geomtrap.miz
begin
reserve V for
RealLinearSpace;
reserve u,u1,u2,v,v1,v2,w,w1,y for
VECTOR of V;
reserve a,a1,a2,b,b1,b2,c1,c2 for
Real;
reserve x,z for
set;
definition
let V;
let u, v, u1, v1;
::
GEOMTRAP:def1
pred u,v
'||' u1,v1 means (u,v)
// (u1,v1) or (u,v)
// (v1,u1);
end
theorem ::
GEOMTRAP:1
Th1:
Gen (w,y) implies (
OASpace V) is
OAffinSpace
proof
assume
Gen (w,y);
then for a1, a2 st ((a1
* w)
+ (a2
* y))
= (
0. V) holds a1
=
0 & a2
=
0 by
ANALMETR:def 1;
hence thesis by
ANALOAF: 26;
end;
theorem ::
GEOMTRAP:2
Th2: for p,q,p1,q1 be
Element of (
OASpace V) st p
= u & q
= v & p1
= u1 & q1
= v1 holds ((p,q)
// (p1,q1) iff (u,v)
// (u1,v1))
proof
A1: (
OASpace V)
=
AffinStruct (# the
carrier of V, (
DirPar V) #) by
ANALOAF:def 4;
let p,q,p1,q1 be
Element of (
OASpace V) such that
A2: p
= u & q
= v & p1
= u1 & q1
= v1;
A3:
now
assume (u,v)
// (u1,v1);
then
[
[p, q],
[p1, q1]]
in the
CONGR of (
OASpace V) by
A2,
A1,
ANALOAF: 22;
hence (p,q)
// (p1,q1) by
ANALOAF:def 2;
end;
now
assume (p,q)
// (p1,q1);
then
[
[u, v],
[u1, v1]]
in (
DirPar V) by
A2,
A1,
ANALOAF:def 2;
hence (u,v)
// (u1,v1) by
ANALOAF: 22;
end;
hence thesis by
A3;
end;
theorem ::
GEOMTRAP:3
Th3:
Gen (w,y) implies for p,q,p1,q1 be
Element of the
carrier of (
Lambda (
OASpace V)) st p
= u & q
= v & p1
= u1 & q1
= v1 holds ((p,q)
// (p1,q1) iff (u,v)
'||' (u1,v1))
proof
assume
Gen (w,y);
then
reconsider S = (
OASpace V) as
OAffinSpace by
Th1;
let p,q,p1,q1 be
Element of the
carrier of (
Lambda (
OASpace V)) such that
A1: p
= u & q
= v & p1
= u1 & q1
= v1;
(
Lambda (
OASpace V))
=
AffinStruct (# the
carrier of (
OASpace V), (
lambda the
CONGR of (
OASpace V)) #) by
DIRAF:def 2;
then
reconsider p9 = p, q9 = q, p19 = p1, q19 = q1 as
Element of S;
A2:
now
assume (u,v)
'||' (u1,v1);
then (u,v)
// (u1,v1) or (u,v)
// (v1,u1);
then (p9,q9)
// (p19,q19) or (p9,q9)
// (q19,p19) by
A1,
Th2;
then (p9,q9)
'||' (p19,q19) by
DIRAF:def 4;
hence (p,q)
// (p1,q1) by
DIRAF: 38;
end;
now
assume (p,q)
// (p1,q1);
then (p9,q9)
'||' (p19,q19) by
DIRAF: 38;
then (p9,q9)
// (p19,q19) or (p9,q9)
// (q19,p19) by
DIRAF:def 4;
then (u,v)
// (u1,v1) or (u,v)
// (v1,u1) by
A1,
Th2;
hence (u,v)
'||' (u1,v1);
end;
hence thesis by
A2;
end;
theorem ::
GEOMTRAP:4
Th4: for p,q,p1,q1 be
Element of the
carrier of (
AMSpace (V,w,y)) st p
= u & q
= v & p1
= u1 & q1
= v1 holds ((p,q)
// (p1,q1) iff (u,v)
'||' (u1,v1))
proof
let p,q,p1,q1 be
Element of the
carrier of (
AMSpace (V,w,y)) such that
A1: p
= u & q
= v & p1
= u1 & q1
= v1;
A2:
now
assume (p,q)
// (p1,q1);
then ex a, b st (a
* (v
- u))
= (b
* (v1
- u1)) & (a
<>
0 or b
<>
0 ) by
A1,
ANALMETR: 22;
then (u,v)
// (u1,v1) or (u,v)
// (v1,u1) by
ANALMETR: 14;
hence (u,v)
'||' (u1,v1);
end;
now
assume (u,v)
'||' (u1,v1);
then (u,v)
// (u1,v1) or (u,v)
// (v1,u1);
then ex a, b st (a
* (v
- u))
= (b
* (v1
- u1)) & (a
<>
0 or b
<>
0 ) by
ANALMETR: 14;
hence (p,q)
// (p1,q1) by
A1,
ANALMETR: 22;
end;
hence thesis by
A2;
end;
definition
let V;
let u, v;
::
GEOMTRAP:def2
func u
# v ->
VECTOR of V means
:
Def2: (it
+ it )
= (u
+ v);
existence
proof
set y = (u
+ v);
set w = ((2
" )
* y);
((2
" )
+ (2
" ))
= 1;
then (w
+ w)
= (1
* y) by
RLVECT_1:def 6
.= y by
RLVECT_1:def 8;
hence thesis;
end;
uniqueness
proof
let w, w1;
assume (w
+ w)
= (u
+ v) & (w1
+ w1)
= (u
+ v);
then (
0. V)
= ((w
+ w)
- (w1
+ w1)) by
RLVECT_1: 15
.= (w
+ (w
- (w1
+ w1))) by
RLVECT_1:def 3
.= (w
+ ((w
- w1)
- w1)) by
RLVECT_1: 27
.= ((w
+ (w
- w1))
- w1) by
RLVECT_1:def 3
.= ((w
- w1)
+ (w
- w1)) by
RLVECT_1:def 3;
then (w
- w1)
= (
0. V) by
RLVECT_1: 20;
hence thesis by
RLVECT_1: 21;
end;
commutativity ;
idempotence ;
end
theorem ::
GEOMTRAP:5
Th5: ex y st (u
# y)
= w
proof
take y = ((
- u)
+ (w
+ w));
(u
+ y)
= ((u
+ (
- u))
+ (w
+ w)) by
RLVECT_1:def 3
.= ((
0. V)
+ (w
+ w)) by
RLVECT_1: 5
.= (w
+ w) by
RLVECT_1: 4;
hence thesis by
Def2;
end;
theorem ::
GEOMTRAP:6
Th6: ((u
# u1)
# (v
# v1))
= ((u
# v)
# (u1
# v1))
proof
set p = (u
# u1), q = (v
# v1), r = (u
# v), s = (u1
# v1);
set x = (p
# q), y = (r
# s);
A1:
now
let w;
w
= (1
* w) by
RLVECT_1:def 8;
then ((w
+ w)
+ (w
+ w))
= (((1
+ 1)
* w)
+ ((1
* w)
+ (1
* w))) by
RLVECT_1:def 6
.= (((1
+ 1)
* w)
+ ((1
+ 1)
* w)) by
RLVECT_1:def 6
.= (((1
+ 1)
+ (1
+ 1))
* w) by
RLVECT_1:def 6;
hence ((w
+ w)
+ (w
+ w))
= (4
* w);
end;
((x
+ x)
+ (x
+ x))
= ((x
+ x)
+ (p
+ q)) by
Def2
.= ((p
+ q)
+ (p
+ q)) by
Def2
.= (p
+ (q
+ (p
+ q))) by
RLVECT_1:def 3
.= (p
+ (p
+ (q
+ q))) by
RLVECT_1:def 3
.= ((p
+ p)
+ (q
+ q)) by
RLVECT_1:def 3
.= ((p
+ p)
+ (v
+ v1)) by
Def2
.= ((u
+ u1)
+ (v
+ v1)) by
Def2
.= (u
+ (u1
+ (v
+ v1))) by
RLVECT_1:def 3
.= (u
+ (v
+ (v1
+ u1))) by
RLVECT_1:def 3
.= ((u
+ v)
+ (v1
+ u1)) by
RLVECT_1:def 3
.= ((u
+ v)
+ (s
+ s)) by
Def2
.= ((r
+ r)
+ (s
+ s)) by
Def2
.= (r
+ (r
+ (s
+ s))) by
RLVECT_1:def 3
.= (r
+ (s
+ (s
+ r))) by
RLVECT_1:def 3
.= ((r
+ s)
+ (s
+ r)) by
RLVECT_1:def 3
.= ((y
+ y)
+ (r
+ s)) by
Def2
.= ((y
+ y)
+ (y
+ y)) by
Def2;
then (4
* x)
= ((y
+ y)
+ (y
+ y)) by
A1
.= (4
* y) by
A1;
hence thesis by
RLVECT_1: 36;
end;
theorem ::
GEOMTRAP:7
Th7: (u
# y)
= (u
# w) implies y
= w
proof
assume
A1: (u
# y)
= (u
# w);
set p = (u
# y);
(u
+ y)
= (p
+ p) by
Def2
.= (u
+ w) by
A1,
Def2;
hence thesis by
RLVECT_1: 8;
end;
theorem ::
GEOMTRAP:8
Th8: (u,v)
// ((y
# u),(y
# v))
proof
set p = (y
# u), r = (y
# v);
A1: (y
+ u)
= (p
+ p) & (y
+ v)
= (r
+ r) by
Def2;
(2
* (r
- p))
= (((1
+ 1)
* r)
- ((1
+ 1)
* p)) by
RLVECT_1: 34
.= (((1
* r)
+ (1
* r))
- ((1
+ 1)
* p)) by
RLVECT_1:def 6
.= (((1
* r)
+ (1
* r))
- ((1
* p)
+ (1
* p))) by
RLVECT_1:def 6
.= ((r
+ (1
* r))
- ((1
* p)
+ (1
* p))) by
RLVECT_1:def 8
.= ((r
+ r)
- ((1
* p)
+ (1
* p))) by
RLVECT_1:def 8
.= ((r
+ r)
- (p
+ (1
* p))) by
RLVECT_1:def 8
.= ((y
+ v)
- (y
+ u)) by
A1,
RLVECT_1:def 8
.= (v
+ (y
- (y
+ u))) by
RLVECT_1:def 3
.= (v
+ ((y
- y)
- u)) by
RLVECT_1: 27
.= (v
+ ((
0. V)
- u)) by
RLVECT_1: 15
.= (v
- u) by
RLVECT_1: 14
.= (1
* (v
- u)) by
RLVECT_1:def 8;
hence thesis by
ANALOAF:def 1;
end;
theorem ::
GEOMTRAP:9
(u,v)
'||' ((w
# u),(w
# v)) by
Th8;
theorem ::
GEOMTRAP:10
Th10: (2
* ((u
# v)
- u))
= (v
- u) & (2
* (v
- (u
# v)))
= (v
- u)
proof
set p = (u
# v);
A1: (2
- 1)
= 1;
A2: (2
* (v
- p))
= ((2
* v)
- ((1
+ 1)
* p)) by
RLVECT_1: 34
.= ((2
* v)
- ((1
* p)
+ (1
* p))) by
RLVECT_1:def 6
.= ((2
* v)
- ((1
* p)
+ p)) by
RLVECT_1:def 8
.= ((2
* v)
- (p
+ p)) by
RLVECT_1:def 8
.= ((2
* v)
- (u
+ v)) by
Def2
.= (((2
* v)
- v)
- u) by
RLVECT_1: 27
.= (((2
* v)
- (1
* v))
- u) by
RLVECT_1:def 8
.= ((1
* v)
- u) by
A1,
RLVECT_1: 35
.= (v
- u) by
RLVECT_1:def 8;
A3: (1
- 2)
= (
- 1);
(2
* (p
- u))
= (((1
+ 1)
* p)
- (2
* u)) by
RLVECT_1: 34
.= (((1
* p)
+ (1
* p))
- (2
* u)) by
RLVECT_1:def 6
.= ((p
+ (1
* p))
- (2
* u)) by
RLVECT_1:def 8
.= ((p
+ p)
- (2
* u)) by
RLVECT_1:def 8
.= ((u
+ v)
- (2
* u)) by
Def2
.= (v
+ (u
- (2
* u))) by
RLVECT_1:def 3
.= (v
+ ((1
* u)
- (2
* u))) by
RLVECT_1:def 8
.= (v
+ ((
- 1)
* u)) by
A3,
RLVECT_1: 35
.= (v
- u) by
RLVECT_1: 16;
hence thesis by
A2;
end;
theorem ::
GEOMTRAP:11
Th11: (u,(u
# v))
// ((u
# v),v)
proof
set p = (u
# v);
(2
* (p
- u))
= (v
- u) by
Th10
.= (2
* (v
- p)) by
Th10;
hence thesis by
ANALOAF:def 1;
end;
theorem ::
GEOMTRAP:12
Th12: (u,v)
// (u,(u
# v)) & (u,v)
// ((u
# v),v)
proof
set p = (u
# v);
(1
* (v
- u))
= (v
- u) by
RLVECT_1:def 8
.= (2
* (p
- u)) by
Th10;
hence (u,v)
// (u,(u
# v)) by
ANALOAF:def 1;
(1
* (v
- u))
= (v
- u) by
RLVECT_1:def 8
.= (2
* (v
- p)) by
Th10;
hence thesis by
ANALOAF:def 1;
end;
Lm1: (u,y)
// (y,v) implies (v,y)
// (y,u) & (u,y)
// (u,v) & (y,v)
// (u,v)
proof
assume
A1: (u,y)
// (y,v);
then (y,u)
// (v,y) by
ANALOAF: 12;
hence
A2: (v,y)
// (y,u) by
ANALOAF: 12;
thus (u,y)
// (u,v) by
A1,
ANALOAF: 13;
(v,y)
// (v,u) by
A2,
ANALOAF: 13;
hence thesis by
ANALOAF: 12;
end;
theorem ::
GEOMTRAP:13
Th13: (u,y)
// (y,v) implies ((u
# y),y)
// (y,(y
# v))
proof
set p = (u
# y), q = (y
# v);
(u,p)
// (p,y) by
Th11;
then (p,y)
// (u,y) by
Lm1;
then
A1: (u,y)
// (p,y) by
ANALOAF: 12;
(y,q)
// (q,v) by
Th11;
then (y,q)
// (y,v) by
Lm1;
then
A2: (y,v)
// (y,q) by
ANALOAF: 12;
assume
A3: (u,y)
// (y,v);
now
assume that
A4: u
<> y and
A5: y
<> v;
(y,v)
// (p,y) by
A3,
A1,
A4,
ANALOAF: 11;
hence thesis by
A2,
A5,
ANALOAF: 11;
end;
hence thesis by
ANALOAF: 9;
end;
theorem ::
GEOMTRAP:14
Th14: (u,v)
// (u1,v1) implies (u,v)
// ((u
# u1),(v
# v1))
proof
assume
A1: (u,v)
// (u1,v1);
per cases ;
suppose u
= v or u1
= v1;
hence thesis by
Th8,
ANALOAF: 9;
end;
suppose
A2: u
<> v & u1
<> v1;
set p = (u
# u1), q = (v
# v1);
consider a, b such that
A3:
0
< a &
0
< b and
A4: (a
* (v
- u))
= (b
* (v1
- u1)) by
A1,
A2,
ANALOAF:def 1;
A5:
0
< (a
+ b) &
0
< (b
* 2) by
A3,
XREAL_1: 34,
XREAL_1: 129;
((b
* 2)
* (q
- p))
= (b
* (2
* (q
- p))) by
RLVECT_1:def 7
.= (b
* (((1
+ 1)
* q)
- (2
* p))) by
RLVECT_1: 34
.= (b
* (((1
* q)
+ (1
* q))
- (2
* p))) by
RLVECT_1:def 6
.= (b
* ((q
+ (1
* q))
- (2
* p))) by
RLVECT_1:def 8
.= (b
* ((q
+ q)
- (2
* p))) by
RLVECT_1:def 8
.= (b
* ((v
+ v1)
- (2
* p))) by
Def2
.= (b
* (v
+ (v1
- ((1
+ 1)
* p)))) by
RLVECT_1:def 3
.= (b
* (v
+ (v1
- ((1
* p)
+ (1
* p))))) by
RLVECT_1:def 6
.= (b
* (v
+ (v1
- (p
+ (1
* p))))) by
RLVECT_1:def 8
.= (b
* (v
+ (v1
- (p
+ p)))) by
RLVECT_1:def 8
.= (b
* (v
+ (v1
- (u
+ u1)))) by
Def2
.= (b
* (v
+ ((v1
- u1)
- u))) by
RLVECT_1: 27
.= (b
* ((v
+ (v1
- u1))
- u)) by
RLVECT_1:def 3
.= (b
* ((v1
- u1)
+ (v
- u))) by
RLVECT_1:def 3
.= ((a
* (v
- u))
+ (b
* (v
- u))) by
A4,
RLVECT_1:def 5
.= ((a
+ b)
* (v
- u)) by
RLVECT_1:def 6;
hence thesis by
A5,
ANALOAF:def 1;
end;
end;
Lm2: (u,v)
// (u1,v1) implies (u,v)
'||' ((u
# v1),(v
# u1))
proof
assume
A1: (u,v)
// (u1,v1);
per cases ;
suppose u
= v;
then (u,v)
// ((u
# v1),(v
# u1)) by
ANALOAF: 9;
hence thesis;
end;
suppose u1
= v1;
then (u,v)
// ((u
# v1),(v
# u1)) by
Th8;
hence thesis;
end;
suppose u
<> v & u1
<> v1;
then
consider a, b such that
0
< a and
A2:
0
< b and
A3: (a
* (v
- u))
= (b
* (v1
- u1)) by
A1,
ANALOAF:def 1;
A4: (b
* (u1
- v1))
= (b
* (
- (v1
- u1))) by
RLVECT_1: 33
.= (
- (a
* (v
- u))) by
A3,
RLVECT_1: 25
.= (a
* (
- (v
- u))) by
RLVECT_1: 25
.= ((
- a)
* (v
- u)) by
RLVECT_1: 24;
set p = (u
# v1), q = (v
# u1), A = (b
* 2), D = (b
- a);
A5: A
<>
0 by
A2;
(A
* (q
- p))
= (b
* (2
* (q
- p))) by
RLVECT_1:def 7
.= (b
* (((1
+ 1)
* q)
- (2
* p))) by
RLVECT_1: 34
.= (b
* (((1
* q)
+ (1
* q))
- (2
* p))) by
RLVECT_1:def 6
.= (b
* ((q
+ (1
* q))
- (2
* p))) by
RLVECT_1:def 8
.= (b
* ((q
+ q)
- (2
* p))) by
RLVECT_1:def 8
.= (b
* ((v
+ u1)
- (2
* p))) by
Def2
.= (b
* (v
+ (u1
- ((1
+ 1)
* p)))) by
RLVECT_1:def 3
.= (b
* (v
+ (u1
- ((1
* p)
+ (1
* p))))) by
RLVECT_1:def 6
.= (b
* (v
+ (u1
- (p
+ (1
* p))))) by
RLVECT_1:def 8
.= (b
* (v
+ (u1
- (p
+ p)))) by
RLVECT_1:def 8
.= (b
* (v
+ (u1
- (u
+ v1)))) by
Def2
.= (b
* (v
+ ((u1
- v1)
- u))) by
RLVECT_1: 27
.= (b
* ((v
+ (u1
- v1))
- u)) by
RLVECT_1:def 3
.= (b
* ((u1
- v1)
+ (v
- u))) by
RLVECT_1:def 3
.= (((
- a)
* (v
- u))
+ (b
* (v
- u))) by
A4,
RLVECT_1:def 5
.= ((b
+ (
- a))
* (v
- u)) by
RLVECT_1:def 6
.= (D
* (v
- u));
then (u,v)
// (p,q) or (u,v)
// (q,p) by
A5,
ANALMETR: 14;
hence thesis;
end;
end;
Lm3: (u1
# u2)
= (v1
# v2) implies (v1
- u1)
= (
- (v2
- u2))
proof
set p = (u1
# u2);
A1: (p
+ p)
= (u1
+ u2) by
Def2;
assume (u1
# u2)
= (v1
# v2);
then
A2: (p
+ p)
= (v1
+ v2) by
Def2;
((v1
- u1)
+ v2)
= ((v2
+ v1)
- u1) by
RLVECT_1:def 3
.= u2 by
A1,
A2,
RLSUB_2: 61;
then ((v1
- u1)
+ (v2
- u2))
= (u2
- u2) by
RLVECT_1:def 3
.= (
0. V) by
RLVECT_1: 15;
hence thesis by
RLVECT_1: 6;
end;
Lm4: (u,v,u1,v1)
are_Ort_wrt (w,y) implies (u,v,v1,u1)
are_Ort_wrt (w,y)
proof
assume (u,v,u1,v1)
are_Ort_wrt (w,y);
then ((v
- u),(v1
- u1))
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then
A1: ((v
- u),((
- 1)
* (v1
- u1)))
are_Ort_wrt (w,y) by
ANALMETR: 7;
((
- 1)
* (v1
- u1))
= (
- (v1
- u1)) by
RLVECT_1: 16
.= (u1
- v1) by
RLVECT_1: 33;
hence thesis by
A1,
ANALMETR:def 3;
end;
Lm5: (u,v,u1,v1)
are_Ort_wrt (w,y) implies (u1,v1,u,v)
are_Ort_wrt (w,y)
proof
assume (u,v,u1,v1)
are_Ort_wrt (w,y);
then ((v
- u),(v1
- u1))
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then ((v1
- u1),(v
- u))
are_Ort_wrt (w,y) by
ANALMETR: 4;
hence thesis by
ANALMETR:def 3;
end;
Lm6:
Gen (w,y) implies (u,v,u1,u1)
are_Ort_wrt (w,y)
proof
A1: (u1
- u1)
= (
0. V) by
RLVECT_1: 15;
assume
Gen (w,y);
then ((v
- u),(u1
- u1))
are_Ort_wrt (w,y) by
A1,
ANALMETR: 5;
hence thesis by
ANALMETR:def 3;
end;
Lm7:
Gen (w,y) & (u,v,w1,v1)
are_Ort_wrt (w,y) & (u,v,w1,v2)
are_Ort_wrt (w,y) implies (u,v,v1,v2)
are_Ort_wrt (w,y)
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,w1,v1)
are_Ort_wrt (w,y) & (u,v,w1,v2)
are_Ort_wrt (w,y);
((v
- u),(v1
- w1))
are_Ort_wrt (w,y) & ((v
- u),(v2
- w1))
are_Ort_wrt (w,y) by
A2,
ANALMETR:def 3;
then
A3: ((v
- u),((v2
- w1)
- (v1
- w1)))
are_Ort_wrt (w,y) by
A1,
ANALMETR: 10;
((v2
- w1)
- (v1
- w1))
= (v2
- (w1
+ (v1
- w1))) by
RLVECT_1: 27
.= (v2
- (v1
- (w1
- w1))) by
RLVECT_1: 29
.= (v2
- (v1
- (
0. V))) by
RLVECT_1: 15
.= (v2
- v1) by
RLVECT_1: 13;
hence thesis by
A3,
ANALMETR:def 3;
end;
Lm8:
Gen (w,y) & (u,v,u,v)
are_Ort_wrt (w,y) implies u
= v
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,u,v)
are_Ort_wrt (w,y);
((v
- u),(v
- u))
are_Ort_wrt (w,y) by
A2,
ANALMETR:def 3;
then (v
- u)
= (
0. V) by
A1,
ANALMETR: 11;
hence thesis by
RLVECT_1: 21;
end;
Lm9:
Gen (w,y) implies (u,v,u1,u1)
are_Ort_wrt (w,y) & (u1,u1,u,v)
are_Ort_wrt (w,y)
proof
A1: (u1
- u1)
= (
0. V) by
RLVECT_1: 15;
assume
Gen (w,y);
then ((v
- u),(u1
- u1))
are_Ort_wrt (w,y) by
A1,
ANALMETR: 5;
hence (u,v,u1,u1)
are_Ort_wrt (w,y) by
ANALMETR:def 3;
hence thesis by
Lm5;
end;
Lm10:
Gen (w,y) & ((u1,v1)
'||' (u,v) or (u,v)
'||' (u1,v1)) & ((u2,v2,u,v)
are_Ort_wrt (w,y) or (u,v,u2,v2)
are_Ort_wrt (w,y)) & u
<> v implies (u1,v1,u2,v2)
are_Ort_wrt (w,y) & (u2,v2,u1,v1)
are_Ort_wrt (w,y)
proof
assume that
A1:
Gen (w,y) and
A2: (u1,v1)
'||' (u,v) or (u,v)
'||' (u1,v1) and
A3: (u2,v2,u,v)
are_Ort_wrt (w,y) or (u,v,u2,v2)
are_Ort_wrt (w,y) and
A4: u
<> v;
reconsider p9 = u, q9 = v, p19 = u1, q19 = v1, p29 = u2, q29 = v2 as
Element of the
carrier of (
AMSpace (V,w,y)) by
ANALMETR: 19;
reconsider S = (
AMSpace (V,w,y)) as
OrtAfSp by
A1,
ANALMETR: 33;
reconsider p = p9, q = q9, p1 = p19, q1 = q19, p2 = p29, q2 = q29 as
Element of S;
A5: (p2,q2)
_|_ (p,q) or (p,q)
_|_ (p2,q2) by
A3,
ANALMETR: 21;
(p1,q1)
// (p,q) or (p,q)
// (p1,q1) by
A2,
Th4;
then (p1,q1)
_|_ (p2,q2) & (p2,q2)
_|_ (p1,q1) by
A4,
A5,
ANALMETR: 62;
hence thesis by
ANALMETR: 21;
end;
definition
let V;
let w, y, u, u1, v, v1;
::
GEOMTRAP:def3
pred u,u1,v,v1
are_DTr_wrt w,y means (u,u1)
// (v,v1) & (u,u1,(u
# u1),(v
# v1))
are_Ort_wrt (w,y) & (v,v1,(u
# u1),(v
# v1))
are_Ort_wrt (w,y);
end
theorem ::
GEOMTRAP:15
Gen (w,y) implies (u,u,v,v)
are_DTr_wrt (w,y) by
Lm5,
Lm6,
ANALOAF: 9;
theorem ::
GEOMTRAP:16
Gen (w,y) implies (u,v,u,v)
are_DTr_wrt (w,y) by
Lm6,
ANALOAF: 8;
theorem ::
GEOMTRAP:17
Th17: (u,v,v,u)
are_DTr_wrt (w,y) implies u
= v by
ANALOAF: 10;
theorem ::
GEOMTRAP:18
Th18:
Gen (w,y) & (v1,u,u,v2)
are_DTr_wrt (w,y) implies v1
= u & u
= v2
proof
assume that
A1:
Gen (w,y) and
A2: (v1,u,u,v2)
are_DTr_wrt (w,y);
set a = (v1
# u), b = (u
# v2);
A3: (v1,u,a,b)
are_Ort_wrt (w,y) by
A2;
A4: (u,v2,a,b)
are_Ort_wrt (w,y) by
A2;
A5: (v1,u)
// (u,v2) by
A2;
per cases ;
suppose v1
= v2;
hence thesis by
A2,
Th17;
end;
suppose v1
<> v2;
then
A6: a
<> b by
Th7;
(u,v2)
// (u,b) by
Th12;
then
A7: (u,v2)
'||' (u,b);
A8: (a,u)
// (u,b) by
A5,
Th13;
then (u,b)
// (a,b) by
Lm1;
then
A9: (u,b)
'||' (a,b);
A10: u
= v2
proof
assume
A11: u
<> v2;
A12: u
<> b
proof
assume u
= b;
then (u
# v2)
= (u
# u);
hence contradiction by
A11,
Th7;
end;
(u,b,a,b)
are_Ort_wrt (w,y) by
A1,
A4,
A7,
A11,
Lm10;
then (u,b,u,b)
are_Ort_wrt (w,y) by
A1,
A6,
A9,
Lm10;
hence contradiction by
A1,
A12,
Lm8;
end;
(v1,u)
// (a,u) by
Th12;
then
A13: (v1,u)
'||' (a,u);
(a,u)
// (a,b) by
A8,
Lm1;
then
A14: (a,u)
'||' (a,b);
v1
= u
proof
assume
A15: v1
<> u;
A16: u
<> a
proof
assume u
= a;
then (v1
# u)
= (u
# u);
hence contradiction by
A15,
Th7;
end;
(a,u,a,b)
are_Ort_wrt (w,y) by
A1,
A3,
A13,
A15,
Lm10;
then (a,u,a,u)
are_Ort_wrt (w,y) by
A1,
A6,
A14,
Lm10;
hence contradiction by
A1,
A16,
Lm8;
end;
hence thesis by
A10;
end;
end;
theorem ::
GEOMTRAP:19
Th19:
Gen (w,y) & (u,v,u1,v1)
are_DTr_wrt (w,y) & (u,v,u2,v2)
are_DTr_wrt (w,y) & u
<> v implies (u1,v1,u2,v2)
are_DTr_wrt (w,y)
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,u1,v1)
are_DTr_wrt (w,y) and
A3: (u,v,u2,v2)
are_DTr_wrt (w,y) and
A4: u
<> v;
set a = (u1
# v1), b = (u2
# v2);
(u,v,(u
# v),(u1
# v1))
are_Ort_wrt (w,y) & (u,v,(u
# v),(u2
# v2))
are_Ort_wrt (w,y) by
A2,
A3;
then
A5: (u,v,a,b)
are_Ort_wrt (w,y) by
A1,
Lm7;
A6: (u,v)
// (u2,v2) by
A3;
then (u,v)
'||' (u2,v2);
then
A7: (u2,v2,a,b)
are_Ort_wrt (w,y) by
A1,
A4,
A5,
Lm10;
A8: (u,v)
// (u1,v1) by
A2;
then (u,v)
'||' (u1,v1);
then
A9: (u1,v1,a,b)
are_Ort_wrt (w,y) by
A1,
A4,
A5,
Lm10;
(u1,v1)
// (u2,v2) by
A4,
A8,
A6,
ANALOAF: 11;
hence thesis by
A9,
A7;
end;
theorem ::
GEOMTRAP:20
Th20:
Gen (w,y) implies ex t be
VECTOR of V st ((u,v,u1,t)
are_DTr_wrt (w,y) or (u,v,t,u1)
are_DTr_wrt (w,y))
proof
assume
A1:
Gen (w,y);
set a = (u
# v);
per cases ;
suppose
A2: u
= v;
A3: (u1,u1,(u
# u),(u1
# u1))
are_Ort_wrt (w,y) by
A1,
Lm5,
Lm6;
(u,u)
// (u1,u1) & (u,u,(u
# u),(u1
# u1))
are_Ort_wrt (w,y) by
A1,
Lm5,
Lm6,
ANALOAF: 9;
then (u,u,u1,u1)
are_DTr_wrt (w,y) by
A3;
hence thesis by
A2;
end;
suppose
A4: u
<> v;
a
<> u
proof
assume a
= u;
then (u
# u)
= (u
# v);
hence contradiction by
A4,
Th7;
end;
then (u
- a)
<> (
0. V) by
RLVECT_1: 21;
then
consider r be
Real such that
A5: (((u1
- a)
- (r
* (u
- a))),(u
- a))
are_Ort_wrt (w,y) by
A1,
ANALMETR: 13;
set b = (u1
- (r
* (u
- a)));
set t = ((2
* b)
- u1);
(u1
+ t)
= ((1
+ 1)
* b) by
RLSUB_2: 61
.= ((1
* b)
+ (1
* b)) by
RLVECT_1:def 6
.= (b
+ (1
* b)) by
RLVECT_1:def 8
.= (b
+ b) by
RLVECT_1:def 8;
then
A6: (u1
# t)
= b by
Def2;
(u1
- b)
= ((u1
- u1)
+ (r
* (u
- a))) by
RLVECT_1: 29
.= ((
0. V)
+ (r
* (u
- a))) by
RLVECT_1: 15
.= (r
* (u
- a)) by
RLVECT_1: 4;
then
A7: (u1
- t)
= (2
* (r
* (u
- a))) by
A6,
Th10
.= ((2
* r)
* (u
- a)) by
RLVECT_1:def 7;
A8: (u1
- (a
+ (r
* (u
- a))))
= ((u1
- (r
* (u
- a)))
- a) by
RLVECT_1: 27;
then ((b
- a),(u
- a))
are_Ort_wrt (w,y) by
A5,
RLVECT_1: 27;
then ((b
- a),(u1
- t))
are_Ort_wrt (w,y) by
A7,
ANALMETR: 7;
then
A9: (a,b,t,u1)
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then
A10: (t,u1,(u
# v),(t
# u1))
are_Ort_wrt (w,y) by
A6,
Lm5;
A11: (u
- v)
= (2
* (u
- (u
# v))) by
Th10;
then (u1
- t)
= (r
* (u
- v)) by
A7,
RLVECT_1:def 7;
then (r
* (u
- v))
= (1
* (u1
- t)) by
RLVECT_1:def 8;
then (v,u)
// (t,u1) or (v,u)
// (u1,t) by
ANALMETR: 14;
then
A12: (u,v)
// (u1,t) or (u,v)
// (t,u1) by
ANALOAF: 12;
(a,b,u1,t)
are_Ort_wrt (w,y) by
A9,
Lm4;
then
A13: (u1,t,(u
# v),(u1
# t))
are_Ort_wrt (w,y) by
A6,
Lm5;
(b
- a)
= ((u1
- a)
- (r
* (u
- a))) by
A8,
RLVECT_1: 27;
then ((b
- a),(u
- v))
are_Ort_wrt (w,y) by
A5,
A11,
ANALMETR: 7;
then (a,b,v,u)
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then (a,b,u,v)
are_Ort_wrt (w,y) by
Lm4;
then (u,v,(u
# v),(u1
# t))
are_Ort_wrt (w,y) by
A6,
Lm5;
then (u,v,u1,t)
are_DTr_wrt (w,y) or (u,v,t,u1)
are_DTr_wrt (w,y) by
A13,
A10,
A12;
hence thesis;
end;
end;
theorem ::
GEOMTRAP:21
Th21: (u,v,u1,v1)
are_DTr_wrt (w,y) implies (u1,v1,u,v)
are_DTr_wrt (w,y) by
ANALOAF: 12,
Lm4;
theorem ::
GEOMTRAP:22
Th22: (u,v,u1,v1)
are_DTr_wrt (w,y) implies (v,u,v1,u1)
are_DTr_wrt (w,y)
proof
assume
A1: (u,v,u1,v1)
are_DTr_wrt (w,y);
then (u,v)
// (u1,v1);
then
A2: (v,u)
// (v1,u1) by
ANALOAF: 12;
A3:
now
let u,u9,v,v9 be
VECTOR of V;
assume (u,u9,v,v9)
are_Ort_wrt (w,y);
then (v,v9,u,u9)
are_Ort_wrt (w,y) by
Lm5;
then (v,v9,u9,u)
are_Ort_wrt (w,y) by
Lm4;
hence (u9,u,v,v9)
are_Ort_wrt (w,y) by
Lm5;
end;
(u1,v1,(u
# v),(u1
# v1))
are_Ort_wrt (w,y) by
A1;
then
A4: (v1,u1,(v
# u),(v1
# u1))
are_Ort_wrt (w,y) by
A3;
(u,v,(u
# v),(u1
# v1))
are_Ort_wrt (w,y) by
A1;
then (v,u,(v
# u),(v1
# u1))
are_Ort_wrt (w,y) by
A3;
hence thesis by
A2,
A4;
end;
Lm11:
Gen (w,y) & u
<> v & (u,v)
'||' (u,u1) & (u,v)
'||' (u,v1) & (u,v)
'||' (u,u2) & (u,v)
'||' (u,v2) implies (u1,v1)
'||' (u2,v2)
proof
assume that
A1:
Gen (w,y) and
A2: u
<> v and
A3: (u,v)
'||' (u,u1) and
A4: (u,v)
'||' (u,v1) and
A5: (u,v)
'||' (u,u2) and
A6: (u,v)
'||' (u,v2);
reconsider p9 = u, q9 = v, p19 = u1, q19 = v1, p29 = u2, q29 = v2 as
Element of (
Lambda (
OASpace V)) by
ANALMETR: 16;
reconsider S9 = (
OASpace V) as
OAffinSpace by
A1,
Th1;
reconsider S = (
Lambda S9) as
AffinSpace by
DIRAF: 41;
reconsider p = p9, q = q9, p1 = p19, q1 = q19, p2 = p29, q2 = q29 as
Element of the
carrier of S;
(p,q)
// (p,p1) by
A1,
A3,
Th3;
then
A7:
LIN (p,q,p1) by
AFF_1:def 1;
(p,q)
// (p,q1) by
A1,
A4,
Th3;
then
A8:
LIN (p,q,q1) by
AFF_1:def 1;
(p,q)
// (p,q2) by
A1,
A6,
Th3;
then
LIN (p,q,q2) by
AFF_1:def 1;
then
A9:
LIN (p1,q1,q2) by
A2,
A7,
A8,
AFF_1: 8;
(p,q)
// (p,p2) by
A1,
A5,
Th3;
then
LIN (p,q,p2) by
AFF_1:def 1;
then
LIN (p1,q1,p2) by
A2,
A7,
A8,
AFF_1: 8;
then (p1,q1)
// (p2,q2) by
A9,
AFF_1: 10;
hence thesis by
A1,
Th3;
end;
theorem ::
GEOMTRAP:23
Th23:
Gen (w,y) & (v,u1,v,u2)
are_DTr_wrt (w,y) implies u1
= u2
proof
assume that
A1:
Gen (w,y) and
A2: (v,u1,v,u2)
are_DTr_wrt (w,y);
A3: (v,u1,(v
# u1),(v
# u2))
are_Ort_wrt (w,y) by
A2;
A4: (v,u2,(v
# u1),(v
# u2))
are_Ort_wrt (w,y) by
A2;
(v,u1)
// (v,u1) by
ANALOAF: 8;
then
A5: (v,u1)
'||' (v,u1);
set b = (v
# u1), c = (v
# u2);
A6: (v,u1)
// (v,b) by
Th12;
then
A7: (v,u1)
'||' (v,b);
A8: (v,u1)
// (v,u2) by
A2;
(v,u2)
// (v,b)
proof
per cases ;
suppose v
= b;
hence thesis by
ANALOAF: 9;
end;
suppose v
<> b;
then v
<> u1;
hence thesis by
A8,
A6,
ANALOAF: 11;
end;
end;
then
A9: (v,u2)
'||' (v,b);
(v,u2)
// (v,v) by
ANALOAF: 9;
then
A10: (v,u2)
'||' (v,v);
A11: (v,u2)
// (v,c) by
Th12;
then
A12: (v,u2)
'||' (v,c);
A13: (v,u2)
// (v,u1) by
A8,
ANALOAF: 12;
(v,u1)
// (v,c)
proof
per cases ;
suppose v
= c;
hence thesis by
ANALOAF: 9;
end;
suppose v
<> c;
then v
<> u2;
hence thesis by
A13,
A11,
ANALOAF: 11;
end;
end;
then
A14: (v,u1)
'||' (v,c);
(v,u2)
// (v,u2) by
ANALOAF: 8;
then
A15: (v,u2)
'||' (v,u2);
(v,u1)
// (v,v) by
ANALOAF: 9;
then
A16: (v,u1)
'||' (v,v);
assume
A17: u1
<> u2;
per cases by
A17;
suppose
A18: v
<> u1;
then (v,u1)
'||' (b,c) by
A1,
A7,
A5,
A16,
A14,
Lm11;
then (b,c,b,c)
are_Ort_wrt (w,y) by
A1,
A3,
A18,
Lm10;
hence thesis by
A1,
A17,
Lm8,
Th7;
end;
suppose
A19: v
<> u2;
then (v,u2)
'||' (b,c) by
A1,
A12,
A15,
A10,
A9,
Lm11;
then (b,c,b,c)
are_Ort_wrt (w,y) by
A1,
A4,
A19,
Lm10;
hence thesis by
A1,
A17,
Lm8,
Th7;
end;
end;
theorem ::
GEOMTRAP:24
Th24:
Gen (w,y) & (u,v,u1,v1)
are_DTr_wrt (w,y) & (u,v,u1,v2)
are_DTr_wrt (w,y) implies (u
= v or v1
= v2)
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,u1,v1)
are_DTr_wrt (w,y) & (u,v,u1,v2)
are_DTr_wrt (w,y);
assume u
<> v;
then (u1,v1,u1,v2)
are_DTr_wrt (w,y) by
A1,
A2,
Th19;
hence thesis by
A1,
Th23;
end;
theorem ::
GEOMTRAP:25
Th25:
Gen (w,y) & u
<> u1 & (u,u1,v,v1)
are_DTr_wrt (w,y) & ((u,u1,v,v2)
are_DTr_wrt (w,y) or (u,u1,v2,v)
are_DTr_wrt (w,y)) implies v1
= v2
proof
assume that
A1:
Gen (w,y) and
A2: u
<> u1 & (u,u1,v,v1)
are_DTr_wrt (w,y) and
A3: (u,u1,v,v2)
are_DTr_wrt (w,y) or (u,u1,v2,v)
are_DTr_wrt (w,y);
now
assume (u,u1,v2,v)
are_DTr_wrt (w,y);
then
A4: (v2,v,v,v1)
are_DTr_wrt (w,y) by
A1,
A2,
Th19;
then v
= v2 by
A1,
Th18;
hence thesis by
A1,
A4,
Th18;
end;
hence thesis by
A1,
A2,
A3,
Th24;
end;
theorem ::
GEOMTRAP:26
Th26:
Gen (w,y) & (u,v,u1,v1)
are_DTr_wrt (w,y) implies (u,v,(u
# u1),(v
# v1))
are_DTr_wrt (w,y)
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,u1,v1)
are_DTr_wrt (w,y);
set p = (u
# u1), q = (v
# v1), r = (u
# v), s = (u1
# v1);
A3: u
= v & u1
= v1 implies (p,q,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
Lm9;
(p
# q)
= (r
# s) by
Th6;
then (r,s)
// (r,(p
# q)) by
Th12;
then
A4: (r,s)
'||' (r,(p
# q));
(u,v,r,s)
are_Ort_wrt (w,y) & (u1,v1,r,s)
are_Ort_wrt (w,y) by
A2;
then
A5: r
<> s implies (u1,v1,r,(p
# q))
are_Ort_wrt (w,y) & (u,v,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A4,
Lm10;
A6:
now
assume r
= s;
then r
= (r
# s)
.= (p
# q) by
Th6;
hence (u1,v1,r,(p
# q))
are_Ort_wrt (w,y) & (u,v,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
Lm9;
end;
A7: (u,v)
// (u1,v1) by
A2;
then (u1,v1)
// (u,v) by
ANALOAF: 12;
then (u1,v1)
// ((u1
# u),(v1
# v)) by
Th14;
then (u1,v1)
'||' (p,q);
then
A8: u
= v & u1
<> v1 implies (p,q,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A6,
A5,
Lm10;
A9: (u,v)
// ((u
# u1),(v
# v1)) by
A7,
Th14;
then (u,v)
'||' (p,q);
then u
<> v implies (p,q,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A6,
A5,
Lm10;
hence thesis by
A9,
A6,
A5,
A8,
A3;
end;
theorem ::
GEOMTRAP:27
Th27:
Gen (w,y) & (u,v,u1,v1)
are_DTr_wrt (w,y) implies ((u,v,(u
# v1),(v
# u1))
are_DTr_wrt (w,y) or (u,v,(v
# u1),(u
# v1))
are_DTr_wrt (w,y))
proof
assume that
A1:
Gen (w,y) and
A2: (u,v,u1,v1)
are_DTr_wrt (w,y);
set p = (u
# v1), q = (v
# u1), r = (u
# v), s = (u1
# v1);
A3: (u,v,r,s)
are_Ort_wrt (w,y) by
A2;
A4: (p
# q)
= (r
# s) by
Th6;
then (r,s)
// (r,(p
# q)) by
Th12;
then
A5: (r,s)
'||' (r,(p
# q));
(u,v)
// (u1,v1) by
A2;
then
A6: (u,v)
'||' (p,q) by
Lm2;
then
A7: (u,v)
// (p,q) or (u,v)
// (q,p);
per cases ;
suppose u
= v;
hence thesis by
A1,
A2,
Th26;
end;
suppose that
A8: u
<> v;
per cases ;
suppose
A9: r
= s;
then
A10: (q,p,r,(q
# p))
are_Ort_wrt (w,y) by
A1,
A4,
Lm9;
(u,v,r,(p
# q))
are_Ort_wrt (w,y) & (p,q,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A4,
A9,
Lm9;
hence thesis by
A7,
A10;
end;
suppose r
<> s;
then
A11: (u,v,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A3,
A5,
Lm10;
then (r,(p
# q),p,q)
are_Ort_wrt (w,y) by
A1,
A6,
A8,
Lm10;
then (r,(p
# q),q,p)
are_Ort_wrt (w,y) by
Lm4;
then
A12: (q,p,r,(q
# p))
are_Ort_wrt (w,y) by
Lm5;
(p,q,r,(p
# q))
are_Ort_wrt (w,y) by
A1,
A6,
A8,
A11,
Lm10;
hence thesis by
A7,
A11,
A12;
end;
end;
end;
theorem ::
GEOMTRAP:28
Th28: for u,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V holds (u
= (u1
# t1) & u
= (u2
# t2) & u
= (v1
# w1) & u
= (v2
# w2) & (u1,u2,v1,v2)
are_DTr_wrt (w,y) implies (t1,t2,w1,w2)
are_DTr_wrt (w,y))
proof
let u,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V;
assume that
A1: u
= (u1
# t1) & u
= (u2
# t2) and
A2: u
= (v1
# w1) & u
= (v2
# w2) and
A3: (u1,u2,v1,v2)
are_DTr_wrt (w,y);
A4: (u1,u2)
// (v1,v2) by
A3;
set p = (u1
# u2), q = (v1
# v2), r = (t1
# t2), s = (w1
# w2);
A5: (q
# s)
= (u
# u) by
A2,
Th6
.= u;
(p
# r)
= (u
# u) by
A1,
Th6
.= u;
then
A6: (s
- r)
= (
- (q
- p)) by
A5,
Lm3
.= ((
- 1)
* (q
- p)) by
RLVECT_1: 16;
A7: (u2
- u1)
= (
- (t2
- t1)) & (v2
- v1)
= (
- (w2
- w1)) by
A1,
A2,
Lm3;
A8: (t1,t2)
// (w1,w2)
proof
per cases ;
suppose u1
= u2;
then t1
= t2 by
A1,
Th7;
hence thesis by
ANALOAF: 9;
end;
suppose v1
= v2;
then w1
= w2 by
A2,
Th7;
hence thesis by
ANALOAF: 9;
end;
suppose u1
<> u2 & v1
<> v2;
then
consider a, b such that
A9:
0
< a &
0
< b and
A10: (a
* (u2
- u1))
= (b
* (v2
- v1)) by
A4,
ANALOAF:def 1;
(a
* (t2
- t1))
= (a
* (
- (
- (t2
- t1)))) by
RLVECT_1: 17
.= (
- (b
* (
- (w2
- w1)))) by
A7,
A10,
RLVECT_1: 25
.= (b
* (
- (
- (w2
- w1)))) by
RLVECT_1: 25
.= (b
* (w2
- w1)) by
RLVECT_1: 17;
hence thesis by
A9,
ANALOAF:def 1;
end;
end;
(w2
- w1)
= (
- (v2
- v1)) by
A2,
Lm3;
then
A11: (w2
- w1)
= ((
- 1)
* (v2
- v1)) by
RLVECT_1: 16;
(v1,v2,p,q)
are_Ort_wrt (w,y) by
A3;
then ((v2
- v1),(q
- p))
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then ((w2
- w1),(s
- r))
are_Ort_wrt (w,y) by
A6,
A11,
ANALMETR: 6;
then
A12: (w1,w2,r,s)
are_Ort_wrt (w,y) by
ANALMETR:def 3;
(t2
- t1)
= (
- (u2
- u1)) by
A1,
Lm3;
then
A13: (t2
- t1)
= ((
- 1)
* (u2
- u1)) by
RLVECT_1: 16;
(u1,u2,p,q)
are_Ort_wrt (w,y) by
A3;
then ((u2
- u1),(q
- p))
are_Ort_wrt (w,y) by
ANALMETR:def 3;
then ((t2
- t1),(s
- r))
are_Ort_wrt (w,y) by
A6,
A13,
ANALMETR: 6;
then (t1,t2,r,s)
are_Ort_wrt (w,y) by
ANALMETR:def 3;
hence thesis by
A8,
A12;
end;
Lm12: v1
= ((b1
* w)
+ (b2
* y)) & v2
= ((c1
* w)
+ (c2
* y)) implies (v1
+ v2)
= (((b1
+ c1)
* w)
+ ((b2
+ c2)
* y)) & (v1
- v2)
= (((b1
- c1)
* w)
+ ((b2
- c2)
* y))
proof
assume
A1: v1
= ((b1
* w)
+ (b2
* y)) & v2
= ((c1
* w)
+ (c2
* y));
hence (v1
+ v2)
= ((((b1
* w)
+ (b2
* y))
+ (c1
* w))
+ (c2
* y)) by
RLVECT_1:def 3
.= ((((b1
* w)
+ (c1
* w))
+ (b2
* y))
+ (c2
* y)) by
RLVECT_1:def 3
.= ((((b1
+ c1)
* w)
+ (b2
* y))
+ (c2
* y)) by
RLVECT_1:def 6
.= (((b1
+ c1)
* w)
+ ((b2
* y)
+ (c2
* y))) by
RLVECT_1:def 3
.= (((b1
+ c1)
* w)
+ ((b2
+ c2)
* y)) by
RLVECT_1:def 6;
thus (v1
- v2)
= (((b1
* w)
+ (b2
* y))
+ ((
- (c1
* w))
+ (
- (c2
* y)))) by
A1,
RLVECT_1: 31
.= (((b1
* w)
+ (b2
* y))
+ ((c1
* (
- w))
+ (
- (c2
* y)))) by
RLVECT_1: 25
.= (((b1
* w)
+ (b2
* y))
+ ((c1
* (
- w))
+ (c2
* (
- y)))) by
RLVECT_1: 25
.= (((b1
* w)
+ (b2
* y))
+ (((
- c1)
* w)
+ (c2
* (
- y)))) by
RLVECT_1: 24
.= (((b1
* w)
+ (b2
* y))
+ (((
- c1)
* w)
+ ((
- c2)
* y))) by
RLVECT_1: 24
.= ((((b1
* w)
+ (b2
* y))
+ ((
- c1)
* w))
+ ((
- c2)
* y)) by
RLVECT_1:def 3
.= ((((b1
* w)
+ ((
- c1)
* w))
+ (b2
* y))
+ ((
- c2)
* y)) by
RLVECT_1:def 3
.= ((((b1
+ (
- c1))
* w)
+ (b2
* y))
+ ((
- c2)
* y)) by
RLVECT_1:def 6
.= (((b1
+ (
- c1))
* w)
+ ((b2
* y)
+ ((
- c2)
* y))) by
RLVECT_1:def 3
.= (((b1
- c1)
* w)
+ ((b2
+ (
- c2))
* y)) by
RLVECT_1:def 6
.= (((b1
- c1)
* w)
+ ((b2
- c2)
* y));
end;
Lm13: v
= ((b1
* w)
+ (b2
* y)) implies (a
* v)
= (((a
* b1)
* w)
+ ((a
* b2)
* y))
proof
assume v
= ((b1
* w)
+ (b2
* y));
hence (a
* v)
= ((a
* (b1
* w))
+ (a
* (b2
* y))) by
RLVECT_1:def 5
.= (((a
* b1)
* w)
+ (a
* (b2
* y))) by
RLVECT_1:def 7
.= (((a
* b1)
* w)
+ ((a
* b2)
* y)) by
RLVECT_1:def 7;
end;
Lm14:
Gen (w,y) & ((a1
* w)
+ (a2
* y))
= ((b1
* w)
+ (b2
* y)) implies a1
= b1 & a2
= b2
proof
assume that
A1:
Gen (w,y) and
A2: ((a1
* w)
+ (a2
* y))
= ((b1
* w)
+ (b2
* y));
(
0. V)
= (((a1
* w)
+ (a2
* y))
- ((b1
* w)
+ (b2
* y))) by
A2,
RLVECT_1: 15
.= (((a1
- b1)
* w)
+ ((a2
- b2)
* y)) by
Lm12;
then ((
- b1)
+ a1)
=
0 & ((
- b2)
+ a2)
=
0 by
A1,
ANALMETR:def 1;
hence thesis;
end;
definition
let V, w, y, u;
::
GEOMTRAP:def4
func
pr1 (w,y,u) ->
Real means
:
Def4: ex b st u
= ((it
* w)
+ (b
* y));
existence by
A1,
ANALMETR:def 1;
uniqueness by
A1,
Lm14;
end
definition
let V, w, y, u;
::
GEOMTRAP:def5
func
pr2 (w,y,u) ->
Real means
:
Def5: ex a st u
= ((a
* w)
+ (it
* y));
existence
proof
consider a, b such that
A2: u
= ((a
* w)
+ (b
* y)) by
A1,
ANALMETR:def 1;
take b;
thus thesis by
A2;
end;
uniqueness by
A1,
Lm14;
end
Lm15:
Gen (w,y) implies u
= (((
pr1 (w,y,u))
* w)
+ ((
pr2 (w,y,u))
* y))
proof
assume
A1:
Gen (w,y);
then
consider b such that
A2: u
= (((
pr1 (w,y,u))
* w)
+ (b
* y)) by
Def4;
thus thesis by
A1,
Def5,
A2;
end;
Lm16:
Gen (w,y) & u
= ((a
* w)
+ (b
* y)) implies a
= (
pr1 (w,y,u)) & b
= (
pr2 (w,y,u))
proof
assume that
A1:
Gen (w,y) and
A2: u
= ((a
* w)
+ (b
* y));
u
= (((
pr1 (w,y,u))
* w)
+ ((
pr2 (w,y,u))
* y)) by
A1,
Lm15;
hence thesis by
A1,
A2,
Lm14;
end;
Lm17:
Gen (w,y) implies (
pr1 (w,y,(u
+ v)))
= ((
pr1 (w,y,u))
+ (
pr1 (w,y,v))) & (
pr2 (w,y,(u
+ v)))
= ((
pr2 (w,y,u))
+ (
pr2 (w,y,v))) & (
pr1 (w,y,(u
- v)))
= ((
pr1 (w,y,u))
- (
pr1 (w,y,v))) & (
pr2 (w,y,(u
- v)))
= ((
pr2 (w,y,u))
- (
pr2 (w,y,v))) & (
pr1 (w,y,(a
* u)))
= (a
* (
pr1 (w,y,u))) & (
pr2 (w,y,(a
* u)))
= (a
* (
pr2 (w,y,u)))
proof
set p1u = (
pr1 (w,y,u)), p2u = (
pr2 (w,y,u)), p1v = (
pr1 (w,y,v)), p2v = (
pr2 (w,y,v));
assume
A1:
Gen (w,y);
then
A2: u
= ((p1u
* w)
+ (p2u
* y)) by
Lm15;
A3: v
= ((p1v
* w)
+ (p2v
* y)) by
A1,
Lm15;
then (u
+ v)
= ((((p1u
* w)
+ (p2u
* y))
+ (p1v
* w))
+ (p2v
* y)) by
A2,
RLVECT_1:def 3
.= ((((p1u
* w)
+ (p1v
* w))
+ (p2u
* y))
+ (p2v
* y)) by
RLVECT_1:def 3
.= (((p1u
* w)
+ (p1v
* w))
+ ((p2u
* y)
+ (p2v
* y))) by
RLVECT_1:def 3
.= (((p1u
+ p1v)
* w)
+ ((p2u
* y)
+ (p2v
* y))) by
RLVECT_1:def 6
.= (((p1u
+ p1v)
* w)
+ ((p2u
+ p2v)
* y)) by
RLVECT_1:def 6;
hence (
pr1 (w,y,(u
+ v)))
= (p1u
+ p1v) & (
pr2 (w,y,(u
+ v)))
= (p2u
+ p2v) by
A1,
Lm16;
(u
- v)
= (((p1u
- p1v)
* w)
+ ((p2u
- p2v)
* y)) by
A2,
A3,
Lm12;
hence (
pr1 (w,y,(u
- v)))
= (p1u
- p1v) & (
pr2 (w,y,(u
- v)))
= (p2u
- p2v) by
A1,
Lm16;
(a
* u)
= (((a
* p1u)
* w)
+ ((a
* p2u)
* y)) by
A2,
Lm13;
hence thesis by
A1,
Lm16;
end;
Lm18:
Gen (w,y) implies (2
* (
pr1 (w,y,(u
# v))))
= ((
pr1 (w,y,u))
+ (
pr1 (w,y,v))) & (2
* (
pr2 (w,y,(u
# v))))
= ((
pr2 (w,y,u))
+ (
pr2 (w,y,v)))
proof
assume
A1:
Gen (w,y);
set p = (u
# v);
(2
* (u
# v))
= ((1
+ 1)
* p)
.= ((1
* p)
+ (1
* p)) by
RLVECT_1:def 6
.= (p
+ (1
* p)) by
RLVECT_1:def 8
.= (p
+ p) by
RLVECT_1:def 8
.= (u
+ v) by
Def2;
then (2
* (
pr1 (w,y,(u
# v))))
= (
pr1 (w,y,(u
+ v))) & (2
* (
pr2 (w,y,(u
# v))))
= (
pr2 (w,y,(u
+ v))) by
A1,
Lm17;
hence thesis by
A1,
Lm17;
end;
Lm19: ((
- u)
+ (
- v))
= (
- (u
+ v))
proof
((u
+ v)
+ ((
- u)
+ (
- v)))
= (((u
+ v)
+ (
- u))
+ (
- v)) by
RLVECT_1:def 3
.= ((v
+ (u
+ (
- u)))
+ (
- v)) by
RLVECT_1:def 3
.= ((v
+ (
0. V))
+ (
- v)) by
RLVECT_1: 5
.= (v
+ (
- v)) by
RLVECT_1: 4
.= (
0. V) by
RLVECT_1: 5;
hence thesis by
RLVECT_1:def 10;
end;
Lm20: ((u2
+ (a2
* v))
- (u1
+ (a1
* v)))
= ((u2
- u1)
+ ((a2
- a1)
* v))
proof
thus ((u2
+ (a2
* v))
- (u1
+ (a1
* v)))
= (((u2
+ (a2
* v))
- u1)
- (a1
* v)) by
RLVECT_1: 27
.= (((a2
* v)
+ (u2
- u1))
- (a1
* v)) by
RLVECT_1:def 3
.= ((u2
- u1)
+ ((a2
* v)
- (a1
* v))) by
RLVECT_1:def 3
.= ((u2
- u1)
+ ((a2
- a1)
* v)) by
RLVECT_1: 35;
end;
definition
let V, w, y, u, v;
::
GEOMTRAP:def6
func
PProJ (w,y,u,v) ->
Real equals (((
pr1 (w,y,u))
* (
pr1 (w,y,v)))
+ ((
pr2 (w,y,u))
* (
pr2 (w,y,v))));
correctness ;
end
theorem ::
GEOMTRAP:29
for u, v holds (
PProJ (w,y,u,v))
= (
PProJ (w,y,v,u));
theorem ::
GEOMTRAP:30
Th30:
Gen (w,y) implies for u, v, v1 holds (
PProJ (w,y,u,(v
+ v1)))
= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1))) & (
PProJ (w,y,u,(v
- v1)))
= ((
PProJ (w,y,u,v))
- (
PProJ (w,y,u,v1))) & (
PProJ (w,y,(v
- v1),u))
= ((
PProJ (w,y,v,u))
- (
PProJ (w,y,v1,u))) & (
PProJ (w,y,(v
+ v1),u))
= ((
PProJ (w,y,v,u))
+ (
PProJ (w,y,v1,u)))
proof
assume
A1:
Gen (w,y);
let u,v,v1 be
VECTOR of V;
A2:
now
let u,v,v1 be
VECTOR of V;
A3: (
PProJ (w,y,u,(v
- v1)))
= (((
pr1 (w,y,u))
* ((
pr1 (w,y,v))
- (
pr1 (w,y,v1))))
+ ((
pr2 (w,y,u))
* (
pr2 (w,y,(v
- v1))))) by
A1,
Lm17
.= (((
pr1 (w,y,u))
* ((
pr1 (w,y,v))
- (
pr1 (w,y,v1))))
+ ((
pr2 (w,y,u))
* ((
pr2 (w,y,v))
- (
pr2 (w,y,v1))))) by
A1,
Lm17
.= ((
PProJ (w,y,u,v))
- (
PProJ (w,y,u,v1)));
(
PProJ (w,y,u,(v
+ v1)))
= (((
pr1 (w,y,u))
* ((
pr1 (w,y,v))
+ (
pr1 (w,y,v1))))
+ ((
pr2 (w,y,u))
* (
pr2 (w,y,(v
+ v1))))) by
A1,
Lm17
.= (((
pr1 (w,y,u))
* ((
pr1 (w,y,v))
+ (
pr1 (w,y,v1))))
+ ((
pr2 (w,y,u))
* ((
pr2 (w,y,v))
+ (
pr2 (w,y,v1))))) by
A1,
Lm17
.= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1)));
hence (
PProJ (w,y,u,(v
+ v1)))
= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1))) & (
PProJ (w,y,u,(v
- v1)))
= ((
PProJ (w,y,u,v))
- (
PProJ (w,y,u,v1))) by
A3;
end;
hence (
PProJ (w,y,u,(v
+ v1)))
= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1))) & (
PProJ (w,y,u,(v
- v1)))
= ((
PProJ (w,y,u,v))
- (
PProJ (w,y,u,v1)));
thus (
PProJ (w,y,(v
- v1),u))
= (
PProJ (w,y,u,(v
- v1)))
.= ((
PProJ (w,y,u,v))
- (
PProJ (w,y,u,v1))) by
A2
.= ((
PProJ (w,y,v,u))
- (
PProJ (w,y,v1,u)));
thus (
PProJ (w,y,(v
+ v1),u))
= (
PProJ (w,y,u,(v
+ v1)))
.= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1))) by
A2
.= ((
PProJ (w,y,v,u))
+ (
PProJ (w,y,v1,u)));
end;
theorem ::
GEOMTRAP:31
Th31:
Gen (w,y) implies for u,v be
VECTOR of V, a be
Real holds (
PProJ (w,y,(a
* u),v))
= (a
* (
PProJ (w,y,u,v))) & (
PProJ (w,y,u,(a
* v)))
= (a
* (
PProJ (w,y,u,v))) & (
PProJ (w,y,(a
* u),v))
= ((
PProJ (w,y,u,v))
* a) & (
PProJ (w,y,u,(a
* v)))
= ((
PProJ (w,y,u,v))
* a)
proof
assume
A1:
Gen (w,y);
A2:
now
let u,v be
VECTOR of V, a be
Real;
(
PProJ (w,y,(a
* u),v))
= (((a
* (
pr1 (w,y,u)))
* (
pr1 (w,y,v)))
+ ((
pr2 (w,y,(a
* u)))
* (
pr2 (w,y,v)))) by
A1,
Lm17
.= (((a
* (
pr1 (w,y,u)))
* (
pr1 (w,y,v)))
+ ((a
* (
pr2 (w,y,u)))
* (
pr2 (w,y,v)))) by
A1,
Lm17
.= (a
* (
PProJ (w,y,u,v)));
hence (
PProJ (w,y,(a
* u),v))
= (a
* (
PProJ (w,y,u,v)));
end;
let u,v be
VECTOR of V, a be
Real;
thus (
PProJ (w,y,(a
* u),v))
= (a
* (
PProJ (w,y,u,v))) by
A2;
thus (
PProJ (w,y,u,(a
* v)))
= (
PProJ (w,y,(a
* v),u))
.= (a
* (
PProJ (w,y,v,u))) by
A2
.= (a
* (
PProJ (w,y,u,v)));
thus (
PProJ (w,y,(a
* u),v))
= ((
PProJ (w,y,u,v))
* a) by
A2;
thus (
PProJ (w,y,u,(a
* v)))
= (
PProJ (w,y,(a
* v),u))
.= (a
* (
PProJ (w,y,v,u))) by
A2
.= ((
PProJ (w,y,u,v))
* a);
end;
theorem ::
GEOMTRAP:32
Th32:
Gen (w,y) implies for u,v be
VECTOR of V holds ((u,v)
are_Ort_wrt (w,y) iff (
PProJ (w,y,u,v))
=
0 )
proof
assume
A1:
Gen (w,y);
let u,v be
VECTOR of V;
set a1 = (
pr1 (w,y,u)), a2 = (
pr2 (w,y,u)), b1 = (
pr1 (w,y,v)), b2 = (
pr2 (w,y,v));
u
= ((a1
* w)
+ (a2
* y)) & v
= ((b1
* w)
+ (b2
* y)) by
A1,
Lm15;
hence thesis by
A1,
ANALMETR: 1,
ANALMETR:def 2;
end;
theorem ::
GEOMTRAP:33
Th33:
Gen (w,y) implies for u,v,u1,v1 be
VECTOR of V holds ((u,v,u1,v1)
are_Ort_wrt (w,y) iff (
PProJ (w,y,(v
- u),(v1
- u1)))
=
0 )
proof
assume
A1:
Gen (w,y);
let u,v,u1,v1 be
VECTOR of V;
(u,v,u1,v1)
are_Ort_wrt (w,y) iff ((v
- u),(v1
- u1))
are_Ort_wrt (w,y) by
ANALMETR:def 3;
hence thesis by
A1,
Th32;
end;
theorem ::
GEOMTRAP:34
Th34:
Gen (w,y) implies for u,v,v1 be
VECTOR of V holds (2
* (
PProJ (w,y,u,(v
# v1))))
= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1)))
proof
assume
A1:
Gen (w,y);
let u,v,v1 be
VECTOR of V;
set a1 = (
pr1 (w,y,u)), a2 = (
pr2 (w,y,u)), b1 = (
pr1 (w,y,v)), b2 = (
pr2 (w,y,v)), c1 = (
pr1 (w,y,v1)), c2 = (
pr2 (w,y,v1));
thus (2
* (
PProJ (w,y,u,(v
# v1))))
= ((a1
* (2
* (
pr1 (w,y,(v
# v1)))))
+ (2
* (a2
* (
pr2 (w,y,(v
# v1))))))
.= ((a1
* (b1
+ c1))
+ (a2
* (2
* (
pr2 (w,y,(v
# v1)))))) by
A1,
Lm18
.= ((a1
* (b1
+ c1))
+ (a2
* (b2
+ c2))) by
A1,
Lm18
.= ((
PProJ (w,y,u,v))
+ (
PProJ (w,y,u,v1)));
end;
theorem ::
GEOMTRAP:35
Th35:
Gen (w,y) implies for u,v be
VECTOR of V st u
<> v holds (
PProJ (w,y,(u
- v),(u
- v)))
<>
0
proof
assume
A1:
Gen (w,y);
let u,v be
VECTOR of V;
assume
A2: u
<> v;
assume (
PProJ (w,y,(u
- v),(u
- v)))
=
0 ;
then ((u
- v),(u
- v))
are_Ort_wrt (w,y) by
A1,
Th32;
then (u
- v)
= (
0. V) by
A1,
ANALMETR: 11;
hence contradiction by
A2,
RLVECT_1: 21;
end;
theorem ::
GEOMTRAP:36
Th36:
Gen (w,y) implies for p,q,u,v,v9 be
VECTOR of V, A be
Real st (p,q,u,v)
are_DTr_wrt (w,y) & p
<> q & A
= (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* ((
PProJ (w,y,(p
- q),(p
- q)))
" )) & v9
= (u
+ (A
* (p
- q))) holds v
= v9
proof
assume
A1:
Gen (w,y);
let p,q,u,v,v9 be
VECTOR of V, A be
Real;
assume that
A2: (p,q,u,v)
are_DTr_wrt (w,y) and
A3: p
<> q and
A4: A
= (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* ((
PProJ (w,y,(p
- q),(p
- q)))
" )) and
A5: v9
= (u
+ (A
* (p
- q)));
A6: (
PProJ (w,y,(p
- q),(p
- q)))
<>
0 by
A1,
A3,
Th35;
A7: (
PProJ (w,y,(p
- q),(A
* (p
- q))))
= ((((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* ((
PProJ (w,y,(p
- q),(p
- q)))
" ))
* (
PProJ (w,y,(p
- q),(p
- q)))) by
A1,
A4,
Th31
.= (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* (((
PProJ (w,y,(p
- q),(p
- q)))
" )
* (
PProJ (w,y,(p
- q),(p
- q)))))
.= (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* 1) by
A6,
XCMPLX_0:def 7
.= ((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))));
set s = (p
# q);
set X = (
PProJ (w,y,(p
- q),((v9
# u)
- s)));
(2
* X)
= (2
* ((
PProJ (w,y,(p
- q),(v9
# u)))
- (
PProJ (w,y,(p
- q),(p
# q))))) by
A1,
Th30
.= ((2
* (
PProJ (w,y,(p
- q),(v9
# u))))
- (2
* (
PProJ (w,y,(p
- q),(p
# q)))))
.= (((
PProJ (w,y,(p
- q),v9))
+ (
PProJ (w,y,(p
- q),u)))
- (2
* (
PProJ (w,y,(p
- q),(p
# q))))) by
A1,
Th34
.= (((
PProJ (w,y,(p
- q),v9))
+ (
PProJ (w,y,(p
- q),u)))
- ((
PProJ (w,y,(p
- q),p))
+ (
PProJ (w,y,(p
- q),q)))) by
A1,
Th34
.= (((
PProJ (w,y,(p
- q),(u
+ (A
* (p
- q)))))
+ (
PProJ (w,y,(p
- q),u)))
- (
PProJ (w,y,(p
- q),(p
+ q)))) by
A1,
A5,
Th30
.= ((((
PProJ (w,y,(p
- q),u))
+ (
PProJ (w,y,(p
- q),(A
* (p
- q)))))
+ (
PProJ (w,y,(p
- q),u)))
- (
PProJ (w,y,(p
- q),(p
+ q)))) by
A1,
Th30;
then (q,p,(p
# q),(v9
# u))
are_Ort_wrt (w,y) by
A1,
A7,
Th33;
then (s,(v9
# u),q,p)
are_Ort_wrt (w,y) by
Lm5;
then
A8: (s,(v9
# u),p,q)
are_Ort_wrt (w,y) by
Lm4;
set Y = (
PProJ (w,y,(v9
- u),((v9
# u)
- s)));
A9: (v9
- u)
= (A
* (p
- q)) by
A5,
RLSUB_2: 61;
(1
* (v9
- u))
= ((u
+ (A
* (p
- q)))
- u) by
A5,
RLVECT_1:def 8
.= (A
* (p
- q)) by
RLSUB_2: 61;
then (q,p)
// (u,v9) or (q,p)
// (v9,u) by
ANALMETR: 14;
then
A10: (p,q)
// (u,v9) or (p,q)
// (v9,u) by
ANALOAF: 12;
A11: (
PProJ (w,y,(A
* (p
- q)),(A
* (p
- q))))
= (A
* (
PProJ (w,y,(p
- q),(A
* (p
- q))))) by
A1,
Th31
.= (A
* ((((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* ((
PProJ (w,y,(p
- q),(p
- q)))
" ))
* (
PProJ (w,y,(p
- q),(p
- q))))) by
A1,
A4,
Th31
.= (A
* (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* (((
PProJ (w,y,(p
- q),(p
- q)))
" )
* (
PProJ (w,y,(p
- q),(p
- q))))))
.= (A
* (((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u))))
* 1)) by
A6,
XCMPLX_0:def 7
.= (A
* ((
PProJ (w,y,(p
- q),(p
+ q)))
- (2
* (
PProJ (w,y,(p
- q),u)))));
(2
* Y)
= (2
* ((
PProJ (w,y,(v9
- u),(v9
# u)))
- (
PProJ (w,y,(v9
- u),(p
# q))))) by
A1,
Th30
.= ((2
* (
PProJ (w,y,(v9
- u),(v9
# u))))
- (2
* (
PProJ (w,y,(v9
- u),(p
# q)))))
.= (((
PProJ (w,y,(v9
- u),v9))
+ (
PProJ (w,y,(v9
- u),u)))
- (2
* (
PProJ (w,y,(v9
- u),(p
# q))))) by
A1,
Th34
.= (((
PProJ (w,y,(v9
- u),v9))
+ (
PProJ (w,y,(v9
- u),u)))
- ((
PProJ (w,y,(v9
- u),p))
+ (
PProJ (w,y,(v9
- u),q)))) by
A1,
Th34
.= (((
PProJ (w,y,(v9
- u),(u
+ (A
* (p
- q)))))
+ (
PProJ (w,y,(v9
- u),u)))
- (
PProJ (w,y,(v9
- u),(p
+ q)))) by
A1,
A5,
Th30
.= ((((
PProJ (w,y,(v9
- u),u))
+ (
PProJ (w,y,(v9
- u),(A
* (p
- q)))))
+ (
PProJ (w,y,(v9
- u),u)))
- (
PProJ (w,y,(v9
- u),(p
+ q)))) by
A1,
Th30;
then
A12: (2
* Y)
= ((((
PProJ (w,y,(A
* (p
- q)),u))
+ ((A
* (
PProJ (w,y,(p
- q),(p
+ q))))
- (A
* (2
* (
PProJ (w,y,(p
- q),u))))))
+ (
PProJ (w,y,(A
* (p
- q)),u)))
- (
PProJ (w,y,(A
* (p
- q)),(p
+ q)))) by
A9,
A11
.= ((((
PProJ (w,y,(A
* (p
- q)),u))
+ ((
PProJ (w,y,(A
* (p
- q)),(p
+ q)))
- (2
* (A
* (
PProJ (w,y,(p
- q),u))))))
+ (
PProJ (w,y,(A
* (p
- q)),u)))
- (
PProJ (w,y,(A
* (p
- q)),(p
+ q)))) by
A1,
Th31
.= ((((
PProJ (w,y,(A
* (p
- q)),u))
+ ((
PProJ (w,y,(A
* (p
- q)),(p
+ q)))
- (2
* (
PProJ (w,y,(A
* (p
- q)),u)))))
+ (
PProJ (w,y,(A
* (p
- q)),u)))
- (
PProJ (w,y,(A
* (p
- q)),(p
+ q)))) by
A1,
Th31
.=
0 ;
then (u,v9,s,(v9
# u))
are_Ort_wrt (w,y) by
A1,
Th33;
then (s,(v9
# u),u,v9)
are_Ort_wrt (w,y) by
Lm5;
then (s,(v9
# u),v9,u)
are_Ort_wrt (w,y) by
Lm4;
then (p,q,s,(u
# v9))
are_Ort_wrt (w,y) & (u,v9,s,(u
# v9))
are_Ort_wrt (w,y) & (p,q,s,(v9
# u))
are_Ort_wrt (w,y) & (v9,u,s,(v9
# u))
are_Ort_wrt (w,y) by
A1,
A8,
A12,
Lm5,
Th33;
then (p,q,u,v9)
are_DTr_wrt (w,y) or (p,q,v9,u)
are_DTr_wrt (w,y) by
A10;
hence thesis by
A1,
A2,
A3,
Th25;
end;
Lm21:
Gen (w,y) implies for u,u9,u1,u2,t1,t2 be
VECTOR of V, A1,A2 be
Real st A1
= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )) & A2
= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )) & t1
= (u1
+ (A1
* (u
- u9))) & t2
= (u2
+ (A2
* (u
- u9))) holds (t2
- t1)
= ((u2
- u1)
+ ((A2
- A1)
* (u
- u9))) & (A2
- A1)
= (((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ))
proof
assume
A1:
Gen (w,y);
let u,u9,u1,u2,t1,t2 be
VECTOR of V, A1,A2 be
Real such that
A2: A1
= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )) & A2
= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )) & t1
= (u1
+ (A1
* (u
- u9))) & t2
= (u2
+ (A2
* (u
- u9)));
thus (t2
- t1)
= ((u2
- u1)
+ ((A2
- A1)
* (u
- u9))) & (A2
- A1)
= (((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ))
proof
set uu = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u2))))
- ((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1)))));
A3: ((2
* u1)
- (2
* u2))
= (
- ((2
* u2)
- (2
* u1))) by
RLVECT_1: 33
.= (
- (2
* (u2
- u1))) by
RLVECT_1: 34
.= (2
* (
- (u2
- u1))) by
RLVECT_1: 25
.= ((
- 2)
* (u2
- u1)) by
RLVECT_1: 24;
uu
= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (
PProJ (w,y,(u
- u9),(2
* u2))))
- ((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1))))) by
A1,
Th31
.= (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (
PProJ (w,y,(u
- u9),(2
* u2))))
- ((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (
PProJ (w,y,(u
- u9),(2
* u1))))) by
A1,
Th31
.= ((
PProJ (w,y,(u
- u9),(2
* u1)))
- (
PProJ (w,y,(u
- u9),(2
* u2))))
.= (
PProJ (w,y,(u
- u9),((2
* u1)
- (2
* u2)))) by
A1,
Th30;
then uu
= ((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1)))) by
A1,
A3,
Th31;
hence thesis by
A2,
Lm20,
XCMPLX_1: 40;
end;
end;
theorem ::
GEOMTRAP:37
Th37:
Gen (w,y) implies for u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V st u
<> u9 & (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) & (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) & (u1,u2)
// (v1,v2) holds (t1,t2)
// (w1,w2)
proof
assume
A1:
Gen (w,y);
let u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V such that
A2: u
<> u9 and
A3: (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) and
A4: (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) and
A5: (u1,u2)
// (v1,v2);
set A1 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A2 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A3 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),v1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A4 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),v2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ));
A6: (u1
+ (A1
* (u
- u9)))
= t1 & (u2
+ (A2
* (u
- u9)))
= t2 by
A1,
A2,
A3,
Th36;
A7: (v1
+ (A3
* (u
- u9)))
= w1 & (v2
+ (A4
* (u
- u9)))
= w2 by
A1,
A2,
A4,
Th36;
A8: t1
= (u1
+ (A1
* (u
- u9))) & t2
= (u2
+ (A2
* (u
- u9))) by
A1,
A2,
A3,
Th36;
per cases ;
suppose u1
= u2;
then t1
= t2 by
A1,
A2,
A3,
Th24;
hence thesis by
ANALOAF:def 1;
end;
suppose v1
= v2;
then w1
= w2 by
A1,
A2,
A4,
Th24;
hence thesis by
ANALOAF:def 1;
end;
suppose that
A9: u1
<> u2 & v1
<> v2;
set cc = ((
PProJ (w,y,(u
- u9),(u
- u9)))
" );
set vv = ((
- 2)
* (
PProJ (w,y,(u
- u9),(v2
- v1))));
set uu = ((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1))));
A10: (w2
- w1)
= ((v2
- v1)
+ ((A4
- A3)
* (u
- u9))) by
A1,
A7,
Lm21;
consider a, b such that
A11: (a
* (u2
- u1))
= (b
* (v2
- v1)) and
A12:
0
< a &
0
< b by
A5,
A9,
ANALOAF: 7;
A13: (a
* uu)
= ((
- 2)
* (a
* (
PProJ (w,y,(u
- u9),(u2
- u1)))))
.= ((
- 2)
* (
PProJ (w,y,(u
- u9),(b
* (v2
- v1))))) by
A1,
A11,
Th31
.= ((
- 2)
* (b
* (
PProJ (w,y,(u
- u9),(v2
- v1))))) by
A1,
Th31
.= (b
* vv);
A14: (a
* (A2
- A1))
= (a
* (uu
* cc)) by
A1,
A8,
Lm21
.= ((b
* vv)
* cc) by
A13,
XCMPLX_1: 4
.= (b
* (vv
* cc))
.= (b
* (A4
- A3)) by
A1,
A7,
Lm21;
(t2
- t1)
= ((u2
- u1)
+ ((A2
- A1)
* (u
- u9))) by
A1,
A6,
Lm21;
then (a
* (t2
- t1))
= ((a
* (u2
- u1))
+ (a
* ((A2
- A1)
* (u
- u9)))) by
RLVECT_1:def 5
.= ((b
* (v2
- v1))
+ ((b
* (A4
- A3))
* (u
- u9))) by
A11,
A14,
RLVECT_1:def 7
.= ((b
* (v2
- v1))
+ (b
* ((A4
- A3)
* (u
- u9)))) by
RLVECT_1:def 7
.= (b
* (w2
- w1)) by
A10,
RLVECT_1:def 5;
hence thesis by
A12,
ANALOAF:def 1;
end;
end;
theorem ::
GEOMTRAP:38
Gen (w,y) implies for u,u9,u1,u2,v1,t1,t2,w1 be
VECTOR of V st u
<> u9 & (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) & (u,u9,v1,w1)
are_DTr_wrt (w,y) & v1
= (u1
# u2) holds w1
= (t1
# t2)
proof
assume
A1:
Gen (w,y);
let u,u9,u1,u2,v1,t1,t2,w1 be
VECTOR of V such that
A2: u
<> u9 and
A3: (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) and
A4: (u,u9,v1,w1)
are_DTr_wrt (w,y) and
A5: v1
= (u1
# u2);
set G = (
PProJ (w,y,(u
- u9),(u
+ u9))), H = (
PProJ (w,y,(u
- u9),u1)), W = (
PProJ (w,y,(u
- u9),u2)), I = (
PProJ (w,y,(u
- u9),v1)), N = (
PProJ (w,y,(u
- u9),(u
- u9)));
set A1 = ((G
- (2
* H))
* (N
" )), A2 = ((G
- (2
* W))
* (N
" )), A3 = ((G
- (2
* I))
* (N
" ));
A6: (H
+ W)
= (
PProJ (w,y,(u
- u9),(u1
+ u2))) by
A1,
Th30
.= (
PProJ (w,y,(u
- u9),(v1
+ v1))) by
A5,
Def2
.= (I
+ I) by
A1,
Th30;
(v1
+ (A3
* (u
- u9)))
= w1 by
A1,
A2,
A4,
Th36;
then
A7: (w1
+ w1)
= ((A3
* (u
- u9))
+ (v1
+ (v1
+ (A3
* (u
- u9))))) by
RLVECT_1:def 3
.= ((A3
* (u
- u9))
+ ((v1
+ v1)
+ (A3
* (u
- u9)))) by
RLVECT_1:def 3
.= ((v1
+ v1)
+ ((A3
* (u
- u9))
+ (A3
* (u
- u9)))) by
RLVECT_1:def 3
.= ((v1
+ v1)
+ ((A3
+ A3)
* (u
- u9))) by
RLVECT_1:def 6;
(u1
+ (A1
* (u
- u9)))
= t1 & (u2
+ (A2
* (u
- u9)))
= t2 by
A1,
A2,
A3,
Th36;
then
A8: (t1
+ t2)
= ((A1
* (u
- u9))
+ (u1
+ (u2
+ (A2
* (u
- u9))))) by
RLVECT_1:def 3
.= ((A1
* (u
- u9))
+ ((u1
+ u2)
+ (A2
* (u
- u9)))) by
RLVECT_1:def 3
.= ((u1
+ u2)
+ ((A1
* (u
- u9))
+ (A2
* (u
- u9)))) by
RLVECT_1:def 3
.= ((u1
+ u2)
+ ((A1
+ A2)
* (u
- u9))) by
RLVECT_1:def 6
.= ((v1
+ v1)
+ ((A1
+ A2)
* (u
- u9))) by
A5,
Def2;
set vv = ((G
- (2
* I))
+ (G
- (2
* I)));
(A1
+ A2)
= (((G
- (2
* H))
+ (G
- (2
* W)))
* (N
" ))
.= (vv
* (N
" )) by
A6
.= (A3
+ A3);
hence thesis by
A8,
A7,
Def2;
end;
theorem ::
GEOMTRAP:39
Th39:
Gen (w,y) implies for u,u9,u1,u2,t1,t2 be
VECTOR of V st u
<> u9 & (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) holds (u,u9,(u1
# u2),(t1
# t2))
are_DTr_wrt (w,y)
proof
assume
A1:
Gen (w,y);
let u,u9,u1,u2,t1,t2 be
VECTOR of V such that
A2: u
<> u9 and
A3: (u,u9,u1,t1)
are_DTr_wrt (w,y) and
A4: (u,u9,u2,t2)
are_DTr_wrt (w,y);
(u1,t1,u2,t2)
are_DTr_wrt (w,y) by
A1,
A2,
A3,
A4,
Th19;
then
A5: (u1,t1,(u1
# u2),(t1
# t2))
are_DTr_wrt (w,y) by
A1,
Th26;
(u2,t2,u1,t1)
are_DTr_wrt (w,y) by
A1,
A2,
A3,
A4,
Th19;
then
A6: (u2,t2,(u2
# u1),(t2
# t1))
are_DTr_wrt (w,y) by
A1,
Th26;
per cases ;
suppose
A7: u1
<> t1;
(u1,t1,u,u9)
are_DTr_wrt (w,y) by
A3,
Th21;
hence thesis by
A1,
A5,
A7,
Th19;
end;
suppose
A8: u2
<> t2;
(u2,t2,u,u9)
are_DTr_wrt (w,y) by
A4,
Th21;
hence thesis by
A1,
A6,
A8,
Th19;
end;
suppose that
A9: u1
= t1 and
A10: u2
= t2;
((u
# u9),((u1
# u2)
# (t1
# t2)),(u1
# u2),(t1
# t2))
are_Ort_wrt (w,y) by
A1,
A9,
A10,
Lm6;
then
A11: ((u1
# u2),(t1
# t2),(u
# u9),((u1
# u2)
# (t1
# t2)))
are_Ort_wrt (w,y) by
Lm5;
A12: (u,u9,(u
# u9),(u1
# u2))
are_Ort_wrt (w,y)
proof
set uu9 = (u
# u9);
A13: (2
* (u1
# u2))
= ((1
+ 1)
* (u1
# u2))
.= ((1
* (u1
# u2))
+ (1
* (u1
# u2))) by
RLVECT_1:def 6
.= ((u1
# u2)
+ (1
* (u1
# u2))) by
RLVECT_1:def 8
.= ((u1
# u2)
+ (u1
# u2)) by
RLVECT_1:def 8
.= (u1
+ u2) by
Def2;
A14: (
- (2
* uu9))
= (
- ((1
+ 1)
* uu9))
.= (
- ((1
* uu9)
+ (1
* uu9))) by
RLVECT_1:def 6
.= (
- (uu9
+ (1
* uu9))) by
RLVECT_1:def 8
.= (
- (uu9
+ uu9)) by
RLVECT_1:def 8
.= ((
- uu9)
+ (
- uu9)) by
Lm19;
(u,u9,uu9,(u2
# t2))
are_Ort_wrt (w,y) by
A4;
then ((u9
- u),(u2
- uu9))
are_Ort_wrt (w,y) by
A10,
ANALMETR:def 3;
then
A15: ((u9
- u),((2
" )
* (u2
- uu9)))
are_Ort_wrt (w,y) by
ANALMETR: 7;
(u,u9,uu9,(u1
# t1))
are_Ort_wrt (w,y) by
A3;
then ((u9
- u),(u1
- uu9))
are_Ort_wrt (w,y) by
A9,
ANALMETR:def 3;
then
A16: ((u9
- u),((2
" )
* (u1
- uu9)))
are_Ort_wrt (w,y) by
ANALMETR: 7;
((u1
# u2)
- uu9)
= (((2
" )
* 2)
* ((u1
# u2)
- uu9)) by
RLVECT_1:def 8
.= ((2
" )
* (2
* ((u1
# u2)
- uu9))) by
RLVECT_1:def 7
.= ((2
" )
* ((u1
+ u2)
- (2
* uu9))) by
A13,
RLVECT_1: 34
.= ((2
" )
* (((u1
+ u2)
+ (
- uu9))
+ (
- uu9))) by
A14,
RLVECT_1:def 3
.= ((2
" )
* (((u1
- uu9)
+ u2)
+ (
- uu9))) by
RLVECT_1:def 3
.= ((2
" )
* ((u1
- uu9)
+ (u2
- uu9))) by
RLVECT_1:def 3
.= (((2
" )
* (u1
- uu9))
+ ((2
" )
* (u2
- uu9))) by
RLVECT_1:def 5;
then ((u9
- u),((u1
# u2)
- uu9))
are_Ort_wrt (w,y) by
A1,
A16,
A15,
ANALMETR: 10;
hence thesis by
ANALMETR:def 3;
end;
(u,u9)
// ((u1
# u2),(t1
# t2)) by
A9,
A10,
ANALOAF: 9;
hence thesis by
A9,
A10,
A11,
A12;
end;
end;
theorem ::
GEOMTRAP:40
Th40:
Gen (w,y) implies for u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V st u
<> u9 & (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) & (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) & (u1,u2,v1,v2)
are_Ort_wrt (w,y) holds (t1,t2,w1,w2)
are_Ort_wrt (w,y)
proof
assume
A1:
Gen (w,y);
let u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V such that
A2: u
<> u9 and
A3: (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) and
A4: (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) and
A5: (u1,u2,v1,v2)
are_Ort_wrt (w,y);
set A1 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A2 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),u2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A3 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),v1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )), A4 = (((
PProJ (w,y,(u
- u9),(u
+ u9)))
- (2
* (
PProJ (w,y,(u
- u9),v2))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ));
(u1
+ (A1
* (u
- u9)))
= t1 & (u2
+ (A2
* (u
- u9)))
= t2 by
A1,
A2,
A3,
Th36;
then
A6: (t2
- t1)
= ((u2
- u1)
+ ((A2
- A1)
* (u
- u9))) by
A1,
Lm21;
A7: t1
= (u1
+ (A1
* (u
- u9))) & t2
= (u2
+ (A2
* (u
- u9))) by
A1,
A2,
A3,
Th36;
A8: (v1
+ (A3
* (u
- u9)))
= w1 & (v2
+ (A4
* (u
- u9)))
= w2 by
A1,
A2,
A4,
Th36;
then (w2
- w1)
= ((v2
- v1)
+ ((A4
- A3)
* (u
- u9))) by
A1,
Lm21;
then
A9: (
PProJ (w,y,(t2
- t1),(w2
- w1)))
= ((
PProJ (w,y,(u2
- u1),((v2
- v1)
+ ((A4
- A3)
* (u
- u9)))))
+ (
PProJ (w,y,((A2
- A1)
* (u
- u9)),((v2
- v1)
+ ((A4
- A3)
* (u
- u9)))))) by
A1,
A6,
Th30
.= (((
PProJ (w,y,(u2
- u1),(v2
- v1)))
+ (
PProJ (w,y,(u2
- u1),((A4
- A3)
* (u
- u9)))))
+ (
PProJ (w,y,((A2
- A1)
* (u
- u9)),((v2
- v1)
+ ((A4
- A3)
* (u
- u9)))))) by
A1,
Th30
.= ((
0
+ (
PProJ (w,y,(u2
- u1),((A4
- A3)
* (u
- u9)))))
+ (
PProJ (w,y,((A2
- A1)
* (u
- u9)),((v2
- v1)
+ ((A4
- A3)
* (u
- u9)))))) by
A1,
A5,
Th33
.= ((
PProJ (w,y,(u2
- u1),((A4
- A3)
* (u
- u9))))
+ ((
PProJ (w,y,((A2
- A1)
* (u
- u9)),(v2
- v1)))
+ (
PProJ (w,y,((A2
- A1)
* (u
- u9)),((A4
- A3)
* (u
- u9)))))) by
A1,
Th30;
set aa = (((
PProJ (w,y,(u
- u9),(u
- u9)))
" )
* ((
PProJ (w,y,(u
- u9),(u2
- u1)))
* (
PProJ (w,y,(u
- u9),(v2
- v1)))));
A10: (
PProJ (w,y,((A2
- A1)
* (u
- u9)),(v2
- v1)))
= (
PProJ (w,y,(v2
- v1),((A2
- A1)
* (u
- u9))))
.= ((
PProJ (w,y,(v2
- v1),(u
- u9)))
* (A2
- A1)) by
A1,
Th31
.= ((
PProJ (w,y,(v2
- v1),(u
- u9)))
* (((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ))) by
A1,
A7,
Lm21
.= ((
- 2)
* aa);
A11: (
PProJ (w,y,(u
- u9),(u
- u9)))
<>
0 by
A1,
A2,
Th35;
A12: (
PProJ (w,y,(u2
- u1),((A4
- A3)
* (u
- u9))))
= ((
PProJ (w,y,(u2
- u1),(u
- u9)))
* (A4
- A3)) by
A1,
Th31
.= ((
PProJ (w,y,(u2
- u1),(u
- u9)))
* (((
- 2)
* (
PProJ (w,y,(u
- u9),(v2
- v1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ))) by
A1,
A8,
Lm21
.= ((
- 2)
* aa);
(
PProJ (w,y,((A2
- A1)
* (u
- u9)),((A4
- A3)
* (u
- u9))))
= ((A2
- A1)
* (
PProJ (w,y,(u
- u9),((A4
- A3)
* (u
- u9))))) by
A1,
Th31
.= ((A2
- A1)
* ((A4
- A3)
* (
PProJ (w,y,(u
- u9),(u
- u9))))) by
A1,
Th31
.= ((A2
- A1)
* ((((
- 2)
* (
PProJ (w,y,(u
- u9),(v2
- v1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" ))
* (
PProJ (w,y,(u
- u9),(u
- u9))))) by
A1,
A8,
Lm21
.= ((A2
- A1)
* (((
- 2)
* (
PProJ (w,y,(u
- u9),(v2
- v1))))
* (((
PProJ (w,y,(u
- u9),(u
- u9)))
" )
* (
PProJ (w,y,(u
- u9),(u
- u9))))))
.= ((A2
- A1)
* (((
- 2)
* (
PProJ (w,y,(u
- u9),(v2
- v1))))
* 1)) by
A11,
XCMPLX_0:def 7
.= (((
- 2)
* (A2
- A1))
* (
PProJ (w,y,(u
- u9),(v2
- v1))))
.= (((
- 2)
* (((
- 2)
* (
PProJ (w,y,(u
- u9),(u2
- u1))))
* ((
PProJ (w,y,(u
- u9),(u
- u9)))
" )))
* (
PProJ (w,y,(u
- u9),(v2
- v1)))) by
A1,
A7,
Lm21
.= (4
* aa);
hence thesis by
A1,
A9,
A12,
A10,
Th33;
end;
theorem ::
GEOMTRAP:41
Th41: for u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V holds (
Gen (w,y) & u
<> u9 & (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) & (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) & (u1,u2,v1,v2)
are_DTr_wrt (w,y) implies (t1,t2,w1,w2)
are_DTr_wrt (w,y))
proof
let u,u9,u1,u2,v1,v2,t1,t2,w1,w2 be
VECTOR of V;
assume that
A1:
Gen (w,y) & u
<> u9 and
A2: (u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) and
A3: (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) and
A4: (u1,u2,v1,v2)
are_DTr_wrt (w,y);
set uu = (u1
# u2), vv = (v1
# v2);
A5: (u,u9,uu,(t1
# t2))
are_DTr_wrt (w,y) & (u,u9,vv,(w1
# w2))
are_DTr_wrt (w,y) by
A1,
A2,
A3,
Th39;
(v1,v2,uu,vv)
are_Ort_wrt (w,y) by
A4;
then
A6: (w1,w2,(t1
# t2),(w1
# w2))
are_Ort_wrt (w,y) by
A1,
A3,
A5,
Th40;
(u1,u2,uu,vv)
are_Ort_wrt (w,y) by
A4;
then
A7: (t1,t2,(t1
# t2),(w1
# w2))
are_Ort_wrt (w,y) by
A1,
A2,
A5,
Th40;
(u1,u2)
// (v1,v2) by
A4;
then (t1,t2)
// (w1,w2) by
A1,
A2,
A3,
Th37;
hence thesis by
A7,
A6;
end;
definition
let V;
let w, y;
::
GEOMTRAP:def7
func
DTrapezium (V,w,y) ->
Relation of
[:the
carrier of V, the
carrier of V:] means
:
Def7: for x,z be
object holds
[x, z]
in it iff ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y);
existence
proof
defpred
P[
object,
object] means ex u, u1, v, v1 st $1
=
[u, u1] & $2
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y);
set VV =
[:the
carrier of V, the
carrier of V:];
consider P be
Relation of VV, VV such that
A1: for x,z be
object holds
[x, z]
in P iff x
in VV & z
in VV &
P[x, z] from
RELSET_1:sch 1;
take P;
let x,z be
object;
thus
[x, z]
in P implies ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y) by
A1;
assume ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y);
hence thesis by
A1;
end;
uniqueness
proof
let P,Q be
Relation of
[:the
carrier of V, the
carrier of V:] such that
A2: for x,z be
object holds
[x, z]
in P iff ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y) and
A3: for x,z be
object holds
[x, z]
in Q iff ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y);
for x,z be
object holds
[x, z]
in P iff
[x, z]
in Q
proof
let x,z be
object;
[x, z]
in P iff ex u, u1, v, v1 st x
=
[u, u1] & z
=
[v, v1] & (u,u1,v,v1)
are_DTr_wrt (w,y) by
A2;
hence thesis by
A3;
end;
hence thesis by
RELAT_1:def 2;
end;
end
theorem ::
GEOMTRAP:42
Th42:
[
[u, v],
[u1, v1]]
in (
DTrapezium (V,w,y)) iff (u,v,u1,v1)
are_DTr_wrt (w,y)
proof
now
assume
[
[u, v],
[u1, v1]]
in (
DTrapezium (V,w,y));
then
consider u9,v9,u19,v19 be
VECTOR of V such that
A1:
[u, v]
=
[u9, v9] and
A2:
[u1, v1]
=
[u19, v19] and
A3: (u9,v9,u19,v19)
are_DTr_wrt (w,y) by
Def7;
A4: u1
= u19 by
A2,
XTUPLE_0: 1;
u
= u9 & v
= v9 by
A1,
XTUPLE_0: 1;
hence (u,v,u1,v1)
are_DTr_wrt (w,y) by
A2,
A3,
A4,
XTUPLE_0: 1;
end;
hence thesis by
Def7;
end;
definition
let V;
::
GEOMTRAP:def8
func
MidPoint (V) ->
BinOp of the
carrier of V means
:
Def8: for u, v holds (it
. (u,v))
= (u
# v);
existence
proof
deffunc
F(
VECTOR of V,
VECTOR of V) = ($1
# $2);
ex B be
BinOp of the
carrier of V st for u, v holds (B
. (u,v))
=
F(u,v) from
BINOP_1:sch 4;
hence thesis;
end;
uniqueness
proof
deffunc
F(
VECTOR of V,
VECTOR of V) = ($1
# $2);
for o1,o2 be
BinOp of the
carrier of V st (for a,b be
Element of V holds (o1
. (a,b))
=
F(a,b)) & (for a,b be
Element of V holds (o2
. (a,b))
=
F(a,b)) holds o1
= o2 from
BINOP_2:sch 2;
hence thesis;
end;
end
definition
struct (
AffinStruct,
MidStr)
AfMidStruct
(# the
carrier ->
set,
the
MIDPOINT ->
BinOp of the carrier,
the
CONGR ->
Relation of
[: the carrier, the carrier:] #)
attr strict
strict;
end
registration
cluster non
empty
strict for
AfMidStruct;
existence
proof
set D = the non
empty
set, m = the
BinOp of D, c = the
Relation of
[:D, D:];
take
AfMidStruct (# D, m, c #);
thus the
carrier of
AfMidStruct (# D, m, c #) is non
empty;
thus thesis;
end;
end
definition
let V, w, y;
::
GEOMTRAP:def9
func
DTrSpace (V,w,y) ->
strict
AfMidStruct equals
AfMidStruct (# the
carrier of V, (
MidPoint V), (
DTrapezium (V,w,y)) #);
correctness ;
end
registration
let V, w, y;
cluster (
DTrSpace (V,w,y)) -> non
empty;
coherence ;
end
definition
::$Canceled
end
registration
let AMS be non
empty
AfMidStruct;
cluster the AffinStruct of AMS -> non
empty;
coherence ;
end
definition
let AMS be non
empty
AfMidStruct, a,b be
Element of AMS;
::
GEOMTRAP:def11
func a
# b ->
Element of AMS equals (the
MIDPOINT of AMS
. (a,b));
correctness ;
end
reserve a,b,c,d,a1,a2,b1,c1,d1,d2,p,q for
Element of (
DTrSpace (V,w,y));
theorem ::
GEOMTRAP:43
for x be
set holds x is
Element of the
carrier of (
DTrSpace (V,w,y)) iff x is
VECTOR of V;
theorem ::
GEOMTRAP:44
Th44: u
= a & v
= b & u1
= a1 & v1
= b1 implies ((a,b)
// (a1,b1) iff (u,v,u1,v1)
are_DTr_wrt (w,y))
proof
assume
A1: u
= a & v
= b & u1
= a1 & v1
= b1;
hereby
assume (a,b)
// (a1,b1);
then
[
[a, b],
[a1, b1]]
in (
DTrapezium (V,w,y)) by
ANALOAF:def 2;
hence (u,v,u1,v1)
are_DTr_wrt (w,y) by
A1,
Th42;
end;
assume (u,v,u1,v1)
are_DTr_wrt (w,y);
then
[
[a, b],
[a1, b1]]
in (
DTrapezium (V,w,y)) by
A1,
Th42;
hence (a,b)
// (a1,b1) by
ANALOAF:def 2;
end;
theorem ::
GEOMTRAP:45
Gen (w,y) & u
= a & v
= b implies (u
# v)
= (a
# b) by
Def8;
Lm22:
Gen (w,y) & (a,b)
// (b,c) implies a
= b & b
= c
proof
assume that
A1:
Gen (w,y) and
A2: (a,b)
// (b,c);
reconsider u = a, v = b, u1 = c as
VECTOR of V;
(u,v,v,u1)
are_DTr_wrt (w,y) by
A2,
Th44;
hence thesis by
A1,
Th18;
end;
Lm23:
Gen (w,y) & (a,b)
// (a1,b1) & (a,b)
// (c1,d1) & a
<> b implies (a1,b1)
// (c1,d1)
proof
assume that
A1:
Gen (w,y) and
A2: (a,b)
// (a1,b1) & (a,b)
// (c1,d1) and
A3: a
<> b;
reconsider u = a, v = b, u1 = a1, v1 = b1, u2 = c1, v2 = d1 as
VECTOR of V;
(u,v,u1,v1)
are_DTr_wrt (w,y) & (u,v,u2,v2)
are_DTr_wrt (w,y) by
A2,
Th44;
then (u1,v1,u2,v2)
are_DTr_wrt (w,y) by
A1,
A3,
Th19;
hence thesis by
Th44;
end;
Lm24: (a,b)
// (c,d) implies (c,d)
// (a,b) & (b,a)
// (d,c)
proof
reconsider u = a, v = b, u1 = c, v1 = d as
VECTOR of V;
assume (a,b)
// (c,d);
then (u,v,u1,v1)
are_DTr_wrt (w,y) by
Th44;
then (v,u,v1,u1)
are_DTr_wrt (w,y) & (u1,v1,u,v)
are_DTr_wrt (w,y) by
Th21,
Th22;
hence thesis by
Th44;
end;
Lm25:
Gen (w,y) implies ex d st (a,b)
// (c,d) or (a,b)
// (d,c)
proof
reconsider u = a, v = b, u1 = c as
VECTOR of V;
assume
Gen (w,y);
then
consider t be
VECTOR of V such that
A1: (u,v,u1,t)
are_DTr_wrt (w,y) or (u,v,t,u1)
are_DTr_wrt (w,y) by
Th20;
reconsider d = t as
Element of (
DTrSpace (V,w,y));
(a,b)
// (c,d) or (a,b)
// (d,c) by
A1,
Th44;
hence thesis;
end;
Lm26:
Gen (w,y) & (a,b)
// (c,d1) & (a,b)
// (c,d2) implies a
= b or d1
= d2
proof
assume that
A1:
Gen (w,y) and
A2: (a,b)
// (c,d1) & (a,b)
// (c,d2);
reconsider u = a, v = b, u1 = c, v1 = d1, v2 = d2 as
VECTOR of V;
(u,v,u1,v1)
are_DTr_wrt (w,y) & (u,v,u1,v2)
are_DTr_wrt (w,y) by
A2,
Th44;
hence thesis by
A1,
Th24;
end;
Lm27: (a
# b)
= (b
# a)
proof
reconsider u = a, v = b as
VECTOR of V;
thus (a
# b)
= (u
# v) by
Def8
.= (b
# a) by
Def8;
end;
Lm28: (a
# a)
= a
proof
reconsider u = a as
VECTOR of V;
(u
# u)
= u;
hence thesis by
Def8;
end;
Lm29: ((a
# b)
# (c
# d))
= ((a
# c)
# (b
# d))
proof
reconsider u = a, u1 = b, v = c, v1 = d as
VECTOR of V;
set ab = (a
# b), cd = (c
# d), ac = (a
# c), bd = (b
# d), uu1 = (u
# u1), vv1 = (v
# v1), uv = (u
# v), u1v1 = (u1
# v1);
A1: ac
= uv & bd
= u1v1 by
Def8;
ab
= uu1 & cd
= vv1 by
Def8;
hence (ab
# cd)
= (uu1
# vv1) by
Def8
.= (uv
# u1v1) by
Th6
.= (ac
# bd) by
A1,
Def8;
end;
Lm30: ex p st (p
# a)
= b
proof
reconsider u = a, v = b as
VECTOR of V;
consider u1 such that
A1: (u
# u1)
= v by
Th5;
reconsider p = u1 as
Element of (
DTrSpace (V,w,y));
(p
# a)
= (u
# u1) by
Def8;
hence thesis by
A1;
end;
Lm31: (a
# a1)
= (a
# a2) implies a1
= a2
proof
assume
A1: (a
# a1)
= (a
# a2);
reconsider u = a, u1 = a1, u2 = a2 as
VECTOR of V;
(u
# u1)
= (a
# a1) & (u
# u2)
= (a
# a2) by
Def8;
hence thesis by
A1,
Th7;
end;
Lm32:
Gen (w,y) & (a,b)
// (c,d) implies (a,b)
// ((a
# c),(b
# d))
proof
assume that
A1:
Gen (w,y) and
A2: (a,b)
// (c,d);
reconsider u = a, v = b, u1 = c, v1 = d as
VECTOR of V;
(u,v,u1,v1)
are_DTr_wrt (w,y) by
A2,
Th44;
then
A3: (u,v,(u
# u1),(v
# v1))
are_DTr_wrt (w,y) by
A1,
Th26;
(a
# c)
= (u
# u1) & (b
# d)
= (v
# v1) by
Def8;
hence thesis by
A3,
Th44;
end;
Lm33:
Gen (w,y) & (a,b)
// (c,d) implies ((a,b)
// ((a
# d),(b
# c)) or (a,b)
// ((b
# c),(a
# d)))
proof
assume that
A1:
Gen (w,y) and
A2: (a,b)
// (c,d);
reconsider u = a, v = b, u1 = c, v1 = d as
VECTOR of V;
(u,v,u1,v1)
are_DTr_wrt (w,y) by
A2,
Th44;
then
A3: (u,v,(u
# v1),(v
# u1))
are_DTr_wrt (w,y) or (u,v,(v
# u1),(u
# v1))
are_DTr_wrt (w,y) by
A1,
Th27;
(a
# d)
= (u
# v1) & (b
# c)
= (v
# u1) by
Def8;
hence thesis by
A3,
Th44;
end;
Lm34: (a,b)
// (c,d) & (a
# a1)
= p & (b
# b1)
= p & (c
# c1)
= p & (d
# d1)
= p implies (a1,b1)
// (c1,d1)
proof
assume that
A1: (a,b)
// (c,d) & (a
# a1)
= p and
A2: (b
# b1)
= p & (c
# c1)
= p and
A3: (d
# d1)
= p;
reconsider u1 = a, u2 = b, v1 = c, v2 = d, u = p, t1 = a1, t2 = b1, w1 = c1, w2 = d1 as
VECTOR of V;
A4: u
= (u2
# t2) & u
= (v1
# w1) by
A2,
Def8;
A5: u
= (v2
# w2) by
A3,
Def8;
(u1,u2,v1,v2)
are_DTr_wrt (w,y) & u
= (u1
# t1) by
A1,
Def8,
Th44;
then (t1,t2,w1,w2)
are_DTr_wrt (w,y) by
A4,
A5,
Th28;
hence thesis by
Th44;
end;
Lm35:
Gen (w,y) & p
<> q & (p,q)
// (a,a1) & (p,q)
// (b,b1) & (p,q)
// (c,c1) & (p,q)
// (d,d1) & (a,b)
// (c,d) implies (a1,b1)
// (c1,d1)
proof
assume that
A1:
Gen (w,y) & p
<> q and
A2: (p,q)
// (a,a1) & (p,q)
// (b,b1) and
A3: (p,q)
// (c,c1) & (p,q)
// (d,d1) and
A4: (a,b)
// (c,d);
reconsider u = p, u9 = q, u1 = a, u2 = b, v1 = c, v2 = d, t1 = a1, t2 = b1, w1 = c1, w2 = d1 as
VECTOR of V;
A5: (u,u9,v1,w1)
are_DTr_wrt (w,y) & (u,u9,v2,w2)
are_DTr_wrt (w,y) by
A3,
Th44;
A6: (u1,u2,v1,v2)
are_DTr_wrt (w,y) by
A4,
Th44;
(u,u9,u1,t1)
are_DTr_wrt (w,y) & (u,u9,u2,t2)
are_DTr_wrt (w,y) by
A2,
Th44;
then (t1,t2,w1,w2)
are_DTr_wrt (w,y) by
A1,
A5,
A6,
Th41;
hence thesis by
Th44;
end;
definition
let IT be non
empty
AfMidStruct;
::
GEOMTRAP:def12
attr IT is
MidOrdTrapSpace-like means
:
Def11: for a,b,c,d,a1,b1,c1,d1,p,q be
Element of IT holds (a
# b)
= (b
# a) & (a
# a)
= a & ((a
# b)
# (c
# d))
= ((a
# c)
# (b
# d)) & (ex p be
Element of IT st (p
# a)
= b) & ((a
# b)
= (a
# c) implies b
= c) & ((a,b)
// (c,d) implies (a,b)
// ((a
# c),(b
# d))) & ((a,b)
// (c,d) implies ((a,b)
// ((a
# d),(b
# c)) or (a,b)
// ((b
# c),(a
# d)))) & ((a,b)
// (c,d) & (a
# a1)
= p & (b
# b1)
= p & (c
# c1)
= p & (d
# d1)
= p implies (a1,b1)
// (c1,d1)) & (p
<> q & (p,q)
// (a,a1) & (p,q)
// (b,b1) & (p,q)
// (c,c1) & (p,q)
// (d,d1) & (a,b)
// (c,d) implies (a1,b1)
// (c1,d1)) & ((a,b)
// (b,c) implies a
= b & b
= c) & ((a,b)
// (a1,b1) & (a,b)
// (c1,d1) & a
<> b implies (a1,b1)
// (c1,d1)) & ((a,b)
// (c,d) implies (c,d)
// (a,b) & (b,a)
// (d,c)) & (ex d be
Element of IT st (a,b)
// (c,d) or (a,b)
// (d,c)) & ((a,b)
// (c,p) & (a,b)
// (c,q) implies a
= b or p
= q);
end
registration
cluster
strict
MidOrdTrapSpace-like for non
empty
AfMidStruct;
existence
proof
consider V such that
A1: ex w, y st
Gen (w,y) by
ANALMETR: 3;
consider w,y be
VECTOR of V such that
A2:
Gen (w,y) by
A1;
set X = (
DTrSpace (V,w,y));
X is
MidOrdTrapSpace-like by
Lm27,
Lm28,
Lm29,
Lm30,
Lm31,
A2,
Lm32,
Lm33,
Lm34,
Lm35,
Lm22,
Lm23,
Lm24,
Lm25,
Lm26;
hence thesis;
end;
end
definition
mode
MidOrdTrapSpace is
MidOrdTrapSpace-like non
empty
AfMidStruct;
end
theorem ::
GEOMTRAP:46
Gen (w,y) implies (
DTrSpace (V,w,y)) is
MidOrdTrapSpace
proof
set X = (
DTrSpace (V,w,y));
assume
A1:
Gen (w,y);
X is
MidOrdTrapSpace-like by
Lm27,
Lm28,
Lm29,
Lm30,
Lm31,
A1,
Lm32,
Lm33,
Lm34,
Lm35,
Lm22,
Lm23,
Lm24,
Lm25,
Lm26;
hence thesis;
end;
set MOS = the
MidOrdTrapSpace;
set X = the AffinStruct of MOS;
Lm36:
now
let a,b,c,d,a1,b1,c1,d1,p,q be
Element of X;
reconsider a9 = a, b9 = b, c9 = c, d9 = d, a19 = a1, b19 = b1, c19 = c1, d19 = d1, p9 = p, q9 = q as
Element of MOS;
A1:
now
let a,b,c,d be
Element of X, a9,b9,c9,d9 be
Element of the
carrier of MOS such that
A2: a
= a9 & b
= b9 & c
= c9 & d
= d9;
A3:
now
assume (a9,b9)
// (c9,d9);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
A2,
ANALOAF:def 2;
hence (a,b)
// (c,d) by
ANALOAF:def 2;
end;
now
assume (a,b)
// (c,d);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
ANALOAF:def 2;
hence (a9,b9)
// (c9,d9) by
A2,
ANALOAF:def 2;
end;
hence (a,b)
// (c,d) iff (a9,b9)
// (c9,d9) by
A3;
end;
hereby
assume (a,b)
// (b,c);
then (a9,b9)
// (b9,c9) by
A1;
hence a
= b & b
= c by
Def11;
end;
hereby
assume that
A4: (a,b)
// (a1,b1) & (a,b)
// (c1,d1) and
A5: a
<> b;
(a9,b9)
// (a19,b19) & (a9,b9)
// (c19,d19) by
A1,
A4;
then (a19,b19)
// (c19,d19) by
A5,
Def11;
hence (a1,b1)
// (c1,d1) by
A1;
end;
hereby
assume (a,b)
// (c,d);
then (a9,b9)
// (c9,d9) by
A1;
then (c9,d9)
// (a9,b9) & (b9,a9)
// (d9,c9) by
Def11;
hence (c,d)
// (a,b) & (b,a)
// (d,c) by
A1;
end;
thus ex d be
Element of X st (a,b)
// (c,d) or (a,b)
// (d,c)
proof
consider x9 be
Element of MOS such that
A6: (a9,b9)
// (c9,x9) or (a9,b9)
// (x9,c9) by
Def11;
reconsider x = x9 as
Element of X;
take x;
thus thesis by
A1,
A6;
end;
assume (a,b)
// (c,p) & (a,b)
// (c,q);
then (a9,b9)
// (c9,p9) & (a9,b9)
// (c9,q9) by
A1;
hence a
= b or p
= q by
Def11;
end;
definition
let IT be non
empty
AffinStruct;
::
GEOMTRAP:def13
attr IT is
OrdTrapSpace-like means
:
Def12: for a,b,c,d,a1,b1,c1,d1,p,q be
Element of IT holds ((a,b)
// (b,c) implies a
= b & b
= c) & ((a,b)
// (a1,b1) & (a,b)
// (c1,d1) & a
<> b implies (a1,b1)
// (c1,d1)) & ((a,b)
// (c,d) implies (c,d)
// (a,b) & (b,a)
// (d,c)) & (ex d be
Element of IT st (a,b)
// (c,d) or (a,b)
// (d,c)) & ((a,b)
// (c,p) & (a,b)
// (c,q) implies a
= b or p
= q);
end
registration
cluster
strict
OrdTrapSpace-like for non
empty
AffinStruct;
existence by
Def12,
Lm36;
end
definition
mode
OrdTrapSpace is
OrdTrapSpace-like non
empty
AffinStruct;
end
registration
let MOS be
MidOrdTrapSpace;
cluster the AffinStruct of MOS ->
OrdTrapSpace-like;
coherence
proof
set X = the AffinStruct of MOS;
the AffinStruct of MOS is
OrdTrapSpace-like
proof
let a,b,c,d,a1,b1,c1,d1,p,q be
Element of X;
reconsider a9 = a, b9 = b, c9 = c, d9 = d, a19 = a1, b19 = b1, c19 = c1, d19 = d1, p9 = p, q9 = q as
Element of MOS;
A1:
now
let a,b,c,d be
Element of X, a9,b9,c9,d9 be
Element of the
carrier of MOS such that
A2: a
= a9 & b
= b9 & c
= c9 & d
= d9;
hereby
assume (a,b)
// (c,d);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
ANALOAF:def 2;
hence (a9,b9)
// (c9,d9) by
A2,
ANALOAF:def 2;
end;
assume (a9,b9)
// (c9,d9);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
A2,
ANALOAF:def 2;
hence (a,b)
// (c,d) by
ANALOAF:def 2;
end;
hereby
assume (a,b)
// (b,c);
then (a9,b9)
// (b9,c9) by
A1;
hence a
= b & b
= c by
Def11;
end;
hereby
assume that
A3: (a,b)
// (a1,b1) & (a,b)
// (c1,d1) and
A4: a
<> b;
(a9,b9)
// (a19,b19) & (a9,b9)
// (c19,d19) by
A1,
A3;
then (a19,b19)
// (c19,d19) by
A4,
Def11;
hence (a1,b1)
// (c1,d1) by
A1;
end;
hereby
assume (a,b)
// (c,d);
then (a9,b9)
// (c9,d9) by
A1;
then (c9,d9)
// (a9,b9) & (b9,a9)
// (d9,c9) by
Def11;
hence (c,d)
// (a,b) & (b,a)
// (d,c) by
A1;
end;
thus ex d be
Element of X st (a,b)
// (c,d) or (a,b)
// (d,c)
proof
consider x9 be
Element of MOS such that
A5: (a9,b9)
// (c9,x9) or (a9,b9)
// (x9,c9) by
Def11;
reconsider x = x9 as
Element of X;
take x;
thus thesis by
A1,
A5;
end;
assume (a,b)
// (c,p) & (a,b)
// (c,q);
then (a9,b9)
// (c9,p9) & (a9,b9)
// (c9,q9) by
A1;
hence a
= b or p
= q by
Def11;
end;
hence thesis;
end;
end
reserve OTS for
OrdTrapSpace;
reserve a,b,c,d for
Element of OTS;
reserve a9,b9,c9,d9,a19,b19,d19 for
Element of (
Lambda OTS);
theorem ::
GEOMTRAP:47
Th47: for x be
set holds (x is
Element of OTS iff x is
Element of (
Lambda OTS))
proof
let x be
set;
(
Lambda OTS)
=
AffinStruct (# the
carrier of OTS, (
lambda the
CONGR of OTS) #) by
DIRAF:def 2;
hence thesis;
end;
theorem ::
GEOMTRAP:48
Th48: a
= a9 & b
= b9 & c
= c9 & d
= d9 implies ((a9,b9)
// (c9,d9) iff (a,b)
// (c,d) or (a,b)
// (d,c))
proof
A1: (
Lambda OTS)
=
AffinStruct (# the
carrier of OTS, (
lambda the
CONGR of OTS) #) by
DIRAF:def 2;
assume
A2: a
= a9 & b
= b9 & c
= c9 & d
= d9;
hereby
assume (a9,b9)
// (c9,d9);
then
[
[a9, b9],
[c9, d9]]
in (
lambda the
CONGR of OTS) by
A1,
ANALOAF:def 2;
then
[
[a, b],
[c, d]]
in the
CONGR of OTS or
[
[a, b],
[d, c]]
in the
CONGR of OTS by
A2,
DIRAF:def 1;
hence (a,b)
// (c,d) or (a,b)
// (d,c) by
ANALOAF:def 2;
end;
assume (a,b)
// (c,d) or (a,b)
// (d,c);
then
[
[a, b],
[c, d]]
in the
CONGR of OTS or
[
[a, b],
[d, c]]
in the
CONGR of OTS by
ANALOAF:def 2;
then
[
[a, b],
[c, d]]
in the
CONGR of (
Lambda OTS) by
A1,
DIRAF:def 1;
hence thesis by
A2,
ANALOAF:def 2;
end;
Lm37: for a9, b9, c9 holds ex d9 st (a9,b9)
// (c9,d9)
proof
let a9, b9, c9;
reconsider a = a9, b = b9, c = c9 as
Element of OTS by
Th47;
consider d such that
A1: (a,b)
// (c,d) or (a,b)
// (d,c) by
Def12;
reconsider d9 = d as
Element of (
Lambda OTS) by
Th47;
take d9;
thus thesis by
A1,
Th48;
end;
Lm38: (a9,b9)
// (c9,d9) implies (c9,d9)
// (a9,b9)
proof
reconsider a = a9, b = b9, c = c9, d = d9 as
Element of the
carrier of OTS by
Th47;
assume
A1: (a9,b9)
// (c9,d9);
per cases by
A1,
Th48;
suppose (a,b)
// (c,d);
then (c,d)
// (a,b) by
Def12;
hence thesis by
Th48;
end;
suppose (a,b)
// (d,c);
then (b,a)
// (c,d) by
Def12;
then (c,d)
// (b,a) by
Def12;
hence thesis by
Th48;
end;
end;
Lm39: a19
<> b19 & (a19,b19)
// (a9,b9) & (a19,b19)
// (c9,d9) implies (a9,b9)
// (c9,d9)
proof
reconsider a1 = a19, b1 = b19, a = a9, b = b9, c = c9, d = d9 as
Element of OTS by
Th47;
assume that
A1: a19
<> b19 and
A2: (a19,b19)
// (a9,b9) and
A3: (a19,b19)
// (c9,d9);
A4: (a1,b1)
// (c,d) or (a1,b1)
// (d,c) by
A3,
Th48;
(a1,b1)
// (a,b) or (a1,b1)
// (b,a) by
A2,
Th48;
then (a,b)
// (c,d) or (a,b)
// (d,c) or (b,a)
// (c,d) or (b,a)
// (d,c) by
A1,
A4,
Def12;
then (a,b)
// (c,d) or (a,b)
// (d,c) by
Def12;
hence thesis by
Th48;
end;
Lm40: (a9,b9)
// (c9,d9) & (a9,b9)
// (c9,d19) implies a9
= b9 or d9
= d19
proof
reconsider a = a9, b = b9, c = c9, d = d9, d1 = d19 as
Element of OTS by
Th47;
assume (a9,b9)
// (c9,d9) & (a9,b9)
// (c9,d19);
then
A1: (a,b)
// (c,d) & (a,b)
// (c,d1) or (a,b)
// (c,d) & (a,b)
// (d1,c) or (a,b)
// (d,c) & (a,b)
// (c,d1) or (a,b)
// (d,c) & (a,b)
// (d1,c) by
Th48;
assume
A2: a9
<> b9;
then d
= d1 or (d1,c)
// (c,d) or (d,c)
// (c,d1) or (b,a)
// (c,d) & (b,a)
// (c,d1) by
A1,
Def12;
then d
= d1 or c
= d & c
= d1 by
A2,
Def12;
hence thesis;
end;
Lm41: (a,b)
// (a,b)
proof
consider c such that
A1: (a,b)
// (a,c) or (a,b)
// (c,a) by
Def12;
per cases by
A1;
suppose (a,b)
// (c,a);
then
A2: (c,a)
// (a,b) by
Def12;
then c
= a by
Def12;
hence thesis by
A2,
Def12;
end;
suppose
A3: (a,b)
// (a,c);
per cases ;
suppose
A4: a
<> c;
(a,c)
// (a,b) by
A3,
Def12;
hence thesis by
A4,
Def12;
end;
suppose a
= c;
then (a,a)
// (a,b) by
A3,
Def12;
hence thesis by
Def12;
end;
end;
end;
Lm42: (a9,b9)
// (b9,a9)
proof
reconsider a = a9, b = b9 as
Element of OTS by
Th47;
(a,b)
// (a,b) by
Lm41;
hence thesis by
Th48;
end;
definition
let IT be non
empty
AffinStruct;
::
GEOMTRAP:def14
attr IT is
TrapSpace-like means for a9,b9,c9,d9,p9,q9 be
Element of IT holds (a9,b9)
// (b9,a9) & ((a9,b9)
// (c9,d9) & (a9,b9)
// (c9,q9) implies a9
= b9 or d9
= q9) & (p9
<> q9 & (p9,q9)
// (a9,b9) & (p9,q9)
// (c9,d9) implies (a9,b9)
// (c9,d9)) & ((a9,b9)
// (c9,d9) implies (c9,d9)
// (a9,b9)) & ex x9 be
Element of IT st (a9,b9)
// (c9,x9);
end
Lm43: for OTS be
OrdTrapSpace holds (
Lambda OTS) is
TrapSpace-like by
Lm42,
Lm40,
Lm39,
Lm38,
Lm37;
registration
cluster
strict
TrapSpace-like for non
empty
AffinStruct;
existence
proof
set TS = (
Lambda the
OrdTrapSpace);
TS is
TrapSpace-like by
Lm43;
hence thesis;
end;
end
definition
mode
TrapSpace is
TrapSpace-like non
empty
AffinStruct;
end
registration
let OTS be
OrdTrapSpace;
cluster (
Lambda OTS) ->
TrapSpace-like;
correctness by
Lm43;
end
definition
let IT be non
empty
AffinStruct;
::
GEOMTRAP:def15
attr IT is
Regular means for p,q,a,a1,b,b1,c,c1,d,d1 be
Element of IT st p
<> q & (p,q)
// (a,a1) & (p,q)
// (b,b1) & (p,q)
// (c,c1) & (p,q)
// (d,d1) & (a,b)
// (c,d) holds (a1,b1)
// (c1,d1);
end
registration
cluster
strict
Regular for non
empty
OrdTrapSpace;
existence
proof
set MOTS = the
MidOrdTrapSpace;
set X = the AffinStruct of MOTS;
A1:
now
let a,b,c,d be
Element of X, a9,b9,c9,d9 be
Element of the
carrier of MOTS such that
A2: a
= a9 & b
= b9 & c
= c9 & d
= d9;
hereby
assume (a,b)
// (c,d);
then
[
[a, b],
[c, d]]
in the
CONGR of MOTS by
ANALOAF:def 2;
hence (a9,b9)
// (c9,d9) by
A2,
ANALOAF:def 2;
end;
assume (a9,b9)
// (c9,d9);
then
[
[a, b],
[c, d]]
in the
CONGR of MOTS by
A2,
ANALOAF:def 2;
hence (a,b)
// (c,d) by
ANALOAF:def 2;
end;
X is
Regular
proof
let p,q,a,a1,b,b1,c,c1,d,d1 be
Element of X such that
A3: p
<> q and
A4: (p,q)
// (a,a1) & (p,q)
// (b,b1) and
A5: (p,q)
// (c,c1) & (p,q)
// (d,d1) and
A6: (a,b)
// (c,d);
reconsider a9 = a, b9 = b, c9 = c, d9 = d, a19 = a1, b19 = b1, c19 = c1, d19 = d1, p9 = p, q9 = q as
Element of MOTS;
A7: (p9,q9)
// (c9,c19) & (p9,q9)
// (d9,d19) by
A1,
A5;
A8: (a9,b9)
// (c9,d9) by
A1,
A6;
(p9,q9)
// (a9,a19) & (p9,q9)
// (b9,b19) by
A1,
A4;
then (a19,b19)
// (c19,d19) by
A3,
A7,
A8,
Def11;
hence (a1,b1)
// (c1,d1) by
A1;
end;
hence thesis;
end;
end
registration
let MOS be
MidOrdTrapSpace;
cluster the AffinStruct of MOS ->
Regular;
correctness
proof
set X = the AffinStruct of MOS;
now
let p,q,a,a1,b,b1,c,c1,d,d1 be
Element of X;
assume that
A1: p
<> q and
A2: (p,q)
// (a,a1) & (p,q)
// (b,b1) and
A3: (p,q)
// (c,c1) & (p,q)
// (d,d1) and
A4: (a,b)
// (c,d);
reconsider a9 = a, b9 = b, c9 = c, d9 = d, a19 = a1, b19 = b1, c19 = c1, d19 = d1, p9 = p, q9 = q as
Element of MOS;
A5:
now
let a,b,c,d be
Element of X, a9,b9,c9,d9 be
Element of the
carrier of MOS such that
A6: a
= a9 & b
= b9 & c
= c9 & d
= d9;
hereby
assume (a,b)
// (c,d);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
ANALOAF:def 2;
hence (a9,b9)
// (c9,d9) by
A6,
ANALOAF:def 2;
end;
assume (a9,b9)
// (c9,d9);
then
[
[a, b],
[c, d]]
in the
CONGR of MOS by
A6,
ANALOAF:def 2;
hence (a,b)
// (c,d) by
ANALOAF:def 2;
end;
then
A7: (p9,q9)
// (c9,c19) & (p9,q9)
// (d9,d19) by
A3;
A8: (a9,b9)
// (c9,d9) by
A4,
A5;
(p9,q9)
// (a9,a19) & (p9,q9)
// (b9,b19) by
A2,
A5;
then (a19,b19)
// (c19,d19) by
A1,
A7,
A8,
Def11;
hence (a1,b1)
// (c1,d1) by
A5;
end;
hence thesis;
end;
end