waybel20.miz
    
    begin
    
    theorem :: 
    
    WAYBEL20:1
    
    
    
    
    
    Th1: for X be 
    set, S be 
    Subset of ( 
    id X) holds ( 
    proj1 S) 
    = ( 
    proj2 S) 
    
    proof
    
      let X be
    set, S be 
    Subset of ( 
    id X); 
    
      now
    
        let x be
    object;
    
        hereby
    
          assume x
    in ( 
    proj1 S); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A1: 
    [x, y]
    in S by 
    XTUPLE_0:def 12;
    
          x
    = y by 
    A1,
    RELAT_1:def 10;
    
          hence x
    in ( 
    proj2 S) by 
    A1,
    XTUPLE_0:def 13;
    
        end;
    
        assume x
    in ( 
    proj2 S); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A2: 
    [y, x]
    in S by 
    XTUPLE_0:def 13;
    
        x
    = y by 
    A2,
    RELAT_1:def 10;
    
        hence x
    in ( 
    proj1 S) by 
    A2,
    XTUPLE_0:def 12;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    WAYBEL20:2
    
    
    
    
    
    Th2: for X,Y be non 
    empty  
    set, f be 
    Function of X, Y holds ( 
    [:f, f:]
    " ( 
    id Y)) is 
    Equivalence_Relation of X 
    
    proof
    
      let X,Y be non
    empty  
    set, f be 
    Function of X, Y; 
    
      set ff = (
    [:f, f:]
    " ( 
    id Y)); 
    
      
    
      
    
    A1: ( 
    dom f) 
    = X by 
    FUNCT_2:def 1;
    
      reconsider R9 = ff as
    Relation of X; 
    
      
    
      
    
    A2: ( 
    dom  
    [:f, f:])
    =  
    [:(
    dom f), ( 
    dom f):] by 
    FUNCT_3:def 8;
    
      R9
    is_reflexive_in X 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in X; 
    
        then
    
        reconsider x9 = x as
    Element of X; 
    
        
    
        
    
    A4: 
    [(f
    . x9), (f 
    . x9)] 
    in ( 
    id Y) by 
    RELAT_1:def 10;
    
        
    [x, x]
    in ( 
    dom  
    [:f, f:]) &
    [(f
    . x), (f 
    . x)] 
    = ( 
    [:f, f:]
    . (x,x)) by 
    A2,
    A1,
    A3,
    FUNCT_3:def 8,
    ZFMISC_1:def 2;
    
        hence thesis by
    A4,
    FUNCT_1:def 7;
    
      end;
    
      then
    
      
    
    A5: ( 
    dom R9) 
    = X & ( 
    field R9) 
    = X by 
    ORDERS_1: 13;
    
      
    
      
    
    A6: R9 
    is_symmetric_in X 
    
      proof
    
        let x,y be
    object;
    
        assume that
    
        
    
    A7: x 
    in X & y 
    in X and 
    
        
    
    A8: 
    [x, y]
    in R9; 
    
        reconsider x9 = x, y9 = y as
    Element of X by 
    A7;
    
        
    
        
    
    A9: 
    [y, x]
    in ( 
    dom  
    [:f, f:]) &
    [(f
    . y), (f 
    . x)] 
    = ( 
    [:f, f:]
    . (y,x)) by 
    A2,
    A1,
    A7,
    FUNCT_3:def 8,
    ZFMISC_1:def 2;
    
        
    
        
    
    A10: ( 
    [:f, f:]
    .  
    [x, y])
    in ( 
    id Y) & 
    [(f
    . x), (f 
    . y)] 
    = ( 
    [:f, f:]
    . (x,y)) by 
    A1,
    A7,
    A8,
    FUNCT_1:def 7,
    FUNCT_3:def 8;
    
        then (f
    . x9) 
    = (f 
    . y9) by 
    RELAT_1:def 10;
    
        hence thesis by
    A10,
    A9,
    FUNCT_1:def 7;
    
      end;
    
      R9
    is_transitive_in X 
    
      proof
    
        let x,y,z be
    object such that 
    
        
    
    A11: x 
    in X and 
    
        
    
    A12: y 
    in X and 
    
        
    
    A13: z 
    in X and 
    
        
    
    A14: 
    [x, y]
    in R9 and 
    
        
    
    A15: 
    [y, z]
    in R9; 
    
        
    
        
    
    A16: 
    [x, z]
    in ( 
    dom  
    [:f, f:]) &
    [(f
    . x), (f 
    . z)] 
    = ( 
    [:f, f:]
    . (x,z)) by 
    A2,
    A1,
    A11,
    A13,
    FUNCT_3:def 8,
    ZFMISC_1:def 2;
    
        reconsider y9 = y, z9 = z as
    Element of X by 
    A12,
    A13;
    
        (
    [:f, f:]
    .  
    [y, z])
    in ( 
    id Y) & 
    [(f
    . y), (f 
    . z)] 
    = ( 
    [:f, f:]
    . (y,z)) by 
    A1,
    A12,
    A13,
    A15,
    FUNCT_1:def 7,
    FUNCT_3:def 8;
    
        then
    
        
    
    A17: (f 
    . y9) 
    = (f 
    . z9) by 
    RELAT_1:def 10;
    
        (
    [:f, f:]
    .  
    [x, y])
    in ( 
    id Y) & 
    [(f
    . x), (f 
    . y)] 
    = ( 
    [:f, f:]
    . (x,y)) by 
    A1,
    A11,
    A12,
    A14,
    FUNCT_1:def 7,
    FUNCT_3:def 8;
    
        hence thesis by
    A17,
    A16,
    FUNCT_1:def 7;
    
      end;
    
      hence thesis by
    A5,
    A6,
    PARTFUN1:def 2,
    RELAT_2:def 11,
    RELAT_2:def 16;
    
    end;
    
    definition
    
      let L1,L2,T1,T2 be
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2; 
    
      :: original:
    [:
    
      redefine
    
      func
    
    [:f,g:] ->
    Function of 
    [:L1, L2:],
    [:T1, T2:] ;
    
      coherence
    
      proof
    
        the
    carrier of 
    [:L1, L2:]
    =  
    [:the 
    carrier of L1, the 
    carrier of L2:] & the 
    carrier of 
    [:T1, T2:]
    =  
    [:the 
    carrier of T1, the 
    carrier of T2:] by 
    YELLOW_3:def 2;
    
        hence
    [:f, g:] is
    Function of 
    [:L1, L2:],
    [:T1, T2:];
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL20:3
    
    
    
    
    
    Th3: for f,g be 
    Function, X be 
    set holds ( 
    proj1 ( 
    [:f, g:]
    .: X)) 
    c= (f 
    .: ( 
    proj1 X)) & ( 
    proj2 ( 
    [:f, g:]
    .: X)) 
    c= (g 
    .: ( 
    proj2 X)) 
    
    proof
    
      let f,g be
    Function, X be 
    set;
    
      
    
      
    
    A1: ( 
    dom  
    [:f, g:])
    =  
    [:(
    dom f), ( 
    dom g):] by 
    FUNCT_3:def 8;
    
      hereby
    
        let x be
    object;
    
        assume x
    in ( 
    proj1 ( 
    [:f, g:]
    .: X)); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A2: 
    [x, y]
    in ( 
    [:f, g:]
    .: X) by 
    XTUPLE_0:def 12;
    
        consider xy be
    object such that 
    
        
    
    A3: xy 
    in ( 
    dom  
    [:f, g:]) and
    
        
    
    A4: xy 
    in X and 
    
        
    
    A5: 
    [x, y]
    = ( 
    [:f, g:]
    . xy) by 
    A2,
    FUNCT_1:def 6;
    
        consider x9,y9 be
    object such that 
    
        
    
    A6: x9 
    in ( 
    dom f) and 
    
        
    
    A7: y9 
    in ( 
    dom g) and 
    
        
    
    A8: xy 
    =  
    [x9, y9] by
    A1,
    A3,
    ZFMISC_1:def 2;
    
        
    [x, y]
    = ( 
    [:f, g:]
    . (x9,y9)) by 
    A5,
    A8
    
        .=
    [(f
    . x9), (g 
    . y9)] by 
    A6,
    A7,
    FUNCT_3:def 8;
    
        then
    
        
    
    A9: x 
    = (f 
    . x9) by 
    XTUPLE_0: 1;
    
        x9
    in ( 
    proj1 X) by 
    A4,
    A8,
    XTUPLE_0:def 12;
    
        hence x
    in (f 
    .: ( 
    proj1 X)) by 
    A6,
    A9,
    FUNCT_1:def 6;
    
      end;
    
      let y be
    object;
    
      assume y
    in ( 
    proj2 ( 
    [:f, g:]
    .: X)); 
    
      then
    
      consider x be
    object such that 
    
      
    
    A10: 
    [x, y]
    in ( 
    [:f, g:]
    .: X) by 
    XTUPLE_0:def 13;
    
      consider xy be
    object such that 
    
      
    
    A11: xy 
    in ( 
    dom  
    [:f, g:]) and
    
      
    
    A12: xy 
    in X and 
    
      
    
    A13: 
    [x, y]
    = ( 
    [:f, g:]
    . xy) by 
    A10,
    FUNCT_1:def 6;
    
      consider x9,y9 be
    object such that 
    
      
    
    A14: x9 
    in ( 
    dom f) and 
    
      
    
    A15: y9 
    in ( 
    dom g) and 
    
      
    
    A16: xy 
    =  
    [x9, y9] by
    A1,
    A11,
    ZFMISC_1:def 2;
    
      
    [x, y]
    = ( 
    [:f, g:]
    . (x9,y9)) by 
    A13,
    A16
    
      .=
    [(f
    . x9), (g 
    . y9)] by 
    A14,
    A15,
    FUNCT_3:def 8;
    
      then
    
      
    
    A17: y 
    = (g 
    . y9) by 
    XTUPLE_0: 1;
    
      y9
    in ( 
    proj2 X) by 
    A12,
    A16,
    XTUPLE_0:def 13;
    
      hence thesis by
    A15,
    A17,
    FUNCT_1:def 6;
    
    end;
    
    theorem :: 
    
    WAYBEL20:4
    
    
    
    
    
    Th4: for f,g be 
    Function, X be 
    set st X 
    c=  
    [:(
    dom f), ( 
    dom g):] holds ( 
    proj1 ( 
    [:f, g:]
    .: X)) 
    = (f 
    .: ( 
    proj1 X)) & ( 
    proj2 ( 
    [:f, g:]
    .: X)) 
    = (g 
    .: ( 
    proj2 X)) 
    
    proof
    
      let f,g be
    Function, X be 
    set such that 
    
      
    
    A1: X 
    c=  
    [:(
    dom f), ( 
    dom g):]; 
    
      
    
      
    
    A2: ( 
    dom  
    [:f, g:])
    =  
    [:(
    dom f), ( 
    dom g):] by 
    FUNCT_3:def 8;
    
      
    
      
    
    A3: ( 
    proj1 ( 
    [:f, g:]
    .: X)) 
    c= (f 
    .: ( 
    proj1 X)) by 
    Th3;
    
      now
    
        let x be
    object;
    
        thus x
    in ( 
    proj1 ( 
    [:f, g:]
    .: X)) implies x 
    in (f 
    .: ( 
    proj1 X)) by 
    A3;
    
        assume x
    in (f 
    .: ( 
    proj1 X)); 
    
        then
    
        consider x9 be
    object such that 
    
        
    
    A4: x9 
    in ( 
    dom f) and 
    
        
    
    A5: x9 
    in ( 
    proj1 X) and 
    
        
    
    A6: x 
    = (f 
    . x9) by 
    FUNCT_1:def 6;
    
        consider y9 be
    object such that 
    
        
    
    A7: 
    [x9, y9]
    in X by 
    A5,
    XTUPLE_0:def 12;
    
        y9
    in ( 
    dom g) by 
    A1,
    A7,
    ZFMISC_1: 87;
    
        then (
    [:f, g:]
    . (x9,y9)) 
    =  
    [(f
    . x9), (g 
    . y9)] by 
    A4,
    FUNCT_3:def 8;
    
        then
    [x, (g
    . y9)] 
    in ( 
    [:f, g:]
    .: X) by 
    A1,
    A2,
    A6,
    A7,
    FUNCT_1:def 6;
    
        hence x
    in ( 
    proj1 ( 
    [:f, g:]
    .: X)) by 
    XTUPLE_0:def 12;
    
      end;
    
      hence (
    proj1 ( 
    [:f, g:]
    .: X)) 
    = (f 
    .: ( 
    proj1 X)) by 
    TARSKI: 2;
    
      
    
      
    
    A8: ( 
    proj2 ( 
    [:f, g:]
    .: X)) 
    c= (g 
    .: ( 
    proj2 X)) by 
    Th3;
    
      now
    
        let x be
    object;
    
        thus x
    in ( 
    proj2 ( 
    [:f, g:]
    .: X)) implies x 
    in (g 
    .: ( 
    proj2 X)) by 
    A8;
    
        assume x
    in (g 
    .: ( 
    proj2 X)); 
    
        then
    
        consider x9 be
    object such that 
    
        
    
    A9: x9 
    in ( 
    dom g) and 
    
        
    
    A10: x9 
    in ( 
    proj2 X) and 
    
        
    
    A11: x 
    = (g 
    . x9) by 
    FUNCT_1:def 6;
    
        consider y9 be
    object such that 
    
        
    
    A12: 
    [y9, x9]
    in X by 
    A10,
    XTUPLE_0:def 13;
    
        y9
    in ( 
    dom f) by 
    A1,
    A12,
    ZFMISC_1: 87;
    
        then (
    [:f, g:]
    . (y9,x9)) 
    =  
    [(f
    . y9), (g 
    . x9)] by 
    A9,
    FUNCT_3:def 8;
    
        then
    [(f
    . y9), x] 
    in ( 
    [:f, g:]
    .: X) by 
    A1,
    A2,
    A11,
    A12,
    FUNCT_1:def 6;
    
        hence x
    in ( 
    proj2 ( 
    [:f, g:]
    .: X)) by 
    XTUPLE_0:def 13;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    WAYBEL20:5
    
    
    
    
    
    Th5: for S be non 
    empty
    antisymmetric  
    RelStr st 
    ex_inf_of ( 
    {} ,S) holds S is 
    upper-bounded
    
    proof
    
      let S be non
    empty
    antisymmetric  
    RelStr;
    
      assume
    
      
    
    A1: 
    ex_inf_of ( 
    {} ,S); 
    
      take (
    Top S); 
    
      let x be
    Element of S; 
    
      
    {}  
    is_>=_than x; 
    
      hence thesis by
    A1,
    YELLOW_0: 31;
    
    end;
    
    theorem :: 
    
    WAYBEL20:6
    
    
    
    
    
    Th6: for S be non 
    empty
    antisymmetric  
    RelStr st 
    ex_sup_of ( 
    {} ,S) holds S is 
    lower-bounded
    
    proof
    
      let S be non
    empty
    antisymmetric  
    RelStr;
    
      assume
    
      
    
    A1: 
    ex_sup_of ( 
    {} ,S); 
    
      take (
    Bottom S); 
    
      let x be
    Element of S; 
    
      
    {}  
    is_<=_than x; 
    
      hence thesis by
    A1,
    YELLOW_0: 30;
    
    end;
    
    theorem :: 
    
    WAYBEL20:7
    
    
    
    
    
    Th7: for L1,L2 be 
    antisymmetric non 
    empty  
    RelStr, D be 
    Subset of 
    [:L1, L2:] st
    ex_inf_of (D, 
    [:L1, L2:]) holds (
    inf D) 
    =  
    [(
    inf ( 
    proj1 D)), ( 
    inf ( 
    proj2 D))] 
    
    proof
    
      let L1,L2 be
    antisymmetric non 
    empty  
    RelStr, D be 
    Subset of 
    [:L1, L2:] such that
    
      
    
    A1: 
    ex_inf_of (D, 
    [:L1, L2:]);
    
      per cases ;
    
        suppose D
    <>  
    {} ; 
    
        hence thesis by
    A1,
    YELLOW_3: 47;
    
      end;
    
        suppose
    
        
    
    A2: D 
    =  
    {} ; 
    
        then
    ex_inf_of ( 
    {} ,L2) by 
    A1,
    FUNCT_5: 8,
    YELLOW_3: 42;
    
        then
    
        
    
    A3: L2 is 
    upper-bounded by 
    Th5;
    
        
    ex_inf_of ( 
    {} ,L1) by 
    A1,
    A2,
    FUNCT_5: 8,
    YELLOW_3: 42;
    
        then L1 is
    upper-bounded by 
    Th5;
    
        hence thesis by
    A1,
    A3,
    YELLOW10: 6;
    
      end;
    
    end;
    
    theorem :: 
    
    WAYBEL20:8
    
    
    
    
    
    Th8: for L1,L2 be 
    antisymmetric non 
    empty  
    RelStr, D be 
    Subset of 
    [:L1, L2:] st
    ex_sup_of (D, 
    [:L1, L2:]) holds (
    sup D) 
    =  
    [(
    sup ( 
    proj1 D)), ( 
    sup ( 
    proj2 D))] 
    
    proof
    
      let L1,L2 be
    antisymmetric non 
    empty  
    RelStr, D be 
    Subset of 
    [:L1, L2:] such that
    
      
    
    A1: 
    ex_sup_of (D, 
    [:L1, L2:]);
    
      per cases ;
    
        suppose D
    <>  
    {} ; 
    
        hence thesis by
    A1,
    YELLOW_3: 46;
    
      end;
    
        suppose
    
        
    
    A2: D 
    =  
    {} ; 
    
        then
    ex_sup_of ( 
    {} ,L2) by 
    A1,
    FUNCT_5: 8,
    YELLOW_3: 41;
    
        then
    
        
    
    A3: L2 is 
    lower-bounded by 
    Th6;
    
        
    ex_sup_of ( 
    {} ,L1) by 
    A1,
    A2,
    FUNCT_5: 8,
    YELLOW_3: 41;
    
        then L1 is
    lower-bounded by 
    Th6;
    
        hence thesis by
    A1,
    A3,
    YELLOW10: 5;
    
      end;
    
    end;
    
    theorem :: 
    
    WAYBEL20:9
    
    
    
    
    
    Th9: for L1,L2,T1,T2 be 
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 st f is 
    infs-preserving & g is 
    infs-preserving holds 
    [:f, g:] is
    infs-preserving
    
    proof
    
      let L1,L2,T1,T2 be
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 such that 
    
      
    
    A1: f is 
    infs-preserving and 
    
      
    
    A2: g is 
    infs-preserving;
    
      let X be
    Subset of 
    [:L1, L2:];
    
      
    
      
    
    A3: f 
    preserves_inf_of ( 
    proj1 X) by 
    A1;
    
      
    
      
    
    A4: g 
    preserves_inf_of ( 
    proj2 X) by 
    A2;
    
      set iX = (
    [:f, g:]
    .: X); 
    
      
    
      
    
    A5: ( 
    dom f) 
    = the 
    carrier of L1 & ( 
    dom g) 
    = the 
    carrier of L2 by 
    FUNCT_2:def 1;
    
      assume
    
      
    
    A6: 
    ex_inf_of (X, 
    [:L1, L2:]);
    
      then
    
      
    
    A7: 
    ex_inf_of (( 
    proj1 X),L1) by 
    YELLOW_3: 42;
    
      
    
      
    
    A8: 
    ex_inf_of (( 
    proj2 X),L2) by 
    A6,
    YELLOW_3: 42;
    
      X
    c= the 
    carrier of 
    [:L1, L2:];
    
      then
    
      
    
    A9: X 
    c=  
    [:the 
    carrier of L1, the 
    carrier of L2:] by 
    YELLOW_3:def 2;
    
      then
    
      
    
    A10: ( 
    proj2 iX) 
    = (g 
    .: ( 
    proj2 X)) by 
    A5,
    Th4;
    
      then
    
      
    
    A11: 
    ex_inf_of (( 
    proj2 iX),T2) by 
    A4,
    A8;
    
      
    
      
    
    A12: ( 
    proj1 iX) 
    = (f 
    .: ( 
    proj1 X)) by 
    A5,
    A9,
    Th4;
    
      then
    ex_inf_of (( 
    proj1 iX),T1) by 
    A3,
    A7;
    
      hence
    ex_inf_of (( 
    [:f, g:]
    .: X), 
    [:T1, T2:]) by
    A11,
    YELLOW_3: 42;
    
      
    
      hence (
    inf ( 
    [:f, g:]
    .: X)) 
    =  
    [(
    inf (f 
    .: ( 
    proj1 X))), ( 
    inf (g 
    .: ( 
    proj2 X)))] by 
    A12,
    A10,
    Th7
    
      .=
    [(f
    . ( 
    inf ( 
    proj1 X))), ( 
    inf (g 
    .: ( 
    proj2 X)))] by 
    A3,
    A7
    
      .=
    [(f
    . ( 
    inf ( 
    proj1 X))), (g 
    . ( 
    inf ( 
    proj2 X)))] by 
    A4,
    A8
    
      .= (
    [:f, g:]
    . (( 
    inf ( 
    proj1 X)),( 
    inf ( 
    proj2 X)))) by 
    A5,
    FUNCT_3:def 8
    
      .= (
    [:f, g:]
    . ( 
    inf X)) by 
    A6,
    Th7;
    
    end;
    
    theorem :: 
    
    WAYBEL20:10
    
    for L1,L2,T1,T2 be
    antisymmetric
    reflexive non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 st f is 
    filtered-infs-preserving & g is 
    filtered-infs-preserving holds 
    [:f, g:] is
    filtered-infs-preserving
    
    proof
    
      let L1,L2,T1,T2 be
    antisymmetric
    reflexive non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 such that 
    
      
    
    A1: f is 
    filtered-infs-preserving and 
    
      
    
    A2: g is 
    filtered-infs-preserving;
    
      let X be
    Subset of 
    [:L1, L2:];
    
      assume
    
      
    
    A3: X is non 
    empty
    filtered;
    
      then (
    proj1 X) is non 
    empty
    filtered by 
    YELLOW_3: 21,
    YELLOW_3: 24;
    
      then
    
      
    
    A4: f 
    preserves_inf_of ( 
    proj1 X) by 
    A1;
    
      (
    proj2 X) is non 
    empty
    filtered by 
    A3,
    YELLOW_3: 21,
    YELLOW_3: 24;
    
      then
    
      
    
    A5: g 
    preserves_inf_of ( 
    proj2 X) by 
    A2;
    
      set iX = (
    [:f, g:]
    .: X); 
    
      
    
      
    
    A6: ( 
    dom f) 
    = the 
    carrier of L1 & ( 
    dom g) 
    = the 
    carrier of L2 by 
    FUNCT_2:def 1;
    
      assume
    
      
    
    A7: 
    ex_inf_of (X, 
    [:L1, L2:]);
    
      then
    
      
    
    A8: 
    ex_inf_of (( 
    proj1 X),L1) by 
    YELLOW_3: 42;
    
      X
    c= the 
    carrier of 
    [:L1, L2:];
    
      then
    
      
    
    A9: X 
    c=  
    [:the 
    carrier of L1, the 
    carrier of L2:] by 
    YELLOW_3:def 2;
    
      then
    
      
    
    A10: ( 
    proj2 iX) 
    = (g 
    .: ( 
    proj2 X)) by 
    A6,
    Th4;
    
      
    
      
    
    A11: 
    ex_inf_of (( 
    proj2 X),L2) by 
    A7,
    YELLOW_3: 42;
    
      then
    
      
    
    A12: 
    ex_inf_of (( 
    proj2 iX),T2) by 
    A5,
    A10;
    
      
    
      
    
    A13: ( 
    proj1 iX) 
    = (f 
    .: ( 
    proj1 X)) by 
    A6,
    A9,
    Th4;
    
      then
    ex_inf_of (( 
    proj1 iX),T1) by 
    A4,
    A8;
    
      hence
    ex_inf_of (( 
    [:f, g:]
    .: X), 
    [:T1, T2:]) by
    A12,
    YELLOW_3: 42;
    
      
    
      hence (
    inf ( 
    [:f, g:]
    .: X)) 
    =  
    [(
    inf (f 
    .: ( 
    proj1 X))), ( 
    inf (g 
    .: ( 
    proj2 X)))] by 
    A13,
    A10,
    Th7
    
      .=
    [(f
    . ( 
    inf ( 
    proj1 X))), ( 
    inf (g 
    .: ( 
    proj2 X)))] by 
    A4,
    A8
    
      .=
    [(f
    . ( 
    inf ( 
    proj1 X))), (g 
    . ( 
    inf ( 
    proj2 X)))] by 
    A5,
    A11
    
      .= (
    [:f, g:]
    . (( 
    inf ( 
    proj1 X)),( 
    inf ( 
    proj2 X)))) by 
    A6,
    FUNCT_3:def 8
    
      .= (
    [:f, g:]
    . ( 
    inf X)) by 
    A7,
    Th7;
    
    end;
    
    theorem :: 
    
    WAYBEL20:11
    
    for L1,L2,T1,T2 be
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 st f is 
    sups-preserving & g is 
    sups-preserving holds 
    [:f, g:] is
    sups-preserving
    
    proof
    
      let L1,L2,T1,T2 be
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 such that 
    
      
    
    A1: f is 
    sups-preserving and 
    
      
    
    A2: g is 
    sups-preserving;
    
      let X be
    Subset of 
    [:L1, L2:];
    
      
    
      
    
    A3: f 
    preserves_sup_of ( 
    proj1 X) by 
    A1;
    
      
    
      
    
    A4: g 
    preserves_sup_of ( 
    proj2 X) by 
    A2;
    
      set iX = (
    [:f, g:]
    .: X); 
    
      
    
      
    
    A5: ( 
    dom f) 
    = the 
    carrier of L1 & ( 
    dom g) 
    = the 
    carrier of L2 by 
    FUNCT_2:def 1;
    
      assume
    
      
    
    A6: 
    ex_sup_of (X, 
    [:L1, L2:]);
    
      then
    
      
    
    A7: 
    ex_sup_of (( 
    proj1 X),L1) by 
    YELLOW_3: 41;
    
      
    
      
    
    A8: 
    ex_sup_of (( 
    proj2 X),L2) by 
    A6,
    YELLOW_3: 41;
    
      X
    c= the 
    carrier of 
    [:L1, L2:];
    
      then
    
      
    
    A9: X 
    c=  
    [:the 
    carrier of L1, the 
    carrier of L2:] by 
    YELLOW_3:def 2;
    
      then
    
      
    
    A10: ( 
    proj2 iX) 
    = (g 
    .: ( 
    proj2 X)) by 
    A5,
    Th4;
    
      then
    
      
    
    A11: 
    ex_sup_of (( 
    proj2 iX),T2) by 
    A4,
    A8;
    
      
    
      
    
    A12: ( 
    proj1 iX) 
    = (f 
    .: ( 
    proj1 X)) by 
    A5,
    A9,
    Th4;
    
      then
    ex_sup_of (( 
    proj1 iX),T1) by 
    A3,
    A7;
    
      hence
    ex_sup_of (( 
    [:f, g:]
    .: X), 
    [:T1, T2:]) by
    A11,
    YELLOW_3: 41;
    
      
    
      hence (
    sup ( 
    [:f, g:]
    .: X)) 
    =  
    [(
    sup (f 
    .: ( 
    proj1 X))), ( 
    sup (g 
    .: ( 
    proj2 X)))] by 
    A12,
    A10,
    Th8
    
      .=
    [(f
    . ( 
    sup ( 
    proj1 X))), ( 
    sup (g 
    .: ( 
    proj2 X)))] by 
    A3,
    A7
    
      .=
    [(f
    . ( 
    sup ( 
    proj1 X))), (g 
    . ( 
    sup ( 
    proj2 X)))] by 
    A4,
    A8
    
      .= (
    [:f, g:]
    . (( 
    sup ( 
    proj1 X)),( 
    sup ( 
    proj2 X)))) by 
    A5,
    FUNCT_3:def 8
    
      .= (
    [:f, g:]
    . ( 
    sup X)) by 
    A6,
    Th8;
    
    end;
    
    theorem :: 
    
    WAYBEL20:12
    
    
    
    
    
    Th12: for L1,L2,T1,T2 be 
    antisymmetric
    reflexive non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 st f is 
    directed-sups-preserving & g is 
    directed-sups-preserving holds 
    [:f, g:] is
    directed-sups-preserving
    
    proof
    
      let L1,L2,T1,T2 be
    antisymmetric
    reflexive non 
    empty  
    RelStr, f be 
    Function of L1, T1, g be 
    Function of L2, T2 such that 
    
      
    
    A1: f is 
    directed-sups-preserving and 
    
      
    
    A2: g is 
    directed-sups-preserving;
    
      let X be
    Subset of 
    [:L1, L2:];
    
      assume
    
      
    
    A3: X is non 
    empty
    directed;
    
      then (
    proj1 X) is non 
    empty
    directed by 
    YELLOW_3: 21,
    YELLOW_3: 22;
    
      then
    
      
    
    A4: f 
    preserves_sup_of ( 
    proj1 X) by 
    A1;
    
      (
    proj2 X) is non 
    empty
    directed by 
    A3,
    YELLOW_3: 21,
    YELLOW_3: 22;
    
      then
    
      
    
    A5: g 
    preserves_sup_of ( 
    proj2 X) by 
    A2;
    
      set iX = (
    [:f, g:]
    .: X); 
    
      
    
      
    
    A6: ( 
    dom f) 
    = the 
    carrier of L1 & ( 
    dom g) 
    = the 
    carrier of L2 by 
    FUNCT_2:def 1;
    
      assume
    
      
    
    A7: 
    ex_sup_of (X, 
    [:L1, L2:]);
    
      then
    
      
    
    A8: 
    ex_sup_of (( 
    proj1 X),L1) by 
    YELLOW_3: 41;
    
      X
    c= the 
    carrier of 
    [:L1, L2:];
    
      then
    
      
    
    A9: X 
    c=  
    [:the 
    carrier of L1, the 
    carrier of L2:] by 
    YELLOW_3:def 2;
    
      then
    
      
    
    A10: ( 
    proj2 iX) 
    = (g 
    .: ( 
    proj2 X)) by 
    A6,
    Th4;
    
      
    
      
    
    A11: 
    ex_sup_of (( 
    proj2 X),L2) by 
    A7,
    YELLOW_3: 41;
    
      then
    
      
    
    A12: 
    ex_sup_of (( 
    proj2 iX),T2) by 
    A5,
    A10;
    
      
    
      
    
    A13: ( 
    proj1 iX) 
    = (f 
    .: ( 
    proj1 X)) by 
    A6,
    A9,
    Th4;
    
      then
    ex_sup_of (( 
    proj1 iX),T1) by 
    A4,
    A8;
    
      hence
    ex_sup_of (( 
    [:f, g:]
    .: X), 
    [:T1, T2:]) by
    A12,
    YELLOW_3: 41;
    
      
    
      hence (
    sup ( 
    [:f, g:]
    .: X)) 
    =  
    [(
    sup (f 
    .: ( 
    proj1 X))), ( 
    sup (g 
    .: ( 
    proj2 X)))] by 
    A13,
    A10,
    Th8
    
      .=
    [(f
    . ( 
    sup ( 
    proj1 X))), ( 
    sup (g 
    .: ( 
    proj2 X)))] by 
    A4,
    A8
    
      .=
    [(f
    . ( 
    sup ( 
    proj1 X))), (g 
    . ( 
    sup ( 
    proj2 X)))] by 
    A5,
    A11
    
      .= (
    [:f, g:]
    . (( 
    sup ( 
    proj1 X)),( 
    sup ( 
    proj2 X)))) by 
    A6,
    FUNCT_3:def 8
    
      .= (
    [:f, g:]
    . ( 
    sup X)) by 
    A7,
    Th8;
    
    end;
    
    theorem :: 
    
    WAYBEL20:13
    
    
    
    
    
    Th13: for L be 
    antisymmetric non 
    empty  
    RelStr, X be 
    Subset of 
    [:L, L:] st X
    c= ( 
    id the 
    carrier of L) & 
    ex_inf_of (X, 
    [:L, L:]) holds (
    inf X) 
    in ( 
    id the 
    carrier of L) 
    
    proof
    
      let L be
    antisymmetric non 
    empty  
    RelStr, X be 
    Subset of 
    [:L, L:];
    
      assume X
    c= ( 
    id the 
    carrier of L) & 
    ex_inf_of (X, 
    [:L, L:]);
    
      then (
    inf X) 
    =  
    [(
    inf ( 
    proj1 X)), ( 
    inf ( 
    proj2 X))] & ( 
    inf ( 
    proj1 X)) 
    = ( 
    inf ( 
    proj2 X)) by 
    Th1,
    Th7;
    
      hence thesis by
    RELAT_1:def 10;
    
    end;
    
    theorem :: 
    
    WAYBEL20:14
    
    
    
    
    
    Th14: for L be 
    antisymmetric non 
    empty  
    RelStr, X be 
    Subset of 
    [:L, L:] st X
    c= ( 
    id the 
    carrier of L) & 
    ex_sup_of (X, 
    [:L, L:]) holds (
    sup X) 
    in ( 
    id the 
    carrier of L) 
    
    proof
    
      let L be
    antisymmetric non 
    empty  
    RelStr, X be 
    Subset of 
    [:L, L:];
    
      assume X
    c= ( 
    id the 
    carrier of L) & 
    ex_sup_of (X, 
    [:L, L:]);
    
      then (
    sup X) 
    =  
    [(
    sup ( 
    proj1 X)), ( 
    sup ( 
    proj2 X))] & ( 
    sup ( 
    proj1 X)) 
    = ( 
    sup ( 
    proj2 X)) by 
    Th1,
    Th8;
    
      hence thesis by
    RELAT_1:def 10;
    
    end;
    
    theorem :: 
    
    WAYBEL20:15
    
    
    
    
    
    Th15: for L,M be non 
    empty  
    RelStr st (L,M) 
    are_isomorphic & L is 
    reflexive holds M is 
    reflexive
    
    proof
    
      let L,M be non
    empty  
    RelStr such that 
    
      
    
    A1: (L,M) 
    are_isomorphic and 
    
      
    
    A2: L is 
    reflexive;
    
      let x be
    Element of M; 
    
      (M,L)
    are_isomorphic by 
    A1,
    WAYBEL_1: 6;
    
      then
    
      consider f be
    Function of M, L such that 
    
      
    
    A3: f is 
    isomorphic;
    
      reconsider fx = (f
    . x) as 
    Element of L; 
    
      fx
    <= fx by 
    A2;
    
      hence thesis by
    A3,
    WAYBEL_0: 66;
    
    end;
    
    theorem :: 
    
    WAYBEL20:16
    
    
    
    
    
    Th16: for L,M be non 
    empty  
    RelStr st (L,M) 
    are_isomorphic & L is 
    transitive holds M is 
    transitive
    
    proof
    
      let L,M be non
    empty  
    RelStr such that 
    
      
    
    A1: (L,M) 
    are_isomorphic and 
    
      
    
    A2: L is 
    transitive;
    
      (M,L)
    are_isomorphic by 
    A1,
    WAYBEL_1: 6;
    
      then
    
      consider f be
    Function of M, L such that 
    
      
    
    A3: f is 
    isomorphic;
    
      let x,y,z be
    Element of M such that 
    
      
    
    A4: x 
    <= y & y 
    <= z; 
    
      reconsider fz = (f
    . z) as 
    Element of L; 
    
      reconsider fy = (f
    . y) as 
    Element of L; 
    
      reconsider fx = (f
    . x) as 
    Element of L; 
    
      fx
    <= fy & fy 
    <= fz by 
    A3,
    A4,
    WAYBEL_0: 66;
    
      then fx
    <= fz by 
    A2;
    
      hence thesis by
    A3,
    WAYBEL_0: 66;
    
    end;
    
    theorem :: 
    
    WAYBEL20:17
    
    
    
    
    
    Th17: for L,M be non 
    empty  
    RelStr st (L,M) 
    are_isomorphic & L is 
    antisymmetric holds M is 
    antisymmetric
    
    proof
    
      let L,M be non
    empty  
    RelStr such that 
    
      
    
    A1: (L,M) 
    are_isomorphic and 
    
      
    
    A2: L is 
    antisymmetric;
    
      (M,L)
    are_isomorphic by 
    A1,
    WAYBEL_1: 6;
    
      then
    
      consider f be
    Function of M, L such that 
    
      
    
    A3: f is 
    isomorphic;
    
      let x,y be
    Element of M such that 
    
      
    
    A4: x 
    <= y & y 
    <= x; 
    
      reconsider fy = (f
    . y) as 
    Element of L; 
    
      reconsider fx = (f
    . x) as 
    Element of L; 
    
      fx
    <= fy & fy 
    <= fx by 
    A3,
    A4,
    WAYBEL_0: 66;
    
      then (
    dom f) 
    = the 
    carrier of M & fx 
    = fy by 
    A2,
    FUNCT_2:def 1;
    
      hence thesis by
    A3,
    FUNCT_1:def 4;
    
    end;
    
    theorem :: 
    
    WAYBEL20:18
    
    
    
    
    
    Th18: for L,M be non 
    empty  
    RelStr st (L,M) 
    are_isomorphic & L is 
    complete holds M is 
    complete
    
    proof
    
      let L,M be non
    empty  
    RelStr such that 
    
      
    
    A1: (L,M) 
    are_isomorphic and 
    
      
    
    A2: L is 
    complete;
    
      let X be
    Subset of M; 
    
      (M,L)
    are_isomorphic by 
    A1,
    WAYBEL_1: 6;
    
      then
    
      consider f be
    Function of M, L such that 
    
      
    
    A3: f is 
    isomorphic;
    
      reconsider fX = (f
    .: X) as 
    Subset of L; 
    
      consider fa be
    Element of L such that 
    
      
    
    A4: fa 
    is_<=_than fX and 
    
      
    
    A5: for fb be 
    Element of L st fb 
    is_<=_than fX holds fb 
    <= fa by 
    A2;
    
      set a = ((f qua
    Function
    " ) 
    . fa); 
    
      
    
      
    
    A6: ( 
    rng f) 
    = the 
    carrier of L by 
    A3,
    WAYBEL_0: 66;
    
      then a
    in ( 
    dom f) by 
    A3,
    FUNCT_1: 32;
    
      then
    
      reconsider a as
    Element of M; 
    
      
    
      
    
    A7: fa 
    = (f 
    . a) by 
    A3,
    A6,
    FUNCT_1: 35;
    
      take a;
    
      
    
      
    
    A8: ( 
    dom f) 
    = the 
    carrier of M by 
    FUNCT_2:def 1;
    
      hereby
    
        let b be
    Element of M such that 
    
        
    
    A9: b 
    in X; 
    
        reconsider fb = (f
    . b) as 
    Element of L; 
    
        fb
    in fX by 
    A8,
    A9,
    FUNCT_1:def 6;
    
        then fa
    <= fb by 
    A4;
    
        hence a
    <= b by 
    A3,
    A7,
    WAYBEL_0: 66;
    
      end;
    
      let b be
    Element of M such that 
    
      
    
    A10: b 
    is_<=_than X; 
    
      reconsider fb = (f
    . b) as 
    Element of L; 
    
      fb
    is_<=_than fX 
    
      proof
    
        let fc be
    Element of L; 
    
        assume fc
    in fX; 
    
        then
    
        consider c be
    object such that 
    
        
    
    A11: c 
    in ( 
    dom f) and 
    
        
    
    A12: c 
    in X and 
    
        
    
    A13: fc 
    = (f 
    . c) by 
    FUNCT_1:def 6;
    
        reconsider c as
    Element of M by 
    A11;
    
        b
    <= c by 
    A10,
    A12;
    
        hence thesis by
    A3,
    A13,
    WAYBEL_0: 66;
    
      end;
    
      then fb
    <= fa by 
    A5;
    
      hence thesis by
    A3,
    A7,
    WAYBEL_0: 66;
    
    end;
    
    theorem :: 
    
    WAYBEL20:19
    
    
    
    
    
    Th19: for L be non 
    empty
    transitive  
    RelStr, k be 
    Function of L, L st k is 
    infs-preserving holds ( 
    corestr k) is 
    infs-preserving
    
    proof
    
      let L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L such that 
    
      
    
    A1: k is 
    infs-preserving;
    
      let X be
    Subset of L; 
    
      assume
    
      
    
    A2: 
    ex_inf_of (X,L); 
    
      set f = (
    corestr k); 
    
      
    
      
    
    A3: k 
    = ( 
    corestr k) by 
    WAYBEL_1: 30;
    
      
    
      
    
    A4: k 
    preserves_inf_of X by 
    A1;
    
      then
    
      
    
    A5: 
    ex_inf_of ((k 
    .: X),L) by 
    A2;
    
      reconsider fX = (f
    .: X) as 
    Subset of ( 
    Image k); 
    
      (
    dom k) 
    = the 
    carrier of L by 
    FUNCT_2:def 1;
    
      then (
    rng k) 
    = the 
    carrier of ( 
    Image k) & (k 
    . ( 
    inf X)) 
    in ( 
    rng k) by 
    FUNCT_1:def 3,
    YELLOW_0:def 15;
    
      then (
    "/\" (fX,L)) is 
    Element of ( 
    Image k) by 
    A4,
    A3,
    A2;
    
      hence
    ex_inf_of ((f 
    .: X),( 
    Image k)) by 
    A3,
    A5,
    YELLOW_0: 63;
    
      (
    inf (k 
    .: X)) 
    = (k 
    . ( 
    inf X)) by 
    A4,
    A2;
    
      hence thesis by
    A3,
    A5,
    YELLOW_0: 63;
    
    end;
    
    theorem :: 
    
    WAYBEL20:20
    
    for L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L st k is 
    filtered-infs-preserving holds ( 
    corestr k) is 
    filtered-infs-preserving
    
    proof
    
      let L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L such that 
    
      
    
    A1: k is 
    filtered-infs-preserving;
    
      let X be
    Subset of L; 
    
      assume X is non
    empty
    filtered;
    
      then
    
      
    
    A2: k 
    preserves_inf_of X by 
    A1;
    
      set f = (
    corestr k); 
    
      
    
      
    
    A3: k 
    = ( 
    corestr k) by 
    WAYBEL_1: 30;
    
      assume
    
      
    
    A4: 
    ex_inf_of (X,L); 
    
      then
    
      
    
    A5: 
    ex_inf_of ((k 
    .: X),L) by 
    A2;
    
      reconsider fX = (f
    .: X) as 
    Subset of ( 
    Image k); 
    
      (
    dom k) 
    = the 
    carrier of L by 
    FUNCT_2:def 1;
    
      then (
    rng k) 
    = the 
    carrier of ( 
    Image k) & (k 
    . ( 
    inf X)) 
    in ( 
    rng k) by 
    FUNCT_1:def 3,
    YELLOW_0:def 15;
    
      then (
    "/\" (fX,L)) is 
    Element of ( 
    Image k) by 
    A2,
    A3,
    A4;
    
      hence
    ex_inf_of ((f 
    .: X),( 
    Image k)) by 
    A3,
    A5,
    YELLOW_0: 63;
    
      (
    inf (k 
    .: X)) 
    = (k 
    . ( 
    inf X)) by 
    A2,
    A4;
    
      hence thesis by
    A3,
    A5,
    YELLOW_0: 63;
    
    end;
    
    theorem :: 
    
    WAYBEL20:21
    
    for L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L st k is 
    sups-preserving holds ( 
    corestr k) is 
    sups-preserving
    
    proof
    
      let L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L such that 
    
      
    
    A1: k is 
    sups-preserving;
    
      let X be
    Subset of L; 
    
      assume
    
      
    
    A2: 
    ex_sup_of (X,L); 
    
      set f = (
    corestr k); 
    
      
    
      
    
    A3: k 
    = ( 
    corestr k) by 
    WAYBEL_1: 30;
    
      
    
      
    
    A4: k 
    preserves_sup_of X by 
    A1;
    
      then
    
      
    
    A5: 
    ex_sup_of ((k 
    .: X),L) by 
    A2;
    
      reconsider fX = (f
    .: X) as 
    Subset of ( 
    Image k); 
    
      (
    dom k) 
    = the 
    carrier of L by 
    FUNCT_2:def 1;
    
      then (
    rng k) 
    = the 
    carrier of ( 
    Image k) & (k 
    . ( 
    sup X)) 
    in ( 
    rng k) by 
    FUNCT_1:def 3,
    YELLOW_0:def 15;
    
      then (
    "\/" (fX,L)) is 
    Element of ( 
    Image k) by 
    A4,
    A3,
    A2;
    
      hence
    ex_sup_of ((f 
    .: X),( 
    Image k)) by 
    A3,
    A5,
    YELLOW_0: 64;
    
      (
    sup (k 
    .: X)) 
    = (k 
    . ( 
    sup X)) by 
    A4,
    A2;
    
      hence thesis by
    A3,
    A5,
    YELLOW_0: 64;
    
    end;
    
    theorem :: 
    
    WAYBEL20:22
    
    
    
    
    
    Th22: for L be non 
    empty
    transitive  
    RelStr, k be 
    Function of L, L st k is 
    directed-sups-preserving holds ( 
    corestr k) is 
    directed-sups-preserving
    
    proof
    
      let L be non
    empty
    transitive  
    RelStr, k be 
    Function of L, L such that 
    
      
    
    A1: k is 
    directed-sups-preserving;
    
      let X be
    Subset of L; 
    
      assume X is non
    empty
    directed;
    
      then
    
      
    
    A2: k 
    preserves_sup_of X by 
    A1;
    
      set f = (
    corestr k); 
    
      
    
      
    
    A3: k 
    = ( 
    corestr k) by 
    WAYBEL_1: 30;
    
      assume
    
      
    
    A4: 
    ex_sup_of (X,L); 
    
      then
    
      
    
    A5: 
    ex_sup_of ((k 
    .: X),L) by 
    A2;
    
      reconsider fX = (f
    .: X) as 
    Subset of ( 
    Image k); 
    
      (
    dom k) 
    = the 
    carrier of L by 
    FUNCT_2:def 1;
    
      then (
    rng k) 
    = the 
    carrier of ( 
    Image k) & (k 
    . ( 
    sup X)) 
    in ( 
    rng k) by 
    FUNCT_1:def 3,
    YELLOW_0:def 15;
    
      then (
    "\/" (fX,L)) is 
    Element of ( 
    Image k) by 
    A2,
    A3,
    A4;
    
      hence
    ex_sup_of ((f 
    .: X),( 
    Image k)) by 
    A3,
    A5,
    YELLOW_0: 64;
    
      (
    sup (k 
    .: X)) 
    = (k 
    . ( 
    sup X)) by 
    A2,
    A4;
    
      hence thesis by
    A3,
    A5,
    YELLOW_0: 64;
    
    end;
    
    theorem :: 
    
    WAYBEL20:23
    
    
    
    
    
    Th23: for S,T be 
    reflexive
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of S, T st f is 
    filtered-infs-preserving holds f is 
    monotone
    
    proof
    
      let S,T be
    reflexive
    antisymmetric non 
    empty  
    RelStr, f be 
    Function of S, T; 
    
      assume
    
      
    
    A1: f is 
    filtered-infs-preserving;
    
      let x,y be
    Element of S such that 
    
      
    
    A2: x 
    <= y; 
    
      
    
      
    
    A3: ( 
    dom f) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
      
    
      
    
    A4: for b be 
    Element of S st 
    {x, y}
    is_>=_than b holds x 
    >= b by 
    YELLOW_0: 8;
    
      
    
      
    
    A5: x 
    <= x; 
    
      then
    
      
    
    A6: 
    {x, y}
    is_>=_than x by 
    A2,
    YELLOW_0: 8;
    
      then
    
      
    
    A7: 
    ex_inf_of ( 
    {x, y},S) by
    A4,
    YELLOW_0: 31;
    
      for a,b be
    Element of S st a 
    in  
    {x, y} & b
    in  
    {x, y} holds ex z be
    Element of S st z 
    in  
    {x, y} & a
    >= z & b 
    >= z 
    
      proof
    
        let a,b be
    Element of S such that 
    
        
    
    A8: a 
    in  
    {x, y} & b
    in  
    {x, y};
    
        take x;
    
        thus x
    in  
    {x, y} by
    TARSKI:def 2;
    
        thus thesis by
    A2,
    A5,
    A8,
    TARSKI:def 2;
    
      end;
    
      then
    {x, y} is
    filtered non 
    empty;
    
      then
    
      
    
    A9: f 
    preserves_inf_of  
    {x, y} by
    A1;
    
      x
    = ( 
    inf  
    {x, y}) by
    A6,
    A4,
    YELLOW_0: 31;
    
      then (
    inf (f 
    .:  
    {x, y}))
    = (f 
    . x) by 
    A7,
    A9;
    
      then
    
      
    
    A10: (f 
    . x) 
    = ( 
    inf  
    {(f
    . x), (f 
    . y)}) by 
    A3,
    FUNCT_1: 60;
    
      (f
    .:  
    {x, y})
    =  
    {(f
    . x), (f 
    . y)} by 
    A3,
    FUNCT_1: 60;
    
      then
    ex_inf_of ( 
    {(f
    . x), (f 
    . y)},T) by 
    A7,
    A9;
    
      then
    {(f
    . x), (f 
    . y)} 
    is_>=_than (f 
    . x) by 
    A10,
    YELLOW_0:def 10;
    
      hence (f
    . x) 
    <= (f 
    . y) by 
    YELLOW_0: 8;
    
    end;
    
    theorem :: 
    
    WAYBEL20:24
    
    
    
    
    
    Th24: for S,T be non 
    empty  
    RelStr, f be 
    Function of S, T st f is 
    monotone holds for X be 
    Subset of S holds (X is 
    filtered implies (f 
    .: X) is 
    filtered)
    
    proof
    
      let S,T be non
    empty  
    RelStr, f be 
    Function of S, T; 
    
      assume
    
      
    
    A1: f is 
    monotone;
    
      let X be
    Subset of S such that 
    
      
    
    A2: X is 
    filtered;
    
      let x,y be
    Element of T; 
    
      assume x
    in (f 
    .: X); 
    
      then
    
      consider a be
    object such that 
    
      
    
    A3: a 
    in the 
    carrier of S and 
    
      
    
    A4: a 
    in X and 
    
      
    
    A5: x 
    = (f 
    . a) by 
    FUNCT_2: 64;
    
      assume y
    in (f 
    .: X); 
    
      then
    
      consider b be
    object such that 
    
      
    
    A6: b 
    in the 
    carrier of S and 
    
      
    
    A7: b 
    in X and 
    
      
    
    A8: y 
    = (f 
    . b) by 
    FUNCT_2: 64;
    
      reconsider a, b as
    Element of S by 
    A3,
    A6;
    
      consider c be
    Element of S such that 
    
      
    
    A9: c 
    in X and 
    
      
    
    A10: c 
    <= a & c 
    <= b by 
    A2,
    A4,
    A7;
    
      take z = (f
    . c); 
    
      thus z
    in (f 
    .: X) by 
    A9,
    FUNCT_2: 35;
    
      thus thesis by
    A1,
    A5,
    A8,
    A10;
    
    end;
    
    theorem :: 
    
    WAYBEL20:25
    
    
    
    
    
    Th25: for L1,L2,L3 be non 
    empty  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 st f is 
    infs-preserving & g is 
    infs-preserving holds (g 
    * f) is 
    infs-preserving
    
    proof
    
      let L1,L2,L3 be non
    empty  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 such that 
    
      
    
    A1: f is 
    infs-preserving and 
    
      
    
    A2: g is 
    infs-preserving;
    
      set gf = (g
    * f); 
    
      let X be
    Subset of L1 such that 
    
      
    
    A3: 
    ex_inf_of (X,L1); 
    
      set fX = (f
    .: X); 
    
      set gfX = (gf
    .: X); 
    
      
    
      
    
    A4: f 
    preserves_inf_of X by 
    A1;
    
      then
    
      
    
    A5: gfX 
    = (g 
    .: (f 
    .: X)) & 
    ex_inf_of (fX,L2) by 
    A3,
    RELAT_1: 126;
    
      
    
      
    
    A6: ( 
    dom f) 
    = the 
    carrier of L1 by 
    FUNCT_2:def 1;
    
      
    
      
    
    A7: g 
    preserves_inf_of fX by 
    A2;
    
      hence
    ex_inf_of (gfX,L3) by 
    A5;
    
      
    
      thus (
    inf gfX) 
    = (g 
    . ( 
    inf fX)) by 
    A7,
    A5
    
      .= (g
    . (f 
    . ( 
    inf X))) by 
    A3,
    A4
    
      .= (gf
    . ( 
    inf X)) by 
    A6,
    FUNCT_1: 13;
    
    end;
    
    theorem :: 
    
    WAYBEL20:26
    
    for L1,L2,L3 be non
    empty
    reflexive
    antisymmetric  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 st f is 
    filtered-infs-preserving & g is 
    filtered-infs-preserving holds (g 
    * f) is 
    filtered-infs-preserving
    
    proof
    
      let L1,L2,L3 be non
    empty
    reflexive
    antisymmetric  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 such that 
    
      
    
    A1: f is 
    filtered-infs-preserving and 
    
      
    
    A2: g is 
    filtered-infs-preserving;
    
      set gf = (g
    * f); 
    
      let X be
    Subset of L1 such that 
    
      
    
    A3: X is non 
    empty
    filtered and 
    
      
    
    A4: 
    ex_inf_of (X,L1); 
    
      set xx = the
    Element of X; 
    
      set fX = (f
    .: X); 
    
      set gfX = (gf
    .: X); 
    
      
    
      
    
    A5: f 
    preserves_inf_of X by 
    A1,
    A3;
    
      then
    
      
    
    A6: gfX 
    = (g 
    .: (f 
    .: X)) & 
    ex_inf_of (fX,L2) by 
    A4,
    RELAT_1: 126;
    
      xx
    in X by 
    A3;
    
      then (f
    . xx) 
    in fX by 
    FUNCT_2: 35;
    
      then fX is non
    empty
    filtered by 
    A1,
    A3,
    Th23,
    Th24;
    
      then
    
      
    
    A7: g 
    preserves_inf_of fX by 
    A2;
    
      hence
    ex_inf_of (gfX,L3) by 
    A6;
    
      
    
      
    
    A8: ( 
    dom f) 
    = the 
    carrier of L1 by 
    FUNCT_2:def 1;
    
      
    
      thus (
    inf gfX) 
    = (g 
    . ( 
    inf fX)) by 
    A7,
    A6
    
      .= (g
    . (f 
    . ( 
    inf X))) by 
    A4,
    A5
    
      .= (gf
    . ( 
    inf X)) by 
    A8,
    FUNCT_1: 13;
    
    end;
    
    theorem :: 
    
    WAYBEL20:27
    
    for L1,L2,L3 be non
    empty  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 st f is 
    sups-preserving & g is 
    sups-preserving holds (g 
    * f) is 
    sups-preserving
    
    proof
    
      let L1,L2,L3 be non
    empty  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 such that 
    
      
    
    A1: f is 
    sups-preserving and 
    
      
    
    A2: g is 
    sups-preserving;
    
      set gf = (g
    * f); 
    
      let X be
    Subset of L1 such that 
    
      
    
    A3: 
    ex_sup_of (X,L1); 
    
      set fX = (f
    .: X); 
    
      set gfX = (gf
    .: X); 
    
      
    
      
    
    A4: f 
    preserves_sup_of X by 
    A1;
    
      then
    
      
    
    A5: gfX 
    = (g 
    .: (f 
    .: X)) & 
    ex_sup_of (fX,L2) by 
    A3,
    RELAT_1: 126;
    
      
    
      
    
    A6: ( 
    dom f) 
    = the 
    carrier of L1 by 
    FUNCT_2:def 1;
    
      
    
      
    
    A7: g 
    preserves_sup_of fX by 
    A2;
    
      hence
    ex_sup_of (gfX,L3) by 
    A5;
    
      
    
      thus (
    sup gfX) 
    = (g 
    . ( 
    sup fX)) by 
    A7,
    A5
    
      .= (g
    . (f 
    . ( 
    sup X))) by 
    A3,
    A4
    
      .= (gf
    . ( 
    sup X)) by 
    A6,
    FUNCT_1: 13;
    
    end;
    
    theorem :: 
    
    WAYBEL20:28
    
    for L1,L2,L3 be non
    empty
    reflexive
    antisymmetric  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 st f is 
    directed-sups-preserving & g is 
    directed-sups-preserving holds (g 
    * f) is 
    directed-sups-preserving
    
    proof
    
      let L1,L2,L3 be non
    empty
    reflexive
    antisymmetric  
    RelStr, f be 
    Function of L1, L2, g be 
    Function of L2, L3 such that 
    
      
    
    A1: f is 
    directed-sups-preserving and 
    
      
    
    A2: g is 
    directed-sups-preserving;
    
      set gf = (g
    * f); 
    
      let X be
    Subset of L1 such that 
    
      
    
    A3: X is non 
    empty
    directed and 
    
      
    
    A4: 
    ex_sup_of (X,L1); 
    
      set xx = the
    Element of X; 
    
      set fX = (f
    .: X); 
    
      set gfX = (gf
    .: X); 
    
      
    
      
    
    A5: f 
    preserves_sup_of X by 
    A1,
    A3;
    
      then
    
      
    
    A6: gfX 
    = (g 
    .: (f 
    .: X)) & 
    ex_sup_of (fX,L2) by 
    A4,
    RELAT_1: 126;
    
      xx
    in X by 
    A3;
    
      then (f
    . xx) 
    in fX by 
    FUNCT_2: 35;
    
      then fX is non
    empty
    directed by 
    A1,
    A3,
    WAYBEL17: 3,
    YELLOW_2: 15;
    
      then
    
      
    
    A7: g 
    preserves_sup_of fX by 
    A2;
    
      hence
    ex_sup_of (gfX,L3) by 
    A6;
    
      
    
      
    
    A8: ( 
    dom f) 
    = the 
    carrier of L1 by 
    FUNCT_2:def 1;
    
      
    
      thus (
    sup gfX) 
    = (g 
    . ( 
    sup fX)) by 
    A7,
    A6
    
      .= (g
    . (f 
    . ( 
    sup X))) by 
    A4,
    A5
    
      .= (gf
    . ( 
    sup X)) by 
    A8,
    FUNCT_1: 13;
    
    end;
    
    begin
    
    theorem :: 
    
    WAYBEL20:29
    
    for I be non
    empty  
    set holds for J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I st for i be 
    Element of I holds (J 
    . i) is 
    lower-bounded
    antisymmetric  
    RelStr holds ( 
    product J) is 
    lower-bounded
    
    proof
    
      let I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I such that 
    
      
    
    A1: for i be 
    Element of I holds (J 
    . i) is 
    lower-bounded
    antisymmetric  
    RelStr;
    
      deffunc
    
    F(
    Element of I) = ( 
    Bottom (J 
    . $1)); 
    
      consider f be
    ManySortedSet of I such that 
    
      
    
    A2: for i be 
    Element of I holds (f 
    . i) 
    =  
    F(i) from
    PBOOLE:sch 5;
    
      
    
    A3: 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Bottom (J 
    . i)) by 
    A2;
    
        hence (f
    . i) is 
    Element of (J 
    . i); 
    
      end;
    
      (
    dom f) 
    = I by 
    PARTFUN1:def 2;
    
      then
    
      reconsider f as
    Element of ( 
    product J) by 
    A3,
    WAYBEL_3: 27;
    
      take f;
    
      let b be
    Element of ( 
    product J) such that b 
    in the 
    carrier of ( 
    product J); 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Bottom (J 
    . i)) & (J 
    . i) is 
    lower-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
        hence (f
    . i) 
    <= (b 
    . i) by 
    YELLOW_0: 44;
    
      end;
    
      hence thesis by
    WAYBEL_3: 28;
    
    end;
    
    theorem :: 
    
    WAYBEL20:30
    
    for I be non
    empty  
    set holds for J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I st for i be 
    Element of I holds (J 
    . i) is 
    upper-bounded
    antisymmetric  
    RelStr holds ( 
    product J) is 
    upper-bounded
    
    proof
    
      let I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I such that 
    
      
    
    A1: for i be 
    Element of I holds (J 
    . i) is 
    upper-bounded
    antisymmetric  
    RelStr;
    
      deffunc
    
    F(
    Element of I) = ( 
    Top (J 
    . $1)); 
    
      consider f be
    ManySortedSet of I such that 
    
      
    
    A2: for i be 
    Element of I holds (f 
    . i) 
    =  
    F(i) from
    PBOOLE:sch 5;
    
      
    
    A3: 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Top (J 
    . i)) by 
    A2;
    
        hence (f
    . i) is 
    Element of (J 
    . i); 
    
      end;
    
      (
    dom f) 
    = I by 
    PARTFUN1:def 2;
    
      then
    
      reconsider f as
    Element of ( 
    product J) by 
    A3,
    WAYBEL_3: 27;
    
      take f;
    
      let b be
    Element of ( 
    product J) such that b 
    in the 
    carrier of ( 
    product J); 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Top (J 
    . i)) & (J 
    . i) is 
    upper-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
        hence (f
    . i) 
    >= (b 
    . i) by 
    YELLOW_0: 45;
    
      end;
    
      hence thesis by
    WAYBEL_3: 28;
    
    end;
    
    theorem :: 
    
    WAYBEL20:31
    
    for I be non
    empty  
    set holds for J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I st for i be 
    Element of I holds (J 
    . i) is 
    lower-bounded
    antisymmetric  
    RelStr holds for i be 
    Element of I holds (( 
    Bottom ( 
    product J)) 
    . i) 
    = ( 
    Bottom (J 
    . i)) 
    
    proof
    
      let I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I such that 
    
      
    
    A1: for i be 
    Element of I holds (J 
    . i) is 
    lower-bounded
    antisymmetric  
    RelStr;
    
      deffunc
    
    F(
    Element of I) = ( 
    Bottom (J 
    . $1)); 
    
      consider f be
    ManySortedSet of I such that 
    
      
    
    A2: for i be 
    Element of I holds (f 
    . i) 
    =  
    F(i) from
    PBOOLE:sch 5;
    
      
    
    A3: 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Bottom (J 
    . i)) by 
    A2;
    
        hence (f
    . i) is 
    Element of (J 
    . i); 
    
      end;
    
      (
    dom f) 
    = I by 
    PARTFUN1:def 2;
    
      then
    
      reconsider f as
    Element of ( 
    product J) by 
    A3,
    WAYBEL_3: 27;
    
      let i be
    Element of I; 
    
      
    
      
    
    A4: 
    {}  
    is_<=_than f; 
    
      
    
    A5: 
    
      now
    
        let c be
    Element of ( 
    product J) such that 
    {}  
    is_<=_than c and 
    
        
    
    A6: for b be 
    Element of ( 
    product J) st 
    {}  
    is_<=_than b holds b 
    >= c; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Bottom (J 
    . i)) & (J 
    . i) is 
    lower-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    <= (c 
    . i) by 
    YELLOW_0: 44;
    
        end;
    
        then
    
        
    
    A7: f 
    <= c by 
    WAYBEL_3: 28;
    
        for i be
    Element of I holds (J 
    . i) is 
    antisymmetric by 
    A1;
    
        then
    
        
    
    A8: ( 
    product J) is 
    antisymmetric by 
    WAYBEL_3: 30;
    
        c
    <= f by 
    A6,
    YELLOW_0: 6;
    
        hence c
    = f by 
    A8,
    A7;
    
      end;
    
      
    
    A9: 
    
      now
    
        let a be
    Element of ( 
    product J) such that 
    {}  
    is_<=_than a; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Bottom (J 
    . i)) & (J 
    . i) is 
    lower-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    <= (a 
    . i) by 
    YELLOW_0: 44;
    
        end;
    
        hence f
    <= a by 
    WAYBEL_3: 28;
    
      end;
    
      now
    
        let b be
    Element of ( 
    product J) such that 
    {}  
    is_<=_than b; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Bottom (J 
    . i)) & (J 
    . i) is 
    lower-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    <= (b 
    . i) by 
    YELLOW_0: 44;
    
        end;
    
        hence f
    <= b by 
    WAYBEL_3: 28;
    
      end;
    
      then
    ex_sup_of ( 
    {} ,( 
    product J)) by 
    A4,
    A5;
    
      then f
    = ( 
    "\/" ( 
    {} ,( 
    product J))) by 
    A4,
    A9,
    YELLOW_0:def 9;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    WAYBEL20:32
    
    for I be non
    empty  
    set holds for J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I st for i be 
    Element of I holds (J 
    . i) is 
    upper-bounded
    antisymmetric  
    RelStr holds for i be 
    Element of I holds (( 
    Top ( 
    product J)) 
    . i) 
    = ( 
    Top (J 
    . i)) 
    
    proof
    
      let I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty  
    ManySortedSet of I such that 
    
      
    
    A1: for i be 
    Element of I holds (J 
    . i) is 
    upper-bounded
    antisymmetric  
    RelStr;
    
      deffunc
    
    F(
    Element of I) = ( 
    Top (J 
    . $1)); 
    
      consider f be
    ManySortedSet of I such that 
    
      
    
    A2: for i be 
    Element of I holds (f 
    . i) 
    =  
    F(i) from
    PBOOLE:sch 5;
    
      
    
    A3: 
    
      now
    
        let i be
    Element of I; 
    
        (f
    . i) 
    = ( 
    Top (J 
    . i)) by 
    A2;
    
        hence (f
    . i) is 
    Element of (J 
    . i); 
    
      end;
    
      (
    dom f) 
    = I by 
    PARTFUN1:def 2;
    
      then
    
      reconsider f as
    Element of ( 
    product J) by 
    A3,
    WAYBEL_3: 27;
    
      let i be
    Element of I; 
    
      
    
      
    
    A4: 
    {}  
    is_>=_than f; 
    
      
    
    A5: 
    
      now
    
        let c be
    Element of ( 
    product J) such that 
    {}  
    is_>=_than c and 
    
        
    
    A6: for b be 
    Element of ( 
    product J) st 
    {}  
    is_>=_than b holds b 
    <= c; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Top (J 
    . i)) & (J 
    . i) is 
    upper-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    >= (c 
    . i) by 
    YELLOW_0: 45;
    
        end;
    
        then
    
        
    
    A7: f 
    >= c by 
    WAYBEL_3: 28;
    
        for i be
    Element of I holds (J 
    . i) is 
    antisymmetric by 
    A1;
    
        then
    
        
    
    A8: ( 
    product J) is 
    antisymmetric by 
    WAYBEL_3: 30;
    
        c
    >= f by 
    A6,
    YELLOW_0: 6;
    
        hence c
    = f by 
    A8,
    A7;
    
      end;
    
      
    
    A9: 
    
      now
    
        let a be
    Element of ( 
    product J) such that 
    {}  
    is_>=_than a; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Top (J 
    . i)) & (J 
    . i) is 
    upper-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    >= (a 
    . i) by 
    YELLOW_0: 45;
    
        end;
    
        hence f
    >= a by 
    WAYBEL_3: 28;
    
      end;
    
      now
    
        let b be
    Element of ( 
    product J) such that 
    {}  
    is_>=_than b; 
    
        now
    
          let i be
    Element of I; 
    
          (f
    . i) 
    = ( 
    Top (J 
    . i)) & (J 
    . i) is 
    upper-bounded
    antisymmetric non 
    empty  
    RelStr by 
    A1,
    A2;
    
          hence (f
    . i) 
    >= (b 
    . i) by 
    YELLOW_0: 45;
    
        end;
    
        hence f
    >= b by 
    WAYBEL_3: 28;
    
      end;
    
      then
    ex_inf_of ( 
    {} ,( 
    product J)) by 
    A4,
    A5;
    
      then f
    = ( 
    "/\" ( 
    {} ,( 
    product J))) by 
    A4,
    A9,
    YELLOW_0:def 10;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    WAYBEL20:33
    
    for I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty
    reflexive-yielding  
    ManySortedSet of I st for i be 
    Element of I holds (J 
    . i) is 
    continuous
    complete  
    LATTICE holds ( 
    product J) is 
    continuous
    
    proof
    
      let I be non
    empty  
    set, J be 
    RelStr-yielding
    non-Empty
    reflexive-yielding  
    ManySortedSet of I such that 
    
      
    
    A1: for i be 
    Element of I holds (J 
    . i) is 
    continuous
    complete  
    LATTICE;
    
      
    
      
    
    A2: for i be 
    Element of I holds (J 
    . i) is 
    complete  
    LATTICE by 
    A1;
    
      set pJ = (
    product J); 
    
      reconsider pJ9 = pJ as
    complete  
    LATTICE by 
    A2,
    WAYBEL_3: 31;
    
      hereby
    
        let x be
    Element of pJ; 
    
        reconsider x9 = x as
    Element of pJ9; 
    
        (
    waybelow x9) is non 
    empty;
    
        hence (
    waybelow x) is non 
    empty;
    
        (
    waybelow x9) is 
    directed;
    
        hence (
    waybelow x) is 
    directed;
    
      end;
    
      pJ9 is
    up-complete;
    
      hence pJ is
    up-complete;
    
      let x be
    Element of pJ; 
    
      set swx = (
    sup ( 
    waybelow x)); 
    
      now
    
        thus (
    dom x) 
    = I by 
    WAYBEL_3: 27;
    
        thus (
    dom swx) 
    = I by 
    WAYBEL_3: 27;
    
        let i be
    object;
    
        assume i
    in I; 
    
        then
    
        reconsider i9 = i as
    Element of I; 
    
        now
    
          reconsider K =
    {i9} as
    finite  
    Subset of I; 
    
          deffunc
    
    F(
    Element of I) = ( 
    Bottom (J 
    . $1)); 
    
          let a be
    object;
    
          consider g be
    ManySortedSet of I such that 
    
          
    
    A3: for i be 
    Element of I holds (g 
    . i) 
    =  
    F(i) from
    PBOOLE:sch 5;
    
          set f = (g
    +* (i,a)); 
    
          hereby
    
            assume a
    in ( 
    pi (( 
    waybelow x),i9)); 
    
            then
    
            consider f be
    Function such that 
    
            
    
    A4: f 
    in ( 
    waybelow x) and 
    
            
    
    A5: a 
    = (f 
    . i) by 
    CARD_3:def 6;
    
            reconsider f as
    Element of pJ by 
    A4;
    
            f
    << x by 
    A4,
    WAYBEL_3: 7;
    
            then (f
    . i9) 
    << (x 
    . i9) by 
    A2,
    WAYBEL_3: 33;
    
            hence a
    in ( 
    waybelow (x 
    . i9)) by 
    A5;
    
          end;
    
          
    
          
    
    A6: ( 
    dom g) 
    = I by 
    PARTFUN1:def 2;
    
          then
    
          
    
    A7: ( 
    dom f) 
    = I by 
    FUNCT_7: 30;
    
          assume
    
          
    
    A8: a 
    in ( 
    waybelow (x 
    . i9)); 
    
          now
    
            let j be
    Element of I; 
    
            per cases ;
    
              suppose i9
    = j; 
    
              hence (f
    . j) is 
    Element of (J 
    . j) by 
    A8,
    A6,
    FUNCT_7: 31;
    
            end;
    
              suppose i9
    <> j; 
    
              
    
              then (f
    . j) 
    = (g 
    . j) by 
    FUNCT_7: 32
    
              .= (
    Bottom (J 
    . j)) by 
    A3;
    
              hence (f
    . j) is 
    Element of (J 
    . j); 
    
            end;
    
          end;
    
          then
    
          reconsider f as
    Element of pJ by 
    A7,
    WAYBEL_3: 27;
    
          
    
    A9: 
    
          now
    
            let j be
    Element of I; 
    
            per cases ;
    
              suppose
    
              
    
    A10: i9 
    = j; 
    
              (f
    . i9) 
    = a by 
    A6,
    FUNCT_7: 31;
    
              hence (f
    . j) 
    << (x 
    . j) by 
    A8,
    A10,
    WAYBEL_3: 7;
    
            end;
    
              suppose
    
              
    
    A11: i9 
    <> j; 
    
              
    
              
    
    A12: (J 
    . j) is 
    complete  
    LATTICE by 
    A1;
    
              (f
    . j) 
    = (g 
    . j) by 
    A11,
    FUNCT_7: 32
    
              .= (
    Bottom (J 
    . j)) by 
    A3;
    
              hence (f
    . j) 
    << (x 
    . j) by 
    A12,
    WAYBEL_3: 4;
    
            end;
    
          end;
    
          now
    
            let j be
    Element of I; 
    
            assume not j
    in K; 
    
            then j
    <> i9 by 
    TARSKI:def 1;
    
            
    
            hence (f
    . j) 
    = (g 
    . j) by 
    FUNCT_7: 32
    
            .= (
    Bottom (J 
    . j)) by 
    A3;
    
          end;
    
          then f
    << x by 
    A2,
    A9,
    WAYBEL_3: 33;
    
          then
    
          
    
    A13: f 
    in ( 
    waybelow x); 
    
          a
    = (f 
    . i9) by 
    A6,
    FUNCT_7: 31;
    
          hence a
    in ( 
    pi (( 
    waybelow x),i9)) by 
    A13,
    CARD_3:def 6;
    
        end;
    
        then
    
        
    
    A14: ( 
    pi (( 
    waybelow x),i9)) 
    = ( 
    waybelow (x 
    . i9)) by 
    TARSKI: 2;
    
        (swx
    . i9) 
    = ( 
    sup ( 
    pi (( 
    waybelow x),i9))) & (J 
    . i9) is 
    satisfying_axiom_of_approximation by 
    A1,
    A2,
    WAYBEL_3: 32;
    
        hence (x
    . i) 
    = (swx 
    . i) by 
    A14;
    
      end;
    
      hence thesis by
    FUNCT_1: 2;
    
    end;
    
    begin
    
    theorem :: 
    
    WAYBEL20:34
    
    
    
    
    
    Th34: for L,T be 
    continuous
    complete  
    LATTICE, g be 
    CLHomomorphism of L, T, S be 
    Subset of 
    [:L, L:] st S
    = ( 
    [:g, g:]
    " ( 
    id the 
    carrier of T)) holds ( 
    subrelstr S) is 
    CLSubFrame of 
    [:L, L:]
    
    proof
    
      let L,T be
    continuous
    complete  
    LATTICE, g be 
    CLHomomorphism of L, T, SL be 
    Subset of 
    [:L, L:] such that
    
      
    
    A1: SL 
    = ( 
    [:g, g:]
    " ( 
    id the 
    carrier of T)); 
    
      set x = the
    Element of L; 
    
      
    
      
    
    A2: ( 
    dom g) 
    = the 
    carrier of L by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A3: 
    [x, x]
    in  
    [:(
    dom g), ( 
    dom g):] by 
    ZFMISC_1: 87;
    
      
    [(g
    . x), (g 
    . x)] 
    in ( 
    id the 
    carrier of T) by 
    RELAT_1:def 10;
    
      then (
    dom  
    [:g, g:])
    =  
    [:(
    dom g), ( 
    dom g):] & ( 
    [:g, g:]
    . (x,x)) 
    in ( 
    id the 
    carrier of T) by 
    A2,
    FUNCT_3:def 8;
    
      then
    
      reconsider nSL = SL as non
    empty  
    Subset of 
    [:L, L:] by
    A1,
    A3,
    FUNCT_1:def 7;
    
      set pL =
    [:L, L:], pg =
    [:g, g:];
    
      
    
      
    
    A4: g is 
    infs-preserving
    directed-sups-preserving by 
    WAYBEL16:def 1;
    
      
    
      
    
    A5: the 
    carrier of pL 
    =  
    [:the 
    carrier of L, the 
    carrier of L:] by 
    YELLOW_3:def 2;
    
      
    
      
    
    A6: ( 
    subrelstr nSL) is non 
    empty;
    
      
    
      
    
    A7: ( 
    subrelstr SL) is 
    directed-sups-inheriting
    
      proof
    
        let X be
    directed  
    Subset of ( 
    subrelstr SL) such that 
    
        
    
    A8: X 
    <>  
    {} and 
    
        
    
    A9: 
    ex_sup_of (X,pL); 
    
        reconsider X9 = X as
    directed non 
    empty  
    Subset of pL by 
    A6,
    A8,
    YELLOW_2: 7;
    
        pg is
    directed-sups-preserving by 
    A4,
    Th12;
    
        then pg
    preserves_sup_of X9; 
    
        then
    
        
    
    A10: ( 
    sup (pg 
    .: X9)) 
    = (pg 
    . ( 
    sup X9)) by 
    A9;
    
        X
    c= the 
    carrier of ( 
    subrelstr SL); 
    
        then X
    c= SL by 
    YELLOW_0:def 15;
    
        then
    
        
    
    A11: (pg 
    .: X) 
    c= (pg 
    .: SL) by 
    RELAT_1: 123;
    
        (pg
    .: SL) 
    c= ( 
    id the 
    carrier of T) & 
    ex_sup_of ((pg 
    .: X9), 
    [:T, T:]) by
    A1,
    FUNCT_1: 75,
    YELLOW_0: 17;
    
        then
    
        
    
    A12: ( 
    sup (pg 
    .: X9)) 
    in ( 
    id the 
    carrier of T) by 
    A11,
    Th14,
    XBOOLE_1: 1;
    
        consider x,y be
    object such that 
    
        
    
    A13: x 
    in the 
    carrier of L & y 
    in the 
    carrier of L and 
    
        
    
    A14: ( 
    sup X9) 
    =  
    [x, y] by
    A5,
    ZFMISC_1:def 2;
    
        
    [x, y]
    in  
    [:(
    dom g), ( 
    dom g):] by 
    A2,
    A13,
    ZFMISC_1: 87;
    
        then
    [x, y]
    in ( 
    dom  
    [:g, g:]) by
    FUNCT_3:def 8;
    
        then
    [x, y]
    in ( 
    [:g, g:]
    " ( 
    id the 
    carrier of T)) by 
    A14,
    A10,
    A12,
    FUNCT_1:def 7;
    
        hence thesis by
    A1,
    A14,
    YELLOW_0:def 15;
    
      end;
    
      (
    subrelstr SL) is 
    infs-inheriting
    
      proof
    
        let X be
    Subset of ( 
    subrelstr SL) such that 
    
        
    
    A15: 
    ex_inf_of (X,pL); 
    
        X
    c= the 
    carrier of ( 
    subrelstr SL); 
    
        then
    
        
    
    A16: X 
    c= SL by 
    YELLOW_0:def 15;
    
        then
    
        reconsider X9 = X as
    Subset of pL by 
    XBOOLE_1: 1;
    
        
    
        
    
    A17: (pg 
    .: SL) 
    c= ( 
    id the 
    carrier of T) & 
    ex_inf_of ((pg 
    .: X9), 
    [:T, T:]) by
    A1,
    FUNCT_1: 75,
    YELLOW_0: 17;
    
        pg is
    infs-preserving by 
    A4,
    Th9;
    
        then pg
    preserves_inf_of X9; 
    
        then
    
        
    
    A18: ( 
    inf (pg 
    .: X9)) 
    = (pg 
    . ( 
    inf X9)) by 
    A15;
    
        (pg
    .: X) 
    c= (pg 
    .: SL) by 
    A16,
    RELAT_1: 123;
    
        then
    
        
    
    A19: ( 
    inf (pg 
    .: X9)) 
    in ( 
    id the 
    carrier of T) by 
    A17,
    Th13,
    XBOOLE_1: 1;
    
        consider x,y be
    object such that 
    
        
    
    A20: x 
    in the 
    carrier of L & y 
    in the 
    carrier of L and 
    
        
    
    A21: ( 
    inf X9) 
    =  
    [x, y] by
    A5,
    ZFMISC_1:def 2;
    
        
    [x, y]
    in  
    [:(
    dom g), ( 
    dom g):] by 
    A2,
    A20,
    ZFMISC_1: 87;
    
        then
    [x, y]
    in ( 
    dom  
    [:g, g:]) by
    FUNCT_3:def 8;
    
        then
    [x, y]
    in ( 
    [:g, g:]
    " ( 
    id the 
    carrier of T)) by 
    A21,
    A18,
    A19,
    FUNCT_1:def 7;
    
        hence thesis by
    A1,
    A21,
    YELLOW_0:def 15;
    
      end;
    
      hence thesis by
    A7;
    
    end;
    
    definition
    
      let L be
    RelStr, R be 
    Subset of 
    [:L, L:];
    
      :: 
    
    WAYBEL20:def1
    
      func
    
    EqRel R -> 
    Equivalence_Relation of the 
    carrier of L equals 
    
      :
    
    Def1: R; 
    
      correctness by
    A1;
    
    end
    
    definition
    
      let L be non
    empty  
    RelStr, R be 
    Subset of 
    [:L, L:];
    
      :: 
    
    WAYBEL20:def2
    
      attr R is
    
    CLCongruence means R is 
    Equivalence_Relation of the 
    carrier of L & ( 
    subrelstr R) is 
    CLSubFrame of 
    [:L, L:];
    
    end
    
    theorem :: 
    
    WAYBEL20:35
    
    
    
    
    
    Th35: for L be 
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:] st R is
    CLCongruence holds for x be 
    Element of L holds 
    [(
    inf ( 
    Class (( 
    EqRel R),x))), x] 
    in R 
    
    proof
    
      let L be
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:];
    
      assume
    
      
    
    A1: R is 
    CLCongruence;
    
      let x be
    Element of L; 
    
      set CRx = (
    Class (( 
    EqRel R),x)); 
    
      reconsider SR =
    [:CRx,
    {x}:] as
    Subset of 
    [:L, L:];
    
      R is
    Equivalence_Relation of the 
    carrier of L by 
    A1;
    
      then
    
      
    
    A2: R 
    = ( 
    EqRel R) by 
    Def1;
    
      SR
    c= the 
    carrier of ( 
    subrelstr R) 
    
      proof
    
        let a be
    object;
    
        assume a
    in SR; 
    
        then
    
        consider a1,a2 be
    object such that 
    
        
    
    A3: a1 
    in CRx and 
    
        
    
    A4: a2 
    in  
    {x} and
    
        
    
    A5: a 
    =  
    [a1, a2] by
    ZFMISC_1:def 2;
    
        a2
    = x by 
    A4,
    TARSKI:def 1;
    
        then a
    in R by 
    A2,
    A3,
    A5,
    EQREL_1: 19;
    
        hence thesis by
    YELLOW_0:def 15;
    
      end;
    
      then
    
      reconsider SR9 = SR as
    Subset of ( 
    subrelstr R); 
    
      
    
      
    
    A6: 
    ex_inf_of (SR, 
    [:L, L:]) by
    YELLOW_0: 17;
    
      (
    subrelstr R) is 
    CLSubFrame of 
    [:L, L:] by
    A1;
    
      then
    
      
    
    A7: ( 
    "/\" (SR9, 
    [:L, L:]))
    in the 
    carrier of ( 
    subrelstr R) by 
    A6,
    YELLOW_0:def 18;
    
      
    
      
    
    A8: x 
    in CRx by 
    EQREL_1: 20;
    
      (
    inf SR) 
    =  
    [(
    inf ( 
    proj1 SR)), ( 
    inf ( 
    proj2 SR))] by 
    Th7,
    YELLOW_0: 17
    
      .=
    [(
    inf CRx), ( 
    inf ( 
    proj2 SR))] by 
    FUNCT_5: 9
    
      .=
    [(
    inf CRx), ( 
    inf  
    {x})] by
    A8,
    FUNCT_5: 9
    
      .=
    [(
    inf CRx), x] by 
    YELLOW_0: 39;
    
      hence thesis by
    A7,
    YELLOW_0:def 15;
    
    end;
    
    definition
    
      let L be
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:];
    
      :: 
    
    WAYBEL20:def3
    
      func
    
    kernel_op R -> 
    kernel  
    Function of L, L means 
    
      :
    
    Def3: for x be 
    Element of L holds (it 
    . x) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x))); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of L) = ( 
    inf ( 
    Class (( 
    EqRel R),$1))); 
    
        consider k be
    Function of the 
    carrier of L, the 
    carrier of L such that 
    
        
    
    A2: for x be 
    Element of L holds (k 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 4;
    
        reconsider k as
    Function of L, L; 
    
        R is
    Equivalence_Relation of the 
    carrier of L by 
    A1;
    
        then
    
        
    
    A3: R 
    = ( 
    EqRel R) by 
    Def1;
    
        
    
        
    
    A4: ( 
    subrelstr R) is 
    CLSubFrame of 
    [:L, L:] by
    A1;
    
        
    
        
    
    A5: k is 
    monotone
    
        proof
    
          let x,y be
    Element of L such that 
    
          
    
    A6: x 
    <= y; 
    
          set CRy = (
    Class (( 
    EqRel R),y)); 
    
          set CRx = (
    Class (( 
    EqRel R),x)); 
    
          reconsider SR =
    {
    [(
    inf CRx), x], 
    [(
    inf CRy), y]} as 
    Subset of 
    [:L, L:];
    
          
    
          
    
    A7: ( 
    inf SR) 
    =  
    [(
    inf ( 
    proj1 SR)), ( 
    inf ( 
    proj2 SR))] by 
    Th7,
    YELLOW_0: 17
    
          .=
    [(
    inf  
    {(
    inf CRx), ( 
    inf CRy)}), ( 
    inf ( 
    proj2 SR))] by 
    FUNCT_5: 13
    
          .=
    [(
    inf  
    {(
    inf CRx), ( 
    inf CRy)}), ( 
    inf  
    {x, y})] by
    FUNCT_5: 13;
    
          
    [(
    inf CRx), x] 
    in R & 
    [(
    inf CRy), y] 
    in R by 
    A1,
    Th35;
    
          then SR
    c= R by 
    ZFMISC_1: 32;
    
          then
    
          reconsider SR9 = SR as
    Subset of ( 
    subrelstr R) by 
    YELLOW_0:def 15;
    
          
    ex_inf_of (SR, 
    [:L, L:]) by
    YELLOW_0: 17;
    
          then
    
          
    
    A8: ( 
    "/\" (SR9, 
    [:L, L:]))
    in the 
    carrier of ( 
    subrelstr R) by 
    A4,
    YELLOW_0:def 18;
    
          (
    inf  
    {x, y})
    = (x 
    "/\" y) by 
    YELLOW_0: 40
    
          .= x by
    A6,
    YELLOW_0: 25;
    
          then
    [(
    inf  
    {(
    inf CRx), ( 
    inf CRy)}), x] 
    in R by 
    A7,
    A8,
    YELLOW_0:def 15;
    
          then (
    inf  
    {(
    inf CRx), ( 
    inf CRy)}) 
    in CRx by 
    A3,
    EQREL_1: 19;
    
          then
    
          
    
    A9: ( 
    inf CRx) 
    <= ( 
    inf  
    {(
    inf CRx), ( 
    inf CRy)}) by 
    YELLOW_2: 22;
    
          (
    inf CRy) 
    in  
    {(
    inf CRx), ( 
    inf CRy)} by 
    TARSKI:def 2;
    
          then
    
          
    
    A10: ( 
    inf  
    {(
    inf CRx), ( 
    inf CRy)}) 
    <= ( 
    inf CRy) by 
    YELLOW_2: 22;
    
          (k
    . x) 
    = ( 
    inf CRx) & (k 
    . y) 
    = ( 
    inf CRy) by 
    A2;
    
          hence (k
    . x) 
    <= (k 
    . y) by 
    A9,
    A10,
    YELLOW_0:def 2;
    
        end;
    
        now
    
          let x be
    Element of L; 
    
          set CRx = (
    Class (( 
    EqRel R),x)); 
    
          
    [(
    inf CRx), x] 
    in R by 
    A1,
    Th35;
    
          then (
    inf CRx) 
    in CRx by 
    A3,
    EQREL_1: 19;
    
          then
    
          
    
    A11: ( 
    Class (( 
    EqRel R),( 
    inf CRx))) 
    = CRx by 
    EQREL_1: 23;
    
          
    
          
    
    A12: (k 
    . x) 
    = ( 
    inf CRx) by 
    A2;
    
          then (k
    . (k 
    . x)) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),( 
    inf CRx)))) by 
    A2;
    
          hence ((k
    * k) 
    . x) 
    = (k 
    . x) by 
    A12,
    A11,
    FUNCT_2: 15;
    
        end;
    
        then (k
    * k) 
    = k by 
    FUNCT_2: 63;
    
        then k is
    idempotent by 
    QUANTAL1:def 9;
    
        then
    
        
    
    A13: k is 
    projection by 
    A5;
    
        now
    
          let x be
    Element of L; 
    
          set CRx = (
    Class (( 
    EqRel R),x)); 
    
          x
    in CRx & ( 
    inf CRx) 
    is_<=_than CRx by 
    EQREL_1: 20,
    YELLOW_0: 33;
    
          then
    
          
    
    A14: ( 
    inf CRx) 
    <= x; 
    
          (k
    . x) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x))) by 
    A2;
    
          hence (k
    . x) 
    <= (( 
    id L) 
    . x) by 
    A14,
    FUNCT_1: 18;
    
        end;
    
        then k
    <= ( 
    id L) by 
    YELLOW_2: 9;
    
        then
    
        reconsider k as
    kernel  
    Function of L, L by 
    A13,
    WAYBEL_1:def 15;
    
        take k;
    
        thus thesis by
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let it1,it2 be
    kernel  
    Function of L, L such that 
    
        
    
    A15: for x be 
    Element of L holds (it1 
    . x) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x))) and 
    
        
    
    A16: for x be 
    Element of L holds (it2 
    . x) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x))); 
    
        now
    
          let x be
    object;
    
          assume x
    in the 
    carrier of L; 
    
          then
    
          reconsider x9 = x as
    Element of L; 
    
          
    
          thus (it1
    . x) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x9))) by 
    A15
    
          .= (it2
    . x) by 
    A16;
    
        end;
    
        hence it1
    = it2 by 
    FUNCT_2: 12;
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL20:36
    
    
    
    
    
    Th36: for L be 
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:] st R is
    CLCongruence holds ( 
    kernel_op R) is 
    directed-sups-preserving & R 
    = ( 
    [:(
    kernel_op R), ( 
    kernel_op R):] 
    " ( 
    id the 
    carrier of L)) 
    
    proof
    
      let L be
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:];
    
      set k = (
    kernel_op R); 
    
      set cL = the
    carrier of L; 
    
      
    
      
    
    A1: ( 
    dom k) 
    = cL by 
    FUNCT_2:def 1;
    
      assume
    
      
    
    A2: R is 
    CLCongruence;
    
      then
    
      
    
    A3: R is 
    Equivalence_Relation of the 
    carrier of L; 
    
      then
    
      
    
    A4: ( 
    EqRel R) 
    = R by 
    Def1;
    
      
    
      
    
    A5: ( 
    subrelstr R) is 
    CLSubFrame of 
    [:L, L:] by
    A2;
    
      thus k is
    directed-sups-preserving
    
      proof
    
        let D be
    Subset of L such that 
    
        
    
    A6: D is non 
    empty
    directed and 
    ex_sup_of (D,L); 
    
        consider e be
    object such that 
    
        
    
    A7: e 
    in D by 
    A6,
    XBOOLE_0:def 1;
    
        set S = {
    [(k
    . x), x] where x be 
    Element of L : x 
    in D }; 
    
        
    
        
    
    A8: S 
    c= R 
    
        proof
    
          let x be
    object;
    
          assume x
    in S; 
    
          then
    
          consider a be
    Element of L such that 
    
          
    
    A9: x 
    =  
    [(k
    . a), a] and a 
    in D; 
    
          (k
    . a) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),a))) by 
    A2,
    Def3;
    
          hence thesis by
    A2,
    A9,
    Th35;
    
        end;
    
        then
    
        reconsider S9 = S as
    Subset of ( 
    subrelstr R) by 
    YELLOW_0:def 15;
    
        reconsider S as
    Subset of 
    [:L, L:] by
    A8,
    XBOOLE_1: 1;
    
        thus
    ex_sup_of ((k 
    .: D),L) by 
    YELLOW_0: 17;
    
        set d = (
    sup D); 
    
        set ds = (
    sup (k 
    .: D)); 
    
        
    
        
    
    A10: the 
    carrier of ( 
    subrelstr R) 
    = R & 
    ex_sup_of (S, 
    [:L, L:]) by
    YELLOW_0: 17,
    YELLOW_0:def 15;
    
        reconsider e as
    Element of L by 
    A7;
    
        
    
        
    
    A11: 
    [(k
    . e), e] 
    in S by 
    A7;
    
        
    
        
    
    A12: S9 is 
    directed
    
        proof
    
          let x,y be
    Element of ( 
    subrelstr R); 
    
          assume that
    
          
    
    A13: x 
    in S9 and 
    
          
    
    A14: y 
    in S9; 
    
          consider a be
    Element of L such that 
    
          
    
    A15: x 
    =  
    [(k
    . a), a] and 
    
          
    
    A16: a 
    in D by 
    A13;
    
          consider b be
    Element of L such that 
    
          
    
    A17: y 
    =  
    [(k
    . b), b] and 
    
          
    
    A18: b 
    in D by 
    A14;
    
          consider c be
    Element of L such that 
    
          
    
    A19: c 
    in D and 
    
          
    
    A20: a 
    <= c and 
    
          
    
    A21: b 
    <= c by 
    A6,
    A16,
    A18;
    
          set z =
    [(k
    . c), c]; 
    
          z
    in S9 by 
    A19;
    
          then
    
          reconsider z as
    Element of ( 
    subrelstr R); 
    
          take z;
    
          thus z
    in S9 by 
    A19;
    
          (k
    . a) 
    <= (k 
    . c) by 
    A20,
    WAYBEL_1:def 2;
    
          then
    [(k
    . a), a] 
    <=  
    [(k
    . c), c] by 
    A20,
    YELLOW_3: 11;
    
          hence x
    <= z by 
    A15,
    YELLOW_0: 60;
    
          (k
    . b) 
    <= (k 
    . c) by 
    A21,
    WAYBEL_1:def 2;
    
          then
    [(k
    . b), b] 
    <=  
    [(k
    . c), c] by 
    A21,
    YELLOW_3: 11;
    
          hence y
    <= z by 
    A17,
    YELLOW_0: 60;
    
        end;
    
        now
    
          let x be
    object;
    
          hereby
    
            assume x
    in ( 
    proj1 S); 
    
            then
    
            consider y be
    object such that 
    
            
    
    A22: 
    [x, y]
    in S by 
    XTUPLE_0:def 12;
    
            consider a be
    Element of L such that 
    
            
    
    A23: 
    [x, y]
    =  
    [(k
    . a), a] and 
    
            
    
    A24: a 
    in D by 
    A22;
    
            x
    = (k 
    . a) by 
    A23,
    XTUPLE_0: 1;
    
            hence x
    in (k 
    .: D) by 
    A1,
    A24,
    FUNCT_1:def 6;
    
          end;
    
          assume x
    in (k 
    .: D); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A25: y 
    in ( 
    dom k) and 
    
          
    
    A26: y 
    in D and 
    
          
    
    A27: x 
    = (k 
    . y) by 
    FUNCT_1:def 6;
    
          reconsider y as
    Element of L by 
    A25;
    
          
    [(k
    . y), y] 
    in S by 
    A26;
    
          hence x
    in ( 
    proj1 S) by 
    A27,
    XTUPLE_0:def 12;
    
        end;
    
        then
    
        
    
    A28: ( 
    proj1 S) 
    = (k 
    .: D) by 
    TARSKI: 2;
    
        now
    
          let x be
    object;
    
          hereby
    
            assume x
    in ( 
    proj2 S); 
    
            then
    
            consider y be
    object such that 
    
            
    
    A29: 
    [y, x]
    in S by 
    XTUPLE_0:def 13;
    
            ex a be
    Element of L st 
    [y, x]
    =  
    [(k
    . a), a] & a 
    in D by 
    A29;
    
            hence x
    in D by 
    XTUPLE_0: 1;
    
          end;
    
          assume
    
          
    
    A30: x 
    in D; 
    
          then
    
          reconsider x9 = x as
    Element of L; 
    
          
    [(k
    . x9), x9] 
    in S by 
    A30;
    
          hence x
    in ( 
    proj2 S) by 
    XTUPLE_0:def 13;
    
        end;
    
        then (
    proj2 S) 
    = D by 
    TARSKI: 2;
    
        then (
    sup S) 
    =  
    [ds, d] by
    A28,
    Th8,
    YELLOW_0: 17;
    
        then
    [ds, d]
    in R by 
    A5,
    A10,
    A11,
    A12,
    WAYBEL_0:def 4;
    
        then
    
        
    
    A31: ds 
    in ( 
    Class (( 
    EqRel R),d)) by 
    A4,
    EQREL_1: 19;
    
        (k
    .: D) 
    is_<=_than (k 
    . d) 
    
        proof
    
          let b be
    Element of L; 
    
          assume b
    in (k 
    .: D); 
    
          then
    
          consider a be
    object such that 
    
          
    
    A32: a 
    in ( 
    dom k) and 
    
          
    
    A33: a 
    in D and 
    
          
    
    A34: b 
    = (k 
    . a) by 
    FUNCT_1:def 6;
    
          reconsider a as
    Element of L by 
    A32;
    
          D
    is_<=_than d by 
    YELLOW_0: 32;
    
          then a
    <= d by 
    A33;
    
          hence b
    <= (k 
    . d) by 
    A34,
    WAYBEL_1:def 2;
    
        end;
    
        then
    
        
    
    A35: ds 
    <= (k 
    . d) by 
    YELLOW_0: 32;
    
        (k
    . d) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),d))) by 
    A2,
    Def3;
    
        then (k
    . d) 
    <= ds by 
    A31,
    YELLOW_2: 22;
    
        hence thesis by
    A35,
    YELLOW_0:def 3;
    
      end;
    
      now
    
        let x be
    object;
    
        hereby
    
          assume
    
          
    
    A36: x 
    in R; 
    
          then x
    in the 
    carrier of 
    [:L, L:];
    
          then x
    in  
    [:cL, cL:] by
    YELLOW_3:def 2;
    
          then
    
          consider x1,x2 be
    object such that 
    
          
    
    A37: x1 
    in cL & x2 
    in cL and 
    
          
    
    A38: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
          reconsider x1, x2 as
    Element of L by 
    A37;
    
          
    
          
    
    A39: (k 
    . x1) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x1))) & (k 
    . x2) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x2))) by 
    A2,
    Def3;
    
          x1
    in ( 
    Class (( 
    EqRel R),x2)) by 
    A4,
    A36,
    A38,
    EQREL_1: 19;
    
          then (k
    . x1) 
    = (k 
    . x2) by 
    A39,
    EQREL_1: 23;
    
          then
    
          
    
    A40: 
    [(k
    . x1), (k 
    . x2)] 
    in ( 
    id cL) by 
    RELAT_1:def 10;
    
          (
    dom  
    [:k, k:])
    =  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
          then
    
          
    
    A41: 
    [x1, x2]
    in ( 
    dom  
    [:k, k:]) by
    A1,
    ZFMISC_1: 87;
    
          (
    [:k, k:]
    . (x1,x2)) 
    =  
    [(k
    . x1), (k 
    . x2)] by 
    A1,
    FUNCT_3:def 8;
    
          hence x
    in ( 
    [:k, k:]
    " ( 
    id cL)) by 
    A38,
    A40,
    A41,
    FUNCT_1:def 7;
    
        end;
    
        assume
    
        
    
    A42: x 
    in ( 
    [:k, k:]
    " ( 
    id cL)); 
    
        then
    
        
    
    A43: ( 
    [:k, k:]
    . x) 
    in ( 
    id cL) by 
    FUNCT_1:def 7;
    
        x
    in ( 
    dom  
    [:k, k:]) by
    A42,
    FUNCT_1:def 7;
    
        then x
    in  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
        then
    
        consider x1,x2 be
    object such that 
    
        
    
    A44: x1 
    in ( 
    dom k) & x2 
    in ( 
    dom k) and 
    
        
    
    A45: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
        reconsider x1, x2 as
    Element of L by 
    A44;
    
        (
    [:k, k:]
    . (x1,x2)) 
    =  
    [(k
    . x1), (k 
    . x2)] by 
    A44,
    FUNCT_3:def 8;
    
        then
    
        
    
    A46: (k 
    . x1) 
    = (k 
    . x2) by 
    A43,
    A45,
    RELAT_1:def 10;
    
        (k
    . x1) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x1))) by 
    A2,
    Def3;
    
        then
    [(k
    . x1), x1] 
    in R by 
    A2,
    Th35;
    
        then
    
        
    
    A47: 
    [x1, (k
    . x1)] 
    in R by 
    A3,
    EQREL_1: 6;
    
        (k
    . x2) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),x2))) by 
    A2,
    Def3;
    
        then
    [(k
    . x2), x2] 
    in R by 
    A2,
    Th35;
    
        hence x
    in R by 
    A3,
    A45,
    A46,
    A47,
    EQREL_1: 7;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    WAYBEL20:37
    
    
    
    
    
    Th37: for L be 
    continuous
    complete  
    LATTICE, R be 
    Subset of 
    [:L, L:], k be
    kernel  
    Function of L, L st k is 
    directed-sups-preserving & R 
    = ( 
    [:k, k:]
    " ( 
    id the 
    carrier of L)) holds ex LR be 
    continuous
    complete
    strict  
    LATTICE st the 
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) & the 
    InternalRel of LR 
    = { 
    [(
    Class (( 
    EqRel R),x)), ( 
    Class (( 
    EqRel R),y))] where x,y be 
    Element of L : (k 
    . x) 
    <= (k 
    . y) } & for g be 
    Function of L, LR st for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) holds g is 
    CLHomomorphism of L, LR 
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, R be 
    Subset of 
    [:L, L:], k be
    kernel  
    Function of L, L such that 
    
      
    
    A1: k is 
    directed-sups-preserving and 
    
      
    
    A2: R 
    = ( 
    [:k, k:]
    " ( 
    id the 
    carrier of L)); 
    
      set ER = (
    EqRel R); 
    
      R is
    Equivalence_Relation of the 
    carrier of L by 
    A2,
    Th2;
    
      then
    
      
    
    A3: ER 
    = R by 
    Def1;
    
      reconsider rngk = (
    rng k) as non 
    empty  
    set;
    
      defpred
    
    P[
    set, 
    set] means ex x,y be
    Element of L st $1 
    = ( 
    Class (ER,x)) & $2 
    = ( 
    Class (ER,y)) & (k 
    . x) 
    <= (k 
    . y); 
    
      set xx = the
    Element of L; 
    
      set cL = the
    carrier of L; 
    
      (
    Class (ER,xx)) 
    in ( 
    Class ER) by 
    EQREL_1:def 3;
    
      then
    
      reconsider CER = (
    Class ER) as non 
    empty  
    Subset-Family of cL; 
    
      consider LR be non
    empty
    strict  
    RelStr such that 
    
      
    
    A4: the 
    carrier of LR 
    = CER and 
    
      
    
    A5: for a,b be 
    Element of LR holds a 
    <= b iff 
    P[a, b] from
    YELLOW_0:sch 1;
    
      defpred
    
    P[
    set, 
    set] means ex a be
    Element of cL st $1 
    = ( 
    Class (ER,a)) & $2 
    = (k 
    . a); 
    
      
    
      
    
    A6: ( 
    dom k) 
    = cL by 
    FUNCT_2:def 1;
    
      
    
      
    
    A7: for x be 
    Element of CER holds ex y be 
    Element of rngk st 
    P[x, y]
    
      proof
    
        let x be
    Element of CER; 
    
        consider y be
    object such that 
    
        
    
    A8: y 
    in cL and 
    
        
    
    A9: x 
    = ( 
    Class (ER,y)) by 
    EQREL_1:def 3;
    
        reconsider y as
    Element of L by 
    A8;
    
        reconsider ky = (k
    . y) as 
    Element of rngk by 
    A6,
    FUNCT_1:def 3;
    
        take ky;
    
        thus thesis by
    A9;
    
      end;
    
      consider f be
    Function of CER, rngk such that 
    
      
    
    A10: for x be 
    Element of CER holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 3(
    A7);
    
      
    
      
    
    A11: ( 
    dom  
    [:k, k:])
    =  
    [:cL, cL:] by
    A6,
    FUNCT_3:def 8;
    
      
    
      
    
    A12: for a,b be 
    Element of cL holds ( 
    Class (ER,a)) 
    = ( 
    Class (ER,b)) iff (k 
    . a) 
    = (k 
    . b) 
    
      proof
    
        let a,b be
    Element of cL; 
    
        hereby
    
          assume (
    Class (ER,a)) 
    = ( 
    Class (ER,b)); 
    
          then a
    in ( 
    Class (ER,b)) by 
    EQREL_1: 23;
    
          then
    [a, b]
    in R by 
    A3,
    EQREL_1: 19;
    
          then (
    [:k, k:]
    . (a,b)) 
    in ( 
    id cL) by 
    A2,
    FUNCT_1:def 7;
    
          then
    [(k
    . a), (k 
    . b)] 
    in ( 
    id cL) by 
    A6,
    FUNCT_3:def 8;
    
          hence (k
    . a) 
    = (k 
    . b) by 
    RELAT_1:def 10;
    
        end;
    
        assume (k
    . a) 
    = (k 
    . b); 
    
        then
    [(k
    . a), (k 
    . b)] 
    in ( 
    id cL) by 
    RELAT_1:def 10;
    
        then
    [a, b]
    in  
    [:cL, cL:] & (
    [:k, k:]
    . (a,b)) 
    in ( 
    id cL) by 
    A6,
    FUNCT_3:def 8,
    ZFMISC_1:def 2;
    
        then
    [a, b]
    in ER by 
    A2,
    A3,
    A11,
    FUNCT_1:def 7;
    
        then a
    in ( 
    Class (ER,b)) by 
    EQREL_1: 19;
    
        hence thesis by
    EQREL_1: 23;
    
      end;
    
      
    
      
    
    A13: for x be 
    Element of L holds (f 
    . ( 
    Class (ER,x))) 
    = (k 
    . x) 
    
      proof
    
        let x be
    Element of L; 
    
        reconsider CERx = (
    Class (ER,x)) as 
    Element of CER by 
    EQREL_1:def 3;
    
        ex a be
    Element of cL st CERx 
    = ( 
    Class (ER,a)) & (f 
    . CERx) 
    = (k 
    . a) by 
    A10;
    
        hence thesis by
    A12;
    
      end;
    
      
    
      
    
    A14: for x be 
    Element of LR holds ex a be 
    Element of L st x 
    = ( 
    Class (ER,a)) 
    
      proof
    
        let x be
    Element of LR; 
    
        x
    in CER by 
    A4;
    
        then
    
        consider a be
    object such that 
    
        
    
    A15: a 
    in cL and 
    
        
    
    A16: x 
    = ( 
    Class (ER,a)) by 
    EQREL_1:def 3;
    
        reconsider a as
    Element of L by 
    A15;
    
        take a;
    
        thus thesis by
    A16;
    
      end;
    
      now
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A17: x1 
    in CER and 
    
        
    
    A18: x2 
    in CER and 
    
        
    
    A19: (f 
    . x1) 
    = (f 
    . x2); 
    
        reconsider x19 = x1 as
    Element of LR by 
    A4,
    A17;
    
        consider a be
    Element of L such that 
    
        
    
    A20: x19 
    = ( 
    Class (ER,a)) by 
    A14;
    
        reconsider x29 = x2 as
    Element of LR by 
    A4,
    A18;
    
        consider b be
    Element of L such that 
    
        
    
    A21: x29 
    = ( 
    Class (ER,b)) by 
    A14;
    
        
    
        
    
    A22: (f 
    . x29) 
    = (k 
    . b) by 
    A13,
    A21;
    
        (f
    . x19) 
    = (k 
    . a) by 
    A13,
    A20;
    
        hence x1
    = x2 by 
    A12,
    A19,
    A20,
    A21,
    A22;
    
      end;
    
      then
    
      
    
    A23: f is 
    one-to-one by 
    FUNCT_2: 19;
    
      set tIR = the
    InternalRel of LR; 
    
      
    
      
    
    A24: ( 
    dom f) 
    = CER by 
    FUNCT_2:def 1;
    
      reconsider f as
    Function of LR, ( 
    Image k) by 
    A4,
    YELLOW_0:def 15;
    
      now
    
        let y be
    object;
    
        hereby
    
          assume y
    in ( 
    rng f); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A25: x 
    in ( 
    dom f) and 
    
          
    
    A26: y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
          reconsider x as
    Element of LR by 
    A25;
    
          consider a be
    Element of L such that 
    
          
    
    A27: x 
    = ( 
    Class (ER,a)) by 
    A14;
    
          (f
    . x) 
    = (k 
    . a) by 
    A13,
    A27;
    
          hence y
    in rngk by 
    A6,
    A26,
    FUNCT_1:def 3;
    
        end;
    
        assume y
    in rngk; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A28: x 
    in ( 
    dom k) and 
    
        
    
    A29: y 
    = (k 
    . x) by 
    FUNCT_1:def 3;
    
        reconsider x as
    Element of L by 
    A28;
    
        (
    Class (ER,x)) 
    in CER & (f 
    . ( 
    Class (ER,x))) 
    = (k 
    . x) by 
    A13,
    EQREL_1:def 3;
    
        hence y
    in ( 
    rng f) by 
    A24,
    A29,
    FUNCT_1:def 3;
    
      end;
    
      then
    
      
    
    A30: the 
    carrier of ( 
    Image k) 
    = rngk & ( 
    rng f) 
    = rngk by 
    TARSKI: 2,
    YELLOW_0:def 15;
    
      for x,y be
    Element of LR holds x 
    <= y iff (f 
    . x) 
    <= (f 
    . y) 
    
      proof
    
        let x,y be
    Element of LR; 
    
        x
    in CER by 
    A4;
    
        then
    
        consider a be
    object such that 
    
        
    
    A31: a 
    in cL and 
    
        
    
    A32: x 
    = ( 
    Class (ER,a)) by 
    EQREL_1:def 3;
    
        hereby
    
          assume x
    <= y; 
    
          then
    
          consider c,d be
    Element of L such that 
    
          
    
    A33: x 
    = ( 
    Class (ER,c)) & y 
    = ( 
    Class (ER,d)) and 
    
          
    
    A34: (k 
    . c) 
    <= (k 
    . d) by 
    A5;
    
          (f
    . x) 
    = (k 
    . c) & (f 
    . y) 
    = (k 
    . d) by 
    A13,
    A33;
    
          hence (f
    . x) 
    <= (f 
    . y) by 
    A34,
    YELLOW_0: 60;
    
        end;
    
        reconsider a as
    Element of L by 
    A31;
    
        assume
    
        
    
    A35: (f 
    . x) 
    <= (f 
    . y); 
    
        y
    in CER by 
    A4;
    
        then
    
        consider b be
    object such that 
    
        
    
    A36: b 
    in cL and 
    
        
    
    A37: y 
    = ( 
    Class (ER,b)) by 
    EQREL_1:def 3;
    
        reconsider b as
    Element of L by 
    A36;
    
        
    
        
    
    A38: (f 
    . y) 
    = (k 
    . b) by 
    A13,
    A37;
    
        (f
    . x) 
    = (k 
    . a) by 
    A13,
    A32;
    
        then (k
    . a) 
    <= (k 
    . b) by 
    A38,
    A35,
    YELLOW_0: 59;
    
        hence thesis by
    A5,
    A32,
    A37;
    
      end;
    
      then
    
      
    
    A39: f is 
    isomorphic by 
    A23,
    A30,
    WAYBEL_0: 66;
    
      then
    
      
    
    A40: (LR,( 
    Image k)) 
    are_isomorphic ; 
    
      then ((
    Image k),LR) 
    are_isomorphic by 
    WAYBEL_1: 6;
    
      then
    
      reconsider LR as non
    empty
    strict  
    Poset by 
    Th15,
    Th16,
    Th17;
    
      (
    Image k) is 
    complete by 
    WAYBEL_1: 54;
    
      then
    
      reconsider LR as
    complete non 
    empty
    strict  
    Poset by 
    A40,
    Th18,
    WAYBEL_1: 6;
    
      reconsider LR as
    complete
    strict  
    LATTICE;
    
      (
    Image k) is 
    continuous  
    LATTICE by 
    A1,
    WAYBEL15: 14;
    
      then
    
      reconsider LR as
    continuous
    complete
    strict  
    LATTICE by 
    A40,
    WAYBEL15: 9,
    WAYBEL_1: 6;
    
      reconsider f9 = (f qua
    Function
    " ) as 
    Function of ( 
    Image k), LR by 
    A23,
    A30,
    FUNCT_2: 25;
    
      set IR = {
    [(
    Class (ER,x)), ( 
    Class (ER,y))] where x,y be 
    Element of L : (k 
    . x) 
    <= (k 
    . y) }; 
    
      
    
      
    
    A41: f9 is 
    isomorphic by 
    A39,
    WAYBEL_0: 68;
    
      then
    
      
    
    A42: ( 
    corestr k) is 
    infs-preserving & f9 is 
    infs-preserving by 
    WAYBEL13: 20,
    WAYBEL_1: 56;
    
      take LR;
    
      thus the
    carrier of LR 
    = ( 
    Class ER) by 
    A4;
    
      now
    
        let z be
    object;
    
        hereby
    
          assume
    
          
    
    A43: z 
    in tIR; 
    
          then
    
          consider a,b be
    object such that 
    
          
    
    A44: a 
    in CER & b 
    in CER and 
    
          
    
    A45: z 
    =  
    [a, b] by
    A4,
    ZFMISC_1:def 2;
    
          reconsider a, b as
    Element of LR by 
    A4,
    A44;
    
          a
    <= b by 
    A43,
    A45,
    ORDERS_2:def 5;
    
          then ex x,y be
    Element of L st a 
    = ( 
    Class (ER,x)) & b 
    = ( 
    Class (ER,y)) & (k 
    . x) 
    <= (k 
    . y) by 
    A5;
    
          hence z
    in IR by 
    A45;
    
        end;
    
        assume z
    in IR; 
    
        then
    
        consider x,y be
    Element of L such that 
    
        
    
    A46: z 
    =  
    [(
    Class (ER,x)), ( 
    Class (ER,y))] and 
    
        
    
    A47: (k 
    . x) 
    <= (k 
    . y); 
    
        reconsider b = (
    Class (ER,y)) as 
    Element of LR by 
    A4,
    EQREL_1:def 3;
    
        reconsider a = (
    Class (ER,x)) as 
    Element of LR by 
    A4,
    EQREL_1:def 3;
    
        a
    <= b by 
    A5,
    A47;
    
        hence z
    in tIR by 
    A46,
    ORDERS_2:def 5;
    
      end;
    
      hence the
    InternalRel of LR 
    = { 
    [(
    Class (ER,x)), ( 
    Class (ER,y))] where x,y be 
    Element of L : (k 
    . x) 
    <= (k 
    . y) } by 
    TARSKI: 2;
    
      let g be
    Function of L, LR such that 
    
      
    
    A48: for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (ER,x)); 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A49: x 
    in cL; 
    
        then
    
        reconsider x9 = x as
    Element of L; 
    
        
    
        
    
    A50: (f 
    . ( 
    Class (ER,x9))) 
    = (k 
    . x9) & ( 
    Class (ER,x9)) 
    in CER by 
    A13,
    EQREL_1:def 3;
    
        (
    dom ( 
    corestr k)) 
    = cL by 
    FUNCT_2:def 1;
    
        
    
        hence ((f9
    * ( 
    corestr k)) 
    . x) 
    = (f9 
    . (( 
    corestr k) 
    . x)) by 
    A49,
    FUNCT_1: 13
    
        .= (f9
    . (k 
    . x)) by 
    WAYBEL_1: 30
    
        .= (
    Class (ER,x9)) by 
    A24,
    A23,
    A50,
    FUNCT_1: 32
    
        .= (g
    . x) by 
    A48;
    
      end;
    
      then
    
      
    
    A51: g 
    = (f9 
    * ( 
    corestr k)) by 
    FUNCT_2: 12;
    
      
    
      
    
    A52: ( 
    corestr k) is 
    directed-sups-preserving by 
    A1,
    Th22;
    
      reconsider f9 as
    sups-preserving  
    Function of ( 
    Image k), LR by 
    A41,
    WAYBEL13: 20;
    
      f9 is
    directed-sups-preserving;
    
      then
    
      
    
    A53: g is 
    directed-sups-preserving by 
    A51,
    A52,
    WAYBEL15: 11;
    
      g is
    infs-preserving by 
    A51,
    A42,
    Th25;
    
      hence thesis by
    A53,
    WAYBEL16:def 1;
    
    end;
    
    theorem :: 
    
    WAYBEL20:38
    
    
    
    
    
    Th38: for L be 
    continuous
    complete  
    LATTICE, R be 
    Subset of 
    [:L, L:] st R is
    Equivalence_Relation of the 
    carrier of L & ex LR be 
    continuous
    complete  
    LATTICE st the 
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) & for g be 
    Function of L, LR st for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) holds g is 
    CLHomomorphism of L, LR holds ( 
    subrelstr R) is 
    CLSubFrame of 
    [:L, L:]
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, R be 
    Subset of 
    [:L, L:];
    
      assume R is
    Equivalence_Relation of the 
    carrier of L; 
    
      then
    
      
    
    A1: ( 
    EqRel R) 
    = R by 
    Def1;
    
      set ER = (
    EqRel R); 
    
      given LR be
    continuous
    complete  
    LATTICE such that 
    
      
    
    A2: the 
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) and 
    
      
    
    A3: for g be 
    Function of L, LR st for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) holds g is 
    CLHomomorphism of L, LR; 
    
      deffunc
    
    F(
    object) = (
    Class (ER,$1)); 
    
      set CER = (
    Class ER); 
    
      set cL = the
    carrier of L, cLR = the 
    carrier of LR; 
    
      
    
      
    
    A4: for x be 
    object st x 
    in cL holds 
    F(x)
    in CER by 
    EQREL_1:def 3;
    
      consider g be
    Function of cL, CER such that 
    
      
    
    A5: for x be 
    object st x 
    in cL holds (g 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 2(
    A4);
    
      reconsider g as
    Function of L, LR by 
    A2;
    
      set k = g;
    
      
    
      
    
    A6: ( 
    dom g) 
    = cL by 
    FUNCT_2:def 1;
    
      now
    
        let x be
    object;
    
        hereby
    
          assume
    
          
    
    A7: x 
    in R; 
    
          then x
    in the 
    carrier of 
    [:L, L:];
    
          then x
    in  
    [:cL, cL:] by
    YELLOW_3:def 2;
    
          then
    
          consider x1,x2 be
    object such that 
    
          
    
    A8: x1 
    in cL & x2 
    in cL and 
    
          
    
    A9: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
          reconsider x1, x2 as
    Element of L by 
    A8;
    
          
    
          
    
    A10: (k 
    . x1) 
    = ( 
    Class (( 
    EqRel R),x1)) & (k 
    . x2) 
    = ( 
    Class (( 
    EqRel R),x2)) by 
    A5;
    
          x1
    in ( 
    Class (( 
    EqRel R),x2)) by 
    A1,
    A7,
    A9,
    EQREL_1: 19;
    
          then (k
    . x1) 
    = (k 
    . x2) by 
    A10,
    EQREL_1: 23;
    
          then
    
          
    
    A11: 
    [(k
    . x1), (k 
    . x2)] 
    in ( 
    id cLR) by 
    RELAT_1:def 10;
    
          (
    dom  
    [:k, k:])
    =  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
          then
    
          
    
    A12: 
    [x1, x2]
    in ( 
    dom  
    [:k, k:]) by
    A6,
    ZFMISC_1: 87;
    
          (
    [:k, k:]
    . (x1,x2)) 
    =  
    [(k
    . x1), (k 
    . x2)] by 
    A6,
    FUNCT_3:def 8;
    
          hence x
    in ( 
    [:k, k:]
    " ( 
    id cLR)) by 
    A9,
    A11,
    A12,
    FUNCT_1:def 7;
    
        end;
    
        assume
    
        
    
    A13: x 
    in ( 
    [:k, k:]
    " ( 
    id cLR)); 
    
        then
    
        
    
    A14: ( 
    [:k, k:]
    . x) 
    in ( 
    id cLR) by 
    FUNCT_1:def 7;
    
        x
    in ( 
    dom  
    [:k, k:]) by
    A13,
    FUNCT_1:def 7;
    
        then x
    in  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
        then
    
        consider x1,x2 be
    object such that 
    
        
    
    A15: x1 
    in ( 
    dom k) & x2 
    in ( 
    dom k) and 
    
        
    
    A16: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
        reconsider x1, x2 as
    Element of L by 
    A15;
    
        
    
        
    
    A17: (k 
    . x1) 
    = ( 
    Class (( 
    EqRel R),x1)) & (k 
    . x2) 
    = ( 
    Class (( 
    EqRel R),x2)) by 
    A5;
    
        (
    [:k, k:]
    . (x1,x2)) 
    =  
    [(k
    . x1), (k 
    . x2)] by 
    A15,
    FUNCT_3:def 8;
    
        then (k
    . x1) 
    = (k 
    . x2) by 
    A14,
    A16,
    RELAT_1:def 10;
    
        then x1
    in ( 
    Class (ER,x2)) by 
    A17,
    EQREL_1: 23;
    
        hence x
    in R by 
    A1,
    A16,
    EQREL_1: 19;
    
      end;
    
      then
    
      
    
    A18: R 
    = ( 
    [:g, g:]
    " ( 
    id the 
    carrier of LR)) by 
    TARSKI: 2;
    
      for x be
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) by 
    A5;
    
      then g is
    CLHomomorphism of L, LR by 
    A3;
    
      hence thesis by
    A18,
    Th34;
    
    end;
    
    registration
    
      let L be non
    empty
    reflexive  
    RelStr;
    
      cluster 
    directed-sups-preserving
    kernel for 
    Function of L, L; 
    
      existence
    
      proof
    
        reconsider k = (
    id L) as 
    directed-sups-preserving
    kernel  
    Function of L, L; 
    
        take k;
    
        thus thesis;
    
      end;
    
    end
    
    definition
    
      let L be non
    empty
    reflexive  
    RelStr, k be 
    kernel  
    Function of L, L; 
    
      :: 
    
    WAYBEL20:def4
    
      func
    
    kernel_congruence k -> non 
    empty  
    Subset of 
    [:L, L:] equals (
    [:k, k:]
    " ( 
    id the 
    carrier of L)); 
    
      coherence
    
      proof
    
        set cL = the
    carrier of L; 
    
        set x = the
    Element of cL; 
    
        
    
        
    
    A1: ( 
    dom k) 
    = cL by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A2: 
    [(k
    . x), (k 
    . x)] 
    in ( 
    id cL) & ( 
    [:k, k:]
    . (x,x)) 
    =  
    [(k
    . x), (k 
    . x)] by 
    FUNCT_3:def 8,
    RELAT_1:def 10;
    
        (
    dom  
    [:k, k:])
    =  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
        then
    [x, x]
    in ( 
    dom  
    [:k, k:]) by
    A1,
    ZFMISC_1:def 2;
    
        hence thesis by
    A2,
    FUNCT_1:def 7;
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL20:39
    
    for L be non
    empty
    reflexive  
    RelStr, k be 
    kernel  
    Function of L, L holds ( 
    kernel_congruence k) is 
    Equivalence_Relation of the 
    carrier of L by 
    Th2;
    
    theorem :: 
    
    WAYBEL20:40
    
    
    
    
    
    Th40: for L be 
    continuous
    complete  
    LATTICE, k be 
    directed-sups-preserving
    kernel  
    Function of L, L holds ( 
    kernel_congruence k) is 
    CLCongruence
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, k be 
    directed-sups-preserving
    kernel  
    Function of L, L; 
    
      set R = (
    kernel_congruence k); 
    
      thus
    
      
    
    A1: R is 
    Equivalence_Relation of the 
    carrier of L by 
    Th2;
    
      ex LR be
    continuous
    complete
    strict  
    LATTICE st the 
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) & the 
    InternalRel of LR 
    = { 
    [(
    Class (( 
    EqRel R),x)), ( 
    Class (( 
    EqRel R),y))] where x,y be 
    Element of L : (k 
    . x) 
    <= (k 
    . y) } & for g be 
    Function of L, LR st for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) holds g is 
    CLHomomorphism of L, LR by 
    Th37;
    
      hence thesis by
    A1,
    Th38;
    
    end;
    
    definition
    
      let L be
    continuous
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:];
    
      :: 
    
    WAYBEL20:def5
    
      func L
    
    ./. R -> 
    continuous
    complete
    strict  
    LATTICE means 
    
      :
    
    Def5: the 
    carrier of it 
    = ( 
    Class ( 
    EqRel R)) & for x,y be 
    Element of it holds x 
    <= y iff ( 
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)); 
    
      existence
    
      proof
    
        set k = (
    kernel_op R); 
    
        k is
    directed-sups-preserving & R 
    = ( 
    [:k, k:]
    " ( 
    id the 
    carrier of L)) by 
    A1,
    Th36;
    
        then
    
        consider LR be
    continuous
    complete
    strict  
    LATTICE such that 
    
        
    
    A2: the 
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) and 
    
        
    
    A3: the 
    InternalRel of LR 
    = { 
    [(
    Class (( 
    EqRel R),x)), ( 
    Class (( 
    EqRel R),y))] where x,y be 
    Element of L : (k 
    . x) 
    <= (k 
    . y) } and for g be 
    Function of L, LR st for x be 
    Element of L holds (g 
    . x) 
    = ( 
    Class (( 
    EqRel R),x)) holds g is 
    CLHomomorphism of L, LR by 
    Th37;
    
        take LR;
    
        thus the
    carrier of LR 
    = ( 
    Class ( 
    EqRel R)) by 
    A2;
    
        let x,y be
    Element of LR; 
    
        x
    in the 
    carrier of LR; 
    
        then
    
        consider u be
    object such that 
    
        
    
    A4: u 
    in the 
    carrier of L and 
    
        
    
    A5: x 
    = ( 
    Class (( 
    EqRel R),u)) by 
    A2,
    EQREL_1:def 3;
    
        y
    in the 
    carrier of LR; 
    
        then
    
        consider v be
    object such that 
    
        
    
    A6: v 
    in the 
    carrier of L and 
    
        
    
    A7: y 
    = ( 
    Class (( 
    EqRel R),v)) by 
    A2,
    EQREL_1:def 3;
    
        hereby
    
          assume x
    <= y; 
    
          then
    [x, y]
    in the 
    InternalRel of LR by 
    ORDERS_2:def 5;
    
          then
    
          consider u9,v9 be
    Element of L such that 
    
          
    
    A8: 
    [x, y]
    =  
    [(
    Class (( 
    EqRel R),u9)), ( 
    Class (( 
    EqRel R),v9))] and 
    
          
    
    A9: (k 
    . u9) 
    <= (k 
    . v9) by 
    A3;
    
          
    
          
    
    A10: x 
    = ( 
    Class (( 
    EqRel R),u9)) & y 
    = ( 
    Class (( 
    EqRel R),v9)) by 
    A8,
    XTUPLE_0: 1;
    
          (k
    . u9) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),u9))) by 
    A1,
    Def3;
    
          hence (
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)) by 
    A1,
    A9,
    A10,
    Def3;
    
        end;
    
        assume
    
        
    
    A11: ( 
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)); 
    
        reconsider u, v as
    Element of L by 
    A4,
    A6;
    
        (k
    . u) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),u))) & (k 
    . v) 
    = ( 
    inf ( 
    Class (( 
    EqRel R),v))) by 
    A1,
    Def3;
    
        then
    [x, y]
    in the 
    InternalRel of LR by 
    A3,
    A5,
    A7,
    A11;
    
        hence thesis by
    ORDERS_2:def 5;
    
      end;
    
      uniqueness
    
      proof
    
        let LR1,LR2 be
    continuous
    complete
    strict  
    LATTICE such that 
    
        
    
    A12: the 
    carrier of LR1 
    = ( 
    Class ( 
    EqRel R)) and 
    
        
    
    A13: for x,y be 
    Element of LR1 holds x 
    <= y iff ( 
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)) and 
    
        
    
    A14: the 
    carrier of LR2 
    = ( 
    Class ( 
    EqRel R)) and 
    
        
    
    A15: for x,y be 
    Element of LR2 holds x 
    <= y iff ( 
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)); 
    
        set cLR2 = the
    carrier of LR2; 
    
        set cLR1 = the
    carrier of LR1; 
    
        now
    
          let z be
    object;
    
          hereby
    
            assume
    
            
    
    A16: z 
    in the 
    InternalRel of LR1; 
    
            then
    
            consider x,y be
    object such that 
    
            
    
    A17: x 
    in cLR1 & y 
    in cLR1 and 
    
            
    
    A18: z 
    =  
    [x, y] by
    ZFMISC_1:def 2;
    
            reconsider x, y as
    Element of LR1 by 
    A17;
    
            reconsider x9 = x, y9 = y as
    Element of LR2 by 
    A12,
    A14;
    
            x
    <= y by 
    A16,
    A18,
    ORDERS_2:def 5;
    
            then (
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)) by 
    A13;
    
            then x9
    <= y9 by 
    A15;
    
            hence z
    in the 
    InternalRel of LR2 by 
    A18,
    ORDERS_2:def 5;
    
          end;
    
          assume
    
          
    
    A19: z 
    in the 
    InternalRel of LR2; 
    
          then
    
          consider x,y be
    object such that 
    
          
    
    A20: x 
    in cLR2 & y 
    in cLR2 and 
    
          
    
    A21: z 
    =  
    [x, y] by
    ZFMISC_1:def 2;
    
          reconsider x, y as
    Element of LR2 by 
    A20;
    
          reconsider x9 = x, y9 = y as
    Element of LR1 by 
    A12,
    A14;
    
          x
    <= y by 
    A19,
    A21,
    ORDERS_2:def 5;
    
          then (
    "/\" (x,L)) 
    <= ( 
    "/\" (y,L)) by 
    A15;
    
          then x9
    <= y9 by 
    A13;
    
          hence z
    in the 
    InternalRel of LR1 by 
    A21,
    ORDERS_2:def 5;
    
        end;
    
        hence thesis by
    A12,
    A14,
    TARSKI: 2;
    
      end;
    
    end
    
    theorem :: 
    
    WAYBEL20:41
    
    for L be
    continuous
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:] st R is
    CLCongruence holds for x be 
    set holds x is 
    Element of (L 
    ./. R) iff ex y be 
    Element of L st x 
    = ( 
    Class (( 
    EqRel R),y)) 
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:];
    
      assume R is
    CLCongruence;
    
      then
    
      
    
    A1: the 
    carrier of (L 
    ./. R) 
    = ( 
    Class ( 
    EqRel R)) by 
    Def5;
    
      let x be
    set;
    
      hereby
    
        assume x is
    Element of (L 
    ./. R); 
    
        then x
    in ( 
    Class ( 
    EqRel R)) by 
    A1;
    
        then
    
        consider y be
    object such that 
    
        
    
    A2: y 
    in the 
    carrier of L and 
    
        
    
    A3: x 
    = ( 
    Class (( 
    EqRel R),y)) by 
    EQREL_1:def 3;
    
        reconsider y as
    Element of L by 
    A2;
    
        take y;
    
        thus x
    = ( 
    Class (( 
    EqRel R),y)) by 
    A3;
    
      end;
    
      given y be
    Element of L such that 
    
      
    
    A4: x 
    = ( 
    Class (( 
    EqRel R),y)); 
    
      thus thesis by
    A1,
    A4,
    EQREL_1:def 3;
    
    end;
    
    theorem :: 
    
    WAYBEL20:42
    
    for L be
    continuous
    complete  
    LATTICE, R be non 
    empty  
    Subset of 
    [:L, L:] st R is
    CLCongruence holds R 
    = ( 
    kernel_congruence ( 
    kernel_op R)) by 
    Th36;
    
    theorem :: 
    
    WAYBEL20:43
    
    for L be
    continuous
    complete  
    LATTICE, k be 
    directed-sups-preserving
    kernel  
    Function of L, L holds k 
    = ( 
    kernel_op ( 
    kernel_congruence k)) 
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, k be 
    directed-sups-preserving
    kernel  
    Function of L, L; 
    
      set kc = (
    kernel_congruence k), cL = the 
    carrier of L, km = ( 
    kernel_op kc); 
    
      
    
      
    
    A1: ( 
    dom k) 
    = cL by 
    FUNCT_2:def 1;
    
      
    
      
    
    A2: km 
    <= ( 
    id L) by 
    WAYBEL_1:def 15;
    
      
    
      
    
    A3: k 
    <= ( 
    id L) by 
    WAYBEL_1:def 15;
    
      
    
      
    
    A4: kc is 
    CLCongruence by 
    Th40;
    
      then
    
      
    
    A5: kc 
    = ( 
    [:km, km:]
    " ( 
    id cL)) by 
    Th36;
    
      reconsider kc9 = kc as
    Equivalence_Relation of cL by 
    A4;
    
      (
    field kc9) 
    = cL by 
    ORDERS_1: 12;
    
      then
    
      
    
    A6: kc9 
    is_transitive_in cL by 
    RELAT_2:def 16;
    
      
    
      
    
    A7: ( 
    dom  
    [:km, km:])
    =  
    [:(
    dom km), ( 
    dom km):] by 
    FUNCT_3:def 8;
    
      
    
      
    
    A8: ( 
    dom km) 
    = cL by 
    FUNCT_2:def 1;
    
      
    
      
    
    A9: ( 
    dom  
    [:k, k:])
    =  
    [:(
    dom k), ( 
    dom k):] by 
    FUNCT_3:def 8;
    
      now
    
        let x be
    object;
    
        assume x
    in cL; 
    
        then
    
        reconsider x9 = x as
    Element of L; 
    
        
    
        
    
    A10: (k 
    . (k 
    . x9)) 
    = ((k 
    * k) 
    . x9) by 
    A1,
    FUNCT_1: 13
    
        .= (k
    . x9) by 
    QUANTAL1:def 9;
    
        
    
        
    
    A11: 
    [(k
    . x9), (k 
    . x9)] 
    in ( 
    id cL) & ( 
    [:k, k:]
    . ((k 
    . x9),x9)) 
    =  
    [(k
    . (k 
    . x9)), (k 
    . x9)] by 
    A1,
    FUNCT_3:def 8,
    RELAT_1:def 10;
    
        
    [(k
    . x9), x9] 
    in ( 
    dom  
    [:k, k:]) by
    A1,
    A9,
    ZFMISC_1:def 2;
    
        then
    
        
    
    A12: 
    [(k
    . x9), x9] 
    in kc by 
    A10,
    A11,
    FUNCT_1:def 7;
    
        
    
        
    
    A13: (km 
    . (km 
    . x9)) 
    = ((km 
    * km) 
    . x9) by 
    A8,
    FUNCT_1: 13
    
        .= (km
    . x9) by 
    QUANTAL1:def 9;
    
        (km
    . (k 
    . x9)) 
    <= (( 
    id L) 
    . (k 
    . x9)) by 
    A2,
    YELLOW_2: 9;
    
        then
    
        
    
    A14: (km 
    . (k 
    . x9)) 
    <= (k 
    . x9) by 
    FUNCT_1: 18;
    
        
    
        
    
    A15: 
    [(km
    . x9), (km 
    . x9)] 
    in ( 
    id cL) & ( 
    [:km, km:]
    . (x9,(km 
    . x9))) 
    =  
    [(km
    . x9), (km 
    . (km 
    . x9))] by 
    A8,
    FUNCT_3:def 8,
    RELAT_1:def 10;
    
        
    [x9, (km
    . x9)] 
    in ( 
    dom  
    [:km, km:]) by
    A8,
    A7,
    ZFMISC_1:def 2;
    
        then
    [x9, (km
    . x9)] 
    in kc by 
    A5,
    A13,
    A15,
    FUNCT_1:def 7;
    
        then
    
        
    
    A16: 
    [(k
    . x9), (km 
    . x9)] 
    in kc by 
    A6,
    A12;
    
        then (
    [:k, k:]
    . ((k 
    . x9),(km 
    . x9))) 
    in ( 
    id cL) by 
    FUNCT_1:def 7;
    
        then
    [(k
    . (k 
    . x9)), (k 
    . (km 
    . x9))] 
    in ( 
    id cL) by 
    A1,
    FUNCT_3:def 8;
    
        
    
        then
    
        
    
    A17: (k 
    . (km 
    . x9)) 
    = (k 
    . (k 
    . x9)) by 
    RELAT_1:def 10
    
        .= ((k
    * k) 
    . x9) by 
    A1,
    FUNCT_1: 13
    
        .= (k
    . x9) by 
    QUANTAL1:def 9;
    
        (
    [:km, km:]
    . ((k 
    . x9),(km 
    . x9))) 
    in ( 
    id cL) by 
    A5,
    A16,
    FUNCT_1:def 7;
    
        then
    [(km
    . (k 
    . x9)), (km 
    . (km 
    . x9))] 
    in ( 
    id cL) by 
    A8,
    FUNCT_3:def 8;
    
        
    
        then
    
        
    
    A18: (km 
    . (k 
    . x9)) 
    = (km 
    . (km 
    . x9)) by 
    RELAT_1:def 10
    
        .= ((km
    * km) 
    . x9) by 
    A8,
    FUNCT_1: 13
    
        .= (km
    . x9) by 
    QUANTAL1:def 9;
    
        (k
    . (km 
    . x9)) 
    <= (( 
    id L) 
    . (km 
    . x9)) by 
    A3,
    YELLOW_2: 9;
    
        then (k
    . (km 
    . x9)) 
    <= (km 
    . x9) by 
    FUNCT_1: 18;
    
        hence (k
    . x) 
    = (km 
    . x) by 
    A17,
    A18,
    A14,
    YELLOW_0:def 3;
    
      end;
    
      hence thesis by
    FUNCT_2: 12;
    
    end;
    
    theorem :: 
    
    WAYBEL20:44
    
    for L be
    continuous
    complete  
    LATTICE, p be 
    projection  
    Function of L, L st p is 
    infs-preserving holds ( 
    Image p) is 
    continuous  
    LATTICE & ( 
    Image p) is 
    infs-inheriting
    
    proof
    
      let L be
    continuous
    complete  
    LATTICE, p be 
    projection  
    Function of L, L such that 
    
      
    
    A1: p is 
    infs-preserving;
    
      reconsider Lc = { c where c be
    Element of L : c 
    <= (p 
    . c) } as non 
    empty  
    Subset of L by 
    WAYBEL_1: 43;
    
      reconsider pc = (p
    | Lc) as 
    Function of ( 
    subrelstr Lc), ( 
    subrelstr Lc) by 
    WAYBEL_1: 45;
    
      
    
      
    
    A2: ( 
    subrelstr Lc) is 
    infs-inheriting by 
    A1,
    WAYBEL_1: 51;
    
      then
    
      
    
    A3: ( 
    subrelstr Lc) is 
    complete by 
    YELLOW_2: 30;
    
      
    
      
    
    A4: pc is 
    infs-preserving
    
      proof
    
        let X be
    Subset of ( 
    subrelstr Lc); 
    
        assume
    ex_inf_of (X,( 
    subrelstr Lc)); 
    
        thus
    ex_inf_of ((pc 
    .: X),( 
    subrelstr Lc)) by 
    A3,
    YELLOW_0: 17;
    
        the
    carrier of ( 
    subrelstr Lc) 
    = Lc by 
    YELLOW_0:def 15;
    
        then
    
        reconsider X9 = X as
    Subset of L by 
    XBOOLE_1: 1;
    
        
    
        
    
    A5: 
    ex_inf_of (X9,L) & p 
    preserves_inf_of X9 by 
    A1,
    YELLOW_0: 17;
    
        X
    c= the 
    carrier of ( 
    subrelstr Lc); 
    
        then X
    c= Lc by 
    YELLOW_0:def 15;
    
        then
    
        
    
    A6: (pc 
    .: X) 
    = (p 
    .: X) by 
    RELAT_1: 129;
    
        
    
        
    
    A7: 
    ex_inf_of (X,L) by 
    YELLOW_0: 17;
    
        then (
    "/\" (X9,L)) 
    in the 
    carrier of ( 
    subrelstr Lc) by 
    A2;
    
        then
    
        
    
    A8: ( 
    dom pc) 
    = the 
    carrier of ( 
    subrelstr Lc) & ( 
    inf X9) 
    = ( 
    inf X) by 
    A7,
    FUNCT_2:def 1,
    YELLOW_0: 63;
    
        
    ex_inf_of ((p 
    .: X),L) & ( 
    "/\" ((pc 
    .: X),L)) 
    in the 
    carrier of ( 
    subrelstr Lc) by 
    A2,
    YELLOW_0: 17;
    
        
    
        hence (
    inf (pc 
    .: X)) 
    = ( 
    inf (p 
    .: X)) by 
    A6,
    YELLOW_0: 63
    
        .= (p
    . ( 
    inf X9)) by 
    A5
    
        .= (pc
    . ( 
    inf X)) by 
    A8,
    FUNCT_1: 47;
    
      end;
    
      reconsider cpc = (
    corestr pc) as 
    Function of ( 
    subrelstr Lc), ( 
    Image pc); 
    
      
    
      
    
    A9: the 
    carrier of ( 
    subrelstr ( 
    rng p)) 
    = ( 
    rng p) by 
    YELLOW_0:def 15
    
      .= (
    rng pc) by 
    WAYBEL_1: 44
    
      .= the
    carrier of ( 
    subrelstr ( 
    rng pc)) by 
    YELLOW_0:def 15;
    
      (
    subrelstr ( 
    rng pc)) is 
    full  
    SubRelStr of L by 
    WAYBEL15: 1;
    
      then
    
      
    
    A10: ( 
    Image p) 
    = ( 
    Image pc) by 
    A9,
    YELLOW_0: 57;
    
      pc is
    closure by 
    WAYBEL_1: 47;
    
      then
    
      
    
    A11: cpc is 
    sups-preserving by 
    WAYBEL_1: 55;
    
      (
    subrelstr Lc) is 
    sups-inheriting  
    SubRelStr of L by 
    WAYBEL_1: 49;
    
      then (
    subrelstr Lc) is 
    continuous  
    LATTICE by 
    A2,
    WAYBEL_5: 28;
    
      hence (
    Image p) is 
    continuous  
    LATTICE by 
    A3,
    A10,
    A4,
    A11,
    Th19,
    WAYBEL_5: 33;
    
      thus thesis by
    A1,
    A2,
    WAYBEL_1: 51;
    
    end;