waybel16.miz
    
    begin
    
    theorem :: 
    
    WAYBEL16:1
    
    
    
    
    
    Th1: for L be 
    sup-Semilattice holds for x,y be 
    Element of L holds ( 
    "/\" ((( 
    uparrow x) 
    /\ ( 
    uparrow y)),L)) 
    = (x 
    "\/" y) 
    
    proof
    
      let L be
    sup-Semilattice;
    
      let x,y be
    Element of L; 
    
      ((
    uparrow x) 
    /\ ( 
    uparrow y)) 
    = ( 
    uparrow (x 
    "\/" y)) by 
    WAYBEL14: 4;
    
      hence thesis by
    WAYBEL_0: 39;
    
    end;
    
    theorem :: 
    
    WAYBEL16:2
    
    for L be
    Semilattice holds for x,y be 
    Element of L holds ( 
    "\/" ((( 
    downarrow x) 
    /\ ( 
    downarrow y)),L)) 
    = (x 
    "/\" y) 
    
    proof
    
      let L be
    Semilattice;
    
      let x,y be
    Element of L; 
    
      ((
    downarrow x) 
    /\ ( 
    downarrow y)) 
    = ( 
    downarrow (x 
    "/\" y)) by 
    WAYBEL14: 3;
    
      hence thesis by
    WAYBEL_0: 34;
    
    end;
    
    theorem :: 
    
    WAYBEL16:3
    
    
    
    
    
    Th3: for L be non 
    empty  
    RelStr holds for x,y be 
    Element of L st x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow y)) holds (( 
    uparrow x) 
    \  
    {x})
    = (( 
    uparrow x) 
    /\ ( 
    uparrow y)) 
    
    proof
    
      let L be non
    empty  
    RelStr;
    
      let x,y be
    Element of L; 
    
      assume
    
      
    
    A1: x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow y)); 
    
      then x
    in (the 
    carrier of L 
    \ ( 
    uparrow y)) by 
    WAYBEL_4: 55;
    
      then not x
    in ( 
    uparrow y) by 
    XBOOLE_0:def 5;
    
      then
    
      
    
    A2: not y 
    <= x by 
    WAYBEL_0: 18;
    
      thus ((
    uparrow x) 
    \  
    {x})
    c= (( 
    uparrow x) 
    /\ ( 
    uparrow y)) 
    
      proof
    
        let a be
    object;
    
        assume
    
        
    
    A3: a 
    in (( 
    uparrow x) 
    \  
    {x});
    
        then
    
        reconsider a1 = a as
    Element of L; 
    
         not a
    in  
    {x} by
    A3,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A4: a1 
    <> x by 
    TARSKI:def 1;
    
        
    
        
    
    A5: a 
    in ( 
    uparrow x) by 
    A3,
    XBOOLE_0:def 5;
    
        then x
    <= a1 by 
    WAYBEL_0: 18;
    
        then x
    < a1 by 
    A4,
    ORDERS_2:def 6;
    
        then not a1
    in (the 
    carrier of L 
    \ ( 
    uparrow y)) by 
    A1,
    WAYBEL_4: 55;
    
        then a
    in ( 
    uparrow y) by 
    XBOOLE_0:def 5;
    
        hence thesis by
    A5,
    XBOOLE_0:def 4;
    
      end;
    
      let a be
    object;
    
      assume
    
      
    
    A6: a 
    in (( 
    uparrow x) 
    /\ ( 
    uparrow y)); 
    
      then
    
      
    
    A7: a 
    in ( 
    uparrow x) by 
    XBOOLE_0:def 4;
    
      reconsider a1 = a as
    Element of L by 
    A6;
    
      a
    in ( 
    uparrow y) by 
    A6,
    XBOOLE_0:def 4;
    
      then y
    <= a1 by 
    WAYBEL_0: 18;
    
      then not a
    in  
    {x} by
    A2,
    TARSKI:def 1;
    
      hence thesis by
    A7,
    XBOOLE_0:def 5;
    
    end;
    
    theorem :: 
    
    WAYBEL16:4
    
    for L be non
    empty  
    RelStr holds for x,y be 
    Element of L st x 
    is_minimal_in (the 
    carrier of L 
    \ ( 
    downarrow y)) holds (( 
    downarrow x) 
    \  
    {x})
    = (( 
    downarrow x) 
    /\ ( 
    downarrow y)) 
    
    proof
    
      let L be non
    empty  
    RelStr;
    
      let x,y be
    Element of L; 
    
      assume
    
      
    
    A1: x 
    is_minimal_in (the 
    carrier of L 
    \ ( 
    downarrow y)); 
    
      then x
    in (the 
    carrier of L 
    \ ( 
    downarrow y)) by 
    WAYBEL_4: 56;
    
      then not x
    in ( 
    downarrow y) by 
    XBOOLE_0:def 5;
    
      then
    
      
    
    A2: not x 
    <= y by 
    WAYBEL_0: 17;
    
      thus ((
    downarrow x) 
    \  
    {x})
    c= (( 
    downarrow x) 
    /\ ( 
    downarrow y)) 
    
      proof
    
        let a be
    object;
    
        assume
    
        
    
    A3: a 
    in (( 
    downarrow x) 
    \  
    {x});
    
        then
    
        reconsider a1 = a as
    Element of L; 
    
         not a
    in  
    {x} by
    A3,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A4: a1 
    <> x by 
    TARSKI:def 1;
    
        
    
        
    
    A5: a 
    in ( 
    downarrow x) by 
    A3,
    XBOOLE_0:def 5;
    
        then a1
    <= x by 
    WAYBEL_0: 17;
    
        then a1
    < x by 
    A4,
    ORDERS_2:def 6;
    
        then not a1
    in (the 
    carrier of L 
    \ ( 
    downarrow y)) by 
    A1,
    WAYBEL_4: 56;
    
        then a
    in ( 
    downarrow y) by 
    XBOOLE_0:def 5;
    
        hence thesis by
    A5,
    XBOOLE_0:def 4;
    
      end;
    
      let a be
    object;
    
      assume
    
      
    
    A6: a 
    in (( 
    downarrow x) 
    /\ ( 
    downarrow y)); 
    
      then
    
      
    
    A7: a 
    in ( 
    downarrow x) by 
    XBOOLE_0:def 4;
    
      reconsider a1 = a as
    Element of L by 
    A6;
    
      a
    in ( 
    downarrow y) by 
    A6,
    XBOOLE_0:def 4;
    
      then a1
    <= y by 
    WAYBEL_0: 17;
    
      then not a
    in  
    {x} by
    A2,
    TARSKI:def 1;
    
      hence thesis by
    A7,
    XBOOLE_0:def 5;
    
    end;
    
    theorem :: 
    
    WAYBEL16:5
    
    
    
    
    
    Th5: for L be 
    with_suprema  
    Poset holds for X,Y be 
    Subset of L holds for X9,Y9 be 
    Subset of (L 
    opp ) st X 
    = X9 & Y 
    = Y9 holds (X 
    "\/" Y) 
    = (X9 
    "/\" Y9) 
    
    proof
    
      let L be
    with_suprema  
    Poset;
    
      let X,Y be
    Subset of L; 
    
      let X9,Y9 be
    Subset of (L 
    opp ); 
    
      assume
    
      
    
    A1: X 
    = X9 & Y 
    = Y9; 
    
      thus (X
    "\/" Y) 
    c= (X9 
    "/\" Y9) 
    
      proof
    
        let a be
    object;
    
        assume a
    in (X 
    "\/" Y); 
    
        then a
    in { (p 
    "\/" q) where p,q be 
    Element of L : p 
    in X & q 
    in Y } by 
    YELLOW_4:def 3;
    
        then
    
        consider x,y be
    Element of L such that 
    
        
    
    A2: a 
    = (x 
    "\/" y) and 
    
        
    
    A3: x 
    in X & y 
    in Y; 
    
        
    
        
    
    A4: a 
    = ((x 
    ~ ) 
    "/\" (y 
    ~ )) by 
    A2,
    YELLOW_7: 23;
    
        (x
    ~ ) 
    in X9 & (y 
    ~ ) 
    in Y9 by 
    A1,
    A3,
    LATTICE3:def 6;
    
        then a
    in { (p 
    "/\" q) where p,q be 
    Element of (L 
    opp ) : p 
    in X9 & q 
    in Y9 } by 
    A4;
    
        hence thesis by
    YELLOW_4:def 4;
    
      end;
    
      let a be
    object;
    
      assume a
    in (X9 
    "/\" Y9); 
    
      then a
    in { (p 
    "/\" q) where p,q be 
    Element of (L 
    opp ) : p 
    in X9 & q 
    in Y9 } by 
    YELLOW_4:def 4;
    
      then
    
      consider x,y be
    Element of (L 
    opp ) such that 
    
      
    
    A5: a 
    = (x 
    "/\" y) and 
    
      
    
    A6: x 
    in X9 & y 
    in Y9; 
    
      
    
      
    
    A7: a 
    = (( 
    ~ x) 
    "\/" ( 
    ~ y)) by 
    A5,
    YELLOW_7: 24;
    
      (
    ~ x) 
    in X & ( 
    ~ y) 
    in Y by 
    A1,
    A6,
    LATTICE3:def 7;
    
      then a
    in { (p 
    "\/" q) where p,q be 
    Element of L : p 
    in X & q 
    in Y } by 
    A7;
    
      hence thesis by
    YELLOW_4:def 3;
    
    end;
    
    theorem :: 
    
    WAYBEL16:6
    
    for L be
    with_infima  
    Poset holds for X,Y be 
    Subset of L holds for X9,Y9 be 
    Subset of (L 
    opp ) st X 
    = X9 & Y 
    = Y9 holds (X 
    "/\" Y) 
    = (X9 
    "\/" Y9) 
    
    proof
    
      let L be
    with_infima  
    Poset;
    
      let X,Y be
    Subset of L; 
    
      let X9,Y9 be
    Subset of (L 
    opp ); 
    
      assume
    
      
    
    A1: X 
    = X9 & Y 
    = Y9; 
    
      thus (X
    "/\" Y) 
    c= (X9 
    "\/" Y9) 
    
      proof
    
        let a be
    object;
    
        assume a
    in (X 
    "/\" Y); 
    
        then a
    in { (p 
    "/\" q) where p,q be 
    Element of L : p 
    in X & q 
    in Y } by 
    YELLOW_4:def 4;
    
        then
    
        consider x,y be
    Element of L such that 
    
        
    
    A2: a 
    = (x 
    "/\" y) and 
    
        
    
    A3: x 
    in X & y 
    in Y; 
    
        
    
        
    
    A4: a 
    = ((x 
    ~ ) 
    "\/" (y 
    ~ )) by 
    A2,
    YELLOW_7: 21;
    
        (x
    ~ ) 
    in X9 & (y 
    ~ ) 
    in Y9 by 
    A1,
    A3,
    LATTICE3:def 6;
    
        then a
    in { (p 
    "\/" q) where p,q be 
    Element of (L 
    opp ) : p 
    in X9 & q 
    in Y9 } by 
    A4;
    
        hence thesis by
    YELLOW_4:def 3;
    
      end;
    
      let a be
    object;
    
      assume a
    in (X9 
    "\/" Y9); 
    
      then a
    in { (p 
    "\/" q) where p,q be 
    Element of (L 
    opp ) : p 
    in X9 & q 
    in Y9 } by 
    YELLOW_4:def 3;
    
      then
    
      consider x,y be
    Element of (L 
    opp ) such that 
    
      
    
    A5: a 
    = (x 
    "\/" y) and 
    
      
    
    A6: x 
    in X9 & y 
    in Y9; 
    
      
    
      
    
    A7: a 
    = (( 
    ~ x) 
    "/\" ( 
    ~ y)) by 
    A5,
    YELLOW_7: 22;
    
      (
    ~ x) 
    in X & ( 
    ~ y) 
    in Y by 
    A1,
    A6,
    LATTICE3:def 7;
    
      then a
    in { (p 
    "/\" q) where p,q be 
    Element of L : p 
    in X & q 
    in Y } by 
    A7;
    
      hence thesis by
    YELLOW_4:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL16:7
    
    
    
    
    
    Th7: for L be non 
    empty
    reflexive
    transitive  
    RelStr holds ( 
    Filt L) 
    = ( 
    Ids (L 
    opp )) 
    
    proof
    
      let L be non
    empty
    reflexive
    transitive  
    RelStr;
    
      
    
      
    
    A1: ( 
    Ids (L 
    opp )) 
    c= ( 
    Filt L) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Ids (L 
    opp )); 
    
        then x
    in the set of all X where X be 
    Ideal of (L 
    opp ) by 
    WAYBEL_0:def 23;
    
        then
    
        consider x1 be
    Ideal of (L 
    opp ) such that 
    
        
    
    A2: x1 
    = x; 
    
        x1 is
    upper  
    Subset of L & x1 is 
    filtered  
    Subset of L by 
    YELLOW_7: 27,
    YELLOW_7: 29;
    
        then x
    in the set of all X where X be 
    Filter of L by 
    A2;
    
        hence thesis by
    WAYBEL_0:def 24;
    
      end;
    
      (
    Filt L) 
    c= ( 
    Ids (L 
    opp )) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Filt L); 
    
        then x
    in the set of all X where X be 
    Filter of L by 
    WAYBEL_0:def 24;
    
        then
    
        consider x1 be
    Filter of L such that 
    
        
    
    A3: x1 
    = x; 
    
        x1 is
    lower  
    Subset of (L 
    opp ) & x1 is 
    directed  
    Subset of (L 
    opp ) by 
    YELLOW_7: 27,
    YELLOW_7: 29;
    
        then x
    in the set of all X where X be 
    Ideal of (L 
    opp ) by 
    A3;
    
        hence thesis by
    WAYBEL_0:def 23;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    WAYBEL16:8
    
    for L be non
    empty
    reflexive
    transitive  
    RelStr holds ( 
    Ids L) 
    = ( 
    Filt (L 
    opp )) 
    
    proof
    
      let L be non
    empty
    reflexive
    transitive  
    RelStr;
    
      
    
      
    
    A1: ( 
    Filt (L 
    opp )) 
    c= ( 
    Ids L) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Filt (L 
    opp )); 
    
        then x
    in the set of all X where X be 
    Filter of (L 
    opp ) by 
    WAYBEL_0:def 24;
    
        then
    
        consider x1 be
    Filter of (L 
    opp ) such that 
    
        
    
    A2: x1 
    = x; 
    
        x1 is
    lower  
    Subset of L & x1 is 
    directed  
    Subset of L by 
    YELLOW_7: 26,
    YELLOW_7: 28;
    
        then x
    in the set of all X where X be 
    Ideal of L by 
    A2;
    
        hence thesis by
    WAYBEL_0:def 23;
    
      end;
    
      (
    Ids L) 
    c= ( 
    Filt (L 
    opp )) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Ids L); 
    
        then x
    in the set of all X where X be 
    Ideal of L by 
    WAYBEL_0:def 23;
    
        then
    
        consider x1 be
    Ideal of L such that 
    
        
    
    A3: x1 
    = x; 
    
        x1 is
    upper  
    Subset of (L 
    opp ) & x1 is 
    filtered  
    Subset of (L 
    opp ) by 
    YELLOW_7: 26,
    YELLOW_7: 28;
    
        then x
    in the set of all X where X be 
    Filter of (L 
    opp ) by 
    A3;
    
        hence thesis by
    WAYBEL_0:def 24;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    begin
    
    definition
    
      let S,T be
    complete non 
    empty  
    Poset;
    
      :: 
    
    WAYBEL16:def1
    
      mode
    
    CLHomomorphism of S,T -> 
    Function of S, T means it is 
    directed-sups-preserving
    infs-preserving;
    
      existence
    
      proof
    
        reconsider f = (the
    carrier of S 
    --> ( 
    Top T)) as 
    Function of the 
    carrier of S, the 
    carrier of T; 
    
        reconsider f as
    Function of S, T; 
    
        take f;
    
        now
    
          let X be
    Subset of S; 
    
          assume
    
          
    
    A1: X is non 
    empty
    directed;
    
          now
    
            assume
    ex_sup_of (X,S); 
    
            (
    rng f) 
    =  
    {(
    Top T)} by 
    FUNCOP_1: 8;
    
            then
    
            
    
    A2: (f 
    .: X) 
    c=  
    {(
    Top T)} by 
    RELAT_1: 111;
    
            now
    
              let x,y be
    Element of S; 
    
              assume x
    <= y; 
    
              (f
    . x) 
    = ( 
    Top T) by 
    FUNCOP_1: 7
    
              .= (f
    . y) by 
    FUNCOP_1: 7;
    
              hence (f
    . x) 
    <= (f 
    . y); 
    
            end;
    
            then f is
    monotone by 
    WAYBEL_1:def 2;
    
            then
    
            
    
    A3: (f 
    .: X) is non 
    empty
    finite
    directed  
    Subset of T by 
    A1,
    A2,
    YELLOW_2: 15;
    
            hence
    ex_sup_of ((f 
    .: X),T) by 
    WAYBEL_0: 75;
    
            (
    sup (f 
    .: X)) 
    in (f 
    .: X) by 
    A3,
    WAYBEL_3: 16;
    
            then (
    sup (f 
    .: X)) 
    = ( 
    Top T) by 
    A2,
    TARSKI:def 1;
    
            hence (
    sup (f 
    .: X)) 
    = (f 
    . ( 
    sup X)) by 
    FUNCOP_1: 7;
    
          end;
    
          hence f
    preserves_sup_of X by 
    WAYBEL_0:def 31;
    
        end;
    
        hence f is
    directed-sups-preserving by 
    WAYBEL_0:def 37;
    
        now
    
          let X be
    Subset of S; 
    
          now
    
            assume
    ex_inf_of (X,S); 
    
            thus
    ex_inf_of ((f 
    .: X),T) by 
    YELLOW_0: 17;
    
            (
    rng f) 
    =  
    {(
    Top T)} by 
    FUNCOP_1: 8;
    
            then
    
            
    
    A4: (f 
    .: X) is 
    Subset of 
    {(
    Top T)} by 
    RELAT_1: 111;
    
            now
    
              per cases ;
    
                suppose (f
    .: X) 
    =  
    {} ; 
    
                
    
                hence (
    inf (f 
    .: X)) 
    = ( 
    Top T) by 
    YELLOW_0:def 12
    
                .= (f
    . ( 
    inf X)) by 
    FUNCOP_1: 7;
    
              end;
    
                suppose (f
    .: X) 
    <>  
    {} ; 
    
                then (f
    .: X) 
    =  
    {(
    Top T)} by 
    A4,
    ZFMISC_1: 33;
    
                
    
                hence (
    inf (f 
    .: X)) 
    = ( 
    Top T) by 
    YELLOW_0: 39
    
                .= (f
    . ( 
    inf X)) by 
    FUNCOP_1: 7;
    
              end;
    
            end;
    
            hence (
    inf (f 
    .: X)) 
    = (f 
    . ( 
    inf X)); 
    
          end;
    
          hence f
    preserves_inf_of X by 
    WAYBEL_0:def 30;
    
        end;
    
        hence thesis by
    WAYBEL_0:def 32;
    
      end;
    
    end
    
    definition
    
      let S be
    continuous
    complete non 
    empty  
    Poset;
    
      let A be
    Subset of S; 
    
      :: 
    
    WAYBEL16:def2
    
      pred A
    
    is_FG_set means for T be 
    continuous
    complete non 
    empty  
    Poset holds for f be 
    Function of A, the 
    carrier of T holds ex h be 
    CLHomomorphism of S, T st (h 
    | A) 
    = f & for h9 be 
    CLHomomorphism of S, T st (h9 
    | A) 
    = f holds h9 
    = h; 
    
    end
    
    registration
    
      let L be
    upper-bounded non 
    empty  
    Poset;
    
      cluster ( 
    Filt L) -> non 
    empty;
    
      coherence
    
      proof
    
        now
    
          let x,y be
    Element of L; 
    
          assume that
    
          
    
    A1: x 
    in  
    {(
    Top L)} and 
    
          
    
    A2: x 
    <= y; 
    
          x
    = ( 
    Top L) by 
    A1,
    TARSKI:def 1;
    
          then y
    = ( 
    Top L) by 
    A2,
    WAYBEL15: 3;
    
          hence y
    in  
    {(
    Top L)} by 
    TARSKI:def 1;
    
        end;
    
        then
    {(
    Top L)} is 
    Filter of L by 
    WAYBEL_0: 5,
    WAYBEL_0:def 20;
    
        then
    {(
    Top L)} 
    in the set of all Y where Y be 
    Filter of L; 
    
        hence thesis by
    WAYBEL_0:def 24;
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL16:9
    
    
    
    
    
    Th9: for X be 
    set holds for Y be non 
    empty  
    Subset of ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X))) holds ( 
    meet Y) is 
    Filter of ( 
    BoolePoset X) 
    
    proof
    
      let X be
    set;
    
      set L = (
    BoolePoset X); 
    
      let Y be non
    empty  
    Subset of ( 
    InclPoset ( 
    Filt L)); 
    
      
    
    A1: 
    
      now
    
        let Z be
    set;
    
        assume Z
    in Y; 
    
        then Z
    in the 
    carrier of ( 
    InclPoset ( 
    Filt L)); 
    
        then Z
    in the 
    carrier of 
    RelStr (# ( 
    Filt L), ( 
    RelIncl ( 
    Filt L)) #) by 
    YELLOW_1:def 1;
    
        then Z
    in the set of all V where V be 
    Filter of L by 
    WAYBEL_0:def 24;
    
        then ex Z1 be
    Filter of L st Z1 
    = Z; 
    
        hence (
    Top L) 
    in Z by 
    WAYBEL_4: 22;
    
      end;
    
      Y
    c= the 
    carrier of ( 
    InclPoset ( 
    Filt L)); 
    
      then
    
      
    
    A2: Y 
    c= the 
    carrier of 
    RelStr (# ( 
    Filt L), ( 
    RelIncl ( 
    Filt L)) #) by 
    YELLOW_1:def 1;
    
      
    
      
    
    A3: for Z be 
    Subset of L st Z 
    in Y holds Z is 
    upper
    
      proof
    
        let Z be
    Subset of L; 
    
        assume Z
    in Y; 
    
        then Z
    in ( 
    Filt L) by 
    A2;
    
        then Z
    in the set of all V where V be 
    Filter of L by 
    WAYBEL_0:def 24;
    
        then ex Z1 be
    Filter of L st Z1 
    = Z; 
    
        hence thesis;
    
      end;
    
      
    
    A4: 
    
      now
    
        let V be
    Subset of L; 
    
        assume V
    in Y; 
    
        then V
    in ( 
    Filt L) by 
    A2;
    
        then V
    in the set of all Z where Z be 
    Filter of L by 
    WAYBEL_0:def 24;
    
        then
    
        
    
    A5: ex V1 be 
    Filter of L st V1 
    = V; 
    
        hence V is
    upper;
    
        thus V is
    filtered by 
    A5;
    
      end;
    
      Y
    c= ( 
    bool the 
    carrier of L) 
    
      proof
    
        let v be
    object;
    
        assume v
    in Y; 
    
        then v
    in ( 
    Filt L) by 
    A2;
    
        then v
    in the set of all V where V be 
    Filter of L by 
    WAYBEL_0:def 24;
    
        then ex v1 be
    Filter of L st v1 
    = v; 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    A3,
    A4,
    SETFAM_1:def 1,
    YELLOW_2: 37,
    YELLOW_2: 39;
    
    end;
    
    theorem :: 
    
    WAYBEL16:10
    
    for X be
    set holds for Y be non 
    empty  
    Subset of ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X))) holds 
    ex_inf_of (Y,( 
    InclPoset ( 
    Filt ( 
    BoolePoset X)))) & ( 
    "/\" (Y,( 
    InclPoset ( 
    Filt ( 
    BoolePoset X))))) 
    = ( 
    meet Y) 
    
    proof
    
      let X be
    set;
    
      set L = (
    InclPoset ( 
    Filt ( 
    BoolePoset X))); 
    
      let Y be non
    empty  
    Subset of L; 
    
      (
    meet Y) is 
    Filter of ( 
    BoolePoset X) by 
    Th9;
    
      then (
    meet Y) 
    in the set of all Z where Z be 
    Filter of ( 
    BoolePoset X); 
    
      then (
    meet Y) 
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    WAYBEL_0:def 24;
    
      then
    
      reconsider a = (
    meet Y) as 
    Element of L by 
    YELLOW_1:def 1;
    
      
    
      
    
    A1: for b be 
    Element of L st b 
    is_<=_than Y holds b 
    <= a 
    
      proof
    
        let b be
    Element of L; 
    
        assume
    
        
    
    A2: b 
    is_<=_than Y; 
    
        for x be
    set st x 
    in Y holds b 
    c= x by 
    YELLOW_1: 3,
    A2,
    LATTICE3:def 8;
    
        then b
    c= ( 
    meet Y) by 
    SETFAM_1: 5;
    
        hence thesis by
    YELLOW_1: 3;
    
      end;
    
      for b be
    Element of L st b 
    in Y holds a 
    <= b by 
    YELLOW_1: 3,
    SETFAM_1: 3;
    
      then a
    is_<=_than Y by 
    LATTICE3:def 8;
    
      hence thesis by
    A1,
    YELLOW_0: 31;
    
    end;
    
    theorem :: 
    
    WAYBEL16:11
    
    
    
    
    
    Th11: for X be 
    set holds ( 
    bool X) is 
    Filter of ( 
    BoolePoset X) 
    
    proof
    
      let X be
    set;
    
      (
    bool X) 
    c= the 
    carrier of ( 
    BoolePoset X) by 
    WAYBEL_7: 2;
    
      then
    
      reconsider A = (
    bool X) as non 
    empty  
    Subset of ( 
    BoolePoset X); 
    
      
    
    A1: 
    
      now
    
        let x,y be
    set;
    
        assume x
    in A & y 
    in A; 
    
        then (x
    /\ y) 
    c= (X 
    /\ X) by 
    XBOOLE_1: 27;
    
        hence (x
    /\ y) 
    in A; 
    
      end;
    
      for x,y be
    set st x 
    c= y & y 
    c= X & x 
    in A holds y 
    in A; 
    
      then A is
    upper by 
    WAYBEL_7: 7;
    
      hence thesis by
    A1,
    WAYBEL_7: 9;
    
    end;
    
    theorem :: 
    
    WAYBEL16:12
    
    
    
    
    
    Th12: for X be 
    set holds 
    {X} is
    Filter of ( 
    BoolePoset X) 
    
    proof
    
      let X be
    set;
    
      now
    
        let c be
    object;
    
        assume c
    in  
    {X};
    
        then c
    = X by 
    TARSKI:def 1;
    
        then c is
    Element of ( 
    BoolePoset X) by 
    WAYBEL_8: 26;
    
        hence c
    in the 
    carrier of ( 
    BoolePoset X); 
    
      end;
    
      then
    
      reconsider A =
    {X} as non
    empty  
    Subset of ( 
    BoolePoset X) by 
    TARSKI:def 3;
    
      for x,y be
    set st x 
    c= y & y 
    c= X & x 
    in A holds y 
    in A 
    
      proof
    
        let x,y be
    set;
    
        assume that
    
        
    
    A1: x 
    c= y & y 
    c= X and 
    
        
    
    A2: x 
    in A; 
    
        x
    = X by 
    A2,
    TARSKI:def 1;
    
        then y
    = X by 
    A1;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A3: A is 
    upper by 
    WAYBEL_7: 7;
    
      now
    
        let x,y be
    set;
    
        assume x
    in A & y 
    in A; 
    
        then x
    = X & y 
    = X by 
    TARSKI:def 1;
    
        hence (x
    /\ y) 
    in A by 
    TARSKI:def 1;
    
      end;
    
      hence thesis by
    A3,
    WAYBEL_7: 9;
    
    end;
    
    theorem :: 
    
    WAYBEL16:13
    
    for X be
    set holds ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X))) is 
    upper-bounded
    
    proof
    
      let X be
    set;
    
      set L = (
    InclPoset ( 
    Filt ( 
    BoolePoset X))); 
    
      (
    bool X) is 
    Filter of ( 
    BoolePoset X) by 
    Th11;
    
      then (
    bool X) 
    in the set of all Z where Z be 
    Filter of ( 
    BoolePoset X); 
    
      then (
    bool X) 
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    WAYBEL_0:def 24;
    
      then
    
      reconsider x = (
    bool X) as 
    Element of L by 
    YELLOW_1:def 1;
    
      now
    
        let b be
    Element of L; 
    
        assume b
    in the 
    carrier of L; 
    
        then b
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    YELLOW_1:def 1;
    
        then b
    in the set of all V where V be 
    Filter of ( 
    BoolePoset X) by 
    WAYBEL_0:def 24;
    
        then ex b1 be
    Filter of ( 
    BoolePoset X) st b1 
    = b; 
    
        then b
    c= the 
    carrier of ( 
    BoolePoset X); 
    
        then b
    c= ( 
    bool X) by 
    WAYBEL_7: 2;
    
        hence b
    <= x by 
    YELLOW_1: 3;
    
      end;
    
      then x
    is_>=_than the 
    carrier of L by 
    LATTICE3:def 9;
    
      hence thesis by
    YELLOW_0:def 5;
    
    end;
    
    theorem :: 
    
    WAYBEL16:14
    
    for X be
    set holds ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X))) is 
    lower-bounded
    
    proof
    
      let X be
    set;
    
      set L = (
    InclPoset ( 
    Filt ( 
    BoolePoset X))); 
    
      
    {X} is
    Filter of ( 
    BoolePoset X) by 
    Th12;
    
      then
    {X}
    in the set of all Z where Z be 
    Filter of ( 
    BoolePoset X); 
    
      then
    {X}
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    WAYBEL_0:def 24;
    
      then
    
      reconsider x =
    {X} as
    Element of L by 
    YELLOW_1:def 1;
    
      now
    
        let b be
    Element of L; 
    
        assume b
    in the 
    carrier of L; 
    
        then b
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    YELLOW_1:def 1;
    
        then b
    in the set of all V where V be 
    Filter of ( 
    BoolePoset X) by 
    WAYBEL_0:def 24;
    
        then
    
        consider b1 be
    Filter of ( 
    BoolePoset X) such that 
    
        
    
    A1: b1 
    = b; 
    
        consider d be
    object such that 
    
        
    
    A2: d 
    in b1 by 
    XBOOLE_0:def 1;
    
        reconsider d as
    set by 
    TARSKI: 1;
    
        
    
        
    
    A3: d 
    c= X by 
    A2,
    WAYBEL_8: 26;
    
        now
    
          let c be
    object;
    
          assume c
    in  
    {X};
    
          then c
    = X by 
    TARSKI:def 1;
    
          hence c
    in b by 
    A1,
    A2,
    A3,
    WAYBEL_7: 7;
    
        end;
    
        then
    {X}
    c= b; 
    
        hence x
    <= b by 
    YELLOW_1: 3;
    
      end;
    
      then x
    is_<=_than the 
    carrier of L by 
    LATTICE3:def 8;
    
      hence thesis by
    YELLOW_0:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL16:15
    
    for X be
    set holds ( 
    Top ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X)))) 
    = ( 
    bool X) 
    
    proof
    
      let X be
    set;
    
      set L = (
    InclPoset ( 
    Filt ( 
    BoolePoset X))); 
    
      (
    bool X) is 
    Filter of ( 
    BoolePoset X) by 
    Th11;
    
      then (
    bool X) 
    in the set of all Z where Z be 
    Filter of ( 
    BoolePoset X); 
    
      then (
    bool X) 
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    WAYBEL_0:def 24;
    
      then
    
      reconsider bX = (
    bool X) as 
    Element of L by 
    YELLOW_1:def 1;
    
      
    
      
    
    A1: for b be 
    Element of L st b 
    is_<=_than  
    {} holds bX 
    >= b 
    
      proof
    
        let b be
    Element of L; 
    
        assume b
    is_<=_than  
    {} ; 
    
        b
    in the 
    carrier of L; 
    
        then b
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    YELLOW_1:def 1;
    
        then b
    in the set of all V where V be 
    Filter of ( 
    BoolePoset X) by 
    WAYBEL_0:def 24;
    
        then ex b1 be
    Filter of ( 
    BoolePoset X) st b1 
    = b; 
    
        then b
    c= the 
    carrier of ( 
    BoolePoset X); 
    
        then b
    c= ( 
    bool X) by 
    WAYBEL_7: 2;
    
        hence thesis by
    YELLOW_1: 3;
    
      end;
    
      bX
    is_<=_than  
    {} by 
    YELLOW_0: 6;
    
      then (
    "/\" ( 
    {} ,L)) 
    = ( 
    bool X) by 
    A1,
    YELLOW_0: 31;
    
      hence thesis by
    YELLOW_0:def 12;
    
    end;
    
    theorem :: 
    
    WAYBEL16:16
    
    for X be
    set holds ( 
    Bottom ( 
    InclPoset ( 
    Filt ( 
    BoolePoset X)))) 
    =  
    {X}
    
    proof
    
      let X be
    set;
    
      set L = (
    InclPoset ( 
    Filt ( 
    BoolePoset X))); 
    
      
    {X} is
    Filter of ( 
    BoolePoset X) by 
    Th12;
    
      then
    {X}
    in the set of all Z where Z be 
    Filter of ( 
    BoolePoset X); 
    
      then
    {X}
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    WAYBEL_0:def 24;
    
      then
    
      reconsider bX =
    {X} as
    Element of L by 
    YELLOW_1:def 1;
    
      
    
      
    
    A1: for b be 
    Element of L st b 
    is_>=_than  
    {} holds bX 
    <= b 
    
      proof
    
        let b be
    Element of L; 
    
        assume b
    is_>=_than  
    {} ; 
    
        b
    in the 
    carrier of L; 
    
        then b
    in the 
    carrier of 
    RelStr (# ( 
    Filt ( 
    BoolePoset X)), ( 
    RelIncl ( 
    Filt ( 
    BoolePoset X))) #) by 
    YELLOW_1:def 1;
    
        then b
    in the set of all V where V be 
    Filter of ( 
    BoolePoset X) by 
    WAYBEL_0:def 24;
    
        then
    
        consider b1 be
    Filter of ( 
    BoolePoset X) such that 
    
        
    
    A2: b1 
    = b; 
    
        consider d be
    object such that 
    
        
    
    A3: d 
    in b1 by 
    XBOOLE_0:def 1;
    
        reconsider d as
    set by 
    TARSKI: 1;
    
        
    
        
    
    A4: d 
    c= X by 
    A3,
    WAYBEL_8: 26;
    
        now
    
          let c be
    object;
    
          assume c
    in  
    {X};
    
          then c
    = X by 
    TARSKI:def 1;
    
          hence c
    in b by 
    A2,
    A3,
    A4,
    WAYBEL_7: 7;
    
        end;
    
        then
    {X}
    c= b; 
    
        hence thesis by
    YELLOW_1: 3;
    
      end;
    
      bX
    is_>=_than  
    {} by 
    YELLOW_0: 6;
    
      then (
    "\/" ( 
    {} ,L)) 
    =  
    {X} by
    A1,
    YELLOW_0: 30;
    
      hence thesis by
    YELLOW_0:def 11;
    
    end;
    
    theorem :: 
    
    WAYBEL16:17
    
    for X be non
    empty  
    set holds for Y be non 
    empty  
    Subset of ( 
    InclPoset X) st 
    ex_sup_of (Y,( 
    InclPoset X)) holds ( 
    union Y) 
    c= ( 
    sup Y) 
    
    proof
    
      let X be non
    empty  
    set;
    
      let Y be non
    empty  
    Subset of ( 
    InclPoset X); 
    
      assume
    
      
    
    A1: 
    ex_sup_of (Y,( 
    InclPoset X)); 
    
      now
    
        let x be
    set;
    
        assume
    
        
    
    A2: x 
    in Y; 
    
        then
    
        reconsider x1 = x as
    Element of ( 
    InclPoset X); 
    
        (
    sup Y) 
    is_>=_than Y by 
    A1,
    YELLOW_0: 30;
    
        then (
    sup Y) 
    >= x1 by 
    A2,
    LATTICE3:def 9;
    
        hence x
    c= ( 
    sup Y) by 
    YELLOW_1: 3;
    
      end;
    
      hence thesis by
    ZFMISC_1: 76;
    
    end;
    
    theorem :: 
    
    WAYBEL16:18
    
    
    
    
    
    Th18: for L be 
    upper-bounded  
    Semilattice holds ( 
    InclPoset ( 
    Filt L)) is 
    complete
    
    proof
    
      let L be
    upper-bounded  
    Semilattice;
    
      (
    InclPoset ( 
    Ids (L 
    opp ))) is 
    complete;
    
      hence thesis by
    Th7;
    
    end;
    
    registration
    
      let L be
    upper-bounded  
    Semilattice;
    
      cluster ( 
    InclPoset ( 
    Filt L)) -> 
    complete;
    
      coherence by
    Th18;
    
    end
    
    begin
    
    definition
    
      let L be non
    empty  
    RelStr;
    
      let p be
    Element of L; 
    
      :: 
    
    WAYBEL16:def3
    
      attr p is
    
    completely-irreducible means 
    ex_min_of ((( 
    uparrow p) 
    \  
    {p}),L);
    
    end
    
    theorem :: 
    
    WAYBEL16:19
    
    
    
    
    
    Th19: for L be non 
    empty  
    RelStr holds for p be 
    Element of L st p is 
    completely-irreducible holds ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    <> p 
    
    proof
    
      let L be non
    empty  
    RelStr;
    
      let p be
    Element of L; 
    
      assume p is
    completely-irreducible;
    
      then
    ex_min_of ((( 
    uparrow p) 
    \  
    {p}),L);
    
      then (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    in (( 
    uparrow p) 
    \  
    {p}) by
    WAYBEL_1:def 4;
    
      then not (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    in  
    {p} by
    XBOOLE_0:def 5;
    
      hence thesis by
    TARSKI:def 1;
    
    end;
    
    definition
    
      let L be non
    empty  
    RelStr;
    
      :: 
    
    WAYBEL16:def4
    
      func
    
    Irr L -> 
    Subset of L means 
    
      :
    
    Def4: for x be 
    Element of L holds x 
    in it iff x is 
    completely-irreducible;
    
      existence
    
      proof
    
        defpred
    
    P[
    Element of L] means $1 is 
    completely-irreducible;
    
        consider X be
    Subset of L such that 
    
        
    
    A1: for x be 
    Element of L holds x 
    in X iff 
    P[x] from
    SUBSET_1:sch 3;
    
        take X;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let S1,S2 be
    Subset of L such that 
    
        
    
    A2: for x be 
    Element of L holds x 
    in S1 iff x is 
    completely-irreducible and 
    
        
    
    A3: for x be 
    Element of L holds x 
    in S2 iff x is 
    completely-irreducible;
    
        for x1 be
    object holds x1 
    in S1 iff x1 
    in S2 by 
    A2,
    A3;
    
        hence thesis by
    TARSKI: 2;
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL16:20
    
    
    
    
    
    Th20: for L be non 
    empty  
    Poset holds for p be 
    Element of L holds p is 
    completely-irreducible iff ex q be 
    Element of L st p 
    < q & (for s be 
    Element of L st p 
    < s holds q 
    <= s) & ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) 
    
    proof
    
      let L be non
    empty  
    Poset;
    
      let p be
    Element of L; 
    
      thus p is
    completely-irreducible implies ex q be 
    Element of L st p 
    < q & (for s be 
    Element of L st p 
    < s holds q 
    <= s) & ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) 
    
      proof
    
        assume
    
        
    
    A1: p is 
    completely-irreducible;
    
        then
    ex_min_of ((( 
    uparrow p) 
    \  
    {p}),L);
    
        then
    
        
    
    A2: 
    ex_inf_of ((( 
    uparrow p) 
    \  
    {p}),L) by
    WAYBEL_1:def 4;
    
        take q = (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L));
    
        now
    
          let s be
    Element of L; 
    
          assume s
    in (( 
    uparrow p) 
    \  
    {p});
    
          then s
    in ( 
    uparrow p) by 
    XBOOLE_0:def 5;
    
          hence p
    <= s by 
    WAYBEL_0: 18;
    
        end;
    
        then p
    is_<=_than (( 
    uparrow p) 
    \  
    {p}) by
    LATTICE3:def 8;
    
        then
    
        
    
    A3: p 
    <= q by 
    A2,
    YELLOW_0:def 10;
    
        
    
        
    
    A4: ( 
    {p}
    \/ ( 
    uparrow q)) 
    c= ( 
    uparrow p) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A5: x 
    in ( 
    {p}
    \/ ( 
    uparrow q)); 
    
          now
    
            per cases by
    A5,
    XBOOLE_0:def 3;
    
              suppose
    
              
    
    A6: x 
    in  
    {p};
    
              
    
              
    
    A7: p 
    <= p; 
    
              x
    = p by 
    A6,
    TARSKI:def 1;
    
              hence thesis by
    A7,
    WAYBEL_0: 18;
    
            end;
    
              suppose
    
              
    
    A8: x 
    in ( 
    uparrow q); 
    
              then
    
              reconsider x1 = x as
    Element of L; 
    
              q
    <= x1 by 
    A8,
    WAYBEL_0: 18;
    
              then p
    <= x1 by 
    A3,
    ORDERS_2: 3;
    
              hence thesis by
    WAYBEL_0: 18;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    <> p by 
    A1,
    Th19;
    
        hence p
    < q by 
    A3,
    ORDERS_2:def 6;
    
        
    
        
    
    A9: q 
    is_<=_than (( 
    uparrow p) 
    \  
    {p}) by
    A2,
    YELLOW_0:def 10;
    
        thus for s be
    Element of L st p 
    < s holds q 
    <= s 
    
        proof
    
          let s be
    Element of L; 
    
          assume
    
          
    
    A10: p 
    < s; 
    
          then p
    <= s by 
    ORDERS_2:def 6;
    
          then
    
          
    
    A11: s 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
           not s
    in  
    {p} by
    A10,
    TARSKI:def 1;
    
          then s
    in (( 
    uparrow p) 
    \  
    {p}) by
    A11,
    XBOOLE_0:def 5;
    
          hence thesis by
    A9,
    LATTICE3:def 8;
    
        end;
    
        (
    uparrow p) 
    c= ( 
    {p}
    \/ ( 
    uparrow q)) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A12: x 
    in ( 
    uparrow p); 
    
          then
    
          reconsider x1 = x as
    Element of L; 
    
          p
    = x1 or x1 
    in ( 
    uparrow p) & not x1 
    in  
    {p} by
    A12,
    TARSKI:def 1;
    
          then p
    = x1 or x1 
    in (( 
    uparrow p) 
    \  
    {p}) by
    XBOOLE_0:def 5;
    
          then p
    = x1 or ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    <= x1 by 
    A9,
    LATTICE3:def 8;
    
          then x
    in  
    {p} or x
    in ( 
    uparrow q) by 
    TARSKI:def 1,
    WAYBEL_0: 18;
    
          hence thesis by
    XBOOLE_0:def 3;
    
        end;
    
        hence (
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) by 
    A4;
    
      end;
    
      thus (ex q be
    Element of L st p 
    < q & (for s be 
    Element of L st p 
    < s holds q 
    <= s) & ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q))) implies p is 
    completely-irreducible
    
      proof
    
        given q be
    Element of L such that 
    
        
    
    A13: p 
    < q and 
    
        
    
    A14: for s be 
    Element of L st p 
    < s holds q 
    <= s and 
    
        
    
    A15: ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)); 
    
        
    
        
    
    A16: not q 
    in  
    {p} by
    A13,
    TARSKI:def 1;
    
        ex q be
    Element of L st (( 
    uparrow p) 
    \  
    {p})
    is_>=_than q & for b be 
    Element of L st (( 
    uparrow p) 
    \  
    {p})
    is_>=_than b holds q 
    >= b 
    
        proof
    
          take q;
    
          now
    
            let a be
    Element of L; 
    
            assume
    
            
    
    A17: a 
    in (( 
    uparrow p) 
    \  
    {p});
    
            then not a
    in  
    {p} by
    XBOOLE_0:def 5;
    
            then
    
            
    
    A18: a 
    <> p by 
    TARSKI:def 1;
    
            a
    in ( 
    uparrow p) by 
    A17,
    XBOOLE_0:def 5;
    
            then p
    <= a by 
    WAYBEL_0: 18;
    
            then p
    < a by 
    A18,
    ORDERS_2:def 6;
    
            hence q
    <= a by 
    A14;
    
          end;
    
          hence ((
    uparrow p) 
    \  
    {p})
    is_>=_than q by 
    LATTICE3:def 8;
    
          let b be
    Element of L; 
    
          assume
    
          
    
    A19: (( 
    uparrow p) 
    \  
    {p})
    is_>=_than b; 
    
          q
    <= q; 
    
          then q
    in ( 
    uparrow q) by 
    WAYBEL_0: 18;
    
          then
    
          
    
    A20: q 
    in ( 
    {p}
    \/ ( 
    uparrow q)) by 
    XBOOLE_0:def 3;
    
           not q
    in  
    {p} by
    A13,
    TARSKI:def 1;
    
          then q
    in (( 
    uparrow p) 
    \  
    {p}) by
    A15,
    A20,
    XBOOLE_0:def 5;
    
          hence thesis by
    A19,
    LATTICE3:def 8;
    
        end;
    
        then
    
        
    
    A21: 
    ex_inf_of ((( 
    uparrow p) 
    \  
    {p}),L) by
    YELLOW_0: 16;
    
        
    
    A22: 
    
        now
    
          let b be
    Element of L; 
    
          assume
    
          
    
    A23: b 
    is_<=_than (( 
    uparrow p) 
    \  
    {p});
    
          p
    <= q by 
    A13,
    ORDERS_2:def 6;
    
          then
    
          
    
    A24: q 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
           not q
    in  
    {p} by
    A13,
    TARSKI:def 1;
    
          then q
    in (( 
    uparrow p) 
    \  
    {p}) by
    A24,
    XBOOLE_0:def 5;
    
          hence q
    >= b by 
    A23,
    LATTICE3:def 8;
    
        end;
    
        p
    <= q by 
    A13,
    ORDERS_2:def 6;
    
        then
    
        
    
    A25: q 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
        now
    
          let c be
    Element of L; 
    
          assume c
    in (( 
    uparrow p) 
    \  
    {p});
    
          then c
    in ( 
    uparrow p) & not c 
    in  
    {p} by
    XBOOLE_0:def 5;
    
          then c
    in ( 
    uparrow q) by 
    A15,
    XBOOLE_0:def 3;
    
          hence q
    <= c by 
    WAYBEL_0: 18;
    
        end;
    
        then q
    is_<=_than (( 
    uparrow p) 
    \  
    {p}) by
    LATTICE3:def 8;
    
        then q
    = ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L)) by
    A22,
    YELLOW_0: 31;
    
        then (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    in (( 
    uparrow p) 
    \  
    {p}) by
    A25,
    A16,
    XBOOLE_0:def 5;
    
        then
    ex_min_of ((( 
    uparrow p) 
    \  
    {p}),L) by
    A21,
    WAYBEL_1:def 4;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    WAYBEL16:21
    
    
    
    
    
    Th21: for L be 
    upper-bounded non 
    empty  
    Poset holds not ( 
    Top L) 
    in ( 
    Irr L) 
    
    proof
    
      let L be
    upper-bounded non 
    empty  
    Poset;
    
      assume (
    Top L) 
    in ( 
    Irr L); 
    
      then (
    Top L) is 
    completely-irreducible by 
    Def4;
    
      then (
    "/\" ((( 
    uparrow ( 
    Top L)) 
    \  
    {(
    Top L)}),L)) 
    <> ( 
    Top L) by 
    Th19;
    
      then (
    "/\" (( 
    {(
    Top L)} 
    \  
    {(
    Top L)}),L)) 
    <> ( 
    Top L) by 
    WAYBEL_4: 24;
    
      then (
    "/\" ( 
    {} ,L)) 
    <> ( 
    Top L) by 
    XBOOLE_1: 37;
    
      hence contradiction by
    YELLOW_0:def 12;
    
    end;
    
    theorem :: 
    
    WAYBEL16:22
    
    
    
    
    
    Th22: for L be 
    Semilattice holds ( 
    Irr L) 
    c= ( 
    IRR L) 
    
    proof
    
      let L be
    Semilattice;
    
      let x be
    object;
    
      assume
    
      
    
    A1: x 
    in ( 
    Irr L); 
    
      then
    
      reconsider x1 = x as
    Element of L; 
    
      x1 is
    completely-irreducible by 
    A1,
    Def4;
    
      then
    
      consider q be
    Element of L such that 
    
      
    
    A2: x1 
    < q and 
    
      
    
    A3: for s be 
    Element of L st x1 
    < s holds q 
    <= s and ( 
    uparrow x1) 
    = ( 
    {x1}
    \/ ( 
    uparrow q)) by 
    Th20;
    
      now
    
        let a,b be
    Element of L; 
    
        assume that
    
        
    
    A4: x1 
    = (a 
    "/\" b) and 
    
        
    
    A5: a 
    <> x1 and 
    
        
    
    A6: b 
    <> x1; 
    
        x1
    <= b by 
    A4,
    YELLOW_0: 23;
    
        then x1
    < b by 
    A6,
    ORDERS_2:def 6;
    
        then
    
        
    
    A7: q 
    <= b by 
    A3;
    
        
    
        
    
    A8: x1 
    <= q by 
    A2,
    ORDERS_2:def 6;
    
        x1
    <= a by 
    A4,
    YELLOW_0: 23;
    
        then x1
    < a by 
    A5,
    ORDERS_2:def 6;
    
        then q
    <= a by 
    A3;
    
        then q
    <= x1 by 
    A4,
    A7,
    YELLOW_0: 23;
    
        hence contradiction by
    A2,
    A8,
    ORDERS_2: 2;
    
      end;
    
      then x1 is
    irreducible by 
    WAYBEL_6:def 2;
    
      hence thesis by
    WAYBEL_6:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL16:23
    
    
    
    
    
    Th23: for L be 
    Semilattice holds for x be 
    Element of L holds x is 
    completely-irreducible implies x is 
    irreducible
    
    proof
    
      let L be
    Semilattice;
    
      let x be
    Element of L; 
    
      assume x is
    completely-irreducible;
    
      then
    
      
    
    A1: x 
    in ( 
    Irr L) by 
    Def4;
    
      (
    Irr L) 
    c= ( 
    IRR L) by 
    Th22;
    
      hence thesis by
    A1,
    WAYBEL_6:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL16:24
    
    
    
    
    
    Th24: for L be non 
    empty  
    Poset holds for x be 
    Element of L holds x is 
    completely-irreducible implies for X be 
    Subset of L st 
    ex_inf_of (X,L) & x 
    = ( 
    inf X) holds x 
    in X 
    
    proof
    
      let L be non
    empty  
    Poset;
    
      let x be
    Element of L; 
    
      assume x is
    completely-irreducible;
    
      then
    
      consider q be
    Element of L such that 
    
      
    
    A1: x 
    < q and 
    
      
    
    A2: for s be 
    Element of L st x 
    < s holds q 
    <= s and ( 
    uparrow x) 
    = ( 
    {x}
    \/ ( 
    uparrow q)) by 
    Th20;
    
      let X be
    Subset of L; 
    
      assume that
    
      
    
    A3: 
    ex_inf_of (X,L) and 
    
      
    
    A4: x 
    = ( 
    inf X) and 
    
      
    
    A5: not x 
    in X; 
    
      
    
      
    
    A6: X 
    c= ( 
    uparrow q) 
    
      proof
    
        let y be
    object;
    
        assume
    
        
    
    A7: y 
    in X; 
    
        then
    
        reconsider y1 = y as
    Element of L; 
    
        (
    inf X) 
    is_<=_than X by 
    A3,
    YELLOW_0: 31;
    
        then x
    <= y1 by 
    A4,
    A7,
    LATTICE3:def 8;
    
        then x
    < y1 by 
    A5,
    A7,
    ORDERS_2:def 6;
    
        then q
    <= y1 by 
    A2;
    
        hence thesis by
    WAYBEL_0: 18;
    
      end;
    
      
    ex_inf_of (( 
    uparrow q),L) by 
    WAYBEL_0: 39;
    
      then (
    inf ( 
    uparrow q)) 
    <= ( 
    inf X) by 
    A3,
    A6,
    YELLOW_0: 35;
    
      then q
    <= x by 
    A4,
    WAYBEL_0: 39;
    
      hence contradiction by
    A1,
    ORDERS_2: 6;
    
    end;
    
    theorem :: 
    
    WAYBEL16:25
    
    
    
    
    
    Th25: for L be non 
    empty  
    Poset holds for X be 
    Subset of L st X is 
    order-generating holds ( 
    Irr L) 
    c= X 
    
    proof
    
      let L be non
    empty  
    Poset;
    
      let X be
    Subset of L; 
    
      assume
    
      
    
    A1: X is 
    order-generating;
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    Irr L); 
    
      then
    
      reconsider x1 = x as
    Element of L; 
    
      
    
      
    
    A3: x1 
    = ( 
    "/\" ((( 
    uparrow x1) 
    /\ X),L)) & 
    ex_inf_of ((( 
    uparrow x1) 
    /\ X),L) by 
    A1,
    WAYBEL_6:def 5;
    
      x1 is
    completely-irreducible by 
    A2,
    Def4;
    
      then x1
    in (( 
    uparrow x1) 
    /\ X) by 
    A3,
    Th24;
    
      hence thesis by
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL16:26
    
    
    
    
    
    Th26: for L be 
    complete  
    LATTICE holds for p be 
    Element of L holds (ex k be 
    Element of L st p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k))) implies p is 
    completely-irreducible
    
    proof
    
      let L be
    complete  
    LATTICE;
    
      let p be
    Element of L; 
    
      given k be
    Element of L such that 
    
      
    
    A1: p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)); 
    
      k
    <= (p 
    "\/" k) by 
    YELLOW_0: 22;
    
      then
    
      
    
    A2: (p 
    "\/" k) 
    in ( 
    uparrow k) by 
    WAYBEL_0: 18;
    
      p
    <= (p 
    "\/" k) by 
    YELLOW_0: 22;
    
      then (p
    "\/" k) 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
      then
    
      
    
    A3: 
    ex_inf_of ((( 
    uparrow p) 
    \  
    {p}),L) & (p
    "\/" k) 
    in (( 
    uparrow p) 
    /\ ( 
    uparrow k)) by 
    A2,
    XBOOLE_0:def 4,
    YELLOW_0: 17;
    
      
    
      
    
    A4: (( 
    uparrow p) 
    \  
    {p})
    = (( 
    uparrow p) 
    /\ ( 
    uparrow k)) by 
    A1,
    Th3;
    
      then (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    = (p 
    "\/" k) by 
    Th1;
    
      then
    ex_min_of ((( 
    uparrow p) 
    \  
    {p}),L) by
    A4,
    A3,
    WAYBEL_1:def 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    WAYBEL16:27
    
    
    
    
    
    Th27: for L be 
    transitive
    antisymmetric
    with_suprema  
    RelStr holds for p,q,u be 
    Element of L st p 
    < q & (for s be 
    Element of L st p 
    < s holds q 
    <= s) & not u 
    <= p holds (p 
    "\/" u) 
    = (q 
    "\/" u) 
    
    proof
    
      let L be
    transitive
    antisymmetric
    with_suprema  
    RelStr;
    
      let p,q,u be
    Element of L; 
    
      assume that
    
      
    
    A1: p 
    < q and 
    
      
    
    A2: for s be 
    Element of L st p 
    < s holds q 
    <= s and 
    
      
    
    A3: not u 
    <= p; 
    
      
    
      
    
    A4: (q 
    "\/" u) 
    >= q by 
    YELLOW_0: 22;
    
      
    
    A5: 
    
      now
    
        let v be
    Element of L; 
    
        assume that
    
        
    
    A6: v 
    >= p and 
    
        
    
    A7: v 
    >= u; 
    
        v
    > p by 
    A3,
    A6,
    A7,
    ORDERS_2:def 6;
    
        then v
    >= q by 
    A2;
    
        hence (q
    "\/" u) 
    <= v by 
    A7,
    YELLOW_0: 22;
    
      end;
    
      p
    <= q by 
    A1,
    ORDERS_2:def 6;
    
      then
    
      
    
    A8: (q 
    "\/" u) 
    >= p by 
    A4,
    ORDERS_2: 3;
    
      (q
    "\/" u) 
    >= u by 
    YELLOW_0: 22;
    
      hence thesis by
    A8,
    A5,
    YELLOW_0: 22;
    
    end;
    
    theorem :: 
    
    WAYBEL16:28
    
    
    
    
    
    Th28: for L be 
    distributive  
    LATTICE holds for p,q,u be 
    Element of L st p 
    < q & (for s be 
    Element of L st p 
    < s holds q 
    <= s) & not u 
    <= p holds not (u 
    "/\" q) 
    <= p 
    
    proof
    
      let L be
    distributive  
    LATTICE;
    
      let p,q,u be
    Element of L; 
    
      assume that
    
      
    
    A1: p 
    < q and 
    
      
    
    A2: (for s be 
    Element of L st p 
    < s holds q 
    <= s) & not u 
    <= p and 
    
      
    
    A3: (u 
    "/\" q) 
    <= p; 
    
      
    
      
    
    A4: p 
    <= q by 
    A1,
    ORDERS_2:def 6;
    
      p
    = (p 
    "\/" (u 
    "/\" q)) by 
    A3,
    YELLOW_0: 24
    
      .= ((p
    "\/" u) 
    "/\" (q 
    "\/" p)) by 
    WAYBEL_1: 5
    
      .= ((p
    "\/" u) 
    "/\" q) by 
    A4,
    YELLOW_0: 24
    
      .= (q
    "/\" (q 
    "\/" u)) by 
    A1,
    A2,
    Th27
    
      .= q by
    LATTICE3: 18;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    WAYBEL16:29
    
    
    
    
    
    Th29: for L be 
    distributive
    complete  
    LATTICE st (L 
    opp ) is 
    meet-continuous holds for p be 
    Element of L st p is 
    completely-irreducible holds (the 
    carrier of L 
    \ ( 
    downarrow p)) is 
    Open  
    Filter of L 
    
    proof
    
      let L be
    distributive
    complete  
    LATTICE;
    
      assume
    
      
    
    A1: (L 
    opp ) is 
    meet-continuous;
    
      let p be
    Element of L; 
    
      assume
    
      
    
    A2: p is 
    completely-irreducible;
    
      then
    
      consider q be
    Element of L such that 
    
      
    
    A3: p 
    < q and 
    
      
    
    A4: for s be 
    Element of L st p 
    < s holds q 
    <= s and ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) by 
    Th20;
    
      defpred
    
    P[
    Element of L] means $1 
    <= q & not $1 
    <= p; 
    
      reconsider F = { t where t be
    Element of L : 
    P[t] } as
    Subset of L from 
    DOMAIN_1:sch 7;
    
       not q
    <= p by 
    A3,
    ORDERS_2: 6;
    
      then
    
      
    
    A5: q 
    in F; 
    
      
    
    A6: 
    
      now
    
        let x,y be
    Element of L; 
    
        assume that
    
        
    
    A7: x 
    in F and 
    
        
    
    A8: y 
    in F; 
    
        
    
        
    
    A9: ex x1 be 
    Element of L st x1 
    = x & x1 
    <= q & not x1 
    <= p by 
    A7;
    
        take z = (x
    "/\" y); 
    
        
    
        
    
    A10: z 
    <= x by 
    YELLOW_0: 23;
    
        
    
        
    
    A11: ex y1 be 
    Element of L st y1 
    = y & y1 
    <= q & not y1 
    <= p by 
    A8;
    
        
    
        
    
    A12: not z 
    <= p 
    
        proof
    
          
    
    A13: 
    
          now
    
            let d be
    Element of L; 
    
            assume d
    >= y & d 
    >= p; 
    
            then d
    > p by 
    A11,
    ORDERS_2:def 6;
    
            hence q
    <= d by 
    A4;
    
          end;
    
          assume
    
          
    
    A14: z 
    <= p; 
    
          
    
          
    
    A15: q 
    >= p by 
    A3,
    ORDERS_2:def 6;
    
          x
    = (x 
    "/\" q) by 
    A9,
    YELLOW_0: 25
    
          .= (x
    "/\" (y 
    "\/" p)) by 
    A11,
    A15,
    A13,
    YELLOW_0: 22
    
          .= (z
    "\/" (x 
    "/\" p)) by 
    WAYBEL_1:def 3
    
          .= ((x
    "\/" z) 
    "/\" (z 
    "\/" p)) by 
    WAYBEL_1: 5
    
          .= (x
    "/\" (p 
    "\/" z)) by 
    A10,
    YELLOW_0: 24
    
          .= (x
    "/\" p) by 
    A14,
    YELLOW_0: 24;
    
          hence contradiction by
    A9,
    YELLOW_0: 25;
    
        end;
    
        z
    <= q by 
    A9,
    A10,
    ORDERS_2: 3;
    
        hence z
    in F by 
    A12;
    
        thus z
    <= x by 
    YELLOW_0: 23;
    
        thus z
    <= y by 
    YELLOW_0: 23;
    
      end;
    
      p is
    irreducible by 
    A2,
    Th23;
    
      then
    
      
    
    A16: p is 
    prime by 
    WAYBEL_6: 27;
    
       not (
    Top L) 
    in ( 
    Irr L) by 
    Th21;
    
      then p
    <> ( 
    Top L) by 
    A2,
    Def4;
    
      then ((
    downarrow p) 
    ` ) is 
    Filter of L by 
    A16,
    WAYBEL_6: 26;
    
      then
    
      reconsider V = (the
    carrier of L 
    \ ( 
    downarrow p)) as 
    Filter of L by 
    SUBSET_1:def 4;
    
      reconsider F as non
    empty
    filtered  
    Subset of L by 
    A5,
    A6,
    WAYBEL_0:def 2;
    
      reconsider F1 = F as non
    empty
    directed  
    Subset of (L 
    opp ) by 
    YELLOW_7: 27;
    
      now
    
        let x be
    Element of L; 
    
        assume
    
        
    
    A17: x 
    in V; 
    
        take y = (
    inf F); 
    
        thus y
    in V 
    
        proof
    
          now
    
            let r be
    Element of L; 
    
            assume r
    in ( 
    {p}
    "\/" F); 
    
            then r
    in { (p 
    "\/" v) where v be 
    Element of L : v 
    in F } by 
    YELLOW_4: 15;
    
            then
    
            consider v be
    Element of L such that 
    
            
    
    A18: r 
    = (p 
    "\/" v) and 
    
            
    
    A19: v 
    in F; 
    
            ex v1 be
    Element of L st v 
    = v1 & v1 
    <= q & not v1 
    <= p by 
    A19;
    
            then
    
            
    
    A20: p 
    <> r by 
    A18,
    YELLOW_0: 24;
    
            p
    <= r by 
    A18,
    YELLOW_0: 22;
    
            then p
    < r by 
    A20,
    ORDERS_2:def 6;
    
            hence q
    <= r by 
    A4;
    
          end;
    
          then
    
          
    
    A21: q 
    is_<=_than ( 
    {p}
    "\/" F) by 
    LATTICE3:def 8;
    
          
    
          
    
    A22: 
    ex_inf_of (( 
    {(p
    ~ )} 
    "/\" F1),L) by 
    YELLOW_0: 17;
    
          
    ex_inf_of (F,L) by 
    YELLOW_0: 17;
    
          then
    
          
    
    A23: ( 
    inf F) 
    = ( 
    sup F1) by 
    YELLOW_7: 13;
    
          
    
          
    
    A24: 
    {(p
    ~ )} 
    =  
    {p} by
    LATTICE3:def 6;
    
          assume not y
    in V; 
    
          then y
    in ( 
    downarrow p) by 
    XBOOLE_0:def 5;
    
          then y
    <= p by 
    WAYBEL_0: 17;
    
          
    
          then p
    = (p 
    "\/" y) by 
    YELLOW_0: 24
    
          .= ((p
    ~ ) 
    "/\" (( 
    inf F) 
    ~ )) by 
    YELLOW_7: 23
    
          .= ((p
    ~ ) 
    "/\" ( 
    sup F1)) by 
    A23,
    LATTICE3:def 6
    
          .= (
    sup ( 
    {(p
    ~ )} 
    "/\" F1)) by 
    A1,
    WAYBEL_2:def 6
    
          .= (
    "/\" (( 
    {(p
    ~ )} 
    "/\" F1),L)) by 
    A22,
    YELLOW_7: 13
    
          .= (
    "/\" (( 
    {p}
    "\/" F),L)) by 
    A24,
    Th5;
    
          then q
    <= p by 
    A21,
    YELLOW_0: 33;
    
          hence contradiction by
    A3,
    ORDERS_2: 6;
    
        end;
    
        then not y
    in ( 
    downarrow p) by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A25: not y 
    <= p by 
    WAYBEL_0: 17;
    
        now
    
          let D be non
    empty
    directed  
    Subset of L; 
    
          assume
    
          
    
    A26: y 
    <= ( 
    sup D); 
    
          (D
    \ ( 
    downarrow p)) is non 
    empty
    
          proof
    
            assume (D
    \ ( 
    downarrow p)) is 
    empty;
    
            then D
    c= ( 
    downarrow p) by 
    XBOOLE_1: 37;
    
            then (
    sup D) 
    <= ( 
    sup ( 
    downarrow p)) by 
    WAYBEL_7: 1;
    
            then y
    <= ( 
    sup ( 
    downarrow p)) by 
    A26,
    ORDERS_2: 3;
    
            hence contradiction by
    A25,
    WAYBEL_0: 34;
    
          end;
    
          then
    
          consider d be
    object such that 
    
          
    
    A27: d 
    in (D 
    \ ( 
    downarrow p)); 
    
          reconsider d as
    Element of L by 
    A27;
    
          take d;
    
          thus d
    in D by 
    A27,
    XBOOLE_0:def 5;
    
           not d
    in ( 
    downarrow p) by 
    A27,
    XBOOLE_0:def 5;
    
          then not d
    <= p by 
    WAYBEL_0: 17;
    
          then (d
    "/\" q) 
    <= q & not (d 
    "/\" q) 
    <= p by 
    A3,
    A4,
    Th28,
    YELLOW_0: 23;
    
          then y
    is_<=_than F & (d 
    "/\" q) 
    in F by 
    YELLOW_0: 33;
    
          then (d
    "/\" q) 
    <= d & y 
    <= (d 
    "/\" q) by 
    LATTICE3:def 8,
    YELLOW_0: 23;
    
          hence y
    <= d by 
    ORDERS_2: 3;
    
        end;
    
        then
    
        
    
    A28: y 
    << y by 
    WAYBEL_3:def 1;
    
         not x
    in ( 
    downarrow p) by 
    A17,
    XBOOLE_0:def 5;
    
        then not x
    <= p by 
    WAYBEL_0: 17;
    
        then (x
    "/\" q) 
    <= q & not (x 
    "/\" q) 
    <= p by 
    A3,
    A4,
    Th28,
    YELLOW_0: 23;
    
        then y
    is_<=_than F & (x 
    "/\" q) 
    in F by 
    YELLOW_0: 33;
    
        then (x
    "/\" q) 
    <= x & y 
    <= (x 
    "/\" q) by 
    LATTICE3:def 8,
    YELLOW_0: 23;
    
        then y
    <= x by 
    ORDERS_2: 3;
    
        hence y
    << x by 
    A28,
    WAYBEL_3: 2;
    
      end;
    
      hence thesis by
    WAYBEL_6:def 1;
    
    end;
    
    theorem :: 
    
    WAYBEL16:30
    
    for L be
    distributive
    complete  
    LATTICE st (L 
    opp ) is 
    meet-continuous holds for p be 
    Element of L holds p is 
    completely-irreducible implies ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) 
    
    proof
    
      let L be
    distributive
    complete  
    LATTICE;
    
      assume
    
      
    
    A1: (L 
    opp ) is 
    meet-continuous;
    
      let p be
    Element of L; 
    
      assume
    
      
    
    A2: p is 
    completely-irreducible;
    
      then
    
      reconsider V = (the
    carrier of L 
    \ ( 
    downarrow p)) as 
    Open  
    Filter of L by 
    A1,
    Th29;
    
      now
    
        let b be
    Element of L; 
    
        assume b
    in (( 
    uparrow p) 
    \  
    {p});
    
        then b
    in ( 
    uparrow p) by 
    XBOOLE_0:def 5;
    
        hence p
    <= b by 
    WAYBEL_0: 18;
    
      end;
    
      then p
    is_<=_than (( 
    uparrow p) 
    \  
    {p}) by
    LATTICE3:def 8;
    
      then
    
      
    
    A3: p 
    <= ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L)) by
    YELLOW_0: 33;
    
      (
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    <> p by 
    A2,
    Th19;
    
      then
    
      
    
    A4: p 
    < ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L)) by
    A3,
    ORDERS_2:def 6;
    
      
    
      
    
    A5: 
    ex_inf_of (V,L) & (( 
    inf V) 
    ~ ) 
    = ( 
    inf V) by 
    LATTICE3:def 6,
    YELLOW_0: 17;
    
      take k = (
    inf V); 
    
      reconsider V9 = V as non
    empty
    directed  
    Subset of (L 
    opp ) by 
    YELLOW_7: 27;
    
      
    
      
    
    A6: 
    ex_inf_of (( 
    {(p
    ~ )} 
    "/\" V9),L) by 
    YELLOW_0: 17;
    
      
    
      
    
    A7: 
    ex_inf_of (( 
    {p}
    "\/" V),L) & 
    ex_inf_of ((( 
    uparrow p) 
    \  
    {p}),L) by
    YELLOW_0: 17;
    
      
    
      
    
    A8: ( 
    {p}
    "\/" V) 
    c= (( 
    uparrow p) 
    \  
    {p})
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    {p}
    "\/" V); 
    
        then x
    in { (p 
    "\/" v) where v be 
    Element of L : v 
    in V } by 
    YELLOW_4: 15;
    
        then
    
        consider v be
    Element of L such that 
    
        
    
    A9: x 
    = (p 
    "\/" v) and 
    
        
    
    A10: v 
    in V; 
    
         not v
    in ( 
    downarrow p) by 
    A10,
    XBOOLE_0:def 5;
    
        then not v
    <= p by 
    WAYBEL_0: 17;
    
        then (p
    "\/" v) 
    <> p by 
    YELLOW_0: 22;
    
        then
    
        
    
    A11: not (p 
    "\/" v) 
    in  
    {p} by
    TARSKI:def 1;
    
        p
    <= (p 
    "\/" v) by 
    YELLOW_0: 22;
    
        then (p
    "\/" v) 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
        hence thesis by
    A9,
    A11,
    XBOOLE_0:def 5;
    
      end;
    
      
    
      
    
    A12: p 
    = (p 
    ~ ) by 
    LATTICE3:def 6;
    
      (p
    "\/" k) 
    = ((p 
    ~ ) 
    "/\" (( 
    inf V) 
    ~ )) by 
    YELLOW_7: 23
    
      .= ((p
    ~ ) 
    "/\" ( 
    "\/" (V,(L 
    opp )))) by 
    A5,
    YELLOW_7: 13
    
      .= (
    "\/" (( 
    {(p
    ~ )} 
    "/\" V9),(L 
    opp ))) by 
    A1,
    WAYBEL_2:def 6
    
      .= (
    "/\" (( 
    {(p
    ~ )} 
    "/\" V9),L)) by 
    A6,
    YELLOW_7: 13
    
      .= (
    inf ( 
    {p}
    "\/" V)) by 
    A12,
    Th5;
    
      then
    
      
    
    A13: ( 
    "/\" ((( 
    uparrow p) 
    \  
    {p}),L))
    <= (p 
    "\/" k) by 
    A7,
    A8,
    YELLOW_0: 35;
    
      
    
      
    
    A14: not k 
    <= p 
    
      proof
    
        assume k
    <= p; 
    
        then (p
    "\/" k) 
    = p by 
    YELLOW_0: 24;
    
        hence contradiction by
    A13,
    A4,
    ORDERS_2: 7;
    
      end;
    
      (
    uparrow k) 
    = V 
    
      proof
    
        thus (
    uparrow k) 
    c= V 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A15: x 
    in ( 
    uparrow k); 
    
          then
    
          reconsider x1 = x as
    Element of L; 
    
          k
    <= x1 by 
    A15,
    WAYBEL_0: 18;
    
          then not x1
    <= p by 
    A14,
    ORDERS_2: 3;
    
          then not x1
    in ( 
    downarrow p) by 
    WAYBEL_0: 17;
    
          hence thesis by
    XBOOLE_0:def 5;
    
        end;
    
        let x be
    object;
    
        assume
    
        
    
    A16: x 
    in V; 
    
        then
    
        reconsider x1 = x as
    Element of L; 
    
        k
    is_<=_than V by 
    YELLOW_0: 33;
    
        then k
    <= x1 by 
    A16,
    LATTICE3:def 8;
    
        hence thesis by
    WAYBEL_0: 18;
    
      end;
    
      then k is
    compact by 
    WAYBEL_8: 2;
    
      hence k
    in the 
    carrier of ( 
    CompactSublatt L) by 
    WAYBEL_8:def 1;
    
      
    
      
    
    A17: not ex y be 
    Element of L st y 
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) & p 
    < y 
    
      proof
    
        given y be
    Element of L such that 
    
        
    
    A18: y 
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) and 
    
        
    
    A19: p 
    < y; 
    
         not y
    in ( 
    uparrow k) by 
    A18,
    XBOOLE_0:def 5;
    
        then k
    is_<=_than V & not k 
    <= y by 
    WAYBEL_0: 18,
    YELLOW_0: 33;
    
        then not y
    in V by 
    LATTICE3:def 8;
    
        then y
    in ( 
    downarrow p) by 
    XBOOLE_0:def 5;
    
        then y
    <= p by 
    WAYBEL_0: 17;
    
        hence contradiction by
    A19,
    ORDERS_2: 6;
    
      end;
    
       not p
    in ( 
    uparrow k) by 
    A14,
    WAYBEL_0: 18;
    
      then p
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    XBOOLE_0:def 5;
    
      hence thesis by
    A17,
    WAYBEL_4: 55;
    
    end;
    
    theorem :: 
    
    WAYBEL16:31
    
    
    
    
    
    Th31: for L be 
    lower-bounded
    algebraic  
    LATTICE holds for x,y be 
    Element of L holds not y 
    <= x implies ex p be 
    Element of L st p is 
    completely-irreducible & x 
    <= p & not y 
    <= p 
    
    proof
    
      let L be
    lower-bounded
    algebraic  
    LATTICE;
    
      let x,y be
    Element of L; 
    
      assume
    
      
    
    A1: not y 
    <= x; 
    
      for z be
    Element of L holds ( 
    waybelow z) is non 
    empty
    directed;
    
      then
    
      consider k1 be
    Element of L such that 
    
      
    
    A2: k1 
    << y and 
    
      
    
    A3: not k1 
    <= x by 
    A1,
    WAYBEL_3: 24;
    
      consider k be
    Element of L such that 
    
      
    
    A4: k 
    in the 
    carrier of ( 
    CompactSublatt L) and 
    
      
    
    A5: k1 
    <= k and 
    
      
    
    A6: k 
    <= y by 
    A2,
    WAYBEL_8: 7;
    
       not k
    <= x by 
    A3,
    A5,
    ORDERS_2: 3;
    
      then not x
    in ( 
    uparrow k) by 
    WAYBEL_0: 18;
    
      then x
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    XBOOLE_0:def 5;
    
      then
    
      
    
    A7: x 
    in (( 
    uparrow k) 
    ` ) by 
    SUBSET_1:def 4;
    
      k is
    compact by 
    A4,
    WAYBEL_8:def 1;
    
      then (
    uparrow k) is 
    Open  
    Filter of L by 
    WAYBEL_8: 2;
    
      then
    
      consider p be
    Element of L such that 
    
      
    
    A8: x 
    <= p and 
    
      
    
    A9: p 
    is_maximal_in (( 
    uparrow k) 
    ` ) by 
    A7,
    WAYBEL_6: 9;
    
      take p;
    
      (the
    carrier of L 
    \ ( 
    uparrow k)) 
    = (( 
    uparrow k) 
    ` ) by 
    SUBSET_1:def 4;
    
      hence p is
    completely-irreducible by 
    A9,
    Th26;
    
      thus x
    <= p by 
    A8;
    
      thus not y
    <= p 
    
      proof
    
        p
    in (( 
    uparrow k) 
    ` ) by 
    A9,
    WAYBEL_4: 55;
    
        then p
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    SUBSET_1:def 4;
    
        then
    
        
    
    A10: not p 
    in ( 
    uparrow k) by 
    XBOOLE_0:def 5;
    
        assume y
    <= p; 
    
        then k
    <= p by 
    A6,
    ORDERS_2: 3;
    
        hence contradiction by
    A10,
    WAYBEL_0: 18;
    
      end;
    
    end;
    
    theorem :: 
    
    WAYBEL16:32
    
    
    
    
    
    Th32: for L be 
    lower-bounded
    algebraic  
    LATTICE holds ( 
    Irr L) is 
    order-generating & for X be 
    Subset of L st X is 
    order-generating holds ( 
    Irr L) 
    c= X 
    
    proof
    
      let L be
    lower-bounded
    algebraic  
    LATTICE;
    
      now
    
        let x,y be
    Element of L; 
    
        assume not y
    <= x; 
    
        then
    
        consider p be
    Element of L such that 
    
        
    
    A1: p is 
    completely-irreducible and 
    
        
    
    A2: x 
    <= p and 
    
        
    
    A3: not y 
    <= p by 
    Th31;
    
        take p;
    
        thus p
    in ( 
    Irr L) by 
    A1,
    Def4;
    
        thus x
    <= p by 
    A2;
    
        thus not y
    <= p by 
    A3;
    
      end;
    
      hence (
    Irr L) is 
    order-generating by 
    WAYBEL_6: 17;
    
      let X be
    Subset of L; 
    
      assume X is
    order-generating;
    
      hence thesis by
    Th25;
    
    end;
    
    theorem :: 
    
    WAYBEL16:33
    
    for L be
    lower-bounded
    algebraic  
    LATTICE holds for s be 
    Element of L holds s 
    = ( 
    "/\" ((( 
    uparrow s) 
    /\ ( 
    Irr L)),L)) 
    
    proof
    
      let L be
    lower-bounded
    algebraic  
    LATTICE;
    
      let s be
    Element of L; 
    
      (
    Irr L) is 
    order-generating by 
    Th32;
    
      hence thesis by
    WAYBEL_6:def 5;
    
    end;
    
    theorem :: 
    
    WAYBEL16:34
    
    
    
    
    
    Th34: for L be 
    complete non 
    empty  
    Poset holds for X be 
    Subset of L holds for p be 
    Element of L st p is 
    completely-irreducible & p 
    = ( 
    inf X) holds p 
    in X 
    
    proof
    
      let L be
    complete non 
    empty  
    Poset;
    
      let X be
    Subset of L; 
    
      let p be
    Element of L; 
    
      assume that
    
      
    
    A1: p is 
    completely-irreducible and 
    
      
    
    A2: p 
    = ( 
    inf X); 
    
      assume
    
      
    
    A3: not p 
    in X; 
    
      consider q be
    Element of L such that 
    
      
    
    A4: p 
    < q and 
    
      
    
    A5: for s be 
    Element of L st p 
    < s holds q 
    <= s and ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) by 
    A1,
    Th20;
    
      
    
      
    
    A6: p 
    is_<=_than X by 
    A2,
    YELLOW_0: 33;
    
      now
    
        let b be
    Element of L; 
    
        assume
    
        
    
    A7: b 
    in X; 
    
        then p
    <= b by 
    A6,
    LATTICE3:def 8;
    
        then p
    < b by 
    A3,
    A7,
    ORDERS_2:def 6;
    
        hence q
    <= b by 
    A5;
    
      end;
    
      then
    
      
    
    A8: q 
    is_<=_than X by 
    LATTICE3:def 8;
    
      
    
      
    
    A9: p 
    <= q by 
    A4,
    ORDERS_2:def 6;
    
      now
    
        let b be
    Element of L; 
    
        assume b
    is_<=_than X; 
    
        then p
    >= b by 
    A2,
    YELLOW_0: 33;
    
        hence q
    >= b by 
    A9,
    ORDERS_2: 3;
    
      end;
    
      hence contradiction by
    A2,
    A4,
    A8,
    YELLOW_0: 33;
    
    end;
    
    theorem :: 
    
    WAYBEL16:35
    
    
    
    
    
    Th35: for L be 
    complete
    algebraic  
    LATTICE holds for p be 
    Element of L st p is 
    completely-irreducible holds p 
    = ( 
    "/\" ({ x where x be 
    Element of L : x 
    in ( 
    uparrow p) & ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) },L)) 
    
    proof
    
      let L be
    complete
    algebraic  
    LATTICE;
    
      let p be
    Element of L; 
    
      set A = { x where x be
    Element of L : x 
    in ( 
    uparrow p) & ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) }; 
    
      p
    <= p; 
    
      then
    
      
    
    A1: p 
    in ( 
    uparrow p) by 
    WAYBEL_0: 18;
    
      now
    
        let a be
    Element of L; 
    
        assume a
    in A; 
    
        then ex a1 be
    Element of L st a1 
    = a & a1 
    in ( 
    uparrow p) & ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & a1 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)); 
    
        hence p
    <= a by 
    WAYBEL_0: 18;
    
      end;
    
      then
    
      
    
    A2: p 
    is_<=_than A by 
    LATTICE3:def 8;
    
      assume p is
    completely-irreducible;
    
      then
    
      consider q be
    Element of L such that 
    
      
    
    A3: p 
    < q and 
    
      
    
    A4: for s be 
    Element of L st p 
    < s holds q 
    <= s and ( 
    uparrow p) 
    = ( 
    {p}
    \/ ( 
    uparrow q)) by 
    Th20;
    
      
    
      
    
    A5: ( 
    compactbelow p) 
    <> ( 
    compactbelow q) 
    
      proof
    
        assume (
    compactbelow p) 
    = ( 
    compactbelow q); 
    
        
    
        then p
    = ( 
    sup ( 
    compactbelow q)) by 
    WAYBEL_8:def 3
    
        .= q by
    WAYBEL_8:def 3;
    
        hence contradiction by
    A3;
    
      end;
    
      p
    <= q by 
    A3,
    ORDERS_2:def 6;
    
      then (
    compactbelow p) 
    c= ( 
    compactbelow q) by 
    WAYBEL13: 1;
    
      then not (
    compactbelow q) 
    c= ( 
    compactbelow p) by 
    A5;
    
      then
    
      consider k1 be
    object such that 
    
      
    
    A6: k1 
    in ( 
    compactbelow q) and 
    
      
    
    A7: not k1 
    in ( 
    compactbelow p); 
    
      k1
    in { y where y be 
    Element of L : q 
    >= y & y is 
    compact } by
    A6,
    WAYBEL_8:def 2;
    
      then
    
      consider k be
    Element of L such that 
    
      
    
    A8: k 
    = k1 and 
    
      
    
    A9: q 
    >= k and 
    
      
    
    A10: k is 
    compact;
    
      
    
      
    
    A11: not ex y be 
    Element of L st y 
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) & p 
    < y 
    
      proof
    
        given y be
    Element of L such that 
    
        
    
    A12: y 
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) and 
    
        
    
    A13: p 
    < y; 
    
        q
    <= y by 
    A4,
    A13;
    
        then k
    <= y by 
    A9,
    ORDERS_2: 3;
    
        then y
    in ( 
    uparrow k) by 
    WAYBEL_0: 18;
    
        hence contradiction by
    A12,
    XBOOLE_0:def 5;
    
      end;
    
       not k
    <= p by 
    A7,
    A8,
    A10,
    WAYBEL_8: 4;
    
      then not p
    in ( 
    uparrow k) by 
    WAYBEL_0: 18;
    
      then p
    in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    XBOOLE_0:def 5;
    
      then
    
      
    
    A14: p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    A11,
    WAYBEL_4: 55;
    
      k
    in the 
    carrier of ( 
    CompactSublatt L) by 
    A10,
    WAYBEL_8:def 1;
    
      then p
    in A by 
    A1,
    A14;
    
      then for u be
    Element of L st u 
    is_<=_than A holds p 
    >= u by 
    LATTICE3:def 8;
    
      hence thesis by
    A2,
    YELLOW_0: 33;
    
    end;
    
    theorem :: 
    
    WAYBEL16:36
    
    for L be
    complete
    algebraic  
    LATTICE holds for p be 
    Element of L holds (ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k))) iff p is 
    completely-irreducible
    
    proof
    
      let L be
    complete
    algebraic  
    LATTICE;
    
      let p be
    Element of L; 
    
      thus (ex k be
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k))) implies p is 
    completely-irreducible by 
    Th26;
    
      thus p is
    completely-irreducible implies ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & p 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) 
    
      proof
    
        defpred
    
    P[
    Element of L] means $1 
    in ( 
    uparrow p) & ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & $1 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)); 
    
        reconsider A = { x where x be
    Element of L : 
    P[x] } as
    Subset of L from 
    DOMAIN_1:sch 7;
    
        assume
    
        
    
    A1: p is 
    completely-irreducible;
    
        then p
    = ( 
    inf A) by 
    Th35;
    
        then p
    in A by 
    A1,
    Th34;
    
        then
    
        consider x be
    Element of L such that 
    
        
    
    A2: x 
    = p and x 
    in ( 
    uparrow p) and 
    
        
    
    A3: ex k be 
    Element of L st k 
    in the 
    carrier of ( 
    CompactSublatt L) & x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)); 
    
        consider k be
    Element of L such that 
    
        
    
    A4: k 
    in the 
    carrier of ( 
    CompactSublatt L) and 
    
        
    
    A5: x 
    is_maximal_in (the 
    carrier of L 
    \ ( 
    uparrow k)) by 
    A3;
    
        take k;
    
        thus k
    in the 
    carrier of ( 
    CompactSublatt L) by 
    A4;
    
        thus thesis by
    A2,
    A5;
    
      end;
    
    end;