=
0 or ... or j
= 2;
per cases by
A8;
suppose j
= 1;
then x
= (
LSeg (p1,p2)) by
A4,
A5,
A7,
A9,
TOPREAL1:def 3;
hence thesis by
TARSKI:def 2;
end;
suppose j
= 2;
then x
= (
LSeg (p2,p3)) by
A2,
A5,
A3,
A7,
TOPREAL1:def 3;
hence thesis by
TARSKI:def 2;
end;
end;
let x be
object such that
A10: x
in
{(
LSeg (p1,p2)), (
LSeg (p2,p3))};
per cases by
A10,
TARSKI:def 2;
suppose
A11: x
= (
LSeg (p1,p2));
A12: (1
+ 1)
<= (
len f) by
A2;
x
= (
LSeg (f,1)) by
A2,
A4,
A5,
A6,
A11,
TOPREAL1:def 3;
hence thesis by
A12;
end;
suppose x
= (
LSeg (p2,p3));
then x
= (
LSeg (f,2)) by
A2,
A5,
A3,
TOPREAL1:def 3;
hence thesis by
A2;
end;
end;
hence thesis by
ZFMISC_1: 75;
end;
theorem ::
TOPREAL3:17
Th17: j
in (
dom (f
| i)) & (j
+ 1)
in (
dom (f
| i)) implies (
LSeg (f,j))
= (
LSeg ((f
| i),j))
proof
assume that
A1: j
in (
dom (f
| i)) and
A2: (j
+ 1)
in (
dom (f
| i));
A3: 1
<= j & (j
+ 1)
<= (
len (f
| i)) by
A1,
A2,
FINSEQ_3: 25;
set p1 = ((f
| i)
/. j), p2 = ((f
| i)
/. (j
+ 1));
A4: (f
| i)
= (f
| (
Seg i)) by
FINSEQ_1:def 15;
then j
in ((
dom f)
/\ (
Seg i)) by
A1,
RELAT_1: 61;
then j
in (
dom f) by
XBOOLE_0:def 4;
then
A5: 1
<= j by
FINSEQ_3: 25;
(j
+ 1)
in ((
dom f)
/\ (
Seg i)) by
A2,
A4,
RELAT_1: 61;
then (j
+ 1)
in (
dom f) by
XBOOLE_0:def 4;
then
A6: (j
+ 1)
<= (
len f) by
FINSEQ_3: 25;
p1
= (f
/. j) & p2
= (f
/. (j
+ 1)) by
A1,
A2,
FINSEQ_4: 70;
then (
LSeg (f,j))
= (
LSeg (p1,p2)) by
A5,
A6,
TOPREAL1:def 3;
hence thesis by
A3,
TOPREAL1:def 3;
end;
theorem ::
TOPREAL3:18
j
in (
dom f) & (j
+ 1)
in (
dom f) implies (
LSeg ((f
^ h),j))
= (
LSeg (f,j))
proof
assume that
A1: j
in (
dom f) and
A2: (j
+ 1)
in (
dom f);
A3: 1
<= j & (j
+ 1)
<= (
len f) by
A1,
A2,
FINSEQ_3: 25;
(
dom f)
c= (
dom (f
^ h)) by
FINSEQ_1: 26;
then
A4: (j
+ 1)
<= (
len (f
^ h)) by
A2,
FINSEQ_3: 25;
set p1 = (f
/. j), p2 = (f
/. (j
+ 1));
A5: 1
<= j by
A1,
FINSEQ_3: 25;
p1
= ((f
^ h)
/. j) & p2
= ((f
^ h)
/. (j
+ 1)) by
A1,
A2,
FINSEQ_4: 68;
then (
LSeg ((f
^ h),j))
= (
LSeg (p1,p2)) by
A5,
A4,
TOPREAL1:def 3;
hence thesis by
A3,
TOPREAL1:def 3;
end;
theorem ::
TOPREAL3:19
Th19: for f be
FinSequence of (
TOP-REAL n), i be
Nat holds (
LSeg (f,i))
c= (
L~ f)
proof
let f be
FinSequence of (
TOP-REAL n), i be
Nat;
let x be
object such that
A1: x
in (
LSeg (f,i));
now
per cases ;
case i
< 1;
hence contradiction by
A1,
TOPREAL1:def 3;
end;
case
A2: i
>= 1;
now
per cases ;
case (i
+ 1)
> (
len f);
hence contradiction by
A1,
TOPREAL1:def 3;
end;
case
A3: (i
+ 1)
<= (
len f);
set M = { (
LSeg (f,j)) : 1
<= j & (j
+ 1)
<= (
len f) };
(
LSeg (f,i))
in M by
A2,
A3;
hence thesis by
A1,
TARSKI:def 4;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
TOPREAL3:20
(
L~ (f
| i))
c= (
L~ f)
proof
set h = (f
| i), Mh = { (
LSeg (h,n)) : 1
<= n & (n
+ 1)
<= (
len h) }, Mf = { (
LSeg (f,m)) : 1
<= m & (m
+ 1)
<= (
len f) };
let x be
object;
A1: h
= (f
| (
Seg i)) by
FINSEQ_1:def 15;
A2: (
dom f)
= (
Seg (
len f)) by
FINSEQ_1:def 3;
assume
A3: x
in (
L~ h);
then
consider X be
set such that
A4: x
in X and
A5: X
in Mh by
TARSKI:def 4;
consider k such that
A6: X
= (
LSeg (h,k)) and
A7: 1
<= k and
A8: (k
+ 1)
<= (
len h) by
A5;
per cases ;
suppose
A9: i
in (
dom f);
A10: (
dom h)
= ((
dom f)
/\ (
Seg i)) by
A1,
RELAT_1: 61;
A11: i
in
NAT by
ORDINAL1:def 12;
A12: i
<= (
len f) by
A9,
FINSEQ_3: 25;
then (
Seg i)
c= (
dom f) by
A2,
FINSEQ_1: 5;
then (
dom h)
= (
Seg i) by
A10,
XBOOLE_1: 28;
then (
len h)
<= (
len f) by
A12,
A11,
FINSEQ_1:def 3;
then
A13: (k
+ 1)
<= (
len f) by
A8,
XXREAL_0: 2;
k
<= (k
+ 1) by
NAT_1: 12;
then k
<= (
len h) by
A8,
XXREAL_0: 2;
then
A14: k
in (
dom h) by
A7,
FINSEQ_3: 25;
1
<= (k
+ 1) by
NAT_1: 12;
then (k
+ 1)
in (
dom h) by
A8,
FINSEQ_3: 25;
then X
= (
LSeg (f,k)) by
A6,
A14,
Th17;
then X
in Mf by
A7,
A13;
hence thesis by
A4,
TARSKI:def 4;
end;
suppose
A15: not i
in (
dom f);
now
per cases by
A15,
FINSEQ_3: 25;
case i
< 1;
then i
< (
0
+ 1);
then i
<=
0 by
NAT_1: 13;
then (
Seg i)
=
{} ;
then (
dom h)
= ((
dom f)
/\
{} ) by
A1,
RELAT_1: 61;
then (
dom h)
=
{} ;
then (
Seg (
len h))
=
{} by
FINSEQ_1:def 3;
then (
len h)
=
0 ;
hence contradiction by
A3,
TOPREAL1: 22;
end;
case (
len f)
< i;
then (
Seg (
len f))
c= (
Seg i) by
FINSEQ_1: 5;
then (
dom f)
c= (
Seg i) by
FINSEQ_1:def 3;
then
A16: (
dom f)
= ((
dom f)
/\ (
Seg i)) by
XBOOLE_1: 28;
for x be
object st x
in (
dom h) holds (h
. x)
= (f
. x) by
A1,
FUNCT_1: 47;
then h
= f by
A1,
A16,
RELAT_1: 61;
hence thesis by
A4,
A5,
TARSKI:def 4;
end;
end;
hence thesis;
end;
end;
theorem ::
TOPREAL3:21
Th21: for p1,p2 be
Point of (
TOP-REAL N), u be
Point of (
Euclid N) st p1
in (
Ball (u,r)) & p2
in (
Ball (u,r)) holds (
LSeg (p1,p2))
c= (
Ball (u,r))
proof
let p1,p2 be
Point of (
TOP-REAL N), u be
Point of (
Euclid N);
assume that
A1: p1
in (
Ball (u,r)) and
A2: p2
in (
Ball (u,r));
reconsider p9 = p1 as
Point of (
Euclid N) by
A1;
A3: (
dist (p9,u))
< r by
A1,
METRIC_1: 11;
thus (
LSeg (p1,p2))
c= (
Ball (u,r))
proof
p2
in { u4 where u4 be
Point of (
Euclid N) : (
dist (u,u4))
< r } by
A2,
METRIC_1: 17;
then
A4: ex u4 be
Point of (
Euclid N) st u4
= p2 & (
dist (u,u4))
< r;
reconsider q29 = u as
Element of (
REAL N);
let a be
object;
reconsider q2 = q29 as
Point of (
TOP-REAL N) by
EUCLID: 22;
assume a
in (
LSeg (p1,p2));
then
consider lambda such that
A5: (((1
- lambda)
* p1)
+ (lambda
* p2))
= a and
A6:
0
<= lambda and
A7: lambda
<= 1;
A8: lambda
=
|.lambda.| by
A6,
ABSVALUE:def 1;
set p = (((1
- lambda)
* p1)
+ (lambda
* p2));
reconsider p9 = p, p19 = p1, p29 = p2 as
Element of (
REAL N) by
EUCLID: 22;
reconsider u5 = (((1
- lambda)
* p1)
+ (lambda
* p2)) as
Point of (
Euclid N) by
EUCLID: 22;
A9: ((
Pitag_dist N)
. (q29,p9))
=
|.(q29
- p9).| & ((
Pitag_dist N)
. (u,u5))
= (
dist (u,u5)) by
EUCLID:def 6,
METRIC_1:def 1;
((
Pitag_dist N)
. (q29,p29))
=
|.(q29
- p29).| by
EUCLID:def 6;
then
A10:
|.(q29
+ (
- p29)).|
< r by
A4,
METRIC_1:def 1;
A11:
0
<= (1
- lambda) by
A7,
XREAL_1: 48;
then
A12: (1
- lambda)
=
|.(1
- lambda).| by
ABSVALUE:def 1;
consider u3 be
Point of (
Euclid N) such that
A13: u3
= p1 and
A14: (
dist (u,u3))
< r by
A3;
A15: ((
Pitag_dist N)
. (q29,p19))
=
|.(q29
- p19).| by
EUCLID:def 6;
then
A16: (
dist (u,u3))
=
|.(q29
- p19).| by
A13,
METRIC_1:def 1;
(
|.(1
- lambda).|
*
|.(q29
+ (
- p19)).|)
< ((1
- lambda)
* r) & (
|.lambda.|
*
|.(q29
+ (
- p29)).|)
<= (lambda
* r) or (
|.(1
- lambda).|
*
|.(q29
+ (
- p19)).|)
<= ((1
- lambda)
* r) & (
|.lambda.|
*
|.(q29
+ (
- p29)).|)
< (lambda
* r)
proof
per cases by
A6;
suppose lambda
=
0 ;
hence thesis by
A13,
A14,
A15,
A12,
A8,
METRIC_1:def 1;
end;
suppose lambda
>
0 ;
hence thesis by
A14,
A16,
A10,
A11,
A12,
A8,
XREAL_1: 64,
XREAL_1: 68;
end;
end;
then
A17: ((
|.(1
- lambda).|
*
|.(q29
+ (
- p19)).|)
+ (
|.lambda.|
*
|.(q29
+ (
- p29)).|))
< (((1
- lambda)
* r)
+ (lambda
* r)) by
XREAL_1: 8;
(q29
- p19)
= (q2
- p1) by
EUCLID: 69;
then
A18: (q29
- p9)
= (q2
- p) & ((1
- lambda)
* (q29
- p19))
= ((1
- lambda)
* (q2
- p1)) by
EUCLID: 65,
EUCLID: 69;
(q29
- p29)
= (q2
- p2) by
EUCLID: 69;
then
A19: (lambda
* (q29
- p29))
= (lambda
* (q2
- p2)) by
EUCLID: 65;
(q2
- p)
= ((((1
- lambda)
+ lambda)
* q2)
- (((1
- lambda)
* p1)
+ (lambda
* p2))) by
RLVECT_1:def 8
.= ((((1
- lambda)
* q2)
+ (lambda
* q2))
- (((1
- lambda)
* p1)
+ (lambda
* p2))) by
RLVECT_1:def 6
.= ((((1
- lambda)
* q2)
+ (lambda
* q2))
+ (
- (((1
- lambda)
* p1)
+ (lambda
* p2))))
.= ((((1
- lambda)
* q2)
+ (lambda
* q2))
+ ((
- ((1
- lambda)
* p1))
- (lambda
* p2))) by
RLVECT_1: 30
.= (((((1
- lambda)
* q2)
+ (lambda
* q2))
+ (
- ((1
- lambda)
* p1)))
+ (
- (lambda
* p2))) by
RLVECT_1:def 3
.= (((((1
- lambda)
* q2)
+ (
- ((1
- lambda)
* p1)))
+ (lambda
* q2))
+ (
- (lambda
* p2))) by
RLVECT_1:def 3
.= (((((1
- lambda)
* q2)
+ ((1
- lambda)
* (
- p1)))
+ (lambda
* q2))
+ (
- (lambda
* p2))) by
RLVECT_1: 25
.= ((((1
- lambda)
* (q2
+ (
- p1)))
+ (lambda
* q2))
+ (
- (lambda
* p2))) by
RLVECT_1:def 5
.= (((1
- lambda)
* (q2
+ (
- p1)))
+ ((lambda
* q2)
+ (
- (lambda
* p2)))) by
RLVECT_1:def 3
.= (((1
- lambda)
* (q2
+ (
- p1)))
+ ((lambda
* q2)
+ (lambda
* (
- p2)))) by
RLVECT_1: 25
.= (((1
- lambda)
* (q2
- p1))
+ (lambda
* (q2
- p2))) by
RLVECT_1:def 5;
then (q29
- p9)
= (((1
- lambda)
* (q29
- p19))
+ (lambda
* (q29
- p29))) by
A18,
A19,
EUCLID: 64;
then
A20:
|.(q29
- p9).|
<= (
|.((1
- lambda)
* (q29
- p19)).|
+
|.(lambda
* (q29
- p29)).|) by
EUCLID: 12;
(
|.((1
- lambda)
* (q29
+ (
- p19))).|
+
|.(lambda
* (q29
+ (
- p29))).|)
= ((
|.(1
- lambda).|
*
|.(q29
+ (
- p19)).|)
+
|.(lambda
* (q29
+ (
- p29))).|) by
EUCLID: 11
.= ((
|.(1
- lambda).|
*
|.(q29
+ (
- p19)).|)
+ (
|.lambda.|
*
|.(q29
+ (
- p29)).|)) by
EUCLID: 11;
then
|.(q29
- p9).|
< r by
A20,
A17,
XXREAL_0: 2;
then a
in { u6 where u6 be
Element of (
Euclid N) : (
dist (u,u6))
< r } by
A5,
A9;
hence thesis by
METRIC_1: 17;
end;
end;
theorem ::
TOPREAL3:22
u
= p1 & p1
=
|[r1, s1]| & p2
=
|[r2, s2]| & p
=
|[r2, s1]| & p2
in (
Ball (u,r)) implies p
in (
Ball (u,r))
proof
assume that
A1: u
= p1 and
A2: p1
=
|[r1, s1]| and
A3: p2
=
|[r2, s2]| and
A4: p
=
|[r2, s1]| and
A5: p2
in (
Ball (u,r));
reconsider p19 = p1, p29 = p2, p9 = p as
Element of (
REAL 2) by
EUCLID: 22;
reconsider r1, s1, r2, s2 as
Real;
A6: ((
Pitag_dist 2)
. (p19,p29))
=
|.(p19
- p29).| by
EUCLID:def 6;
p2
in { u6 where u6 be
Element of (
Euclid 2) : (
dist (u,u6))
< r } by
A5,
METRIC_1: 17;
then ex u5 st u5
= p2 & (
dist (u,u5))
< r;
then
A7:
|.(p19
- p29).|
< r by
A1,
A6,
METRIC_1:def 1;
reconsider up = p as
Point of (
Euclid 2) by
EUCLID: 22;
((
Pitag_dist 2)
. (p19,p9))
=
|.(p19
- p9).| by
EUCLID:def 6;
then
A8: (
dist (u,up))
=
|.(p19
- p9).| by
A1,
METRIC_1:def 1;
((s1
- s2)
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrreal
. (s1
- s2))
>=
0 by
RVSUM_1:def 2;
then
A9: ((
sqrreal
. (r1
- r2))
+
0 )
<= ((
sqrreal
. (r1
- r2))
+ (
sqrreal
. (s1
- s2))) by
XREAL_1: 7;
(p19
- p9)
= (p1
- p) by
EUCLID: 69;
then (p19
- p9)
=
<*(r1
- r2), (s1
- s1)*> by
A2,
A4,
Th5;
then (
sqr (p19
- p9))
=
<*(
sqrreal
. (r1
- r2)), (
sqrreal
. (s1
- s1))*> by
FINSEQ_2: 36;
then
A10: (
Sum (
sqr (p19
- p9)))
= ((
sqrreal
. (r1
- r2))
+ (
sqrreal
.
0 )) by
RVSUM_1: 77
.= ((
sqrreal
. (r1
- r2))
+ (
0
^2 )) by
RVSUM_1:def 2
.= (
sqrreal
. (r1
- r2));
(p19
- p29)
= (p1
- p2) by
EUCLID: 69;
then (p19
- p29)
=
<*(r1
- r2), (s1
- s2)*> by
A2,
A3,
Th5;
then (
sqr (p19
- p29))
=
<*(
sqrreal
. (r1
- r2)), (
sqrreal
. (s1
- s2))*> by
FINSEQ_2: 36;
then
A11:
|.(p19
- p29).|
= (
sqrt ((
sqrreal
. (r1
- r2))
+ (
sqrreal
. (s1
- s2)))) by
RVSUM_1: 77;
((r1
- r2)
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrreal
. (r1
- r2))
>=
0 by
RVSUM_1:def 2;
then
|.(p19
- p9).|
<= (
sqrt ((
sqrreal
. (r1
- r2))
+ (
sqrreal
. (s1
- s2)))) by
A10,
A9,
SQUARE_1: 26;
then
|.(p19
- p9).|
< r by
A7,
A11,
XXREAL_0: 2;
then p
in { u6 where u6 be
Element of (
Euclid 2) : (
dist (u,u6))
< r } by
A8;
hence thesis by
METRIC_1: 17;
end;
theorem ::
TOPREAL3:23
|[s, r1]|
in (
Ball (u,r)) &
|[s, s1]|
in (
Ball (u,r)) implies
|[s, ((r1
+ s1)
/ 2)]|
in (
Ball (u,r))
proof
set p =
|[s, r1]|, q =
|[s, s1]|, p3 =
|[s, ((r1
+ s1)
/ 2)]|;
assume
|[s, r1]|
in (
Ball (u,r)) &
|[s, s1]|
in (
Ball (u,r));
then
A1: (
LSeg (
|[s, r1]|,
|[s, s1]|))
c= (
Ball (u,r)) by
Th21;
(p
`2 )
= r1 & (q
`2 )
= s1 by
EUCLID: 52;
then
A2: (p3
`2 )
= (((1
- (1
/ 2))
* (p
`2 ))
+ ((1
/ 2)
* (q
`2 ))) by
EUCLID: 52
.= ((((1
- (1
/ 2))
* p)
`2 )
+ ((1
/ 2)
* (q
`2 ))) by
Th4
.= ((((1
- (1
/ 2))
* p)
`2 )
+ (((1
/ 2)
* q)
`2 )) by
Th4
.= ((((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q))
`2 ) by
Th2;
(p
`1 )
= s & (q
`1 )
= s by
EUCLID: 52;
then (p3
`1 )
= (((1
- (1
/ 2))
* (p
`1 ))
+ ((1
/ 2)
* (q
`1 ))) by
EUCLID: 52
.= ((((1
- (1
/ 2))
* p)
`1 )
+ ((1
/ 2)
* (q
`1 ))) by
Th4
.= ((((1
- (1
/ 2))
* p)
`1 )
+ (((1
/ 2)
* q)
`1 )) by
Th4
.= ((((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q))
`1 ) by
Th2;
then p3
= (((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q)) by
A2,
Th6;
then p3
in { (((1
- lambda)
* p)
+ (lambda
* q)) :
0
<= lambda & lambda
<= 1 };
hence thesis by
A1;
end;
theorem ::
TOPREAL3:24
|[r1, s]|
in (
Ball (u,r)) &
|[s1, s]|
in (
Ball (u,r)) implies
|[((r1
+ s1)
/ 2), s]|
in (
Ball (u,r))
proof
set p =
|[r1, s]|, q =
|[s1, s]|, p3 =
|[((r1
+ s1)
/ 2), s]|;
assume
|[r1, s]|
in (
Ball (u,r)) &
|[s1, s]|
in (
Ball (u,r));
then
A1: (
LSeg (
|[r1, s]|,
|[s1, s]|))
c= (
Ball (u,r)) by
Th21;
(p
`1 )
= r1 & (q
`1 )
= s1 by
EUCLID: 52;
then
A2: (p3
`1 )
= (((1
- (1
/ 2))
* (p
`1 ))
+ ((1
/ 2)
* (q
`1 ))) by
EUCLID: 52
.= ((((1
- (1
/ 2))
* p)
`1 )
+ ((1
/ 2)
* (q
`1 ))) by
Th4
.= ((((1
- (1
/ 2))
* p)
`1 )
+ (((1
/ 2)
* q)
`1 )) by
Th4
.= ((((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q))
`1 ) by
Th2;
(p
`2 )
= s & (q
`2 )
= s by
EUCLID: 52;
then (p3
`2 )
= (((1
- (1
/ 2))
* (p
`2 ))
+ ((1
/ 2)
* (q
`2 ))) by
EUCLID: 52
.= ((((1
- (1
/ 2))
* p)
`2 )
+ ((1
/ 2)
* (q
`2 ))) by
Th4
.= ((((1
- (1
/ 2))
* p)
`2 )
+ (((1
/ 2)
* q)
`2 )) by
Th4
.= ((((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q))
`2 ) by
Th2;
then p3
= (((1
- (1
/ 2))
* p)
+ ((1
/ 2)
* q)) by
A2,
Th6;
then p3
in { (((1
- lambda)
* p)
+ (lambda
* q)) :
0
<= lambda & lambda
<= 1 };
hence thesis by
A1;
end;
theorem ::
TOPREAL3:25
|[r1, r2]|
in (
Ball (u,r)) &
|[s1, s2]|
in (
Ball (u,r)) implies
|[r1, s2]|
in (
Ball (u,r)) or
|[s1, r2]|
in (
Ball (u,r))
proof
assume that
A1:
|[r1, r2]|
in (
Ball (u,r)) and
A2:
|[s1, s2]|
in (
Ball (u,r));
A3: r
>
0 by
A1,
TBSP_1: 12;
per cases ;
suppose
|[r1, s2]|
in (
Ball (u,r));
hence thesis;
end;
suppose
A4: not
|[r1, s2]|
in (
Ball (u,r));
reconsider p = u as
Point of (
TOP-REAL 2) by
EUCLID: 22;
set p1 =
|[r1, s2]|, p2 =
|[s1, r2]|, p3 =
|[s1, s2]|, p4 =
|[r1, r2]|;
reconsider u1 = p1, u2 = p2, u3 = p3, u4 = p4 as
Point of (
Euclid 2) by
EUCLID: 22;
set a = ((((p
`1 )
- (p1
`1 ))
^2 )
+ (((p
`2 )
- (p1
`2 ))
^2 )), b = ((((p
`1 )
- (p4
`1 ))
^2 )
+ (((p
`2 )
- (p4
`2 ))
^2 )), c = ((((p
`1 )
- (p3
`1 ))
^2 )
+ (((p
`2 )
- (p3
`2 ))
^2 )), d = ((((p
`1 )
- (p2
`1 ))
^2 )
+ (((p
`2 )
- (p2
`2 ))
^2 ));
((
Pitag_dist 2)
. (u,u1))
= (
dist (u,u1)) & r
<= (
dist (u,u1)) by
A4,
METRIC_1: 11,
METRIC_1:def 1;
then r
<= (
sqrt a) by
Th7;
then
A5: (r
* r)
<= ((
sqrt a)
^2 ) by
A3,
XREAL_1: 66;
(((p
`1 )
- (p1
`1 ))
^2 )
>=
0 & (((p
`2 )
- (p1
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then
A6: (r
^2 )
<= a by
A5,
SQUARE_1:def 2;
A7: (p2
`1 )
= s1 & (p2
`2 )
= r2 by
EUCLID: 52;
A8: (p4
`1 )
= r1 & (p4
`2 )
= r2 by
EUCLID: 52;
A9: (p3
`1 )
= s1 & (p3
`2 )
= s2 by
EUCLID: 52;
((
Pitag_dist 2)
. (u,u3))
= (
dist (u,u3)) & (
dist (u,u3))
< r by
A2,
METRIC_1: 11,
METRIC_1:def 1;
then
A10: (
sqrt c)
< r by
Th7;
A11: (((p
`1 )
- (p3
`1 ))
^2 )
>=
0 & (((p
`2 )
- (p3
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then
0
<= (
sqrt c) by
SQUARE_1:def 2;
then ((
sqrt c)
^2 )
< (r
* r) by
A10,
XREAL_1: 96;
then
A12: c
< (r
* r) by
A11,
SQUARE_1:def 2;
((
Pitag_dist 2)
. (u,u4))
= (
dist (u,u4)) & (
dist (u,u4))
< r by
A1,
METRIC_1: 11,
METRIC_1:def 1;
then
A13: (
sqrt b)
< r by
Th7;
(p1
`1 )
= r1 & (p1
`2 )
= s2 by
EUCLID: 52;
then (c
+ b)
= (a
+ d) by
A7,
A9,
A8;
then
A14: ((r
^2 )
+ d)
<= (c
+ b) by
A6,
XREAL_1: 6;
A15: (((p
`1 )
- (p4
`1 ))
^2 )
>=
0 & (((p
`2 )
- (p4
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then
0
<= (
sqrt b) by
SQUARE_1:def 2;
then ((
sqrt b)
^2 )
< (r
* r) by
A13,
XREAL_1: 96;
then b
< (r
^2 ) by
A15,
SQUARE_1:def 2;
then (c
+ b)
< ((r
^2 )
+ (r
^2 )) by
A12,
XREAL_1: 8;
then ((r
^2 )
+ d)
< ((r
^2 )
+ (r
^2 )) by
A14,
XXREAL_0: 2;
then
A16: d
< (((r
^2 )
+ (r
^2 ))
- (r
^2 )) by
XREAL_1: 20;
(((p
`1 )
- (p2
`1 ))
^2 )
>=
0 & (((p
`2 )
- (p2
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt d)
< (
sqrt (r
^2 )) by
A16,
SQUARE_1: 27;
then
A17: (
sqrt d)
< r by
A3,
SQUARE_1: 22;
(
dist (u,u2))
= ((
Pitag_dist 2)
. (u,u2)) by
METRIC_1:def 1
.= (
sqrt d) by
Th7;
hence thesis by
A17,
METRIC_1: 11;
end;
end;
theorem ::
TOPREAL3:26
not (f
/. 1)
in (
Ball (u,r)) & 1
<= m & m
<= ((
len f)
- 1) & (for i st 1
<= i & i
<= ((
len f)
- 1) & ((
LSeg (f,i))
/\ (
Ball (u,r)))
<>
{} holds m
<= i) implies not (f
/. m)
in (
Ball (u,r))
proof
assume that
A1: not (f
/. 1)
in (
Ball (u,r)) and
A2: 1
<= m and
A3: m
<= ((
len f)
- 1) and
A4: for i st 1
<= i & i
<= ((
len f)
- 1) & ((
LSeg (f,i))
/\ (
Ball (u,r)))
<>
{} holds m
<= i;
assume
A5: (f
/. m)
in (
Ball (u,r));
per cases by
A2,
XXREAL_0: 1;
suppose 1
= m;
hence contradiction by
A1,
A5;
end;
suppose
A6: 1
< m;
reconsider k = (m
- 1) as
Element of
NAT by
A6,
INT_1: 5;
(1
+ 1)
<= m by
A6,
NAT_1: 13;
then
A7: 1
<= (m
- 1) by
XREAL_1: 19;
(m
- 1)
<= m by
XREAL_1: 43;
then
A8: k
<= ((
len f)
- 1) by
A3,
XXREAL_0: 2;
then (k
+ 1)
<= (
len f) by
XREAL_1: 19;
then (f
/. (k
+ 1))
in (
LSeg (f,k)) by
A7,
TOPREAL1: 21;
then ((
LSeg (f,k))
/\ (
Ball (u,r)))
<>
{} by
A5,
XBOOLE_0:def 4;
then m
<= k by
A4,
A7,
A8;
then (m
+ 1)
<= m by
XREAL_1: 19;
hence contradiction by
NAT_1: 13;
end;
end;
theorem ::
TOPREAL3:27
for q, p2, p st (q
`2 )
= (p2
`2 ) & (p
`2 )
<> (p2
`2 ) holds (((
LSeg (p2,
|[(p2
`1 ), (p
`2 )]|))
\/ (
LSeg (
|[(p2
`1 ), (p
`2 )]|,p)))
/\ (
LSeg (q,p2)))
=
{p2}
proof
let q, p2, p such that
A1: (q
`2 )
= (p2
`2 ) and
A2: (p
`2 )
<> (p2
`2 );
set p3 =
|[(p2
`1 ), (p
`2 )]|;
set l23 = (
LSeg (p2,p3)), l3 = (
LSeg (p3,p)), l = (
LSeg (q,p2));
A3: (l3
/\ l)
=
{}
proof
set x = the
Element of (l3
/\ l);
assume
A4: (l3
/\ l)
<>
{} ;
then x
in l3 by
XBOOLE_0:def 4;
then
consider s1 be
Real such that
A5: x
= (((1
- s1)
* p3)
+ (s1
* p)) and
0
<= s1 and s1
<= 1;
x
in l by
A4,
XBOOLE_0:def 4;
then
consider s2 be
Real such that
A6: x
= (((1
- s2)
* q)
+ (s2
* p2)) and
0
<= s2 and s2
<= 1;
A7: ((((1
- s1)
* p3)
+ (s1
* p))
`2 )
= ((((1
- s1)
* p3)
`2 )
+ ((s1
* p)
`2 )) by
Th2
.= (((1
- s1)
* (p3
`2 ))
+ ((s1
* p)
`2 )) by
Th4
.= (((1
- s1)
* (p3
`2 ))
+ (s1
* (p
`2 ))) by
Th4
.= (((1
- s1)
* (p
`2 ))
+ (s1
* (p
`2 ))) by
EUCLID: 52
.= (p
`2 );
((((1
- s2)
* q)
+ (s2
* p2))
`2 )
= ((((1
- s2)
* q)
`2 )
+ ((s2
* p2)
`2 )) by
Th2
.= (((1
- s2)
* (q
`2 ))
+ ((s2
* p2)
`2 )) by
Th4
.= (((1
- s2)
* (q
`2 ))
+ (s2
* (p2
`2 ))) by
Th4
.= (p2
`2 ) by
A1;
hence contradiction by
A2,
A5,
A7,
A6;
end;
A8: (l23
/\ l)
=
{p2}
proof
thus (l23
/\ l)
c=
{p2}
proof
let x be
object;
assume
A9: x
in (l23
/\ l);
then x
in l23 by
XBOOLE_0:def 4;
then
consider s1 be
Real such that
A10: (((1
- s1)
* p2)
+ (s1
* p3))
= x and
0
<= s1 and s1
<= 1;
x
in l by
A9,
XBOOLE_0:def 4;
then
consider s2 be
Real such that
A11: (((1
- s2)
* q)
+ (s2
* p2))
= x and
0
<= s2 and s2
<= 1;
A12: ((((1
- s2)
* q)
+ (s2
* p2))
`2 )
= ((((1
- s2)
* q)
`2 )
+ ((s2
* p2)
`2 )) by
Th2
.= (((1
- s2)
* (q
`2 ))
+ ((s2
* p2)
`2 )) by
Th4
.= (((1
- s2)
* (q
`2 ))
+ (s2
* (p2
`2 ))) by
Th4
.= (p2
`2 ) by
A1;
set t = (((1
- s1)
* p2)
+ (s1
* p3));
A13: (t
`1 )
= ((((1
- s1)
* p2)
`1 )
+ ((s1
* p3)
`1 )) by
Th2
.= (((1
- s1)
* (p2
`1 ))
+ ((s1
* p3)
`1 )) by
Th4
.= (((1
- s1)
* (p2
`1 ))
+ (s1
* (p3
`1 ))) by
Th4
.= (((1
- s1)
* (p2
`1 ))
+ (s1
* (p2
`1 ))) by
EUCLID: 52
.= (p2
`1 );
t
=
|[(t
`1 ), (t
`2 )]| by
EUCLID: 53
.= p2 by
A10,
A13,
A11,
A12,
EUCLID: 53;
hence thesis by
A10,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p2};
then
A14: x
= p2 by
TARSKI:def 1;
p2
in l23 & p2
in l by
RLTOPSP1: 68;
hence thesis by
A14,
XBOOLE_0:def 4;
end;
thus ((l23
\/ l3)
/\ l)
= ((l23
/\ l)
\/ (l3
/\ l)) by
XBOOLE_1: 23
.=
{p2} by
A8,
A3;
end;
theorem ::
TOPREAL3:28
for q, p2, p st (q
`1 )
= (p2
`1 ) & (p
`1 )
<> (p2
`1 ) holds (((
LSeg (p2,
|[(p
`1 ), (p2
`2 )]|))
\/ (
LSeg (
|[(p
`1 ), (p2
`2 )]|,p)))
/\ (
LSeg (q,p2)))
=
{p2}
proof
let q, p2, p such that
A1: (q
`1 )
= (p2
`1 ) and
A2: (p
`1 )
<> (p2
`1 );
set p3 =
|[(p
`1 ), (p2
`2 )]|;
set l23 = (
LSeg (p2,p3)), l3 = (
LSeg (p3,p)), l = (
LSeg (q,p2));
A3: (l3
/\ l)
=
{}
proof
set x = the
Element of (l3
/\ l);
assume
A4: (l3
/\ l)
<>
{} ;
then x
in l3 by
XBOOLE_0:def 4;
then
consider d1 be
Real such that
A5: x
= (((1
- d1)
* p3)
+ (d1
* p)) and
0
<= d1 and d1
<= 1;
x
in l by
A4,
XBOOLE_0:def 4;
then
consider d2 be
Real such that
A6: x
= (((1
- d2)
* q)
+ (d2
* p2)) and
0
<= d2 and d2
<= 1;
A7: ((((1
- d1)
* p3)
+ (d1
* p))
`1 )
= ((((1
- d1)
* p3)
`1 )
+ ((d1
* p)
`1 )) by
Th2
.= (((1
- d1)
* (p3
`1 ))
+ ((d1
* p)
`1 )) by
Th4
.= (((1
- d1)
* (p3
`1 ))
+ (d1
* (p
`1 ))) by
Th4
.= (((1
- d1)
* (p
`1 ))
+ (d1
* (p
`1 ))) by
EUCLID: 52
.= (p
`1 );
((((1
- d2)
* q)
+ (d2
* p2))
`1 )
= ((((1
- d2)
* q)
`1 )
+ ((d2
* p2)
`1 )) by
Th2
.= (((1
- d2)
* (q
`1 ))
+ ((d2
* p2)
`1 )) by
Th4
.= (((1
- d2)
* (q
`1 ))
+ (d2
* (p2
`1 ))) by
Th4
.= (p2
`1 ) by
A1;
hence contradiction by
A2,
A5,
A7,
A6;
end;
A8: (l23
/\ l)
=
{p2}
proof
thus (l23
/\ l)
c=
{p2}
proof
let x be
object;
assume
A9: x
in (l23
/\ l);
then x
in l23 by
XBOOLE_0:def 4;
then
consider s1 be
Real such that
A10: x
= (((1
- s1)
* p2)
+ (s1
* p3)) and
0
<= s1 and s1
<= 1;
x
in l by
A9,
XBOOLE_0:def 4;
then
consider s2 be
Real such that
A11: x
= (((1
- s2)
* q)
+ (s2
* p2)) and
0
<= s2 and s2
<= 1;
A12: ((((1
- s2)
* q)
+ (s2
* p2))
`1 )
= ((((1
- s2)
* q)
`1 )
+ ((s2
* p2)
`1 )) by
Th2
.= (((1
- s2)
* (q
`1 ))
+ ((s2
* p2)
`1 )) by
Th4
.= (((1
- s2)
* (q
`1 ))
+ (s2
* (p2
`1 ))) by
Th4
.= (p2
`1 ) by
A1;
set t = (((1
- s1)
* p2)
+ (s1
* p3));
A13: (t
`2 )
= ((((1
- s1)
* p2)
`2 )
+ ((s1
* p3)
`2 )) by
Th2
.= (((1
- s1)
* (p2
`2 ))
+ ((s1
* p3)
`2 )) by
Th4
.= (((1
- s1)
* (p2
`2 ))
+ (s1
* (p3
`2 ))) by
Th4
.= (((1
- s1)
* (p2
`2 ))
+ (s1
* (p2
`2 ))) by
EUCLID: 52
.= (p2
`2 );
t
=
|[(t
`1 ), (t
`2 )]| by
EUCLID: 53
.= p2 by
A10,
A13,
A11,
A12,
EUCLID: 53;
hence thesis by
A10,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p2};
then
A14: x
= p2 by
TARSKI:def 1;
p2
in l23 & p2
in l by
RLTOPSP1: 68;
hence thesis by
A14,
XBOOLE_0:def 4;
end;
thus ((l23
\/ l3)
/\ l)
= ((l23
/\ l)
\/ (l3
/\ l)) by
XBOOLE_1: 23
.=
{p2} by
A8,
A3;
end;
theorem ::
TOPREAL3:29
Th29: ((
LSeg (p,
|[(p
`1 ), (q
`2 )]|))
/\ (
LSeg (
|[(p
`1 ), (q
`2 )]|,q)))
=
{
|[(p
`1 ), (q
`2 )]|}
proof
set p3 =
|[(p
`1 ), (q
`2 )]|;
set l23 = (
LSeg (p,p3)), l = (
LSeg (p3,q));
thus (l23
/\ l)
c=
{p3}
proof
let x be
object;
assume
A1: x
in (l23
/\ l);
then x
in l23 by
XBOOLE_0:def 4;
then
consider d1 be
Real such that
A2: x
= (((1
- d1)
* p)
+ (d1
* p3)) and
0
<= d1 and d1
<= 1;
x
in l by
A1,
XBOOLE_0:def 4;
then
consider d2 be
Real such that
A3: x
= (((1
- d2)
* p3)
+ (d2
* q)) and
0
<= d2 and d2
<= 1;
set t = (((1
- d1)
* p)
+ (d1
* p3));
A4: (t
`1 )
= ((((1
- d1)
* p)
`1 )
+ ((d1
* p3)
`1 )) by
Th2
.= (((1
- d1)
* (p
`1 ))
+ ((d1
* p3)
`1 )) by
Th4
.= (((1
- d1)
* (p
`1 ))
+ (d1
* (p3
`1 ))) by
Th4
.= (((1
- d1)
* (p
`1 ))
+ (d1
* (p
`1 ))) by
EUCLID: 52
.= (p3
`1 ) by
EUCLID: 52;
(t
`2 )
= ((((1
- d2)
* p3)
`2 )
+ ((d2
* q)
`2 )) by
A2,
A3,
Th2
.= (((1
- d2)
* (p3
`2 ))
+ ((d2
* q)
`2 )) by
Th4
.= (((1
- d2)
* (p3
`2 ))
+ (d2
* (q
`2 ))) by
Th4
.= (((1
- d2)
* (q
`2 ))
+ (d2
* (q
`2 ))) by
EUCLID: 52
.= (p3
`2 ) by
EUCLID: 52;
then t
= p3 by
A4,
Th6;
hence thesis by
A2,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p3};
then
A5: x
= p3 by
TARSKI:def 1;
p3
in l23 & p3
in l by
RLTOPSP1: 68;
hence thesis by
A5,
XBOOLE_0:def 4;
end;
theorem ::
TOPREAL3:30
Th30: ((
LSeg (p,
|[(q
`1 ), (p
`2 )]|))
/\ (
LSeg (
|[(q
`1 ), (p
`2 )]|,q)))
=
{
|[(q
`1 ), (p
`2 )]|}
proof
set p3 =
|[(q
`1 ), (p
`2 )]|;
set l23 = (
LSeg (p,p3)), l = (
LSeg (p3,q));
thus (l23
/\ l)
c=
{p3}
proof
let x be
object;
assume
A1: x
in (l23
/\ l);
then x
in l23 by
XBOOLE_0:def 4;
then
consider d1 be
Real such that
A2: x
= (((1
- d1)
* p)
+ (d1
* p3)) and
0
<= d1 and d1
<= 1;
x
in l by
A1,
XBOOLE_0:def 4;
then
consider d2 be
Real such that
A3: x
= (((1
- d2)
* p3)
+ (d2
* q)) and
0
<= d2 and d2
<= 1;
set t = (((1
- d1)
* p)
+ (d1
* p3));
A4: (t
`2 )
= ((((1
- d1)
* p)
`2 )
+ ((d1
* p3)
`2 )) by
Th2
.= (((1
- d1)
* (p
`2 ))
+ ((d1
* p3)
`2 )) by
Th4
.= (((1
- d1)
* (p
`2 ))
+ (d1
* (p3
`2 ))) by
Th4
.= (((1
- d1)
* (p3
`2 ))
+ (d1
* (p3
`2 ))) by
EUCLID: 52
.= (p3
`2 );
(t
`1 )
= ((((1
- d2)
* p3)
`1 )
+ ((d2
* q)
`1 )) by
A2,
A3,
Th2
.= (((1
- d2)
* (p3
`1 ))
+ ((d2
* q)
`1 )) by
Th4
.= (((1
- d2)
* (p3
`1 ))
+ (d2
* (q
`1 ))) by
Th4
.= (((1
- d2)
* (p3
`1 ))
+ (d2
* (p3
`1 ))) by
EUCLID: 52
.= (p3
`1 );
then t
= p3 by
A4,
Th6;
hence thesis by
A2,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p3};
then
A5: x
= p3 by
TARSKI:def 1;
p3
in l23 & p3
in l by
RLTOPSP1: 68;
hence thesis by
A5,
XBOOLE_0:def 4;
end;
theorem ::
TOPREAL3:31
Th31: (p
`1 )
= (q
`1 ) & (p
`2 )
<> (q
`2 ) implies ((
LSeg (p,
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|))
/\ (
LSeg (
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|,q)))
=
{
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|}
proof
assume that
A1: (p
`1 )
= (q
`1 ) and
A2: (p
`2 )
<> (q
`2 );
set p3 =
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|;
set l23 = (
LSeg (p,p3)), l = (
LSeg (p3,q));
thus (l23
/\ l)
c=
{p3}
proof
let x be
object;
A3: l23
= (
LSeg (
|[(p
`1 ), (p
`2 )]|,
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|)) by
EUCLID: 53;
assume
A4: x
in (l23
/\ l);
then
A5: x
in l by
XBOOLE_0:def 4;
A6: l
= (
LSeg (
|[(q
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|,
|[(q
`1 ), (q
`2 )]|)) by
A1,
EUCLID: 53;
A7: x
in l23 by
A4,
XBOOLE_0:def 4;
now
per cases by
A2,
XXREAL_0: 1;
suppose
A8: (p
`2 )
< (q
`2 );
then (p
`2 )
< (((p
`2 )
+ (q
`2 ))
/ 2) by
XREAL_1: 226;
then x
in { p1 : (p1
`1 )
= (p
`1 ) & (p
`2 )
<= (p1
`2 ) & (p1
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2) } by
A7,
A3,
Th9;
then
consider t1 be
Point of (
TOP-REAL 2) such that
A9: t1
= x and
A10: (t1
`1 )
= (p
`1 ) and (p
`2 )
<= (t1
`2 ) and
A11: (t1
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2);
A12: (t1
`2 )
<= (p3
`2 ) by
A11,
EUCLID: 52;
(((p
`2 )
+ (q
`2 ))
/ 2)
< (q
`2 ) by
A8,
XREAL_1: 226;
then x
in { p2 : (p2
`1 )
= (q
`1 ) & (((p
`2 )
+ (q
`2 ))
/ 2)
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 ) } by
A5,
A6,
Th9;
then ex t2 be
Point of (
TOP-REAL 2) st t2
= x & (t2
`1 )
= (q
`1 ) & (((p
`2 )
+ (q
`2 ))
/ 2)
<= (t2
`2 ) & (t2
`2 )
<= (q
`2 );
then (t1
`2 )
>= (p3
`2 ) by
A9,
EUCLID: 52;
then
A13: (t1
`2 )
= (p3
`2 ) by
A12,
XXREAL_0: 1;
(t1
`1 )
= (p3
`1 ) by
A10,
EUCLID: 52;
hence x
= p3 by
A9,
A13,
Th6;
end;
suppose
A14: (p
`2 )
> (q
`2 );
then (p
`2 )
> (((p
`2 )
+ (q
`2 ))
/ 2) by
XREAL_1: 226;
then x
in { p11 : (p11
`1 )
= (p
`1 ) & (((p
`2 )
+ (q
`2 ))
/ 2)
<= (p11
`2 ) & (p11
`2 )
<= (p
`2 ) } by
A7,
A3,
Th9;
then
consider t1 be
Point of (
TOP-REAL 2) such that
A15: t1
= x and
A16: (t1
`1 )
= (p
`1 ) and
A17: (((p
`2 )
+ (q
`2 ))
/ 2)
<= (t1
`2 ) and (t1
`2 )
<= (p
`2 );
A18: (p3
`2 )
<= (t1
`2 ) by
A17,
EUCLID: 52;
(q
`2 )
< (((p
`2 )
+ (q
`2 ))
/ 2) by
A14,
XREAL_1: 226;
then x
in { p22 : (p22
`1 )
= (q
`1 ) & (q
`2 )
<= (p22
`2 ) & (p22
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2) } by
A5,
A6,
Th9;
then ex t2 be
Point of (
TOP-REAL 2) st t2
= x & (t2
`1 )
= (q
`1 ) & (q
`2 )
<= (t2
`2 ) & (t2
`2 )
<= (((p
`2 )
+ (q
`2 ))
/ 2);
then (t1
`2 )
<= (p3
`2 ) by
A15,
EUCLID: 52;
then
A19: (t1
`2 )
= (p3
`2 ) by
A18,
XXREAL_0: 1;
(t1
`1 )
= (p3
`1 ) by
A16,
EUCLID: 52;
hence x
= p3 by
A15,
A19,
Th6;
end;
end;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p3};
then
A20: x
= p3 by
TARSKI:def 1;
p3
in l23 & p3
in l by
RLTOPSP1: 68;
hence thesis by
A20,
XBOOLE_0:def 4;
end;
theorem ::
TOPREAL3:32
Th32: (p
`1 )
<> (q
`1 ) & (p
`2 )
= (q
`2 ) implies ((
LSeg (p,
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|))
/\ (
LSeg (
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|,q)))
=
{
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|}
proof
assume that
A1: (p
`1 )
<> (q
`1 ) and
A2: (p
`2 )
= (q
`2 );
set p3 =
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|;
set l23 = (
LSeg (p,p3)), l = (
LSeg (p3,q));
thus (l23
/\ l)
c=
{p3}
proof
let x be
object;
A3: l23
= (
LSeg (
|[(p
`1 ), (p
`2 )]|,
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|)) by
EUCLID: 53;
assume
A4: x
in (l23
/\ l);
then
A5: x
in l by
XBOOLE_0:def 4;
A6: l
= (
LSeg (
|[(((p
`1 )
+ (q
`1 ))
/ 2), (q
`2 )]|,
|[(q
`1 ), (q
`2 )]|)) by
A2,
EUCLID: 53;
A7: x
in l23 by
A4,
XBOOLE_0:def 4;
now
per cases by
A1,
XXREAL_0: 1;
suppose
A8: (p
`1 )
< (q
`1 );
then (p
`1 )
< (((p
`1 )
+ (q
`1 ))
/ 2) by
XREAL_1: 226;
then x
in { p1 : (p1
`2 )
= (p
`2 ) & (p
`1 )
<= (p1
`1 ) & (p1
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2) } by
A7,
A3,
Th10;
then
consider t1 be
Point of (
TOP-REAL 2) such that
A9: t1
= x and
A10: (t1
`2 )
= (p
`2 ) and (p
`1 )
<= (t1
`1 ) and
A11: (t1
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2);
A12: (t1
`1 )
<= (p3
`1 ) by
A11,
EUCLID: 52;
(((p
`1 )
+ (q
`1 ))
/ 2)
< (q
`1 ) by
A8,
XREAL_1: 226;
then x
in { p2 : (p2
`2 )
= (q
`2 ) & (((p
`1 )
+ (q
`1 ))
/ 2)
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 ) } by
A5,
A6,
Th10;
then ex t2 be
Point of (
TOP-REAL 2) st t2
= x & (t2
`2 )
= (q
`2 ) & (((p
`1 )
+ (q
`1 ))
/ 2)
<= (t2
`1 ) & (t2
`1 )
<= (q
`1 );
then (t1
`1 )
>= (p3
`1 ) by
A9,
EUCLID: 52;
then
A13: (t1
`1 )
= (p3
`1 ) by
A12,
XXREAL_0: 1;
(t1
`2 )
= (p3
`2 ) by
A10,
EUCLID: 52;
hence x
= p3 by
A9,
A13,
Th6;
end;
suppose
A14: (p
`1 )
> (q
`1 );
then (p
`1 )
> (((p
`1 )
+ (q
`1 ))
/ 2) by
XREAL_1: 226;
then x
in { p11 : (p11
`2 )
= (p
`2 ) & (((p
`1 )
+ (q
`1 ))
/ 2)
<= (p11
`1 ) & (p11
`1 )
<= (p
`1 ) } by
A7,
A3,
Th10;
then
consider t1 be
Point of (
TOP-REAL 2) such that
A15: t1
= x and
A16: (t1
`2 )
= (p
`2 ) and
A17: (((p
`1 )
+ (q
`1 ))
/ 2)
<= (t1
`1 ) and (t1
`1 )
<= (p
`1 );
A18: (p3
`1 )
<= (t1
`1 ) by
A17,
EUCLID: 52;
(q
`1 )
< (((p
`1 )
+ (q
`1 ))
/ 2) by
A14,
XREAL_1: 226;
then x
in { p22 : (p22
`2 )
= (q
`2 ) & (q
`1 )
<= (p22
`1 ) & (p22
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2) } by
A5,
A6,
Th10;
then ex t2 be
Point of (
TOP-REAL 2) st t2
= x & (t2
`2 )
= (q
`2 ) & (q
`1 )
<= (t2
`1 ) & (t2
`1 )
<= (((p
`1 )
+ (q
`1 ))
/ 2);
then (t1
`1 )
<= (p3
`1 ) by
A15,
EUCLID: 52;
then
A19: (t1
`1 )
= (p3
`1 ) by
A18,
XXREAL_0: 1;
(t1
`2 )
= (p3
`2 ) by
A16,
EUCLID: 52;
hence x
= p3 by
A15,
A19,
Th6;
end;
end;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{p3};
then
A20: x
= p3 by
TARSKI:def 1;
p3
in l23 & p3
in l by
RLTOPSP1: 68;
hence thesis by
A20,
XBOOLE_0:def 4;
end;
theorem ::
TOPREAL3:33
i
> 2 & i
in (
dom f) & f is
being_S-Seq implies (f
| i) is
being_S-Seq
proof
assume that
A1: i
> 2 and
A2: i
in (
dom f) and
A3: f is
being_S-Seq;
A4: (f
| i)
= (f
| (
Seg i)) by
FINSEQ_1:def 15;
then
A5: (
dom (f
| i))
= ((
dom f)
/\ (
Seg i)) by
RELAT_1: 61;
thus (f
| i) is
one-to-one
proof
A6: f is
one-to-one by
A3;
let x,y be
object;
assume that
A7: x
in (
dom (f
| i)) and
A8: y
in (
dom (f
| i)) and
A9: ((f
| i)
. x)
= ((f
| i)
. y);
A10: x
in (
dom f) & y
in (
dom f) by
A5,
A7,
A8,
XBOOLE_0:def 4;
(f
. x)
= ((f
| i)
. x) by
A4,
A7,
FUNCT_1: 47
.= (f
. y) by
A4,
A8,
A9,
FUNCT_1: 47;
hence thesis by
A6,
A10;
end;
A11: i
<= (
len f) by
A2,
FINSEQ_3: 25;
A12: i
in
NAT by
ORDINAL1:def 12;
(
Seg (
len f))
= (
dom f) by
FINSEQ_1:def 3;
then (
Seg i)
c= (
dom f) by
A11,
FINSEQ_1: 5;
then
A13: (
dom (f
| i))
= (
Seg i) by
A5,
XBOOLE_1: 28;
hence (
len (f
| i))
>= 2 by
A1,
A12,
FINSEQ_1:def 3;
A14: f is
unfolded by
A3;
thus (f
| i) is
unfolded
proof
let j be
Nat such that
A15: 1
<= j and
A16: (j
+ 2)
<= (
len (f
| i));
(j
+ 1)
<= (j
+ 2) by
XREAL_1: 6;
then
A17: (j
+ 1)
<= (
len (f
| i)) by
A16,
XXREAL_0: 2;
(
len (f
| i))
<= (
len f) by
A11,
A13,
A12,
FINSEQ_1:def 3;
then
A18: (j
+ 2)
<= (
len f) by
A16,
XXREAL_0: 2;
1
<= (j
+ 1) by
NAT_1: 12;
then
A19: (j
+ 1)
in (
dom (f
| i)) by
A17,
FINSEQ_3: 25;
1
<= ((j
+ 1)
+ 1) by
NAT_1: 12;
then ((j
+ 1)
+ 1)
in (
dom (f
| i)) by
A16,
FINSEQ_3: 25;
then
A20: (
LSeg (f,(j
+ 1)))
= (
LSeg ((f
| i),(j
+ 1))) by
A19,
Th17;
j
<= (j
+ 2) by
NAT_1: 11;
then j
<= (
len (f
| i)) by
A16,
XXREAL_0: 2;
then j
in (
dom (f
| i)) by
A15,
FINSEQ_3: 25;
then (
LSeg (f,j))
= (
LSeg ((f
| i),j)) by
A19,
Th17;
then ((
LSeg ((f
| i),j))
/\ (
LSeg ((f
| i),(j
+ 1))))
=
{(f
/. (j
+ 1))} by
A14,
A15,
A18,
A20;
hence thesis by
A19,
FINSEQ_4: 70;
end;
A21: f is
s.n.c. by
A3;
thus (f
| i) is
s.n.c.
proof
let n,k be
Nat;
A22: (k
+ 1)
>= 1 by
NAT_1: 11;
A23: (n
+ 1)
>= 1 by
NAT_1: 11;
assume (n
+ 1)
< k;
then (
LSeg (f,n))
misses (
LSeg (f,k)) by
A21;
then
A24: ((
LSeg (f,n))
/\ (
LSeg (f,k)))
=
{} ;
A25: (k
+ 1)
>= k by
NAT_1: 11;
A26: (n
+ 1)
>= n by
NAT_1: 11;
per cases ;
suppose
A27: n
in (
dom (f
| i));
now
per cases ;
suppose (n
+ 1)
in (
dom (f
| i));
then
A28: (
LSeg (f,n))
= (
LSeg ((f
| i),n)) by
A27,
Th17;
now
per cases ;
suppose
A29: k
in (
dom (f
| i));
now
per cases ;
suppose (k
+ 1)
in (
dom (f
| i));
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} by
A24,
A28,
A29,
Th17;
end;
suppose not (k
+ 1)
in (
dom (f
| i));
then (k
+ 1)
> (
len (f
| i)) by
A22,
FINSEQ_3: 25;
then (
LSeg ((f
| i),k))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
end;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
suppose not k
in (
dom (f
| i));
then k
< 1 or k
> (
len (f
| i)) by
FINSEQ_3: 25;
then k
< 1 or (k
+ 1)
> (
len (f
| i)) by
A25,
XXREAL_0: 2;
then (
LSeg ((f
| i),k))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
end;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
suppose not (n
+ 1)
in (
dom (f
| i));
then (n
+ 1)
> (
len (f
| i)) by
A23,
FINSEQ_3: 25;
then (
LSeg ((f
| i),n))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
end;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
suppose not n
in (
dom (f
| i));
then n
< 1 or n
> (
len (f
| i)) by
FINSEQ_3: 25;
then n
< 1 or (n
+ 1)
> (
len (f
| i)) by
A26,
XXREAL_0: 2;
then (
LSeg ((f
| i),n))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
| i),n))
/\ (
LSeg ((f
| i),k)))
=
{} ;
end;
end;
let j be
Nat such that
A30: 1
<= j and
A31: (j
+ 1)
<= (
len (f
| i));
(
len (f
| i))
<= (
len f) by
A11,
A13,
A12,
FINSEQ_1:def 3;
then
A32: (j
+ 1)
<= (
len f) by
A31,
XXREAL_0: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then j
<= (
len (f
| i)) by
A31,
XXREAL_0: 2;
then j
in (
dom (f
| i)) by
A30,
FINSEQ_3: 25;
then
A33: ((f
| i)
/. j)
= (f
/. j) by
FINSEQ_4: 70;
1
<= (j
+ 1) by
NAT_1: 12;
then (j
+ 1)
in (
dom (f
| i)) by
A31,
FINSEQ_3: 25;
then
A34: ((f
| i)
/. (j
+ 1))
= (f
/. (j
+ 1)) by
FINSEQ_4: 70;
f is
special by
A3;
hence thesis by
A30,
A32,
A33,
A34;
end;
theorem ::
TOPREAL3:34
(p
`1 )
<> (q
`1 ) & (p
`2 )
<> (q
`2 ) & f
=
<*p,
|[(p
`1 ), (q
`2 )]|, q*> implies (f
/. 1)
= p & (f
/. (
len f))
= q & f is
being_S-Seq
proof
set p1 =
|[(p
`1 ), (q
`2 )]|;
assume that
A1: (p
`1 )
<> (q
`1 ) and
A2: (p
`2 )
<> (q
`2 ) and
A3: f
=
<*p, p1, q*>;
A4: (
len f)
= (1
+ 2) by
A3,
FINSEQ_1: 45;
hence (f
/. 1)
= p & (f
/. (
len f))
= q by
A3,
FINSEQ_4: 18;
p
<> p1 & q
<> p1 by
A1,
A2,
EUCLID: 52;
hence f is
one-to-one & (
len f)
>= 2 by
A1,
A3,
A4,
FINSEQ_3: 95;
A5: (f
/. 2)
= p1 by
A3,
FINSEQ_4: 18;
A6: (f
/. 3)
= q by
A3,
FINSEQ_4: 18;
A7: (f
/. 1)
= p by
A3,
FINSEQ_4: 18;
thus f is
unfolded
proof
let i be
Nat;
assume that
A8: 1
<= i and
A9: (i
+ 2)
<= (
len f);
i
<= 1 by
A4,
A9,
XREAL_1: 6;
then
A10: i
= 1 by
A8,
XXREAL_0: 1;
hence ((
LSeg (f,i))
/\ (
LSeg (f,(i
+ 1))))
= ((
LSeg (p,p1))
/\ (
LSeg (f,2))) by
A4,
A7,
A5,
TOPREAL1:def 3
.= ((
LSeg (p,p1))
/\ (
LSeg (p1,q))) by
A4,
A5,
A6,
TOPREAL1:def 3
.=
{(f
/. (i
+ 1))} by
A5,
A10,
Th29;
end;
thus f is
s.n.c.
proof
let i,j be
Nat such that
A11: (i
+ 1)
< j;
now
per cases ;
suppose i
=
0 ;
then (
LSeg (f,i))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
suppose i
<>
0 ;
then (
LSeg (f,j))
=
{} by
A3,
A11,
Th15;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
end;
hence thesis;
end;
let i be
Nat such that
A12: 1
<= i and
A13: (i
+ 1)
<= (
len f);
i
<= 2 by
A4,
A13,
XREAL_1: 6;
then i
=
0 or ... or i
= 2;
per cases by
A12;
suppose i
= 1;
hence thesis by
A7,
A5,
EUCLID: 52;
end;
suppose i
= 2;
hence thesis by
A5,
A6,
EUCLID: 52;
end;
end;
theorem ::
TOPREAL3:35
(p
`1 )
<> (q
`1 ) & (p
`2 )
<> (q
`2 ) & f
=
<*p,
|[(q
`1 ), (p
`2 )]|, q*> implies (f
/. 1)
= p & (f
/. (
len f))
= q & f is
being_S-Seq
proof
set p1 =
|[(q
`1 ), (p
`2 )]|;
assume that
A1: (p
`1 )
<> (q
`1 ) and
A2: (p
`2 )
<> (q
`2 ) and
A3: f
=
<*p, p1, q*>;
A4: (
len f)
= (1
+ 2) by
A3,
FINSEQ_1: 45;
hence (f
/. 1)
= p & (f
/. (
len f))
= q by
A3,
FINSEQ_4: 18;
p
<> p1 & q
<> p1 by
A1,
A2,
EUCLID: 52;
hence f is
one-to-one & (
len f)
>= 2 by
A1,
A3,
A4,
FINSEQ_3: 95;
A5: (f
/. 2)
= p1 by
A3,
FINSEQ_4: 18;
A6: (f
/. 3)
= q by
A3,
FINSEQ_4: 18;
A7: (f
/. 1)
= p by
A3,
FINSEQ_4: 18;
thus f is
unfolded
proof
let i be
Nat;
assume that
A8: 1
<= i and
A9: (i
+ 2)
<= (
len f);
i
<= 1 by
A4,
A9,
XREAL_1: 6;
then
A10: i
= 1 by
A8,
XXREAL_0: 1;
hence ((
LSeg (f,i))
/\ (
LSeg (f,(i
+ 1))))
= ((
LSeg (p,p1))
/\ (
LSeg (f,2))) by
A4,
A7,
A5,
TOPREAL1:def 3
.= ((
LSeg (p,p1))
/\ (
LSeg (p1,q))) by
A4,
A5,
A6,
TOPREAL1:def 3
.=
{(f
/. (i
+ 1))} by
A5,
A10,
Th30;
end;
thus f is
s.n.c.
proof
let i,j be
Nat such that
A11: (i
+ 1)
< j;
now
per cases ;
suppose i
=
0 ;
then (
LSeg (f,i))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
suppose i
<>
0 ;
then (
LSeg (f,j))
=
{} by
A3,
A11,
Th15;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
end;
hence thesis;
end;
let i be
Nat such that
A12: 1
<= i and
A13: (i
+ 1)
<= (
len f);
i
<= 2 by
A4,
A13,
XREAL_1: 6;
then i
=
0 or ... or i
= 2;
per cases by
A12;
suppose i
= 1;
hence thesis by
A7,
A5,
EUCLID: 52;
end;
suppose i
= 2;
hence thesis by
A5,
A6,
EUCLID: 52;
end;
end;
theorem ::
TOPREAL3:36
(p
`1 )
= (q
`1 ) & (p
`2 )
<> (q
`2 ) & f
=
<*p,
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|, q*> implies (f
/. 1)
= p & (f
/. (
len f))
= q & f is
being_S-Seq
proof
set p1 =
|[(p
`1 ), (((p
`2 )
+ (q
`2 ))
/ 2)]|;
assume that
A1: (p
`1 )
= (q
`1 ) and
A2: (p
`2 )
<> (q
`2 ) and
A3: f
=
<*p, p1, q*>;
A4: (p1
`2 )
= (((p
`2 )
+ (q
`2 ))
/ 2) by
EUCLID: 52;
A5: (
len f)
= (1
+ 2) by
A3,
FINSEQ_1: 45;
hence (f
/. 1)
= p & (f
/. (
len f))
= q by
A3,
FINSEQ_4: 18;
(p
`2 )
<> (((p
`2 )
+ (q
`2 ))
/ 2) & (q
`2 )
<> (((p
`2 )
+ (q
`2 ))
/ 2) by
A2;
hence f is
one-to-one & (
len f)
>= 2 by
A2,
A3,
A5,
A4,
FINSEQ_3: 95;
A6: (f
/. 2)
= p1 by
A3,
FINSEQ_4: 18;
A7: (f
/. 3)
= q by
A3,
FINSEQ_4: 18;
A8: (f
/. 1)
= p by
A3,
FINSEQ_4: 18;
thus f is
unfolded
proof
let i be
Nat;
assume that
A9: 1
<= i and
A10: (i
+ 2)
<= (
len f);
i
<= 1 by
A5,
A10,
XREAL_1: 6;
then
A11: i
= 1 by
A9,
XXREAL_0: 1;
hence ((
LSeg (f,i))
/\ (
LSeg (f,(i
+ 1))))
= ((
LSeg (p,p1))
/\ (
LSeg (f,2))) by
A5,
A8,
A6,
TOPREAL1:def 3
.= ((
LSeg (p,p1))
/\ (
LSeg (p1,q))) by
A5,
A6,
A7,
TOPREAL1:def 3
.=
{(f
/. (i
+ 1))} by
A1,
A2,
A6,
A11,
Th31;
end;
thus f is
s.n.c.
proof
let i,j be
Nat such that
A12: (i
+ 1)
< j;
now
per cases ;
suppose i
=
0 ;
then (
LSeg (f,i))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
suppose i
<>
0 ;
then (
LSeg (f,j))
=
{} by
A3,
A12,
Th15;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
end;
hence thesis;
end;
let i be
Nat such that
A13: 1
<= i and
A14: (i
+ 1)
<= (
len f);
i
<= 2 by
A5,
A14,
XREAL_1: 6;
then i
=
0 or ... or i
= 2;
per cases by
A13;
suppose i
= 1;
hence thesis by
A8,
A6,
EUCLID: 52;
end;
suppose i
= 2;
hence thesis by
A1,
A6,
A7,
EUCLID: 52;
end;
end;
theorem ::
TOPREAL3:37
(p
`1 )
<> (q
`1 ) & (p
`2 )
= (q
`2 ) & f
=
<*p,
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|, q*> implies (f
/. 1)
= p & (f
/. (
len f))
= q & f is
being_S-Seq
proof
set p1 =
|[(((p
`1 )
+ (q
`1 ))
/ 2), (p
`2 )]|;
assume that
A1: (p
`1 )
<> (q
`1 ) and
A2: (p
`2 )
= (q
`2 ) and
A3: f
=
<*p, p1, q*>;
A4: (p1
`1 )
= (((p
`1 )
+ (q
`1 ))
/ 2) by
EUCLID: 52;
A5: (
len f)
= (1
+ 2) by
A3,
FINSEQ_1: 45;
hence (f
/. 1)
= p & (f
/. (
len f))
= q by
A3,
FINSEQ_4: 18;
(p
`1 )
<> (((p
`1 )
+ (q
`1 ))
/ 2) & (q
`1 )
<> (((p
`1 )
+ (q
`1 ))
/ 2) by
A1;
hence f is
one-to-one & (
len f)
>= 2 by
A1,
A3,
A5,
A4,
FINSEQ_3: 95;
A6: (f
/. 2)
= p1 by
A3,
FINSEQ_4: 18;
A7: (f
/. 3)
= q by
A3,
FINSEQ_4: 18;
A8: (f
/. 1)
= p by
A3,
FINSEQ_4: 18;
thus f is
unfolded
proof
let i be
Nat;
assume that
A9: 1
<= i and
A10: (i
+ 2)
<= (
len f);
i
<= 1 by
A5,
A10,
XREAL_1: 6;
then
A11: i
= 1 by
A9,
XXREAL_0: 1;
hence ((
LSeg (f,i))
/\ (
LSeg (f,(i
+ 1))))
= ((
LSeg (p,p1))
/\ (
LSeg (f,2))) by
A5,
A8,
A6,
TOPREAL1:def 3
.= ((
LSeg (p,p1))
/\ (
LSeg (p1,q))) by
A5,
A6,
A7,
TOPREAL1:def 3
.=
{(f
/. (i
+ 1))} by
A1,
A2,
A6,
A11,
Th32;
end;
thus f is
s.n.c.
proof
let i,j be
Nat such that
A12: (i
+ 1)
< j;
now
per cases ;
suppose i
=
0 ;
then (
LSeg (f,i))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
suppose i
<>
0 ;
then (
LSeg (f,j))
=
{} by
A3,
A12,
Th15;
then ((
LSeg (f,i))
/\ (
LSeg (f,j)))
=
{} ;
hence thesis;
end;
end;
hence thesis;
end;
let i be
Nat such that
A13: 1
<= i and
A14: (i
+ 1)
<= (
len f);
i
<= 2 by
A5,
A14,
XREAL_1: 6;
then i
=
0 or ... or i
= 2;
per cases by
A13;
suppose i
= 1;
hence thesis by
A8,
A6,
EUCLID: 52;
end;
suppose i
= 2;
hence thesis by
A2,
A6,
A7,
EUCLID: 52;
end;
end;
theorem ::
TOPREAL3:38
i
in (
dom f) & (i
+ 1)
in (
dom f) implies (
L~ (f
| (i
+ 1)))
= ((
L~ (f
| i))
\/ (
LSeg ((f
/. i),(f
/. (i
+ 1)))))
proof
set M1 = { (
LSeg ((f
| (i
+ 1)),k)) : 1
<= k & (k
+ 1)
<= (
len (f
| (i
+ 1))) }, Mi = { (
LSeg ((f
| i),n)) : 1
<= n & (n
+ 1)
<= (
len (f
| i)) };
assume that
A1: i
in (
dom f) and
A2: (i
+ 1)
in (
dom f);
set p = (f
/. i), q = (f
/. (i
+ 1));
A3: (i
+ 1)
<= (
len f) by
A2,
FINSEQ_3: 25;
then (
Seg (i
+ 1))
c= (
Seg (
len f)) by
FINSEQ_1: 5;
then (
Seg (i
+ 1))
c= (
dom f) by
FINSEQ_1:def 3;
then (
Seg (i
+ 1))
= ((
dom f)
/\ (
Seg (i
+ 1))) by
XBOOLE_1: 28;
then
A4: (f
| (i
+ 1))
= (f
| (
Seg (i
+ 1))) & (
Seg (i
+ 1))
= (
dom (f
| (
Seg (i
+ 1)))) by
FINSEQ_1:def 15,
RELAT_1: 61;
then
A5: (i
+ 1)
= (
len (f
| (i
+ 1))) by
FINSEQ_1:def 3;
A6: 1
<= i by
A1,
FINSEQ_3: 25;
then
A7: (
LSeg (f,i))
= (
LSeg (p,q)) by
A3,
TOPREAL1:def 3;
1
<= (i
+ 1) by
A2,
FINSEQ_3: 25;
then
A8: (i
+ 1)
in (
dom (f
| (i
+ 1))) by
A5,
FINSEQ_3: 25;
A9: i
<= (i
+ 1) by
NAT_1: 11;
then i
in (
dom (f
| (i
+ 1))) by
A6,
A5,
FINSEQ_3: 25;
then
A10: (
LSeg ((f
| (i
+ 1)),i))
= (
LSeg (p,q)) by
A7,
A8,
Th17;
then
A11: (
LSeg (p,q))
c= (
L~ (f
| (i
+ 1))) by
Th19;
A12: i
in
NAT by
ORDINAL1:def 12;
i
<= (
len f) by
A1,
FINSEQ_3: 25;
then (
Seg i)
c= (
Seg (
len f)) by
FINSEQ_1: 5;
then (
Seg i)
c= (
dom f) by
FINSEQ_1:def 3;
then ((
dom f)
/\ (
Seg i))
= (
Seg i) by
XBOOLE_1: 28;
then
A13: (f
| i)
= (f
| (
Seg i)) & (
dom (f
| (
Seg i)))
= (
Seg i) by
FINSEQ_1:def 15,
RELAT_1: 61;
then
A14: i
= (
len (f
| i)) by
A12,
FINSEQ_1:def 3;
A15: (
Seg (
len (f
| (i
+ 1))))
= (
dom (f
| (i
+ 1))) by
FINSEQ_1:def 3;
thus (
L~ (f
| (i
+ 1)))
c= ((
L~ (f
| i))
\/ (
LSeg (p,q)))
proof
let x be
object;
assume x
in (
L~ (f
| (i
+ 1)));
then
consider X be
set such that
A16: x
in X and
A17: X
in M1 by
TARSKI:def 4;
consider m such that
A18: X
= (
LSeg ((f
| (i
+ 1)),m)) and
A19: 1
<= m and
A20: (m
+ 1)
<= (
len (f
| (i
+ 1))) by
A17;
A21: m
<= i by
A5,
A20,
XREAL_1: 6;
per cases by
A21,
XXREAL_0: 1;
suppose m
= i;
then X
c= ((
L~ (f
| i))
\/ (
LSeg (p,q))) by
A10,
A18,
XBOOLE_1: 7;
hence thesis by
A16;
end;
suppose
A22: m
< i;
then m
<= (i
+ 1) by
NAT_1: 13;
then
A23: m
in (
dom (f
| (i
+ 1))) by
A4,
A19,
FINSEQ_1: 1;
A24: m
in (
dom (f
| i)) by
A13,
A19,
A22,
FINSEQ_1: 1;
A25: 1
<= (m
+ 1) by
A19,
NAT_1: 13;
A26: (m
+ 1)
<= i by
A22,
NAT_1: 13;
then
A27: (m
+ 1)
in (
dom (f
| i)) by
A13,
A25,
FINSEQ_1: 1;
(m
+ 1)
in (
dom (f
| (i
+ 1))) by
A15,
A20,
A25,
FINSEQ_1: 1;
then X
= (
LSeg (f,m)) by
A18,
A23,
Th17
.= (
LSeg ((f
| i),m)) by
A24,
A27,
Th17;
then X
in Mi by
A14,
A19,
A26;
then x
in (
union Mi) by
A16,
TARSKI:def 4;
hence thesis by
XBOOLE_0:def 3;
end;
end;
let x be
object such that
A28: x
in ((
L~ (f
| i))
\/ (
LSeg (p,q)));
per cases by
A28,
XBOOLE_0:def 3;
suppose x
in (
L~ (f
| i));
then
consider X be
set such that
A29: x
in X and
A30: X
in Mi by
TARSKI:def 4;
consider m such that
A31: X
= (
LSeg ((f
| i),m)) and
A32: 1
<= m and
A33: (m
+ 1)
<= (
len (f
| i)) by
A30;
A34: 1
<= (m
+ 1) by
NAT_1: 11;
then
A35: (m
+ 1)
in (
dom (f
| i)) by
A33,
FINSEQ_3: 25;
m
<= (m
+ 1) by
NAT_1: 11;
then
A36: m
<= (
len (f
| i)) by
A33,
XXREAL_0: 2;
then m
<= (
len (f
| (i
+ 1))) by
A5,
A14,
A9,
XXREAL_0: 2;
then
A37: m
in (
dom (f
| (i
+ 1))) by
A32,
FINSEQ_3: 25;
A38: (m
+ 1)
<= (
len (f
| (i
+ 1))) by
A5,
A14,
A9,
A33,
XXREAL_0: 2;
then
A39: (m
+ 1)
in (
dom (f
| (i
+ 1))) by
A34,
FINSEQ_3: 25;
m
in (
dom (f
| i)) by
A32,
A36,
FINSEQ_3: 25;
then X
= (
LSeg (f,m)) by
A31,
A35,
Th17
.= (
LSeg ((f
| (i
+ 1)),m)) by
A37,
A39,
Th17;
then X
in M1 by
A32,
A38;
hence thesis by
A29,
TARSKI:def 4;
end;
suppose x
in (
LSeg (p,q));
hence thesis by
A11;
end;
end;
theorem ::
TOPREAL3:39
(
len f)
>= 2 & not p
in (
L~ f) implies for n st 1
<= n & n
<= (
len f) holds (f
/. n)
<> p
proof
assume that
A1: (
len f)
>= 2 and
A2: not p
in (
L~ f);
set Mf = { (
LSeg (f,k)) : 1
<= k & (k
+ 1)
<= (
len f) };
given n such that
A3: 1
<= n and
A4: n
<= (
len f) and
A5: (f
/. n)
= p;
per cases by
A4,
XXREAL_0: 1;
suppose
A6: n
= (
len f);
reconsider j = ((
len f)
- 1) as
Element of
NAT by
A1,
INT_1: 5,
XXREAL_0: 2;
(1
+ 1)
<= (
len f) by
A1;
then
A7: 1
<= j by
XREAL_1: 19;
then
A8: (f
/. (j
+ 1))
in (
LSeg (f,j)) by
TOPREAL1: 21;
(j
+ 1)
<= (
len f);
then (
LSeg (f,j))
in Mf by
A7;
hence contradiction by
A2,
A5,
A6,
A8,
TARSKI:def 4;
end;
suppose
A9: n
< (
len f);
then (n
+ 1)
<= (
len f) by
NAT_1: 13;
then
A10: (f
/. n)
in (
LSeg (f,n)) by
A3,
TOPREAL1: 21;
(n
+ 1)
<= (
len f) by
A9,
NAT_1: 13;
then (
LSeg (f,n))
in Mf by
A3;
hence contradiction by
A2,
A5,
A10,
TARSKI:def 4;
end;
end;
theorem ::
TOPREAL3:40
q
<> p & ((
LSeg (q,p))
/\ (
L~ f))
=
{q} implies not p
in (
L~ f)
proof
assume that
A1: q
<> p and
A2: ((
LSeg (q,p))
/\ (
L~ f))
=
{q} & p
in (
L~ f);
p
in (
LSeg (q,p)) by
RLTOPSP1: 68;
then p
in
{q} by
A2,
XBOOLE_0:def 4;
hence contradiction by
A1,
TARSKI:def 1;
end;
theorem ::
TOPREAL3:41
f is
being_S-Seq & (f
/. (
len f))
in (
LSeg (f,m)) & 1
<= m & (m
+ 1)
<= (
len f) implies (m
+ 1)
= (
len f)
proof
assume that
A1: f is
being_S-Seq and
A2: (f
/. (
len f))
in (
LSeg (f,m)) and
A3: 1
<= m and
A4: (m
+ 1)
<= (
len f);
A5: f is
s.n.c. by
A1;
A6: f is
one-to-one by
A1;
A7: f is
unfolded by
A1;
set q = (f
/. (
len f));
A8: ((m
+ 1)
+ 1)
= (m
+ (1
+ 1));
A9: (
len f)
>= 2 by
A1;
then
reconsider k = ((
len f)
- 1) as
Element of
NAT by
INT_1: 5,
XXREAL_0: 2;
A10: (k
+ 1)
= (
len f);
assume (m
+ 1)
<> (
len f);
then
A11: (m
+ 1)
<= k by
A4,
A10,
NAT_1: 8;
1
<= (
len f) by
A9,
XXREAL_0: 2;
then
A12: (
len f)
in (
dom f) by
FINSEQ_3: 25;
per cases by
A11,
XXREAL_0: 1;
suppose
A13: (m
+ 1)
= k;
A14: 1
<= (m
+ 1) by
NAT_1: 11;
((m
+ 1)
+ 1)
<= (
len f) by
A13;
then
A15: (f
/. (m
+ 2))
in (
LSeg (f,(m
+ 1))) by
A14,
TOPREAL1: 21;
((
LSeg (f,m))
/\ (
LSeg (f,(m
+ 1))))
=
{(f
/. (m
+ 1))} by
A3,
A7,
A8,
A13;
then q
in
{(f
/. (m
+ 1))} by
A2,
A13,
A15,
XBOOLE_0:def 4;
then
A16: (f
/. (
len f))
= (f
/. (m
+ 1)) by
TARSKI:def 1;
(m
+ 1)
<= (
len f) by
A10,
A13,
NAT_1: 11;
then (m
+ 1)
in (
dom f) by
A14,
FINSEQ_3: 25;
then (
len f)
= ((
len f)
- 1) by
A6,
A12,
A13,
A16,
PARTFUN2: 10;
hence contradiction;
end;
suppose
A17: (m
+ 1)
< k;
((1
+ 1)
- 1)
= 1;
then (k
+ 1)
= (
len f) & 1
<= k by
A9,
XREAL_1: 13;
then
A18: q
in (
LSeg (f,k)) by
TOPREAL1: 21;
(
LSeg (f,m))
misses (
LSeg (f,k)) by
A5,
A17;
then ((
LSeg (f,m))
/\ (
LSeg (f,k)))
=
{} ;
hence contradiction by
A2,
A18,
XBOOLE_0:def 4;
end;
end;
theorem ::
TOPREAL3:42
not p1
in (
Ball (u,r)) & q
in (
Ball (u,r)) & p
in (
Ball (u,r)) & not p
in (
LSeg (p1,q)) & ((q
`1 )
= (p
`1 ) & (q
`2 )
<> (p
`2 ) or (q
`1 )
<> (p
`1 ) & (q
`2 )
= (p
`2 )) & ((p1
`1 )
= (q
`1 ) or (p1
`2 )
= (q
`2 )) implies ((
LSeg (p1,q))
/\ (
LSeg (q,p)))
=
{q}
proof
assume that
A1: not p1
in (
Ball (u,r)) and
A2: q
in (
Ball (u,r)) and
A3: p
in (
Ball (u,r)) and
A4: not p
in (
LSeg (p1,q));
assume
A5: (q
`1 )
= (p
`1 ) & (q
`2 )
<> (p
`2 ) or (q
`1 )
<> (p
`1 ) & (q
`2 )
= (p
`2 );
assume
A6: (p1
`1 )
= (q
`1 ) or (p1
`2 )
= (q
`2 );
A7:
now
per cases by
A6;
suppose (p1
`1 )
= (q
`1 );
hence (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 ) or (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 ) by
A1,
A2,
Th6;
end;
suppose (p1
`2 )
= (q
`2 );
hence (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 ) or (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 ) by
A1,
A2,
Th6;
end;
end;
A8: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
A9: p1
=
|[(p1
`1 ), (p1
`2 )]| by
EUCLID: 53;
A10: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
A11: (
LSeg (p,q))
c= (
Ball (u,r)) by
A2,
A3,
Th21;
now
per cases by
A5;
suppose
A12: (q
`1 )
= (p
`1 ) & (q
`2 )
<> (p
`2 );
set r = (p
`1 ), pq = { p2 : (p2
`1 )
= r & (p
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 ) }, qp = { p3 : (p3
`1 )
= r & (q
`2 )
<= (p3
`2 ) & (p3
`2 )
<= (p
`2 ) }, pp1 = { p11 : (p11
`1 )
= r & (p
`2 )
<= (p11
`2 ) & (p11
`2 )
<= (p1
`2 ) }, p1p = { p22 : (p22
`1 )
= r & (p1
`2 )
<= (p22
`2 ) & (p22
`2 )
<= (p
`2 ) }, qp1 = { q1 : (q1
`1 )
= r & (q
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (p1
`2 ) }, p1q = { q2 : (q2
`1 )
= r & (p1
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (q
`2 ) };
now
per cases by
A12,
XXREAL_0: 1;
suppose
A13: (q
`2 )
> (p
`2 );
now
per cases by
A7;
suppose
A14: (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 );
now
per cases by
A14,
XXREAL_0: 1;
case
A15: (p1
`2 )
> (q
`2 );
then q
in pp1 by
A12,
A13;
then q
in (
LSeg (p,p1)) by
A8,
A9,
A12,
A13,
A14,
A15,
Th9,
XXREAL_0: 2;
hence thesis by
TOPREAL1: 8;
end;
case
A16: (p1
`2 )
< (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose
A17: (p1
`2 )
> (p
`2 );
then p1
in pq by
A12,
A14,
A16;
then p1
in (
LSeg (p,q)) by
A8,
A10,
A12,
A16,
A17,
Th9,
XXREAL_0: 2;
hence contradiction by
A1,
A11;
end;
suppose (p1
`2 )
= (p
`2 );
hence contradiction by
A1,
A3,
A12,
A14,
Th6;
end;
suppose (p1
`2 )
< (p
`2 );
then p
in p1q by
A13;
hence contradiction by
A4,
A9,
A10,
A12,
A14,
A16,
Th9;
end;
end;
hence contradiction;
end;
end;
hence thesis;
end;
suppose (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 );
hence thesis by
A10,
A12,
Th30;
end;
end;
hence thesis;
end;
suppose
A18: (q
`2 )
< (p
`2 );
now
per cases by
A7;
suppose
A19: (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 );
now
per cases by
A19,
XXREAL_0: 1;
case
A20: (p1
`2 )
> (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose (p1
`2 )
> (p
`2 );
then p
in qp1 by
A18;
hence contradiction by
A4,
A9,
A10,
A12,
A19,
A20,
Th9;
end;
suppose (p1
`2 )
= (p
`2 );
hence contradiction by
A1,
A3,
A12,
A19,
Th6;
end;
suppose (p1
`2 )
< (p
`2 );
then p1
in qp by
A12,
A19,
A20;
then p1
in (
LSeg (p,q)) by
A8,
A10,
A12,
A18,
Th9;
hence contradiction by
A1,
A11;
end;
end;
hence contradiction;
end;
case
A21: (p1
`2 )
< (q
`2 );
then q
in p1p by
A12,
A18;
then q
in (
LSeg (p1,p)) by
A8,
A9,
A12,
A18,
A19,
A21,
Th9,
XXREAL_0: 2;
hence thesis by
TOPREAL1: 8;
end;
end;
hence thesis;
end;
suppose (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 );
hence thesis by
A10,
A12,
Th30;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A22: (q
`1 )
<> (p
`1 ) & (q
`2 )
= (p
`2 );
set r = (p
`2 ), pq = { p2 : (p2
`2 )
= r & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 ) }, qp = { p3 : (p3
`2 )
= r & (q
`1 )
<= (p3
`1 ) & (p3
`1 )
<= (p
`1 ) }, pp1 = { p11 : (p11
`2 )
= r & (p
`1 )
<= (p11
`1 ) & (p11
`1 )
<= (p1
`1 ) }, p1p = { p22 : (p22
`2 )
= r & (p1
`1 )
<= (p22
`1 ) & (p22
`1 )
<= (p
`1 ) }, qp1 = { q1 : (q1
`2 )
= r & (q
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (p1
`1 ) }, p1q = { q2 : (q2
`2 )
= r & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (q
`1 ) };
now
per cases by
A22,
XXREAL_0: 1;
suppose
A23: (q
`1 )
> (p
`1 );
now
per cases by
A7;
suppose (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 );
hence thesis by
A10,
A22,
Th29;
end;
suppose
A24: (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 );
now
per cases by
A24,
XXREAL_0: 1;
case
A25: (p1
`1 )
> (q
`1 );
then q
in pp1 by
A22,
A23;
then q
in (
LSeg (p,p1)) by
A8,
A9,
A22,
A23,
A24,
A25,
Th10,
XXREAL_0: 2;
hence thesis by
TOPREAL1: 8;
end;
case
A26: (p1
`1 )
< (q
`1 );
now
per cases by
XXREAL_0: 1;
suppose
A27: (p1
`1 )
> (p
`1 );
then p1
in pq by
A22,
A24,
A26;
then p1
in (
LSeg (p,q)) by
A8,
A10,
A22,
A26,
A27,
Th10,
XXREAL_0: 2;
hence contradiction by
A1,
A11;
end;
suppose (p1
`1 )
= (p
`1 );
hence contradiction by
A1,
A3,
A22,
A24,
Th6;
end;
suppose (p1
`1 )
< (p
`1 );
then p
in p1q by
A23;
hence contradiction by
A4,
A9,
A10,
A22,
A24,
A26,
Th10;
end;
end;
hence contradiction;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A28: (q
`1 )
< (p
`1 );
now
per cases by
A7;
suppose (p1
`1 )
= (q
`1 ) & (p1
`2 )
<> (q
`2 );
hence thesis by
A10,
A22,
Th29;
end;
suppose
A29: (p1
`1 )
<> (q
`1 ) & (p1
`2 )
= (q
`2 );
now
per cases by
A29,
XXREAL_0: 1;
case
A30: (p1
`1 )
> (q
`1 );
now
per cases by
XXREAL_0: 1;
suppose (p1
`1 )
> (p
`1 );
then p
in qp1 by
A28;
hence contradiction by
A4,
A9,
A10,
A22,
A29,
A30,
Th10;
end;
suppose (p1
`1 )
= (p
`1 );
hence contradiction by
A1,
A3,
A22,
A29,
Th6;
end;
suppose (p1
`1 )
< (p
`1 );
then p1
in qp by
A22,
A29,
A30;
then p1
in (
LSeg (p,q)) by
A8,
A10,
A22,
A28,
Th10;
hence contradiction by
A1,
A11;
end;
end;
hence contradiction;
end;
case
A31: (p1
`1 )
< (q
`1 );
then q
in p1p by
A22,
A28;
then q
in (
LSeg (p1,p)) by
A8,
A9,
A22,
A28,
A29,
A31,
Th10,
XXREAL_0: 2;
hence thesis by
TOPREAL1: 8;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
TOPREAL3:43
not p1
in (
Ball (u,r)) & p
in (
Ball (u,r)) &
|[(p
`1 ), (q
`2 )]|
in (
Ball (u,r)) & not
|[(p
`1 ), (q
`2 )]|
in (
LSeg (p1,p)) & (p1
`1 )
= (p
`1 ) & (p
`1 )
<> (q
`1 ) & (p
`2 )
<> (q
`2 ) implies (((
LSeg (p,
|[(p
`1 ), (q
`2 )]|))
\/ (
LSeg (
|[(p
`1 ), (q
`2 )]|,q)))
/\ (
LSeg (p1,p)))
=
{p}
proof
set v =
|[(p
`1 ), (q
`2 )]|;
assume that
A1: not p1
in (
Ball (u,r)) and
A2: p
in (
Ball (u,r)) and
A3: v
in (
Ball (u,r)) and
A4: not v
in (
LSeg (p1,p)) and
A5: (p1
`1 )
= (p
`1 ) and
A6: (p
`1 )
<> (q
`1 ) and
A7: (p
`2 )
<> (q
`2 );
A8: (
LSeg (p,v))
c= (
Ball (u,r)) by
A2,
A3,
Th21;
p
in (
LSeg (p,v)) by
RLTOPSP1: 68;
then p
in (
LSeg (p1,p)) & p
in ((
LSeg (p,v))
\/ (
LSeg (v,q))) by
RLTOPSP1: 68,
XBOOLE_0:def 3;
then p
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p))) by
XBOOLE_0:def 4;
then
A9:
{p}
c= (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p))) by
ZFMISC_1: 31;
A10: (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
= (((
LSeg (p,v))
/\ (
LSeg (p1,p)))
\/ ((
LSeg (v,q))
/\ (
LSeg (p1,p)))) by
XBOOLE_1: 23;
A11: p1
=
|[(p
`1 ), (p1
`2 )]| by
A5,
EUCLID: 53;
A12: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
A13: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
A14: (v
`1 )
= (p
`1 ) by
EUCLID: 52;
A15: (v
`2 )
= (q
`2 ) by
EUCLID: 52;
per cases ;
suppose (p1
`2 )
= (p
`2 );
hence thesis by
A1,
A2,
A5,
Th6;
end;
suppose
A16: (p1
`2 )
<> (p
`2 );
now
per cases by
A16,
XXREAL_0: 1;
suppose
A17: (p1
`2 )
> (p
`2 );
now
per cases by
A6,
XXREAL_0: 1;
suppose
A18: (p
`1 )
> (q
`1 );
now
per cases by
A7,
XXREAL_0: 1;
case
A19: (p
`2 )
> (q
`2 );
then
A20: (p
`2 )
>= (v
`2 ) by
EUCLID: 52;
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A21: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A10,
A21,
XBOOLE_0:def 3;
case
A22: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`1 )
= (p
`1 ) & (v
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (p1
`2 ) } by
A17,
A20;
then p
in (
LSeg (p1,v)) by
A11,
A15,
A17,
A19,
Th9,
XXREAL_0: 2;
hence thesis by
A22,
TOPREAL1: 8;
end;
case
A23: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (v,q)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`2 )
= (q
`2 ) & (q
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 ) } by
A12,
A18,
Th10;
then
A24: ex p2 st p2
= x & (p2
`2 )
= (q
`2 ) & (q
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 );
x
in (
LSeg (p1,p)) by
A23,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p1
`2 ) } by
A11,
A13,
A17,
Th9;
then ex q2 st q2
= x & (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p1
`2 );
hence contradiction by
A19,
A24;
end;
end;
hence thesis;
end;
hence thesis by
A9;
end;
case
A25: (p
`2 )
< (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose
A26: (q
`2 )
> (p1
`2 );
then p1
in { q2 : (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (v
`2 ) } by
A5,
A15,
A17;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A17,
A26,
Th9,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
suppose (q
`2 )
= (p1
`2 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose
A27: (q
`2 )
< (p1
`2 );
then v
in { p2 : (p2
`1 )
= (p
`1 ) & (p
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p1
`2 ) } by
A14,
A15,
A25;
hence contradiction by
A4,
A11,
A13,
A25,
A27,
Th9,
XXREAL_0: 2;
end;
end;
hence contradiction;
end;
end;
hence thesis;
end;
suppose
A28: (p
`1 )
< (q
`1 );
now
per cases by
A7,
XXREAL_0: 1;
case
A29: (p
`2 )
> (q
`2 );
then
A30: (p
`2 )
>= (v
`2 ) by
EUCLID: 52;
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A31: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A10,
A31,
XBOOLE_0:def 3;
case
A32: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`1 )
= (p
`1 ) & (v
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (p1
`2 ) } by
A17,
A30;
then p
in (
LSeg (p1,v)) by
A11,
A15,
A17,
A29,
Th9,
XXREAL_0: 2;
hence thesis by
A32,
TOPREAL1: 8;
end;
case
A33: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (v,q)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`2 )
= (q
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 ) } by
A12,
A28,
Th10;
then
A34: ex p2 st p2
= x & (p2
`2 )
= (q
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 );
x
in (
LSeg (p1,p)) by
A33,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p1
`2 ) } by
A11,
A13,
A17,
Th9;
then ex q2 st q2
= x & (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p1
`2 );
hence contradiction by
A29,
A34;
end;
end;
hence thesis;
end;
hence thesis by
A9;
end;
case
A35: (p
`2 )
< (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose
A36: (q
`2 )
> (p1
`2 );
then p1
in { q2 : (q2
`1 )
= (p
`1 ) & (p
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (v
`2 ) } by
A5,
A15,
A17;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A17,
A36,
Th9,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
suppose (q
`2 )
= (p1
`2 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose
A37: (q
`2 )
< (p1
`2 );
then v
in { p2 : (p2
`1 )
= (p
`1 ) & (p
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p1
`2 ) } by
A14,
A15,
A35;
hence contradiction by
A4,
A11,
A13,
A35,
A37,
Th9,
XXREAL_0: 2;
end;
end;
hence contradiction;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A38: (p1
`2 )
< (p
`2 );
now
per cases by
A6,
XXREAL_0: 1;
suppose
A39: (p
`1 )
> (q
`1 );
now
per cases by
A7,
XXREAL_0: 1;
case
A40: (p
`2 )
> (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose
A41: (q
`2 )
> (p1
`2 );
then v
in { p2 : (p2
`1 )
= (p
`1 ) & (p1
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 ) } by
A14,
A15,
A40;
hence contradiction by
A4,
A11,
A13,
A40,
A41,
Th9,
XXREAL_0: 2;
end;
suppose (q
`2 )
= (p1
`2 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose
A42: (q
`2 )
< (p1
`2 );
then p1
in { q2 : (q2
`1 )
= (p
`1 ) & (v
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 ) } by
A5,
A15,
A38;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A38,
A42,
Th9,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
end;
hence contradiction;
end;
case
A43: (p
`2 )
< (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A44: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A10,
A44,
XBOOLE_0:def 3;
case
A45: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`1 )
= (p
`1 ) & (p1
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (v
`2 ) } by
A15,
A38,
A43;
then p
in (
LSeg (p1,v)) by
A11,
A15,
A38,
A43,
Th9,
XXREAL_0: 2;
hence thesis by
A45,
TOPREAL1: 8;
end;
case
A46: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (v,q)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`2 )
= (q
`2 ) & (q
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 ) } by
A12,
A39,
Th10;
then
A47: ex p2 st p2
= x & (p2
`2 )
= (q
`2 ) & (q
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 );
x
in (
LSeg (p1,p)) by
A46,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`1 )
= (p
`1 ) & (p1
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 ) } by
A11,
A13,
A38,
Th9;
then ex q2 st q2
= x & (q2
`1 )
= (p
`1 ) & (p1
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 );
hence contradiction by
A43,
A47;
end;
end;
hence thesis;
end;
hence thesis by
A9;
end;
end;
hence thesis;
end;
suppose
A48: (p
`1 )
< (q
`1 );
now
per cases by
A7,
XXREAL_0: 1;
case
A49: (p
`2 )
> (q
`2 );
now
per cases by
XXREAL_0: 1;
suppose
A50: (q
`2 )
> (p1
`2 );
then v
in { p2 : (p2
`1 )
= (p
`1 ) & (p1
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 ) } by
A14,
A15,
A49;
hence contradiction by
A4,
A11,
A13,
A49,
A50,
Th9,
XXREAL_0: 2;
end;
suppose (q
`2 )
= (p1
`2 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose
A51: (q
`2 )
< (p1
`2 );
then p1
in { q2 : (q2
`1 )
= (p
`1 ) & (v
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 ) } by
A5,
A15,
A38;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A38,
A51,
Th9,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
end;
hence contradiction;
end;
case
A52: (p
`2 )
< (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A53: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A10,
A53,
XBOOLE_0:def 3;
case
A54: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`1 )
= (p
`1 ) & (p1
`2 )
<= (q1
`2 ) & (q1
`2 )
<= (v
`2 ) } by
A15,
A38,
A52;
then p
in (
LSeg (p1,v)) by
A11,
A15,
A38,
A52,
Th9,
XXREAL_0: 2;
hence thesis by
A54,
TOPREAL1: 8;
end;
case
A55: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (v,q)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`2 )
= (q
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 ) } by
A12,
A48,
Th10;
then
A56: ex p2 st p2
= x & (p2
`2 )
= (q
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (q
`1 );
x
in (
LSeg (p1,p)) by
A55,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`1 )
= (p
`1 ) & (p1
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 ) } by
A11,
A13,
A38,
Th9;
then ex q2 st q2
= x & (q2
`1 )
= (p
`1 ) & (p1
`2 )
<= (q2
`2 ) & (q2
`2 )
<= (p
`2 );
hence contradiction by
A52,
A56;
end;
end;
hence thesis;
end;
hence thesis by
A9;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
theorem ::
TOPREAL3:44
not p1
in (
Ball (u,r)) & p
in (
Ball (u,r)) &
|[(q
`1 ), (p
`2 )]|
in (
Ball (u,r)) & not
|[(q
`1 ), (p
`2 )]|
in (
LSeg (p1,p)) & (p1
`2 )
= (p
`2 ) & (p
`1 )
<> (q
`1 ) & (p
`2 )
<> (q
`2 ) implies (((
LSeg (p,
|[(q
`1 ), (p
`2 )]|))
\/ (
LSeg (
|[(q
`1 ), (p
`2 )]|,q)))
/\ (
LSeg (p1,p)))
=
{p}
proof
set v =
|[(q
`1 ), (p
`2 )]|;
assume that
A1: not p1
in (
Ball (u,r)) and
A2: p
in (
Ball (u,r)) and
A3: v
in (
Ball (u,r)) and
A4: not v
in (
LSeg (p1,p)) and
A5: (p1
`2 )
= (p
`2 ) and
A6: (p
`1 )
<> (q
`1 ) and
A7: (p
`2 )
<> (q
`2 );
A8: (
LSeg (p,v))
c= (
Ball (u,r)) by
A2,
A3,
Th21;
A9: p1
=
|[(p1
`1 ), (p
`2 )]| by
A5,
EUCLID: 53;
p
in (
LSeg (p,v)) by
RLTOPSP1: 68;
then p
in (
LSeg (p1,p)) & p
in ((
LSeg (p,v))
\/ (
LSeg (v,q))) by
RLTOPSP1: 68,
XBOOLE_0:def 3;
then p
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p))) by
XBOOLE_0:def 4;
then
A10:
{p}
c= (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p))) by
ZFMISC_1: 31;
A11: (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
= (((
LSeg (p,v))
/\ (
LSeg (p1,p)))
\/ ((
LSeg (v,q))
/\ (
LSeg (p1,p)))) by
XBOOLE_1: 23;
A12: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
A13: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
A14: (v
`2 )
= (p
`2 ) by
EUCLID: 52;
A15: (v
`1 )
= (q
`1 ) by
EUCLID: 52;
per cases ;
suppose (p1
`1 )
= (p
`1 );
hence thesis by
A1,
A2,
A5,
Th6;
end;
suppose
A16: (p1
`1 )
<> (p
`1 );
now
per cases by
A16,
XXREAL_0: 1;
suppose
A17: (p1
`1 )
> (p
`1 );
now
per cases by
A6,
XXREAL_0: 1;
case
A18: (p
`1 )
> (q
`1 );
then
A19: (p
`1 )
>= (v
`1 ) by
EUCLID: 52;
now
per cases by
A7,
XXREAL_0: 1;
suppose
A20: (p
`2 )
> (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A21: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A11,
A21,
XBOOLE_0:def 3;
case
A22: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`2 )
= (p
`2 ) & (v
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (p1
`1 ) } by
A17,
A19;
then p
in (
LSeg (p1,v)) by
A9,
A15,
A17,
A18,
Th10,
XXREAL_0: 2;
hence thesis by
A22,
TOPREAL1: 8;
end;
case
A23: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (q,v)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`1 )
= (q
`1 ) & (q
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 ) } by
A12,
A20,
Th9;
then
A24: ex p2 st p2
= x & (p2
`1 )
= (q
`1 ) & (q
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 );
x
in (
LSeg (p,p1)) by
A23,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`2 )
= (p
`2 ) & (p
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p1
`1 ) } by
A9,
A13,
A17,
Th10;
then ex q2 st q2
= x & (q2
`2 )
= (p
`2 ) & (p
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p1
`1 );
hence contradiction by
A18,
A24;
end;
end;
hence thesis;
end;
hence thesis by
A10;
end;
suppose
A25: (p
`2 )
< (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A26: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A11,
A26,
XBOOLE_0:def 3;
case
A27: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`2 )
= (p
`2 ) & (v
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (p1
`1 ) } by
A17,
A19;
then p
in (
LSeg (p1,v)) by
A9,
A15,
A17,
A18,
Th10,
XXREAL_0: 2;
hence thesis by
A27,
TOPREAL1: 8;
end;
case
A28: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (p1,p)) by
XBOOLE_0:def 4;
then x
in { q2 : (q2
`2 )
= (p
`2 ) & (p
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p1
`1 ) } by
A9,
A13,
A17,
Th10;
then
A29: ex q2 st q2
= x & (q2
`2 )
= (p
`2 ) & (p
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p1
`1 );
x
in (
LSeg (v,q)) by
A28,
XBOOLE_0:def 4;
then x
in { p2 : (p2
`1 )
= (q
`1 ) & (v
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 ) } by
A12,
A14,
A25,
Th9;
then ex p2 st p2
= x & (p2
`1 )
= (q
`1 ) & (v
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 );
hence contradiction by
A18,
A29;
end;
end;
hence thesis;
end;
hence thesis by
A10;
end;
end;
hence thesis;
end;
case
A30: (p
`1 )
< (q
`1 );
now
per cases by
XXREAL_0: 1;
suppose
A31: (q
`1 )
> (p1
`1 );
then p1
in { q2 : (q2
`2 )
= (p
`2 ) & (p
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (v
`1 ) } by
A5,
A15,
A17;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A17,
A31,
Th10,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
suppose (q
`1 )
= (p1
`1 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose (q
`1 )
< (p1
`1 );
then v
in { p2 : (p2
`2 )
= (p
`2 ) & (p
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p1
`1 ) } by
A15,
A14,
A30;
hence contradiction by
A4,
A9,
A13,
A17,
Th10;
end;
end;
hence contradiction;
end;
end;
hence thesis;
end;
suppose
A32: (p1
`1 )
< (p
`1 );
now
per cases by
A6,
XXREAL_0: 1;
case
A33: (p
`1 )
> (q
`1 );
now
per cases by
XXREAL_0: 1;
suppose (q
`1 )
> (p1
`1 );
then v
in { q2 : (q2
`2 )
= (p
`2 ) & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p
`1 ) } by
A15,
A14,
A33;
hence contradiction by
A4,
A9,
A13,
A32,
Th10;
end;
suppose (q
`1 )
= (p1
`1 );
hence contradiction by
A1,
A3,
A5,
EUCLID: 53;
end;
suppose
A34: (q
`1 )
< (p1
`1 );
then p1
in { p2 : (p2
`2 )
= (p
`2 ) & (v
`1 )
<= (p2
`1 ) & (p2
`1 )
<= (p
`1 ) } by
A5,
A15,
A32;
then p1
in (
LSeg (p,v)) by
A13,
A15,
A32,
A34,
Th10,
XXREAL_0: 2;
hence contradiction by
A1,
A8;
end;
end;
hence contradiction;
end;
case
A35: (p
`1 )
< (q
`1 );
then
A36: (p
`1 )
<= (v
`1 ) by
EUCLID: 52;
now
per cases by
A7,
XXREAL_0: 1;
suppose
A37: (p
`2 )
> (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A38: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A11,
A38,
XBOOLE_0:def 3;
case
A39: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`2 )
= (p
`2 ) & (p1
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (v
`1 ) } by
A32,
A36;
then p
in (
LSeg (p1,v)) by
A9,
A15,
A32,
A35,
Th10,
XXREAL_0: 2;
hence thesis by
A39,
TOPREAL1: 8;
end;
case
A40: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (v,q)) by
XBOOLE_0:def 4;
then x
in { p2 : (p2
`1 )
= (q
`1 ) & (q
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 ) } by
A12,
A37,
Th9;
then
A41: ex p2 st p2
= x & (p2
`1 )
= (q
`1 ) & (q
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (p
`2 );
x
in (
LSeg (p1,p)) by
A40,
XBOOLE_0:def 4;
then x
in { q2 : (q2
`2 )
= (p
`2 ) & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p
`1 ) } by
A9,
A13,
A32,
Th10;
then ex q2 st q2
= x & (q2
`2 )
= (p
`2 ) & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p
`1 );
hence contradiction by
A35,
A41;
end;
end;
hence thesis;
end;
hence thesis by
A10;
end;
suppose
A42: (p
`2 )
< (q
`2 );
(((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)))
c=
{p}
proof
let x be
object such that
A43: x
in (((
LSeg (p,v))
\/ (
LSeg (v,q)))
/\ (
LSeg (p1,p)));
now
per cases by
A11,
A43,
XBOOLE_0:def 3;
case
A44: x
in ((
LSeg (p,v))
/\ (
LSeg (p1,p)));
p
in { q1 : (q1
`2 )
= (p
`2 ) & (p1
`1 )
<= (q1
`1 ) & (q1
`1 )
<= (v
`1 ) } by
A32,
A36;
then p
in (
LSeg (p1,v)) by
A9,
A15,
A32,
A35,
Th10,
XXREAL_0: 2;
hence thesis by
A44,
TOPREAL1: 8;
end;
case
A45: x
in ((
LSeg (v,q))
/\ (
LSeg (p1,p)));
then x
in (
LSeg (p1,p)) by
XBOOLE_0:def 4;
then x
in { q2 : (q2
`2 )
= (p
`2 ) & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p
`1 ) } by
A9,
A13,
A32,
Th10;
then
A46: ex q2 st q2
= x & (q2
`2 )
= (p
`2 ) & (p1
`1 )
<= (q2
`1 ) & (q2
`1 )
<= (p
`1 );
x
in (
LSeg (v,q)) by
A45,
XBOOLE_0:def 4;
then x
in { p2 : (p2
`1 )
= (q
`1 ) & (v
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 ) } by
A12,
A14,
A42,
Th9;
then ex p2 st p2
= x & (p2
`1 )
= (q
`1 ) & (v
`2 )
<= (p2
`2 ) & (p2
`2 )
<= (q
`2 );
hence contradiction by
A35,
A46;
end;
end;
hence thesis;
end;
hence thesis by
A10;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
reserve f for
FinSequence of
REAL ;
theorem ::
TOPREAL3:45
Th45: (
len f)
= n implies f
in the
carrier of (
Euclid n)
proof
f
in (
REAL
* ) & (n
-tuples_on
REAL )
= { s where s be
Element of (
REAL
* ) : (
len s)
= n } by
FINSEQ_1:def 11,
FINSEQ_2:def 4;
hence thesis;
end;
theorem ::
TOPREAL3:46
(
len f)
= n implies f
in the
carrier of (
TOP-REAL n)
proof
assume (
len f)
= n;
then f
in the
carrier of (
Euclid n) by
Th45;
hence thesis by
Th8;
end;