bvfunc25.miz
begin
reserve Y for non
empty
set,
a,b,c,d for
Function of Y,
BOOLEAN ;
theorem ::
BVFUNC25:1
Th1: (
'not' (a
'imp' b))
= (a
'&' (
'not' b))
proof
thus (
'not' (a
'imp' b))
= (
'not' ((
'not' a)
'or' b)) by
BVFUNC_4: 8
.= ((
'not' (
'not' a))
'&' (
'not' b)) by
BVFUNC_1: 13
.= (a
'&' (
'not' b));
end;
theorem ::
BVFUNC25:2
Th2: (a
'imp' b)
= ((
'not' b)
'imp' (
'not' a))
proof
((a
'imp' b)
'imp' ((
'not' b)
'imp' (
'not' a)))
= (
I_el Y) by
BVFUNC_5: 32;
then
A1: (a
'imp' b)
'<' ((
'not' b)
'imp' (
'not' a)) by
BVFUNC_1: 16;
(((
'not' b)
'imp' (
'not' a))
'imp' (a
'imp' b))
= (
I_el Y) by
BVFUNC_5: 31;
then ((
'not' b)
'imp' (
'not' a))
'<' (a
'imp' b) by
BVFUNC_1: 16;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC25:3
(a
'eqv' b)
= ((
'not' a)
'eqv' (
'not' b))
proof
thus ((
'not' a)
'eqv' (
'not' b))
= (((
'not' a)
'imp' (
'not' b))
'&' ((
'not' b)
'imp' (
'not' a))) by
BVFUNC_4: 7
.= ((b
'imp' a)
'&' ((
'not' b)
'imp' (
'not' a))) by
Th2
.= ((b
'imp' a)
'&' (a
'imp' b)) by
Th2
.= (a
'eqv' b) by
BVFUNC_4: 7;
end;
theorem ::
BVFUNC25:4
Th4: (a
'imp' b)
= (a
'imp' (a
'&' b))
proof
(a
'imp' (a
'&' b))
= ((
'not' a)
'or' (a
'&' b)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' a)
'&' ((
'not' a)
'or' b)) by
BVFUNC_1: 11
.= ((
I_el Y)
'&' ((
'not' a)
'or' b)) by
BVFUNC_4: 6
.= ((
'not' a)
'or' b) by
BVFUNC_1: 6;
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:5
(a
'eqv' b)
= ((a
'or' b)
'imp' (a
'&' b))
proof
thus ((a
'or' b)
'imp' (a
'&' b))
= ((a
'imp' (a
'&' b))
'&' (b
'imp' (a
'&' b))) by
BVFUNC_6: 51
.= ((a
'imp' b)
'&' (b
'imp' (a
'&' b))) by
Th4
.= ((a
'imp' b)
'&' (b
'imp' a)) by
Th4
.= (a
'eqv' b) by
BVFUNC_4: 7;
end;
theorem ::
BVFUNC25:6
(a
'eqv' (
'not' a))
= (
O_el Y)
proof
thus (a
'eqv' (
'not' a))
= ((a
'imp' (
'not' a))
'&' ((
'not' a)
'imp' a)) by
BVFUNC_4: 7
.= (((
'not' a)
'or' (
'not' a))
'&' ((
'not' a)
'imp' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'&' ((
'not' (
'not' a))
'or' a)) by
BVFUNC_4: 8
.= (
O_el Y) by
BVFUNC_4: 5;
end;
theorem ::
BVFUNC25:7
(a
'imp' (b
'imp' c))
= (b
'imp' (a
'imp' c))
proof
thus (a
'imp' (b
'imp' c))
= ((
'not' a)
'or' (b
'imp' c)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' ((
'not' b)
'or' c)) by
BVFUNC_4: 8
.= ((
'not' b)
'or' ((
'not' a)
'or' c)) by
BVFUNC_1: 8
.= ((
'not' b)
'or' (a
'imp' c)) by
BVFUNC_4: 8
.= (b
'imp' (a
'imp' c)) by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:8
(a
'imp' (b
'imp' c))
= ((a
'imp' b)
'imp' (a
'imp' c))
proof
thus ((a
'imp' b)
'imp' (a
'imp' c))
= ((a
'imp' b)
'imp' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= ((
'not' (a
'imp' b))
'or' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' ((
'not' a)
'or' c)) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' ((
'not' a)
'or' c)) by
BVFUNC_1: 13
.= (((a
'&' (
'not' b))
'or' (
'not' a))
'or' c) by
BVFUNC_1: 8
.= (((a
'or' (
'not' a))
'&' ((
'not' b)
'or' (
'not' a)))
'or' c) by
BVFUNC_1: 11
.= (((
I_el Y)
'&' ((
'not' b)
'or' (
'not' a)))
'or' c) by
BVFUNC_4: 6
.= (((
'not' a)
'or' (
'not' b))
'or' c) by
BVFUNC_1: 6
.= ((
'not' a)
'or' ((
'not' b)
'or' c)) by
BVFUNC_1: 8
.= ((
'not' a)
'or' (b
'imp' c)) by
BVFUNC_4: 8
.= (a
'imp' (b
'imp' c)) by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:9
(a
'eqv' b)
= (a
'xor' (
'not' b))
proof
(
'not' (a
'xor' b))
= (
'not' (
'not' (a
'eqv' b))) by
BVFUNC_6: 85;
hence thesis by
BVFUNC_6: 90;
end;
theorem ::
BVFUNC25:10
Th11: (a
'&' (b
'xor' c))
= ((a
'&' b)
'xor' (a
'&' c))
proof
A1: ((a
'&' b)
'xor' (a
'&' c))
= (((
'not' (a
'&' b))
'&' (a
'&' c))
'or' ((a
'&' b)
'&' (
'not' (a
'&' c)))) by
BVFUNC_4: 9
.= ((((
'not' a)
'or' (
'not' b))
'&' (a
'&' c))
'or' ((a
'&' b)
'&' (
'not' (a
'&' c)))) by
BVFUNC_1: 14
.= (((a
'&' c)
'&' ((
'not' a)
'or' (
'not' b)))
'or' ((a
'&' b)
'&' ((
'not' a)
'or' (
'not' c)))) by
BVFUNC_1: 14
.= ((((a
'&' c)
'&' (
'not' a))
'or' ((a
'&' c)
'&' (
'not' b)))
'or' ((a
'&' b)
'&' ((
'not' a)
'or' (
'not' c)))) by
BVFUNC_1: 12
.= ((((a
'&' c)
'&' (
'not' a))
'or' ((a
'&' c)
'&' (
'not' b)))
'or' (((a
'&' b)
'&' (
'not' a))
'or' ((a
'&' b)
'&' (
'not' c)))) by
BVFUNC_1: 12
.= (((a
'&' c)
'&' (
'not' a))
'or' (((a
'&' c)
'&' (
'not' b))
'or' (((a
'&' b)
'&' (
'not' c))
'or' ((a
'&' b)
'&' (
'not' a))))) by
BVFUNC_1: 8
.= (((a
'&' c)
'&' (
'not' a))
'or' ((((a
'&' c)
'&' (
'not' b))
'or' ((a
'&' b)
'&' (
'not' c)))
'or' ((a
'&' b)
'&' (
'not' a)))) by
BVFUNC_1: 8
.= ((((a
'&' c)
'&' (
'not' a))
'or' ((a
'&' b)
'&' (
'not' a)))
'or' (((a
'&' c)
'&' (
'not' b))
'or' ((a
'&' b)
'&' (
'not' c)))) by
BVFUNC_1: 8;
A2: (((c
'&' a)
'&' (
'not' a))
'or' ((b
'&' a)
'&' (
'not' a)))
= ((c
'&' (a
'&' (
'not' a)))
'or' ((b
'&' a)
'&' (
'not' a))) by
BVFUNC_1: 4
.= ((c
'&' (a
'&' (
'not' a)))
'or' (b
'&' (a
'&' (
'not' a)))) by
BVFUNC_1: 4
.= ((c
'&' (
O_el Y))
'or' (b
'&' (a
'&' (
'not' a)))) by
BVFUNC_4: 5
.= ((c
'&' (
O_el Y))
'or' (b
'&' (
O_el Y))) by
BVFUNC_4: 5
.= ((
O_el Y)
'or' (b
'&' (
O_el Y))) by
BVFUNC_1: 5
.= ((
O_el Y)
'or' (
O_el Y)) by
BVFUNC_1: 5
.= (
O_el Y);
(a
'&' (b
'xor' c))
= (a
'&' (((
'not' b)
'&' c)
'or' (b
'&' (
'not' c)))) by
BVFUNC_4: 9
.= ((a
'&' ((
'not' b)
'&' c))
'or' (a
'&' (b
'&' (
'not' c)))) by
BVFUNC_1: 12
.= (((a
'&' c)
'&' (
'not' b))
'or' (a
'&' (b
'&' (
'not' c)))) by
BVFUNC_1: 4
.= (((a
'&' c)
'&' (
'not' b))
'or' ((a
'&' b)
'&' (
'not' c))) by
BVFUNC_1: 4;
hence thesis by
A1,
A2,
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:11
Th12: (a
'eqv' b)
= (
'not' (a
'xor' b))
proof
(
'not' (a
'xor' b))
= (
'not' (
'not' (a
'eqv' b))) by
BVFUNC_6: 85;
hence thesis;
end;
theorem ::
BVFUNC25:12
Th13: (a
'xor' a)
= (
O_el Y)
proof
thus (a
'xor' a)
= (((
'not' a)
'&' a)
'or' (a
'&' (
'not' a))) by
BVFUNC_4: 9
.= (
O_el Y) by
BVFUNC_4: 5;
end;
theorem ::
BVFUNC25:13
Th14: (a
'xor' (
'not' a))
= (
I_el Y)
proof
thus (a
'xor' (
'not' a))
= (((
'not' a)
'&' (
'not' a))
'or' (a
'&' (
'not' (
'not' a)))) by
BVFUNC_4: 9
.= (
I_el Y) by
BVFUNC_4: 6;
end;
theorem ::
BVFUNC25:14
Red1: ((a
'imp' b)
'imp' (b
'imp' a))
= (b
'imp' a)
proof
((a
'imp' b)
'imp' (b
'imp' a))
= (((
'not' a)
'or' b)
'imp' (b
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' b)
'imp' ((
'not' b)
'or' a)) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' ((
'not' b)
'or' a)) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' ((
'not' b)
'or' a)) by
BVFUNC_1: 13
.= (((a
'&' (
'not' b))
'or' (
'not' b))
'or' a) by
BVFUNC_1: 8
.= (((a
'or' (
'not' b))
'&' ((
'not' b)
'or' (
'not' b)))
'or' a) by
BVFUNC_1: 11
.= (((a
'or' (
'not' b))
'or' a)
'&' ((
'not' b)
'or' a)) by
BVFUNC_1: 11
.= (((
'not' b)
'or' (a
'or' a))
'&' ((
'not' b)
'or' a)) by
BVFUNC_1: 8
.= ((
'not' b)
'or' a);
hence thesis by
BVFUNC_4: 8;
end;
registration
let Y, a, b;
reduce ((a
'imp' b)
'imp' (b
'imp' a)) to (b
'imp' a);
reducibility by
Red1;
end
theorem ::
BVFUNC25:15
Th15: ((a
'or' b)
'&' ((
'not' a)
'or' (
'not' b)))
= (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
proof
(a
'xor' b)
= (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b))) by
BVFUNC_4: 9;
hence thesis by
BVFUNC_6: 86;
end;
theorem ::
BVFUNC25:16
Th16: ((a
'&' b)
'or' ((
'not' a)
'&' (
'not' b)))
= (((
'not' a)
'or' b)
'&' (a
'or' (
'not' b)))
proof
thus ((a
'&' b)
'or' ((
'not' a)
'&' (
'not' b)))
= (((
'not' a)
'or' b)
'&' ((
'not' (
'not' a))
'or' (
'not' b))) by
Th15
.= (((
'not' a)
'or' b)
'&' (a
'or' (
'not' b)));
end;
theorem ::
BVFUNC25:17
(a
'xor' (b
'xor' c))
= ((a
'xor' b)
'xor' c)
proof
A1: ((a
'xor' b)
'xor' c)
= ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
'xor' c) by
BVFUNC_4: 9
.= (((
'not' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b))))
'&' c)
'or' ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
'&' (
'not' c))) by
BVFUNC_4: 9
.= ((((
'not' ((
'not' a)
'&' b))
'&' (
'not' (a
'&' (
'not' b))))
'&' c)
'or' ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
'&' (
'not' c))) by
BVFUNC_1: 13
.= (((((
'not' (
'not' a))
'or' (
'not' b))
'&' (
'not' (a
'&' (
'not' b))))
'&' c)
'or' ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
'&' (
'not' c))) by
BVFUNC_1: 14
.= ((((a
'or' (
'not' b))
'&' ((
'not' a)
'or' (
'not' (
'not' b))))
'&' c)
'or' ((((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))
'&' (
'not' c))) by
BVFUNC_1: 14
.= ((((a
'or' (
'not' b))
'&' ((
'not' a)
'or' b))
'&' c)
'or' ((((
'not' a)
'&' b)
'&' (
'not' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))) by
BVFUNC_1: 12
.= ((((a
'&' b)
'or' ((
'not' a)
'&' (
'not' b)))
'&' c)
'or' ((((
'not' a)
'&' b)
'&' (
'not' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))) by
Th16
.= ((((a
'&' b)
'&' c)
'or' (((
'not' a)
'&' (
'not' b))
'&' c))
'or' ((((
'not' a)
'&' b)
'&' (
'not' c))
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))) by
BVFUNC_1: 12
.= ((((a
'&' b)
'&' c)
'or' (((a
'&' (
'not' b))
'&' (
'not' c))
'or' (((
'not' a)
'&' b)
'&' (
'not' c))))
'or' (((
'not' a)
'&' (
'not' b))
'&' c)) by
BVFUNC_1: 8
.= (((((a
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
'or' (((
'not' a)
'&' b)
'&' (
'not' c)))
'or' (((
'not' a)
'&' (
'not' b))
'&' c)) by
BVFUNC_1: 8;
(a
'xor' (b
'xor' c))
= (((
'not' a)
'&' (b
'xor' c))
'or' (a
'&' (
'not' (b
'xor' c)))) by
BVFUNC_4: 9
.= (((
'not' a)
'&' (((
'not' b)
'&' c)
'or' (b
'&' (
'not' c))))
'or' (a
'&' (
'not' (b
'xor' c)))) by
BVFUNC_4: 9
.= (((
'not' a)
'&' (((
'not' b)
'&' c)
'or' (b
'&' (
'not' c))))
'or' (a
'&' (
'not' (((
'not' b)
'&' c)
'or' (b
'&' (
'not' c)))))) by
BVFUNC_4: 9
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' (a
'&' (
'not' (((
'not' b)
'&' c)
'or' (b
'&' (
'not' c)))))) by
BVFUNC_1: 12
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' (a
'&' ((
'not' ((
'not' b)
'&' c))
'&' (
'not' (b
'&' (
'not' c)))))) by
BVFUNC_1: 13
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' (a
'&' (((
'not' (
'not' b))
'or' (
'not' c))
'&' (
'not' (b
'&' (
'not' c)))))) by
BVFUNC_1: 14
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' (a
'&' ((b
'or' (
'not' c))
'&' ((
'not' b)
'or' (
'not' (
'not' c)))))) by
BVFUNC_1: 14
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' (a
'&' ((b
'&' c)
'or' ((
'not' b)
'&' (
'not' c))))) by
Th16
.= ((((
'not' a)
'&' ((
'not' b)
'&' c))
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' ((a
'&' (b
'&' c))
'or' (a
'&' ((
'not' b)
'&' (
'not' c))))) by
BVFUNC_1: 12
.= (((((
'not' a)
'&' (
'not' b))
'&' c)
'or' ((
'not' a)
'&' (b
'&' (
'not' c))))
'or' ((a
'&' (b
'&' c))
'or' (a
'&' ((
'not' b)
'&' (
'not' c))))) by
BVFUNC_1: 4
.= (((((
'not' a)
'&' (
'not' b))
'&' c)
'or' (((
'not' a)
'&' b)
'&' (
'not' c)))
'or' ((a
'&' (b
'&' c))
'or' (a
'&' ((
'not' b)
'&' (
'not' c))))) by
BVFUNC_1: 4
.= (((((
'not' a)
'&' (
'not' b))
'&' c)
'or' (((
'not' a)
'&' b)
'&' (
'not' c)))
'or' (((a
'&' b)
'&' c)
'or' (a
'&' ((
'not' b)
'&' (
'not' c))))) by
BVFUNC_1: 4
.= ((((a
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
'or' ((((
'not' a)
'&' b)
'&' (
'not' c))
'or' (((
'not' a)
'&' (
'not' b))
'&' c))) by
BVFUNC_1: 4
.= (((((a
'&' b)
'&' c)
'or' ((a
'&' (
'not' b))
'&' (
'not' c)))
'or' (((
'not' a)
'&' b)
'&' (
'not' c)))
'or' (((
'not' a)
'&' (
'not' b))
'&' c)) by
BVFUNC_1: 8;
hence thesis by
A1;
end;
theorem ::
BVFUNC25:18
(a
'eqv' (b
'eqv' c))
= ((a
'eqv' b)
'eqv' c)
proof
A1: ((a
'eqv' b)
'eqv' c)
= (((a
'eqv' b)
'imp' c)
'&' (c
'imp' (a
'eqv' b))) by
BVFUNC_4: 7
.= ((((a
'imp' b)
'&' (b
'imp' a))
'imp' c)
'&' (c
'imp' (a
'eqv' b))) by
BVFUNC_4: 7
.= ((((a
'imp' b)
'&' (b
'imp' a))
'imp' c)
'&' (c
'imp' ((a
'imp' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 7
.= (((((
'not' a)
'or' b)
'&' (b
'imp' a))
'imp' c)
'&' (c
'imp' ((a
'imp' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 8
.= (((((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a))
'imp' c)
'&' (c
'imp' ((a
'imp' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 8
.= (((
'not' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))
'or' c)
'&' (c
'imp' ((a
'imp' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 8
.= (((
'not' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))
'or' c)
'&' ((
'not' c)
'or' ((a
'imp' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 8
.= (((
'not' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' (b
'imp' a)))) by
BVFUNC_4: 8
.= (((
'not' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
BVFUNC_4: 8
.= ((((
'not' ((
'not' a)
'or' b))
'or' (
'not' ((
'not' b)
'or' a)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
BVFUNC_1: 14
.= (((((
'not' (
'not' a))
'&' (
'not' b))
'or' (
'not' ((
'not' b)
'or' a)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
BVFUNC_1: 13
.= ((((a
'&' (
'not' b))
'or' ((
'not' (
'not' b))
'&' (
'not' a)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
BVFUNC_1: 13
.= ((((a
'or' b)
'&' ((
'not' a)
'or' (
'not' b)))
'or' c)
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
Th15
.= ((((a
'or' b)
'or' c)
'&' (((
'not' a)
'or' (
'not' b))
'or' c))
'&' ((
'not' c)
'or' (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' a)))) by
BVFUNC_1: 11
.= ((((a
'or' b)
'or' c)
'&' (((
'not' a)
'or' (
'not' b))
'or' c))
'&' (((a
'or' (
'not' b))
'or' (
'not' c))
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))) by
BVFUNC_1: 11
.= ((((a
'or' b)
'or' c)
'&' (((a
'or' (
'not' b))
'or' (
'not' c))
'&' (((
'not' a)
'or' b)
'or' (
'not' c))))
'&' (((
'not' a)
'or' (
'not' b))
'or' c)) by
BVFUNC_1: 4
.= (((((a
'or' b)
'or' c)
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' (((
'not' a)
'or' (
'not' b))
'or' c)) by
BVFUNC_1: 4;
(a
'eqv' (b
'eqv' c))
= ((a
'imp' (b
'eqv' c))
'&' ((b
'eqv' c)
'imp' a)) by
BVFUNC_4: 7
.= ((a
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' ((b
'eqv' c)
'imp' a)) by
BVFUNC_4: 7
.= ((a
'imp' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' a)) by
BVFUNC_4: 7
.= (((
'not' a)
'or' ((b
'imp' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' (c
'imp' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((b
'imp' c)
'&' (c
'imp' b))
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' (c
'imp' b))
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b))
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((
'not' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'or' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((
'not' ((
'not' b)
'or' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' a)) by
BVFUNC_1: 14
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' ((((
'not' (
'not' b))
'&' (
'not' c))
'or' (
'not' ((
'not' c)
'or' b)))
'or' a)) by
BVFUNC_1: 13
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((b
'&' (
'not' c))
'or' ((
'not' (
'not' c))
'&' (
'not' b)))
'or' a)) by
BVFUNC_1: 13
.= (((
'not' a)
'or' (((
'not' b)
'or' c)
'&' ((
'not' c)
'or' b)))
'&' (((b
'or' c)
'&' ((
'not' b)
'or' (
'not' c)))
'or' a)) by
Th15
.= ((((
'not' a)
'or' ((
'not' b)
'or' c))
'&' ((
'not' a)
'or' ((
'not' c)
'or' b)))
'&' (((b
'or' c)
'&' ((
'not' b)
'or' (
'not' c)))
'or' a)) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' (
'not' b))
'or' c)
'&' ((
'not' a)
'or' (b
'or' (
'not' c))))
'&' (((b
'or' c)
'&' ((
'not' b)
'or' (
'not' c)))
'or' a)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
'not' b))
'or' c)
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' (((b
'or' c)
'&' ((
'not' b)
'or' (
'not' c)))
'or' a)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
'not' b))
'or' c)
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' ((a
'or' (b
'or' c))
'&' (a
'or' ((
'not' b)
'or' (
'not' c))))) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' (
'not' b))
'or' c)
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' (((a
'or' b)
'or' c)
'&' (a
'or' ((
'not' b)
'or' (
'not' c))))) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
'not' b))
'or' c)
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' (((a
'or' b)
'or' c)
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))) by
BVFUNC_1: 8
.= (((((a
'or' b)
'or' c)
'&' ((a
'or' (
'not' b))
'or' (
'not' c)))
'&' (((
'not' a)
'or' b)
'or' (
'not' c)))
'&' (((
'not' a)
'or' (
'not' b))
'or' c)) by
BVFUNC_1: 4;
hence thesis by
A1;
end;
theorem ::
BVFUNC25:19
((
'not' (
'not' a))
'imp' a)
= (
I_el Y) by
BVFUNC_5: 7;
theorem ::
BVFUNC25:20
(((a
'imp' b)
'&' a)
'imp' b)
= (
I_el Y)
proof
(((a
'imp' b)
'&' a)
'imp' b)
= ((a
'&' b)
'imp' b) by
BVFUNC_6: 56;
hence thesis by
BVFUNC_6: 40;
end;
theorem ::
BVFUNC25:21
Th21: (a
'imp' ((
'not' a)
'imp' a))
= (
I_el Y)
proof
(a
'imp' ((
'not' a)
'imp' a))
= ((
'not' a)
'or' ((
'not' a)
'imp' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' ((
'not' (
'not' a))
'or' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' a);
hence thesis by
BVFUNC_4: 6;
end;
theorem ::
BVFUNC25:22
(((
'not' a)
'imp' a)
'eqv' a)
= (
I_el Y)
proof
(((
'not' a)
'imp' a)
'eqv' a)
= ((((
'not' a)
'imp' a)
'imp' a)
'&' (a
'imp' ((
'not' a)
'imp' a))) by
BVFUNC_4: 7
.= ((
I_el Y)
'&' (a
'imp' ((
'not' a)
'imp' a))) by
BVFUNC_5: 11
.= (a
'imp' ((
'not' a)
'imp' a)) by
BVFUNC_1: 6;
hence thesis by
Th21;
end;
theorem ::
BVFUNC25:23
(a
'or' (a
'imp' b))
= (
I_el Y)
proof
(a
'or' (a
'imp' b))
= (a
'or' ((
'not' a)
'or' b)) by
BVFUNC_4: 8
.= ((a
'or' (
'not' a))
'or' b) by
BVFUNC_1: 8
.= ((
I_el Y)
'or' b) by
BVFUNC_4: 6;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:24
((a
'imp' b)
'or' (c
'imp' a))
= (
I_el Y)
proof
((a
'imp' b)
'or' (c
'imp' a))
= (((
'not' a)
'or' b)
'or' (c
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' b)
'or' ((
'not' c)
'or' a)) by
BVFUNC_4: 8
.= ((
'not' c)
'or' (a
'or' ((
'not' a)
'or' b))) by
BVFUNC_1: 8
.= ((
'not' c)
'or' ((a
'or' (
'not' a))
'or' b)) by
BVFUNC_1: 8
.= ((
'not' c)
'or' ((
I_el Y)
'or' b)) by
BVFUNC_4: 6
.= ((
'not' c)
'or' (
I_el Y)) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:25
((a
'imp' b)
'or' ((
'not' a)
'imp' b))
= (
I_el Y)
proof
((a
'imp' b)
'or' ((
'not' a)
'imp' b))
= (((
'not' a)
'or' b)
'or' ((
'not' a)
'imp' b)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' b)
'or' ((
'not' (
'not' a))
'or' b)) by
BVFUNC_4: 8
.= (b
'or' ((
'not' a)
'or' (a
'or' b))) by
BVFUNC_1: 8
.= (b
'or' (((
'not' a)
'or' a)
'or' b)) by
BVFUNC_1: 8
.= (b
'or' ((
I_el Y)
'or' b)) by
BVFUNC_4: 6
.= (b
'or' (
I_el Y)) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:26
((a
'imp' b)
'or' (a
'imp' (
'not' b)))
= (
I_el Y)
proof
((a
'imp' b)
'or' (a
'imp' (
'not' b)))
= (((
'not' a)
'or' b)
'or' (a
'imp' (
'not' b))) by
BVFUNC_4: 8
.= (((
'not' a)
'or' b)
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 8
.= ((
'not' a)
'or' (b
'or' ((
'not' b)
'or' (
'not' a)))) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((b
'or' (
'not' b))
'or' (
'not' a))) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((
I_el Y)
'or' (
'not' a))) by
BVFUNC_4: 6
.= ((
'not' a)
'or' (
I_el Y)) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:27
((
'not' a)
'imp' ((
'not' b)
'eqv' (b
'imp' a)))
= (
I_el Y)
proof
((
'not' a)
'imp' ((
'not' b)
'eqv' (b
'imp' a)))
= ((
'not' (
'not' a))
'or' ((
'not' b)
'eqv' (b
'imp' a))) by
BVFUNC_4: 8
.= (a
'or' (((
'not' b)
'imp' (b
'imp' a))
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_4: 7
.= (a
'or' (((
'not' (
'not' b))
'or' (b
'imp' a))
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_4: 8
.= (a
'or' ((b
'or' ((
'not' b)
'or' a))
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_4: 8
.= (a
'or' (((b
'or' (
'not' b))
'or' a)
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_1: 8
.= (a
'or' (((
I_el Y)
'or' a)
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_4: 6
.= (a
'or' ((
I_el Y)
'&' ((b
'imp' a)
'imp' (
'not' b)))) by
BVFUNC_1: 10
.= (a
'or' ((b
'imp' a)
'imp' (
'not' b))) by
BVFUNC_1: 6
.= (a
'or' (((
'not' b)
'or' a)
'imp' (
'not' b))) by
BVFUNC_4: 8
.= (a
'or' ((
'not' ((
'not' b)
'or' a))
'or' (
'not' b))) by
BVFUNC_4: 8
.= (a
'or' (((
'not' (
'not' b))
'&' (
'not' a))
'or' (
'not' b))) by
BVFUNC_1: 13
.= (a
'or' ((b
'or' (
'not' b))
'&' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 11
.= (a
'or' ((
I_el Y)
'&' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_4: 6
.= (a
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 6
.= ((a
'or' (
'not' a))
'or' (
'not' b)) by
BVFUNC_1: 8
.= ((
I_el Y)
'or' (
'not' b)) by
BVFUNC_4: 6;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:28
((a
'imp' b)
'imp' (((a
'imp' c)
'imp' b)
'imp' b))
= (
I_el Y)
proof
((a
'imp' b)
'imp' (((a
'imp' c)
'imp' b)
'imp' b))
= ((
'not' (a
'imp' b))
'or' (((a
'imp' c)
'imp' b)
'imp' b)) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' (((a
'imp' c)
'imp' b)
'imp' b)) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' (((a
'imp' c)
'imp' b)
'imp' b)) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'or' ((
'not' ((a
'imp' c)
'imp' b))
'or' b)) by
BVFUNC_4: 8
.= ((a
'&' (
'not' b))
'or' ((
'not' (((
'not' a)
'or' c)
'imp' b))
'or' b)) by
BVFUNC_4: 8
.= ((a
'&' (
'not' b))
'or' ((
'not' ((
'not' ((
'not' a)
'or' c))
'or' b))
'or' b)) by
BVFUNC_4: 8
.= ((a
'&' (
'not' b))
'or' ((
'not' (((
'not' (
'not' a))
'&' (
'not' c))
'or' b))
'or' b)) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'or' (((
'not' (a
'&' (
'not' c)))
'&' (
'not' b))
'or' b)) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'or' ((((
'not' a)
'or' (
'not' (
'not' c)))
'&' (
'not' b))
'or' b)) by
BVFUNC_1: 14
.= ((a
'&' (
'not' b))
'or' ((((
'not' a)
'or' c)
'or' b)
'&' ((
'not' b)
'or' b))) by
BVFUNC_1: 11
.= ((a
'&' (
'not' b))
'or' ((((
'not' a)
'or' c)
'or' b)
'&' (
I_el Y))) by
BVFUNC_4: 6
.= ((a
'&' (
'not' b))
'or' (((
'not' a)
'or' c)
'or' b)) by
BVFUNC_1: 6
.= (((a
'&' (
'not' b))
'or' b)
'or' ((
'not' a)
'or' c)) by
BVFUNC_1: 8
.= (((a
'or' b)
'&' ((
'not' b)
'or' b))
'or' ((
'not' a)
'or' c)) by
BVFUNC_1: 11
.= (((a
'or' b)
'&' (
I_el Y))
'or' ((
'not' a)
'or' c)) by
BVFUNC_4: 6
.= ((a
'or' b)
'or' ((
'not' a)
'or' c)) by
BVFUNC_1: 6
.= (b
'or' (a
'or' ((
'not' a)
'or' c))) by
BVFUNC_1: 8
.= (b
'or' ((a
'or' (
'not' a))
'or' c)) by
BVFUNC_1: 8
.= (b
'or' ((
I_el Y)
'or' c)) by
BVFUNC_4: 6
.= (b
'or' (
I_el Y)) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:29
(a
'imp' b)
= (a
'eqv' (a
'&' b))
proof
(a
'eqv' (a
'&' b))
= ((a
'imp' (a
'&' b))
'&' ((a
'&' b)
'imp' a)) by
BVFUNC_4: 7
.= (((
'not' a)
'or' (a
'&' b))
'&' ((a
'&' b)
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' a)
'or' (a
'&' b))
'&' ((
'not' (a
'&' b))
'or' a)) by
BVFUNC_4: 8
.= ((((
'not' a)
'or' a)
'&' ((
'not' a)
'or' b))
'&' ((
'not' (a
'&' b))
'or' a)) by
BVFUNC_1: 11
.= (((
I_el Y)
'&' ((
'not' a)
'or' b))
'&' ((
'not' (a
'&' b))
'or' a)) by
BVFUNC_4: 6
.= (((
'not' a)
'or' b)
'&' ((
'not' (a
'&' b))
'or' a)) by
BVFUNC_1: 6
.= (((
'not' a)
'or' b)
'&' (((
'not' a)
'or' (
'not' b))
'or' a)) by
BVFUNC_1: 14
.= (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' ((
'not' a)
'or' a))) by
BVFUNC_1: 8
.= (((
'not' a)
'or' b)
'&' ((
'not' b)
'or' (
I_el Y))) by
BVFUNC_4: 6
.= (((
'not' a)
'or' b)
'&' (
I_el Y)) by
BVFUNC_1: 10
.= ((
'not' a)
'or' b) by
BVFUNC_1: 6;
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:30
(a
'imp' b)
= (
I_el Y) & (b
'imp' a)
= (
I_el Y) iff a
= b
proof
(a
'eqv' b)
= (
I_el Y) iff (a
'imp' b)
= (
I_el Y) & (b
'imp' a)
= (
I_el Y) by
BVFUNC_4: 10;
hence thesis by
BVFUNC_1: 17;
end;
theorem ::
BVFUNC25:31
a
= ((
'not' a)
'imp' a)
proof
(((
'not' a)
'imp' a)
'imp' a)
= (
I_el Y) by
BVFUNC_5: 11;
then
A1: ((
'not' a)
'imp' a)
'<' a by
BVFUNC_1: 16;
(a
'imp' ((
'not' a)
'imp' a))
= (
I_el Y) by
Th21;
then a
'<' ((
'not' a)
'imp' a) by
BVFUNC_1: 16;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC25:32
Th32: (a
'imp' ((a
'imp' b)
'imp' a))
= (
I_el Y)
proof
thus (a
'imp' ((a
'imp' b)
'imp' a))
= ((
'not' a)
'or' ((a
'imp' b)
'imp' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' ((
'not' (a
'imp' b))
'or' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' ((
'not' ((
'not' a)
'or' b))
'or' a)) by
BVFUNC_4: 8
.= ((
'not' a)
'or' (((
'not' (
'not' a))
'&' (
'not' b))
'or' a)) by
BVFUNC_1: 13
.= (((
'not' a)
'or' a)
'or' (a
'&' (
'not' b))) by
BVFUNC_1: 8
.= ((
I_el Y)
'or' (a
'&' (
'not' b))) by
BVFUNC_4: 6
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:33
a
= ((a
'imp' b)
'imp' a)
proof
(((a
'imp' b)
'imp' a)
'imp' a)
= (
I_el Y) by
BVFUNC_6: 100;
then
A1: ((a
'imp' b)
'imp' a)
'<' a by
BVFUNC_1: 16;
(a
'imp' ((a
'imp' b)
'imp' a))
= (
I_el Y) by
Th32;
then a
'<' ((a
'imp' b)
'imp' a) by
BVFUNC_1: 16;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC25:34
a
= ((b
'imp' a)
'&' ((
'not' b)
'imp' a))
proof
a
= ((a
'or' b)
'&' (a
'or' (
'not' b))) by
BVFUNC_6: 80
.= ((a
'or' (
'not' (
'not' b)))
'&' (b
'imp' a)) by
BVFUNC_4: 8
.= (((
'not' b)
'imp' a)
'&' (b
'imp' a)) by
BVFUNC_4: 8;
hence thesis;
end;
theorem ::
BVFUNC25:35
(a
'&' b)
= (
'not' (a
'imp' (
'not' b)))
proof
((
'not' (a
'imp' (
'not' b)))
'imp' (a
'&' b))
= (
I_el Y) by
BVFUNC_6: 35;
then
A1: (
'not' (a
'imp' (
'not' b)))
'<' (a
'&' b) by
BVFUNC_1: 16;
((a
'&' b)
'imp' (
'not' (a
'imp' (
'not' b))))
= (
I_el Y) by
BVFUNC_6: 34;
then (a
'&' b)
'<' (
'not' (a
'imp' (
'not' b))) by
BVFUNC_1: 16;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC25:36
(a
'or' b)
= ((
'not' a)
'imp' b)
proof
thus ((
'not' a)
'imp' b)
= ((
'not' (
'not' a))
'or' b) by
BVFUNC_4: 8
.= (a
'or' b);
end;
theorem ::
BVFUNC25:37
(a
'or' b)
= ((a
'imp' b)
'imp' b)
proof
thus ((a
'imp' b)
'imp' b)
= ((
'not' (a
'imp' b))
'or' b) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' b))
'or' b) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' b))
'or' b) by
BVFUNC_1: 13
.= ((a
'or' b)
'&' ((
'not' b)
'or' b)) by
BVFUNC_1: 11
.= ((a
'or' b)
'&' (
I_el Y)) by
BVFUNC_4: 6
.= (a
'or' b) by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:38
((a
'imp' b)
'imp' (a
'imp' a))
= (
I_el Y)
proof
thus ((a
'imp' b)
'imp' (a
'imp' a))
= ((a
'imp' b)
'imp' (
I_el Y)) by
BVFUNC_5: 7
.= (
I_el Y) by
BVFUNC_6: 62;
end;
theorem ::
BVFUNC25:39
((a
'imp' (b
'imp' c))
'imp' ((d
'imp' b)
'imp' (a
'imp' (d
'imp' c))))
= (
I_el Y)
proof
thus ((a
'imp' (b
'imp' c))
'imp' ((d
'imp' b)
'imp' (a
'imp' (d
'imp' c))))
= ((
'not' (a
'imp' (b
'imp' c)))
'or' ((d
'imp' b)
'imp' (a
'imp' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' (b
'imp' c)))
'or' ((d
'imp' b)
'imp' (a
'imp' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((d
'imp' b)
'imp' (a
'imp' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' (d
'imp' b))
'or' (a
'imp' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' ((
'not' d)
'or' b))
'or' (a
'imp' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' ((
'not' d)
'or' b))
'or' ((
'not' a)
'or' (d
'imp' c)))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' a)
'or' ((
'not' b)
'or' c)))
'or' ((
'not' ((
'not' d)
'or' b))
'or' ((
'not' a)
'or' ((
'not' d)
'or' c)))) by
BVFUNC_4: 8
.= (((
'not' (
'not' a))
'&' (
'not' ((
'not' b)
'or' c)))
'or' ((
'not' ((
'not' d)
'or' b))
'or' ((
'not' a)
'or' ((
'not' d)
'or' c)))) by
BVFUNC_1: 13
.= (((
'not' (
'not' a))
'&' ((
'not' (
'not' b))
'&' (
'not' c)))
'or' ((
'not' ((
'not' d)
'or' b))
'or' ((
'not' a)
'or' ((
'not' d)
'or' c)))) by
BVFUNC_1: 13
.= ((a
'&' ((
'not' (
'not' b))
'&' (
'not' c)))
'or' (((
'not' (
'not' d))
'&' (
'not' b))
'or' ((
'not' a)
'or' ((
'not' d)
'or' c)))) by
BVFUNC_1: 13
.= ((a
'&' (b
'&' (
'not' c)))
'or' (((d
'&' (
'not' b))
'or' (
'not' a))
'or' ((
'not' d)
'or' c))) by
BVFUNC_1: 8
.= (((a
'&' (b
'&' (
'not' c)))
'or' ((
'not' a)
'or' (d
'&' (
'not' b))))
'or' ((
'not' d)
'or' c)) by
BVFUNC_1: 8
.= ((((a
'&' (b
'&' (
'not' c)))
'or' (
'not' a))
'or' (d
'&' (
'not' b)))
'or' ((
'not' d)
'or' c)) by
BVFUNC_1: 8
.= ((((a
'or' (
'not' a))
'&' ((b
'&' (
'not' c))
'or' (
'not' a)))
'or' (d
'&' (
'not' b)))
'or' ((
'not' d)
'or' c)) by
BVFUNC_1: 11
.= ((((
I_el Y)
'&' ((b
'&' (
'not' c))
'or' (
'not' a)))
'or' (d
'&' (
'not' b)))
'or' ((
'not' d)
'or' c)) by
BVFUNC_4: 6
.= ((((b
'&' (
'not' c))
'or' (
'not' a))
'or' (d
'&' (
'not' b)))
'or' ((
'not' d)
'or' c)) by
BVFUNC_1: 6
.= (((b
'&' (
'not' c))
'or' (
'not' a))
'or' ((d
'&' (
'not' b))
'or' ((
'not' d)
'or' c))) by
BVFUNC_1: 8
.= (((b
'&' (
'not' c))
'or' (
'not' a))
'or' ((((
'not' b)
'&' d)
'or' (
'not' d))
'or' c)) by
BVFUNC_1: 8
.= (((b
'&' (
'not' c))
'or' (
'not' a))
'or' ((((
'not' b)
'or' (
'not' d))
'&' (d
'or' (
'not' d)))
'or' c)) by
BVFUNC_1: 11
.= (((b
'&' (
'not' c))
'or' (
'not' a))
'or' ((((
'not' b)
'or' (
'not' d))
'&' (
I_el Y))
'or' c)) by
BVFUNC_4: 6
.= (((b
'&' (
'not' c))
'or' (
'not' a))
'or' (((
'not' b)
'or' (
'not' d))
'or' c)) by
BVFUNC_1: 6
.= ((
'not' a)
'or' (((
'not' c)
'&' b)
'or' (((
'not' b)
'or' (
'not' d))
'or' c))) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((((
'not' c)
'&' b)
'or' ((
'not' b)
'or' (
'not' d)))
'or' c)) by
BVFUNC_1: 8
.= ((
'not' a)
'or' (((((
'not' c)
'&' b)
'or' (
'not' b))
'or' (
'not' d))
'or' c)) by
BVFUNC_1: 8
.= ((
'not' a)
'or' (((((
'not' c)
'or' (
'not' b))
'&' (b
'or' (
'not' b)))
'or' (
'not' d))
'or' c)) by
BVFUNC_1: 11
.= ((
'not' a)
'or' (((((
'not' c)
'or' (
'not' b))
'&' (
I_el Y))
'or' (
'not' d))
'or' c)) by
BVFUNC_4: 6
.= ((
'not' a)
'or' ((((
'not' b)
'or' (
'not' c))
'or' (
'not' d))
'or' c)) by
BVFUNC_1: 6
.= ((
'not' a)
'or' (((
'not' b)
'or' ((
'not' c)
'or' (
'not' d)))
'or' c)) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((
'not' b)
'or' (((
'not' d)
'or' (
'not' c))
'or' c))) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((
'not' b)
'or' ((
'not' d)
'or' ((
'not' c)
'or' c)))) by
BVFUNC_1: 8
.= ((
'not' a)
'or' ((
'not' b)
'or' ((
'not' d)
'or' (
I_el Y)))) by
BVFUNC_4: 6
.= ((
'not' a)
'or' ((
'not' b)
'or' (
I_el Y))) by
BVFUNC_1: 10
.= ((
'not' a)
'or' (
I_el Y)) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:40
((((a
'imp' b)
'&' a)
'&' c)
'imp' b)
= (
I_el Y)
proof
thus ((((a
'imp' b)
'&' a)
'&' c)
'imp' b)
= (((((
'not' a)
'or' b)
'&' a)
'&' c)
'imp' b) by
BVFUNC_4: 8
.= (((((
'not' a)
'&' a)
'or' (b
'&' a))
'&' c)
'imp' b) by
BVFUNC_1: 12
.= ((((
O_el Y)
'or' (b
'&' a))
'&' c)
'imp' b) by
BVFUNC_4: 5
.= (((b
'&' a)
'&' c)
'imp' b) by
BVFUNC_1: 9
.= ((
'not' ((b
'&' a)
'&' c))
'or' b) by
BVFUNC_4: 8
.= (((
'not' (b
'&' a))
'or' (
'not' c))
'or' b) by
BVFUNC_1: 14
.= ((((
'not' b)
'or' (
'not' a))
'or' (
'not' c))
'or' b) by
BVFUNC_1: 14
.= ((b
'or' ((
'not' b)
'or' (
'not' a)))
'or' (
'not' c)) by
BVFUNC_1: 8
.= (((b
'or' (
'not' b))
'or' (
'not' a))
'or' (
'not' c)) by
BVFUNC_1: 8
.= (((
I_el Y)
'or' (
'not' a))
'or' (
'not' c)) by
BVFUNC_4: 6
.= ((
I_el Y)
'or' (
'not' c)) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:41
((b
'imp' c)
'imp' ((a
'&' b)
'imp' c))
= (
I_el Y)
proof
thus ((b
'imp' c)
'imp' ((a
'&' b)
'imp' c))
= ((
'not' (b
'imp' c))
'or' ((a
'&' b)
'imp' c)) by
BVFUNC_4: 8
.= ((
'not' ((
'not' b)
'or' c))
'or' ((a
'&' b)
'imp' c)) by
BVFUNC_4: 8
.= ((
'not' ((
'not' b)
'or' c))
'or' ((
'not' (a
'&' b))
'or' c)) by
BVFUNC_4: 8
.= (((
'not' (
'not' b))
'&' (
'not' c))
'or' ((
'not' (a
'&' b))
'or' c)) by
BVFUNC_1: 13
.= ((b
'&' (
'not' c))
'or' (((
'not' a)
'or' (
'not' b))
'or' c)) by
BVFUNC_1: 14
.= (((b
'&' (
'not' c))
'or' c)
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 8
.= (((b
'or' c)
'&' ((
'not' c)
'or' c))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 11
.= (((b
'or' c)
'&' (
I_el Y))
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_4: 6
.= (((
'not' a)
'or' (
'not' b))
'or' (b
'or' c)) by
BVFUNC_1: 6
.= ((((
'not' a)
'or' (
'not' b))
'or' b)
'or' c) by
BVFUNC_1: 8
.= (((
'not' a)
'or' ((
'not' b)
'or' b))
'or' c) by
BVFUNC_1: 8
.= (((
'not' a)
'or' (
I_el Y))
'or' c) by
BVFUNC_4: 6
.= ((
I_el Y)
'or' c) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:42
(((a
'&' b)
'imp' c)
'imp' ((a
'&' b)
'imp' (c
'&' b)))
= (
I_el Y)
proof
(((a
'&' b)
'imp' c)
'imp' ((a
'&' b)
'imp' (c
'&' b)))
= (((
'not' (a
'&' b))
'or' c)
'imp' ((a
'&' b)
'imp' (c
'&' b))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' (a
'&' b))
'or' c))
'or' ((a
'&' b)
'imp' (c
'&' b))) by
BVFUNC_4: 8
.= ((
'not' ((
'not' (a
'&' b))
'or' c))
'or' ((
'not' (a
'&' b))
'or' (c
'&' b))) by
BVFUNC_4: 8
.= (((
'not' (
'not' (a
'&' b)))
'&' (
'not' c))
'or' ((
'not' (a
'&' b))
'or' (c
'&' b))) by
BVFUNC_1: 13
.= (((a
'&' b)
'&' (
'not' c))
'or' (((
'not' a)
'or' (
'not' b))
'or' (c
'&' b))) by
BVFUNC_1: 14
.= (((a
'&' b)
'&' (
'not' c))
'or' ((
'not' a)
'or' ((
'not' b)
'or' (b
'&' c)))) by
BVFUNC_1: 8
.= (((a
'&' b)
'&' (
'not' c))
'or' ((
'not' a)
'or' (((
'not' b)
'or' b)
'&' ((
'not' b)
'or' c)))) by
BVFUNC_1: 11
.= (((a
'&' b)
'&' (
'not' c))
'or' ((
'not' a)
'or' ((
I_el Y)
'&' ((
'not' b)
'or' c)))) by
BVFUNC_4: 6
.= (((a
'&' b)
'&' (
'not' c))
'or' ((
'not' a)
'or' ((
'not' b)
'or' c))) by
BVFUNC_1: 6
.= ((((a
'&' b)
'&' (
'not' c))
'or' (
'not' a))
'or' ((
'not' b)
'or' c)) by
BVFUNC_1: 8
.= ((((a
'&' b)
'or' (
'not' a))
'&' ((
'not' c)
'or' (
'not' a)))
'or' ((
'not' b)
'or' c)) by
BVFUNC_1: 11
.= ((((a
'or' (
'not' a))
'&' (b
'or' (
'not' a)))
'&' ((
'not' c)
'or' (
'not' a)))
'or' ((
'not' b)
'or' c)) by
BVFUNC_1: 11
.= ((((
I_el Y)
'&' (b
'or' (
'not' a)))
'&' ((
'not' c)
'or' (
'not' a)))
'or' ((
'not' b)
'or' c)) by
BVFUNC_4: 6
.= (((b
'or' (
'not' a))
'&' ((
'not' c)
'or' (
'not' a)))
'or' ((
'not' b)
'or' c)) by
BVFUNC_1: 6
.= ((((b
'or' (
'not' a))
'&' ((
'not' c)
'or' (
'not' a)))
'or' c)
'or' (
'not' b)) by
BVFUNC_1: 8
.= ((((b
'or' (
'not' a))
'or' c)
'&' (((
'not' c)
'or' (
'not' a))
'or' c))
'or' (
'not' b)) by
BVFUNC_1: 11
.= ((((b
'or' (
'not' a))
'or' c)
'&' ((
'not' a)
'or' ((
'not' c)
'or' c)))
'or' (
'not' b)) by
BVFUNC_1: 8
.= ((((b
'or' (
'not' a))
'or' c)
'&' ((
'not' a)
'or' (
I_el Y)))
'or' (
'not' b)) by
BVFUNC_4: 6
.= ((((b
'or' (
'not' a))
'or' c)
'&' (
I_el Y))
'or' (
'not' b)) by
BVFUNC_1: 10
.= (((b
'or' (
'not' a))
'or' c)
'or' (
'not' b)) by
BVFUNC_1: 6
.= (((
'not' b)
'or' (b
'or' (
'not' a)))
'or' c) by
BVFUNC_1: 8
.= ((((
'not' b)
'or' b)
'or' (
'not' a))
'or' c) by
BVFUNC_1: 8
.= (((
I_el Y)
'or' (
'not' a))
'or' c) by
BVFUNC_4: 6
.= ((
I_el Y)
'or' c) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:43
((a
'imp' b)
'imp' ((a
'&' c)
'imp' (b
'&' c)))
= (
I_el Y) by
BVFUNC_1: 16,
BVFUNC_6: 112;
theorem ::
BVFUNC25:44
(((a
'imp' b)
'&' (a
'&' c))
'imp' (b
'&' c))
= (
I_el Y)
proof
(((a
'imp' b)
'&' (a
'&' c))
'imp' (b
'&' c))
= ((((a
'imp' b)
'&' a)
'&' c)
'imp' (b
'&' c)) by
BVFUNC_1: 4
.= (((a
'&' b)
'&' c)
'imp' (b
'&' c)) by
BVFUNC_6: 56
.= ((a
'&' (b
'&' c))
'imp' (b
'&' c)) by
BVFUNC_1: 4;
hence thesis by
BVFUNC_6: 38;
end;
theorem ::
BVFUNC25:45
((a
'&' (a
'imp' b))
'&' (b
'imp' c))
'<' c
proof
(((a
'&' (a
'imp' b))
'&' (b
'imp' c))
'imp' c)
= ((
'not' ((a
'&' (a
'imp' b))
'&' (b
'imp' c)))
'or' c) by
BVFUNC_4: 8
.= ((
'not' ((a
'&' b)
'&' (b
'imp' c)))
'or' c) by
BVFUNC_6: 56
.= ((
'not' (a
'&' (b
'&' (b
'imp' c))))
'or' c) by
BVFUNC_1: 4
.= ((
'not' (a
'&' (b
'&' c)))
'or' c) by
BVFUNC_6: 56
.= ((
'not' ((a
'&' b)
'&' c))
'or' c) by
BVFUNC_1: 4
.= (((
'not' (a
'&' b))
'or' (
'not' c))
'or' c) by
BVFUNC_1: 14
.= ((
'not' (a
'&' b))
'or' ((
'not' c)
'or' c)) by
BVFUNC_1: 8
.= ((
'not' (a
'&' b))
'or' (
I_el Y)) by
BVFUNC_4: 6
.= (
I_el Y) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 16;
end;
theorem ::
BVFUNC25:46
(((a
'or' b)
'&' (a
'imp' c))
'&' (b
'imp' c))
'<' ((
'not' a)
'imp' (b
'or' c))
proof
((((a
'or' b)
'&' (a
'imp' c))
'&' (b
'imp' c))
'imp' ((
'not' a)
'imp' (b
'or' c)))
= ((
'not' (((a
'or' b)
'&' (a
'imp' c))
'&' (b
'imp' c)))
'or' ((
'not' a)
'imp' (b
'or' c))) by
BVFUNC_4: 8
.= ((
'not' (((a
'or' b)
'&' ((
'not' a)
'or' c))
'&' (b
'imp' c)))
'or' ((
'not' a)
'imp' (b
'or' c))) by
BVFUNC_4: 8
.= ((
'not' (((a
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' b)
'or' c)))
'or' ((
'not' a)
'imp' (b
'or' c))) by
BVFUNC_4: 8
.= ((
'not' (((a
'or' b)
'&' ((
'not' a)
'or' c))
'&' ((
'not' b)
'or' c)))
'or' ((
'not' (
'not' a))
'or' (b
'or' c))) by
BVFUNC_4: 8
.= (((
'not' ((a
'or' b)
'&' ((
'not' a)
'or' c)))
'or' (
'not' ((
'not' b)
'or' c)))
'or' ((
'not' (
'not' a))
'or' (b
'or' c))) by
BVFUNC_1: 14
.= (((
'not' ((a
'or' b)
'&' ((
'not' a)
'or' c)))
'or' ((
'not' (
'not' b))
'&' (
'not' c)))
'or' ((
'not' (
'not' a))
'or' (b
'or' c))) by
BVFUNC_1: 13
.= ((((
'not' (a
'or' b))
'or' (
'not' ((
'not' a)
'or' c)))
'or' (b
'&' (
'not' c)))
'or' ((
'not' (
'not' a))
'or' (b
'or' c))) by
BVFUNC_1: 14
.= (((((
'not' a)
'&' (
'not' b))
'or' (
'not' ((
'not' a)
'or' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 13
.= (((((
'not' a)
'&' (
'not' b))
'or' ((
'not' (
'not' a))
'&' (
'not' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 13
.= (((((
'not' a)
'or' (a
'&' (
'not' c)))
'&' ((
'not' b)
'or' (a
'&' (
'not' c))))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 11
.= ((((((
'not' a)
'or' a)
'&' ((
'not' a)
'or' (
'not' c)))
'&' ((
'not' b)
'or' (a
'&' (
'not' c))))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 11
.= (((((
I_el Y)
'&' ((
'not' a)
'or' (
'not' c)))
'&' ((
'not' b)
'or' (a
'&' (
'not' c))))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_4: 6
.= (((((
'not' a)
'or' (
'not' c))
'&' ((
'not' b)
'or' (a
'&' (
'not' c))))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 6
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((
'not' a)
'or' (
'not' c))
'&' (a
'&' (
'not' c))))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 12
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' ((((
'not' a)
'or' (
'not' c))
'&' a)
'&' (
'not' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 4
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' ((((
'not' a)
'&' a)
'or' ((
'not' c)
'&' a))
'&' (
'not' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 12
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((
O_el Y)
'or' ((
'not' c)
'&' a))
'&' (
'not' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_4: 5
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((
'not' c)
'&' a)
'&' (
'not' c)))
'or' (b
'&' (
'not' c)))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 9
.= (((((
'not' c)
'&' a)
'&' (
'not' c))
'or' ((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c))))
'or' (a
'or' (b
'or' c))) by
BVFUNC_1: 8
.= (((((
'not' c)
'&' a)
'&' (
'not' c))
'or' ((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c))))
'or' (c
'or' (a
'or' b))) by
BVFUNC_1: 8
.= (((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (((
'not' c)
'&' a)
'&' (
'not' c)))
'or' c)
'or' (a
'or' b)) by
BVFUNC_1: 8
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' ((((
'not' c)
'&' a)
'&' (
'not' c))
'or' c))
'or' (a
'or' b)) by
BVFUNC_1: 8
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' ((((
'not' c)
'&' a)
'or' c)
'&' ((
'not' c)
'or' c)))
'or' (a
'or' b)) by
BVFUNC_1: 11
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' ((((
'not' c)
'&' a)
'or' c)
'&' (
I_el Y)))
'or' (a
'or' b)) by
BVFUNC_4: 6
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (((
'not' c)
'&' a)
'or' c))
'or' (a
'or' b)) by
BVFUNC_1: 6
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (((
'not' c)
'or' c)
'&' (a
'or' c)))
'or' (a
'or' b)) by
BVFUNC_1: 11
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' ((
I_el Y)
'&' (a
'or' c)))
'or' (a
'or' b)) by
BVFUNC_4: 6
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'&' (
'not' c)))
'or' (a
'or' c))
'or' (a
'or' b)) by
BVFUNC_1: 6
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' ((b
'&' (
'not' c))
'or' (c
'or' a)))
'or' (a
'or' b)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((b
'&' (
'not' c))
'or' c)
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((b
'or' c)
'&' ((
'not' c)
'or' c))
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 11
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (((b
'or' c)
'&' (
I_el Y))
'or' a))
'or' (a
'or' b)) by
BVFUNC_4: 6
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' ((b
'or' c)
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 6
.= (((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' (b
'or' (c
'or' a)))
'or' (a
'or' b)) by
BVFUNC_1: 8
.= ((((((
'not' a)
'or' (
'not' c))
'&' (
'not' b))
'or' b)
'or' (c
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 8
.= ((((((
'not' a)
'or' (
'not' c))
'or' b)
'&' ((
'not' b)
'or' b))
'or' (c
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 11
.= ((((((
'not' a)
'or' (
'not' c))
'or' b)
'&' (
I_el Y))
'or' (c
'or' a))
'or' (a
'or' b)) by
BVFUNC_4: 6
.= (((((
'not' a)
'or' (
'not' c))
'or' b)
'or' (c
'or' a))
'or' (a
'or' b)) by
BVFUNC_1: 6
.= ((((((
'not' a)
'or' (
'not' c))
'or' b)
'or' c)
'or' a)
'or' (a
'or' b)) by
BVFUNC_1: 8
.= ((((((
'not' a)
'or' (
'not' c))
'or' c)
'or' b)
'or' a)
'or' (a
'or' b)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' ((
'not' c)
'or' c))
'or' b)
'or' a)
'or' (a
'or' b)) by
BVFUNC_1: 8
.= (((((
'not' a)
'or' (
I_el Y))
'or' b)
'or' a)
'or' (a
'or' b)) by
BVFUNC_4: 6
.= ((((
I_el Y)
'or' b)
'or' a)
'or' (a
'or' b)) by
BVFUNC_1: 10
.= (((
I_el Y)
'or' a)
'or' (a
'or' b)) by
BVFUNC_1: 10
.= ((
I_el Y)
'or' (a
'or' b)) by
BVFUNC_1: 10
.= (
I_el Y) by
BVFUNC_1: 10;
hence thesis by
BVFUNC_1: 16;
end;
begin
reserve Y for non
empty
set,
a,b,c for
Function of Y,
BOOLEAN ;
definition
let p,q be
boolean-valued
Function;
::
BVFUNC25:def1
func p
'nand' q ->
Function means
:
Def1: (
dom it )
= ((
dom p)
/\ (
dom q)) & for x be
set st x
in (
dom it ) holds (it
. x)
= ((p
. x)
'nand' (q
. x));
existence
proof
deffunc
F(
object) = ((p
. $1)
'nand' (q
. $1));
consider s be
Function such that
A1: (
dom s)
= ((
dom p)
/\ (
dom q)) & for x be
object st x
in ((
dom p)
/\ (
dom q)) holds (s
. x)
=
F(x) from
FUNCT_1:sch 3;
take s;
thus thesis by
A1;
end;
uniqueness
proof
let s1,s2 be
Function such that
A2: (
dom s1)
= ((
dom p)
/\ (
dom q)) and
A3: for x be
set st x
in (
dom s1) holds (s1
. x)
= ((p
. x)
'nand' (q
. x)) and
A4: (
dom s2)
= ((
dom p)
/\ (
dom q)) and
A5: for x be
set st x
in (
dom s2) holds (s2
. x)
= ((p
. x)
'nand' (q
. x));
for x be
object st x
in (
dom s1) holds (s1
. x)
= (s2
. x)
proof
let x be
object;
assume
A6: x
in (
dom s1);
then (s1
. x)
= ((p
. x)
'nand' (q
. x)) by
A3;
hence thesis by
A2,
A4,
A5,
A6;
end;
hence thesis by
A2,
A4,
FUNCT_1: 2;
end;
commutativity ;
::
BVFUNC25:def2
func p
'nor' q ->
Function means
:
Def2: (
dom it )
= ((
dom p)
/\ (
dom q)) & for x be
set st x
in (
dom it ) holds (it
. x)
= ((p
. x)
'nor' (q
. x));
existence
proof
deffunc
F(
object) = ((p
. $1)
'nor' (q
. $1));
consider s be
Function such that
A7: (
dom s)
= ((
dom p)
/\ (
dom q)) & for x be
object st x
in ((
dom p)
/\ (
dom q)) holds (s
. x)
=
F(x) from
FUNCT_1:sch 3;
take s;
thus thesis by
A7;
end;
uniqueness
proof
let s1,s2 be
Function such that
A8: (
dom s1)
= ((
dom p)
/\ (
dom q)) and
A9: for x be
set st x
in (
dom s1) holds (s1
. x)
= ((p
. x)
'nor' (q
. x)) and
A10: (
dom s2)
= ((
dom p)
/\ (
dom q)) and
A11: for x be
set st x
in (
dom s2) holds (s2
. x)
= ((p
. x)
'nor' (q
. x));
for x be
object st x
in (
dom s1) holds (s1
. x)
= (s2
. x)
proof
let x be
object;
assume
A12: x
in (
dom s1);
then (s1
. x)
= ((p
. x)
'nor' (q
. x)) by
A9;
hence thesis by
A8,
A10,
A11,
A12;
end;
hence thesis by
A8,
A10,
FUNCT_1: 2;
end;
commutativity ;
end
registration
let p,q be
boolean-valued
Function;
cluster (p
'nand' q) ->
boolean-valued;
coherence
proof
let x be
object;
assume x
in (
rng (p
'nand' q));
then
consider y be
object such that
A1: y
in (
dom (p
'nand' q)) & x
= ((p
'nand' q)
. y) by
FUNCT_1:def 3;
x
= ((p
. y)
'nand' (q
. y)) by
A1,
Def1;
then x
=
FALSE or x
=
TRUE by
XBOOLEAN:def 3;
hence thesis;
end;
cluster (p
'nor' q) ->
boolean-valued;
coherence
proof
let x be
object;
assume x
in (
rng (p
'nor' q));
then
consider y be
object such that
A2: y
in (
dom (p
'nor' q)) & x
= ((p
'nor' q)
. y) by
FUNCT_1:def 3;
x
= ((p
. y)
'nor' (q
. y)) by
A2,
Def2;
then x
=
FALSE or x
=
TRUE by
XBOOLEAN:def 3;
hence thesis;
end;
end
definition
let A be non
empty
set;
let p,q be
Function of A,
BOOLEAN ;
:: original:
'nand'
redefine
::
BVFUNC25:def3
func p
'nand' q ->
Function of A,
BOOLEAN means
:
Def3: for x be
Element of A holds (it
. x)
= ((p
. x)
'nand' (q
. x));
coherence
proof
(
dom p)
= A & (
dom q)
= A by
PARTFUN1:def 2;
then
A1: (
dom (p
'nand' q))
= (A
/\ A) by
Def1
.= A;
(
rng (p
'nand' q))
c=
BOOLEAN by
MARGREL1:def 16;
hence thesis by
A1,
FUNCT_2: 2;
end;
compatibility
proof
let IT be
Function of A,
BOOLEAN ;
A2: (
dom IT)
= A by
FUNCT_2:def 1;
hereby
assume
A3: IT
= (p
'nand' q);
let x be
Element of A;
(
dom p)
= A & (
dom q)
= A by
FUNCT_2:def 1;
then (
dom (p
'nand' q))
= (A
/\ A) by
Def1
.= A;
hence (IT
. x)
= ((p
. x)
'nand' (q
. x)) by
A3,
Def1;
end;
A4: (
dom q)
= A by
FUNCT_2:def 1;
A5: (
dom IT)
= (A
/\ A) by
FUNCT_2:def 1
.= ((
dom p)
/\ (
dom q)) by
A4,
FUNCT_2:def 1;
assume for x be
Element of A holds (IT
. x)
= ((p
. x)
'nand' (q
. x));
then for x be
set st x
in (
dom IT) holds (IT
. x)
= ((p
. x)
'nand' (q
. x)) by
A2;
hence thesis by
A5,
Def1;
end;
:: original:
'nor'
redefine
::
BVFUNC25:def4
func p
'nor' q ->
Function of A,
BOOLEAN means
:
Def4: for x be
Element of A holds (it
. x)
= ((p
. x)
'nor' (q
. x));
coherence
proof
(
dom p)
= A & (
dom q)
= A by
PARTFUN1:def 2;
then
A6: (
dom (p
'nor' q))
= (A
/\ A) by
Def2
.= A;
(
rng (p
'nor' q))
c=
BOOLEAN by
MARGREL1:def 16;
hence thesis by
A6,
FUNCT_2: 2;
end;
compatibility
proof
let IT be
Function of A,
BOOLEAN ;
A7: (
dom IT)
= A by
FUNCT_2:def 1;
hereby
assume
A8: IT
= (p
'nor' q);
let x be
Element of A;
(
dom p)
= A & (
dom q)
= A by
FUNCT_2:def 1;
then (
dom (p
'nor' q))
= (A
/\ A) by
Def2
.= A;
hence (IT
. x)
= ((p
. x)
'nor' (q
. x)) by
A8,
Def2;
end;
A9: (
dom q)
= A by
FUNCT_2:def 1;
A10: (
dom IT)
= (A
/\ A) by
FUNCT_2:def 1
.= ((
dom p)
/\ (
dom q)) by
A9,
FUNCT_2:def 1;
assume for x be
Element of A holds (IT
. x)
= ((p
. x)
'nor' (q
. x));
then for x be
set st x
in (
dom IT) holds (IT
. x)
= ((p
. x)
'nor' (q
. x)) by
A7;
hence thesis by
A10,
Def2;
end;
end
definition
let Y;
let a,b be
Function of Y,
BOOLEAN ;
:: original:
'nand'
redefine
func a
'nand' b ->
Function of Y,
BOOLEAN ;
coherence
proof
(a
'nand' b) is
Function of Y,
BOOLEAN ;
hence thesis;
end;
:: original:
'nor'
redefine
func a
'nor' b ->
Function of Y,
BOOLEAN ;
coherence
proof
(a
'nor' b) is
Function of Y,
BOOLEAN ;
hence thesis;
end;
end
theorem ::
BVFUNC25:47
th1: (a
'nand' b)
= (
'not' (a
'&' b))
proof
let x be
Element of Y;
thus ((
'not' (a
'&' b))
. x)
= (
'not' ((a
'&' b)
. x)) by
MARGREL1:def 19
.= (
'not' ((a
. x)
'&' (b
. x))) by
MARGREL1:def 20
.= (
'not' (
'not' ((a
. x)
'nand' (b
. x)))) by
BVFUNC_1: 46
.= ((a
'nand' b)
. x) by
Def3;
end;
theorem ::
BVFUNC25:48
Th2: (a
'nor' b)
= (
'not' (a
'or' b))
proof
let x be
Element of Y;
thus ((
'not' (a
'or' b))
. x)
= (
'not' ((a
'or' b)
. x)) by
MARGREL1:def 19
.= (
'not' ((a
. x)
'or' (b
. x))) by
BVFUNC_1:def 4
.= (
'not' (
'not' ((a
. x)
'nor' (b
. x)))) by
BVFUNC_1: 53
.= ((a
'nor' b)
. x) by
Def4;
end;
theorem ::
BVFUNC25:49
Th3: ((
I_el Y)
'nand' a)
= (
'not' a)
proof
((
I_el Y)
'nand' a)
= (
'not' ((
I_el Y)
'&' a)) by
th1;
hence thesis by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:50
Th4: ((
O_el Y)
'nand' a)
= (
I_el Y)
proof
((
O_el Y)
'nand' a)
= (
'not' ((
O_el Y)
'&' a)) & ((
O_el Y)
'&' a)
= (
O_el Y) by
th1,
BVFUNC_1: 5;
hence thesis by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:51
((
O_el Y)
'nand' (
O_el Y))
= (
I_el Y) & ((
O_el Y)
'nand' (
I_el Y))
= (
I_el Y) & ((
I_el Y)
'nand' (
I_el Y))
= (
O_el Y)
proof
thus ((
O_el Y)
'nand' (
O_el Y))
= (
I_el Y) by
Th4;
thus ((
O_el Y)
'nand' (
I_el Y))
= (
I_el Y) by
Th4;
thus ((
I_el Y)
'nand' (
I_el Y))
= (
'not' (
I_el Y)) by
Th3
.= (
O_el Y) by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:52
(a
'nand' a)
= (
'not' a) & (
'not' (a
'nand' a))
= a
proof
(a
'nand' a)
= (
'not' (a
'&' a)) by
th1
.= (
'not' a);
hence thesis;
end;
theorem ::
BVFUNC25:53
(
'not' (a
'nand' b))
= (a
'&' b)
proof
(
'not' (a
'nand' b))
= (
'not' (
'not' (a
'&' b))) by
th1;
hence thesis;
end;
theorem ::
BVFUNC25:54
(a
'nand' (
'not' a))
= (
I_el Y) & (
'not' (a
'nand' (
'not' a)))
= (
O_el Y)
proof
(a
'nand' (
'not' a))
= (
'not' (a
'&' (
'not' a))) by
th1
.= (
'not' (
O_el Y)) by
BVFUNC_4: 5
.= (
I_el Y) by
BVFUNC_1: 2;
hence thesis by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:55
Th9: (a
'nand' (b
'&' c))
= (
'not' ((a
'&' b)
'&' c))
proof
(a
'nand' (b
'&' c))
= (
'not' (a
'&' (b
'&' c))) by
th1;
hence thesis by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:56
Th10: (a
'nand' (b
'&' c))
= ((a
'&' b)
'nand' c)
proof
((a
'&' b)
'nand' c)
= (
'not' ((a
'&' b)
'&' c)) by
th1;
hence thesis by
Th9;
end;
theorem ::
BVFUNC25:57
th11: (a
'nand' (b
'or' c))
= ((
'not' (a
'&' b))
'&' (
'not' (a
'&' c)))
proof
thus (a
'nand' (b
'or' c))
= (
'not' (a
'&' (b
'or' c))) by
th1
.= (
'not' ((a
'&' b)
'or' (a
'&' c))) by
BVFUNC_1: 12
.= ((
'not' (a
'&' b))
'&' (
'not' (a
'&' c))) by
BVFUNC_1: 13;
end;
theorem ::
BVFUNC25:58
(a
'nand' (b
'xor' c))
= ((a
'&' b)
'eqv' (a
'&' c))
proof
thus (a
'nand' (b
'xor' c))
= (
'not' (a
'&' (b
'xor' c))) by
th1
.= (
'not' ((a
'&' b)
'xor' (a
'&' c))) by
Th11
.= (
'not' (
'not' ((a
'&' b)
'eqv' (a
'&' c)))) by
BVFUNC_6: 85
.= ((a
'&' b)
'eqv' (a
'&' c));
end;
theorem ::
BVFUNC25:59
(a
'nand' (b
'nand' c))
= ((
'not' a)
'or' (b
'&' c)) & (a
'nand' (b
'nand' c))
= (a
'imp' (b
'&' c))
proof
(a
'nand' (b
'nand' c))
= (
'not' (a
'&' (b
'nand' c))) by
th1
.= (
'not' (a
'&' (
'not' (b
'&' c)))) by
th1
.= ((
'not' a)
'or' (
'not' (
'not' (b
'&' c)))) by
BVFUNC_1: 14
.= ((
'not' a)
'or' (b
'&' c));
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:60
(a
'nand' (b
'nor' c))
= (((
'not' a)
'or' b)
'or' c) & (a
'nand' (b
'nor' c))
= (a
'imp' (b
'or' c))
proof
A1: (a
'nand' (b
'nor' c))
= (
'not' (a
'&' (b
'nor' c))) by
th1
.= (
'not' (a
'&' (
'not' (b
'or' c)))) by
Th2
.= ((
'not' a)
'or' (
'not' (
'not' (b
'or' c)))) by
BVFUNC_1: 14
.= (((
'not' a)
'or' b)
'or' c) by
BVFUNC_1: 8;
then (a
'nand' (b
'nor' c))
= ((
'not' a)
'or' (b
'or' c)) by
BVFUNC_1: 8;
hence thesis by
A1,
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:61
(a
'nand' (b
'eqv' c))
= (a
'imp' (b
'xor' c))
proof
(a
'nand' (b
'eqv' c))
= (
'not' (a
'&' (b
'eqv' c))) by
th1
.= ((
'not' a)
'or' (
'not' (b
'eqv' c))) by
BVFUNC_1: 14
.= ((
'not' a)
'or' (
'not' (
'not' (b
'xor' c)))) by
Th12
.= ((
'not' a)
'or' (b
'xor' c));
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:62
(a
'nand' (a
'&' b))
= (a
'nand' b)
proof
(a
'nand' (a
'&' b))
= ((a
'&' a)
'nand' b) by
Th10;
hence thesis;
end;
theorem ::
BVFUNC25:63
(a
'nand' (a
'or' b))
= ((
'not' a)
'&' (
'not' (a
'&' b)))
proof
thus (a
'nand' (a
'or' b))
= ((
'not' (a
'&' a))
'&' (
'not' (a
'&' b))) by
th11
.= ((
'not' a)
'&' (
'not' (a
'&' b)));
end;
theorem ::
BVFUNC25:64
(a
'nand' (a
'eqv' b))
= (a
'imp' (a
'xor' b))
proof
(a
'nand' (a
'eqv' b))
= (
'not' (a
'&' (a
'eqv' b))) by
th1
.= ((
'not' a)
'or' (
'not' (a
'eqv' b))) by
BVFUNC_1: 14
.= ((
'not' a)
'or' (
'not' (
'not' (a
'xor' b)))) by
Th12
.= ((
'not' a)
'or' (a
'xor' b));
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:65
(a
'nand' (a
'nand' b))
= ((
'not' a)
'or' b) & (a
'nand' (a
'nand' b))
= (a
'imp' b)
proof
(a
'nand' (a
'nand' b))
= (
'not' (a
'&' (a
'nand' b))) by
th1
.= (
'not' (a
'&' (
'not' (a
'&' b)))) by
th1
.= ((
'not' a)
'or' (
'not' (
'not' (a
'&' b)))) by
BVFUNC_1: 14
.= (((
'not' a)
'or' a)
'&' ((
'not' a)
'or' b)) by
BVFUNC_1: 11
.= ((
I_el Y)
'&' ((
'not' a)
'or' b)) by
BVFUNC_4: 6
.= ((
'not' a)
'or' b) by
BVFUNC_1: 6;
hence thesis by
BVFUNC_4: 8;
end;
theorem ::
BVFUNC25:66
(a
'nand' (a
'nor' b))
= (
I_el Y)
proof
thus (a
'nand' (a
'nor' b))
= (
'not' (a
'&' (a
'nor' b))) by
th1
.= (
'not' (a
'&' (
'not' (a
'or' b)))) by
Th2
.= ((
'not' a)
'or' (
'not' (
'not' (a
'or' b)))) by
BVFUNC_1: 14
.= (((
'not' a)
'or' a)
'or' b) by
BVFUNC_1: 8
.= ((
I_el Y)
'or' b) by
BVFUNC_4: 6
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:67
(a
'nand' (a
'eqv' b))
= ((
'not' a)
'or' (
'not' b))
proof
thus (a
'nand' (a
'eqv' b))
= (
'not' (a
'&' (a
'eqv' b))) by
th1
.= (
'not' (a
'&' (
'not' (a
'xor' b)))) by
Th12
.= ((
'not' a)
'or' (
'not' (
'not' (a
'xor' b)))) by
BVFUNC_1: 14
.= ((
'not' a)
'or' ((a
'or' b)
'&' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_6: 86
.= (((
'not' a)
'or' (a
'or' b))
'&' ((
'not' a)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 11
.= ((((
'not' a)
'or' a)
'or' b)
'&' ((
'not' a)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 8
.= (((
I_el Y)
'or' b)
'&' ((
'not' a)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_4: 6
.= ((
I_el Y)
'&' ((
'not' a)
'or' ((
'not' a)
'or' (
'not' b)))) by
BVFUNC_1: 10
.= ((
'not' a)
'or' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 6
.= (((
'not' a)
'or' (
'not' a))
'or' (
'not' b)) by
BVFUNC_1: 8
.= ((
'not' a)
'or' (
'not' b));
end;
theorem ::
BVFUNC25:68
(a
'&' b)
= ((a
'nand' b)
'nand' (a
'nand' b))
proof
thus ((a
'nand' b)
'nand' (a
'nand' b))
= (
'not' ((a
'nand' b)
'&' (a
'nand' b))) by
th1
.= ((a
'&' b)
'or' (
'not' (
'not' (a
'&' b)))) by
th1
.= (a
'&' b);
end;
theorem ::
BVFUNC25:69
((a
'nand' b)
'nand' (a
'nand' c))
= (a
'&' (b
'or' c))
proof
thus ((a
'nand' b)
'nand' (a
'nand' c))
= (
'not' ((a
'nand' b)
'&' (a
'nand' c))) by
th1
.= (
'not' ((
'not' (a
'&' b))
'&' (a
'nand' c))) by
th1
.= (
'not' ((
'not' (a
'&' b))
'&' (
'not' (a
'&' c)))) by
th1
.= ((
'not' (
'not' (a
'&' b)))
'or' (
'not' (
'not' (a
'&' c)))) by
BVFUNC_1: 14
.= (a
'&' (b
'or' c)) by
BVFUNC_1: 12;
end;
theorem ::
BVFUNC25:70
Th24: (a
'nand' (b
'imp' c))
= (((
'not' a)
'or' b)
'&' (
'not' (a
'&' c)))
proof
thus (a
'nand' (b
'imp' c))
= (
'not' (a
'&' (b
'imp' c))) by
th1
.= (
'not' (a
'&' ((
'not' b)
'or' c))) by
BVFUNC_4: 8
.= (
'not' ((a
'&' (
'not' b))
'or' (a
'&' c))) by
BVFUNC_1: 12
.= ((
'not' (a
'&' (
'not' b)))
'&' (
'not' (a
'&' c))) by
BVFUNC_1: 13
.= (((
'not' a)
'or' (
'not' (
'not' b)))
'&' (
'not' (a
'&' c))) by
BVFUNC_1: 14
.= (((
'not' a)
'or' b)
'&' (
'not' (a
'&' c)));
end;
theorem ::
BVFUNC25:71
(a
'nand' (a
'imp' b))
= (
'not' (a
'&' b))
proof
thus (a
'nand' (a
'imp' b))
= (((
'not' a)
'or' a)
'&' (
'not' (a
'&' b))) by
Th24
.= ((
I_el Y)
'&' (
'not' (a
'&' b))) by
BVFUNC_4: 6
.= (
'not' (a
'&' b)) by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:72
Th26: ((
I_el Y)
'nor' a)
= (
O_el Y)
proof
thus ((
I_el Y)
'nor' a)
= (
'not' ((
I_el Y)
'or' a)) by
Th2
.= (
'not' (
I_el Y)) by
BVFUNC_1: 10
.= (
O_el Y) by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:73
Th27: ((
O_el Y)
'nor' a)
= (
'not' a)
proof
thus ((
O_el Y)
'nor' a)
= (
'not' ((
O_el Y)
'or' a)) by
Th2
.= (
'not' a) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:74
((
O_el Y)
'nor' (
O_el Y))
= (
I_el Y) & ((
O_el Y)
'nor' (
I_el Y))
= (
O_el Y) & ((
I_el Y)
'nor' (
I_el Y))
= (
O_el Y)
proof
thus ((
O_el Y)
'nor' (
O_el Y))
= (
'not' (
O_el Y)) by
Th27
.= (
I_el Y) by
BVFUNC_1: 2;
thus ((
O_el Y)
'nor' (
I_el Y))
= (
O_el Y) by
Th26;
thus thesis by
Th26;
end;
theorem ::
BVFUNC25:75
(a
'nor' a)
= (
'not' a) & (
'not' (a
'nor' a))
= a
proof
(a
'nor' a)
= (
'not' (a
'or' a)) by
Th2
.= (
'not' a);
hence thesis;
end;
theorem ::
BVFUNC25:76
(
'not' (a
'nor' b))
= (a
'or' b)
proof
(
'not' (a
'nor' b))
= (
'not' (
'not' (a
'or' b))) by
Th2;
hence thesis;
end;
theorem ::
BVFUNC25:77
(a
'nor' (
'not' a))
= (
O_el Y) & (
'not' (a
'nor' (
'not' a)))
= (
I_el Y)
proof
(a
'nor' (
'not' a))
= (
'not' (a
'or' (
'not' a))) by
Th2
.= (
'not' (
I_el Y)) by
BVFUNC_4: 6
.= (
O_el Y) by
BVFUNC_1: 2;
hence thesis by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:78
((
'not' a)
'&' (a
'xor' b))
= ((
'not' a)
'&' b)
proof
thus ((
'not' a)
'&' (a
'xor' b))
= ((
'not' a)
'&' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))) by
BVFUNC_4: 9
.= (((
'not' a)
'&' ((
'not' a)
'&' b))
'or' ((
'not' a)
'&' (a
'&' (
'not' b)))) by
BVFUNC_1: 12
.= ((((
'not' a)
'&' (
'not' a))
'&' b)
'or' ((
'not' a)
'&' (a
'&' (
'not' b)))) by
BVFUNC_1: 4
.= (((
'not' a)
'&' b)
'or' (((
'not' a)
'&' a)
'&' (
'not' b))) by
BVFUNC_1: 4
.= (((
'not' a)
'&' b)
'or' ((
O_el Y)
'&' (
'not' b))) by
BVFUNC_4: 5
.= (((
'not' a)
'&' b)
'or' (
O_el Y)) by
BVFUNC_1: 5
.= ((
'not' a)
'&' b) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:79
Th33: (a
'nor' (b
'&' c))
= ((
'not' (a
'or' b))
'or' (
'not' (a
'or' c)))
proof
(a
'nor' (b
'&' c))
= (
'not' (a
'or' (b
'&' c))) by
Th2
.= (
'not' ((a
'or' b)
'&' (a
'or' c))) by
BVFUNC_1: 11;
hence thesis by
BVFUNC_1: 14;
end;
theorem ::
BVFUNC25:80
Th34: (a
'nor' (b
'or' c))
= (
'not' ((a
'or' b)
'or' c))
proof
thus (a
'nor' (b
'or' c))
= (
'not' (a
'or' (b
'or' c))) by
Th2
.= (
'not' ((a
'or' b)
'or' c)) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:81
Th35: (a
'nor' (b
'eqv' c))
= ((
'not' a)
'&' (b
'xor' c))
proof
thus (a
'nor' (b
'eqv' c))
= (
'not' (a
'or' (b
'eqv' c))) by
Th2
.= ((
'not' a)
'&' (
'not' (b
'eqv' c))) by
BVFUNC_1: 13
.= ((
'not' a)
'&' (
'not' (
'not' (b
'xor' c)))) by
Th12
.= ((
'not' a)
'&' (b
'xor' c));
end;
theorem ::
BVFUNC25:82
Th36: (a
'nor' (b
'imp' c))
= (((
'not' a)
'&' b)
'&' (
'not' c))
proof
thus (a
'nor' (b
'imp' c))
= (
'not' (a
'or' (b
'imp' c))) by
Th2
.= ((
'not' a)
'&' (
'not' (b
'imp' c))) by
BVFUNC_1: 13
.= ((
'not' a)
'&' (b
'&' (
'not' c))) by
Th1
.= (((
'not' a)
'&' b)
'&' (
'not' c)) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:83
Th37: (a
'nor' (b
'nand' c))
= (((
'not' a)
'&' b)
'&' c)
proof
thus (a
'nor' (b
'nand' c))
= (
'not' (a
'or' (b
'nand' c))) by
Th2
.= (
'not' (a
'or' (
'not' (b
'&' c)))) by
th1
.= ((
'not' a)
'&' (
'not' (
'not' (b
'&' c)))) by
BVFUNC_1: 13
.= (((
'not' a)
'&' b)
'&' c) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:84
Th38: (a
'nor' (b
'nor' c))
= ((
'not' a)
'&' (b
'or' c))
proof
thus (a
'nor' (b
'nor' c))
= (
'not' (a
'or' (b
'nor' c))) by
Th2
.= (
'not' (a
'or' (
'not' (b
'or' c)))) by
Th2
.= ((
'not' a)
'&' (
'not' (
'not' (b
'or' c)))) by
BVFUNC_1: 13
.= ((
'not' a)
'&' (b
'or' c));
end;
theorem ::
BVFUNC25:85
(a
'nor' (a
'&' b))
= (
'not' (a
'&' (a
'or' b)))
proof
thus (a
'nor' (a
'&' b))
= ((
'not' (a
'or' a))
'or' (
'not' (a
'or' b))) by
Th33
.= (
'not' (a
'&' (a
'or' b))) by
BVFUNC_1: 14;
end;
theorem ::
BVFUNC25:86
(a
'nor' (a
'or' b))
= (
'not' (a
'or' b))
proof
thus (a
'nor' (a
'or' b))
= (
'not' ((a
'or' a)
'or' b)) by
Th34
.= (
'not' (a
'or' b));
end;
theorem ::
BVFUNC25:87
(a
'nor' (a
'eqv' b))
= ((
'not' a)
'&' b)
proof
thus (a
'nor' (a
'eqv' b))
= ((
'not' a)
'&' (a
'xor' b)) by
Th35
.= ((
'not' a)
'&' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' b)))) by
BVFUNC_4: 9
.= (((
'not' a)
'&' ((
'not' a)
'&' b))
'or' ((
'not' a)
'&' (a
'&' (
'not' b)))) by
BVFUNC_1: 12
.= (((
'not' a)
'&' ((
'not' a)
'&' b))
'or' (((
'not' a)
'&' a)
'&' (
'not' b))) by
BVFUNC_1: 4
.= (((
'not' a)
'&' ((
'not' a)
'&' b))
'or' ((
O_el Y)
'&' (
'not' b))) by
BVFUNC_4: 5
.= (((
'not' a)
'&' ((
'not' a)
'&' b))
'or' (
O_el Y)) by
BVFUNC_1: 5
.= ((
'not' a)
'&' ((
'not' a)
'&' b)) by
BVFUNC_1: 9
.= (((
'not' a)
'&' (
'not' a))
'&' b) by
BVFUNC_1: 4
.= ((
'not' a)
'&' b);
end;
theorem ::
BVFUNC25:88
(a
'nor' (a
'imp' b))
= (
O_el Y)
proof
thus (a
'nor' (a
'imp' b))
= (((
'not' a)
'&' a)
'&' (
'not' b)) by
Th36
.= ((
O_el Y)
'&' (
'not' b)) by
BVFUNC_4: 5
.= (
O_el Y) by
BVFUNC_1: 5;
end;
theorem ::
BVFUNC25:89
(a
'nor' (a
'nand' b))
= (
O_el Y)
proof
thus (a
'nor' (a
'nand' b))
= (((
'not' a)
'&' a)
'&' b) by
Th37
.= ((
O_el Y)
'&' b) by
BVFUNC_4: 5
.= (
O_el Y) by
BVFUNC_1: 5;
end;
theorem ::
BVFUNC25:90
(a
'nor' (a
'nor' b))
= ((
'not' a)
'&' b)
proof
thus (a
'nor' (a
'nor' b))
= ((
'not' a)
'&' (a
'or' b)) by
Th38
.= (((
'not' a)
'&' a)
'or' ((
'not' a)
'&' b)) by
BVFUNC_1: 12
.= ((
O_el Y)
'or' ((
'not' a)
'&' b)) by
BVFUNC_4: 5
.= ((
'not' a)
'&' b) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:91
((
O_el Y)
'eqv' (
O_el Y))
= (
I_el Y)
proof
thus ((
O_el Y)
'eqv' (
O_el Y))
= (
'not' ((
O_el Y)
'xor' (
O_el Y))) by
Th12
.= (
'not' (
O_el Y)) by
Th13
.= (
I_el Y) by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:92
((
O_el Y)
'eqv' (
I_el Y))
= (
O_el Y)
proof
thus ((
O_el Y)
'eqv' (
I_el Y))
= (
'not' ((
O_el Y)
'xor' (
I_el Y))) by
Th12
.= (
'not' ((
O_el Y)
'xor' (
'not' (
O_el Y)))) by
BVFUNC_1: 2
.= (
'not' (
I_el Y)) by
Th14
.= (
O_el Y) by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:93
((
I_el Y)
'eqv' (
I_el Y))
= (
I_el Y)
proof
thus ((
I_el Y)
'eqv' (
I_el Y))
= (
'not' ((
I_el Y)
'xor' (
I_el Y))) by
Th12
.= (
'not' (
'not' (
I_el Y))) by
BVFUNC_6: 87
.= (
I_el Y);
end;
theorem ::
BVFUNC25:94
(a
'eqv' a)
= (
I_el Y) & (
'not' (a
'eqv' a))
= (
O_el Y)
proof
(a
'eqv' a)
= (
'not' (a
'xor' a)) by
Th12
.= (
'not' (
O_el Y)) by
Th13
.= (
I_el Y) by
BVFUNC_1: 2;
hence thesis by
BVFUNC_1: 2;
end;
theorem ::
BVFUNC25:95
(a
'eqv' (a
'or' b))
= (a
'or' (
'not' b))
proof
thus (a
'eqv' (a
'or' b))
= (
'not' (a
'xor' (a
'or' b))) by
Th12
.= (
'not' (((
'not' a)
'&' (a
'or' b))
'or' (a
'&' (
'not' (a
'or' b))))) by
BVFUNC_4: 9
.= (
'not' ((((
'not' a)
'&' a)
'or' ((
'not' a)
'&' b))
'or' (a
'&' (
'not' (a
'or' b))))) by
BVFUNC_1: 12
.= (
'not' (((
O_el Y)
'or' ((
'not' a)
'&' b))
'or' (a
'&' (
'not' (a
'or' b))))) by
BVFUNC_4: 5
.= (
'not' (((
'not' a)
'&' b)
'or' (a
'&' (
'not' (a
'or' b))))) by
BVFUNC_1: 9
.= (
'not' (((
'not' a)
'&' b)
'or' (a
'&' ((
'not' a)
'&' (
'not' b))))) by
BVFUNC_1: 13
.= (
'not' (((
'not' a)
'&' b)
'or' ((a
'&' (
'not' a))
'&' (
'not' b)))) by
BVFUNC_1: 4
.= (
'not' (((
'not' a)
'&' b)
'or' ((
O_el Y)
'&' (
'not' b)))) by
BVFUNC_4: 5
.= (
'not' (((
'not' a)
'&' b)
'or' (
O_el Y))) by
BVFUNC_1: 5
.= (
'not' ((
'not' a)
'&' b)) by
BVFUNC_1: 9
.= ((
'not' (
'not' a))
'or' (
'not' b)) by
BVFUNC_1: 14
.= (a
'or' (
'not' b));
end;
theorem ::
BVFUNC25:96
Th50: (a
'&' (b
'nand' c))
= ((a
'&' (
'not' b))
'or' (a
'&' (
'not' c)))
proof
thus (a
'&' (b
'nand' c))
= (a
'&' (
'not' (b
'&' c))) by
th1
.= (a
'&' ((
'not' b)
'or' (
'not' c))) by
BVFUNC_1: 14
.= ((a
'&' (
'not' b))
'or' (a
'&' (
'not' c))) by
BVFUNC_1: 12;
end;
theorem ::
BVFUNC25:97
Th51: (a
'or' (b
'nand' c))
= ((a
'or' (
'not' b))
'or' (
'not' c))
proof
thus (a
'or' (b
'nand' c))
= (a
'or' (
'not' (b
'&' c))) by
th1
.= (a
'or' ((
'not' b)
'or' (
'not' c))) by
BVFUNC_1: 14
.= ((a
'or' (
'not' b))
'or' (
'not' c)) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:98
Th52: (a
'xor' (b
'nand' c))
= (((
'not' a)
'&' (
'not' (b
'&' c)))
'or' ((a
'&' b)
'&' c))
proof
thus (a
'xor' (b
'nand' c))
= (a
'xor' (
'not' (b
'&' c))) by
th1
.= (((
'not' a)
'&' (
'not' (b
'&' c)))
'or' (a
'&' (
'not' (
'not' (b
'&' c))))) by
BVFUNC_4: 9
.= (((
'not' a)
'&' (
'not' (b
'&' c)))
'or' ((a
'&' b)
'&' c)) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:99
Th53: (a
'eqv' (b
'nand' c))
= ((a
'&' (
'not' (b
'&' c)))
'or' (((
'not' a)
'&' b)
'&' c))
proof
thus (a
'eqv' (b
'nand' c))
= (a
'eqv' (
'not' (b
'&' c))) by
th1
.= ((a
'&' (
'not' (b
'&' c)))
'or' ((
'not' a)
'&' (
'not' (
'not' (b
'&' c))))) by
BVFUNC_6: 92
.= ((a
'&' (
'not' (b
'&' c)))
'or' (((
'not' a)
'&' b)
'&' c)) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:100
Th54: (a
'imp' (b
'nand' c))
= (
'not' ((a
'&' b)
'&' c))
proof
thus (a
'imp' (b
'nand' c))
= (a
'imp' (
'not' (b
'&' c))) by
th1
.= ((
'not' a)
'or' (
'not' (b
'&' c))) by
BVFUNC_4: 8
.= (
'not' (a
'&' (b
'&' c))) by
BVFUNC_1: 14
.= (
'not' ((a
'&' b)
'&' c)) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:101
(a
'nor' (b
'nand' c))
= (
'not' ((a
'or' (
'not' b))
'or' (
'not' c)))
proof
thus (a
'nor' (b
'nand' c))
= (a
'nor' (
'not' (b
'&' c))) by
th1
.= (
'not' (a
'or' (
'not' (b
'&' c)))) by
Th2
.= (
'not' (a
'or' ((
'not' b)
'or' (
'not' c)))) by
BVFUNC_1: 14
.= (
'not' ((a
'or' (
'not' b))
'or' (
'not' c))) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:102
(a
'&' (a
'nand' b))
= (a
'&' (
'not' b))
proof
thus (a
'&' (a
'nand' b))
= ((a
'&' (
'not' a))
'or' (a
'&' (
'not' b))) by
Th50
.= ((
O_el Y)
'or' (a
'&' (
'not' b))) by
BVFUNC_4: 5
.= (a
'&' (
'not' b)) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:103
(a
'or' (a
'nand' b))
= (
I_el Y)
proof
thus (a
'or' (a
'nand' b))
= ((a
'or' (
'not' a))
'or' (
'not' b)) by
Th51
.= ((
I_el Y)
'or' (
'not' b)) by
BVFUNC_4: 6
.= (
I_el Y) by
BVFUNC_1: 10;
end;
theorem ::
BVFUNC25:104
(a
'xor' (a
'nand' b))
= ((
'not' a)
'or' b)
proof
thus (a
'xor' (a
'nand' b))
= (((
'not' a)
'&' (
'not' (a
'&' b)))
'or' ((a
'&' a)
'&' b)) by
Th52
.= (((
'not' a)
'or' (a
'&' b))
'&' ((
'not' (a
'&' b))
'or' (a
'&' b))) by
BVFUNC_1: 11
.= (((
'not' a)
'or' (a
'&' b))
'&' (
I_el Y)) by
BVFUNC_4: 6
.= ((
'not' a)
'or' (a
'&' b)) by
BVFUNC_1: 6
.= (((
'not' a)
'or' a)
'&' ((
'not' a)
'or' b)) by
BVFUNC_1: 11
.= ((
I_el Y)
'&' ((
'not' a)
'or' b)) by
BVFUNC_4: 6
.= ((
'not' a)
'or' b) by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:105
(a
'eqv' (a
'nand' b))
= (a
'&' (
'not' b))
proof
thus (a
'eqv' (a
'nand' b))
= ((a
'&' (
'not' (a
'&' b)))
'or' (((
'not' a)
'&' a)
'&' b)) by
Th53
.= ((a
'&' (
'not' (a
'&' b)))
'or' ((
O_el Y)
'&' b)) by
BVFUNC_4: 5
.= ((a
'&' (
'not' (a
'&' b)))
'or' (
O_el Y)) by
BVFUNC_1: 5
.= (a
'&' (
'not' (a
'&' b))) by
BVFUNC_1: 9
.= (a
'&' ((
'not' a)
'or' (
'not' b))) by
BVFUNC_1: 14
.= ((a
'&' (
'not' a))
'or' (a
'&' (
'not' b))) by
BVFUNC_1: 12
.= ((
O_el Y)
'or' (a
'&' (
'not' b))) by
BVFUNC_4: 5
.= (a
'&' (
'not' b)) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:106
(a
'imp' (a
'nand' b))
= (
'not' (a
'&' b))
proof
thus (a
'imp' (a
'nand' b))
= (
'not' ((a
'&' a)
'&' b)) by
Th54
.= (
'not' (a
'&' b));
end;
theorem ::
BVFUNC25:107
Th61: (a
'&' (b
'nor' c))
= ((a
'&' (
'not' b))
'&' (
'not' c))
proof
thus (a
'&' (b
'nor' c))
= (a
'&' (
'not' (b
'or' c))) by
Th2
.= (a
'&' ((
'not' b)
'&' (
'not' c))) by
BVFUNC_1: 13
.= ((a
'&' (
'not' b))
'&' (
'not' c)) by
BVFUNC_1: 4;
end;
theorem ::
BVFUNC25:108
Th62: (a
'or' (b
'nor' c))
= ((a
'or' (
'not' b))
'&' (a
'or' (
'not' c)))
proof
thus (a
'or' (b
'nor' c))
= (a
'or' (
'not' (b
'or' c))) by
Th2
.= (a
'or' ((
'not' b)
'&' (
'not' c))) by
BVFUNC_1: 13
.= ((a
'or' (
'not' b))
'&' (a
'or' (
'not' c))) by
BVFUNC_1: 11;
end;
theorem ::
BVFUNC25:109
Th63: (a
'xor' (b
'nor' c))
= ((a
'or' (
'not' (b
'or' c)))
'&' (((
'not' a)
'or' b)
'or' c))
proof
thus (a
'xor' (b
'nor' c))
= (a
'xor' (
'not' (b
'or' c))) by
Th2
.= ((a
'or' (
'not' (b
'or' c)))
'&' ((
'not' a)
'or' (
'not' (
'not' (b
'or' c))))) by
BVFUNC_6: 86
.= ((a
'or' (
'not' (b
'or' c)))
'&' (((
'not' a)
'or' b)
'or' c)) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:110
Th64: (a
'eqv' (b
'nor' c))
= (((a
'or' b)
'or' c)
'&' ((
'not' a)
'or' (
'not' (b
'or' c))))
proof
thus (a
'eqv' (b
'nor' c))
= (a
'eqv' (
'not' (b
'or' c))) by
Th2
.= ((a
'or' (
'not' (
'not' (b
'or' c))))
'&' ((
'not' a)
'or' (
'not' (b
'or' c)))) by
BVFUNC_6: 91
.= (((a
'or' b)
'or' c)
'&' ((
'not' a)
'or' (
'not' (b
'or' c)))) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:111
Th65: (a
'imp' (b
'nor' c))
= (
'not' (a
'&' (b
'or' c)))
proof
thus (a
'imp' (b
'nor' c))
= (a
'imp' (
'not' (b
'or' c))) by
Th2
.= ((
'not' a)
'or' (
'not' (b
'or' c))) by
BVFUNC_4: 8
.= (
'not' (a
'&' (b
'or' c))) by
BVFUNC_1: 14;
end;
theorem ::
BVFUNC25:112
(a
'nand' (b
'nor' c))
= (((
'not' a)
'or' b)
'or' c)
proof
thus (a
'nand' (b
'nor' c))
= (a
'nand' (
'not' (b
'or' c))) by
Th2
.= (
'not' (a
'&' (
'not' (b
'or' c)))) by
th1
.= ((
'not' a)
'or' (
'not' (
'not' (b
'or' c)))) by
BVFUNC_1: 14
.= (((
'not' a)
'or' b)
'or' c) by
BVFUNC_1: 8;
end;
theorem ::
BVFUNC25:113
(a
'&' (a
'nor' b))
= (
O_el Y)
proof
thus (a
'&' (a
'nor' b))
= ((a
'&' (
'not' a))
'&' (
'not' b)) by
Th61
.= ((
O_el Y)
'&' (
'not' b)) by
BVFUNC_4: 5
.= (
O_el Y) by
BVFUNC_1: 5;
end;
theorem ::
BVFUNC25:114
(a
'or' (a
'nor' b))
= (a
'or' (
'not' b))
proof
thus (a
'or' (a
'nor' b))
= ((a
'or' (
'not' a))
'&' (a
'or' (
'not' b))) by
Th62
.= ((
I_el Y)
'&' (a
'or' (
'not' b))) by
BVFUNC_4: 6
.= (a
'or' (
'not' b)) by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:115
(a
'xor' (a
'nor' b))
= (a
'or' (
'not' b))
proof
thus (a
'xor' (a
'nor' b))
= ((a
'or' (
'not' (a
'or' b)))
'&' (((
'not' a)
'or' a)
'or' b)) by
Th63
.= ((a
'or' (
'not' (a
'or' b)))
'&' ((
I_el Y)
'or' b)) by
BVFUNC_4: 6
.= ((a
'or' (
'not' (a
'or' b)))
'&' (
I_el Y)) by
BVFUNC_1: 10
.= (a
'or' (
'not' (a
'or' b))) by
BVFUNC_1: 6
.= (a
'or' ((
'not' a)
'&' (
'not' b))) by
BVFUNC_1: 13
.= ((a
'or' (
'not' a))
'&' (a
'or' (
'not' b))) by
BVFUNC_1: 11
.= ((
I_el Y)
'&' (a
'or' (
'not' b))) by
BVFUNC_4: 6
.= (a
'or' (
'not' b)) by
BVFUNC_1: 6;
end;
theorem ::
BVFUNC25:116
(a
'eqv' (a
'nor' b))
= ((
'not' a)
'&' b)
proof
thus (a
'eqv' (a
'nor' b))
= (((a
'or' a)
'or' b)
'&' ((
'not' a)
'or' (
'not' (a
'or' b)))) by
Th64
.= (((a
'or' b)
'&' (
'not' a))
'or' ((a
'or' b)
'&' (
'not' (a
'or' b)))) by
BVFUNC_1: 12
.= (((a
'or' b)
'&' (
'not' a))
'or' (
O_el Y)) by
BVFUNC_4: 5
.= ((a
'or' b)
'&' (
'not' a)) by
BVFUNC_1: 9
.= ((a
'&' (
'not' a))
'or' (b
'&' (
'not' a))) by
BVFUNC_1: 12
.= ((
O_el Y)
'or' (b
'&' (
'not' a))) by
BVFUNC_4: 5
.= ((
'not' a)
'&' b) by
BVFUNC_1: 9;
end;
theorem ::
BVFUNC25:117
(a
'imp' (a
'nor' b))
= (
'not' (a
'or' (a
'&' b)))
proof
thus (a
'imp' (a
'nor' b))
= (
'not' (a
'&' (a
'or' b))) by
Th65
.= (
'not' ((a
'&' a)
'or' (a
'&' b))) by
BVFUNC_1: 12
.= (
'not' (a
'or' (a
'&' b)));
end;