finance4.miz



    begin

    reserve Omega for non empty set;

    reserve Sigma for SigmaField of Omega;

    reserve T for Nat;

    theorem :: FINANCE4:1

    

     L: for X be non empty set holds for t be object holds for f be Function st ( dom f) = X holds { w where w be Element of X : (f . w) = t } = ( Coim (f,t))

    proof

      let X be non empty set;

      let t be object;

      let f be Function such that

       AA: ( dom f) = X;

      set A = { w where w be Element of X : (f . w) = t };

      

       A0: t in {t} by TARSKI:def 1;

      thus A c= ( Coim (f,t))

      proof

        let x be object;

        assume x in A;

        then ex w be Element of X st x = w & (f . w) = t;

        then [x, t] in f by AA, FUNCT_1: 1;

        hence thesis by A0, RELAT_1:def 14;

      end;

      let x be object;

      assume x in ( Coim (f,t));

      then

      consider y be object such that

       A1: [x, y] in f and

       A2: y in {t} by RELAT_1:def 14;

      

       A4: y = t by A2, TARSKI:def 1;

      

       A3: x in ( dom f) by A1, XTUPLE_0:def 12;

      (f . x) = t by A1, A4, FUNCT_1: 1;

      hence thesis by AA, A3;

    end;

    definition

      let I be ext-real-membered set;

      :: FINANCE4:def1

      func StoppingSetExt (I) -> Subset of ExtREAL equals (I \/ { +infty });

      correctness by MEMBERED: 2;

    end

    registration

      let I be ext-real-membered set;

      cluster ( StoppingSetExt I) -> non empty;

      correctness ;

    end

    definition

      let T be Nat;

      :: FINANCE4:def2

      func StoppingSet (T) -> Subset of REAL equals { t where t be Element of NAT : 0 <= t <= T };

      correctness

      proof

        { t where t be Element of NAT : 0 <= t <= T } c= REAL

        proof

          let q be object;

          assume q in { t where t be Element of NAT : 0 <= t <= T };

          then

          consider q1 be Element of NAT such that

           C1: q = q1 & ( 0 <= q1 & q1 <= T);

          thus thesis by NUMBERS: 19, C1;

        end;

        hence thesis;

      end;

    end

    registration

      let T be Nat;

      cluster ( StoppingSet T) -> non empty;

      correctness

      proof

         0 in ( StoppingSet T);

        hence thesis;

      end;

    end

    definition

      let T be Nat;

      :: FINANCE4:def3

      func StoppingSetExt (T) -> Subset of ExtREAL equals (( StoppingSet T) \/ { +infty });

      correctness

      proof

        

         a1: ( StoppingSet T) c= ExtREAL by XXREAL_0:def 4, XBOOLE_0:def 3;

         { +infty } c= ExtREAL by ZFMISC_1: 31;

        hence thesis by a1, XBOOLE_1: 8;

      end;

    end

    registration

      let T be Nat;

      cluster ( StoppingSetExt T) -> non empty;

      coherence ;

    end

    reserve TFix for Element of ( StoppingSetExt T);

    reserve MyFunc for Filtration of ( StoppingSet T), Sigma;

    reserve k,k1,k2 for Function of Omega, ( StoppingSetExt T);

    definition

      let T be Nat;

      let F be Function;

      let R be Relation;

      :: FINANCE4:def4

      pred R is_StoppingTime_wrt F,T means for t be Element of ( StoppingSet T) holds ( Coim (R,t)) in (F . t);

    end

    definition

      let Omega be non empty set;

      let T be Nat;

      let MyFunc be Function;

      let k be Function of Omega, ( StoppingSetExt T);

      :: original: is_StoppingTime_wrt

      redefine

      :: FINANCE4:def5

      pred k is_StoppingTime_wrt MyFunc,T means for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) = t } in (MyFunc . t);

      compatibility

      proof

        

         A0: ( dom k) = Omega by FUNCT_2:def 1;

        hereby

          assume

           A1: k is_StoppingTime_wrt (MyFunc,T);

          let t be Element of ( StoppingSet T);

          { w where w be Element of Omega : (k . w) = t } = ( Coim (k,t)) by A0, L;

          hence { w where w be Element of Omega : (k . w) = t } in (MyFunc . t) by A1;

        end;

        assume

         A2: for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) = t } in (MyFunc . t);

        let t be Element of ( StoppingSet T);

        { w where w be Element of Omega : (k . w) = t } = ( Coim (k,t)) by A0, L;

        hence thesis by A2;

      end;

    end

    theorem :: FINANCE4:2

    

     KJK: k is_StoppingTime_wrt (MyFunc,T) iff for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) <= t } in (MyFunc . t)

    proof

      thus k is_StoppingTime_wrt (MyFunc,T) implies for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) <= t } in (MyFunc . t)

      proof

        assume

         ASS: k is_StoppingTime_wrt (MyFunc,T);

        for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) <= t } in (MyFunc . t)

        proof

          defpred J[ Nat] means $1 in ( StoppingSet T) implies { w where w be Element of Omega : (k . w) <= $1 } in (MyFunc . $1);

          

           K1: { w where w be Element of Omega : (k . w) <= 0 } = { w where w be Element of Omega : (k . w) = 0 }

          proof

            for q be object holds q in { w where w be Element of Omega : (k . w) <= 0 } iff q in { w where w be Element of Omega : (k . w) = 0 }

            proof

              let q be object;

              

               I1: (ex q1 be Element of Omega st q = q1 & (k . q1) <= 0 ) implies (ex q2 be Element of Omega st q = q2 & (k . q2) = 0 )

              proof

                given q2 be Element of Omega such that

                 II: q = q2 & (k . q2) <= 0 ;

                (k . q2) = 0

                proof

                  per cases by XBOOLE_0:def 3;

                    suppose (k . q2) in ( StoppingSet T);

                    then ex s be Element of NAT st (k . q2) = s & 0 <= s & s <= T;

                    hence thesis by II;

                  end;

                    suppose (k . q2) in { +infty };

                    hence thesis by II, TARSKI:def 1;

                  end;

                end;

                hence thesis by II;

              end;

              (ex q2 be Element of Omega st q = q2 & (k . q2) = 0 ) implies (ex q1 be Element of Omega st q = q1 & (k . q1) <= 0 );

              hence thesis by I1;

            end;

            hence thesis by TARSKI: 2;

          end;

          

           J0: J[ 0 ]

          proof

            { w where w be Element of Omega : (k . w) <= 0 } in (MyFunc . 0 )

            proof

               0 in ( StoppingSet T);

              hence thesis by K1, ASS;

            end;

            hence thesis;

          end;

          

           J1: for n be Nat st J[n] holds J[(n + 1)]

          proof

            let n be Nat;

            assume

             j1: J[n];

            (n + 1) in ( StoppingSet T) implies { w where w be Element of Omega : (k . w) <= (n + 1) } in (MyFunc . (n + 1))

            proof

              assume

               ASSJ10: (n + 1) in ( StoppingSet T);

              

               J10: { w where w be Element of Omega : (k . w) <= (n + 1) } = ({ w where w be Element of Omega : (k . w) <= n } \/ { w where w be Element of Omega : (k . w) = (n + 1) })

              proof

                for x be object holds x in { w where w be Element of Omega : (k . w) <= (n + 1) } iff x in ({ w where w be Element of Omega : (k . w) <= n } \/ { w where w be Element of Omega : (k . w) = (n + 1) })

                proof

                  let x be object;

                  thus x in { w where w be Element of Omega : (k . w) <= (n + 1) } implies x in ({ w where w be Element of Omega : (k . w) <= n } \/ { w where w be Element of Omega : (k . w) = (n + 1) })

                  proof

                    assume x in { w where w be Element of Omega : (k . w) <= (n + 1) };

                    then

                    consider w be Element of Omega such that

                     XX: x = w & (k . w) <= (n + 1);

                    set KW = (k . w);

                    per cases by XX;

                      suppose x = w & (k . w) <= n;

                      then x in { w where w be Element of Omega : (k . w) <= n };

                      hence thesis by XBOOLE_0:def 3;

                    end;

                      suppose

                       S1: x = w & not (k . w) <= n;

                      (k . w) = (n + 1)

                      proof

                        (k . w) is Element of NAT or (k . w) = +infty

                        proof

                          (k . w) in ( StoppingSet T) or (k . w) in { +infty } by XBOOLE_0:def 3;

                          per cases by TARSKI:def 1;

                            suppose (k . w) = +infty ;

                            hence thesis;

                          end;

                            suppose (k . w) in ( StoppingSet T);

                            then ex q be Element of NAT st (k . w) = q & 0 <= q <= T;

                            hence thesis;

                          end;

                        end;

                        then

                        reconsider KW as Element of NAT by NUMBERS: 19, XX, XXREAL_0: 9;

                        per cases by XX, NAT_1: 8;

                          suppose KW <= n;

                          hence thesis by S1;

                        end;

                          suppose KW = (n + 1);

                          hence thesis;

                        end;

                      end;

                      then x in { w where w be Element of Omega : (k . w) = (n + 1) } by XX;

                      hence thesis by XBOOLE_0:def 3;

                    end;

                  end;

                  assume x in ({ w where w be Element of Omega : (k . w) <= n } \/ { w where w be Element of Omega : (k . w) = (n + 1) });

                  per cases by XBOOLE_0:def 3;

                    suppose

                     JP: x in { w where w be Element of Omega : (k . w) <= n };

                    x in { w where w be Element of Omega : (k . w) <= (n + 1) }

                    proof

                      consider q be Element of Omega such that

                       Q1: x = q & (k . q) <= n by JP;

                      set KJ = (k . q);

                      KJ is Element of NAT or KJ = +infty

                      proof

                        (k . q) in ( StoppingSet T) or (k . q) in { +infty } by XBOOLE_0:def 3;

                        per cases by TARSKI:def 1;

                          suppose (k . q) = +infty ;

                          hence thesis;

                        end;

                          suppose (k . q) in ( StoppingSet T);

                          then ex q1 be Element of NAT st (k . q) = q1 & 0 <= q1 & q1 <= T;

                          hence thesis;

                        end;

                      end;

                      then

                      reconsider KJ as Element of NAT by XREAL_0:def 1, Q1, XXREAL_0: 9;

                      KJ <= n implies KJ <= (n + 1) by NAT_1: 12;

                      hence thesis by Q1;

                    end;

                    hence thesis;

                  end;

                    suppose

                     JP: x in { w where w be Element of Omega : (k . w) = (n + 1) };

                    x in { w where w be Element of Omega : (k . w) <= (n + 1) }

                    proof

                      ex q be Element of Omega st x = q & (k . q) = (n + 1) by JP;

                      hence thesis;

                    end;

                    hence thesis;

                  end;

                end;

                hence thesis by TARSKI: 2;

              end;

              reconsider n as Element of NAT by ORDINAL1:def 12;

              ({ w where w be Element of Omega : (k . w) <= n } \/ { w where w be Element of Omega : (k . w) = (n + 1) }) in (MyFunc . (n + 1))

              proof

                set A = { w where w be Element of Omega : (k . w) <= n };

                set B = { w where w be Element of Omega : (k . w) = (n + 1) };

                set C = (MyFunc . (n + 1));

                reconsider C as SigmaField of Omega by ASSJ10, KOLMOG01:def 2;

                n in ( StoppingSet T)

                proof

                  consider t be Element of NAT such that

                   Y20: (n + 1) = t & 0 <= t & t <= T by ASSJ10;

                   0 <= n & n <= T by Y20, NAT_1: 13;

                  hence thesis;

                end;

                then

                reconsider n as Element of ( StoppingSet T);

                

                 h2: A is Element of C

                proof

                  for x be set holds x in (MyFunc . n) implies x in (MyFunc . (n + 1))

                  proof

                    (MyFunc . n) is Subset of (MyFunc . (n + 1)) by FINANCE3:def 9, NAT_1: 12, ASSJ10;

                    hence thesis;

                  end;

                  hence thesis by j1;

                end;

                B is Event of C by ASSJ10, ASS;

                then (A \/ B) is Event of C by h2, PROB_1: 21;

                hence thesis;

              end;

              hence thesis by J10;

            end;

            hence thesis;

          end;

          

           Q1: for n be Nat holds J[n] from NAT_1:sch 2( J0, J1);

          for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) <= t } in (MyFunc . t)

          proof

            let t be Element of ( StoppingSet T);

            t in ( StoppingSet T);

            then ex s be Element of NAT st t = s & 0 <= s <= T;

            hence thesis by Q1;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      assume

       ASSJ1: for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) <= t } in (MyFunc . t);

      for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k . w) = t } in (MyFunc . t)

      proof

        let t be Element of ( StoppingSet T);

        defpred J[ Nat] means ($1 + 1) in ( StoppingSet T) implies { w where w be Element of Omega : (k . w) < ($1 + 1) } in (MyFunc . ($1 + 1));

        

         J01: J[ 0 ]

        proof

          ( 0 + 1) in ( StoppingSet T) implies { w where w be Element of Omega : (k . w) < ( 0 + 1) } in (MyFunc . ( 0 + 1))

          proof

            assume

             ASS: ( 0 + 1) in ( StoppingSet T);

            { w where w be Element of Omega : (k . w) < ( 0 + 1) } in (MyFunc . ( 0 + 1))

            proof

              

               H1: { w where w be Element of Omega : (k . w) <= 0 } = { w where w be Element of Omega : (k . w) < ( 0 + 1) }

              proof

                for x be object holds x in { w where w be Element of Omega : (k . w) <= 0 } iff x in { w where w be Element of Omega : (k . w) < ( 0 + 1) }

                proof

                  let x be object;

                  thus x in { w where w be Element of Omega : (k . w) <= 0 } implies x in { w where w be Element of Omega : (k . w) < ( 0 + 1) }

                  proof

                    assume x in { w where w be Element of Omega : (k . w) <= 0 };

                    then

                    consider w1 be Element of Omega such that

                     W1: x = w1 & (k . w1) <= 0 ;

                    thus thesis by W1;

                  end;

                  assume x in { w where w be Element of Omega : (k . w) < ( 0 + 1) };

                  then

                  consider w1 be Element of Omega such that

                   W1: x = w1 & (k . w1) < ( 0 + 1);

                  set KWJ = (k . w1);

                  KWJ is Element of NAT or KWJ = +infty

                  proof

                    (k . w1) in ( StoppingSet T) or (k . w1) in { +infty } by XBOOLE_0:def 3;

                    per cases by TARSKI:def 1;

                      suppose (k . w1) = +infty ;

                      hence thesis;

                    end;

                      suppose (k . w1) in ( StoppingSet T);

                      then ex q1 be Element of NAT st (k . w1) = q1 & 0 <= q1 <= T;

                      hence thesis;

                    end;

                  end;

                  then

                  reconsider KWJ as Nat by NUMBERS: 19, W1, XXREAL_0: 9;

                  KWJ <= 0 by NAT_1: 13, W1;

                  hence thesis by W1;

                end;

                hence thesis by TARSKI: 2;

              end;

              

               T1: 0 in ( StoppingSet T);

              then

              reconsider JA = 0 as Element of ( StoppingSet T);

              reconsider JB = ( 0 + 1) as Element of ( StoppingSet T) by ASS;

              

               h2: (MyFunc . JA) is Subset of (MyFunc . JB) by FINANCE3:def 9;

              { w where w be Element of Omega : (k . w) <= 0 } in (MyFunc . 0 ) by ASSJ1, T1;

              hence thesis by H1, h2;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        

         J11: for n be Nat st J[n] holds J[(n + 1)]

        proof

          let n be Nat;

          assume J[n];

          ((n + 1) + 1) in ( StoppingSet T) implies { w where w be Element of Omega : (k . w) < ((n + 1) + 1) } in (MyFunc . ((n + 1) + 1))

          proof

            assume

             N01: ((n + 1) + 1) in ( StoppingSet T);

            

             M10: { w where w be Element of Omega : (k . w) < ((n + 1) + 1) } = { w where w be Element of Omega : (k . w) <= (n + 1) }

            proof

              for x be object holds x in { w where w be Element of Omega : (k . w) < ((n + 1) + 1) } iff x in { w where w be Element of Omega : (k . w) <= (n + 1) }

              proof

                let x be object;

                thus x in { w where w be Element of Omega : (k . w) < ((n + 1) + 1) } implies x in { w where w be Element of Omega : (k . w) <= (n + 1) }

                proof

                  assume x in { w where w be Element of Omega : (k . w) < ((n + 1) + 1) };

                  then

                  consider w be Element of Omega such that

                   F11: x = w & (k . w) < ((n + 1) + 1);

                  set KW = (k . w);

                  

                   a1: (k . w) in ( StoppingSet T)

                  proof

                    ((n + 1) + 1) in REAL by NUMBERS: 19;

                    then (k . w) < +infty by F11, XXREAL_0: 2, XXREAL_0: 9;

                    then not (k . w) in { +infty } by TARSKI:def 1;

                    hence thesis by XBOOLE_0:def 3;

                  end;

                  consider w2 be Element of NAT such that

                   L21: KW = w2 & 0 <= w2 <= T by a1;

                  KW < ((n + 1) + 1) iff KW <= (n + 1) by NAT_1: 13, L21;

                  hence thesis by F11;

                end;

                assume x in { w where w be Element of Omega : (k . w) <= (n + 1) };

                then

                consider w3 be Element of Omega such that

                 QZ1: x = w3 & (k . w3) <= (n + 1);

                set KW = (k . w3);

                (k . w3) in ( StoppingSet T)

                proof

                   not (k . w3) in { +infty }

                  proof

                    (n + 1) < +infty by XXREAL_0: 9, NUMBERS: 19;

                    hence thesis by TARSKI:def 1, QZ1;

                  end;

                  hence thesis by XBOOLE_0:def 3;

                end;

                then

                consider w2 be Element of NAT such that

                 L21: (k . w3) = w2 & 0 <= w2 <= T;

                KW < ((n + 1) + 1) by QZ1, NAT_1: 13, L21;

                hence thesis by QZ1;

              end;

              hence thesis by TARSKI: 2;

            end;

            

             s1: (n + 1) in ( StoppingSet T)

            proof

              consider w3 be Element of NAT such that

               QZ10: w3 = ((n + 1) + 1) & 0 <= w3 & w3 <= T by N01;

              (n + 1) < T by NAT_1: 13, QZ10;

              hence thesis;

            end;

            (n + 1) in ( StoppingSet T) & (n + 1) <= ((n + 1) + 1) by NAT_1: 13, s1;

            then (MyFunc . (n + 1)) is Subset of (MyFunc . ((n + 1) + 1)) by FINANCE3:def 9, N01;

            then (MyFunc . (n + 1)) c= (MyFunc . ((n + 1) + 1));

            hence thesis by M10, ASSJ1, s1;

          end;

          hence thesis;

        end;

        

         Q1: for n be Nat holds J[n] from NAT_1:sch 2( J01, J11);

        reconsider M = (MyFunc . t) as SigmaField of Omega by KOLMOG01:def 2;

        

         QH1: { w where w be Element of Omega : (k . w) <= t } is Element of M by ASSJ1;

        t in ( StoppingSet T);

        then

        consider q be Element of NAT such that

         QH3: t = q & 0 <= q <= T;

        reconsider t as Nat by QH3;

        

         Q2: ({ w where w be Element of Omega : (k . w) <= t } \ { w where w be Element of Omega : (k . w) < t }) is Event of M

        proof

          { w where w be Element of Omega : (k . w) < t } is Element of M

          proof

            per cases ;

              suppose

               S1: t = 0 ;

              

               s2: { w where w be Element of Omega : (k . w) < 0 } c= {}

              proof

                let x be object;

                assume x in { w where w be Element of Omega : (k . w) < 0 };

                then

                consider w be Element of Omega such that

                 TT: x = w & (k . w) < 0 ;

                (k . w) >= 0

                proof

                  (k . w) in ( StoppingSet T) or (k . w) in { +infty } by XBOOLE_0:def 3;

                  per cases by TARSKI:def 1;

                    suppose (k . w) in ( StoppingSet T);

                    then ex t be Element of NAT st t = (k . w) & 0 <= t <= T;

                    hence thesis;

                  end;

                    suppose (k . w) = +infty ;

                    hence thesis;

                  end;

                end;

                hence thesis by TT;

              end;

              reconsider M as SigmaField of Omega;

               {} is Element of M by PROB_1: 22;

              hence thesis by s2, S1;

            end;

              suppose t > 0 ;

              then { w where w be Element of Omega : (k . w) < ((t - 1) + 1) } is Element of (MyFunc . ((t - 1) + 1)) by Q1;

              hence thesis;

            end;

          end;

          hence thesis by QH1, PROB_1: 24;

        end;

        ({ w where w be Element of Omega : (k . w) <= t } \ { w where w be Element of Omega : (k . w) < t }) = { w where w be Element of Omega : (k . w) = t }

        proof

          for x be object holds x in ({ w where w be Element of Omega : (k . w) <= t } \ { w where w be Element of Omega : (k . w) < t }) iff x in { w where w be Element of Omega : (k . w) = t }

          proof

            let x be object;

            thus x in ({ w where w be Element of Omega : (k . w) <= t } \ { w where w be Element of Omega : (k . w) < t }) implies x in { w where w be Element of Omega : (k . w) = t }

            proof

              assume x in ({ w where w be Element of Omega : (k . w) <= t } \ { w where w be Element of Omega : (k . w) < t });

              then

               JJJ: x in { w where w be Element of Omega : (k . w) <= t } & not x in { w where w be Element of Omega : (k . w) < t } by XBOOLE_0:def 5;

              then

              consider w1 be Element of Omega such that

               JJJ1: w1 = x & (k . w1) <= t;

              w1 in { w where w be Element of Omega : (k . w) = t }

              proof

                (k . w1) <= t & (k . w1) >= t implies (k . w1) = t

                proof

                  assume

                   Q0: (k . w1) <= t & (k . w1) >= t;

                  set W = (k . w1);

                  W in ( StoppingSet T) or W in { +infty } by XBOOLE_0:def 3;

                  then (ex w3 be Element of NAT st w3 = W & 0 <= w3 & w3 <= T) or W = +infty by TARSKI:def 1;

                  then

                  reconsider W as Nat by JJJ1, XXREAL_0: 9;

                  (W + 1) > t by NAT_1: 13, Q0;

                  hence thesis by Q0, NAT_1: 22;

                end;

                hence thesis by JJJ1, JJJ;

              end;

              hence thesis by JJJ1;

            end;

            assume x in { w where w be Element of Omega : (k . w) = t };

            then

            consider w be Element of Omega such that

             W1: x = w & (k . w) = t;

            (ex w1 be Element of Omega st x = w1 & (k . w1) <= t) & ( not ex w1 be Element of Omega st x = w1 & (k . w1) < t) by W1;

            then x in { w where w be Element of Omega : (k . w) <= t } & ( not x in { w where w be Element of Omega : (k . w) < t });

            hence thesis by XBOOLE_0:def 5;

          end;

          hence thesis by TARSKI: 2;

        end;

        hence thesis by Q2;

      end;

      hence thesis;

    end;

    theorem :: FINANCE4:3

    (Omega --> TFix) is_StoppingTime_wrt (MyFunc,T)

    proof

      set const = (Omega --> TFix);

      for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (const . w) = t } in (MyFunc . t)

      proof

        let t be Element of ( StoppingSet T);

        per cases ;

          suppose

           S0: t = TFix;

          

           C1: { w where w be Element of Omega : (const . w) = t } = Omega

          proof

            for x be object holds x in { w where w be Element of Omega : (const . w) = t } iff x in Omega

            proof

              let x be object;

              thus x in { w where w be Element of Omega : (const . w) = t } implies x in Omega

              proof

                assume x in { w where w be Element of Omega : (const . w) = t };

                then

                consider s be Element of Omega such that

                 E1: s = x & (const . s) = t;

                thus thesis by E1;

              end;

              assume x in Omega;

              then

              consider y be Element of Omega such that

               F10: y = x & y in Omega;

              y in Omega implies t = (const . y) by FUNCOP_1: 7, S0;

              hence thesis by F10;

            end;

            hence thesis by TARSKI: 2;

          end;

          (MyFunc . t) is SigmaField of Omega by KOLMOG01:def 2;

          hence thesis by C1, PROB_1: 5;

        end;

          suppose

           S1: t <> TFix;

          

           c1: { w where w be Element of Omega : (const . w) = t } c= {}

          proof

            let x be object;

            assume x in { w where w be Element of Omega : (const . w) = t };

            then ex s be Element of Omega st s = x & (const . s) = t;

            then

            consider s be Element of Omega such that

             E1: s = x & (const . s) <> TFix by S1;

            thus thesis by E1, FUNCOP_1: 7;

          end;

          (MyFunc . t) is SigmaField of Omega by KOLMOG01:def 2;

          then {} in (MyFunc . t) by PROB_1: 4;

          hence thesis by c1;

        end;

      end;

      hence thesis;

    end;

    definition

      let Omega, T, k1, k2;

      :: FINANCE4:def6

      func max (k1,k2) -> Function of Omega, ExtREAL means

      : Def20: for w be Element of Omega holds (it . w) = ( max ((k1 . w),(k2 . w)));

      existence

      proof

        deffunc U( Element of Omega) = ( In (( max ((k1 . $1),(k2 . $1))), ExtREAL ));

        consider f be Function of Omega, ExtREAL such that

         A1: for w be Element of Omega holds (f . w) = U(w) from FUNCT_2:sch 4;

        take f;

        let n be Element of Omega;

        ( In (( max ((k1 . n),(k2 . n))), ExtREAL )) = ( max ((k1 . n),(k2 . n)));

        hence thesis by A1;

      end;

      uniqueness

      proof

        let f1,f2 be Function of Omega, ExtREAL ;

        assume that

         A2: for w be Element of Omega holds (f1 . w) = ( max ((k1 . w),(k2 . w))) and

         A3: for w be Element of Omega holds (f2 . w) = ( max ((k1 . w),(k2 . w)));

        let w be Element of Omega;

        (f2 . w) = ( In (( max ((k1 . w),(k2 . w))), ExtREAL )) by A3;

        hence thesis by A2;

      end;

    end

    definition

      let Omega, T, k1, k2;

      :: FINANCE4:def7

      func min (k1,k2) -> Function of Omega, ExtREAL means

      : Def21: for w be Element of Omega holds (it . w) = ( min ((k1 . w),(k2 . w)));

      existence

      proof

        deffunc U( Element of Omega) = ( In (( min ((k1 . $1),(k2 . $1))), ExtREAL ));

        consider f be Function of Omega, ExtREAL such that

         A1: for w be Element of Omega holds (f . w) = U(w) from FUNCT_2:sch 4;

        take f;

        let n be Element of Omega;

        (f . n) = ( In (( min ((k1 . n),(k2 . n))), ExtREAL )) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Function of Omega, ExtREAL ;

        assume that

         A2: for w be Element of Omega holds (f1 . w) = ( min ((k1 . w),(k2 . w))) and

         A3: for w be Element of Omega holds (f2 . w) = ( min ((k1 . w),(k2 . w)));

        let w be Element of Omega;

        (f2 . w) = ( min ((k1 . w),(k2 . w))) by A3;

        hence thesis by A2;

      end;

    end

    theorem :: FINANCE4:4

    k1 is_StoppingTime_wrt (MyFunc,T) & k2 is_StoppingTime_wrt (MyFunc,T) implies ex k3 be Function of Omega, ( StoppingSetExt T) st k3 = ( max (k1,k2)) & k3 is_StoppingTime_wrt (MyFunc,T)

    proof

      assume

       ASS: k1 is_StoppingTime_wrt (MyFunc,T) & k2 is_StoppingTime_wrt (MyFunc,T);

      set k3 = ( max (k1,k2));

      k3 is Function of Omega, ( StoppingSetExt T)

      proof

        ( rng k3) c= ( StoppingSetExt T)

        proof

          let x be object;

          assume x in ( rng k3);

          then

          consider x2 be object such that

           C1: x2 in ( dom k3) & x = (k3 . x2) by FUNCT_1:def 3;

          

           O1: x2 in Omega by C1;

          x2 in ( dom k1) by O1, FUNCT_2:def 1;

          then

           ZW1: (k1 . x2) in ( rng k1) by FUNCT_1: 3;

          x2 in ( dom k2) by O1, FUNCT_2:def 1;

          then

           ZW2: (k2 . x2) in ( rng k2) by FUNCT_1: 3;

          ( max ((k1 . x2),(k2 . x2))) in ( StoppingSetExt T)

          proof

            per cases ;

              suppose (k2 . x2) <= (k1 . x2);

              then (k1 . x2) = ( max ((k1 . x2),(k2 . x2))) by XXREAL_0:def 10;

              hence thesis by ZW1;

            end;

              suppose not ((k2 . x2) <= (k1 . x2));

              then (k2 . x2) = ( max ((k1 . x2),(k2 . x2))) by XXREAL_0:def 10;

              hence thesis by ZW2;

            end;

          end;

          hence thesis by Def20, C1;

        end;

        then k3 is Function of ( dom k3), ( StoppingSetExt T) by FUNCT_2: 2;

        hence thesis by FUNCT_2:def 1;

      end;

      then

      reconsider k3 as Function of Omega, ( StoppingSetExt T);

      k3 is_StoppingTime_wrt (MyFunc,T)

      proof

        for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k3 . w) <= t } in (MyFunc . t)

        proof

          let t be Element of ( StoppingSet T);

          

           O1: { w where w be Element of Omega : (k3 . w) <= t } = { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t }

          proof

            for x be object holds x in { w where w be Element of Omega : (k3 . w) <= t } iff x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t }

            proof

              let x be object;

              thus x in { w where w be Element of Omega : (k3 . w) <= t } implies x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t }

              proof

                assume x in { w where w be Element of Omega : (k3 . w) <= t };

                then

                consider w2 be Element of Omega such that

                 R1: x = w2 & (k3 . w2) <= t;

                

                 HHH: (k3 . w2) = ( max ((k1 . w2),(k2 . w2))) by Def20;

                set K3 = (k3 . w2), K1 = (k1 . w2), K2 = (k2 . w2);

                per cases ;

                  suppose

                   S1: K1 <= K2;

                  then K3 = K2 by HHH, XXREAL_0:def 10;

                  then K2 <= t & K1 <= t by XXREAL_0: 2, S1, R1;

                  hence thesis by R1;

                end;

                  suppose

                   S1: K1 > K2;

                  then K3 = K1 by HHH, XXREAL_0:def 10;

                  then K2 <= t & K1 <= t by XXREAL_0: 2, S1, R1;

                  hence thesis by R1;

                end;

              end;

              assume x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t };

              then

              consider w2 be Element of Omega such that

               R1: x = w2 & (k2 . w2) <= t & (k1 . w2) <= t;

              

               HHH: (k3 . w2) = ( max ((k1 . w2),(k2 . w2))) by Def20;

              (k3 . w2) <= t by HHH, XXREAL_0:def 10, R1;

              hence thesis by R1;

            end;

            hence thesis by TARSKI: 2;

          end;

          

           O2: { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t } = ({ w where w be Element of Omega : (k2 . w) <= t } /\ { w where w be Element of Omega : (k1 . w) <= t })

          proof

            for x be object holds x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t } iff x in ({ w where w be Element of Omega : (k2 . w) <= t } /\ { w where w be Element of Omega : (k1 . w) <= t })

            proof

              let x be object;

              thus x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t } implies x in ({ w where w be Element of Omega : (k2 . w) <= t } /\ { w where w be Element of Omega : (k1 . w) <= t })

              proof

                assume x in { w where w be Element of Omega : (k2 . w) <= t & (k1 . w) <= t };

                then

                consider w3 be Element of Omega such that

                 V2: x = w3 & (k2 . w3) <= t & (k1 . w3) <= t;

                

                 V3: x in { w where w be Element of Omega : (k2 . w) <= t } by V2;

                x in { w where w be Element of Omega : (k1 . w) <= t } by V2;

                hence thesis by V3, XBOOLE_0:def 4;

              end;

              assume x in ({ w where w be Element of Omega : (k2 . w) <= t } /\ { w where w be Element of Omega : (k1 . w) <= t });

              then

               V0: x in { w where w be Element of Omega : (k2 . w) <= t } & x in { w where w be Element of Omega : (k1 . w) <= t } by XBOOLE_0:def 4;

              consider w3 be Element of Omega such that

               V1: x = w3 & (k2 . w3) <= t by V0;

              consider w3 be Element of Omega such that

               V2: x = w3 & (k1 . w3) <= t by V0;

              thus thesis by V1, V2;

            end;

            hence thesis by TARSKI: 2;

          end;

          ({ w where w be Element of Omega : (k2 . w) <= t } /\ { w where w be Element of Omega : (k1 . w) <= t }) in (MyFunc . t)

          proof

            reconsider M = (MyFunc . t) as SigmaField of Omega by KOLMOG01:def 2;

            { w where w be Element of Omega : (k1 . w) <= t } is Event of M & { w where w be Element of Omega : (k2 . w) <= t } is Event of M by ASS, KJK;

            then ({ w where w be Element of Omega : (k1 . w) <= t } /\ { w where w be Element of Omega : (k2 . w) <= t }) is Event of M by PROB_1: 19;

            hence thesis;

          end;

          hence thesis by O2, O1;

        end;

        hence thesis by KJK;

      end;

      hence thesis;

    end;

    theorem :: FINANCE4:5

    k1 is_StoppingTime_wrt (MyFunc,T) & k2 is_StoppingTime_wrt (MyFunc,T) implies ex k3 be Function of Omega, ( StoppingSetExt T) st k3 = ( min (k1,k2)) & k3 is_StoppingTime_wrt (MyFunc,T)

    proof

      assume

       ASS: k1 is_StoppingTime_wrt (MyFunc,T) & k2 is_StoppingTime_wrt (MyFunc,T);

      set k3 = ( min (k1,k2));

      k3 is Function of Omega, ( StoppingSetExt T)

      proof

        ( rng k3) c= ( StoppingSetExt T)

        proof

          let x be object;

          assume x in ( rng k3);

          then

          consider x2 be object such that

           C1: x2 in ( dom k3) & x = (k3 . x2) by FUNCT_1:def 3;

          

           O1: x2 in Omega by C1;

          then x2 in ( dom k1) by FUNCT_2:def 1;

          then

           ZW1: (k1 . x2) in ( rng k1) by FUNCT_1: 3;

          x2 in ( dom k2) by O1, FUNCT_2:def 1;

          then

           ZW2: (k2 . x2) in ( rng k2) by FUNCT_1: 3;

          ( min ((k1 . x2),(k2 . x2))) in ( StoppingSetExt T)

          proof

            per cases ;

              suppose not ((k2 . x2) <= (k1 . x2));

              then (k1 . x2) = ( min ((k1 . x2),(k2 . x2))) by XXREAL_0:def 9;

              hence thesis by ZW1;

            end;

              suppose (k2 . x2) <= (k1 . x2);

              then (k2 . x2) = ( min ((k1 . x2),(k2 . x2))) by XXREAL_0:def 9;

              hence thesis by ZW2;

            end;

          end;

          hence thesis by Def21, C1;

        end;

        then k3 is Function of ( dom k3), ( StoppingSetExt T) by FUNCT_2: 2;

        hence thesis by FUNCT_2:def 1;

      end;

      then

      reconsider k3 as Function of Omega, ( StoppingSetExt T);

      k3 is_StoppingTime_wrt (MyFunc,T)

      proof

        for t be Element of ( StoppingSet T) holds { w where w be Element of Omega : (k3 . w) <= t } in (MyFunc . t)

        proof

          let t be Element of ( StoppingSet T);

          

           O1: { w where w be Element of Omega : (k3 . w) <= t } = { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t }

          proof

            for x be object holds x in { w where w be Element of Omega : (k3 . w) <= t } iff x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t }

            proof

              let x be object;

              thus x in { w where w be Element of Omega : (k3 . w) <= t } implies x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t }

              proof

                assume x in { w where w be Element of Omega : (k3 . w) <= t };

                then

                consider w2 be Element of Omega such that

                 R1: x = w2 & (k3 . w2) <= t;

                

                 HHH: (k3 . w2) = ( min ((k1 . w2),(k2 . w2))) by Def21;

                set K3 = (k3 . w2), K1 = (k1 . w2), K2 = (k2 . w2);

                per cases ;

                  suppose K1 > K2;

                  then K3 = K2 by HHH, XXREAL_0:def 9;

                  hence thesis by R1;

                end;

                  suppose K1 <= K2;

                  then K3 = K1 by HHH, XXREAL_0:def 9;

                  hence thesis by R1;

                end;

              end;

              assume x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t };

              then

              consider w2 be Element of Omega such that

               R1: x = w2 & ((k2 . w2) <= t or (k1 . w2) <= t);

              

               HHH: (k3 . w2) = ( min ((k1 . w2),(k2 . w2))) by Def21;

              per cases by R1;

                suppose

                 S1J: (k2 . w2) <= t;

                ( min ((k1 . w2),(k2 . w2))) <= t

                proof

                  per cases ;

                    suppose

                     QS: (k1 . w2) <= (k2 . w2);

                    then ( min ((k1 . w2),(k2 . w2))) = (k1 . w2) by XXREAL_0:def 9;

                    hence thesis by QS, S1J, XXREAL_0: 2;

                  end;

                    suppose (k1 . w2) > (k2 . w2);

                    hence thesis by S1J, XXREAL_0:def 9;

                  end;

                end;

                hence thesis by R1, HHH;

              end;

                suppose

                 S1J: (k1 . w2) <= t;

                ( min ((k1 . w2),(k2 . w2))) <= t

                proof

                  per cases ;

                    suppose (k1 . w2) <= (k2 . w2);

                    hence thesis by S1J, XXREAL_0:def 9;

                  end;

                    suppose

                     QS: not ((k1 . w2) <= (k2 . w2));

                    then ( min ((k1 . w2),(k2 . w2))) = (k2 . w2) by XXREAL_0:def 9;

                    hence thesis by QS, S1J, XXREAL_0: 2;

                  end;

                end;

                hence thesis by R1, HHH;

              end;

            end;

            hence thesis by TARSKI: 2;

          end;

          

           O2: { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t } = ({ w where w be Element of Omega : (k2 . w) <= t } \/ { w where w be Element of Omega : (k1 . w) <= t })

          proof

            for x be object holds x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t } iff x in ({ w where w be Element of Omega : (k2 . w) <= t } \/ { w where w be Element of Omega : (k1 . w) <= t })

            proof

              let x be object;

              thus x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t } implies x in ({ w where w be Element of Omega : (k2 . w) <= t } \/ { w where w be Element of Omega : (k1 . w) <= t })

              proof

                assume x in { w where w be Element of Omega : (k2 . w) <= t or (k1 . w) <= t };

                then

                consider w3 be Element of Omega such that

                 V2: x = w3 & ((k2 . w3) <= t or (k1 . w3) <= t);

                x in { w where w be Element of Omega : (k2 . w) <= t } or x in { w where w be Element of Omega : (k1 . w) <= t } by V2;

                hence thesis by XBOOLE_0:def 3;

              end;

              assume x in ({ w where w be Element of Omega : (k2 . w) <= t } \/ { w where w be Element of Omega : (k1 . w) <= t });

              then

               V0: x in { w where w be Element of Omega : (k2 . w) <= t } or x in { w where w be Element of Omega : (k1 . w) <= t } by XBOOLE_0:def 3;

              (ex w3 be Element of Omega st x = w3 & (k2 . w3) <= t) or (ex w3 be Element of Omega st x = w3 & (k1 . w3) <= t) by V0;

              hence thesis;

            end;

            hence thesis by TARSKI: 2;

          end;

          ({ w where w be Element of Omega : (k2 . w) <= t } \/ { w where w be Element of Omega : (k1 . w) <= t }) in (MyFunc . t)

          proof

            reconsider M = (MyFunc . t) as SigmaField of Omega by KOLMOG01:def 2;

            { w where w be Element of Omega : (k1 . w) <= t } is Element of M & { w where w be Element of Omega : (k2 . w) <= t } is Element of M by ASS, KJK;

            hence thesis by PROB_1: 3;

          end;

          hence thesis by O2, O1;

        end;

        hence thesis by KJK;

      end;

      hence thesis;

    end;

    

     Lemma1: 1 in ( StoppingSetExt 2)

    proof

      1 in ( StoppingSet 2);

      hence thesis by XBOOLE_0:def 3;

    end;

    

     Lemma2: 2 in ( StoppingSetExt 2)

    proof

      2 in ( StoppingSet 2);

      hence thesis by XBOOLE_0:def 3;

    end;

    definition

      let t be object;

      :: FINANCE4:def8

      func Special_StoppingSet (t) -> Element of ( StoppingSetExt 2) equals ( IFIN (t, {1, 2},1,2));

      correctness

      proof

        per cases ;

          suppose t in {1, 2};

          hence thesis by Lemma1, MATRIX_7:def 1;

        end;

          suppose not t in {1, 2};

          hence thesis by Lemma2, MATRIX_7:def 1;

        end;

      end;

    end

    theorem :: FINANCE4:6

    Omega = {1, 2, 3, 4} implies for MyFunc be Filtration of ( StoppingSet 2), Sigma st (MyFunc . 0 ) = Special_SigmaField1 & (MyFunc . 1) = Special_SigmaField2 & (MyFunc . 2) = ( Trivial-SigmaField Omega) holds ex ST be Function of Omega, ( StoppingSetExt 2) st ST is_StoppingTime_wrt (MyFunc,2) & (ST . 1) = 1 & (ST . 2) = 1 & (ST . 3) = 2 & (ST . 4) = 2 & { w where w be Element of Omega : (ST . w) = 0 } = {} & { w where w be Element of Omega : (ST . w) = 1 } = {1, 2} & { w where w be Element of Omega : (ST . w) = 2 } = {3, 4}

    proof

      assume

       ASS0: Omega = {1, 2, 3, 4};

      let MyFunc be Filtration of ( StoppingSet 2), Sigma;

      assume

       ASS2: (MyFunc . 0 ) = Special_SigmaField1 & (MyFunc . 1) = Special_SigmaField2 & (MyFunc . 2) = ( Trivial-SigmaField Omega);

      deffunc U( Element of Omega) = ( Special_StoppingSet $1);

      consider f be Function of Omega, ( StoppingSetExt 2) such that

       A1: for d be Element of Omega holds (f . d) = U(d) from FUNCT_2:sch 4;

      

       B1: 1 in {1, 2} & 2 in {1, 2} & not 3 in {1, 2} & not 4 in {1, 2} by TARSKI:def 2;

      take f;

      

       A2: (f . 1) = 1 & (f . 2) = 1 & (f . 3) = 2 & (f . 4) = 2

      proof

        set O1 = 1, O2 = 2, O3 = 3, O4 = 4;

        reconsider O1, O2, O3, O4 as Element of Omega by ASS0, ENUMSET1:def 2;

        (f . 1) = U(O1) & (f . 2) = U(O2) & (f . 3) = U(O3) & (f . 4) = U(O4) by A1;

        hence thesis by B1, MATRIX_7:def 1;

      end;

      f is_StoppingTime_wrt (MyFunc,2) & { w where w be Element of Omega : (f . w) = 0 } = {} & { w where w be Element of Omega : (f . w) = 1 } = {1, 2} & { w where w be Element of Omega : (f . w) = 2 } = {3, 4}

      proof

        

         G1: for t be Element of ( StoppingSet 2) holds { w where w be Element of Omega : (f . w) = t } in (MyFunc . t) & (t = 0 implies { w where w be Element of Omega : (f . w) = 0 } = {} ) & (t = 1 implies { w where w be Element of Omega : (f . w) = 1 } = {1, 2}) & (t = 2 implies { w where w be Element of Omega : (f . w) = 2 } = {3, 4})

        proof

          let t be Element of ( StoppingSet 2);

          t in ( StoppingSet 2);

          then

          consider t1 be Element of NAT such that

           H1: t = t1 & 0 <= t1 & t1 <= 2;

          t <= 1 or t = (1 + 1) by NAT_1: 9, H1;

          then

           g2: t <= 0 or t = ( 0 + 1) or t = 2 by NAT_1: 9, H1;

          { w where w be Element of Omega : (f . w) = t } in (MyFunc . t) & (t = 0 implies { w where w be Element of Omega : (f . w) = 0 } = {} ) & (t = 1 implies { w where w be Element of Omega : (f . w) = 1 } = {1, 2}) & (t = 2 implies { w where w be Element of Omega : (f . w) = 2 } = {3, 4})

          proof

            reconsider M = (MyFunc . t) as SigmaField of Omega by KOLMOG01:def 2;

            per cases by g2, H1;

              suppose

               S1: t = 0 ;

              { w where w be Element of Omega : (f . w) = 0 } in M & (t = 0 implies { w where w be Element of Omega : (f . w) = 0 } = {} )

              proof

                { w where w be Element of Omega : (f . w) = 0 } c= {}

                proof

                  let y be object;

                  assume y in { w where w be Element of Omega : (f . w) = 0 };

                  then ex y1 be Element of Omega st y = y1 & (f . y1) = 0 ;

                  hence thesis by A2, ASS0, ENUMSET1:def 2;

                end;

                then { w where w be Element of Omega : (f . w) = 0 } = {} ;

                hence thesis by PROB_1: 4;

              end;

              hence thesis by S1;

            end;

              suppose

               S1: t = 1;

              { w where w be Element of Omega : (f . w) = 1 } = {1, 2}

              proof

                for x be object holds x in { w where w be Element of Omega : (f . w) = 1 } iff x in {1, 2}

                proof

                  let x be object;

                  thus x in { w where w be Element of Omega : (f . w) = 1 } implies x in {1, 2}

                  proof

                    assume x in { w where w be Element of Omega : (f . w) = 1 };

                    then

                    consider w2 be Element of Omega such that

                     K2: x = w2 & (f . w2) = 1;

                     not w2 in {1, 2} implies (f . w2) > 1

                    proof

                      assume

                       ASSJ: not w2 in {1, 2};

                      w2 = 1 or w2 = 2 or w2 = 3 or w2 = 4 by ASS0, ENUMSET1:def 2;

                      hence thesis by A2, ASSJ, TARSKI:def 2;

                    end;

                    hence thesis by K2;

                  end;

                  assume

                   ASSJ: x in {1, 2};

                  then x = 1 or x = 2 or x = 3 or x = 4 by TARSKI:def 2;

                  then

                   S: x in Omega by ASS0, ENUMSET1:def 2;

                  x = 1 or x = 2 by ASSJ, TARSKI:def 2;

                  hence thesis by S, A2;

                end;

                hence thesis by TARSKI: 2;

              end;

              hence thesis by S1, ENUMSET1:def 2, ASS2;

            end;

              suppose

               S1: t = 2;

              

               S2: { w where w be Element of Omega : (f . w) = t } = {3, 4}

              proof

                for x be object holds x in { w where w be Element of Omega : (f . w) = t } iff x in {3, 4}

                proof

                  let x be object;

                  thus x in { w where w be Element of Omega : (f . w) = t } implies x in {3, 4}

                  proof

                    assume x in { w where w be Element of Omega : (f . w) = t };

                    then

                    consider w2 be Element of Omega such that

                     K2: x = w2 & (f . w2) = 2 by S1;

                    assume

                     ASSJ: not x in {3, 4};

                    w2 = 1 or w2 = 2 or w2 = 3 or w2 = 4 by ASS0, ENUMSET1:def 2;

                    hence thesis by A2, ASSJ, TARSKI:def 2, K2;

                  end;

                  assume x in {3, 4};

                  then

                   T: x = 3 or x = 4 by TARSKI:def 2;

                  then x in Omega by ASS0, ENUMSET1:def 2;

                  hence thesis by A2, S1, T;

                end;

                hence thesis by TARSKI: 2;

              end;

               {3, 4} in Special_SigmaField2 & Special_SigmaField2 c= ( Trivial-SigmaField {1, 2, 3, 4}) by FINANCE3: 24;

              hence thesis by S2, S1, ASS2;

            end;

          end;

          hence thesis;

        end;

        

         j1: 0 in ( StoppingSet 2);

        

         j2: 1 in ( StoppingSet 2);

        2 in ( StoppingSet 2);

        hence thesis by j1, j2, G1;

      end;

      hence thesis by A2;

    end;