conmetr1.miz
begin
reserve X for
AffinPlane;
reserve o,a,a1,a2,a3,a4,b,b1,b2,b3,b4,c,c1,c2,d,d1,d2,d3,d4,d5,e1,e2,x,y,z for
Element of X;
reserve Y,Z,M,N,A,K,C for
Subset of X;
definition
let X;
::
CONMETR1:def1
attr X is
satisfying_minor_Scherungssatz means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M
// N & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a4
in M & not a2
in M & not b2
in M & not b4
in M & not a1
in N & not a3
in N & not b1
in N & not b3
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
definition
let X;
::
CONMETR1:def2
attr X is
satisfying_major_Scherungssatz means for o, a1, a2, a3, a4, b1, b2, b3, b4, M, N st M is
being_line & N is
being_line & o
in M & o
in N & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a4
in M & not a2
in M & not b2
in M & not b4
in M & not a1
in N & not a3
in N & not b1
in N & not b3
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
definition
let X;
::
CONMETR1:def3
attr X is
satisfying_Scherungssatz means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M is
being_line & N is
being_line & a1
in M & a3
in M & b1
in M & b3
in M & a2
in N & a4
in N & b2
in N & b4
in N & not a4
in M & not a2
in M & not b2
in M & not b4
in M & not a1
in N & not a3
in N & not b1
in N & not b3
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
definition
let X;
::
CONMETR1:def4
attr X is
satisfying_indirect_Scherungssatz means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M is
being_line & N is
being_line & a1
in M & a3
in M & b2
in M & b4
in M & a2
in N & a4
in N & b1
in N & b3
in N & not a4
in M & not a2
in M & not b1
in M & not b3
in M & not a1
in N & not a3
in N & not b2
in N & not b4
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
definition
let X;
::
CONMETR1:def5
attr X is
satisfying_minor_indirect_Scherungssatz means for a1, a2, a3, a4, b1, b2, b3, b4, M, N st M
// N & a1
in M & a3
in M & b2
in M & b4
in M & a2
in N & a4
in N & b1
in N & b3
in N & not a4
in M & not a2
in M & not b1
in M & not b3
in M & not a1
in N & not a3
in N & not b2
in N & not b4
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
definition
let X;
::
CONMETR1:def6
attr X is
satisfying_major_indirect_Scherungssatz means for o, a1, a2, a3, a4, b1, b2, b3, b4, M, N st M is
being_line & N is
being_line & o
in M & o
in N & a1
in M & a3
in M & b2
in M & b4
in M & a2
in N & a4
in N & b1
in N & b3
in N & not a4
in M & not a2
in M & not b1
in M & not b3
in M & not a1
in N & not a3
in N & not b2
in N & not b4
in N & (a3,a2)
// (b3,b2) & (a2,a1)
// (b2,b1) & (a1,a4)
// (b1,b4) holds (a3,a4)
// (b3,b4);
end
theorem ::
CONMETR1:1
Th1: X is
satisfying_indirect_Scherungssatz iff X is
satisfying_minor_indirect_Scherungssatz & X is
satisfying_major_indirect_Scherungssatz
proof
A1: X is
satisfying_indirect_Scherungssatz implies X is
satisfying_minor_indirect_Scherungssatz
proof
assume
A2: X is
satisfying_indirect_Scherungssatz;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A3: M
// N and
A4: a1
in M and
A5: a3
in M and
A6: b2
in M and
A7: b4
in M and
A8: a2
in N and
A9: a4
in N and
A10: b1
in N and
A11: b3
in N and
A12: not a4
in M and
A13: not a2
in M and
A14: not b1
in M and
A15: not b3
in M and
A16: not a1
in N and
A17: not a3
in N and
A18: not b2
in N and
A19: not b4
in N and
A20: (a3,a2)
// (b3,b2) and
A21: (a2,a1)
// (b2,b1) and
A22: (a1,a4)
// (b1,b4);
A23: N is
being_line by
A3,
AFF_1: 36;
M is
being_line by
A3,
AFF_1: 36;
hence (a3,a4)
// (b3,b4) by
A2,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22,
A23;
end;
hence thesis;
end;
A24: X is
satisfying_minor_indirect_Scherungssatz & X is
satisfying_major_indirect_Scherungssatz implies X is
satisfying_indirect_Scherungssatz
proof
assume that
A25: X is
satisfying_minor_indirect_Scherungssatz and
A26: X is
satisfying_major_indirect_Scherungssatz;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A27: M is
being_line and
A28: N is
being_line and
A29: a1
in M and
A30: a3
in M and
A31: b2
in M and
A32: b4
in M and
A33: a2
in N and
A34: a4
in N and
A35: b1
in N and
A36: b3
in N and
A37: not a4
in M and
A38: not a2
in M and
A39: not b1
in M and
A40: not b3
in M and
A41: not a1
in N and
A42: not a3
in N and
A43: not b2
in N and
A44: not b4
in N and
A45: (a3,a2)
// (b3,b2) and
A46: (a2,a1)
// (b2,b1) and
A47: (a1,a4)
// (b1,b4);
now
assume not M
// N;
then ex o st o
in M & o
in N by
A27,
A28,
AFF_1: 58;
hence (a3,a4)
// (b3,b4) by
A26,
A27,
A28,
A29,
A30,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A47;
end;
hence (a3,a4)
// (b3,b4) by
A25,
A29,
A30,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A47;
end;
hence thesis;
end;
thus thesis by
A1,
A24;
end;
theorem ::
CONMETR1:2
Th2: X is
satisfying_Scherungssatz iff X is
satisfying_minor_Scherungssatz & X is
satisfying_major_Scherungssatz
proof
A1: X is
satisfying_Scherungssatz implies X is
satisfying_minor_Scherungssatz
proof
assume
A2: X is
satisfying_Scherungssatz;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A3: M
// N and
A4: a1
in M and
A5: a3
in M and
A6: b1
in M and
A7: b3
in M and
A8: a2
in N and
A9: a4
in N and
A10: b2
in N and
A11: b4
in N and
A12: not a4
in M and
A13: not a2
in M and
A14: not b2
in M and
A15: not b4
in M and
A16: not a1
in N and
A17: not a3
in N and
A18: not b1
in N and
A19: not b3
in N and
A20: (a3,a2)
// (b3,b2) and
A21: (a2,a1)
// (b2,b1) and
A22: (a1,a4)
// (b1,b4);
A23: N is
being_line by
A3,
AFF_1: 36;
M is
being_line by
A3,
AFF_1: 36;
hence (a3,a4)
// (b3,b4) by
A2,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22,
A23;
end;
hence thesis;
end;
A24: X is
satisfying_minor_Scherungssatz & X is
satisfying_major_Scherungssatz implies X is
satisfying_Scherungssatz
proof
assume that
A25: X is
satisfying_minor_Scherungssatz and
A26: X is
satisfying_major_Scherungssatz;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A27: M is
being_line and
A28: N is
being_line and
A29: a1
in M and
A30: a3
in M and
A31: b1
in M and
A32: b3
in M and
A33: a2
in N and
A34: a4
in N and
A35: b2
in N and
A36: b4
in N and
A37: not a4
in M and
A38: not a2
in M and
A39: not b2
in M and
A40: not b4
in M and
A41: not a1
in N and
A42: not a3
in N and
A43: not b1
in N and
A44: not b3
in N and
A45: (a3,a2)
// (b3,b2) and
A46: (a2,a1)
// (b2,b1) and
A47: (a1,a4)
// (b1,b4);
now
assume not M
// N;
then ex o st o
in M & o
in N by
A27,
A28,
AFF_1: 58;
hence (a3,a4)
// (b3,b4) by
A26,
A27,
A28,
A29,
A30,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A47;
end;
hence (a3,a4)
// (b3,b4) by
A25,
A29,
A30,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A47;
end;
hence thesis;
end;
thus thesis by
A1,
A24;
end;
theorem ::
CONMETR1:3
Th3: X is
satisfying_minor_indirect_Scherungssatz implies X is
satisfying_minor_Scherungssatz
proof
assume
A1: X is
satisfying_minor_indirect_Scherungssatz;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M
// N and
A3: a1
in M and
A4: a3
in M and
A5: b1
in M and
A6: b3
in M and
A7: a2
in N and
A8: a4
in N and
A9: b2
in N and
A10: b4
in N and
A11: not a4
in M and
A12: not a2
in M and
A13: not b2
in M and
A14: not b4
in M and
A15: not a1
in N and
A16: not a3
in N and
A17: not b1
in N and
A18: not b3
in N and
A19: (a3,a2)
// (b3,b2) and
A20: (a2,a1)
// (b2,b1) and
A21: (a1,a4)
// (b1,b4);
A22: N is
being_line by
A2,
AFF_1: 36;
then
consider d1 such that a2
<> d1 and
A23: d1
in N by
AFF_1: 20;
A24: not d1
in M by
A2,
A8,
A11,
A23,
AFF_1: 45;
A25: M is
being_line by
A2,
AFF_1: 36;
ex d2 st d2
in M & (a2,a1)
// (d2,d1)
proof
consider e1 such that
A26: a1
<> e1 and
A27: e1
in M by
A25,
AFF_1: 20;
consider e2 such that
A28: (a2,a1)
// (d1,e2) and
A29: d1
<> e2 by
DIRAF: 40;
not (a1,e1)
// (d1,e2)
proof
assume (a1,e1)
// (d1,e2);
then (a1,e1)
// (a2,a1) by
A28,
A29,
AFF_1: 5;
then (a1,e1)
// (a1,a2) by
AFF_1: 4;
then
LIN (a1,e1,a2) by
AFF_1:def 1;
hence contradiction by
A3,
A12,
A25,
A26,
A27,
AFF_1: 25;
end;
then
consider d2 such that
A30:
LIN (a1,e1,d2) and
A31:
LIN (d1,e2,d2) by
AFF_1: 60;
take d2;
(d1,e2)
// (d1,d2) by
A31,
AFF_1:def 1;
then (a2,a1)
// (d1,d2) by
A28,
A29,
AFF_1: 5;
hence thesis by
A3,
A25,
A26,
A27,
A30,
AFF_1: 4,
AFF_1: 25;
end;
then
consider d2 such that
A32: d2
in M and
A33: (a2,a1)
// (d2,d1);
A34: not d2
in N by
A2,
A8,
A11,
A32,
AFF_1: 45;
ex d3 st d3
in N & (a3,a2)
// (d3,d2)
proof
consider e1 such that
A35: a2
<> e1 and
A36: e1
in N by
A22,
AFF_1: 20;
consider e2 such that
A37: (a3,a2)
// (d2,e2) and
A38: d2
<> e2 by
DIRAF: 40;
not (a2,e1)
// (d2,e2)
proof
assume (a2,e1)
// (d2,e2);
then (a2,e1)
// (a3,a2) by
A37,
A38,
AFF_1: 5;
then (a2,e1)
// (a2,a3) by
AFF_1: 4;
then
LIN (a2,e1,a3) by
AFF_1:def 1;
hence contradiction by
A7,
A16,
A22,
A35,
A36,
AFF_1: 25;
end;
then
consider d3 such that
A39:
LIN (a2,e1,d3) and
A40:
LIN (d2,e2,d3) by
AFF_1: 60;
take d3;
(d2,e2)
// (d2,d3) by
A40,
AFF_1:def 1;
then (a3,a2)
// (d2,d3) by
A37,
A38,
AFF_1: 5;
hence thesis by
A7,
A22,
A35,
A36,
A39,
AFF_1: 4,
AFF_1: 25;
end;
then
consider d3 such that
A41: d3
in N and
A42: (a3,a2)
// (d3,d2);
A43: not d3
in M by
A2,
A8,
A11,
A41,
AFF_1: 45;
ex d4 st d4
in M & (a1,a4)
// (d1,d4)
proof
consider e1 such that
A44: a1
<> e1 and
A45: e1
in M by
A25,
AFF_1: 20;
consider e2 such that
A46: (a1,a4)
// (d1,e2) and
A47: d1
<> e2 by
DIRAF: 40;
not (a1,e1)
// (d1,e2)
proof
assume (a1,e1)
// (d1,e2);
then (a1,e1)
// (a1,a4) by
A46,
A47,
AFF_1: 5;
then
LIN (a1,e1,a4) by
AFF_1:def 1;
hence contradiction by
A3,
A11,
A25,
A44,
A45,
AFF_1: 25;
end;
then
consider d4 such that
A48:
LIN (a1,e1,d4) and
A49:
LIN (d1,e2,d4) by
AFF_1: 60;
take d4;
(d1,e2)
// (d1,d4) by
A49,
AFF_1:def 1;
hence thesis by
A3,
A25,
A44,
A45,
A46,
A47,
A48,
AFF_1: 5,
AFF_1: 25;
end;
then
consider d4 such that
A50: d4
in M and
A51: (a1,a4)
// (d1,d4);
A52: not d4
in N by
A2,
A8,
A11,
A50,
AFF_1: 45;
A53: (b2,b1)
// (d2,d1) by
A3,
A12,
A20,
A33,
AFF_1: 5;
A54: (b1,b4)
// (d1,d4) by
A3,
A11,
A21,
A51,
AFF_1: 5;
(b3,b2)
// (d3,d2) by
A4,
A12,
A19,
A42,
AFF_1: 5;
then
A55: (b3,b4)
// (d3,d4) by
A1,
A2,
A5,
A6,
A9,
A10,
A13,
A14,
A17,
A18,
A23,
A32,
A41,
A50,
A24,
A43,
A34,
A52,
A53,
A54;
(a3,a4)
// (d3,d4) by
A1,
A2,
A3,
A4,
A7,
A8,
A11,
A12,
A15,
A16,
A23,
A32,
A33,
A41,
A42,
A50,
A51,
A24,
A43,
A34,
A52;
hence (a3,a4)
// (b3,b4) by
A50,
A43,
A55,
AFF_1: 5;
end;
hence thesis;
end;
theorem ::
CONMETR1:4
Th4: X is
satisfying_major_indirect_Scherungssatz implies X is
satisfying_major_Scherungssatz
proof
assume
A1: X is
satisfying_major_indirect_Scherungssatz;
now
let o, a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M is
being_line and
A3: N is
being_line and
A4: o
in M and
A5: o
in N and
A6: a1
in M and
A7: a3
in M and
A8: b1
in M and
A9: b3
in M and
A10: a2
in N and
A11: a4
in N and
A12: b2
in N and
A13: b4
in N and
A14: not a4
in M and
A15: not a2
in M and
A16: not b2
in M and
A17: not b4
in M and
A18: not a1
in N and
A19: not a3
in N and
A20: not b1
in N and
A21: not b3
in N and
A22: (a3,a2)
// (b3,b2) and
A23: (a2,a1)
// (b2,b1) and
A24: (a1,a4)
// (b1,b4);
A25:
now
assume that
A26: a1
<> a3 and
A27: a2
<> a4;
consider d1 such that
A28: o
<> d1 and
A29: d1
in N by
A4,
A11,
A14;
A30: ex d4 st d4
in M & (a1,a4)
// (d1,d4)
proof
consider e1 such that
A31: o
<> e1 and
A32: e1
in M by
A5,
A6,
A18;
consider e2 such that
A33: (a1,a4)
// (d1,e2) and
A34: d1
<> e2 by
DIRAF: 40;
not (o,e1)
// (d1,e2)
proof
assume (o,e1)
// (d1,e2);
then
A35: (o,e1)
// (a1,a4) by
A33,
A34,
AFF_1: 5;
(o,e1)
// (a1,a3) by
A2,
A4,
A6,
A7,
A32,
AFF_1: 39,
AFF_1: 41;
then (a1,a3)
// (a1,a4) by
A31,
A35,
AFF_1: 5;
then
LIN (a1,a3,a4) by
AFF_1:def 1;
hence contradiction by
A2,
A6,
A7,
A14,
A26,
AFF_1: 25;
end;
then
consider d4 such that
A36:
LIN (o,e1,d4) and
A37:
LIN (d1,e2,d4) by
AFF_1: 60;
take d4;
(d1,e2)
// (d1,d4) by
A37,
AFF_1:def 1;
hence thesis by
A2,
A4,
A31,
A32,
A33,
A34,
A36,
AFF_1: 5,
AFF_1: 25;
end;
A38: ex d2 st d2
in M & (a2,a1)
// (d2,d1)
proof
consider e1 such that
A39: o
<> e1 and
A40: e1
in M by
A5,
A6,
A18;
consider e2 such that
A41: (a2,a1)
// (d1,e2) and
A42: d1
<> e2 by
DIRAF: 40;
not (o,e1)
// (d1,e2)
proof
assume (o,e1)
// (d1,e2);
then
A43: (o,e1)
// (a2,a1) by
A41,
A42,
AFF_1: 5;
(o,e1)
// (a1,a3) by
A2,
A4,
A6,
A7,
A40,
AFF_1: 39,
AFF_1: 41;
then (a1,a3)
// (a2,a1) by
A39,
A43,
AFF_1: 5;
then (a1,a3)
// (a1,a2) by
AFF_1: 4;
then
LIN (a1,a3,a2) by
AFF_1:def 1;
hence contradiction by
A2,
A6,
A7,
A15,
A26,
AFF_1: 25;
end;
then
consider d2 such that
A44:
LIN (o,e1,d2) and
A45:
LIN (d1,e2,d2) by
AFF_1: 60;
take d2;
(d1,e2)
// (d1,d2) by
A45,
AFF_1:def 1;
then (a2,a1)
// (d1,d2) by
A41,
A42,
AFF_1: 5;
hence thesis by
A2,
A4,
A39,
A40,
A44,
AFF_1: 4,
AFF_1: 25;
end;
consider d4 such that
A46: d4
in M and
A47: (a1,a4)
// (d1,d4) by
A30;
consider d2 such that
A48: d2
in M and
A49: (a2,a1)
// (d2,d1) by
A38;
A50: (b2,b1)
// (d2,d1) by
A6,
A15,
A23,
A49,
AFF_1: 5;
ex d3 st d3
in N & (a3,a2)
// (d3,d2)
proof
consider e1 such that
A51: o
<> e1 and
A52: e1
in N by
A4,
A11,
A14;
consider e2 such that
A53: (a3,a2)
// (d2,e2) and
A54: d2
<> e2 by
DIRAF: 40;
not (o,e1)
// (d2,e2)
proof
assume (o,e1)
// (d2,e2);
then
A55: (o,e1)
// (a3,a2) by
A53,
A54,
AFF_1: 5;
(o,e1)
// (a2,a4) by
A3,
A5,
A10,
A11,
A52,
AFF_1: 39,
AFF_1: 41;
then (a2,a4)
// (a3,a2) by
A51,
A55,
AFF_1: 5;
then (a2,a4)
// (a2,a3) by
AFF_1: 4;
then
LIN (a2,a4,a3) by
AFF_1:def 1;
hence contradiction by
A3,
A10,
A11,
A19,
A27,
AFF_1: 25;
end;
then
consider d3 such that
A56:
LIN (o,e1,d3) and
A57:
LIN (d2,e2,d3) by
AFF_1: 60;
take d3;
(d2,e2)
// (d2,d3) by
A57,
AFF_1:def 1;
then (a3,a2)
// (d2,d3) by
A53,
A54,
AFF_1: 5;
hence thesis by
A3,
A5,
A51,
A52,
A56,
AFF_1: 4,
AFF_1: 25;
end;
then
consider d3 such that
A58: d3
in N and
A59: (a3,a2)
// (d3,d2);
A60: d2
<> o & d3
<> o & d4
<> o
proof
A61:
now
assume
A62: d4
= o;
(d1,o)
// (a2,a4) by
A3,
A5,
A10,
A11,
A29,
AFF_1: 39,
AFF_1: 41;
then (a1,a4)
// (a2,a4) by
A28,
A47,
A62,
AFF_1: 5;
then (a4,a2)
// (a4,a1) by
AFF_1: 4;
then
LIN (a4,a2,a1) by
AFF_1:def 1;
hence contradiction by
A3,
A10,
A11,
A18,
A27,
AFF_1: 25;
end;
A63:
now
assume
A64: d2
= o;
(o,d1)
// (a2,a4) by
A3,
A5,
A10,
A11,
A29,
AFF_1: 39,
AFF_1: 41;
then (a2,a4)
// (a2,a1) by
A28,
A49,
A64,
AFF_1: 5;
then
LIN (a2,a4,a1) by
AFF_1:def 1;
hence contradiction by
A3,
A10,
A11,
A18,
A27,
AFF_1: 25;
end;
A65:
now
assume
A66: d3
= o;
(o,d2)
// (a3,a1) by
A2,
A4,
A6,
A7,
A48,
AFF_1: 39,
AFF_1: 41;
then (a3,a1)
// (a3,a2) by
A59,
A63,
A66,
AFF_1: 5;
then
LIN (a3,a1,a2) by
AFF_1:def 1;
hence contradiction by
A2,
A6,
A7,
A15,
A26,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A63,
A65,
A61;
end;
A67: not d1
in M & not d3
in M & not d2
in N & not d4
in N
proof
assume not thesis;
then
A68: (o,d1)
// M or (o,d3)
// M or (o,d2)
// N or (o,d4)
// N by
A2,
A3,
A4,
A5,
AFF_1: 52;
A69: (o,d3)
// N by
A3,
A5,
A58,
AFF_1: 52;
A70: (o,d4)
// M by
A2,
A4,
A46,
AFF_1: 52;
A71: (o,d2)
// M by
A2,
A4,
A48,
AFF_1: 52;
(o,d1)
// N by
A3,
A5,
A29,
AFF_1: 52;
hence contradiction by
A4,
A5,
A11,
A14,
A28,
A60,
A68,
A69,
A71,
A70,
AFF_1: 45,
AFF_1: 53;
end;
A72: (b1,b4)
// (d1,d4) by
A6,
A14,
A24,
A47,
AFF_1: 5;
A73: d1
<> d2 & d2
<> d3 & d3
<> d4 & d4
<> d1
proof
assume not thesis;
then
A74: (o,d1)
// M or (o,d3)
// M by
A2,
A4,
A48,
A46,
AFF_1: 52;
A75: (o,d3)
// N by
A3,
A5,
A58,
AFF_1: 52;
(o,d1)
// N by
A3,
A5,
A29,
AFF_1: 52;
hence contradiction by
A4,
A5,
A11,
A14,
A28,
A60,
A74,
A75,
AFF_1: 45,
AFF_1: 53;
end;
(b3,b2)
// (d3,d2) by
A7,
A15,
A22,
A59,
AFF_1: 5;
then
A76: (b3,b4)
// (d3,d4) by
A1,
A2,
A3,
A4,
A5,
A8,
A9,
A12,
A13,
A16,
A17,
A20,
A21,
A29,
A48,
A58,
A46,
A67,
A50,
A72;
(a3,a4)
// (d3,d4) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A10,
A11,
A14,
A15,
A18,
A19,
A29,
A48,
A49,
A58,
A59,
A46,
A47,
A67;
hence (a3,a4)
// (b3,b4) by
A73,
A76,
AFF_1: 5;
end;
now
A77:
now
(o,b2)
// (o,b4) by
A3,
A5,
A12,
A13,
AFF_1: 39,
AFF_1: 41;
then
A78:
LIN (o,b2,b4) by
AFF_1:def 1;
assume
A79: a2
= a4;
then (a1,a4)
// (b1,b2) by
A23,
AFF_1: 4;
then (b1,b2)
// (b1,b4) by
A6,
A14,
A24,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A2,
A4,
A5,
A8,
A16,
A20,
A22,
A79,
A78,
AFF_1: 14,
AFF_1: 25;
end;
A80:
now
(o,b1)
// (o,b3) by
A2,
A4,
A8,
A9,
AFF_1: 39,
AFF_1: 41;
then
A81:
LIN (o,b1,b3) by
AFF_1:def 1;
assume
A82: a1
= a3;
then (a2,a1)
// (b2,b3) by
A22,
AFF_1: 4;
then (b2,b1)
// (b2,b3) by
A6,
A15,
A23,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A3,
A4,
A5,
A12,
A16,
A20,
A24,
A82,
A81,
AFF_1: 14,
AFF_1: 25;
end;
assume a1
= a3 or a2
= a4;
hence (a3,a4)
// (b3,b4) by
A80,
A77;
end;
hence (a3,a4)
// (b3,b4) by
A25;
end;
hence thesis;
end;
theorem ::
CONMETR1:5
X is
satisfying_indirect_Scherungssatz implies X is
satisfying_Scherungssatz
proof
assume
A1: X is
satisfying_indirect_Scherungssatz;
then X is
satisfying_major_indirect_Scherungssatz;
then
A2: X is
satisfying_major_Scherungssatz by
Th4;
X is
satisfying_minor_indirect_Scherungssatz by
A1,
Th1;
then X is
satisfying_minor_Scherungssatz by
Th3;
hence thesis by
A2,
Th2;
end;
theorem ::
CONMETR1:6
Th6: X is
translational implies X is
satisfying_minor_Scherungssatz
proof
assume
A1: X is
translational;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M
// N and
A3: a1
in M and
A4: a3
in M and
A5: b1
in M and
A6: b3
in M and
A7: a2
in N and
A8: a4
in N and
A9: b2
in N and
A10: b4
in N and
A11: not a4
in M and
A12: not a2
in M and
A13: not b2
in M and not b4
in M and
A14: not a1
in N and
A15: not a3
in N and
A16: not b1
in N and not b3
in N and
A17: (a3,a2)
// (b3,b2) and
A18: (a2,a1)
// (b2,b1) and
A19: (a1,a4)
// (b1,b4);
A20: M is
being_line by
A2,
AFF_1: 36;
A21: N is
being_line by
A2,
AFF_1: 36;
A22:
now
assume that
A23: a1
<> a3 and
A24: a2
<> a4;
A25:
now
assume ex x, y, z st
LIN (x,y,z) & x
<> y & x
<> z & y
<> z;
then
consider d such that
A26:
LIN (a1,a2,d) and
A27: a1
<> d and
A28: a2
<> d by
TRANSLAC: 1;
A29: ex Y st Y is
being_line & d
in Y & Y
// M
proof
consider Y such that
A30: d
in Y and
A31: M
// Y by
A20,
AFF_1: 49;
take Y;
thus thesis by
A30,
A31,
AFF_1: 36;
end;
LIN (a2,a1,d) by
A26,
AFF_1: 6;
then (a2,a1)
// (a2,d) by
AFF_1:def 1;
then
A32: (b2,b1)
// (a2,d) by
A3,
A12,
A18,
AFF_1: 5;
A33: (a2,a3)
// (b2,b3) by
A17,
AFF_1: 4;
consider Y such that
A34: Y is
being_line and
A35: d
in Y and
A36: Y
// M by
A29;
A37: Y
// N by
A2,
A36,
AFF_1: 44;
A38: N
<> M & N
<> Y & Y
<> M
proof
A39:
now
LIN (a2,d,a1) by
A26,
AFF_1: 6;
then
A40: (a2,d)
// (a2,a1) by
AFF_1:def 1;
assume N
= Y;
then (a2,d)
// (a2,a4) by
A7,
A8,
A34,
A35,
AFF_1: 39,
AFF_1: 41;
then (a2,a4)
// (a2,a1) by
A28,
A40,
AFF_1: 5;
then
LIN (a2,a4,a1) by
AFF_1:def 1;
hence contradiction by
A7,
A8,
A14,
A21,
A24,
AFF_1: 25;
end;
A41:
now
assume Y
= M;
then
A42: (a1,d)
// (a1,a3) by
A3,
A4,
A35,
A36,
AFF_1: 39;
(a1,a2)
// (a1,d) by
A26,
AFF_1:def 1;
then (a1,a3)
// (a1,a2) by
A27,
A42,
AFF_1: 5;
then
LIN (a1,a3,a2) by
AFF_1:def 1;
hence contradiction by
A3,
A4,
A12,
A20,
A23,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A8,
A11,
A39,
A41;
end;
A43: Y
// Y by
A34,
AFF_1: 41;
ex d1 st d1
in Y & (b1,b2)
// (b1,d1)
proof
consider e1 such that
A44: d
<> e1 and
A45: e1
in Y by
A34,
AFF_1: 20;
consider e2 such that
A46: (b1,b2)
// (b1,e2) and
A47: b1
<> e2 by
DIRAF: 40;
not (d,e1)
// (b1,e2)
proof
assume (d,e1)
// (b1,e2);
then (d,e1)
// (b1,b2) by
A46,
A47,
AFF_1: 5;
then
A48: (b1,b2)
// Y by
A35,
A43,
A44,
A45,
AFF_1: 32,
AFF_1: 40;
(a1,a3)
// Y by
A3,
A4,
A36,
AFF_1: 40;
then (a1,a3)
// (b1,b2) by
A34,
A48,
AFF_1: 31;
then (a1,a3)
// (b2,b1) by
AFF_1: 4;
then (a1,a3)
// (a2,a1) by
A5,
A13,
A18,
AFF_1: 5;
then (a1,a3)
// (a1,a2) by
AFF_1: 4;
then
LIN (a1,a3,a2) by
AFF_1:def 1;
hence contradiction by
A3,
A4,
A12,
A20,
A23,
AFF_1: 25;
end;
then
consider d1 such that
A49:
LIN (d,e1,d1) and
A50:
LIN (b1,e2,d1) by
AFF_1: 60;
take d1;
(b1,e2)
// (b1,d1) by
A50,
AFF_1:def 1;
hence thesis by
A34,
A35,
A44,
A45,
A46,
A47,
A49,
AFF_1: 5,
AFF_1: 25;
end;
then
consider d1 such that
A51: d1
in Y and
A52: (b1,b2)
// (b1,d1);
(a1,a2)
// (a1,d) by
A26,
AFF_1:def 1;
then (a2,a1)
// (a1,d) by
AFF_1: 4;
then (b2,b1)
// (a1,d) by
A3,
A12,
A18,
AFF_1: 5;
then (b1,b2)
// (a1,d) by
AFF_1: 4;
then (a1,d)
// (b1,d1) by
A5,
A13,
A52,
AFF_1: 5;
then
A53: (d,a4)
// (d1,b4) by
A1,
A2,
A3,
A5,
A8,
A10,
A19,
A20,
A21,
A34,
A35,
A36,
A51,
A38,
AFF_2:def 11;
LIN (b1,b2,d1) by
A52,
AFF_1:def 1;
then
LIN (b2,b1,d1) by
AFF_1: 6;
then (b2,b1)
// (b2,d1) by
AFF_1:def 1;
then
A54: (a2,d)
// (b2,d1) by
A5,
A13,
A32,
AFF_1: 5;
N
// Y by
A2,
A36,
AFF_1: 44;
then (d,a3)
// (d1,b3) by
A1,
A2,
A4,
A6,
A7,
A9,
A20,
A21,
A34,
A35,
A51,
A38,
A54,
A33,
AFF_2:def 11;
hence (a3,a4)
// (b3,b4) by
A1,
A4,
A6,
A8,
A10,
A20,
A21,
A34,
A35,
A36,
A51,
A38,
A53,
A37,
AFF_2:def 11;
end;
now
assume
A55: not ex x, y, z st
LIN (x,y,z) & x
<> y & x
<> z & y
<> z;
A56:
now
assume
A57: a1
= b1;
then
A58:
LIN (a1,a4,b4) by
A19,
AFF_1:def 1;
(a1,a2)
// (a1,b2) by
A18,
A57,
AFF_1: 4;
then
A59:
LIN (a1,a2,b2) by
AFF_1:def 1;
(a2,b2)
// M by
A2,
A7,
A9,
AFF_1: 40;
then a2
= b2 by
A3,
A12,
A59,
AFF_1: 46;
then (a2,a3)
// (a2,b3) by
A17,
AFF_1: 4;
then
A60:
LIN (a2,a3,b3) by
AFF_1:def 1;
(a3,b3)
// N by
A2,
A4,
A6,
AFF_1: 40;
then
A61: a3
= b3 by
A7,
A15,
A60,
AFF_1: 46;
(a4,b4)
// M by
A2,
A8,
A10,
AFF_1: 40;
then a4
= b4 by
A3,
A11,
A58,
AFF_1: 46;
hence (a3,a4)
// (b3,b4) by
A61,
AFF_1: 2;
end;
A62:
now
assume
A63: a3
= b1;
A64:
now
A65: a4
<> b4
proof
assume a4
= b4;
then (a4,a1)
// (a4,b1) by
A19,
AFF_1: 4;
then
A66:
LIN (a4,a1,b1) by
AFF_1:def 1;
(a1,b1)
// N by
A2,
A3,
A5,
AFF_1: 40;
hence contradiction by
A8,
A14,
A23,
A63,
A66,
AFF_1: 46;
end;
(a2,a4)
// (a2,b4) by
A7,
A8,
A10,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (a2,a4,b4) by
AFF_1:def 1;
then
A67: a2
= b4 by
A24,
A55,
A65;
assume
A68: a4
= b2;
A69: a3
<> b3
proof
assume a3
= b3;
then
A70:
LIN (a3,a2,b2) by
A17,
AFF_1:def 1;
(a2,b2)
// M by
A2,
A7,
A9,
AFF_1: 40;
hence contradiction by
A4,
A12,
A24,
A68,
A70,
AFF_1: 46;
end;
(a1,a3)
// (a1,b3) by
A3,
A4,
A6,
A20,
AFF_1: 39,
AFF_1: 41;
then
LIN (a1,a3,b3) by
AFF_1:def 1;
then
A71: a1
= b3 by
A23,
A55,
A69;
(a3,a4)
// (b2,b1) by
A63,
A68,
AFF_1: 2;
then (a3,a4)
// (a2,a1) by
A5,
A13,
A18,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A71,
A67,
AFF_1: 4;
end;
A72:
now
assume a2
= b2;
then
A73:
LIN (a2,a1,b1) by
A18,
AFF_1:def 1;
(a1,b1)
// N by
A2,
A3,
A5,
AFF_1: 40;
hence (a3,a4)
// (b3,b4) by
A7,
A14,
A56,
A73,
AFF_1: 46;
end;
(a2,a4)
// (a2,b2) by
A7,
A8,
A9,
A21,
AFF_1: 39,
AFF_1: 41;
then
LIN (a2,a4,b2) by
AFF_1:def 1;
hence (a3,a4)
// (b3,b4) by
A24,
A55,
A64,
A72;
end;
(a1,a3)
// (a1,b1) by
A3,
A4,
A5,
A20,
AFF_1: 39,
AFF_1: 41;
then
LIN (a1,a3,b1) by
AFF_1:def 1;
hence (a3,a4)
// (b3,b4) by
A23,
A55,
A56,
A62;
end;
hence (a3,a4)
// (b3,b4) by
A25;
end;
now
A74:
now
assume
A75: a1
= a3;
b1
= b3
proof
LIN (a2,a1,a3) by
A75,
AFF_1: 7;
then (a2,a1)
// (a2,a3) by
AFF_1:def 1;
then (b2,b1)
// (a2,a3) by
A3,
A12,
A18,
AFF_1: 5;
then (b2,b1)
// (a3,a2) by
AFF_1: 4;
then (b2,b1)
// (b3,b2) by
A4,
A12,
A17,
AFF_1: 5;
then (b2,b1)
// (b2,b3) by
AFF_1: 4;
then
A76:
LIN (b2,b1,b3) by
AFF_1:def 1;
assume
A77: b1
<> b3;
(b1,b3)
// N by
A2,
A5,
A6,
AFF_1: 40;
hence contradiction by
A9,
A16,
A77,
A76,
AFF_1: 46;
end;
hence (a3,a4)
// (b3,b4) by
A19,
A75;
end;
A78:
now
assume
A79: a2
= a4;
then
LIN (a1,a4,a2) by
AFF_1: 7;
then (a1,a4)
// (a1,a2) by
AFF_1:def 1;
then (b1,b4)
// (a1,a2) by
A3,
A11,
A19,
AFF_1: 5;
then (b1,b4)
// (a2,a1) by
AFF_1: 4;
then (b1,b4)
// (b2,b1) by
A3,
A12,
A18,
AFF_1: 5;
then (b1,b2)
// (b1,b4) by
AFF_1: 4;
then
A80:
LIN (b1,b2,b4) by
AFF_1:def 1;
(b2,b4)
// M by
A2,
A9,
A10,
AFF_1: 40;
hence (a3,a4)
// (b3,b4) by
A5,
A13,
A17,
A79,
A80,
AFF_1: 46;
end;
assume a1
= a3 or a2
= a4;
hence (a3,a4)
// (b3,b4) by
A74,
A78;
end;
hence (a3,a4)
// (b3,b4) by
A22;
end;
hence thesis;
end;
theorem ::
CONMETR1:7
Th7: X is
Desarguesian implies X is
satisfying_major_Scherungssatz
proof
assume
A1: X is
Desarguesian;
now
let o, a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A2: M is
being_line and
A3: N is
being_line and
A4: o
in M and
A5: o
in N and
A6: a1
in M and
A7: a3
in M and
A8: b1
in M and
A9: b3
in M and
A10: a2
in N and
A11: a4
in N and
A12: b2
in N and
A13: b4
in N and
A14: not a4
in M and
A15: not a2
in M and
A16: not b2
in M and not b4
in M and
A17: not a1
in N and
A18: not a3
in N and
A19: not b1
in N and not b3
in N and
A20: (a3,a2)
// (b3,b2) and
A21: (a2,a1)
// (b2,b1) and
A22: (a1,a4)
// (b1,b4);
A23:
now
A24:
now
assume ex x, y, z st
LIN (x,y,z) & x
<> y & x
<> z & y
<> z;
then
consider d such that
A25:
LIN (a1,a2,d) and
A26: a1
<> d and
A27: a2
<> d by
TRANSLAC: 1;
LIN (o,d,d) by
AFF_1: 7;
then
consider Y such that
A28: Y is
being_line and
A29: o
in Y and
A30: d
in Y and d
in Y by
AFF_1: 21;
(a1,a2)
// (a1,d) by
A25,
AFF_1:def 1;
then (a2,a1)
// (a1,d) by
AFF_1: 4;
then
A31: (b2,b1)
// (a1,d) by
A6,
A15,
A21,
AFF_1: 5;
A32: N
<> M & N
<> Y & M
<> Y
proof
A33:
now
A34:
LIN (a1,d,a2) by
A25,
AFF_1: 6;
assume
A35: N
= Y or M
= Y;
LIN (a2,d,a1) by
A25,
AFF_1: 6;
hence contradiction by
A2,
A3,
A6,
A10,
A15,
A17,
A26,
A27,
A30,
A35,
A34,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A11,
A14,
A33;
end;
A36: ex d1 st
LIN (b1,b2,d1) & d1
in Y
proof
not (b1,b2)
// (o,d)
proof
A37: o
<> d
proof
assume o
= d;
then
LIN (o,a1,a2) by
A25,
AFF_1: 6;
hence contradiction by
A2,
A4,
A5,
A6,
A15,
A17,
AFF_1: 25;
end;
assume (b1,b2)
// (o,d);
then (b2,b1)
// (o,d) by
AFF_1: 4;
then
A38: (a2,a1)
// (o,d) by
A8,
A16,
A21,
AFF_1: 5;
(a1,a2)
// (a1,d) by
A25,
AFF_1:def 1;
then (a2,a1)
// (a1,d) by
AFF_1: 4;
then (a1,d)
// (o,d) by
A6,
A15,
A38,
AFF_1: 5;
then (d,o)
// (d,a1) by
AFF_1: 4;
then
LIN (d,o,a1) by
AFF_1:def 1;
then
LIN (o,d,a1) by
AFF_1: 6;
then (o,d)
// (o,a1) by
AFF_1:def 1;
then
A39: Y
// M by
A2,
A4,
A5,
A6,
A17,
A28,
A29,
A30,
A37,
AFF_1: 38;
LIN (a2,a1,d) by
A25,
AFF_1: 6;
then (a2,a1)
// (a2,d) by
AFF_1:def 1;
then (a2,d)
// (o,d) by
A6,
A15,
A38,
AFF_1: 5;
then (d,a2)
// (d,o) by
AFF_1: 4;
then
LIN (d,a2,o) by
AFF_1:def 1;
then
LIN (o,d,a2) by
AFF_1: 6;
then (o,d)
// (o,a2) by
AFF_1:def 1;
then Y
// N by
A3,
A4,
A5,
A10,
A15,
A28,
A29,
A30,
A37,
AFF_1: 38;
then M
// N by
A39,
AFF_1: 44;
hence contradiction by
A4,
A5,
A11,
A14,
AFF_1: 45;
end;
then
consider d1 such that
A40:
LIN (b1,b2,d1) and
A41:
LIN (o,d,d1) by
AFF_1: 60;
take d1;
o
<> d
proof
assume o
= d;
then
LIN (o,a1,a2) by
A25,
AFF_1: 6;
hence contradiction by
A2,
A4,
A5,
A6,
A15,
A17,
AFF_1: 25;
end;
hence thesis by
A28,
A29,
A30,
A40,
A41,
AFF_1: 25;
end;
LIN (a2,a1,d) by
A25,
AFF_1: 6;
then (a2,a1)
// (a2,d) by
AFF_1:def 1;
then
A42: (b2,b1)
// (a2,d) by
A6,
A15,
A21,
AFF_1: 5;
A43: o
<> d
proof
assume o
= d;
then
LIN (o,a1,a2) by
A25,
AFF_1: 6;
hence contradiction by
A2,
A4,
A5,
A6,
A15,
A17,
AFF_1: 25;
end;
consider d1 such that
A44:
LIN (b1,b2,d1) and
A45: d1
in Y by
A36;
(b1,b2)
// (b1,d1) by
A44,
AFF_1:def 1;
then (b2,b1)
// (b1,d1) by
AFF_1: 4;
then (a1,d)
// (b1,d1) by
A8,
A16,
A31,
AFF_1: 5;
then
A46: (d,a4)
// (d1,b4) by
A1,
A2,
A3,
A4,
A5,
A6,
A8,
A11,
A13,
A14,
A17,
A22,
A28,
A29,
A30,
A45,
A43,
A32,
AFF_2:def 4;
LIN (b2,b1,d1) by
A44,
AFF_1: 6;
then (b2,b1)
// (b2,d1) by
AFF_1:def 1;
then
A47: (a2,d)
// (b2,d1) by
A8,
A16,
A42,
AFF_1: 5;
(a2,a3)
// (b2,b3) by
A20,
AFF_1: 4;
then (d,a3)
// (d1,b3) by
A1,
A2,
A3,
A4,
A5,
A7,
A9,
A10,
A12,
A15,
A18,
A28,
A29,
A30,
A45,
A43,
A32,
A47,
AFF_2:def 4;
hence (a3,a4)
// (b3,b4) by
A1,
A2,
A3,
A4,
A5,
A7,
A9,
A11,
A13,
A14,
A18,
A28,
A29,
A30,
A45,
A43,
A32,
A46,
AFF_2:def 4;
end;
assume that
A48: a1
<> a3 and
A49: a2
<> a4;
now
assume
A50: not ex x, y, z st
LIN (x,y,z) & x
<> y & x
<> z & y
<> z;
A51:
now
assume
A52: a1
= b1;
A53: a2
<> b4
proof
assume a2
= b4;
then
LIN (a1,a4,a2) by
A22,
A52,
AFF_1:def 1;
then
LIN (a2,a4,a1) by
AFF_1: 6;
hence contradiction by
A3,
A10,
A11,
A17,
A49,
AFF_1: 25;
end;
A54: a1
<> b3
proof
assume a1
= b3;
then (b2,b1)
// (a2,a3) by
A20,
A52,
AFF_1: 4;
then
A55: (a2,a1)
// (a2,a3) by
A8,
A16,
A21,
AFF_1: 5;
LIN (o,a1,a3) by
A2,
A4,
A6,
A7,
AFF_1: 21;
hence contradiction by
A3,
A4,
A5,
A10,
A15,
A17,
A48,
A55,
AFF_1: 14,
AFF_1: 25;
end;
LIN (a2,a4,b4) by
A3,
A10,
A11,
A13,
AFF_1: 21;
then
A56: a2
= b4 or a4
= b4 by
A49,
A50;
LIN (a1,a3,b3) by
A2,
A6,
A7,
A9,
AFF_1: 21;
then a3
= b3 by
A48,
A50,
A54;
hence (a3,a4)
// (b3,b4) by
A56,
A53,
AFF_1: 2;
end;
A57:
now
assume
A58: a3
= b1;
A59: a2
<> b2
proof
assume a2
= b2;
then
LIN (a2,a1,a3) by
A21,
A58,
AFF_1:def 1;
then
LIN (a1,a3,a2) by
AFF_1: 6;
hence contradiction by
A2,
A6,
A7,
A15,
A48,
AFF_1: 25;
end;
A60: a3
<> b3
proof
assume a3
= b3;
then (a3,a2)
// (b2,b1) by
A20,
A58,
AFF_1: 4;
then (a3,a2)
// (a2,a1) by
A8,
A16,
A21,
AFF_1: 5;
then (a2,a3)
// (a2,a1) by
AFF_1: 4;
then
LIN (a2,a3,a1) by
AFF_1:def 1;
then
LIN (a1,a3,a2) by
AFF_1: 6;
hence contradiction by
A2,
A6,
A7,
A15,
A48,
AFF_1: 25;
end;
A61: a4
<> b4
proof
assume a4
= b4;
then (a4,a1)
// (a4,a3) by
A22,
A58,
AFF_1: 4;
then
LIN (a4,a1,a3) by
AFF_1:def 1;
then
LIN (a1,a3,a4) by
AFF_1: 6;
hence contradiction by
A2,
A6,
A7,
A14,
A48,
AFF_1: 25;
end;
LIN (a2,a4,b4) by
A3,
A10,
A11,
A13,
AFF_1: 21;
then
A62: a2
= b4 by
A49,
A50,
A61;
LIN (a2,a4,b2) by
A3,
A10,
A11,
A12,
AFF_1: 21;
then a4
= b2 by
A49,
A50,
A59;
then
A63: (a3,a4)
// (b2,b1) by
A58,
AFF_1: 2;
LIN (a1,a3,b3) by
A2,
A6,
A7,
A9,
AFF_1: 21;
then a1
= b3 by
A48,
A50,
A60;
then (a3,a4)
// (b4,b3) by
A8,
A16,
A21,
A62,
A63,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
AFF_1: 4;
end;
LIN (a1,a3,b1) by
A2,
A6,
A7,
A8,
AFF_1: 21;
hence (a3,a4)
// (b3,b4) by
A48,
A50,
A51,
A57;
end;
hence (a3,a4)
// (b3,b4) by
A24;
end;
now
A64:
now
(o,b2)
// (o,b4) by
A3,
A5,
A12,
A13,
AFF_1: 39,
AFF_1: 41;
then
A65:
LIN (o,b2,b4) by
AFF_1:def 1;
assume
A66: a2
= a4;
(a1,a2)
// (b1,b2) by
A21,
AFF_1: 4;
then (b1,b2)
// (b1,b4) by
A6,
A14,
A22,
A66,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A2,
A4,
A5,
A8,
A16,
A19,
A20,
A66,
A65,
AFF_1: 14,
AFF_1: 25;
end;
A67:
now
(o,b1)
// (o,b3) by
A2,
A4,
A8,
A9,
AFF_1: 39,
AFF_1: 41;
then
A68:
LIN (o,b1,b3) by
AFF_1:def 1;
assume
A69: a1
= a3;
then (a2,a1)
// (b2,b3) by
A20,
AFF_1: 4;
then (b2,b1)
// (b2,b3) by
A6,
A15,
A21,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A3,
A4,
A5,
A12,
A16,
A19,
A22,
A69,
A68,
AFF_1: 14,
AFF_1: 25;
end;
assume a1
= a3 or a2
= a4;
hence (a3,a4)
// (b3,b4) by
A67,
A64;
end;
hence (a3,a4)
// (b3,b4) by
A23;
end;
hence thesis;
end;
theorem ::
CONMETR1:8
X is
Desarguesian iff X is
satisfying_Scherungssatz
proof
A1: X is
satisfying_Scherungssatz implies X is
Desarguesian
proof
assume
A2: X is
satisfying_Scherungssatz;
now
let Y, Z, M, o, a, b, c, a1, b1, c1;
assume that
A3: o
in Y and
A4: o
in Z and
A5: o
in M and
A6: o
<> a and
A7: o
<> b and
A8: o
<> c and
A9: a
in Y and
A10: a1
in Y and
A11: b
in Z and
A12: b1
in Z and
A13: c
in M and
A14: c1
in M and
A15: Y is
being_line and
A16: Z is
being_line and
A17: M is
being_line and
A18: Y
<> Z and
A19: Y
<> M and
A20: (a,b)
// (a1,b1) and
A21: (a,c)
// (a1,c1);
assume
A22: not (b,c)
// (b1,c1);
A23:
now
let Y, Z, M, o, a, b, c, a1, b1, c1, d;
assume
A24: X is
satisfying_Scherungssatz;
assume that
A25: o
in Y and
A26: o
in Z and
A27: o
in M and
A28: o
<> a and
A29: o
<> b and
A30: o
<> c and
A31: a
in Y and
A32: a1
in Y and
A33: b
in Z and
A34: b1
in Z and
A35: c
in M and
A36: c1
in M and
A37: Y is
being_line and
A38: Z is
being_line and
A39: M is
being_line and
A40: Y
<> Z and
A41: Y
<> M and
A42: (a,b)
// (a1,b1) and
A43: (a,c)
// (a1,c1) and
A44:
LIN (b,c,d) and
A45:
LIN (b1,c1,d);
LIN (a,a1,d) or (b,c)
// (b1,c1)
proof
assume that
A46: not
LIN (a,a1,d) and
A47: not (b,c)
// (b1,c1);
A48: c
<> c1 & a
<> a1 & b
<> b1
proof
A49:
now
A50: not
LIN (o,a,c)
proof
assume
LIN (o,a,c);
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A51: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A51,
AFF_1: 45,
AFF_1: 53;
end;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
A52:
LIN (o,c,c1) by
AFF_1:def 1;
A53: not
LIN (o,b,a)
proof
assume
LIN (o,b,a);
then a
in Z by
A26,
A29,
A33,
A38,
AFF_1: 25;
then
A54: (o,a)
// Z by
A26,
A38,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A26,
A28,
A40,
A54,
AFF_1: 45,
AFF_1: 53;
end;
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
A55:
LIN (o,a,a1) by
AFF_1:def 1;
assume
A56: b
= b1;
then (b,a)
// (b,a1) by
A42,
AFF_1: 4;
then a
= a1 by
A53,
A55,
AFF_1: 14;
then c
= c1 by
A43,
A50,
A52,
AFF_1: 14;
hence contradiction by
A47,
A56,
AFF_1: 2;
end;
A57:
now
A58: not
LIN (o,a,b)
proof
assume
LIN (o,a,b);
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A59: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A59,
AFF_1: 45,
AFF_1: 53;
end;
(o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
then
A60:
LIN (o,b,b1) by
AFF_1:def 1;
A61: not
LIN (o,c,a)
proof
assume
LIN (o,c,a);
then a
in M by
A27,
A30,
A35,
A39,
AFF_1: 25;
then
A62: (o,a)
// M by
A27,
A39,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A27,
A28,
A41,
A62,
AFF_1: 45,
AFF_1: 53;
end;
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
A63:
LIN (o,a,a1) by
AFF_1:def 1;
assume
A64: c
= c1;
then (c,a)
// (c,a1) by
A43,
AFF_1: 4;
then a
= a1 by
A61,
A63,
AFF_1: 14;
then b
= b1 by
A42,
A58,
A60,
AFF_1: 14;
hence contradiction by
A47,
A64,
AFF_1: 2;
end;
A65:
now
A66: not
LIN (o,a,c)
proof
assume
LIN (o,a,c);
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A67: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A67,
AFF_1: 45,
AFF_1: 53;
end;
A68: not
LIN (o,a,b)
proof
assume
LIN (o,a,b);
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A69: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A69,
AFF_1: 45,
AFF_1: 53;
end;
assume
A70: a
= a1;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,c,c1) by
AFF_1:def 1;
then
A71: c
= c1 by
A43,
A70,
A66,
AFF_1: 14;
(o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,b,b1) by
AFF_1:def 1;
then b
= b1 by
A42,
A70,
A68,
AFF_1: 14;
hence contradiction by
A47,
A71,
AFF_1: 2;
end;
assume not thesis;
hence contradiction by
A57,
A65,
A49;
end;
now
assume
A72: b
<> c;
A73:
now
assume
A74: b1
<> o;
A75: a1
<> b1 & a1
<> c1
proof
A76:
now
A77: o
<> a1
proof
A78: not
LIN (a,b,o)
proof
assume
LIN (a,b,o);
then
LIN (o,a,b) by
AFF_1: 6;
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A79: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A79,
AFF_1: 45,
AFF_1: 53;
end;
A80: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
assume o
= a1;
then (a,b)
// (o,b) by
A42,
A74,
A80,
AFF_1: 5;
then (b,a)
// (b,o) by
AFF_1: 4;
then
LIN (b,a,o) by
AFF_1:def 1;
then
LIN (o,a,b) by
AFF_1: 6;
then (o,a)
// (o,b) by
AFF_1:def 1;
then (o,a)
// (o,b1) by
A29,
A80,
AFF_1: 5;
then
LIN (o,a,b1) by
AFF_1:def 1;
then
A81:
LIN (a,o,b1) by
AFF_1: 6;
(b,o)
// (b,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A74,
A78,
A81,
AFF_1: 14;
end;
assume a1
= c1;
then
A82: (o,a1)
// M by
A27,
A36,
A39,
AFF_1: 52;
(o,a1)
// Y by
A25,
A32,
A37,
AFF_1: 52;
hence contradiction by
A25,
A27,
A41,
A82,
A77,
AFF_1: 45,
AFF_1: 53;
end;
A83:
now
assume a1
= b1;
then
A84: (o,b1)
// Y by
A25,
A32,
A37,
AFF_1: 52;
(o,b1)
// Z by
A26,
A34,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A40,
A74,
A84,
AFF_1: 45,
AFF_1: 53;
end;
assume not thesis;
hence contradiction by
A83,
A76;
end;
LIN (o,o,a) by
AFF_1: 7;
then
consider C such that
A85: C is
being_line and
A86: o
in C and o
in C and
A87: a
in C by
AFF_1: 21;
A88: ex d2 st d2
in C & (a,c)
// (d,d2)
proof
consider e2 such that
A89: (a,c)
// (d,e2) and
A90: d
<> e2 by
DIRAF: 40;
consider e1 such that
A91: (o,a)
// (o,e1) and
A92: o
<> e1 by
DIRAF: 40;
LIN (o,a,e1) by
A91,
AFF_1:def 1;
then
A93: e1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
not (o,e1)
// (d,e2)
proof
assume (o,e1)
// (d,e2);
then (o,a)
// (d,e2) by
A91,
A92,
AFF_1: 5;
then (o,a)
// (a,c) by
A89,
A90,
AFF_1: 5;
then (a,o)
// (a,c) by
AFF_1: 4;
then
LIN (a,o,c) by
AFF_1:def 1;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A94: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A94,
AFF_1: 45,
AFF_1: 53;
end;
then
consider d2 such that
A95:
LIN (o,e1,d2) and
A96:
LIN (d,e2,d2) by
AFF_1: 60;
take d2;
(d,e2)
// (d,d2) by
A96,
AFF_1:def 1;
hence thesis by
A85,
A86,
A92,
A89,
A90,
A95,
A93,
AFF_1: 5,
AFF_1: 25;
end;
A97: ex d1 st d1
in C & (c,c1)
// (d,d1)
proof
consider e2 such that
A98: (c,c1)
// (d,e2) and
A99: d
<> e2 by
DIRAF: 40;
consider e1 such that
A100: (o,a)
// (o,e1) and
A101: o
<> e1 by
DIRAF: 40;
LIN (o,a,e1) by
A100,
AFF_1:def 1;
then
A102: e1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
not (o,e1)
// (d,e2)
proof
assume (o,e1)
// (d,e2);
then (o,a)
// (d,e2) by
A100,
A101,
AFF_1: 5;
then
A103: (o,a)
// (c,c1) by
A98,
A99,
AFF_1: 5;
(c,c1)
// (o,c) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,a)
// (o,c) by
A48,
A103,
AFF_1: 5;
then
LIN (o,a,c) by
AFF_1:def 1;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A104: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A104,
AFF_1: 45,
AFF_1: 53;
end;
then
consider d1 such that
A105:
LIN (o,e1,d1) and
A106:
LIN (d,e2,d1) by
AFF_1: 60;
take d1;
(d,e2)
// (d,d1) by
A106,
AFF_1:def 1;
hence thesis by
A85,
A86,
A101,
A98,
A99,
A105,
A102,
AFF_1: 5,
AFF_1: 25;
end;
consider d2 such that
A107: d2
in C and
A108: (a,c)
// (d,d2) by
A88;
consider d1 such that
A109: d1
in C and
A110: (c,c1)
// (d,d1) by
A97;
(c,c1)
// (c,o) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
A111: (c,o)
// (d,d1) by
A48,
A110,
AFF_1: 5;
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,a1) by
AFF_1:def 1;
then
A112: a1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
LIN (b,b,c) by
AFF_1: 7;
then
consider A such that
A113: A is
being_line and
A114: b
in A and b
in A and
A115: c
in A by
AFF_1: 21;
A116: d
in A by
A44,
A72,
A113,
A114,
A115,
AFF_1: 25;
A117: b
<> c by
A47,
AFF_1: 3;
A118: ex d3 st d3
in A & (o,b)
// (d1,d3)
proof
consider e2 such that
A119: (o,b)
// (d1,e2) and
A120: d1
<> e2 by
DIRAF: 40;
consider e1 such that
A121: (b,c)
// (b,e1) and
A122: b
<> e1 by
DIRAF: 40;
LIN (b,c,e1) by
A121,
AFF_1:def 1;
then
A123: e1
in A by
A117,
A113,
A114,
A115,
AFF_1: 25;
not (b,e1)
// (d1,e2)
proof
assume (b,e1)
// (d1,e2);
then (b,c)
// (d1,e2) by
A121,
A122,
AFF_1: 5;
then
A124: (b,c)
// (o,b) by
A119,
A120,
AFF_1: 5;
then (b,c)
// (b,o) by
AFF_1: 4;
then
LIN (b,c,o) by
AFF_1:def 1;
then
LIN (o,b,c) by
AFF_1: 6;
then
A125: (o,b)
// (o,c) by
AFF_1:def 1;
A126: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,b)
// (o,c1) by
A30,
A125,
AFF_1: 5;
then (o,b1)
// (o,c1) by
A29,
A126,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then (b1,c1)
// (o,b1) by
AFF_1: 4;
then (b1,c1)
// (o,b) by
A74,
A126,
AFF_1: 5;
hence contradiction by
A29,
A47,
A124,
AFF_1: 5;
end;
then
consider d3 such that
A127:
LIN (b,e1,d3) and
A128:
LIN (d1,e2,d3) by
AFF_1: 60;
take d3;
(d1,e2)
// (d1,d3) by
A128,
AFF_1:def 1;
hence thesis by
A113,
A114,
A122,
A119,
A120,
A127,
A123,
AFF_1: 5,
AFF_1: 25;
end;
A129: not o
in A & not a
in A & not d1
in A & not d2
in A
proof
A130:
now
A131: a
<> b
proof
assume a
= b;
then
A132: (o,b)
// Y by
A25,
A31,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A132,
AFF_1: 45,
AFF_1: 53;
end;
A133: a1
<> b1
proof
assume a1
= b1;
then
A134: (o,b1)
// Y by
A25,
A32,
A37,
AFF_1: 52;
(o,b1)
// Z by
A26,
A34,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A40,
A74,
A134,
AFF_1: 45,
AFF_1: 53;
end;
assume a
in A;
then
A135: (a,b)
// (a,c) by
A113,
A114,
A115,
AFF_1: 39,
AFF_1: 41;
a
<> c
proof
assume a
= c;
then
A136: (o,c)
// Y by
A25,
A31,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A136,
AFF_1: 45,
AFF_1: 53;
end;
then (a,b)
// (a1,c1) by
A43,
A135,
AFF_1: 5;
then (a1,b1)
// (a1,c1) by
A42,
A131,
AFF_1: 5;
then
LIN (a1,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,a1) by
AFF_1: 6;
then (b1,c1)
// (b1,a1) by
AFF_1:def 1;
then
A137: (a1,b1)
// (b1,c1) by
AFF_1: 4;
LIN (a,b,c) by
A135,
AFF_1:def 1;
then
LIN (b,c,a) by
AFF_1: 6;
then (b,c)
// (b,a) by
AFF_1:def 1;
then (b,c)
// (a,b) by
AFF_1: 4;
then (b,c)
// (a1,b1) by
A42,
A131,
AFF_1: 5;
hence contradiction by
A47,
A137,
A133,
AFF_1: 5;
end;
A138:
now
A139: d
<> d2
proof
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,a1) by
AFF_1:def 1;
then
A140: a1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
assume d
= d2;
then (a,a1)
// (a,d) by
A85,
A87,
A107,
A140,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A141: d2
in A;
A142: (d,d2)
// (c,a) by
A108,
AFF_1: 4;
d
in A by
A44,
A117,
A113,
A114,
A115,
AFF_1: 25;
hence contradiction by
A113,
A115,
A130,
A141,
A139,
A142,
AFF_1: 48;
end;
A143:
now
assume o
in A;
then
A144: (o,b)
// (o,c) by
A113,
A114,
A115,
AFF_1: 39,
AFF_1: 41;
A145: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,b)
// (o,c1) by
A30,
A144,
AFF_1: 5;
then (o,b1)
// (o,c1) by
A29,
A145,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then (b1,c1)
// (o,b1) by
AFF_1: 4;
then (o,b)
// (b1,c1) by
A74,
A145,
AFF_1: 5;
then
A146: (b,o)
// (b1,c1) by
AFF_1: 4;
LIN (o,b,c) by
A144,
AFF_1:def 1;
then
LIN (b,c,o) by
AFF_1: 6;
then (b,c)
// (b,o) by
AFF_1:def 1;
hence contradiction by
A29,
A47,
A146,
AFF_1: 5;
end;
A147:
now
A148: d
<> d1
proof
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,a1) by
AFF_1:def 1;
then
A149: a1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
assume d
= d1;
then (a,a1)
// (a,d) by
A85,
A87,
A109,
A149,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A150: d1
in A;
(c,c1)
// (c,o) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
A151:
LIN (c,c1,o) by
AFF_1:def 1;
A152: (d,d1)
// (c,c1) by
A110,
AFF_1: 4;
d
in A by
A44,
A117,
A113,
A114,
A115,
AFF_1: 25;
then c1
in A by
A113,
A115,
A150,
A148,
A152,
AFF_1: 48;
hence contradiction by
A48,
A113,
A115,
A143,
A151,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A143,
A130,
A147,
A138;
end;
LIN (b1,b1,c1) by
AFF_1: 7;
then
consider K such that
A153: K is
being_line and
A154: b1
in K and b1
in K and
A155: c1
in K by
AFF_1: 21;
b1
<> c1 by
A47,
AFF_1: 3;
then
A156: d
in K by
A45,
A153,
A154,
A155,
AFF_1: 25;
consider d3 such that
A157: d3
in A and
A158: (o,b)
// (d1,d3) by
A118;
A159: b1
<> c1 by
A47,
AFF_1: 3;
ex d4 st d4
in K & (d1,d3)
// (d1,d4)
proof
consider e2 such that
A160: (d1,d3)
// (d1,e2) and
A161: d1
<> e2 by
DIRAF: 40;
consider e1 such that
A162: (b1,c1)
// (b1,e1) and
A163: b1
<> e1 by
DIRAF: 40;
LIN (b1,c1,e1) by
A162,
AFF_1:def 1;
then
A164: e1
in K by
A159,
A153,
A154,
A155,
AFF_1: 25;
not (b1,e1)
// (d1,e2)
proof
A165: o
<> c1
proof
A166: not
LIN (a,c,o)
proof
assume
LIN (a,c,o);
then
LIN (o,a,c) by
AFF_1: 6;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A167: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A167,
AFF_1: 45,
AFF_1: 53;
end;
assume
A168: o
= c1;
(a1,o)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then (a,c)
// (a,a1) by
A43,
A75,
A168,
AFF_1: 5;
then
LIN (a,c,a1) by
AFF_1:def 1;
then
LIN (a1,c,a) by
AFF_1: 6;
then
A169: (a1,c)
// (a1,a) by
AFF_1:def 1;
(a1,a)
// (a1,o) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then (a1,c)
// (a1,o) by
A48,
A169,
AFF_1: 5;
then
LIN (a1,c,o) by
AFF_1:def 1;
then
LIN (c,o,a1) by
AFF_1: 6;
then
A170: (c,o)
// (c,a1) by
AFF_1:def 1;
(a,o)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (a,o,a1) by
AFF_1:def 1;
hence contradiction by
A75,
A168,
A166,
A170,
AFF_1: 14;
end;
A171: d1
<> d3
proof
A172: d
<> d1
proof
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,a1) by
AFF_1:def 1;
then
A173: a1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
assume d
= d1;
then (a,a1)
// (a,d) by
A85,
A87,
A109,
A173,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A174: d1
= d3;
(c,c1)
// (o,c) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,c)
// (d,d1) by
A48,
A110,
AFF_1: 5;
then
A175: (d,d1)
// (c,o) by
AFF_1: 4;
A176: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
d
in A by
A44,
A117,
A113,
A114,
A115,
AFF_1: 25;
then o
in A by
A113,
A115,
A157,
A174,
A172,
A175,
AFF_1: 48;
then
A177: (o,b)
// (o,c) by
A113,
A114,
A115,
AFF_1: 39,
AFF_1: 41;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,b)
// (o,c1) by
A30,
A177,
AFF_1: 5;
then (o,b1)
// (o,c1) by
A29,
A176,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then (b1,c1)
// (o,b1) by
AFF_1: 4;
then
A178: (o,b)
// (b1,c1) by
A74,
A176,
AFF_1: 5;
LIN (o,b,c) by
A177,
AFF_1:def 1;
then
LIN (b,c,o) by
AFF_1: 6;
then (b,c)
// (b,o) by
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
hence contradiction by
A29,
A47,
A178,
AFF_1: 5;
end;
assume (b1,e1)
// (d1,e2);
then (b1,c1)
// (d1,e2) by
A162,
A163,
AFF_1: 5;
then
A179: (b1,c1)
// (d1,d3) by
A160,
A161,
AFF_1: 5;
A180: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
then (o,b1)
// (d1,d3) by
A29,
A158,
AFF_1: 5;
then
A181: (o,b1)
// (b1,c1) by
A179,
A171,
AFF_1: 5;
then (b1,o)
// (b1,c1) by
AFF_1: 4;
then
LIN (b1,o,c1) by
AFF_1:def 1;
then
LIN (o,b1,c1) by
AFF_1: 6;
then (o,b1)
// (o,c1) by
AFF_1:def 1;
then
A182: (o,b)
// (o,c1) by
A74,
A180,
AFF_1: 5;
(o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,b)
// (o,c) by
A182,
A165,
AFF_1: 5;
then
LIN (o,b,c) by
AFF_1:def 1;
then
LIN (b,o,c) by
AFF_1: 6;
then (b,o)
// (b,c) by
AFF_1:def 1;
then (o,b)
// (b,c) by
AFF_1: 4;
then (o,b1)
// (b,c) by
A29,
A180,
AFF_1: 5;
hence contradiction by
A47,
A74,
A181,
AFF_1: 5;
end;
then
consider d4 such that
A183:
LIN (b1,e1,d4) and
A184:
LIN (d1,e2,d4) by
AFF_1: 60;
take d4;
(d1,e2)
// (d1,d4) by
A184,
AFF_1:def 1;
hence thesis by
A153,
A154,
A163,
A160,
A161,
A183,
A164,
AFF_1: 5,
AFF_1: 25;
end;
then
consider d4 such that
A185: d4
in K and
A186: (d1,d3)
// (d1,d4);
A187: not c
in C & not b
in C & not d
in C & not d3
in C
proof
A188:
now
assume b
in C;
then (o,a)
// (o,b) by
A85,
A86,
A87,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,b) by
AFF_1:def 1;
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A189: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A189,
AFF_1: 45,
AFF_1: 53;
end;
A190:
now
A191: d1
<> d3
proof
A192: d
<> d1
proof
(o,a)
// (o,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,a1) by
AFF_1:def 1;
then
A193: a1
in C by
A28,
A85,
A86,
A87,
AFF_1: 25;
assume d
= d1;
then (a,a1)
// (a,d) by
A85,
A87,
A109,
A193,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A194: d1
= d3;
A195: (o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
A196: (d,d1)
// (c,c1) by
A110,
AFF_1: 4;
d
in A by
A44,
A117,
A113,
A114,
A115,
AFF_1: 25;
then c1
in A by
A113,
A115,
A157,
A194,
A192,
A196,
AFF_1: 48;
then
A197: (c,c1)
// (c,b) by
A113,
A114,
A115,
AFF_1: 39,
AFF_1: 41;
A198: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
(c,o)
// (c,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (c,o)
// (c,b) by
A48,
A197,
AFF_1: 5;
then
A199:
LIN (c,o,b) by
AFF_1:def 1;
then
LIN (o,b,c) by
AFF_1: 6;
then (o,b)
// (o,c) by
AFF_1:def 1;
then (o,b1)
// (o,c) by
A29,
A198,
AFF_1: 5;
then (o,b1)
// (o,c1) by
A30,
A195,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then (b1,c1)
// (o,b1) by
AFF_1: 4;
then
A200: (o,b)
// (b1,c1) by
A74,
A198,
AFF_1: 5;
LIN (b,c,o) by
A199,
AFF_1: 6;
then (b,c)
// (b,o) by
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
hence contradiction by
A29,
A47,
A200,
AFF_1: 5;
end;
assume
A201: d3
in C;
(d1,d3)
// (o,b) by
A158,
AFF_1: 4;
hence contradiction by
A85,
A86,
A109,
A188,
A201,
A191,
AFF_1: 48;
end;
A202:
now
assume c
in C;
then (o,a)
// (o,c) by
A85,
A86,
A87,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a,c) by
AFF_1:def 1;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A203: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A203,
AFF_1: 45,
AFF_1: 53;
end;
A204:
now
assume d
in C;
then
A205: (o,a)
// (a,d) by
A85,
A86,
A87,
AFF_1: 39,
AFF_1: 41;
(o,a)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then (a,a1)
// (a,d) by
A28,
A205,
AFF_1: 5;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume not thesis;
hence contradiction by
A202,
A188,
A204,
A190;
end;
A206: d4
<> d3
proof
assume
A207: d4
= d3;
d
= d3
proof
d
in A by
A44,
A117,
A113,
A114,
A115,
AFF_1: 25;
then
A208: (b,c)
// (d,d3) by
A113,
A114,
A115,
A157,
AFF_1: 39,
AFF_1: 41;
d
in K by
A45,
A159,
A153,
A154,
A155,
AFF_1: 25;
then
A209: (b1,c1)
// (d,d3) by
A153,
A154,
A155,
A185,
A207,
AFF_1: 39,
AFF_1: 41;
assume d
<> d3;
hence contradiction by
A47,
A209,
A208,
AFF_1: 5;
end;
then
A210: (o,b)
// (d,d1) by
A158,
AFF_1: 4;
(o,c)
// (c,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then (o,c)
// (d,d1) by
A48,
A110,
AFF_1: 5;
then
A211: (o,b)
// (o,c) by
A109,
A187,
A210,
AFF_1: 5;
A212: (o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
A213: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
then (o,b1)
// (o,c) by
A29,
A211,
AFF_1: 5;
then (o,b1)
// (o,c1) by
A30,
A212,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then (b1,c1)
// (o,b1) by
AFF_1: 4;
then
A214: (o,b)
// (b1,c1) by
A74,
A213,
AFF_1: 5;
LIN (o,b,c) by
A211,
AFF_1:def 1;
then
LIN (b,c,o) by
AFF_1: 6;
then (b,c)
// (b,o) by
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
hence contradiction by
A29,
A47,
A214,
AFF_1: 5;
end;
A215: a
<> b & a
<> c
proof
A216:
now
assume a
= c;
then
A217: (o,a)
// M by
A27,
A35,
A39,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A27,
A28,
A41,
A217,
AFF_1: 45,
AFF_1: 53;
end;
A218:
now
assume a
= b;
then
A219: (o,a)
// Z by
A26,
A33,
A38,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A26,
A28,
A40,
A219,
AFF_1: 45,
AFF_1: 53;
end;
assume not thesis;
hence contradiction by
A218,
A216;
end;
A220: not o
in K & not a1
in K & not d1
in K & not d2
in K
proof
A221:
now
A222: o
<> c1
proof
A223: a1
<> o
proof
A224: not
LIN (a,b,o)
proof
assume
LIN (a,b,o);
then
LIN (o,a,b) by
AFF_1: 6;
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A225: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A225,
AFF_1: 45,
AFF_1: 53;
end;
A226: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
assume a1
= o;
then (a,b)
// (o,b) by
A42,
A74,
A226,
AFF_1: 5;
then (b,a)
// (b,o) by
AFF_1: 4;
then
LIN (b,a,o) by
AFF_1:def 1;
then
LIN (o,a,b) by
AFF_1: 6;
then (o,a)
// (o,b) by
AFF_1:def 1;
then (o,a)
// (o,b1) by
A29,
A226,
AFF_1: 5;
then
LIN (o,a,b1) by
AFF_1:def 1;
then
A227:
LIN (a,o,b1) by
AFF_1: 6;
(b,o)
// (b,b1) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A74,
A224,
A227,
AFF_1: 14;
end;
A228: not
LIN (c,a,o)
proof
assume
LIN (c,a,o);
then
LIN (o,a,c) by
AFF_1: 6;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A229: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A229,
AFF_1: 45,
AFF_1: 53;
end;
A230: (a1,o)
// (o,a) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
assume o
= c1;
then (a,c)
// (o,a) by
A43,
A223,
A230,
AFF_1: 5;
then (a,c)
// (a,o) by
AFF_1: 4;
then
LIN (a,c,o) by
AFF_1:def 1;
then
LIN (o,c,a) by
AFF_1: 6;
then (o,c)
// (o,a) by
AFF_1:def 1;
then (o,c)
// (a1,o) by
A28,
A230,
AFF_1: 5;
then (o,c)
// (o,a1) by
AFF_1: 4;
then
LIN (o,c,a1) by
AFF_1:def 1;
then
A231:
LIN (c,o,a1) by
AFF_1: 6;
(a,o)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A223,
A228,
A231,
AFF_1: 14;
end;
A232: (o,c)
// (o,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
assume o
in K;
then
A233: (o,b1)
// (o,c1) by
A153,
A154,
A155,
AFF_1: 39,
AFF_1: 41;
A234: (o,b1)
// (o,b) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
then (o,b)
// (o,c1) by
A74,
A233,
AFF_1: 5;
then (o,b)
// (o,c) by
A222,
A232,
AFF_1: 5;
then
LIN (o,b,c) by
AFF_1:def 1;
then
LIN (b,c,o) by
AFF_1: 6;
then (b,c)
// (b,o) by
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
then (b,c)
// (o,b1) by
A29,
A234,
AFF_1: 5;
then
A235: (b,c)
// (b1,o) by
AFF_1: 4;
LIN (o,b1,c1) by
A233,
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
hence contradiction by
A47,
A74,
A235,
AFF_1: 5;
end;
A236:
now
A237: d
<> d1
proof
assume d
= d1;
then
A238: (o,a)
// (a,d) by
A85,
A86,
A87,
A109,
AFF_1: 39,
AFF_1: 41;
(o,a)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then (a,a1)
// (a,d) by
A28,
A238,
AFF_1: 5;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A239: d1
in K;
(c,c1)
// (c,o) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
A240:
LIN (c,c1,o) by
AFF_1:def 1;
A241: (d,d1)
// (c1,c) by
A110,
AFF_1: 4;
d
in K by
A45,
A159,
A153,
A154,
A155,
AFF_1: 25;
then c
in K by
A153,
A155,
A239,
A237,
A241,
AFF_1: 48;
hence contradiction by
A48,
A153,
A155,
A221,
A240,
AFF_1: 25;
end;
A242:
now
assume a1
in K;
then
A243: (a1,b1)
// (a1,c1) by
A153,
A154,
A155,
AFF_1: 39,
AFF_1: 41;
then (a,b)
// (a1,c1) by
A42,
A75,
AFF_1: 5;
then (a,b)
// (a,c) by
A43,
A75,
AFF_1: 5;
then
LIN (a,b,c) by
AFF_1:def 1;
then
LIN (b,c,a) by
AFF_1: 6;
then (b,c)
// (b,a) by
AFF_1:def 1;
then (b,c)
// (a,b) by
AFF_1: 4;
then
A244: (b,c)
// (a1,b1) by
A42,
A215,
AFF_1: 5;
LIN (a1,b1,c1) by
A243,
AFF_1:def 1;
then
LIN (b1,c1,a1) by
AFF_1: 6;
then (b1,c1)
// (b1,a1) by
AFF_1:def 1;
then (b1,c1)
// (a1,b1) by
AFF_1: 4;
hence contradiction by
A47,
A75,
A244,
AFF_1: 5;
end;
A245:
now
A246: d
<> d2
proof
assume d
= d2;
then
A247: (o,a)
// (a,d) by
A85,
A86,
A87,
A107,
AFF_1: 39,
AFF_1: 41;
(o,a)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 39,
AFF_1: 41;
then (a,a1)
// (a,d) by
A28,
A247,
AFF_1: 5;
hence contradiction by
A46,
AFF_1:def 1;
end;
assume
A248: d2
in K;
(d,d2)
// (a1,c1) by
A43,
A215,
A108,
AFF_1: 5;
then
A249: (d,d2)
// (c1,a1) by
AFF_1: 4;
d
in K by
A45,
A159,
A153,
A154,
A155,
AFF_1: 25;
hence contradiction by
A153,
A155,
A242,
A248,
A246,
A249,
AFF_1: 48;
end;
assume not thesis;
hence contradiction by
A221,
A242,
A236,
A245;
end;
A250: not c1
in C & not b1
in C & not d
in C & not d4
in C
proof
A251:
now
assume
A252: c1
in C;
(o,c1)
// (c1,c) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A155,
A85,
A86,
A187,
A220,
A252,
AFF_1: 48;
end;
A253:
now
assume
A254: d4
in C;
(d1,d4)
// (d1,d3) by
A186,
AFF_1: 4;
hence contradiction by
A85,
A109,
A185,
A187,
A220,
A254,
AFF_1: 48;
end;
A255:
now
assume
A256: b1
in C;
(o,b1)
// (o,b) by
A26,
A33,
A34,
A38,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A74,
A85,
A86,
A187,
A256,
AFF_1: 48;
end;
assume not thesis;
hence contradiction by
A187,
A251,
A255,
A253;
end;
a
<> c
proof
assume a
= c;
then
A257: (o,a)
// M by
A27,
A35,
A39,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A27,
A28,
A41,
A257,
AFF_1: 45,
AFF_1: 53;
end;
then (a1,c1)
// (d,d2) by
A43,
A108,
AFF_1: 5;
then
A258: (a1,c1)
// (d2,d) by
AFF_1: 4;
(c1,o)
// (c,c1) by
A27,
A35,
A36,
A39,
AFF_1: 39,
AFF_1: 41;
then
A259: (c1,o)
// (d,d1) by
A48,
A110,
AFF_1: 5;
A260: d1
<> d2
proof
assume d1
= d2;
then (a,c)
// (c,c1) by
A109,
A110,
A108,
A187,
AFF_1: 5;
then (c,c1)
// (c,a) by
AFF_1: 4;
then
LIN (c,c1,a) by
AFF_1:def 1;
then a
in M by
A35,
A36,
A39,
A48,
AFF_1: 25;
then
A261: (o,a)
// M by
A27,
A39,
AFF_1: 52;
(o,a)
// Y by
A25,
A31,
A37,
AFF_1: 52;
hence contradiction by
A25,
A27,
A28,
A41,
A261,
AFF_1: 45,
AFF_1: 53;
end;
A262: not
LIN (d4,d2,d1)
proof
assume
LIN (d4,d2,d1);
then
LIN (d1,d2,d4) by
AFF_1: 6;
hence contradiction by
A85,
A109,
A107,
A250,
A260,
AFF_1: 25;
end;
A263: (o,b)
// (o,b1) by
A26,
A33,
A34,
A38,
AFF_1: 51;
(a,c)
// (d2,d) by
A108,
AFF_1: 4;
then (a,b)
// (d2,d3) by
A24,
A113,
A114,
A115,
A85,
A86,
A87,
A109,
A107,
A157,
A158,
A116,
A129,
A187,
A111;
then
A264: (d2,d3)
// (a1,b1) by
A42,
A215,
AFF_1: 5;
(o,b)
// (d1,d4) by
A109,
A158,
A186,
A187,
AFF_1: 5;
then (o,b1)
// (d1,d4) by
A29,
A263,
AFF_1: 5;
then (a1,b1)
// (d2,d4) by
A24,
A153,
A154,
A155,
A85,
A86,
A109,
A107,
A185,
A112,
A156,
A220,
A250,
A258,
A259;
then (d2,d3)
// (d2,d4) by
A75,
A264,
AFF_1: 5;
then
LIN (d2,d3,d4) by
AFF_1:def 1;
then
LIN (d4,d3,d2) by
AFF_1: 6;
then
A265: (d4,d3)
// (d4,d2) by
AFF_1:def 1;
LIN (d1,d3,d4) by
A186,
AFF_1:def 1;
then
LIN (d4,d3,d1) by
AFF_1: 6;
then (d4,d3)
// (d4,d1) by
AFF_1:def 1;
then (d4,d2)
// (d4,d1) by
A206,
A265,
AFF_1: 5;
hence contradiction by
A262,
AFF_1:def 1;
end;
now
assume
A266: b1
= o;
A267: o
= a1
proof
A268: not
LIN (b,a,o)
proof
assume
LIN (b,a,o);
then
LIN (o,a,b) by
AFF_1: 6;
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A269: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A269,
AFF_1: 45,
AFF_1: 53;
end;
A270: a1
<> a
proof
assume a1
= a;
then
LIN (a,b,o) by
A42,
A266,
AFF_1:def 1;
then
LIN (o,a,b) by
AFF_1: 6;
then b
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A271: (o,b)
// Y by
A25,
A37,
AFF_1: 52;
(o,b)
// Z by
A26,
A33,
A38,
AFF_1: 52;
hence contradiction by
A25,
A26,
A29,
A40,
A271,
AFF_1: 45,
AFF_1: 53;
end;
assume
A272: o
<> a1;
(a1,o)
// (a,a1) by
A25,
A31,
A32,
A37,
AFF_1: 51;
then (a,b)
// (a,a1) by
A42,
A266,
A272,
AFF_1: 5;
then
LIN (a,b,a1) by
AFF_1:def 1;
then
LIN (a1,b,a) by
AFF_1: 6;
then
A273: (a1,b)
// (a1,a) by
AFF_1:def 1;
(a1,a)
// (a1,o) by
A25,
A31,
A32,
A37,
AFF_1: 51;
then (a1,b)
// (a1,o) by
A273,
A270,
AFF_1: 5;
then
LIN (a1,b,o) by
AFF_1:def 1;
then
LIN (b,o,a1) by
AFF_1: 6;
hence contradiction by
A25,
A31,
A32,
A37,
A272,
A268,
AFF_1: 14,
AFF_1: 51;
end;
o
= c1
proof
A274: not
LIN (a,c,o)
proof
assume
LIN (a,c,o);
then
LIN (o,a,c) by
AFF_1: 6;
then c
in Y by
A25,
A28,
A31,
A37,
AFF_1: 25;
then
A275: (o,c)
// Y by
A25,
A37,
AFF_1: 52;
(o,c)
// M by
A27,
A35,
A39,
AFF_1: 52;
hence contradiction by
A25,
A27,
A30,
A41,
A275,
AFF_1: 45,
AFF_1: 53;
end;
assume
A276: o
<> c1;
A277: (o,c1)
// (o,c) by
A27,
A35,
A36,
A39,
AFF_1: 51;
then (o,c)
// (a,c) by
A43,
A267,
A276,
AFF_1: 5;
then (c,o)
// (c,a) by
AFF_1: 4;
then
LIN (c,o,a) by
AFF_1:def 1;
then
LIN (o,a,c) by
AFF_1: 6;
then (o,a)
// (o,c) by
AFF_1:def 1;
then (o,a)
// (o,c1) by
A30,
A277,
AFF_1: 5;
then
LIN (o,a,c1) by
AFF_1:def 1;
then
LIN (a,o,c1) by
AFF_1: 6;
hence contradiction by
A27,
A35,
A36,
A39,
A276,
A274,
AFF_1: 14,
AFF_1: 51;
end;
hence contradiction by
A47,
A266,
AFF_1: 3;
end;
hence contradiction by
A73;
end;
hence contradiction by
A47,
AFF_1: 3;
end;
hence
LIN (a,a1,d) or (b,c)
// (b1,c1);
end;
A278:
now
A279: M
// M by
A17,
AFF_1: 41;
consider d such that
A280:
LIN (b,c,d) and
A281:
LIN (b1,c1,d) by
A22,
AFF_1: 60;
A282:
LIN (a,a1,d) by
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22,
A23,
A280,
A281;
A283: not a
in Z & not a
in M
proof
A284:
now
assume a
in M;
then
A285: (o,a)
// M by
A5,
A17,
AFF_1: 52;
(o,a)
// Y by
A3,
A9,
A15,
AFF_1: 52;
hence contradiction by
A3,
A5,
A6,
A19,
A285,
AFF_1: 45,
AFF_1: 53;
end;
A286:
now
assume a
in Z;
then
A287: (o,a)
// Z by
A4,
A16,
AFF_1: 52;
(o,a)
// Y by
A3,
A9,
A15,
AFF_1: 52;
hence contradiction by
A3,
A4,
A6,
A18,
A287,
AFF_1: 45,
AFF_1: 53;
end;
assume not thesis;
hence contradiction by
A286,
A284;
end;
A288: ex d1 st (a,b)
// (d,d1) & d1
in Z
proof
consider e1 such that
A289: (o,b)
// (o,e1) and
A290: o
<> e1 by
DIRAF: 40;
consider e2 such that
A291: (a,b)
// (d,e2) and
A292: d
<> e2 by
DIRAF: 40;
not (o,e1)
// (d,e2)
proof
assume (o,e1)
// (d,e2);
then (o,b)
// (d,e2) by
A289,
A290,
AFF_1: 5;
then (o,b)
// (a,b) by
A291,
A292,
AFF_1: 5;
then (b,o)
// (b,a) by
AFF_1: 4;
then
LIN (b,o,a) by
AFF_1:def 1;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
AFF_1: 25;
end;
then
consider d1 such that
A293:
LIN (o,e1,d1) and
A294:
LIN (d,e2,d1) by
AFF_1: 60;
(o,e1)
// (o,d1) by
A293,
AFF_1:def 1;
then (o,b)
// (o,d1) by
A289,
A290,
AFF_1: 5;
then
A295:
LIN (o,b,d1) by
AFF_1:def 1;
take d1;
(d,e2)
// (d,d1) by
A294,
AFF_1:def 1;
hence thesis by
A4,
A7,
A11,
A16,
A291,
A292,
A295,
AFF_1: 5,
AFF_1: 25;
end;
A296: Z
// Z by
A16,
AFF_1: 41;
A297: a
<> a1 & b
<> b1 & c
<> c1
proof
A298:
now
A299: not
LIN (a,o,b)
proof
assume
LIN (a,o,b);
then
LIN (o,b,a) by
AFF_1: 6;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
AFF_1: 25;
end;
A300: not
LIN (a,o,c)
proof
assume
LIN (a,o,c);
then
LIN (o,c,a) by
AFF_1: 6;
hence contradiction by
A5,
A8,
A13,
A17,
A283,
AFF_1: 25;
end;
assume
A301: a
= a1;
then
LIN (a,c,c1) by
A21,
AFF_1:def 1;
then
A302: c
= c1 by
A5,
A13,
A14,
A279,
A300,
AFF_1: 14,
AFF_1: 39;
LIN (a,b,b1) by
A20,
A301,
AFF_1:def 1;
then b
= b1 by
A4,
A11,
A12,
A296,
A299,
AFF_1: 14,
AFF_1: 39;
hence contradiction by
A22,
A302,
AFF_1: 2;
end;
A303:
now
assume b
= b1;
then (b,a)
// (b,a1) by
A20,
AFF_1: 4;
then
A304:
LIN (b,a,a1) by
AFF_1:def 1;
(o,a)
// (o,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
A298,
A304,
AFF_1: 14,
AFF_1: 25;
end;
A305:
now
assume c
= c1;
then (c,a)
// (c,a1) by
A21,
AFF_1: 4;
then
A306:
LIN (c,a,a1) by
AFF_1:def 1;
(o,a)
// (o,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A5,
A8,
A13,
A17,
A283,
A298,
A306,
AFF_1: 14,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A298,
A303,
A305;
end;
A307: a1
<> o & b1
<> o & c1
<> o
proof
A308:
now
assume
A309: a1
= o;
A310: o
= c1
proof
A311: not
LIN (c,a,o)
proof
assume
LIN (c,a,o);
then
LIN (o,c,a) by
AFF_1: 6;
hence contradiction by
A5,
A8,
A13,
A17,
A283,
AFF_1: 25;
end;
assume
A312: o
<> c1;
A313: (o,c1)
// (o,c) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then (a,c)
// (o,c) by
A21,
A309,
A312,
AFF_1: 5;
then (c,o)
// (c,a) by
AFF_1: 4;
then
LIN (c,o,a) by
AFF_1:def 1;
then
LIN (o,c,a) by
AFF_1: 6;
then (o,c)
// (o,a) by
AFF_1:def 1;
then (o,c1)
// (o,a) by
A8,
A313,
AFF_1: 5;
then
LIN (o,c1,a) by
AFF_1:def 1;
then
LIN (a,o,c1) by
AFF_1: 6;
then
A314: (a,o)
// (a,c1) by
AFF_1:def 1;
(c,o)
// (c,c1) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then
LIN (c,o,c1) by
AFF_1:def 1;
hence contradiction by
A312,
A311,
A314,
AFF_1: 14;
end;
o
= b1
proof
A315: not
LIN (b,a,o)
proof
assume
LIN (b,a,o);
then
LIN (o,b,a) by
AFF_1: 6;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
AFF_1: 25;
end;
assume
A316: o
<> b1;
A317: (o,b1)
// (o,b) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
then (a,b)
// (o,b) by
A20,
A309,
A316,
AFF_1: 5;
then (b,a)
// (b,o) by
AFF_1: 4;
then
LIN (b,a,o) by
AFF_1:def 1;
then
LIN (o,a,b) by
AFF_1: 6;
then (o,a)
// (o,b) by
AFF_1:def 1;
then (o,a)
// (o,b1) by
A7,
A317,
AFF_1: 5;
then
LIN (o,a,b1) by
AFF_1:def 1;
then
LIN (a,o,b1) by
AFF_1: 6;
then
A318: (a,o)
// (a,b1) by
AFF_1:def 1;
(b,o)
// (b,b1) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
then
LIN (b,o,b1) by
AFF_1:def 1;
hence contradiction by
A316,
A315,
A318,
AFF_1: 14;
end;
hence contradiction by
A22,
A310,
AFF_1: 3;
end;
A319:
now
A320: not
LIN (a,b,o)
proof
assume
LIN (a,b,o);
then
LIN (o,b,a) by
AFF_1: 6;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
AFF_1: 25;
end;
A321: (a1,o)
// (a,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
assume b1
= o;
then (a,b)
// (a,a1) by
A20,
A308,
A321,
AFF_1: 5;
then
LIN (a,b,a1) by
AFF_1:def 1;
then
LIN (a1,b,a) by
AFF_1: 6;
then (a1,b)
// (a1,a) by
AFF_1:def 1;
then (a1,b)
// (a,a1) by
AFF_1: 4;
then (a1,b)
// (a1,o) by
A297,
A321,
AFF_1: 5;
then
LIN (a1,b,o) by
AFF_1:def 1;
then
LIN (b,o,a1) by
AFF_1: 6;
then
A322: (b,o)
// (b,a1) by
AFF_1:def 1;
(a,o)
// (a,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
LIN (a,o,a1) by
AFF_1:def 1;
hence contradiction by
A308,
A320,
A322,
AFF_1: 14;
end;
A323:
now
A324: not
LIN (a,c,o)
proof
assume
LIN (a,c,o);
then
LIN (o,c,a) by
AFF_1: 6;
hence contradiction by
A5,
A8,
A13,
A17,
A283,
AFF_1: 25;
end;
A325: (a1,o)
// (a,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
assume c1
= o;
then (a,c)
// (a,a1) by
A21,
A308,
A325,
AFF_1: 5;
then
LIN (a,c,a1) by
AFF_1:def 1;
then
LIN (a1,a,c) by
AFF_1: 6;
then (a1,a)
// (a1,c) by
AFF_1:def 1;
then (a,a1)
// (a1,c) by
AFF_1: 4;
then (a1,o)
// (a1,c) by
A297,
A325,
AFF_1: 5;
then
LIN (a1,o,c) by
AFF_1:def 1;
then
LIN (c,o,a1) by
AFF_1: 6;
then
A326: (c,o)
// (c,a1) by
AFF_1:def 1;
(a,o)
// (a,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
LIN (a,o,a1) by
AFF_1:def 1;
hence contradiction by
A308,
A324,
A326,
AFF_1: 14;
end;
assume not thesis;
hence contradiction by
A308,
A319,
A323;
end;
ex d2 st (a,c)
// (d,d2) & d2
in M
proof
consider e1 such that
A327: (o,c)
// (o,e1) and
A328: o
<> e1 by
DIRAF: 40;
consider e2 such that
A329: (a,c)
// (d,e2) and
A330: d
<> e2 by
DIRAF: 40;
not (o,e1)
// (d,e2)
proof
assume (o,e1)
// (d,e2);
then (o,c)
// (d,e2) by
A327,
A328,
AFF_1: 5;
then (o,c)
// (a,c) by
A329,
A330,
AFF_1: 5;
then (c,o)
// (c,a) by
AFF_1: 4;
then
LIN (c,o,a) by
AFF_1:def 1;
hence contradiction by
A5,
A8,
A13,
A17,
A283,
AFF_1: 25;
end;
then
consider d2 such that
A331:
LIN (o,e1,d2) and
A332:
LIN (d,e2,d2) by
AFF_1: 60;
(o,e1)
// (o,d2) by
A331,
AFF_1:def 1;
then (o,c)
// (o,d2) by
A327,
A328,
AFF_1: 5;
then
A333:
LIN (o,c,d2) by
AFF_1:def 1;
take d2;
(d,e2)
// (d,d2) by
A332,
AFF_1:def 1;
hence thesis by
A5,
A8,
A13,
A17,
A329,
A330,
A333,
AFF_1: 5,
AFF_1: 25;
end;
then
consider d2 such that
A334: (a,c)
// (d,d2) and
A335: d2
in M;
consider d1 such that
A336: (a,b)
// (d,d1) and
A337: d1
in Z by
A288;
assume
A338: not Z
// M;
A339: d1
<> d2
proof
A340: o
<> d1
proof
A341: o
<> d
proof
assume o
= d;
then
LIN (o,b,c) by
A280,
AFF_1: 6;
then c
in Z by
A4,
A7,
A11,
A16,
AFF_1: 25;
then
A342: (o,c)
// Z by
A4,
A16,
AFF_1: 52;
(o,c)
// M by
A5,
A13,
A17,
AFF_1: 52;
hence contradiction by
A8,
A338,
A342,
AFF_1: 53;
end;
A343: (a,a1)
// (a,d) by
A282,
AFF_1:def 1;
(a,o)
// (a,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then (a,o)
// (a,d) by
A297,
A343,
AFF_1: 5;
then
LIN (a,o,d) by
AFF_1:def 1;
then
LIN (o,a,d) by
AFF_1: 6;
then (o,a)
// (o,d) by
AFF_1:def 1;
then
A344: (a,o)
// (d,o) by
AFF_1: 4;
assume o
= d1;
then (a,b)
// (a,o) by
A336,
A341,
A344,
AFF_1: 5;
then
LIN (a,b,o) by
AFF_1:def 1;
then
LIN (o,b,a) by
AFF_1: 6;
hence contradiction by
A4,
A7,
A11,
A16,
A283,
AFF_1: 25;
end;
assume d1
= d2;
then
A345: (o,d1)
// M by
A5,
A17,
A335,
AFF_1: 52;
(o,d1)
// Z by
A4,
A16,
A337,
AFF_1: 52;
hence contradiction by
A338,
A345,
A340,
AFF_1: 53;
end;
A346:
now
assume
A347: (b1,c1)
// (d1,d2);
ex d5 st
LIN (b,c,d5) &
LIN (d1,d2,d5)
proof
consider e1 such that
A348: (b,c)
// (b,e1) and
A349: b
<> e1 by
DIRAF: 40;
consider e2 such that
A350: (d1,d2)
// (d1,e2) and
A351: d1
<> e2 by
DIRAF: 40;
not (b,e1)
// (d1,e2)
proof
assume (b,e1)
// (d1,e2);
then (b,e1)
// (d1,d2) by
A350,
A351,
AFF_1: 5;
then (b,c)
// (d1,d2) by
A348,
A349,
AFF_1: 5;
hence contradiction by
A22,
A339,
A347,
AFF_1: 5;
end;
then
consider d5 such that
A352:
LIN (b,e1,d5) and
A353:
LIN (d1,e2,d5) by
AFF_1: 60;
(b,e1)
// (b,d5) by
A352,
AFF_1:def 1;
then
A354: (b,c)
// (b,d5) by
A348,
A349,
AFF_1: 5;
take d5;
(d1,e2)
// (d1,d5) by
A353,
AFF_1:def 1;
then (d1,d2)
// (d1,d5) by
A350,
A351,
AFF_1: 5;
hence thesis by
A354,
AFF_1:def 1;
end;
then
consider d5 such that
A355:
LIN (b,c,d5) and
A356:
LIN (d1,d2,d5);
A357: d
in Y by
A9,
A10,
A15,
A297,
A282,
AFF_1: 25;
A358:
now
A359: not
LIN (a,b,d)
proof
A360: a
<> d
proof
A361: a1
<> b1
proof
(o,a1)
// (o,a) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
A362:
LIN (o,a1,a) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A4,
A12,
A16,
A283,
A307,
A362,
AFF_1: 25;
end;
assume
A363: a
= d;
then
LIN (a,b,c) by
A280,
AFF_1: 6;
then (a,b)
// (a,c) by
AFF_1:def 1;
then (a1,b1)
// (a,c) by
A11,
A20,
A283,
AFF_1: 5;
then (a1,b1)
// (a1,c1) by
A13,
A21,
A283,
AFF_1: 5;
then
LIN (a1,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,a1) by
AFF_1: 6;
then (b1,c1)
// (b1,a1) by
AFF_1:def 1;
then
A364: (b1,c1)
// (a1,b1) by
AFF_1: 4;
(b,c)
// (b,a) by
A280,
A363,
AFF_1:def 1;
then (b,c)
// (a,b) by
AFF_1: 4;
then (b,c)
// (a1,b1) by
A11,
A20,
A283,
AFF_1: 5;
hence contradiction by
A22,
A364,
A361,
AFF_1: 5;
end;
assume
LIN (a,b,d);
then
LIN (a,d,b) by
AFF_1: 6;
then b
in Y by
A9,
A15,
A357,
A360,
AFF_1: 25;
then
A365: (o,b)
// Y by
A3,
A15,
AFF_1: 52;
(o,b)
// Z by
A4,
A11,
A16,
AFF_1: 52;
hence contradiction by
A3,
A4,
A7,
A18,
A365,
AFF_1: 45,
AFF_1: 53;
end;
assume
A366:
LIN (a,d,d5);
A367: o
<> d
proof
A368: (o,b)
// (o,b1) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
assume
A369: o
= d;
then
LIN (o,b,c) by
A280,
AFF_1: 6;
then (o,b)
// (o,c) by
AFF_1:def 1;
then
A370: (o,b1)
// (o,c) by
A7,
A368,
AFF_1: 5;
(o,c)
// (o,c1) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then (o,b1)
// (o,c1) by
A8,
A370,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then
A371: (b1,c1)
// (o,b1) by
AFF_1: 4;
(b,c)
// (b,o) by
A280,
A369,
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
then (b,c)
// (o,b1) by
A7,
A368,
AFF_1: 5;
hence contradiction by
A22,
A307,
A371,
AFF_1: 5;
end;
A372: d
<> d1
proof
assume d
= d1;
then
A373: (o,d)
// Z by
A4,
A16,
A337,
AFF_1: 52;
(o,d)
// Y by
A3,
A15,
A357,
AFF_1: 52;
hence contradiction by
A3,
A4,
A18,
A367,
A373,
AFF_1: 45,
AFF_1: 53;
end;
A374: d
<> d2
proof
assume d
= d2;
then
A375: (o,d)
// M by
A5,
A17,
A335,
AFF_1: 52;
(o,d)
// Y by
A3,
A15,
A357,
AFF_1: 52;
hence contradiction by
A3,
A5,
A19,
A367,
A375,
AFF_1: 45,
AFF_1: 53;
end;
A376: (b,c)
// (b,d5) by
A355,
AFF_1:def 1;
A377: (b,c)
// (b,d) by
A280,
AFF_1:def 1;
b
<> c by
A22,
AFF_1: 3;
then (b,d)
// (b,d5) by
A377,
A376,
AFF_1: 5;
then
LIN (d1,d2,d) by
A356,
A366,
A359,
AFF_1: 14;
then
LIN (d,d1,d2) by
AFF_1: 6;
then (d,d1)
// (d,d2) by
AFF_1:def 1;
then (a,b)
// (d,d2) by
A336,
A372,
AFF_1: 5;
then
A378: (a,b)
// (a,c) by
A334,
A374,
AFF_1: 5;
then
LIN (a,b,c) by
AFF_1:def 1;
then
LIN (b,c,a) by
AFF_1: 6;
then (b,c)
// (b,a) by
AFF_1:def 1;
then (b,c)
// (a,b) by
AFF_1: 4;
then
A379: (b,c)
// (a1,b1) by
A11,
A20,
A283,
AFF_1: 5;
(a1,b1)
// (a,c) by
A11,
A20,
A283,
A378,
AFF_1: 5;
then (a1,b1)
// (a1,c1) by
A13,
A21,
A283,
AFF_1: 5;
then
LIN (a1,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,a1) by
AFF_1: 6;
then (b1,c1)
// (b1,a1) by
AFF_1:def 1;
then
A380: (b1,c1)
// (a1,b1) by
AFF_1: 4;
a1
<> b1
proof
(o,a1)
// (o,a) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
A381:
LIN (o,a1,a) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A4,
A12,
A16,
A283,
A307,
A381,
AFF_1: 25;
end;
hence contradiction by
A22,
A380,
A379,
AFF_1: 5;
end;
not (b,c)
// (d1,d2) by
A22,
A339,
A347,
AFF_1: 5;
hence contradiction by
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A11,
A13,
A15,
A16,
A17,
A18,
A19,
A23,
A336,
A337,
A334,
A335,
A355,
A356,
A357,
A358;
end;
now
A382: d
in Y by
A9,
A10,
A15,
A297,
A282,
AFF_1: 25;
A383: not
LIN (a1,b1,d)
proof
A384: a1
<> d
proof
A385: a1
<> b1 & a1
<> c1
proof
(o,a1)
// (o,a) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
A386:
LIN (o,a1,a) by
AFF_1:def 1;
assume not thesis;
hence contradiction by
A4,
A5,
A12,
A14,
A16,
A17,
A283,
A307,
A386,
AFF_1: 25;
end;
assume
A387: a1
= d;
then
LIN (a1,b1,c1) by
A281,
AFF_1: 6;
then (a1,b1)
// (a1,c1) by
AFF_1:def 1;
then (a,b)
// (a1,c1) by
A20,
A385,
AFF_1: 5;
then (a,b)
// (a,c) by
A21,
A385,
AFF_1: 5;
then
LIN (a,b,c) by
AFF_1:def 1;
then
LIN (b,c,a) by
AFF_1: 6;
then (b,c)
// (b,a) by
AFF_1:def 1;
then
A388: (b,c)
// (a,b) by
AFF_1: 4;
(b1,c1)
// (b1,a1) by
A281,
A387,
AFF_1:def 1;
then (b1,c1)
// (a1,b1) by
AFF_1: 4;
then (b1,c1)
// (a,b) by
A20,
A385,
AFF_1: 5;
hence contradiction by
A11,
A22,
A283,
A388,
AFF_1: 5;
end;
assume
LIN (a1,b1,d);
then
LIN (a1,d,b1) by
AFF_1: 6;
then b1
in Y by
A10,
A15,
A382,
A384,
AFF_1: 25;
then (o,b1)
// (o,a) by
A3,
A9,
A15,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,b1,a) by
AFF_1:def 1;
hence contradiction by
A4,
A12,
A16,
A283,
A307,
AFF_1: 25;
end;
A389: d
<> o
proof
A390: (o,b)
// (o,b1) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
assume
A391: d
= o;
then
LIN (o,b,c) by
A280,
AFF_1: 6;
then (o,b)
// (o,c) by
AFF_1:def 1;
then
A392: (o,b1)
// (o,c) by
A7,
A390,
AFF_1: 5;
(o,c)
// (o,c1) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then (o,b1)
// (o,c1) by
A8,
A392,
AFF_1: 5;
then
LIN (o,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,o) by
AFF_1: 6;
then (b1,c1)
// (b1,o) by
AFF_1:def 1;
then
A393: (b1,c1)
// (o,b1) by
AFF_1: 4;
(b,c)
// (b,o) by
A280,
A391,
AFF_1:def 1;
then (b,c)
// (o,b) by
AFF_1: 4;
then (b,c)
// (o,b1) by
A7,
A390,
AFF_1: 5;
hence contradiction by
A22,
A307,
A393,
AFF_1: 5;
end;
A394: d
<> d1
proof
(o,d)
// (o,a) by
A3,
A9,
A15,
A382,
AFF_1: 39,
AFF_1: 41;
then
A395:
LIN (o,d,a) by
AFF_1:def 1;
assume d
= d1;
hence contradiction by
A4,
A16,
A283,
A337,
A389,
A395,
AFF_1: 25;
end;
A396: d
<> d2
proof
(o,d)
// (o,a) by
A3,
A9,
A15,
A382,
AFF_1: 39,
AFF_1: 41;
then
A397:
LIN (o,d,a) by
AFF_1:def 1;
assume d
= d2;
hence contradiction by
A5,
A17,
A283,
A335,
A389,
A397,
AFF_1: 25;
end;
A398: (a1,c1)
// (d,d2) by
A13,
A21,
A283,
A334,
AFF_1: 5;
A399: b1
<> c1 by
A22,
AFF_1: 3;
A400: (b1,c1)
// (b1,d) by
A281,
AFF_1:def 1;
assume
A401: not (b1,c1)
// (d1,d2);
then
consider d5 such that
A402:
LIN (b1,c1,d5) and
A403:
LIN (d1,d2,d5) by
AFF_1: 60;
(b1,c1)
// (b1,d5) by
A402,
AFF_1:def 1;
then
A404: (b1,d)
// (b1,d5) by
A399,
A400,
AFF_1: 5;
(a1,b1)
// (d,d1) by
A11,
A20,
A283,
A336,
AFF_1: 5;
then
LIN (a1,d,d5) by
A2,
A3,
A4,
A5,
A10,
A12,
A14,
A15,
A16,
A17,
A18,
A19,
A23,
A307,
A337,
A335,
A401,
A402,
A403,
A382,
A398;
then d
= d5 by
A383,
A404,
AFF_1: 14;
then
LIN (d,d1,d2) by
A403,
AFF_1: 6;
then (d,d1)
// (d,d2) by
AFF_1:def 1;
then (a,b)
// (d,d2) by
A336,
A394,
AFF_1: 5;
then
A405: (a,b)
// (a,c) by
A334,
A396,
AFF_1: 5;
then
LIN (a,b,c) by
AFF_1:def 1;
then
LIN (b,c,a) by
AFF_1: 6;
then (b,c)
// (b,a) by
AFF_1:def 1;
then (b,c)
// (a,b) by
AFF_1: 4;
then
A406: (b,c)
// (a1,b1) by
A11,
A20,
A283,
AFF_1: 5;
(a1,b1)
// (a,c) by
A11,
A20,
A283,
A405,
AFF_1: 5;
then (a1,b1)
// (a1,c1) by
A13,
A21,
A283,
AFF_1: 5;
then
LIN (a1,b1,c1) by
AFF_1:def 1;
then
LIN (b1,c1,a1) by
AFF_1: 6;
then (b1,c1)
// (b1,a1) by
AFF_1:def 1;
then
A407: (b1,c1)
// (a1,b1) by
AFF_1: 4;
a1
<> b1
proof
(o,a1)
// (o,a) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
A408:
LIN (o,a1,a) by
AFF_1:def 1;
assume a1
= b1;
hence contradiction by
A4,
A12,
A16,
A283,
A307,
A408,
AFF_1: 25;
end;
hence contradiction by
A22,
A407,
A406,
AFF_1: 5;
end;
hence contradiction by
A346;
end;
now
assume
A409: Z
// M;
then
A410: b1
in M by
A4,
A5,
A12,
AFF_1: 45;
b
in M by
A4,
A5,
A11,
A409,
AFF_1: 45;
hence contradiction by
A13,
A14,
A17,
A22,
A410,
AFF_1: 39,
AFF_1: 41;
end;
hence contradiction by
A278;
end;
hence thesis by
AFF_2:def 4;
end;
X is
Desarguesian implies X is
satisfying_Scherungssatz
proof
assume
A411: X is
Desarguesian;
then X is
satisfying_TDES_1 by
AFF_2: 3,
AFF_2: 12;
then X is
satisfying_des_1 by
AFF_2: 13;
then X is
translational by
AFF_2: 7;
then
A412: X is
satisfying_minor_Scherungssatz by
Th6;
X is
satisfying_major_Scherungssatz by
A411,
Th7;
hence thesis by
A412,
Th2;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:9
Th9: X is
satisfying_pap iff X is
satisfying_minor_indirect_Scherungssatz
proof
A1: X is
satisfying_minor_indirect_Scherungssatz implies X is
satisfying_pap
proof
assume
A2: X is
satisfying_minor_indirect_Scherungssatz;
now
let M, N, a, b, c, a1, b1, c1;
assume that M is
being_line and N is
being_line and
A3: a
in M and
A4: b
in M and
A5: c
in M and
A6: M
// N and
A7: M
<> N and
A8: a1
in N and
A9: b1
in N and
A10: c1
in N and
A11: (a,b1)
// (b,a1) and
A12: (b,c1)
// (c,b1);
A13: not b
in N by
A4,
A6,
A7,
AFF_1: 45;
A14: not c1
in M by
A6,
A7,
A10,
AFF_1: 45;
A15: not c
in N by
A5,
A6,
A7,
AFF_1: 45;
A16: (b1,b)
// (b,b1) by
AFF_1: 2;
A17: not b1
in M by
A6,
A7,
A9,
AFF_1: 45;
A18: (b,c1)
// (b1,c) by
A12,
AFF_1: 4;
A19: not a1
in M by
A6,
A7,
A8,
AFF_1: 45;
A20: (a,b1)
// (a1,b) by
A11,
AFF_1: 4;
not a
in N by
A3,
A6,
A7,
AFF_1: 45;
then (a,c1)
// (a1,c) by
A2,
A3,
A4,
A5,
A6,
A8,
A9,
A10,
A13,
A15,
A19,
A17,
A14,
A20,
A18,
A16;
hence (a,c1)
// (c,a1) by
AFF_1: 4;
end;
hence thesis by
AFF_2:def 13;
end;
X is
satisfying_pap implies X is
satisfying_minor_indirect_Scherungssatz
proof
assume
A21: X is
satisfying_pap;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A22: M
// N and
A23: a1
in M and
A24: a3
in M and
A25: b2
in M and
A26: b4
in M and
A27: a2
in N and
A28: a4
in N and
A29: b1
in N and
A30: b3
in N and
A31: not a4
in M and not a2
in M and not b1
in M and not b3
in M and not a1
in N and not a3
in N and not b2
in N and not b4
in N and
A32: (a3,a2)
// (b3,b2) and
A33: (a2,a1)
// (b2,b1) and
A34: (a1,a4)
// (b1,b4);
A35: M is
being_line by
A22,
AFF_1: 36;
A36: (b2,b3)
// (a3,a2) by
A32,
AFF_1: 4;
A37: N is
being_line by
A22,
AFF_1: 36;
A38: (a4,a1)
// (b1,b4) by
A34,
AFF_1: 4;
(a1,a2)
// (b2,b1) by
A33,
AFF_1: 4;
then (a1,b3)
// (a3,b1) by
A21,
A22,
A23,
A24,
A25,
A27,
A28,
A29,
A30,
A31,
A35,
A37,
A36,
AFF_2:def 13;
then (b1,a3)
// (b3,a1) by
AFF_1: 4;
then (a4,a3)
// (b3,b4) by
A21,
A22,
A23,
A24,
A26,
A28,
A29,
A30,
A31,
A35,
A37,
A38,
AFF_2:def 13;
hence (a3,a4)
// (b3,b4) by
AFF_1: 4;
end;
hence thesis;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:10
Th10: X is
Pappian iff X is
satisfying_major_indirect_Scherungssatz
proof
A1: X is
Pappian implies X is
satisfying_major_indirect_Scherungssatz
proof
assume
A2: X is
Pappian;
then
A3: X is
Desarguesian by
AFF_2: 11;
now
let o, a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A4: M is
being_line and
A5: N is
being_line and
A6: o
in M and
A7: o
in N and
A8: a1
in M and
A9: a3
in M and
A10: b2
in M and
A11: b4
in M and
A12: a2
in N and
A13: a4
in N and
A14: b1
in N and
A15: b3
in N and
A16: not a4
in M and
A17: not a2
in M and
A18: not b1
in M and
A19: not b3
in M and
A20: not a1
in N and
A21: not a3
in N and
A22: not b2
in N and
A23: not b4
in N and
A24: (a3,a2)
// (b3,b2) and
A25: (a2,a1)
// (b2,b1) and
A26: (a1,a4)
// (b1,b4);
A27:
now
assume that
A28: a1
<> a3 and
A29: a2
<> a4;
ex x, y, z st
LIN (x,y,z) & x
<> y & x
<> z & y
<> z
proof
(o,a1)
// (o,a3) by
A4,
A6,
A8,
A9,
AFF_1: 39,
AFF_1: 41;
then
A30:
LIN (o,a1,a3) by
AFF_1:def 1;
assume not thesis;
hence contradiction by
A7,
A20,
A21,
A28,
A30;
end;
then
consider d such that
A31:
LIN (a2,a1,d) and
A32: a2
<> d and
A33: a1
<> d by
TRANSLAC: 1;
A34: (a2,a1)
// (a2,d) by
A31,
AFF_1:def 1;
A35: ex c2 st c2
in M & (a2,a3)
// (b1,c2)
proof
consider e2 such that
A36: (a1,a3)
// (a1,e2) and
A37: a1
<> e2 by
DIRAF: 40;
consider e1 such that
A38: (a2,a3)
// (b1,e1) and
A39: b1
<> e1 by
DIRAF: 40;
not (b1,e1)
// (a1,e2)
proof
assume (b1,e1)
// (a1,e2);
then (a2,a3)
// (a1,e2) by
A38,
A39,
AFF_1: 5;
then (a2,a3)
// (a1,a3) by
A36,
A37,
AFF_1: 5;
then (a3,a1)
// (a3,a2) by
AFF_1: 4;
then
LIN (a3,a1,a2) by
AFF_1:def 1;
hence contradiction by
A4,
A8,
A9,
A17,
A28,
AFF_1: 25;
end;
then
consider c2 such that
A40:
LIN (b1,e1,c2) and
A41:
LIN (a1,e2,c2) by
AFF_1: 60;
(a1,e2)
// (a1,c2) by
A41,
AFF_1:def 1;
then (a1,a3)
// (a1,c2) by
A36,
A37,
AFF_1: 5;
then
A42:
LIN (a1,a3,c2) by
AFF_1:def 1;
take c2;
(b1,e1)
// (b1,c2) by
A40,
AFF_1:def 1;
hence thesis by
A4,
A8,
A9,
A28,
A38,
A39,
A42,
AFF_1: 5,
AFF_1: 25;
end;
A43: ex c1 st c1
in N & (a1,a4)
// (b2,c1)
proof
consider e2 such that
A44: (a2,a4)
// (a2,e2) and
A45: a2
<> e2 by
DIRAF: 40;
consider e1 such that
A46: (a1,a4)
// (b2,e1) and
A47: b2
<> e1 by
DIRAF: 40;
not (b2,e1)
// (a2,e2)
proof
assume (b2,e1)
// (a2,e2);
then (a1,a4)
// (a2,e2) by
A46,
A47,
AFF_1: 5;
then (a1,a4)
// (a2,a4) by
A44,
A45,
AFF_1: 5;
then (a4,a2)
// (a4,a1) by
AFF_1: 4;
then
LIN (a4,a2,a1) by
AFF_1:def 1;
hence contradiction by
A5,
A12,
A13,
A20,
A29,
AFF_1: 25;
end;
then
consider c1 such that
A48:
LIN (b2,e1,c1) and
A49:
LIN (a2,e2,c1) by
AFF_1: 60;
(a2,e2)
// (a2,c1) by
A49,
AFF_1:def 1;
then (a2,a4)
// (a2,c1) by
A44,
A45,
AFF_1: 5;
then
A50:
LIN (a2,a4,c1) by
AFF_1:def 1;
take c1;
(b2,e1)
// (b2,c1) by
A48,
AFF_1:def 1;
hence thesis by
A5,
A12,
A13,
A29,
A46,
A47,
A50,
AFF_1: 5,
AFF_1: 25;
end;
consider c2 such that
A51: c2
in M and
A52: (a2,a3)
// (b1,c2) by
A35;
consider c1 such that
A53: c1
in N and
A54: (a1,a4)
// (b2,c1) by
A43;
(b1,b4)
// (b2,c1) by
A8,
A16,
A26,
A54,
AFF_1: 5;
then
A55: (b4,b1)
// (b2,c1) by
AFF_1: 4;
A56: o
<> c1 & o
<> c2
proof
A57:
now
assume o
= c2;
then
A58: (o,b1)
// (a2,a3) by
A52,
AFF_1: 4;
(o,b1)
// (a2,a4) by
A5,
A7,
A12,
A13,
A14,
AFF_1: 39,
AFF_1: 41;
then (a2,a4)
// (a2,a3) by
A6,
A18,
A58,
AFF_1: 5;
then
LIN (a2,a4,a3) by
AFF_1:def 1;
hence contradiction by
A5,
A12,
A13,
A21,
A29,
AFF_1: 25;
end;
A59:
now
assume o
= c1;
then
A60: (o,b2)
// (a1,a4) by
A54,
AFF_1: 4;
(o,b2)
// (a1,a3) by
A4,
A6,
A8,
A9,
A10,
AFF_1: 39,
AFF_1: 41;
then (a1,a3)
// (a1,a4) by
A7,
A22,
A60,
AFF_1: 5;
then
LIN (a1,a3,a4) by
AFF_1:def 1;
hence contradiction by
A4,
A8,
A9,
A16,
A28,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A59,
A57;
end;
(a3,a2)
// (c2,b1) by
A52,
AFF_1: 4;
then (b3,b2)
// (c2,b1) by
A9,
A17,
A24,
AFF_1: 5;
then (b2,b3)
// (c2,b1) by
AFF_1: 4;
then
A61: (b4,b3)
// (c2,c1) by
A2,
A4,
A5,
A6,
A7,
A10,
A11,
A14,
A15,
A18,
A19,
A22,
A23,
A53,
A51,
A56,
A55,
AFF_2:def 2;
LIN (a1,a2,d) by
A31,
AFF_1: 6;
then (a1,a2)
// (a1,d) by
AFF_1:def 1;
then (a2,a1)
// (a1,d) by
AFF_1: 4;
then
A62: (b2,b1)
// (a1,d) by
A8,
A17,
A25,
AFF_1: 5;
A63: b1
<> b3
proof
assume b1
= b3;
then (b2,b1)
// (a2,a3) by
A24,
AFF_1: 4;
then
A64: (a2,a1)
// (a2,a3) by
A10,
A18,
A25,
AFF_1: 5;
(o,a1)
// (o,a3) by
A4,
A6,
A8,
A9,
AFF_1: 39,
AFF_1: 41;
then
LIN (o,a1,a3) by
AFF_1:def 1;
hence contradiction by
A5,
A6,
A7,
A12,
A17,
A20,
A28,
A64,
AFF_1: 14,
AFF_1: 25;
end;
A65: c1
<> c2
proof
A66: b1
<> c1
proof
assume b1
= c1;
then (a1,a4)
// (a2,a1) by
A10,
A18,
A25,
A54,
AFF_1: 5;
then (a1,a4)
// (a1,a2) by
AFF_1: 4;
then
LIN (a1,a4,a2) by
AFF_1:def 1;
then
LIN (a2,a4,a1) by
AFF_1: 6;
hence contradiction by
A5,
A12,
A13,
A20,
A29,
AFF_1: 25;
end;
assume c1
= c2;
then (a3,a2)
// (b1,c1) by
A52,
AFF_1: 4;
then
A67: (b3,b2)
// (b1,c1) by
A9,
A17,
A24,
AFF_1: 5;
(b1,c1)
// (b3,b1) by
A5,
A14,
A15,
A53,
AFF_1: 39,
AFF_1: 41;
then (b3,b1)
// (b3,b2) by
A67,
A66,
AFF_1: 5;
then
LIN (b3,b1,b2) by
AFF_1:def 1;
hence contradiction by
A5,
A14,
A15,
A22,
A63,
AFF_1: 25;
end;
LIN (o,d,d) by
AFF_1: 7;
then
consider Y such that
A68: Y is
being_line and
A69: o
in Y and
A70: d
in Y and d
in Y by
AFF_1: 21;
A71: M
<> N & M
<> Y & N
<> Y
proof
A72:
now
assume
A73: N
= Y;
LIN (a2,d,a1) by
A31,
AFF_1: 6;
hence contradiction by
A5,
A12,
A20,
A32,
A70,
A73,
AFF_1: 25;
end;
A74:
now
assume
A75: M
= Y;
LIN (a1,d,a2) by
A31,
AFF_1: 6;
hence contradiction by
A4,
A8,
A17,
A33,
A70,
A75,
AFF_1: 25;
end;
assume not thesis;
hence contradiction by
A13,
A16,
A74,
A72;
end;
A76: o
<> d
proof
assume o
= d;
then
LIN (o,a1,a2) by
A31,
AFF_1: 6;
hence contradiction by
A4,
A6,
A7,
A8,
A17,
A20,
AFF_1: 25;
end;
ex d1 st
LIN (b1,b2,d1) & d1
in Y
proof
consider e2 such that
A77: (o,d)
// (o,e2) and
A78: o
<> e2 by
DIRAF: 40;
consider e1 such that
A79: (b1,b2)
// (b1,e1) and
A80: b1
<> e1 by
DIRAF: 40;
not (b1,e1)
// (o,e2)
proof
assume (b1,e1)
// (o,e2);
then (b1,b2)
// (o,e2) by
A79,
A80,
AFF_1: 5;
then (b1,b2)
// (o,d) by
A77,
A78,
AFF_1: 5;
then (b2,b1)
// (o,d) by
AFF_1: 4;
then
A81: (a2,a1)
// (o,d) by
A10,
A18,
A25,
AFF_1: 5;
(a2,a1)
// (a2,d) by
A31,
AFF_1:def 1;
then (a2,d)
// (o,d) by
A8,
A17,
A81,
AFF_1: 5;
then (d,o)
// (d,a2) by
AFF_1: 4;
then
LIN (d,o,a2) by
AFF_1:def 1;
then
A82:
LIN (o,a2,d) by
AFF_1: 6;
LIN (a1,a2,d) by
A31,
AFF_1: 6;
then (a1,a2)
// (a1,d) by
AFF_1:def 1;
hence contradiction by
A4,
A6,
A7,
A8,
A17,
A20,
A32,
A82,
AFF_1: 14,
AFF_1: 25;
end;
then
consider d1 such that
A83:
LIN (b1,e1,d1) and
A84:
LIN (o,e2,d1) by
AFF_1: 60;
(o,e2)
// (o,d1) by
A84,
AFF_1:def 1;
then (o,d)
// (o,d1) by
A77,
A78,
AFF_1: 5;
then
A85:
LIN (o,d,d1) by
AFF_1:def 1;
take d1;
(b1,e1)
// (b1,d1) by
A83,
AFF_1:def 1;
then (b1,b2)
// (b1,d1) by
A79,
A80,
AFF_1: 5;
hence thesis by
A76,
A68,
A69,
A70,
A85,
AFF_1: 25,
AFF_1:def 1;
end;
then
consider d1 such that
A86:
LIN (b1,b2,d1) and
A87: d1
in Y;
LIN (b2,b1,d1) by
A86,
AFF_1: 6;
then (b2,b1)
// (b2,d1) by
AFF_1:def 1;
then (a1,d)
// (b2,d1) by
A10,
A18,
A62,
AFF_1: 5;
then
A88: (d,a4)
// (d1,c1) by
A3,
A4,
A5,
A6,
A7,
A8,
A10,
A13,
A16,
A20,
A76,
A68,
A69,
A70,
A87,
A53,
A54,
A71,
AFF_2:def 4;
(b1,b2)
// (b1,d1) by
A86,
AFF_1:def 1;
then (b2,b1)
// (b1,d1) by
AFF_1: 4;
then (a2,a1)
// (b1,d1) by
A10,
A18,
A25,
AFF_1: 5;
then (a2,d)
// (b1,d1) by
A8,
A17,
A34,
AFF_1: 5;
then (d,a3)
// (d1,c2) by
A3,
A4,
A5,
A6,
A7,
A9,
A12,
A14,
A17,
A21,
A76,
A68,
A69,
A70,
A87,
A51,
A52,
A71,
AFF_2:def 4;
then (a3,a4)
// (c2,c1) by
A3,
A4,
A5,
A6,
A7,
A9,
A13,
A16,
A21,
A76,
A68,
A69,
A70,
A87,
A53,
A51,
A71,
A88,
AFF_2:def 4;
then (b4,b3)
// (a3,a4) by
A65,
A61,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
AFF_1: 4;
end;
now
A89:
now
(o,b2)
// (o,b4) by
A4,
A6,
A10,
A11,
AFF_1: 39,
AFF_1: 41;
then
A90:
LIN (o,b2,b4) by
AFF_1:def 1;
assume
A91: a2
= a4;
then (a1,a4)
// (b1,b2) by
A25,
AFF_1: 4;
then (b1,b2)
// (b1,b4) by
A8,
A16,
A26,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A5,
A6,
A7,
A14,
A18,
A22,
A24,
A91,
A90,
AFF_1: 14,
AFF_1: 25;
end;
A92:
now
(o,b1)
// (o,b3) by
A5,
A7,
A14,
A15,
AFF_1: 39,
AFF_1: 41;
then
A93:
LIN (o,b1,b3) by
AFF_1:def 1;
assume
A94: a1
= a3;
then (a2,a1)
// (b2,b3) by
A24,
AFF_1: 4;
then (b2,b1)
// (b2,b3) by
A8,
A17,
A25,
AFF_1: 5;
hence (a3,a4)
// (b3,b4) by
A4,
A6,
A7,
A10,
A18,
A22,
A26,
A94,
A93,
AFF_1: 14,
AFF_1: 25;
end;
assume a1
= a3 or a2
= a4;
hence (a3,a4)
// (b3,b4) by
A92,
A89;
end;
hence (a3,a4)
// (b3,b4) by
A27;
end;
hence thesis;
end;
X is
satisfying_major_indirect_Scherungssatz implies X is
Pappian
proof
assume
A95: X is
satisfying_major_indirect_Scherungssatz;
now
let M, N, o, a, b, c, a1, b1, c1;
assume that
A96: M is
being_line and
A97: N is
being_line and
A98: M
<> N and
A99: o
in M and
A100: o
in N and
A101: o
<> a and
A102: o
<> a1 and
A103: o
<> b and
A104: o
<> b1 and
A105: o
<> c and
A106: o
<> c1 and
A107: a
in M and
A108: b
in M and
A109: c
in M and
A110: a1
in N and
A111: b1
in N and
A112: c1
in N and
A113: (a,b1)
// (b,a1) and
A114: (b,c1)
// (c,b1);
A115: not a
in N & not b
in N & not c
in N & not a1
in M & not b1
in M & not c1
in M
proof
A116: (o,c1)
// (o,c1) by
AFF_1: 2;
A117: (o,b1)
// (o,b1) by
AFF_1: 2;
A118: (o,a1)
// (o,a1) by
AFF_1: 2;
A119: (o,c)
// (o,c) by
AFF_1: 2;
A120: (o,b)
// (o,b) by
AFF_1: 2;
A121: (o,a)
// (o,a) by
AFF_1: 2;
assume not thesis;
then M
// N by
A96,
A97,
A99,
A100,
A101,
A102,
A103,
A104,
A105,
A106,
A107,
A108,
A109,
A110,
A111,
A112,
A121,
A120,
A119,
A118,
A117,
A116,
AFF_1: 38;
hence contradiction by
A98,
A99,
A100,
AFF_1: 45;
end;
A122: (b,c1)
// (b1,c) by
A114,
AFF_1: 4;
A123: (b1,b)
// (b,b1) by
AFF_1: 2;
(a,b1)
// (a1,b) by
A113,
AFF_1: 4;
then (a,c1)
// (a1,c) by
A95,
A96,
A97,
A99,
A100,
A107,
A108,
A109,
A110,
A111,
A112,
A115,
A122,
A123;
hence (a,c1)
// (c,a1) by
AFF_1: 4;
end;
hence thesis by
AFF_2:def 2;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:11
X is
satisfying_PPAP iff X is
satisfying_indirect_Scherungssatz
proof
A1: X is
satisfying_PPAP implies X is
satisfying_indirect_Scherungssatz
proof
assume
A2: X is
satisfying_PPAP;
then X is
satisfying_pap by
AFF_2: 10;
then
A3: X is
satisfying_minor_indirect_Scherungssatz by
Th9;
X is
Pappian by
A2,
AFF_2: 10;
then X is
satisfying_major_indirect_Scherungssatz by
Th10;
hence thesis by
A3,
Th1;
end;
X is
satisfying_indirect_Scherungssatz implies X is
satisfying_PPAP
proof
assume
A4: X is
satisfying_indirect_Scherungssatz;
then X is
satisfying_major_indirect_Scherungssatz;
then
A5: X is
Pappian by
Th10;
X is
satisfying_minor_indirect_Scherungssatz by
A4,
Th1;
then X is
satisfying_pap by
Th9;
hence thesis by
A5,
AFF_2: 10;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:12
X is
satisfying_major_indirect_Scherungssatz implies X is
satisfying_minor_indirect_Scherungssatz
proof
assume X is
satisfying_major_indirect_Scherungssatz;
then X is
Pappian by
Th10;
then X is
satisfying_pap by
AFF_2: 9;
hence thesis by
Th9;
end;
reserve X for
OrtAfPl;
reserve o9,a9,a19,a29,a39,a49,b9,b19,b29,b39,b49,c9,c19 for
Element of X;
reserve o,a,a1,a2,a3,a4,b,b1,b2,b3,b4,c,c1 for
Element of the AffinStruct of X;
reserve M9,N9 for
Subset of X;
reserve A,M,N for
Subset of the AffinStruct of X;
theorem ::
CONMETR1:13
the AffinStruct of X is
satisfying_Scherungssatz iff X is
satisfying_SCH
proof
A1: X is
satisfying_SCH implies the AffinStruct of X is
satisfying_Scherungssatz
proof
assume
A2: X is
satisfying_SCH;
now
let a1, a2, a3, a4, b1, b2, b3, b4, M, N;
assume that
A3: M is
being_line and
A4: N is
being_line and
A5: a1
in M and
A6: a3
in M and
A7: b1
in M and
A8: b3
in M and
A9: a2
in N and
A10: a4
in N and
A11: b2
in N and
A12: b4
in N and
A13: not a4
in M and
A14: not a2
in M and
A15: not b2
in M and
A16: not b4
in M and
A17: not a1
in N and
A18: not a3
in N and
A19: not b1
in N and
A20: not b3
in N and
A21: (a3,a2)
// (b3,b2) and
A22: (a2,a1)
// (b2,b1) and
A23: (a1,a4)
// (b1,b4);
reconsider a19 = a1, a29 = a2, a39 = a3, a49 = a4, b19 = b1, b29 = b2, b39 = b3, b49 = b4 as
Element of X;
A24: (a39,a29)
// (b39,b29) by
A21,
ANALMETR: 36;
A25: (a19,a49)
// (b19,b49) by
A23,
ANALMETR: 36;
A26: (a29,a19)
// (b29,b19) by
A22,
ANALMETR: 36;
reconsider M9 = M, N9 = N as
Subset of X;
A27: N9 is
being_line by
A4,
ANALMETR: 43;
M9 is
being_line by
A3,
ANALMETR: 43;
then (a39,a49)
// (b39,b49) by
A2,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A27,
A24,
A26,
A25,
CONMETR:def 6;
hence (a3,a4)
// (b3,b4) by
ANALMETR: 36;
end;
hence thesis;
end;
the AffinStruct of X is
satisfying_Scherungssatz implies X is
satisfying_SCH
proof
assume
A28: the AffinStruct of X is
satisfying_Scherungssatz;
now
let a19, a29, a39, a49, b19, b29, b39, b49, M9, N9;
assume that
A29: M9 is
being_line and
A30: N9 is
being_line and
A31: a19
in M9 and
A32: a39
in M9 and
A33: b19
in M9 and
A34: b39
in M9 and
A35: a29
in N9 and
A36: a49
in N9 and
A37: b29
in N9 and
A38: b49
in N9 and
A39: not a49
in M9 and
A40: not a29
in M9 and
A41: not b29
in M9 and
A42: not b49
in M9 and
A43: not a19
in N9 and
A44: not a39
in N9 and
A45: not b19
in N9 and
A46: not b39
in N9 and
A47: (a39,a29)
// (b39,b29) and
A48: (a29,a19)
// (b29,b19) and
A49: (a19,a49)
// (b19,b49);
reconsider a1 = a19, a2 = a29, a3 = a39, a4 = a49, b1 = b19, b2 = b29, b3 = b39, b4 = b49 as
Element of the AffinStruct of X;
A50: (a3,a2)
// (b3,b2) by
A47,
ANALMETR: 36;
A51: (a1,a4)
// (b1,b4) by
A49,
ANALMETR: 36;
A52: (a2,a1)
// (b2,b1) by
A48,
ANALMETR: 36;
reconsider M = M9, N = N9 as
Subset of the AffinStruct of X;
A53: N is
being_line by
A30,
ANALMETR: 43;
M is
being_line by
A29,
ANALMETR: 43;
then (a3,a4)
// (b3,b4) by
A28,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A53,
A50,
A52,
A51;
hence (a39,a49)
// (b39,b49) by
ANALMETR: 36;
end;
hence thesis by
CONMETR:def 6;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:14
X is
satisfying_TDES iff the AffinStruct of X is
Moufangian
proof
the AffinStruct of X is
Moufangian implies X is
satisfying_TDES
proof
assume
A1: the AffinStruct of X is
Moufangian;
now
let o9, a9, a19, b9, b19, c9, c19;
assume that o9
<> a9 and o9
<> a19 and
A2: o9
<> b9 and o9
<> b19 and
A3: o9
<> c9 and o9
<> c19 and
A4: not
LIN (b9,b19,a9) and
A5: not
LIN (b9,b19,c9) and
A6:
LIN (o9,a9,a19) and
A7:
LIN (o9,b9,b19) and
A8:
LIN (o9,c9,c19) and
A9: (a9,b9)
// (a19,b19) and
A10: (a9,b9)
// (o9,c9) and
A11: (b9,c9)
// (b19,c19);
reconsider o = o9, a = a9, a1 = a19, b = b9, b1 = b19, c = c9, c1 = c19 as
Element of the AffinStruct of X;
A12:
LIN (o,b,b1) by
A7,
ANALMETR: 40;
LIN (o,c,c1) by
A8,
ANALMETR: 40;
then
consider M such that
A13: M is
being_line and
A14: o
in M and
A15: c
in M and
A16: c1
in M by
AFF_1: 21;
A17: not
LIN (b,b1,c) by
A5,
ANALMETR: 40;
A18: not b
in M
proof
LIN (b,b1,o) by
A12,
AFF_1: 6;
then (b,b1)
// (b,o) by
AFF_1:def 1;
then
A19: (b,b1)
// (o,b) by
AFF_1: 4;
assume b
in M;
then (o,b)
// (b,c) by
A13,
A14,
A15,
AFF_1: 39,
AFF_1: 41;
then (b,b1)
// (b,c) by
A2,
A19,
AFF_1: 5;
hence contradiction by
A17,
AFF_1:def 1;
end;
(a,b)
// (a1,b1) by
A9,
ANALMETR: 36;
then
A20: (b,a)
// (b1,a1) by
AFF_1: 4;
not
LIN (b,b1,a) by
A4,
ANALMETR: 40;
then
A21: b
<> a by
AFF_1: 7;
A22: (b,c)
// (b1,c1) by
A11,
ANALMETR: 36;
A23:
LIN (o,a,a1) by
A6,
ANALMETR: 40;
(a,b)
// (o,c) by
A10,
ANALMETR: 36;
then (b,a)
// (o,c) by
AFF_1: 4;
then (b,a)
// M by
A3,
A13,
A14,
A15,
AFF_1: 27;
then (a,c)
// (a1,c1) by
A1,
A3,
A23,
A12,
A13,
A14,
A15,
A16,
A18,
A21,
A20,
A22,
AFF_2:def 7;
hence (a9,c9)
// (a19,c19) by
ANALMETR: 36;
end;
hence thesis by
CONMETR:def 5;
end;
hence thesis by
CONMETR: 7;
end;
theorem ::
CONMETR1:15
the AffinStruct of X is
translational iff X is
satisfying_des
proof
X is
satisfying_des implies the AffinStruct of X is
translational
proof
assume
A1: X is
satisfying_des;
now
let A, M, N, a, b, c, a1, b1, c1;
assume that
A2: A
// M and
A3: A
// N and
A4: a
in A and
A5: a1
in A and
A6: b
in M and
A7: b1
in M and
A8: c
in N and
A9: c1
in N and
A10: A is
being_line and
A11: M is
being_line and
A12: N is
being_line and
A13: A
<> M and
A14: A
<> N and
A15: (a,b)
// (a1,b1) and
A16: (a,c)
// (a1,c1);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1 as
Element of X;
(b,c)
// (b1,c1)
proof
assume
A17: not (b,c)
// (b1,c1);
A18: a
<> a1
proof
assume
A19: a
= a1;
A20: c
= c1
proof
LIN (a,c,c1) by
A16,
A19,
AFF_1:def 1;
then
A21:
LIN (c,c1,a) by
AFF_1: 6;
assume c
<> c1;
then a
in N by
A8,
A9,
A12,
A21,
AFF_1: 25;
hence contradiction by
A3,
A4,
A14,
AFF_1: 45;
end;
b
= b1
proof
LIN (a,b,b1) by
A15,
A19,
AFF_1:def 1;
then
A22:
LIN (b,b1,a) by
AFF_1: 6;
assume b
<> b1;
then a
in M by
A6,
A7,
A11,
A22,
AFF_1: 25;
hence contradiction by
A2,
A4,
A13,
AFF_1: 45;
end;
hence contradiction by
A17,
A20,
AFF_1: 2;
end;
A23: not
LIN (a9,a19,b9) & not
LIN (a9,a19,c9)
proof
assume
LIN (a9,a19,b9) or
LIN (a9,a19,c9);
then
LIN (a,a1,b) or
LIN (a,a1,c) by
ANALMETR: 40;
then b
in A or c
in A by
A4,
A5,
A10,
A18,
AFF_1: 25;
hence contradiction by
A2,
A3,
A6,
A8,
A13,
A14,
AFF_1: 45;
end;
(a,a1)
// (c,c1) by
A3,
A4,
A5,
A8,
A9,
AFF_1: 39;
then
A24: (a9,a19)
// (c9,c19) by
ANALMETR: 36;
(a,a1)
// (b,b1) by
A2,
A4,
A5,
A6,
A7,
AFF_1: 39;
then
A25: (a9,a19)
// (b9,b19) by
ANALMETR: 36;
A26: (a9,c9)
// (a19,c19) by
A16,
ANALMETR: 36;
(a9,b9)
// (a19,b19) by
A15,
ANALMETR: 36;
then (b9,c9)
// (b19,c19) by
A1,
A23,
A25,
A24,
A26,
CONMETR:def 8;
hence contradiction by
A17,
ANALMETR: 36;
end;
hence (b,c)
// (b1,c1);
end;
hence thesis by
AFF_2:def 11;
end;
hence thesis by
CONMETR: 8;
end;
theorem ::
CONMETR1:16
X is
satisfying_PAP iff the AffinStruct of X is
Pappian
proof
A1: X is
satisfying_PAP implies the AffinStruct of X is
Pappian
proof
assume
A2: X is
satisfying_PAP;
now
let M, N, o, a, b, c, a1, b1, c1;
assume that
A3: M is
being_line and
A4: N is
being_line and
A5: M
<> N and
A6: o
in M and
A7: o
in N and
A8: o
<> a and
A9: o
<> a1 and
A10: o
<> b and
A11: o
<> b1 and
A12: o
<> c and
A13: o
<> c1 and
A14: a
in M and
A15: b
in M and
A16: c
in M and
A17: a1
in N and
A18: b1
in N and
A19: c1
in N and
A20: (a,b1)
// (b,a1) and
A21: (b,c1)
// (c,b1);
reconsider a9 = a, b9 = b, c9 = c, a19 = a1, b19 = b1, c19 = c1 as
Element of X;
reconsider M9 = M, N9 = N as
Subset of X;
A22: N9 is
being_line by
A4,
ANALMETR: 43;
A23: not c19
in M9 & not b9
in N9
proof
assume c19
in M9 or b9
in N9;
then
A24: (o,c1)
// M or (o,b)
// N by
A3,
A4,
A6,
A7,
AFF_1: 52;
A25: (o,b)
// M by
A3,
A6,
A15,
AFF_1: 52;
(o,c1)
// N by
A4,
A7,
A19,
AFF_1: 52;
hence contradiction by
A5,
A6,
A7,
A10,
A13,
A24,
A25,
AFF_1: 45,
AFF_1: 53;
end;
(b,a1)
// (a,b1) by
A20,
AFF_1: 4;
then
A26: (b9,a19)
// (a9,b19) by
ANALMETR: 36;
A27: (b9,c19)
// (c9,b19) by
A21,
ANALMETR: 36;
M9 is
being_line by
A3,
ANALMETR: 43;
then (a9,c19)
// (c9,a19) by
A2,
A6,
A7,
A8,
A9,
A11,
A12,
A14,
A15,
A16,
A17,
A18,
A19,
A22,
A26,
A27,
A23,
CONMETR:def 2;
hence (a,c1)
// (c,a1) by
ANALMETR: 36;
end;
hence thesis by
AFF_2:def 2;
end;
the AffinStruct of X is
Pappian implies X is
satisfying_PAP
proof
assume
A28: the AffinStruct of X is
Pappian;
now
let o9, a19, a29, a39, b19, b29, b39, M9, N9;
assume that
A29: M9 is
being_line and
A30: N9 is
being_line and
A31: o9
in M9 and
A32: a19
in M9 and
A33: a29
in M9 and
A34: a39
in M9 and
A35: o9
in N9 and
A36: b19
in N9 and
A37: b29
in N9 and
A38: b39
in N9 and
A39: not b29
in M9 and
A40: not a39
in N9 and
A41: o9
<> a19 and
A42: o9
<> a29 and o9
<> a39 and
A43: o9
<> b19 and o9
<> b29 and
A44: o9
<> b39 and
A45: (a39,b29)
// (a29,b19) and
A46: (a39,b39)
// (a19,b19);
reconsider a1 = a19, a2 = a29, a3 = a39, b1 = b19, b2 = b29, b3 = b39 as
Element of the AffinStruct of X;
reconsider M = M9, N = N9 as
Subset of the AffinStruct of X;
A47: N is
being_line by
A30,
ANALMETR: 43;
A48: M is
being_line by
A29,
ANALMETR: 43;
now
assume M
<> N;
(a3,b3)
// (a1,b1) by
A46,
ANALMETR: 36;
then
A49: (a1,b1)
// (a3,b3) by
AFF_1: 4;
(a3,b2)
// (a2,b1) by
A45,
ANALMETR: 36;
then (a1,b2)
// (a2,b3) by
A28,
A31,
A32,
A33,
A34,
A35,
A36,
A37,
A38,
A39,
A40,
A41,
A42,
A43,
A44,
A48,
A47,
A49,
AFF_2:def 2;
hence (a19,b29)
// (a29,b39) by
ANALMETR: 36;
end;
hence (a19,b29)
// (a29,b39) by
A37,
A39;
end;
hence thesis by
CONMETR:def 2;
end;
hence thesis by
A1;
end;
theorem ::
CONMETR1:17
X is
satisfying_DES iff the AffinStruct of X is
Desarguesian
proof
A1: X is
satisfying_DES implies the AffinStruct of X is
Desarguesian
proof
assume
A2: X is
satisfying_DES;
now
let A, M, N, o, a, b, c, a1, b1, c1;
assume that
A3: o
in A and
A4: o
in M and
A5: o
in N and
A6: o
<> a and
A7: o
<> b and
A8: o
<> c and
A9: a
in A and
A10: a1
in A and
A11: b
in M and
A12: b1
in M and
A13: c
in N and
A14: c1
in N and
A15: A is
being_line and
A16: M is
being_line and
A17: N is
being_line and
A18: A
<> M and
A19: A
<> N and
A20: (a,b)
// (a1,b1) and
A21: (a,c)
// (a1,c1);
reconsider o9 = o, a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1 as
Element of X;
(o,b)
// (o,b1) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
then
A22:
LIN (o,b,b1) by
AFF_1:def 1;
then
A23:
LIN (o9,b9,b19) by
ANALMETR: 40;
(o,a)
// (o,a1) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
then
A24:
LIN (o,a,a1) by
AFF_1:def 1;
(o,c)
// (o,c1) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then
A25:
LIN (o,c,c1) by
AFF_1:def 1;
then
A26:
LIN (o9,c9,c19) by
ANALMETR: 40;
assume
A27: not (b,c)
// (b1,c1);
A28: not
LIN (b9,b19,a9) & not
LIN (a9,a19,c9)
proof
A29: a
<> a1
proof
assume
A30: a
= a1;
A31: c
= c1
proof
A32: not
LIN (o,a,c)
proof
assume
LIN (o,a,c);
then c
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A33: (o,c)
// A by
A3,
A15,
AFF_1: 52;
(o,c)
// N by
A5,
A13,
A17,
AFF_1: 52;
hence contradiction by
A3,
A5,
A8,
A19,
A33,
AFF_1: 45,
AFF_1: 53;
end;
assume c
<> c1;
hence contradiction by
A21,
A25,
A30,
A32,
AFF_1: 14;
end;
b
= b1
proof
A34: not
LIN (o,a,b)
proof
assume
LIN (o,a,b);
then b
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A35: (o,b)
// A by
A3,
A15,
AFF_1: 52;
(o,b)
// M by
A4,
A11,
A16,
AFF_1: 52;
hence contradiction by
A3,
A4,
A7,
A18,
A35,
AFF_1: 45,
AFF_1: 53;
end;
assume b
<> b1;
hence contradiction by
A20,
A22,
A30,
A34,
AFF_1: 14;
end;
hence contradiction by
A27,
A31,
AFF_1: 2;
end;
A36: b
<> b1
proof
A37: not
LIN (o,b,a)
proof
assume
LIN (o,b,a);
then a
in M by
A4,
A7,
A11,
A16,
AFF_1: 25;
then
A38: (o,a)
// M by
A4,
A16,
AFF_1: 52;
(o,a)
// A by
A3,
A9,
A15,
AFF_1: 52;
hence contradiction by
A3,
A4,
A6,
A18,
A38,
AFF_1: 45,
AFF_1: 53;
end;
assume b
= b1;
then (b,a)
// (b,a1) by
A20,
AFF_1: 4;
hence contradiction by
A24,
A29,
A37,
AFF_1: 14;
end;
assume
LIN (b9,b19,a9) or
LIN (a9,a19,c9);
then
LIN (b,b1,a) or
LIN (a,a1,c) by
ANALMETR: 40;
then a
in M or c
in A by
A9,
A10,
A11,
A12,
A15,
A16,
A29,
A36,
AFF_1: 25;
then
A39: (o,a)
// M or (o,c)
// A by
A3,
A4,
A15,
A16,
AFF_1: 52;
A40: (o,c)
// N by
A5,
A13,
A17,
AFF_1: 52;
(o,a)
// A by
A3,
A9,
A15,
AFF_1: 52;
hence contradiction by
A3,
A4,
A5,
A6,
A8,
A18,
A19,
A39,
A40,
AFF_1: 45,
AFF_1: 53;
end;
A41: (a9,c9)
// (a19,c19) by
A21,
ANALMETR: 36;
A42: (a9,b9)
// (a19,b19) by
A20,
ANALMETR: 36;
A43: o9
<> a19 & o9
<> b19 & o9
<> c19
proof
A44:
now
assume
A45: o9
= a19;
A46: o
= c1
proof
A47: not
LIN (c,a,o)
proof
assume
LIN (c,a,o);
then
LIN (o,a,c) by
AFF_1: 6;
then c
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A48: (o,c)
// A by
A3,
A15,
AFF_1: 52;
(o,c)
// N by
A5,
A13,
A17,
AFF_1: 52;
hence contradiction by
A3,
A5,
A8,
A19,
A48,
AFF_1: 45,
AFF_1: 53;
end;
assume
A49: o
<> c1;
A50: (o,c)
// (o,c1) by
A5,
A13,
A14,
A17,
AFF_1: 39,
AFF_1: 41;
then (a,c)
// (o,c) by
A21,
A45,
A49,
AFF_1: 5;
then (c,a)
// (c,o) by
AFF_1: 4;
then
LIN (c,a,o) by
AFF_1:def 1;
then
LIN (o,a,c) by
AFF_1: 6;
then (o,a)
// (o,c) by
AFF_1:def 1;
then (o,a)
// (o,c1) by
A8,
A50,
AFF_1: 5;
then
LIN (o,a,c1) by
AFF_1:def 1;
then
LIN (a,o,c1) by
AFF_1: 6;
then
A51: (a,o)
// (a,c1) by
AFF_1:def 1;
LIN (c,o,c1) by
A25,
AFF_1: 6;
hence contradiction by
A49,
A47,
A51,
AFF_1: 14;
end;
o
= b1
proof
A52: not
LIN (b,a,o)
proof
assume
LIN (b,a,o);
then
LIN (o,a,b) by
AFF_1: 6;
then b
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A53: (o,b)
// A by
A3,
A15,
AFF_1: 52;
(o,b)
// M by
A4,
A11,
A16,
AFF_1: 52;
hence contradiction by
A3,
A4,
A7,
A18,
A53,
AFF_1: 45,
AFF_1: 53;
end;
assume
A54: o
<> b1;
A55: (o,b1)
// (o,b) by
A4,
A11,
A12,
A16,
AFF_1: 39,
AFF_1: 41;
then (a,b)
// (o,b) by
A20,
A45,
A54,
AFF_1: 5;
then (b,a)
// (b,o) by
AFF_1: 4;
then
LIN (b,a,o) by
AFF_1:def 1;
then
LIN (o,a,b) by
AFF_1: 6;
then (o,a)
// (o,b) by
AFF_1:def 1;
then (o,a)
// (o,b1) by
A7,
A55,
AFF_1: 5;
then
LIN (o,a,b1) by
AFF_1:def 1;
then
LIN (a,o,b1) by
AFF_1: 6;
then
A56: (a,o)
// (a,b1) by
AFF_1:def 1;
LIN (b,o,b1) by
A22,
AFF_1: 6;
hence contradiction by
A54,
A52,
A56,
AFF_1: 14;
end;
hence contradiction by
A27,
A46,
AFF_1: 3;
end;
A57:
now
A58: not
LIN (a,b,o)
proof
assume
LIN (a,b,o);
then
LIN (o,a,b) by
AFF_1: 6;
then b
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A59: (o,b)
// A by
A3,
A15,
AFF_1: 52;
(o,b)
// M by
A4,
A11,
A16,
AFF_1: 52;
hence contradiction by
A3,
A4,
A7,
A18,
A59,
AFF_1: 45,
AFF_1: 53;
end;
A60: (a1,o)
// (a,o) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
assume o9
= b19;
then (a,b)
// (a,o) by
A20,
A44,
A60,
AFF_1: 5;
then
LIN (a,b,o) by
AFF_1:def 1;
then
LIN (o,b,a) by
AFF_1: 6;
then (o,b)
// (o,a) by
AFF_1:def 1;
then (o,b)
// (a,o) by
AFF_1: 4;
then (o,b)
// (a1,o) by
A6,
A60,
AFF_1: 5;
then (o,b)
// (o,a1) by
AFF_1: 4;
then
LIN (o,b,a1) by
AFF_1:def 1;
then
LIN (b,o,a1) by
AFF_1: 6;
then
A61: (b,o)
// (b,a1) by
AFF_1:def 1;
LIN (a,o,a1) by
A24,
AFF_1: 6;
hence contradiction by
A44,
A58,
A61,
AFF_1: 14;
end;
A62:
now
A63: not
LIN (a,c,o)
proof
assume
LIN (a,c,o);
then
LIN (o,a,c) by
AFF_1: 6;
then c
in A by
A3,
A6,
A9,
A15,
AFF_1: 25;
then
A64: (o,c)
// A by
A3,
A15,
AFF_1: 52;
(o,c)
// N by
A5,
A13,
A17,
AFF_1: 52;
hence contradiction by
A3,
A5,
A8,
A19,
A64,
AFF_1: 45,
AFF_1: 53;
end;
A65: (a1,o)
// (a,o) by
A3,
A9,
A10,
A15,
AFF_1: 39,
AFF_1: 41;
assume o9
= c19;
then (a,c)
// (a,o) by
A21,
A44,
A65,
AFF_1: 5;
then
LIN (a,c,o) by
AFF_1:def 1;
then
LIN (o,c,a) by
AFF_1: 6;
then (o,c)
// (o,a) by
AFF_1:def 1;
then (o,c)
// (a,o) by
AFF_1: 4;
then (o,c)
// (a1,o) by
A6,
A65,
AFF_1: 5;
then (o,c)
// (o,a1) by
AFF_1: 4;
then
LIN (o,c,a1) by
AFF_1:def 1;
then
LIN (c,o,a1) by
AFF_1: 6;
then
A66: (c,o)
// (c,a1) by
AFF_1:def 1;
LIN (a,o,a1) by
A24,
AFF_1: 6;
hence contradiction by
A44,
A63,
A66,
AFF_1: 14;
end;
assume not thesis;
hence contradiction by
A44,
A57,
A62;
end;
LIN (o9,a9,a19) by
A24,
ANALMETR: 40;
then (b9,c9)
// (b19,c19) by
A2,
A6,
A7,
A8,
A23,
A26,
A43,
A28,
A42,
A41,
CONAFFM:def 1;
hence contradiction by
A27,
ANALMETR: 36;
end;
hence thesis by
AFF_2:def 4;
end;
the AffinStruct of X is
Desarguesian implies X is
satisfying_DES
proof
assume
A67: the AffinStruct of X is
Desarguesian;
now
let o9, a9, a19, b9, b19, c9, c19;
assume that
A68: o9
<> a9 and o9
<> a19 and
A69: o9
<> b9 and o9
<> b19 and
A70: o9
<> c9 and o9
<> c19 and
A71: not
LIN (b9,b19,a9) and
A72: not
LIN (a9,a19,c9) and
A73:
LIN (o9,a9,a19) and
A74:
LIN (o9,b9,b19) and
A75:
LIN (o9,c9,c19) and
A76: (a9,b9)
// (a19,b19) and
A77: (a9,c9)
// (a19,c19);
reconsider o = o9, a = a9, a1 = a19, b = b9, b1 = b19, c = c9, c1 = c19 as
Element of the AffinStruct of X;
A78: not
LIN (a,a1,c) by
A72,
ANALMETR: 40;
A79: (a,c)
// (a1,c1) by
A77,
ANALMETR: 36;
A80: (a,b)
// (a1,b1) by
A76,
ANALMETR: 36;
LIN (o,b,b1) by
A74,
ANALMETR: 40;
then
consider M such that
A81: M is
being_line and
A82: o
in M and
A83: b
in M and
A84: b1
in M by
AFF_1: 21;
LIN (o,c,c1) by
A75,
ANALMETR: 40;
then
consider N such that
A85: N is
being_line and
A86: o
in N and
A87: c
in N and
A88: c1
in N by
AFF_1: 21;
LIN (o,a,a1) by
A73,
ANALMETR: 40;
then
consider A such that
A89: A is
being_line and
A90: o
in A and
A91: a
in A and
A92: a1
in A by
AFF_1: 21;
A93: not
LIN (b,b1,a) by
A71,
ANALMETR: 40;
A
<> M & A
<> N
proof
assume not thesis;
then (b,b1)
// (b,a) or (a,a1)
// (a,c) by
A89,
A91,
A92,
A83,
A84,
A87,
AFF_1: 39,
AFF_1: 41;
hence contradiction by
A93,
A78,
AFF_1:def 1;
end;
then (b,c)
// (b1,c1) by
A67,
A68,
A69,
A70,
A89,
A90,
A91,
A92,
A81,
A82,
A83,
A84,
A85,
A86,
A87,
A88,
A80,
A79,
AFF_2:def 4;
hence (b9,c9)
// (b19,c19) by
ANALMETR: 36;
end;
hence thesis by
CONAFFM:def 1;
end;
hence thesis by
A1;
end;