gobrd13.miz
begin
reserve i,i1,i2,i9,i19,j,j1,j2,j9,j19,k,k1,k2,l,m,n for
Nat;
reserve r,s,r9,s9 for
Real;
reserve D for non
empty
set,
f for
FinSequence of D;
reserve f for
FinSequence of (
TOP-REAL 2),
G for
Go-board;
::$Canceled
theorem ::
GOBRD13:8
for G be
Matrix of (
TOP-REAL 2) holds f
is_sequence_on G implies (
rng f)
c= (
Values G)
proof
let G be
Matrix of (
TOP-REAL 2);
assume
A1: f
is_sequence_on G;
let y be
object;
assume y
in (
rng f);
then
consider n be
Element of
NAT such that
A2: n
in (
dom f) and
A3: (f
/. n)
= y by
PARTFUN2: 2;
ex i, j st
[i, j]
in (
Indices G) & (f
/. n)
= (G
* (i,j)) by
A1,
A2,
GOBOARD1:def 9;
then y
in { (G
* (i,j)) :
[i, j]
in (
Indices G) } by
A3;
hence thesis by
MATRIX_0: 39;
end;
theorem ::
GOBRD13:9
Th2: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) & 1
<= j2 & j2
<= (
width G2) & (G1
* (i1,j1))
= (G2
* (1,j2)) holds i1
= 1
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3: 1
<= j2 & j2
<= (
width G2) and
A4: (G1
* (i1,j1))
= (G2
* (1,j2));
set p = (G1
* (1,j1));
A5: 1
<= j1 & j1
<= (
width G1) by
A2,
MATRIX_0: 32;
assume
A6: i1
<> 1;
1
<= i1 by
A2,
MATRIX_0: 32;
then
A7: 1
< i1 by
A6,
XXREAL_0: 1;
i1
<= (
len G1) by
A2,
MATRIX_0: 32;
then
A8: (p
`1 )
< ((G1
* (i1,j1))
`1 ) by
A5,
A7,
GOBOARD5: 3;
0
<> (
len G1) by
MATRIX_0:def 10;
then 1
<= (
len G1) by
NAT_1: 14;
then
[1, j1]
in (
Indices G1) by
A5,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A9: p
= (G2
* (i,j)) and
A10:
[i, j]
in (
Indices G2);
A11: 1
<= j & j
<= (
width G2) by
A10,
MATRIX_0: 32;
0
<> (
len G2) by
MATRIX_0:def 10;
then
A12: 1
<= (
len G2) by
NAT_1: 14;
then
A13: ((G2
* (1,j))
`1 )
= ((G2
* (1,1))
`1 ) by
A11,
GOBOARD5: 2
.= ((G2
* (1,j2))
`1 ) by
A3,
A12,
GOBOARD5: 2;
A14: i
<= (
len G2) by
A10,
MATRIX_0: 32;
1
<= i by
A10,
MATRIX_0: 32;
then 1
< i by
A4,
A8,
A9,
A13,
XXREAL_0: 1;
hence contradiction by
A4,
A8,
A9,
A14,
A11,
A13,
GOBOARD5: 3;
end;
theorem ::
GOBRD13:10
Th3: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) & 1
<= j2 & j2
<= (
width G2) & (G1
* (i1,j1))
= (G2
* ((
len G2),j2)) holds i1
= (
len G1)
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3: 1
<= j2 & j2
<= (
width G2) and
A4: (G1
* (i1,j1))
= (G2
* ((
len G2),j2));
set p = (G1
* ((
len G1),j1));
A5: 1
<= j1 & j1
<= (
width G1) by
A2,
MATRIX_0: 32;
assume
A6: i1
<> (
len G1);
i1
<= (
len G1) by
A2,
MATRIX_0: 32;
then
A7: i1
< (
len G1) by
A6,
XXREAL_0: 1;
1
<= i1 by
A2,
MATRIX_0: 32;
then
A8: ((G1
* (i1,j1))
`1 )
< (p
`1 ) by
A5,
A7,
GOBOARD5: 3;
0
<> (
len G1) by
MATRIX_0:def 10;
then 1
<= (
len G1) by
NAT_1: 14;
then
[(
len G1), j1]
in (
Indices G1) by
A5,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A9: p
= (G2
* (i,j)) and
A10:
[i, j]
in (
Indices G2);
A11: 1
<= j & j
<= (
width G2) by
A10,
MATRIX_0: 32;
0
<> (
len G2) by
MATRIX_0:def 10;
then
A12: 1
<= (
len G2) by
NAT_1: 14;
then
A13: ((G2
* ((
len G2),j))
`1 )
= ((G2
* ((
len G2),1))
`1 ) by
A11,
GOBOARD5: 2
.= ((G2
* ((
len G2),j2))
`1 ) by
A3,
A12,
GOBOARD5: 2;
A14: 1
<= i by
A10,
MATRIX_0: 32;
i
<= (
len G2) by
A10,
MATRIX_0: 32;
then i
< (
len G2) by
A4,
A8,
A9,
A13,
XXREAL_0: 1;
hence contradiction by
A4,
A8,
A9,
A14,
A11,
A13,
GOBOARD5: 3;
end;
theorem ::
GOBRD13:11
Th4: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) & 1
<= i2 & i2
<= (
len G2) & (G1
* (i1,j1))
= (G2
* (i2,1)) holds j1
= 1
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3: 1
<= i2 & i2
<= (
len G2) and
A4: (G1
* (i1,j1))
= (G2
* (i2,1));
set p = (G1
* (i1,1));
A5: 1
<= i1 & i1
<= (
len G1) by
A2,
MATRIX_0: 32;
assume
A6: j1
<> 1;
1
<= j1 by
A2,
MATRIX_0: 32;
then
A7: 1
< j1 by
A6,
XXREAL_0: 1;
j1
<= (
width G1) by
A2,
MATRIX_0: 32;
then
A8: (p
`2 )
< ((G1
* (i1,j1))
`2 ) by
A5,
A7,
GOBOARD5: 4;
0
<> (
width G1) by
MATRIX_0:def 10;
then 1
<= (
width G1) by
NAT_1: 14;
then
[i1, 1]
in (
Indices G1) by
A5,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A9: p
= (G2
* (i,j)) and
A10:
[i, j]
in (
Indices G2);
A11: 1
<= i & i
<= (
len G2) by
A10,
MATRIX_0: 32;
0
<> (
width G2) by
MATRIX_0:def 10;
then
A12: 1
<= (
width G2) by
NAT_1: 14;
then
A13: ((G2
* (i,1))
`2 )
= ((G2
* (1,1))
`2 ) by
A11,
GOBOARD5: 1
.= ((G2
* (i2,1))
`2 ) by
A3,
A12,
GOBOARD5: 1;
A14: j
<= (
width G2) by
A10,
MATRIX_0: 32;
1
<= j by
A10,
MATRIX_0: 32;
then 1
< j by
A4,
A8,
A9,
A13,
XXREAL_0: 1;
hence contradiction by
A4,
A8,
A9,
A11,
A14,
A13,
GOBOARD5: 4;
end;
theorem ::
GOBRD13:12
Th5: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) & 1
<= i2 & i2
<= (
len G2) & (G1
* (i1,j1))
= (G2
* (i2,(
width G2))) holds j1
= (
width G1)
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3: 1
<= i2 & i2
<= (
len G2) and
A4: (G1
* (i1,j1))
= (G2
* (i2,(
width G2)));
set p = (G1
* (i1,(
width G1)));
A5: 1
<= i1 & i1
<= (
len G1) by
A2,
MATRIX_0: 32;
assume
A6: j1
<> (
width G1);
j1
<= (
width G1) by
A2,
MATRIX_0: 32;
then
A7: j1
< (
width G1) by
A6,
XXREAL_0: 1;
1
<= j1 by
A2,
MATRIX_0: 32;
then
A8: ((G1
* (i1,j1))
`2 )
< (p
`2 ) by
A5,
A7,
GOBOARD5: 4;
0
<> (
width G1) by
MATRIX_0:def 10;
then 1
<= (
width G1) by
NAT_1: 14;
then
[i1, (
width G1)]
in (
Indices G1) by
A5,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A9: p
= (G2
* (i,j)) and
A10:
[i, j]
in (
Indices G2);
A11: 1
<= i & i
<= (
len G2) by
A10,
MATRIX_0: 32;
0
<> (
width G2) by
MATRIX_0:def 10;
then
A12: 1
<= (
width G2) by
NAT_1: 14;
then
A13: ((G2
* (i,(
width G2)))
`2 )
= ((G2
* (1,(
width G2)))
`2 ) by
A11,
GOBOARD5: 1
.= ((G2
* (i2,(
width G2)))
`2 ) by
A3,
A12,
GOBOARD5: 1;
A14: 1
<= j by
A10,
MATRIX_0: 32;
j
<= (
width G2) by
A10,
MATRIX_0: 32;
then j
< (
width G2) by
A4,
A8,
A9,
A13,
XXREAL_0: 1;
hence contradiction by
A4,
A8,
A9,
A11,
A14,
A13,
GOBOARD5: 4;
end;
theorem ::
GOBRD13:13
Th6: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) & 1
<= i1 & i1
< (
len G1) & 1
<= j1 & j1
<= (
width G1) & 1
<= i2 & i2
< (
len G2) & 1
<= j2 & j2
<= (
width G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds ((G2
* ((i2
+ 1),j2))
`1 )
<= ((G1
* ((i1
+ 1),j1))
`1 )
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2: 1
<= i1 and
A3: i1
< (
len G1) and
A4: 1
<= j1 & j1
<= (
width G1) and
A5: 1
<= i2 and
A6: i2
< (
len G2) and
A7: 1
<= j2 & j2
<= (
width G2) and
A8: (G1
* (i1,j1))
= (G2
* (i2,j2));
set p = (G1
* ((i1
+ 1),j1));
A9: (i1
+ 1)
<= (
len G1) by
A3,
NAT_1: 13;
1
<= (i1
+ 1) by
A2,
NAT_1: 13;
then
[(i1
+ 1), j1]
in (
Indices G1) by
A4,
A9,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A10: p
= (G2
* (i,j)) and
A11:
[i, j]
in (
Indices G2);
A12: 1
<= i by
A11,
MATRIX_0: 32;
A13: i
<= (
len G2) by
A11,
MATRIX_0: 32;
1
<= j & j
<= (
width G2) by
A11,
MATRIX_0: 32;
then
A14: ((G2
* (i,j))
`1 )
= ((G2
* (i,1))
`1 ) by
A12,
A13,
GOBOARD5: 2
.= ((G2
* (i,j2))
`1 ) by
A7,
A12,
A13,
GOBOARD5: 2;
i1
< (i1
+ 1) by
NAT_1: 13;
then
A15: ((G2
* (i2,j2))
`1 )
< ((G2
* (i,j2))
`1 ) by
A2,
A4,
A8,
A9,
A10,
A14,
GOBOARD5: 3;
A16:
now
assume i
<= i2;
then i
= i2 or i
< i2 by
XXREAL_0: 1;
hence contradiction by
A6,
A7,
A12,
A15,
GOBOARD5: 3;
end;
assume
A17: (p
`1 )
< ((G2
* ((i2
+ 1),j2))
`1 );
A18: 1
<= (i2
+ 1) by
A5,
NAT_1: 13;
now
assume (i2
+ 1)
<= i;
then (i2
+ 1)
= i or (i2
+ 1)
< i by
XXREAL_0: 1;
hence contradiction by
A7,
A17,
A10,
A13,
A14,
A18,
GOBOARD5: 3;
end;
hence contradiction by
A16,
NAT_1: 13;
end;
theorem ::
GOBRD13:14
Th7: for G1,G2 be
Go-board st (G1
* ((i1
-' 1),j1))
in (
Values G2) & 1
< i1 & i1
<= (
len G1) & 1
<= j1 & j1
<= (
width G1) & 1
< i2 & i2
<= (
len G2) & 1
<= j2 & j2
<= (
width G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds ((G1
* ((i1
-' 1),j1))
`1 )
<= ((G2
* ((i2
-' 1),j2))
`1 )
proof
let G1,G2 be
Go-board such that
A1: (G1
* ((i1
-' 1),j1))
in (
Values G2) and
A2: 1
< i1 and
A3: i1
<= (
len G1) & 1
<= j1 & j1
<= (
width G1) and
A4: 1
< i2 and
A5: i2
<= (
len G2) and
A6: 1
<= j2 & j2
<= (
width G2) and
A7: (G1
* (i1,j1))
= (G2
* (i2,j2));
set p = (G1
* ((i1
-' 1),j1));
A8: p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
A1,
MATRIX_0: 39;
1
<= (i2
-' 1) by
A4,
NAT_D: 49;
then (i2
-' 1)
< i2 by
NAT_D: 51;
then
A9: (i2
-' 1)
< (
len G2) by
A5,
XXREAL_0: 2;
consider i, j such that
A10: p
= (G2
* (i,j)) and
A11:
[i, j]
in (
Indices G2) by
A8;
A12: 1
<= i by
A11,
MATRIX_0: 32;
A13: i
<= (
len G2) by
A11,
MATRIX_0: 32;
1
<= j & j
<= (
width G2) by
A11,
MATRIX_0: 32;
then
A14: ((G2
* (i,j))
`1 )
= ((G2
* (i,1))
`1 ) by
A12,
A13,
GOBOARD5: 2
.= ((G2
* (i,j2))
`1 ) by
A6,
A12,
A13,
GOBOARD5: 2;
A15: 1
<= (i1
-' 1) by
A2,
NAT_D: 49;
then (i1
-' 1)
< i1 by
NAT_D: 51;
then
A16: ((G2
* (i,j2))
`1 )
< ((G2
* (i2,j2))
`1 ) by
A3,
A7,
A15,
A10,
A14,
GOBOARD5: 3;
A17:
now
assume i2
<= i;
then i
= i2 or i2
< i by
XXREAL_0: 1;
hence contradiction by
A4,
A6,
A13,
A16,
GOBOARD5: 3;
end;
assume
A18: ((G2
* ((i2
-' 1),j2))
`1 )
< (p
`1 );
now
assume i
<= (i2
-' 1);
then (i2
-' 1)
= i or i
< (i2
-' 1) by
XXREAL_0: 1;
hence contradiction by
A6,
A18,
A10,
A12,
A14,
A9,
GOBOARD5: 3;
end;
hence contradiction by
A17,
NAT_D: 49;
end;
theorem ::
GOBRD13:15
Th8: for G1,G2 be
Go-board st (G1
* (i1,(j1
+ 1)))
in (
Values G2) & 1
<= i1 & i1
<= (
len G1) & 1
<= j1 & j1
< (
width G1) & 1
<= i2 & i2
<= (
len G2) & 1
<= j2 & j2
< (
width G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds ((G2
* (i2,(j2
+ 1)))
`2 )
<= ((G1
* (i1,(j1
+ 1)))
`2 )
proof
let G1,G2 be
Go-board such that
A1: (G1
* (i1,(j1
+ 1)))
in (
Values G2) and
A2: 1
<= i1 & i1
<= (
len G1) & 1
<= j1 and
A3: j1
< (
width G1) and
A4: 1
<= i2 & i2
<= (
len G2) and
A5: 1
<= j2 and
A6: j2
< (
width G2) and
A7: (G1
* (i1,j1))
= (G2
* (i2,j2));
set p = (G1
* (i1,(j1
+ 1)));
p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
A1,
MATRIX_0: 39;
then
consider i, j such that
A8: p
= (G2
* (i,j)) and
A9:
[i, j]
in (
Indices G2);
A10: 1
<= j by
A9,
MATRIX_0: 32;
A11: j
<= (
width G2) by
A9,
MATRIX_0: 32;
1
<= i & i
<= (
len G2) by
A9,
MATRIX_0: 32;
then
A12: ((G2
* (i,j))
`2 )
= ((G2
* (1,j))
`2 ) by
A10,
A11,
GOBOARD5: 1
.= ((G2
* (i2,j))
`2 ) by
A4,
A10,
A11,
GOBOARD5: 1;
j1
< (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
A3,
NAT_1: 13;
then
A13: ((G2
* (i2,j2))
`2 )
< ((G2
* (i2,j))
`2 ) by
A2,
A7,
A8,
A12,
GOBOARD5: 4;
A14:
now
assume j
<= j2;
then j
= j2 or j
< j2 by
XXREAL_0: 1;
hence contradiction by
A4,
A6,
A10,
A13,
GOBOARD5: 4;
end;
assume
A15: (p
`2 )
< ((G2
* (i2,(j2
+ 1)))
`2 );
A16: 1
<= (j2
+ 1) by
A5,
NAT_1: 13;
now
assume (j2
+ 1)
<= j;
then (j2
+ 1)
= j or (j2
+ 1)
< j by
XXREAL_0: 1;
hence contradiction by
A4,
A15,
A8,
A11,
A12,
A16,
GOBOARD5: 4;
end;
hence contradiction by
A14,
NAT_1: 13;
end;
theorem ::
GOBRD13:16
Th9: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) & 1
<= i1 & i1
<= (
len G1) & 1
< j1 & j1
<= (
width G1) & 1
<= i2 & i2
<= (
len G2) & 1
< j2 & j2
<= (
width G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds ((G1
* (i1,(j1
-' 1)))
`2 )
<= ((G2
* (i2,(j2
-' 1)))
`2 )
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2: 1
<= i1 & i1
<= (
len G1) and
A3: 1
< j1 and
A4: j1
<= (
width G1) and
A5: 1
<= i2 & i2
<= (
len G2) and
A6: 1
< j2 and
A7: j2
<= (
width G2) and
A8: (G1
* (i1,j1))
= (G2
* (i2,j2));
set p = (G1
* (i1,(j1
-' 1)));
A9: 1
<= (j1
-' 1) by
A3,
NAT_D: 49;
then
A10: (j1
-' 1)
< j1 by
NAT_D: 51;
then (j1
-' 1)
< (
width G1) by
A4,
XXREAL_0: 2;
then
[i1, (j1
-' 1)]
in (
Indices G1) by
A2,
A9,
MATRIX_0: 30;
then p
in { (G1
* (i,j)) :
[i, j]
in (
Indices G1) };
then p
in (
Values G1) by
MATRIX_0: 39;
then p
in (
Values G2) by
A1;
then p
in { (G2
* (i,j)) :
[i, j]
in (
Indices G2) } by
MATRIX_0: 39;
then
consider i, j such that
A11: p
= (G2
* (i,j)) and
A12:
[i, j]
in (
Indices G2);
A13: 1
<= j by
A12,
MATRIX_0: 32;
A14: j
<= (
width G2) by
A12,
MATRIX_0: 32;
1
<= i & i
<= (
len G2) by
A12,
MATRIX_0: 32;
then
A15: ((G2
* (i,j))
`2 )
= ((G2
* (1,j))
`2 ) by
A13,
A14,
GOBOARD5: 1
.= ((G2
* (i2,j))
`2 ) by
A5,
A13,
A14,
GOBOARD5: 1;
then
A16: ((G2
* (i2,j))
`2 )
< ((G2
* (i2,j2))
`2 ) by
A2,
A4,
A8,
A9,
A10,
A11,
GOBOARD5: 4;
A17:
now
assume j2
<= j;
then j
= j2 or j2
< j by
XXREAL_0: 1;
hence contradiction by
A5,
A6,
A14,
A16,
GOBOARD5: 4;
end;
1
<= (j2
-' 1) by
A6,
NAT_D: 49;
then (j2
-' 1)
< j2 by
NAT_D: 51;
then
A18: (j2
-' 1)
< (
width G2) by
A7,
XXREAL_0: 2;
assume
A19: ((G2
* (i2,(j2
-' 1)))
`2 )
< (p
`2 );
now
assume j
<= (j2
-' 1);
then (j2
-' 1)
= j or j
< (j2
-' 1) by
XXREAL_0: 1;
hence contradiction by
A5,
A19,
A11,
A13,
A15,
A18,
GOBOARD5: 4;
end;
hence contradiction by
A17,
NAT_D: 49;
end;
theorem ::
GOBRD13:17
Th10: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) &
[i2, j2]
in (
Indices G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds (
cell (G2,i2,j2))
c= (
cell (G1,i1,j1))
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3:
[i2, j2]
in (
Indices G2) and
A4: (G1
* (i1,j1))
= (G2
* (i2,j2));
A5: 1
<= i1 by
A2,
MATRIX_0: 32;
A6: j1
<= (
width G1) by
A2,
MATRIX_0: 32;
let p be
object such that
A7: p
in (
cell (G2,i2,j2));
A8: 1
<= i2 by
A3,
MATRIX_0: 32;
A9: j2
<= (
width G2) by
A3,
MATRIX_0: 32;
A10: 1
<= j2 by
A3,
MATRIX_0: 32;
A11: i2
<= (
len G2) by
A3,
MATRIX_0: 32;
then
A12: ((G2
* (i2,j2))
`1 )
= ((G2
* (i2,1))
`1 ) & ((G2
* (i2,j2))
`2 )
= ((G2
* (1,j2))
`2 ) by
A8,
A10,
A9,
GOBOARD5: 1,
GOBOARD5: 2;
A13: 1
<= j1 by
A2,
MATRIX_0: 32;
A14: i1
<= (
len G1) by
A2,
MATRIX_0: 32;
then
A15: ((G1
* (i1,j1))
`1 )
= ((G1
* (i1,1))
`1 ) & ((G1
* (i1,j1))
`2 )
= ((G1
* (1,j1))
`2 ) by
A5,
A13,
A6,
GOBOARD5: 1,
GOBOARD5: 2;
per cases by
A11,
A9,
XXREAL_0: 1;
suppose
A16: i2
= (
len G2) & j2
= (
width G2);
then
A17: p
in {
|[r, s]| : ((G2
* (i2,j2))
`1 )
<= r & ((G2
* (i2,j2))
`2 )
<= s } by
A7,
A12,
GOBRD11: 28;
i1
= (
len G1) & j1
= (
width G1) by
A1,
A2,
A4,
A8,
A10,
A16,
Th3,
Th5;
hence thesis by
A4,
A15,
A17,
GOBRD11: 28;
end;
suppose
A18: i2
= (
len G2) & j2
< (
width G2);
then p
in {
|[r, s]| : ((G2
* (i2,j2))
`1 )
<= r & ((G2
* (i2,j2))
`2 )
<= s & s
<= ((G2
* (1,(j2
+ 1)))
`2 ) } by
A7,
A10,
A12,
GOBRD11: 29;
then
consider r9, s9 such that
A19: p
=
|[r9, s9]| & ((G2
* (i2,j2))
`1 )
<= r9 & ((G2
* (i2,j2))
`2 )
<= s9 and
A20: s9
<= ((G2
* (1,(j2
+ 1)))
`2 );
A21: i1
= (
len G1) by
A1,
A2,
A4,
A10,
A18,
Th3;
now
per cases by
A6,
XXREAL_0: 1;
suppose
A22: j1
= (
width G1);
p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & ((G1
* (i1,j1))
`2 )
<= s } by
A4,
A19;
hence thesis by
A15,
A21,
A22,
GOBRD11: 28;
end;
suppose
A23: j1
< (
width G1);
1
<= (j2
+ 1) & (j2
+ 1)
<= (
width G2) by
A18,
NAT_1: 12,
NAT_1: 13;
then
A24: ((G2
* (i2,(j2
+ 1)))
`2 )
= ((G2
* (1,(j2
+ 1)))
`2 ) by
A8,
A11,
GOBOARD5: 1;
1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
A23,
NAT_1: 12,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) & ((G1
* (i1,(j1
+ 1)))
`2 )
= ((G1
* (1,(j1
+ 1)))
`2 ) by
A5,
A14,
GOBOARD5: 1,
MATRIX_0: 41;
then ((G2
* (1,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A5,
A14,
A13,
A8,
A10,
A18,
A23,
A24,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A20,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & ((G1
* (i1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A4,
A19;
hence thesis by
A13,
A15,
A21,
A23,
GOBRD11: 29;
end;
end;
hence thesis;
end;
suppose
A25: i2
< (
len G2) & j2
= (
width G2);
then p
in {
|[r, s]| : ((G2
* (i2,j2))
`1 )
<= r & r
<= ((G2
* ((i2
+ 1),1))
`1 ) & ((G2
* (i2,j2))
`2 )
<= s } by
A7,
A8,
A12,
GOBRD11: 31;
then
consider r9, s9 such that
A26: p
=
|[r9, s9]| & ((G2
* (i2,j2))
`1 )
<= r9 and
A27: r9
<= ((G2
* ((i2
+ 1),1))
`1 ) and
A28: ((G2
* (i2,j2))
`2 )
<= s9;
A29: j1
= (
width G1) by
A1,
A2,
A4,
A8,
A25,
Th5;
now
per cases by
A14,
XXREAL_0: 1;
suppose
A30: i1
= (
len G1);
p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & ((G1
* (i1,j1))
`2 )
<= s } by
A4,
A26,
A28;
hence thesis by
A15,
A29,
A30,
GOBRD11: 28;
end;
suppose
A31: i1
< (
len G1);
1
<= (i2
+ 1) & (i2
+ 1)
<= (
len G2) by
A25,
NAT_1: 12,
NAT_1: 13;
then
A32: ((G2
* ((i2
+ 1),j2))
`1 )
= ((G2
* ((i2
+ 1),1))
`1 ) by
A10,
A9,
GOBOARD5: 2;
1
<= (i1
+ 1) & (i1
+ 1)
<= (
len G1) by
A31,
NAT_1: 12,
NAT_1: 13;
then ((G1
* ((i1
+ 1),j1))
`1 )
= ((G1
* ((i1
+ 1),1))
`1 ) by
A13,
A6,
GOBOARD5: 2;
then ((G2
* ((i2
+ 1),1))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A13,
A6,
A8,
A10,
A25,
A31,
A32,
Th6;
then r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A27,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & ((G1
* (i1,j1))
`2 )
<= s } by
A4,
A26,
A28;
hence thesis by
A5,
A15,
A29,
A31,
GOBRD11: 31;
end;
end;
hence thesis;
end;
suppose
A33: i2
< (
len G2) & j2
< (
width G2);
then 1
<= (j2
+ 1) & (j2
+ 1)
<= (
width G2) by
NAT_1: 12,
NAT_1: 13;
then
A34: ((G2
* (i2,(j2
+ 1)))
`2 )
= ((G2
* (1,(j2
+ 1)))
`2 ) by
A8,
A11,
GOBOARD5: 1;
1
<= (i2
+ 1) & (i2
+ 1)
<= (
len G2) by
A33,
NAT_1: 12,
NAT_1: 13;
then ((G2
* ((i2
+ 1),j2))
`1 )
= ((G2
* ((i2
+ 1),1))
`1 ) by
A10,
A9,
GOBOARD5: 2;
then p
in {
|[r, s]| : ((G2
* (i2,j2))
`1 )
<= r & r
<= ((G2
* ((i2
+ 1),j2))
`1 ) & ((G2
* (i2,j2))
`2 )
<= s & s
<= ((G2
* (i2,(j2
+ 1)))
`2 ) } by
A7,
A8,
A10,
A12,
A33,
A34,
GOBRD11: 32;
then
consider r9, s9 such that
A35: p
=
|[r9, s9]| & ((G2
* (i2,j2))
`1 )
<= r9 and
A36: r9
<= ((G2
* ((i2
+ 1),j2))
`1 ) and
A37: ((G2
* (i2,j2))
`2 )
<= s9 and
A38: s9
<= ((G2
* (i2,(j2
+ 1)))
`2 );
now
per cases by
A14,
A6,
XXREAL_0: 1;
suppose
A39: i1
= (
len G1) & j1
= (
width G1);
p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & ((G1
* (i1,j1))
`2 )
<= s } by
A4,
A35,
A37;
hence thesis by
A15,
A39,
GOBRD11: 28;
end;
suppose
A40: i1
= (
len G1) & j1
< (
width G1);
then 1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
NAT_1: 12,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) & ((G1
* (i1,(j1
+ 1)))
`2 )
= ((G1
* (1,(j1
+ 1)))
`2 ) by
A5,
A14,
GOBOARD5: 1,
MATRIX_0: 41;
then ((G2
* (i2,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A5,
A13,
A8,
A10,
A33,
A40,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A38,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & ((G1
* (i1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A4,
A35,
A37;
hence thesis by
A13,
A15,
A40,
GOBRD11: 29;
end;
suppose
A41: i1
< (
len G1) & j1
= (
width G1);
then 1
<= (i1
+ 1) & (i1
+ 1)
<= (
len G1) by
NAT_1: 12,
NAT_1: 13;
then ((G1
* ((i1
+ 1),j1))
`1 )
= ((G1
* ((i1
+ 1),1))
`1 ) by
A13,
A6,
GOBOARD5: 2;
then ((G2
* ((i2
+ 1),j2))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A13,
A8,
A10,
A33,
A41,
Th6;
then r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A36,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,j1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & ((G1
* (i1,j1))
`2 )
<= s } by
A4,
A35,
A37;
hence thesis by
A5,
A15,
A41,
GOBRD11: 31;
end;
suppose
A42: i1
< (
len G1) & j1
< (
width G1);
then 1
<= (i1
+ 1) & (i1
+ 1)
<= (
len G1) by
NAT_1: 12,
NAT_1: 13;
then ((G1
* ((i1
+ 1),j1))
`1 )
= ((G1
* ((i1
+ 1),1))
`1 ) by
A13,
A6,
GOBOARD5: 2;
then ((G2
* ((i2
+ 1),j2))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A13,
A8,
A10,
A33,
A42,
Th6;
then
A43: r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A36,
XXREAL_0: 2;
1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
A42,
NAT_1: 12,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) & ((G1
* (i1,(j1
+ 1)))
`2 )
= ((G1
* (1,(j1
+ 1)))
`2 ) by
A5,
A14,
GOBOARD5: 1,
MATRIX_0: 41;
then ((G2
* (i2,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A5,
A13,
A8,
A10,
A33,
A42,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A38,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A4,
A15,
A35,
A37,
A43;
hence thesis by
A5,
A13,
A42,
GOBRD11: 32;
end;
end;
hence thesis;
end;
end;
theorem ::
GOBRD13:18
Th11: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) &
[i2, j2]
in (
Indices G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds (
cell (G2,(i2
-' 1),j2))
c= (
cell (G1,(i1
-' 1),j1))
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3:
[i2, j2]
in (
Indices G2) and
A4: (G1
* (i1,j1))
= (G2
* (i2,j2));
A5: i2
<= (
len G2) by
A3,
MATRIX_0: 32;
A6: j1
<= (
width G1) by
A2,
MATRIX_0: 32;
A7: 1
<= j1 by
A2,
MATRIX_0: 32;
A8: j2
<= (
width G2) by
A3,
MATRIX_0: 32;
A9: 1
<= j2 by
A3,
MATRIX_0: 32;
A10: 1
<= i2 by
A3,
MATRIX_0: 32;
then
A11: ((G2
* (i2,j2))
`1 )
= ((G2
* (i2,1))
`1 ) by
A5,
A9,
A8,
GOBOARD5: 2;
A12: ((G2
* (i2,j2))
`2 )
= ((G2
* (1,j2))
`2 ) by
A10,
A5,
A9,
A8,
GOBOARD5: 1;
let p be
object such that
A13: p
in (
cell (G2,(i2
-' 1),j2));
A14: 1
<= i1 by
A2,
MATRIX_0: 32;
A15: i1
<= (
len G1) by
A2,
MATRIX_0: 32;
per cases by
A14,
A10,
XXREAL_0: 1;
suppose
A16: i1
= 1 & i2
= 1;
then
A17: (i1
-' 1)
=
0 by
XREAL_1: 232;
A18: (i2
-' 1)
=
0 by
A16,
XREAL_1: 232;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A19: j2
= (
width G2);
then
A20: j1
= (
width G1) by
A1,
A2,
A4,
A10,
A5,
Th5;
p
in {
|[r, s]| : r
<= ((G2
* (1,1))
`1 ) & ((G2
* (1,(
width G2)))
`2 )
<= s } by
A13,
A18,
A19,
GOBRD11: 25;
then
consider r9, s9 such that
A21: p
=
|[r9, s9]| and
A22: r9
<= ((G2
* (1,1))
`1 ) and
A23: ((G2
* (1,(
width G2)))
`2 )
<= s9;
((G2
* (1,1))
`1 )
= ((G2
* (i1,j2))
`1 ) by
A5,
A9,
A8,
A16,
GOBOARD5: 2;
then r9
<= ((G1
* (1,1))
`1 ) by
A4,
A15,
A7,
A6,
A16,
A22,
GOBOARD5: 2;
then p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,(
width G1)))
`2 )
<= s } by
A4,
A16,
A19,
A21,
A23,
A20;
hence thesis by
A17,
A20,
GOBRD11: 25;
end;
suppose
A24: j2
< (
width G2);
then p
in {
|[r, s]| : r
<= ((G2
* (1,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s & s
<= ((G2
* (1,(j2
+ 1)))
`2 ) } by
A13,
A9,
A18,
GOBRD11: 26;
then
consider r9, s9 such that
A25: p
=
|[r9, s9]| and
A26: r9
<= ((G2
* (1,1))
`1 ) and
A27: ((G2
* (1,j2))
`2 )
<= s9 and
A28: s9
<= ((G2
* (1,(j2
+ 1)))
`2 );
((G2
* (1,1))
`1 )
= ((G2
* (i1,j2))
`1 ) by
A5,
A9,
A8,
A16,
GOBOARD5: 2;
then
A29: r9
<= ((G1
* (1,1))
`1 ) by
A4,
A15,
A7,
A6,
A16,
A26,
GOBOARD5: 2;
now
per cases by
A6,
XXREAL_0: 1;
suppose
A30: j1
= (
width G1);
then p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,(
width G1)))
`2 )
<= s } by
A4,
A16,
A25,
A27,
A29;
hence thesis by
A17,
A30,
GOBRD11: 25;
end;
suppose
A31: j1
< (
width G1);
then 1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
NAT_1: 11,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) by
A14,
A15,
MATRIX_0: 41;
then ((G2
* (1,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A15,
A7,
A5,
A9,
A16,
A24,
A31,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A28,
XXREAL_0: 2;
then p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A4,
A16,
A25,
A27,
A29;
hence thesis by
A7,
A17,
A31,
GOBRD11: 26;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose that
A32: i1
= 1 and
A33: 1
< i2;
A34: (i1
-' 1)
=
0 by
A32,
XREAL_1: 232;
A35: 1
<= (i2
-' 1) by
A33,
NAT_D: 49;
then (i2
-' 1)
< i2 by
NAT_D: 51;
then
A36: (i2
-' 1)
< (
len G2) by
A5,
XXREAL_0: 2;
A37: ((i2
-' 1)
+ 1)
= i2 by
A33,
XREAL_1: 235;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A38: j2
= (
width G2);
then p
in {
|[r, s]| : ((G2
* ((i2
-' 1),1))
`1 )
<= r & r
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s } by
A13,
A35,
A36,
A37,
GOBRD11: 31;
then
consider r9, s9 such that
A39: p
=
|[r9, s9]| and ((G2
* ((i2
-' 1),1))
`1 )
<= r9 and
A40: r9
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s9;
r9
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s9 by
A4,
A15,
A7,
A6,
A11,
A12,
A32,
A40,
GOBOARD5: 2;
then
A41: p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s } by
A39;
j1
= (
width G1) by
A1,
A2,
A4,
A10,
A5,
A38,
Th5;
hence thesis by
A34,
A41,
GOBRD11: 25;
end;
suppose
A42: j2
< (
width G2);
then p
in {
|[r, s]| : ((G2
* ((i2
-' 1),1))
`1 )
<= r & r
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s & s
<= ((G2
* (1,(j2
+ 1)))
`2 ) } by
A13,
A9,
A35,
A36,
A37,
GOBRD11: 32;
then
consider r9, s9 such that
A43: p
=
|[r9, s9]| and ((G2
* ((i2
-' 1),1))
`1 )
<= r9 and
A44: r9
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s9 and
A45: s9
<= ((G2
* (1,(j2
+ 1)))
`2 );
A46: r9
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s9 by
A4,
A15,
A7,
A6,
A11,
A12,
A32,
A44,
GOBOARD5: 2;
now
per cases by
A6,
XXREAL_0: 1;
suppose
A47: j1
= (
width G1);
then p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,(
width G1)))
`2 )
<= s } by
A43,
A46;
hence thesis by
A34,
A47,
GOBRD11: 25;
end;
suppose
A48: j1
< (
width G1);
1
<= (j2
+ 1) & (j2
+ 1)
<= (
width G2) by
A42,
NAT_1: 12,
NAT_1: 13;
then
A49: ((G2
* (i2,(j2
+ 1)))
`2 )
= ((G2
* (1,(j2
+ 1)))
`2 ) by
A10,
A5,
GOBOARD5: 1;
1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
A48,
NAT_1: 12,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) & ((G1
* (i1,(j1
+ 1)))
`2 )
= ((G1
* (1,(j1
+ 1)))
`2 ) by
A14,
A15,
GOBOARD5: 1,
MATRIX_0: 41;
then ((G2
* (1,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A14,
A15,
A7,
A10,
A5,
A9,
A42,
A48,
A49,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A45,
XXREAL_0: 2;
then p
in {
|[r, s]| : r
<= ((G1
* (1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A43,
A46;
hence thesis by
A7,
A34,
A48,
GOBRD11: 26;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose 1
< i1 & i2
= 1;
hence thesis by
A1,
A2,
A4,
A9,
A8,
Th2;
end;
suppose
A50: 1
< i1 & 1
< i2;
then
A51: 1
<= (i2
-' 1) by
NAT_D: 49;
then
A52: ((i2
-' 1)
+ 1)
= i2 by
NAT_D: 43;
(i2
-' 1)
< i2 by
A51,
NAT_D: 51;
then
A53: (i2
-' 1)
< (
len G2) by
A5,
XXREAL_0: 2;
then
A54: ((G2
* ((i2
-' 1),1))
`1 )
= ((G2
* ((i2
-' 1),j2))
`1 ) by
A9,
A8,
A51,
GOBOARD5: 2;
A55: 1
<= (i1
-' 1) by
A50,
NAT_D: 49;
then
A56: ((i1
-' 1)
+ 1)
= i1 by
NAT_D: 43;
(i1
-' 1)
< i1 by
A55,
NAT_D: 51;
then
A57: (i1
-' 1)
< (
len G1) by
A15,
XXREAL_0: 2;
then (G1
* ((i1
-' 1),j1))
in (
Values G1) & ((G1
* ((i1
-' 1),1))
`1 )
= ((G1
* ((i1
-' 1),j1))
`1 ) by
A7,
A6,
A55,
GOBOARD5: 2,
MATRIX_0: 41;
then
A58: ((G1
* ((i1
-' 1),1))
`1 )
<= ((G2
* ((i2
-' 1),1))
`1 ) by
A1,
A4,
A15,
A7,
A6,
A5,
A9,
A8,
A50,
A54,
Th7;
now
per cases by
A8,
XXREAL_0: 1;
suppose
A59: j2
= (
width G2);
then p
in {
|[r, s]| : ((G2
* ((i2
-' 1),1))
`1 )
<= r & r
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s } by
A13,
A51,
A53,
A52,
GOBRD11: 31;
then
consider r9, s9 such that
A60: p
=
|[r9, s9]| and
A61: ((G2
* ((i2
-' 1),1))
`1 )
<= r9 & r9
<= ((G2
* (i2,1))
`1 ) and
A62: ((G2
* (1,j2))
`2 )
<= s9;
A63: ((G1
* (1,j1))
`2 )
<= s9 by
A4,
A14,
A15,
A7,
A6,
A12,
A62,
GOBOARD5: 1;
((G1
* ((i1
-' 1),1))
`1 )
<= r9 & r9
<= ((G1
* (i1,1))
`1 ) by
A4,
A14,
A15,
A7,
A6,
A11,
A58,
A61,
GOBOARD5: 2,
XXREAL_0: 2;
then
A64: p
in {
|[r, s]| : ((G1
* ((i1
-' 1),1))
`1 )
<= r & r
<= ((G1
* (i1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s } by
A60,
A63;
j1
= (
width G1) by
A1,
A2,
A4,
A10,
A5,
A59,
Th5;
hence thesis by
A55,
A57,
A56,
A64,
GOBRD11: 31;
end;
suppose
A65: j2
< (
width G2);
then p
in {
|[r, s]| : ((G2
* ((i2
-' 1),1))
`1 )
<= r & r
<= ((G2
* (i2,1))
`1 ) & ((G2
* (1,j2))
`2 )
<= s & s
<= ((G2
* (1,(j2
+ 1)))
`2 ) } by
A13,
A9,
A51,
A53,
A52,
GOBRD11: 32;
then
consider r9, s9 such that
A66: p
=
|[r9, s9]| and
A67: ((G2
* ((i2
-' 1),1))
`1 )
<= r9 & r9
<= ((G2
* (i2,1))
`1 ) and
A68: ((G2
* (1,j2))
`2 )
<= s9 and
A69: s9
<= ((G2
* (1,(j2
+ 1)))
`2 );
A70: ((G1
* (1,j1))
`2 )
<= s9 by
A4,
A14,
A15,
A7,
A6,
A12,
A68,
GOBOARD5: 1;
A71: ((G1
* ((i1
-' 1),1))
`1 )
<= r9 & r9
<= ((G1
* (i1,1))
`1 ) by
A4,
A14,
A15,
A7,
A6,
A11,
A58,
A67,
GOBOARD5: 2,
XXREAL_0: 2;
per cases by
A6,
XXREAL_0: 1;
suppose
A72: j1
= (
width G1);
p
in {
|[r, s]| : ((G1
* ((i1
-' 1),1))
`1 )
<= r & r
<= ((G1
* (i1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s } by
A66,
A71,
A70;
hence thesis by
A55,
A57,
A56,
A72,
GOBRD11: 31;
end;
suppose
A73: j1
< (
width G1);
1
<= (j2
+ 1) & (j2
+ 1)
<= (
width G2) by
A65,
NAT_1: 12,
NAT_1: 13;
then
A74: ((G2
* (i2,(j2
+ 1)))
`2 )
= ((G2
* (1,(j2
+ 1)))
`2 ) by
A10,
A5,
GOBOARD5: 1;
1
<= (j1
+ 1) & (j1
+ 1)
<= (
width G1) by
A73,
NAT_1: 12,
NAT_1: 13;
then (G1
* (i1,(j1
+ 1)))
in (
Values G1) & ((G1
* (i1,(j1
+ 1)))
`2 )
= ((G1
* (1,(j1
+ 1)))
`2 ) by
A14,
A15,
GOBOARD5: 1,
MATRIX_0: 41;
then ((G2
* (1,(j2
+ 1)))
`2 )
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A1,
A4,
A14,
A15,
A7,
A10,
A5,
A9,
A65,
A73,
A74,
Th8;
then s9
<= ((G1
* (1,(j1
+ 1)))
`2 ) by
A69,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* ((i1
-' 1),1))
`1 )
<= r & r
<= ((G1
* (i1,1))
`1 ) & ((G1
* (1,j1))
`2 )
<= s & s
<= ((G1
* (1,(j1
+ 1)))
`2 ) } by
A66,
A71,
A70;
hence thesis by
A7,
A55,
A57,
A56,
A73,
GOBRD11: 32;
end;
end;
end;
hence thesis;
end;
end;
theorem ::
GOBRD13:19
Th12: for G1,G2 be
Go-board st (
Values G1)
c= (
Values G2) &
[i1, j1]
in (
Indices G1) &
[i2, j2]
in (
Indices G2) & (G1
* (i1,j1))
= (G2
* (i2,j2)) holds (
cell (G2,i2,(j2
-' 1)))
c= (
cell (G1,i1,(j1
-' 1)))
proof
let G1,G2 be
Go-board such that
A1: (
Values G1)
c= (
Values G2) and
A2:
[i1, j1]
in (
Indices G1) and
A3:
[i2, j2]
in (
Indices G2) and
A4: (G1
* (i1,j1))
= (G2
* (i2,j2));
A5: 1
<= i1 by
A2,
MATRIX_0: 32;
A6: 1
<= j2 by
A3,
MATRIX_0: 32;
A7: 1
<= i2 by
A3,
MATRIX_0: 32;
A8: j1
<= (
width G1) by
A2,
MATRIX_0: 32;
A9: j2
<= (
width G2) by
A3,
MATRIX_0: 32;
A10: i2
<= (
len G2) by
A3,
MATRIX_0: 32;
then
A11: ((G2
* (i2,j2))
`1 )
= ((G2
* (i2,1))
`1 ) by
A7,
A6,
A9,
GOBOARD5: 2;
A12: i1
<= (
len G1) by
A2,
MATRIX_0: 32;
A13: 1
<= j1 by
A2,
MATRIX_0: 32;
then
A14: ((G1
* (i1,j1))
`2 )
= ((G1
* (1,j1))
`2 ) by
A5,
A12,
A8,
GOBOARD5: 1;
let p be
object such that
A15: p
in (
cell (G2,i2,(j2
-' 1)));
A16: ((G2
* (i2,j2))
`2 )
= ((G2
* (1,j2))
`2 ) by
A7,
A10,
A6,
A9,
GOBOARD5: 1;
per cases by
A13,
A6,
XXREAL_0: 1;
suppose
A17: j1
= 1 & j2
= 1;
then
A18: (j1
-' 1)
=
0 by
XREAL_1: 232;
A19: (j2
-' 1)
=
0 by
A17,
XREAL_1: 232;
now
per cases by
A10,
XXREAL_0: 1;
suppose
A20: i2
= (
len G2);
then p
in {
|[r, s]| : ((G2
* ((
len G2),1))
`1 )
<= r & s
<= ((G2
* (1,1))
`2 ) } by
A15,
A19,
GOBRD11: 27;
then
consider r9, s9 such that
A21: p
=
|[r9, s9]| & ((G2
* ((
len G2),1))
`1 )
<= r9 and
A22: s9
<= ((G2
* (1,1))
`2 );
A23: i1
= (
len G1) by
A1,
A2,
A4,
A6,
A9,
A20,
Th3;
((G2
* (1,1))
`2 )
= ((G2
* (i2,j2))
`2 ) by
A7,
A10,
A9,
A17,
GOBOARD5: 1;
then s9
<= ((G1
* (1,1))
`2 ) by
A4,
A5,
A12,
A8,
A17,
A22,
GOBOARD5: 1;
then p
in {
|[r, s]| : ((G1
* ((
len G1),1))
`1 )
<= r & s
<= ((G1
* (1,1))
`2 ) } by
A4,
A17,
A20,
A21,
A23;
hence thesis by
A18,
A23,
GOBRD11: 27;
end;
suppose
A24: i2
< (
len G2);
then p
in {
|[r, s]| : ((G2
* (i2,1))
`1 )
<= r & r
<= ((G2
* ((i2
+ 1),1))
`1 ) & s
<= ((G2
* (1,1))
`2 ) } by
A15,
A7,
A19,
GOBRD11: 30;
then
consider r9, s9 such that
A25: p
=
|[r9, s9]| & ((G2
* (i2,1))
`1 )
<= r9 and
A26: r9
<= ((G2
* ((i2
+ 1),1))
`1 ) and
A27: s9
<= ((G2
* (1,1))
`2 );
((G2
* (1,1))
`2 )
= ((G2
* (i2,j1))
`2 ) by
A7,
A10,
A9,
A17,
GOBOARD5: 1;
then
A28: s9
<= ((G1
* (1,1))
`2 ) by
A4,
A5,
A12,
A8,
A17,
A27,
GOBOARD5: 1;
now
per cases by
A12,
XXREAL_0: 1;
suppose
A29: i1
= (
len G1);
then p
in {
|[r, s]| : ((G1
* ((
len G1),1))
`1 )
<= r & s
<= ((G1
* (1,1))
`2 ) } by
A4,
A17,
A25,
A28;
hence thesis by
A18,
A29,
GOBRD11: 27;
end;
suppose
A30: i1
< (
len G1);
then ((G2
* ((i2
+ 1),1))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A8,
A7,
A9,
A17,
A24,
Th6;
then r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A26,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & s
<= ((G1
* (1,1))
`2 ) } by
A4,
A17,
A25,
A28;
hence thesis by
A5,
A18,
A30,
GOBRD11: 30;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose that
A31: j1
= 1 and
A32: 1
< j2;
A33: (j1
-' 1)
=
0 by
A31,
XREAL_1: 232;
A34: 1
<= (j2
-' 1) by
A32,
NAT_D: 49;
then (j2
-' 1)
< j2 by
NAT_D: 51;
then
A35: (j2
-' 1)
< (
width G2) by
A9,
XXREAL_0: 2;
A36: ((j2
-' 1)
+ 1)
= j2 by
A32,
XREAL_1: 235;
now
per cases by
A10,
XXREAL_0: 1;
suppose
A37: i2
= (
len G2);
then p
in {
|[r, s]| : ((G2
* (i2,1))
`1 )
<= r & ((G2
* (1,(j2
-' 1)))
`2 )
<= s & s
<= ((G2
* (1,j2))
`2 ) } by
A15,
A34,
A35,
A36,
GOBRD11: 29;
then ex r9, s9 st p
=
|[r9, s9]| & ((G2
* (i2,1))
`1 )
<= r9 & ((G2
* (1,(j2
-' 1)))
`2 )
<= s9 & s9
<= ((G2
* (1,j2))
`2 );
then
A38: p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & s
<= ((G1
* (1,1))
`2 ) } by
A4,
A14,
A11,
A16,
A31;
i1
= (
len G1) by
A1,
A2,
A4,
A6,
A9,
A37,
Th3;
hence thesis by
A33,
A38,
GOBRD11: 27;
end;
suppose
A39: i2
< (
len G2);
then p
in {
|[r, s]| : ((G2
* (i2,1))
`1 )
<= r & r
<= ((G2
* ((i2
+ 1),1))
`1 ) & ((G2
* (1,(j2
-' 1)))
`2 )
<= s & s
<= ((G2
* (1,j2))
`2 ) } by
A15,
A7,
A34,
A35,
A36,
GOBRD11: 32;
then
consider r9, s9 such that
A40: p
=
|[r9, s9]| and
A41: ((G2
* (i2,1))
`1 )
<= r9 and
A42: r9
<= ((G2
* ((i2
+ 1),1))
`1 ) and ((G2
* (1,(j2
-' 1)))
`2 )
<= s9 and
A43: s9
<= ((G2
* (1,j2))
`2 );
A44: s9
<= ((G1
* (1,1))
`2 ) & ((G1
* (i1,1))
`1 )
<= r9 by
A4,
A7,
A10,
A6,
A9,
A14,
A31,
A41,
A43,
GOBOARD5: 1,
GOBOARD5: 2;
now
per cases by
A12,
XXREAL_0: 1;
suppose
A45: i1
= (
len G1);
then p
in {
|[r, s]| : ((G1
* ((
len G1),1))
`1 )
<= r & s
<= ((G1
* (1,1))
`2 ) } by
A40,
A44;
hence thesis by
A33,
A45,
GOBRD11: 27;
end;
suppose
A46: i1
< (
len G1);
1
<= (i2
+ 1) & (i2
+ 1)
<= (
len G2) by
A39,
NAT_1: 12,
NAT_1: 13;
then
A47: ((G2
* ((i2
+ 1),j2))
`1 )
= ((G2
* ((i2
+ 1),1))
`1 ) by
A6,
A9,
GOBOARD5: 2;
1
<= (i1
+ 1) & (i1
+ 1)
<= (
len G1) by
A46,
NAT_1: 12,
NAT_1: 13;
then ((G1
* ((i1
+ 1),j1))
`1 )
= ((G1
* ((i1
+ 1),1))
`1 ) by
A13,
A8,
GOBOARD5: 2;
then ((G2
* ((i2
+ 1),1))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A13,
A8,
A7,
A6,
A9,
A39,
A46,
A47,
Th6;
then r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A42,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & s
<= ((G1
* (1,1))
`2 ) } by
A40,
A44;
hence thesis by
A5,
A33,
A46,
GOBRD11: 30;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose 1
< j1 & j2
= 1;
hence thesis by
A1,
A2,
A4,
A7,
A10,
Th4;
end;
suppose
A48: 1
< j1 & 1
< j2;
then
A49: 1
<= (j2
-' 1) by
NAT_D: 49;
then
A50: ((j2
-' 1)
+ 1)
= j2 by
NAT_D: 43;
(j2
-' 1)
< j2 by
A49,
NAT_D: 51;
then
A51: (j2
-' 1)
< (
width G2) by
A9,
XXREAL_0: 2;
then
A52: ((G2
* (1,(j2
-' 1)))
`2 )
= ((G2
* (i2,(j2
-' 1)))
`2 ) by
A7,
A10,
A49,
GOBOARD5: 1;
A53: 1
<= (j1
-' 1) by
A48,
NAT_D: 49;
then
A54: ((j1
-' 1)
+ 1)
= j1 by
NAT_D: 43;
(j1
-' 1)
< j1 by
A53,
NAT_D: 51;
then
A55: (j1
-' 1)
< (
width G1) by
A8,
XXREAL_0: 2;
then ((G1
* (1,(j1
-' 1)))
`2 )
= ((G1
* (i1,(j1
-' 1)))
`2 ) by
A5,
A12,
A53,
GOBOARD5: 1;
then
A56: ((G1
* (1,(j1
-' 1)))
`2 )
<= ((G2
* (1,(j2
-' 1)))
`2 ) by
A1,
A4,
A5,
A12,
A8,
A7,
A10,
A9,
A48,
A52,
Th9;
now
per cases by
A10,
XXREAL_0: 1;
suppose
A57: i2
= (
len G2);
then p
in {
|[r, s]| : ((G2
* (i2,1))
`1 )
<= r & ((G2
* (1,(j2
-' 1)))
`2 )
<= s & s
<= ((G2
* (1,j2))
`2 ) } by
A15,
A49,
A51,
A50,
GOBRD11: 29;
then
consider r9, s9 such that
A58: p
=
|[r9, s9]| and
A59: ((G2
* (i2,1))
`1 )
<= r9 and
A60: ((G2
* (1,(j2
-' 1)))
`2 )
<= s9 & s9
<= ((G2
* (1,j2))
`2 );
A61: ((G1
* (i1,1))
`1 )
<= r9 by
A4,
A5,
A12,
A13,
A8,
A11,
A59,
GOBOARD5: 2;
((G1
* (1,(j1
-' 1)))
`2 )
<= s9 & s9
<= ((G1
* (1,j1))
`2 ) by
A4,
A5,
A12,
A13,
A8,
A16,
A56,
A60,
GOBOARD5: 1,
XXREAL_0: 2;
then
A62: p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & ((G1
* (1,(j1
-' 1)))
`2 )
<= s & s
<= ((G1
* (1,j1))
`2 ) } by
A58,
A61;
i1
= (
len G1) by
A1,
A2,
A4,
A6,
A9,
A57,
Th3;
hence thesis by
A53,
A55,
A54,
A62,
GOBRD11: 29;
end;
suppose
A63: i2
< (
len G2);
then p
in {
|[r, s]| : ((G2
* (i2,1))
`1 )
<= r & r
<= ((G2
* ((i2
+ 1),1))
`1 ) & ((G2
* (1,(j2
-' 1)))
`2 )
<= s & s
<= ((G2
* (1,j2))
`2 ) } by
A15,
A7,
A49,
A51,
A50,
GOBRD11: 32;
then
consider r9, s9 such that
A64: p
=
|[r9, s9]| and
A65: ((G2
* (i2,1))
`1 )
<= r9 and
A66: r9
<= ((G2
* ((i2
+ 1),1))
`1 ) and
A67: ((G2
* (1,(j2
-' 1)))
`2 )
<= s9 & s9
<= ((G2
* (1,j2))
`2 );
A68: ((G1
* (i1,1))
`1 )
<= r9 by
A4,
A5,
A12,
A13,
A8,
A11,
A65,
GOBOARD5: 2;
A69: ((G1
* (1,(j1
-' 1)))
`2 )
<= s9 & s9
<= ((G1
* (1,j1))
`2 ) by
A4,
A5,
A12,
A13,
A8,
A16,
A56,
A67,
GOBOARD5: 1,
XXREAL_0: 2;
now
per cases by
A12,
XXREAL_0: 1;
suppose
A70: i1
= (
len G1);
p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & ((G1
* (1,(j1
-' 1)))
`2 )
<= s & s
<= ((G1
* (1,j1))
`2 ) } by
A64,
A69,
A68;
hence thesis by
A53,
A55,
A54,
A70,
GOBRD11: 29;
end;
suppose
A71: i1
< (
len G1);
1
<= (i2
+ 1) & (i2
+ 1)
<= (
len G2) by
A63,
NAT_1: 12,
NAT_1: 13;
then
A72: ((G2
* ((i2
+ 1),j2))
`1 )
= ((G2
* ((i2
+ 1),1))
`1 ) by
A6,
A9,
GOBOARD5: 2;
1
<= (i1
+ 1) & (i1
+ 1)
<= (
len G1) by
A71,
NAT_1: 12,
NAT_1: 13;
then ((G1
* ((i1
+ 1),j1))
`1 )
= ((G1
* ((i1
+ 1),1))
`1 ) by
A13,
A8,
GOBOARD5: 2;
then ((G2
* ((i2
+ 1),1))
`1 )
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A1,
A4,
A5,
A13,
A8,
A7,
A6,
A9,
A63,
A71,
A72,
Th6;
then r9
<= ((G1
* ((i1
+ 1),1))
`1 ) by
A66,
XXREAL_0: 2;
then p
in {
|[r, s]| : ((G1
* (i1,1))
`1 )
<= r & r
<= ((G1
* ((i1
+ 1),1))
`1 ) & ((G1
* (1,(j1
-' 1)))
`2 )
<= s & s
<= ((G1
* (1,j1))
`2 ) } by
A64,
A69,
A68;
hence thesis by
A5,
A53,
A55,
A54,
A71,
GOBRD11: 32;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
Lm1: for f be non
empty
FinSequence of (
TOP-REAL 2) st 1
<= i & i
<= (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) holds ex k st k
in (
dom f) & ((f
/. k)
`1 )
= (((
GoB f)
* (i,j))
`1 )
proof
let f be non
empty
FinSequence of (
TOP-REAL 2);
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) and
A2: 1
<= j & j
<= (
width (
GoB f));
A3: (
GoB f)
= (
GoB ((
Incr (
X_axis f)),(
Incr (
Y_axis f)))) by
GOBOARD2:def 2;
then (
len (
Incr (
X_axis f)))
= (
len (
GoB f)) by
GOBOARD2:def 1;
then i
in (
dom (
Incr (
X_axis f))) by
A1,
FINSEQ_3: 25;
then ((
Incr (
X_axis f))
. i)
in (
rng (
Incr (
X_axis f))) by
FUNCT_1:def 3;
then ((
Incr (
X_axis f))
. i)
in (
rng (
X_axis f)) by
SEQ_4:def 21;
then
consider k be
Nat such that
A4: k
in (
dom (
X_axis f)) and
A5: ((
X_axis f)
. k)
= ((
Incr (
X_axis f))
. i) by
FINSEQ_2: 10;
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
MATRIX_0: 30;
then
A6: ((
GoB f)
* (i,j))
=
|[((
Incr (
X_axis f))
. i), ((
Incr (
Y_axis f))
. j)]| by
A3,
GOBOARD2:def 1;
reconsider k as
Nat;
take k;
(
len (
X_axis f))
= (
len f) by
GOBOARD1:def 1;
hence k
in (
dom f) by
A4,
FINSEQ_3: 29;
thus ((f
/. k)
`1 )
= ((
Incr (
X_axis f))
. i) by
A4,
A5,
GOBOARD1:def 1
.= (((
GoB f)
* (i,j))
`1 ) by
A6,
EUCLID: 52;
end;
Lm2: for f be non
empty
FinSequence of (
TOP-REAL 2) st 1
<= i & i
<= (
len (
GoB f)) & 1
<= j & j
<= (
width (
GoB f)) holds ex k st k
in (
dom f) & ((f
/. k)
`2 )
= (((
GoB f)
* (i,j))
`2 )
proof
let f be non
empty
FinSequence of (
TOP-REAL 2);
assume that
A1: 1
<= i & i
<= (
len (
GoB f)) and
A2: 1
<= j & j
<= (
width (
GoB f));
A3: (
GoB f)
= (
GoB ((
Incr (
X_axis f)),(
Incr (
Y_axis f)))) by
GOBOARD2:def 2;
then (
len (
Incr (
Y_axis f)))
= (
width (
GoB f)) by
GOBOARD2:def 1;
then j
in (
dom (
Incr (
Y_axis f))) by
A2,
FINSEQ_3: 25;
then ((
Incr (
Y_axis f))
. j)
in (
rng (
Incr (
Y_axis f))) by
FUNCT_1:def 3;
then ((
Incr (
Y_axis f))
. j)
in (
rng (
Y_axis f)) by
SEQ_4:def 21;
then
consider k be
Nat such that
A4: k
in (
dom (
Y_axis f)) and
A5: ((
Y_axis f)
. k)
= ((
Incr (
Y_axis f))
. j) by
FINSEQ_2: 10;
[i, j]
in (
Indices (
GoB f)) by
A1,
A2,
MATRIX_0: 30;
then
A6: ((
GoB f)
* (i,j))
=
|[((
Incr (
X_axis f))
. i), ((
Incr (
Y_axis f))
. j)]| by
A3,
GOBOARD2:def 1;
reconsider k as
Nat;
take k;
(
len (
Y_axis f))
= (
len f) by
GOBOARD1:def 2;
hence k
in (
dom f) by
A4,
FINSEQ_3: 29;
thus ((f
/. k)
`2 )
= ((
Incr (
Y_axis f))
. j) by
A4,
A5,
GOBOARD1:def 2
.= (((
GoB f)
* (i,j))
`2 ) by
A6,
EUCLID: 52;
end;
theorem ::
GOBRD13:20
Th13: for f be
standard
special_circular_sequence st f
is_sequence_on G holds (
Values (
GoB f))
c= (
Values G)
proof
let f be
standard
special_circular_sequence such that
A1: f
is_sequence_on G;
let p be
object;
set F = (
GoB f);
assume p
in (
Values F);
then p
in { (F
* (i,j)) :
[i, j]
in (
Indices F) } by
MATRIX_0: 39;
then
consider i, j such that
A2: p
= (F
* (i,j)) and
A3:
[i, j]
in (
Indices F);
reconsider p as
Point of (
TOP-REAL 2) by
A2;
A4: 1
<= j & j
<= (
width F) by
A3,
MATRIX_0: 32;
A5: 1
<= i & i
<= (
len F) by
A3,
MATRIX_0: 32;
then
consider k1 such that
A6: k1
in (
dom f) and
A7: (p
`1 )
= ((f
/. k1)
`1 ) by
A2,
A4,
Lm1;
consider k2 such that
A8: k2
in (
dom f) and
A9: (p
`2 )
= ((f
/. k2)
`2 ) by
A2,
A5,
A4,
Lm2;
consider i2, j2 such that
A10:
[i2, j2]
in (
Indices G) and
A11: (f
/. k2)
= (G
* (i2,j2)) by
A1,
A8,
GOBOARD1:def 9;
A12: 1
<= i2 & i2
<= (
len G) by
A10,
MATRIX_0: 32;
consider i1, j1 such that
A13:
[i1, j1]
in (
Indices G) and
A14: (f
/. k1)
= (G
* (i1,j1)) by
A1,
A6,
GOBOARD1:def 9;
A15: 1
<= j1 & j1
<= (
width G) by
A13,
MATRIX_0: 32;
A16: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
A17: 1
<= j2 & j2
<= (
width G) by
A10,
MATRIX_0: 32;
A18: 1
<= i1 & i1
<= (
len G) by
A13,
MATRIX_0: 32;
then
A19:
[i1, j2]
in (
Indices G) by
A17,
MATRIX_0: 30;
A20: ((G
* (i1,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A18,
A17,
GOBOARD5: 1
.= ((G
* (i2,j2))
`2 ) by
A12,
A17,
GOBOARD5: 1;
((G
* (i1,j2))
`1 )
= ((G
* (i1,1))
`1 ) by
A18,
A17,
GOBOARD5: 2
.= ((G
* (i1,j1))
`1 ) by
A18,
A15,
GOBOARD5: 2;
then p
= (G
* (i1,j2)) by
A7,
A9,
A14,
A11,
A20,
A16,
EUCLID: 53;
then p
in { (G
* (k,l)) :
[k, l]
in (
Indices G) } by
A19;
hence thesis by
MATRIX_0: 39;
end;
definition
::$Canceled
let f, G, k;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G;
then
consider i1,j1,i2,j2 be
Nat such that
A1:
[i1, j1]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) and
A2:
[i2, j2]
in (
Indices G) & (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A3: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
JORDAN8: 3;
::
GOBRD13:def2
func
right_cell (f,k,G) ->
Subset of (
TOP-REAL 2) means
:
Def1: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & it
= (
cell (G,i1,j1)) or (i1
+ 1)
= i2 & j1
= j2 & it
= (
cell (G,i1,(j1
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & it
= (
cell (G,i2,j2)) or i1
= i2 & j1
= (j2
+ 1) & it
= (
cell (G,(i1
-' 1),j2));
existence
proof
per cases by
A3;
suppose
A4: i1
= i2 & (j1
+ 1)
= j2;
take (
cell (G,i1,j1));
let i19,j19,i29,j29 be
Nat;
assume that
A5:
[i19, j19]
in (
Indices G) and
A6:
[i29, j29]
in (
Indices G) and
A7: (f
/. k)
= (G
* (i19,j19)) and
A8: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A5,
A7,
GOBOARD1: 5;
hence thesis by
A2,
A4,
A6,
A8,
GOBOARD1: 5;
end;
suppose
A9: (i1
+ 1)
= i2 & j1
= j2;
take (
cell (G,i1,(j1
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume that
A10:
[i19, j19]
in (
Indices G) and
A11:
[i29, j29]
in (
Indices G) and
A12: (f
/. k)
= (G
* (i19,j19)) and
A13: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A10,
A12,
GOBOARD1: 5;
hence thesis by
A2,
A9,
A11,
A13,
GOBOARD1: 5;
end;
suppose
A14: i1
= (i2
+ 1) & j1
= j2;
take (
cell (G,i2,j2));
let i19,j19,i29,j29 be
Nat;
assume
A15:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
A2,
GOBOARD1: 5;
hence thesis by
A1,
A2,
A14,
A15,
GOBOARD1: 5;
end;
suppose
A16: i1
= i2 & j1
= (j2
+ 1);
take (
cell (G,(i1
-' 1),j2));
let i19,j19,i29,j29 be
Nat;
assume that
A17:
[i19, j19]
in (
Indices G) and
A18:
[i29, j29]
in (
Indices G) and
A19: (f
/. k)
= (G
* (i19,j19)) and
A20: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A17,
A19,
GOBOARD1: 5;
hence thesis by
A2,
A16,
A18,
A20,
GOBOARD1: 5;
end;
end;
uniqueness
proof
let P1,P2 be
Subset of (
TOP-REAL 2) such that
A21: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P1
= (
cell (G,i1,j1)) or (i1
+ 1)
= i2 & j1
= j2 & P1
= (
cell (G,i1,(j1
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & P1
= (
cell (G,i2,j2)) or i1
= i2 & j1
= (j2
+ 1) & P1
= (
cell (G,(i1
-' 1),j2)) and
A22: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P2
= (
cell (G,i1,j1)) or (i1
+ 1)
= i2 & j1
= j2 & P2
= (
cell (G,i1,(j1
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & P2
= (
cell (G,i2,j2)) or i1
= i2 & j1
= (j2
+ 1) & P2
= (
cell (G,(i1
-' 1),j2));
per cases by
A3;
suppose
A23: i1
= i2 & (j1
+ 1)
= j2;
A24: j2
<= (j2
+ 1) by
NAT_1: 11;
A25: j1
< j2 by
A23,
XREAL_1: 29;
hence P1
= (
cell (G,i1,j1)) by
A1,
A2,
A21,
A24
.= P2 by
A1,
A2,
A22,
A25,
A24;
end;
suppose
A26: (i1
+ 1)
= i2 & j1
= j2;
A27: i2
<= (i2
+ 1) by
NAT_1: 11;
A28: i1
< i2 by
A26,
XREAL_1: 29;
hence P1
= (
cell (G,i1,(j1
-' 1))) by
A1,
A2,
A21,
A27
.= P2 by
A1,
A2,
A22,
A28,
A27;
end;
suppose
A29: i1
= (i2
+ 1) & j1
= j2;
A30: i1
<= (i1
+ 1) by
NAT_1: 11;
A31: i2
< i1 by
A29,
XREAL_1: 29;
hence P1
= (
cell (G,i2,j2)) by
A1,
A2,
A21,
A30
.= P2 by
A1,
A2,
A22,
A31,
A30;
end;
suppose
A32: i1
= i2 & j1
= (j2
+ 1);
A33: j1
<= (j1
+ 1) by
NAT_1: 11;
A34: j2
< j1 by
A32,
XREAL_1: 29;
hence P1
= (
cell (G,(i1
-' 1),j2)) by
A1,
A2,
A21,
A33
.= P2 by
A1,
A2,
A22,
A34,
A33;
end;
end;
::
GOBRD13:def3
func
left_cell (f,k,G) ->
Subset of (
TOP-REAL 2) means
:
Def2: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & it
= (
cell (G,(i1
-' 1),j1)) or (i1
+ 1)
= i2 & j1
= j2 & it
= (
cell (G,i1,j1)) or i1
= (i2
+ 1) & j1
= j2 & it
= (
cell (G,i2,(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & it
= (
cell (G,i1,j2));
existence
proof
per cases by
A3;
suppose
A35: i1
= i2 & (j1
+ 1)
= j2;
take (
cell (G,(i1
-' 1),j1));
let i19,j19,i29,j29 be
Nat;
assume that
A36:
[i19, j19]
in (
Indices G) and
A37:
[i29, j29]
in (
Indices G) and
A38: (f
/. k)
= (G
* (i19,j19)) and
A39: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A36,
A38,
GOBOARD1: 5;
hence thesis by
A2,
A35,
A37,
A39,
GOBOARD1: 5;
end;
suppose
A40: (i1
+ 1)
= i2 & j1
= j2;
take (
cell (G,i1,j1));
let i19,j19,i29,j29 be
Nat;
assume that
A41:
[i19, j19]
in (
Indices G) and
A42:
[i29, j29]
in (
Indices G) and
A43: (f
/. k)
= (G
* (i19,j19)) and
A44: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A41,
A43,
GOBOARD1: 5;
hence thesis by
A2,
A40,
A42,
A44,
GOBOARD1: 5;
end;
suppose
A45: i1
= (i2
+ 1) & j1
= j2;
take (
cell (G,i2,(j2
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume
A46:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
A2,
GOBOARD1: 5;
hence thesis by
A1,
A2,
A45,
A46,
GOBOARD1: 5;
end;
suppose
A47: i1
= i2 & j1
= (j2
+ 1);
take (
cell (G,i1,j2));
let i19,j19,i29,j29 be
Nat;
assume that
A48:
[i19, j19]
in (
Indices G) and
A49:
[i29, j29]
in (
Indices G) and
A50: (f
/. k)
= (G
* (i19,j19)) and
A51: (f
/. (k
+ 1))
= (G
* (i29,j29));
i1
= i19 & j1
= j19 by
A1,
A48,
A50,
GOBOARD1: 5;
hence thesis by
A2,
A47,
A49,
A51,
GOBOARD1: 5;
end;
end;
uniqueness
proof
let P1,P2 be
Subset of (
TOP-REAL 2) such that
A52: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P1
= (
cell (G,(i1
-' 1),j1)) or (i1
+ 1)
= i2 & j1
= j2 & P1
= (
cell (G,i1,j1)) or i1
= (i2
+ 1) & j1
= j2 & P1
= (
cell (G,i2,(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & P1
= (
cell (G,i1,j2)) and
A53: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P2
= (
cell (G,(i1
-' 1),j1)) or (i1
+ 1)
= i2 & j1
= j2 & P2
= (
cell (G,i1,j1)) or i1
= (i2
+ 1) & j1
= j2 & P2
= (
cell (G,i2,(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & P2
= (
cell (G,i1,j2));
per cases by
A3;
suppose
A54: i1
= i2 & (j1
+ 1)
= j2;
A55: j2
<= (j2
+ 1) by
NAT_1: 11;
A56: j1
< j2 by
A54,
XREAL_1: 29;
hence P1
= (
cell (G,(i1
-' 1),j1)) by
A1,
A2,
A52,
A55
.= P2 by
A1,
A2,
A53,
A56,
A55;
end;
suppose
A57: (i1
+ 1)
= i2 & j1
= j2;
A58: i2
<= (i2
+ 1) by
NAT_1: 11;
A59: i1
< i2 by
A57,
XREAL_1: 29;
hence P1
= (
cell (G,i1,j1)) by
A1,
A2,
A52,
A58
.= P2 by
A1,
A2,
A53,
A59,
A58;
end;
suppose
A60: i1
= (i2
+ 1) & j1
= j2;
A61: i1
<= (i1
+ 1) by
NAT_1: 11;
A62: i2
< i1 by
A60,
XREAL_1: 29;
hence P1
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A52,
A61
.= P2 by
A1,
A2,
A53,
A62,
A61;
end;
suppose
A63: i1
= i2 & j1
= (j2
+ 1);
A64: j1
<= (j1
+ 1) by
NAT_1: 11;
A65: j2
< j1 by
A63,
XREAL_1: 29;
hence P1
= (
cell (G,i1,j2)) by
A1,
A2,
A52,
A64
.= P2 by
A1,
A2,
A53,
A65,
A64;
end;
end;
end
theorem ::
GOBRD13:21
Th14: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1))) implies (
left_cell (f,k,G))
= (
cell (G,(i
-' 1),j))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1)));
hence thesis by
A1,
Def2;
end;
theorem ::
GOBRD13:22
Th15: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1))) implies (
right_cell (f,k,G))
= (
cell (G,i,j))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1)));
hence thesis by
A1,
Def1;
end;
theorem ::
GOBRD13:23
Th16: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j)) implies (
left_cell (f,k,G))
= (
cell (G,i,j))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j));
hence thesis by
A1,
Def2;
end;
theorem ::
GOBRD13:24
Th17: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j)) implies (
right_cell (f,k,G))
= (
cell (G,i,(j
-' 1)))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j));
hence thesis by
A1,
Def1;
end;
theorem ::
GOBRD13:25
Th18: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
left_cell (f,k,G))
= (
cell (G,i,(j
-' 1)))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def2;
end;
theorem ::
GOBRD13:26
Th19: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
right_cell (f,k,G))
= (
cell (G,i,j))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def1;
end;
theorem ::
GOBRD13:27
Th20: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
left_cell (f,k,G))
= (
cell (G,i,j))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def2;
end;
theorem ::
GOBRD13:28
Th21: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
right_cell (f,k,G))
= (
cell (G,(i
-' 1),j))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def1;
end;
theorem ::
GOBRD13:29
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G implies ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G)))
= (
LSeg (f,k))
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f) and
A3: f
is_sequence_on G;
(k
+ 1)
>= 1 by
NAT_1: 11;
then
A4: (k
+ 1)
in (
dom f) by
A2,
FINSEQ_3: 25;
then
consider i2,j2 be
Nat such that
A5:
[i2, j2]
in (
Indices G) and
A6: (f
/. (k
+ 1))
= (G
* (i2,j2)) by
A3,
GOBOARD1:def 9;
A7: 1
<= j2 by
A5,
MATRIX_0: 32;
A8: i2
<= (
len G) by
A5,
MATRIX_0: 32;
A9: 1
<= i2 by
A5,
MATRIX_0: 32;
A10: j2
<= (
width G) by
A5,
MATRIX_0: 32;
k
<= (k
+ 1) by
NAT_1: 11;
then k
<= (
len f) by
A2,
XXREAL_0: 2;
then
A11: k
in (
dom f) by
A1,
FINSEQ_3: 25;
then
consider i1,j1 be
Nat such that
A12:
[i1, j1]
in (
Indices G) and
A13: (f
/. k)
= (G
* (i1,j1)) by
A3,
GOBOARD1:def 9;
A14: (
0
+ 1)
<= j1 by
A12,
MATRIX_0: 32;
then j1
>
0 ;
then
consider j be
Nat such that
A15: (j
+ 1)
= j1 by
NAT_1: 6;
A16: (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A3,
A11,
A12,
A13,
A4,
A5,
A6,
GOBOARD1:def 9;
A17:
now
per cases by
A16,
SEQM_3: 42;
case that
A18:
|.(i1
- i2).|
= 1 and
A19: j1
= j2;
(i1
- i2)
= 1 or (
- (i1
- i2))
= 1 by
A18,
ABSVALUE:def 1;
hence i1
= (i2
+ 1) or (i1
+ 1)
= i2;
thus j1
= j2 by
A19;
end;
case that
A20: i1
= i2 and
A21:
|.(j1
- j2).|
= 1;
(j1
- j2)
= 1 or (
- (j1
- j2))
= 1 by
A21,
ABSVALUE:def 1;
hence j1
= (j2
+ 1) or (j1
+ 1)
= j2;
thus i1
= i2 by
A20;
end;
end;
A22: (j1
-' 1)
= j by
A15,
NAT_D: 34;
A23: j1
<= (
width G) by
A12,
MATRIX_0: 32;
then
A24: j
< (
width G) by
A15,
NAT_1: 13;
A25: (
0
+ 1)
<= i1 by
A12,
MATRIX_0: 32;
then i1
>
0 ;
then
consider i be
Nat such that
A26: (i
+ 1)
= i1 by
NAT_1: 6;
A27: i1
<= (
len G) by
A12,
MATRIX_0: 32;
then
A28: i
< (
len G) by
A26,
NAT_1: 13;
A29: (i1
-' 1)
= i by
A26,
NAT_D: 34;
reconsider i, j as
Nat;
per cases by
A17;
suppose
A30: i1
= i2 & (j1
+ 1)
= j2;
then
A31: (
right_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
Th15;
j1
< (
width G) & (
left_cell (f,k,G))
= (
cell (G,i,j1)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A10,
A29,
A30,
Th14,
NAT_1: 13;
hence ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G)))
= (
LSeg ((G
* (i1,j1)),(G
* (i1,(j1
+ 1))))) by
A14,
A26,
A28,
A31,
GOBOARD5: 25
.= (
LSeg (f,k)) by
A1,
A2,
A13,
A6,
A30,
TOPREAL1:def 3;
end;
suppose
A32: (i1
+ 1)
= i2 & j1
= j2;
then
A33: (
right_cell (f,k,G))
= (
cell (G,i1,j)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A22,
Th17;
i1
< (
len G) & (
left_cell (f,k,G))
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A8,
A32,
Th16,
NAT_1: 13;
hence ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G)))
= (
LSeg ((G
* (i1,j1)),(G
* ((i1
+ 1),j1)))) by
A25,
A15,
A24,
A33,
GOBOARD5: 26
.= (
LSeg (f,k)) by
A1,
A2,
A13,
A6,
A32,
TOPREAL1:def 3;
end;
suppose
A34: i1
= (i2
+ 1) & j1
= j2;
then
A35: (
right_cell (f,k,G))
= (
cell (G,i2,j1)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
Th19;
i2
< (
len G) & (
left_cell (f,k,G))
= (
cell (G,i2,j)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A27,
A22,
A34,
Th18,
NAT_1: 13;
hence ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G)))
= (
LSeg ((G
* ((i2
+ 1),j1)),(G
* (i2,j1)))) by
A9,
A15,
A24,
A35,
GOBOARD5: 26
.= (
LSeg (f,k)) by
A1,
A2,
A13,
A6,
A34,
TOPREAL1:def 3;
end;
suppose
A36: i1
= i2 & j1
= (j2
+ 1);
then
A37: (
right_cell (f,k,G))
= (
cell (G,i,j2)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A29,
Th21;
j2
< (
width G) & (
left_cell (f,k,G))
= (
cell (G,i1,j2)) by
A1,
A2,
A3,
A12,
A13,
A5,
A6,
A23,
A36,
Th20,
NAT_1: 13;
hence ((
left_cell (f,k,G))
/\ (
right_cell (f,k,G)))
= (
LSeg ((G
* (i1,(j2
+ 1))),(G
* (i1,j2)))) by
A7,
A26,
A28,
A37,
GOBOARD5: 25
.= (
LSeg (f,k)) by
A1,
A2,
A13,
A6,
A36,
TOPREAL1:def 3;
end;
end;
theorem ::
GOBRD13:30
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G implies (
right_cell (f,k,G)) is
closed
proof
assume
A1: 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G;
then
consider i1,j1,i2,j2 be
Nat such that
A2:
[i1, j1]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f
/. (k
+ 1))
= (G
* (i2,j2)) & (i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1)) by
JORDAN8: 3;
i1
= i2 & (j1
+ 1)
= j2 & (
right_cell (f,k,G))
= (
cell (G,i1,j1)) or (i1
+ 1)
= i2 & j1
= j2 & (
right_cell (f,k,G))
= (
cell (G,i1,(j1
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & (
right_cell (f,k,G))
= (
cell (G,i2,j2)) or i1
= i2 & j1
= (j2
+ 1) & (
right_cell (f,k,G))
= (
cell (G,(i1
-' 1),j2)) by
A1,
A2,
Def1;
hence thesis by
GOBRD11: 33;
end;
theorem ::
GOBRD13:31
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G & (k
+ 1)
<= n implies (
left_cell (f,k,G))
= (
left_cell ((f
| n),k,G)) & (
right_cell (f,k,G))
= (
right_cell ((f
| n),k,G))
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f) and
A3: f
is_sequence_on G and
A4: (k
+ 1)
<= n;
per cases ;
suppose (
len f)
<= n;
hence thesis by
FINSEQ_1: 58;
end;
suppose n
< (
len f);
then
A5: (
len (f
| n))
= n by
FINSEQ_1: 59;
then k
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 134;
then
A6: ((f
| n)
/. k)
= (f
/. k) by
FINSEQ_4: 70;
(k
+ 1)
in (
dom (f
| n)) by
A1,
A4,
A5,
SEQ_4: 134;
then
A7: ((f
| n)
/. (k
+ 1))
= (f
/. (k
+ 1)) by
FINSEQ_4: 70;
set lf = (
left_cell (f,k,G)), lfn = (
left_cell ((f
| n),k,G)), rf = (
right_cell (f,k,G)), rfn = (
right_cell ((f
| n),k,G));
A8: (f
| n)
is_sequence_on G by
A3,
GOBOARD1: 22;
consider i1,j1,i2,j2 be
Nat such that
A9:
[i1, j1]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A10: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A2,
A3,
JORDAN8: 3;
A11: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A12: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A10;
suppose
A13: i1
= i2 & (j1
+ 1)
= j2;
hence lf
= (
cell (G,(i1
-' 1),j1)) by
A1,
A2,
A3,
A9,
A11,
Def2
.= lfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A13,
Def2;
thus rf
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A9,
A11,
A13,
Def1
.= rfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A13,
Def1;
end;
suppose
A14: (i1
+ 1)
= i2 & j1
= j2;
hence lf
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A9,
A12,
Def2
.= lfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A14,
Def2;
thus rf
= (
cell (G,i1,(j1
-' 1))) by
A1,
A2,
A3,
A9,
A12,
A14,
Def1
.= rfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A14,
Def1;
end;
suppose
A15: i1
= (i2
+ 1) & j1
= j2;
hence lf
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A3,
A9,
A12,
Def2
.= lfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A15,
Def2;
thus rf
= (
cell (G,i2,j2)) by
A1,
A2,
A3,
A9,
A12,
A15,
Def1
.= rfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A15,
Def1;
end;
suppose
A16: i1
= i2 & j1
= (j2
+ 1);
hence lf
= (
cell (G,i1,j2)) by
A1,
A2,
A3,
A9,
A11,
Def2
.= lfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A16,
Def2;
thus rf
= (
cell (G,(i1
-' 1),j2)) by
A1,
A2,
A3,
A9,
A11,
A16,
Def1
.= rfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A16,
Def1;
end;
end;
hence thesis;
end;
end;
theorem ::
GOBRD13:32
1
<= k & (k
+ 1)
<= (
len (f
/^ n)) & n
<= (
len f) & f
is_sequence_on G implies (
left_cell (f,(k
+ n),G))
= (
left_cell ((f
/^ n),k,G)) & (
right_cell (f,(k
+ n),G))
= (
right_cell ((f
/^ n),k,G))
proof
set g = (f
/^ n);
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len g) and
A3: n
<= (
len f) and
A4: f
is_sequence_on G;
A5: (
len g)
= ((
len f)
- n) & ((k
+ 1)
+ n)
<= ((
len g)
+ n) by
A2,
A3,
RFINSEQ:def 1,
XREAL_1: 6;
k
in (
dom g) by
A1,
A2,
SEQ_4: 134;
then
A6: (g
/. k)
= (f
/. (k
+ n)) by
FINSEQ_5: 27;
set lf = (
left_cell (f,(k
+ n),G)), lfn = (
left_cell (g,k,G)), rf = (
right_cell (f,(k
+ n),G)), rfn = (
right_cell (g,k,G));
A7: ((k
+ 1)
+ n)
= ((k
+ n)
+ 1) & 1
<= (k
+ n) by
A1,
NAT_1: 12;
(k
+ 1)
in (
dom g) by
A1,
A2,
SEQ_4: 134;
then
A8: (g
/. (k
+ 1))
= (f
/. ((k
+ 1)
+ n)) by
FINSEQ_5: 27;
A9: g
is_sequence_on G by
A4,
JORDAN8: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A10:
[i1, j1]
in (
Indices G) & (g
/. k)
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (g
/. (k
+ 1))
= (G
* (i2,j2)) and
A11: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A2,
JORDAN8: 3;
A12: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A13: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A11;
suppose
A14: i1
= i2 & (j1
+ 1)
= j2;
hence lf
= (
cell (G,(i1
-' 1),j1)) by
A4,
A10,
A12,
A6,
A8,
A5,
A7,
Def2
.= lfn by
A1,
A2,
A9,
A10,
A12,
A14,
Def2;
thus rf
= (
cell (G,i1,j1)) by
A4,
A10,
A12,
A6,
A8,
A5,
A7,
A14,
Def1
.= rfn by
A1,
A2,
A9,
A10,
A12,
A14,
Def1;
end;
suppose
A15: (i1
+ 1)
= i2 & j1
= j2;
hence lf
= (
cell (G,i1,j1)) by
A4,
A10,
A13,
A6,
A8,
A5,
A7,
Def2
.= lfn by
A1,
A2,
A9,
A10,
A13,
A15,
Def2;
thus rf
= (
cell (G,i1,(j1
-' 1))) by
A4,
A10,
A13,
A6,
A8,
A5,
A7,
A15,
Def1
.= rfn by
A1,
A2,
A9,
A10,
A13,
A15,
Def1;
end;
suppose
A16: i1
= (i2
+ 1) & j1
= j2;
hence lf
= (
cell (G,i2,(j2
-' 1))) by
A4,
A10,
A13,
A6,
A8,
A5,
A7,
Def2
.= lfn by
A1,
A2,
A9,
A10,
A13,
A16,
Def2;
thus rf
= (
cell (G,i2,j2)) by
A4,
A10,
A13,
A6,
A8,
A5,
A7,
A16,
Def1
.= rfn by
A1,
A2,
A9,
A10,
A13,
A16,
Def1;
end;
suppose
A17: i1
= i2 & j1
= (j2
+ 1);
hence lf
= (
cell (G,i1,j2)) by
A4,
A10,
A12,
A6,
A8,
A5,
A7,
Def2
.= lfn by
A1,
A2,
A9,
A10,
A12,
A17,
Def2;
thus rf
= (
cell (G,(i1
-' 1),j2)) by
A4,
A10,
A12,
A6,
A8,
A5,
A7,
A17,
Def1
.= rfn by
A1,
A2,
A9,
A10,
A12,
A17,
Def1;
end;
end;
hence thesis;
end;
theorem ::
GOBRD13:33
for G be
Go-board, f be
standard
special_circular_sequence st 1
<= n & (n
+ 1)
<= (
len f) & f
is_sequence_on G holds (
left_cell (f,n,G))
c= (
left_cell (f,n)) & (
right_cell (f,n,G))
c= (
right_cell (f,n))
proof
let G be
Go-board, f be
standard
special_circular_sequence such that
A1: 1
<= n & (n
+ 1)
<= (
len f) and
A2: f
is_sequence_on G;
consider i1, j1, i2, j2 such that
A3:
[i1, j1]
in (
Indices G) and
A4: (f
/. n)
= (G
* (i1,j1)) and
A5:
[i2, j2]
in (
Indices G) and
A6: (f
/. (n
+ 1))
= (G
* (i2,j2)) and
A7: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A2,
JORDAN8: 3;
A8: 1
<= j1 by
A3,
MATRIX_0: 32;
A9: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A10: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
A11: j2
<= (
width G) by
A5,
MATRIX_0: 32;
A12: j1
<= (
width G) by
A3,
MATRIX_0: 32;
A13: i2
<= (
len G) by
A5,
MATRIX_0: 32;
A14: 1
<= i2 by
A5,
MATRIX_0: 32;
then
A15: ((G
* (i2,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A8,
A12,
A13,
GOBOARD5: 1;
A16: 1
<= j2 by
A5,
MATRIX_0: 32;
then
A17: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A14,
A13,
A11,
GOBOARD5: 2;
A18: i1
<= (
len G) by
A3,
MATRIX_0: 32;
set F = (
GoB f);
A19: (
Values F)
c= (
Values G) by
A2,
Th13;
f
is_sequence_on F by
GOBOARD5:def 5;
then
consider m, k, i, j such that
A20:
[m, k]
in (
Indices F) and
A21: (f
/. n)
= (F
* (m,k)) and
A22:
[i, j]
in (
Indices F) and
A23: (f
/. (n
+ 1))
= (F
* (i,j)) and m
= i & (k
+ 1)
= j or (m
+ 1)
= i & k
= j or m
= (i
+ 1) & k
= j or m
= i & k
= (j
+ 1) by
A1,
JORDAN8: 3;
A24: 1
<= m by
A20,
MATRIX_0: 32;
A25: 1
<= i1 by
A3,
MATRIX_0: 32;
then
A26: ((G
* (i1,j1))
`1 )
= ((G
* (i1,1))
`1 ) by
A18,
A8,
A12,
GOBOARD5: 2;
A27: ((G
* (i1,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A25,
A18,
A8,
A12,
GOBOARD5: 1;
A28: m
<= (
len F) by
A20,
MATRIX_0: 32;
A29: (j
+ 1)
> j by
NAT_1: 13;
A30: (k
+ 1)
> k by
NAT_1: 13;
A31: (k
+ 1)
>= 1 by
NAT_1: 12;
A32: (j
+ 1)
>= 1 by
NAT_1: 12;
A33: j
<= (
width F) by
A22,
MATRIX_0: 32;
A34: (i
+ 1)
> i by
NAT_1: 13;
A35: (m
+ 1)
> m by
NAT_1: 13;
A36: i
<= (
len F) by
A22,
MATRIX_0: 32;
A37: (i
+ 1)
>= 1 by
NAT_1: 12;
A38: (m
+ 1)
>= 1 by
NAT_1: 12;
A39: k
<= (
width F) by
A20,
MATRIX_0: 32;
A40: 1
<= j by
A22,
MATRIX_0: 32;
then
A41: ((F
* (m,j))
`2 )
= ((F
* (1,j))
`2 ) by
A24,
A28,
A33,
GOBOARD5: 1;
A42: 1
<= i by
A22,
MATRIX_0: 32;
then
A43: ((F
* (i,j))
`1 )
= ((F
* (i,1))
`1 ) by
A36,
A40,
A33,
GOBOARD5: 2;
A44: ((F
* (i,j))
`2 )
= ((F
* (1,j))
`2 ) by
A42,
A36,
A40,
A33,
GOBOARD5: 1;
A45: 1
<= k by
A20,
MATRIX_0: 32;
then
A46: ((F
* (i,k))
`1 )
= ((F
* (i,1))
`1 ) by
A39,
A42,
A36,
GOBOARD5: 2;
per cases by
A7;
suppose
A47: i1
= i2 & (j1
+ 1)
= j2;
A48:
now
A49: ((G
* (i2,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A14,
A13,
A16,
A11,
GOBOARD5: 1;
assume
A50: (k
+ 1)
< j;
then
A51: (k
+ 1)
< (
width F) by
A33,
XXREAL_0: 2;
then
consider l, i9 such that
A52: l
in (
dom f) and
A53:
[i9, (k
+ 1)]
in (
Indices F) and
A54: (f
/. l)
= (F
* (i9,(k
+ 1))) by
JORDAN5D: 8,
NAT_1: 12;
A55: ((F
* (m,(k
+ 1)))
`2 )
= ((F
* (1,(k
+ 1)))
`2 ) by
A24,
A28,
A31,
A51,
GOBOARD5: 1;
1
<= i9 & i9
<= (
len F) by
A53,
MATRIX_0: 32;
then
A56: ((F
* (i9,(k
+ 1)))
`2 )
= ((F
* (1,(k
+ 1)))
`2 ) by
A31,
A51,
GOBOARD5: 1;
consider i19, j19 such that
A57:
[i19, j19]
in (
Indices G) and
A58: (f
/. l)
= (G
* (i19,j19)) by
A2,
A52,
GOBOARD1:def 9;
A59: 1
<= j19 by
A57,
MATRIX_0: 32;
A60: 1
<= i19 & i19
<= (
len G) by
A57,
MATRIX_0: 32;
then
A61: ((G
* (i19,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A8,
A12,
GOBOARD5: 1;
A62:
now
assume j1
>= j19;
then ((G
* (i19,j19))
`2 )
<= ((G
* (i1,j1))
`2 ) by
A12,
A27,
A60,
A59,
A61,
SPRECT_3: 12;
hence contradiction by
A21,
A24,
A28,
A45,
A4,
A30,
A51,
A54,
A56,
A55,
A58,
GOBOARD5: 4;
end;
A63: j19
<= (
width G) by
A57,
MATRIX_0: 32;
A64: ((G
* (i19,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A16,
A11,
A60,
GOBOARD5: 1;
now
assume j2
<= j19;
then ((G
* (i2,j2))
`2 )
<= ((G
* (i19,j19))
`2 ) by
A16,
A60,
A63,
A49,
A64,
SPRECT_3: 12;
hence contradiction by
A23,
A24,
A28,
A33,
A44,
A41,
A6,
A31,
A50,
A54,
A56,
A55,
A58,
GOBOARD5: 4;
end;
hence contradiction by
A47,
A62,
NAT_1: 13;
end;
now
assume j
<= k;
then
A65: ((F
* (i,j))
`2 )
<= ((F
* (m,k))
`2 ) by
A24,
A28,
A39,
A40,
A44,
A41,
SPRECT_3: 12;
j1
< j2 by
A47,
NAT_1: 13;
hence contradiction by
A21,
A23,
A4,
A6,
A8,
A14,
A13,
A11,
A27,
A15,
A65,
GOBOARD5: 4;
end;
then (k
+ 1)
<= j by
NAT_1: 13;
then (k
+ 1)
= j by
A48,
XXREAL_0: 1;
then
A66: (
right_cell (f,n))
= (
cell (F,m,k)) & (
left_cell (f,n))
= (
cell (F,(m
-' 1),k)) by
A1,
A20,
A21,
A22,
A23,
A30,
A29,
GOBOARD5:def 6,
GOBOARD5:def 7;
(
right_cell (f,n,G))
= (
cell (G,i1,j1)) & (
left_cell (f,n,G))
= (
cell (G,(i1
-' 1),j1)) by
A1,
A2,
A3,
A4,
A5,
A6,
A9,
A47,
Def1,
Def2;
hence thesis by
A19,
A20,
A21,
A3,
A4,
A66,
Th10,
Th11;
end;
suppose
A67: (i1
+ 1)
= i2 & j1
= j2;
A68:
now
assume
A69: (m
+ 1)
< i;
then
A70: (m
+ 1)
< (
len F) by
A36,
XXREAL_0: 2;
then
consider l, j9 such that
A71: l
in (
dom f) and
A72:
[(m
+ 1), j9]
in (
Indices F) and
A73: (f
/. l)
= (F
* ((m
+ 1),j9)) by
JORDAN5D: 7,
NAT_1: 12;
A74: ((F
* ((m
+ 1),k))
`1 )
= ((F
* ((m
+ 1),1))
`1 ) by
A45,
A39,
A38,
A70,
GOBOARD5: 2;
1
<= j9 & j9
<= (
width F) by
A72,
MATRIX_0: 32;
then
A75: ((F
* ((m
+ 1),j9))
`1 )
= ((F
* ((m
+ 1),1))
`1 ) by
A38,
A70,
GOBOARD5: 2;
A76: 1
<= (m
+ 1) & ((F
* ((m
+ 1),j))
`1 )
= ((F
* ((m
+ 1),1))
`1 ) by
A40,
A33,
A38,
A70,
GOBOARD5: 2;
A77: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A14,
A13,
A16,
A11,
GOBOARD5: 2;
consider i19, j19 such that
A78:
[i19, j19]
in (
Indices G) and
A79: (f
/. l)
= (G
* (i19,j19)) by
A2,
A71,
GOBOARD1:def 9;
A80: i19
<= (
len G) by
A78,
MATRIX_0: 32;
A81: 1
<= j19 & j19
<= (
width G) by
A78,
MATRIX_0: 32;
A82: 1
<= i19 by
A78,
MATRIX_0: 32;
then
A83: ((G
* (i19,j19))
`1 )
= ((G
* (i19,1))
`1 ) by
A80,
A81,
GOBOARD5: 2;
A84: ((G
* (i19,j1))
`1 )
= ((G
* (i19,1))
`1 ) by
A8,
A12,
A82,
A80,
GOBOARD5: 2;
A85:
now
assume i1
>= i19;
then ((G
* (i19,j19))
`1 )
<= ((G
* (i1,j1))
`1 ) by
A18,
A8,
A12,
A82,
A83,
A84,
SPRECT_3: 13;
hence contradiction by
A21,
A24,
A45,
A39,
A4,
A35,
A70,
A73,
A75,
A74,
A79,
GOBOARD5: 3;
end;
A86: ((G
* (i2,j19))
`1 )
= ((G
* (i2,1))
`1 ) by
A14,
A13,
A81,
GOBOARD5: 2;
now
assume i2
<= i19;
then ((G
* (i2,j2))
`1 )
<= ((G
* (i19,j19))
`1 ) by
A14,
A80,
A81,
A77,
A86,
SPRECT_3: 13;
hence contradiction by
A23,
A36,
A40,
A33,
A6,
A69,
A73,
A75,
A76,
A79,
GOBOARD5: 3;
end;
hence contradiction by
A67,
A85,
NAT_1: 13;
end;
now
assume i
<= m;
then
A87: ((F
* (i,j))
`1 )
<= ((F
* (m,k))
`1 ) by
A28,
A45,
A39,
A42,
A43,
A46,
SPRECT_3: 13;
i1
< i2 by
A67,
NAT_1: 13;
hence contradiction by
A21,
A23,
A4,
A6,
A25,
A8,
A12,
A13,
A67,
A87,
GOBOARD5: 3;
end;
then (m
+ 1)
<= i by
NAT_1: 13;
then (m
+ 1)
= i by
A68,
XXREAL_0: 1;
then
A88: (
right_cell (f,n))
= (
cell (F,m,(k
-' 1))) & (
left_cell (f,n))
= (
cell (F,m,k)) by
A1,
A20,
A21,
A22,
A23,
A35,
A34,
GOBOARD5:def 6,
GOBOARD5:def 7;
(
right_cell (f,n,G))
= (
cell (G,i1,(j1
-' 1))) & (
left_cell (f,n,G))
= (
cell (G,i1,j1)) by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
A67,
Def1,
Def2;
hence thesis by
A19,
A20,
A21,
A3,
A4,
A88,
Th10,
Th12;
end;
suppose
A89: i1
= (i2
+ 1) & j1
= j2;
A90:
now
assume
A91: m
> (i
+ 1);
then
A92: (i
+ 1)
< (
len F) by
A28,
XXREAL_0: 2;
then
consider l, j9 such that
A93: l
in (
dom f) and
A94:
[(i
+ 1), j9]
in (
Indices F) and
A95: (f
/. l)
= (F
* ((i
+ 1),j9)) by
JORDAN5D: 7,
NAT_1: 12;
A96: 1
<= (i
+ 1) & ((F
* ((i
+ 1),k))
`1 )
= ((F
* ((i
+ 1),1))
`1 ) by
A45,
A39,
A37,
A92,
GOBOARD5: 2;
1
<= j9 & j9
<= (
width F) by
A94,
MATRIX_0: 32;
then
A97: ((F
* ((i
+ 1),j9))
`1 )
= ((F
* ((i
+ 1),1))
`1 ) by
A37,
A92,
GOBOARD5: 2;
A98: ((F
* ((i
+ 1),j))
`1 )
= ((F
* ((i
+ 1),1))
`1 ) by
A40,
A33,
A37,
A92,
GOBOARD5: 2;
A99: ((G
* (i2,j2))
`1 )
= ((G
* (i2,1))
`1 ) by
A14,
A13,
A16,
A11,
GOBOARD5: 2;
consider i19, j19 such that
A100:
[i19, j19]
in (
Indices G) and
A101: (f
/. l)
= (G
* (i19,j19)) by
A2,
A93,
GOBOARD1:def 9;
A102: 1
<= i19 by
A100,
MATRIX_0: 32;
A103: 1
<= j19 & j19
<= (
width G) by
A100,
MATRIX_0: 32;
A104: i19
<= (
len G) by
A100,
MATRIX_0: 32;
then
A105: ((G
* (i19,j19))
`1 )
= ((G
* (i19,1))
`1 ) by
A102,
A103,
GOBOARD5: 2;
A106: ((G
* (i19,j1))
`1 )
= ((G
* (i19,1))
`1 ) by
A8,
A12,
A102,
A104,
GOBOARD5: 2;
A107:
now
assume i1
<= i19;
then ((G
* (i19,j19))
`1 )
>= ((G
* (i1,j1))
`1 ) by
A25,
A8,
A12,
A104,
A105,
A106,
SPRECT_3: 13;
hence contradiction by
A21,
A28,
A45,
A39,
A4,
A91,
A95,
A97,
A96,
A101,
GOBOARD5: 3;
end;
A108: ((G
* (i2,j19))
`1 )
= ((G
* (i2,1))
`1 ) by
A14,
A13,
A103,
GOBOARD5: 2;
now
assume i2
>= i19;
then ((G
* (i2,j2))
`1 )
>= ((G
* (i19,j19))
`1 ) by
A13,
A102,
A103,
A99,
A108,
SPRECT_3: 13;
hence contradiction by
A23,
A42,
A40,
A33,
A6,
A34,
A92,
A95,
A97,
A98,
A101,
GOBOARD5: 3;
end;
hence contradiction by
A89,
A107,
NAT_1: 13;
end;
now
assume m
<= i;
then
A109: ((F
* (i,j))
`1 )
>= ((F
* (m,k))
`1 ) by
A24,
A45,
A39,
A36,
A43,
A46,
SPRECT_3: 13;
i1
> i2 by
A89,
NAT_1: 13;
hence contradiction by
A21,
A23,
A4,
A6,
A18,
A8,
A12,
A14,
A89,
A109,
GOBOARD5: 3;
end;
then (i
+ 1)
<= m by
NAT_1: 13;
then (i
+ 1)
= m by
A90,
XXREAL_0: 1;
then
A110: (
right_cell (f,n))
= (
cell (F,i,j)) & (
left_cell (f,n))
= (
cell (F,i,(j
-' 1))) by
A1,
A20,
A21,
A22,
A23,
A35,
A34,
GOBOARD5:def 6,
GOBOARD5:def 7;
(
right_cell (f,n,G))
= (
cell (G,i2,j2)) & (
left_cell (f,n,G))
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A3,
A4,
A5,
A6,
A10,
A89,
Def1,
Def2;
hence thesis by
A19,
A22,
A23,
A5,
A6,
A110,
Th10,
Th12;
end;
suppose
A111: i1
= i2 & j1
= (j2
+ 1);
A112:
now
A113: ((G
* (i2,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A14,
A13,
A16,
A11,
GOBOARD5: 1;
assume
A114: (j
+ 1)
< k;
then
A115: (j
+ 1)
< (
width F) by
A39,
XXREAL_0: 2;
then
consider l, i9 such that
A116: l
in (
dom f) and
A117:
[i9, (j
+ 1)]
in (
Indices F) and
A118: (f
/. l)
= (F
* (i9,(j
+ 1))) by
JORDAN5D: 8,
NAT_1: 12;
A119: ((F
* (m,(j
+ 1)))
`2 )
= ((F
* (1,(j
+ 1)))
`2 ) by
A24,
A28,
A32,
A115,
GOBOARD5: 1;
1
<= i9 & i9
<= (
len F) by
A117,
MATRIX_0: 32;
then
A120: ((F
* (i9,(j
+ 1)))
`2 )
= ((F
* (1,(j
+ 1)))
`2 ) by
A32,
A115,
GOBOARD5: 1;
consider i19, j19 such that
A121:
[i19, j19]
in (
Indices G) and
A122: (f
/. l)
= (G
* (i19,j19)) by
A2,
A116,
GOBOARD1:def 9;
A123: j19
<= (
width G) by
A121,
MATRIX_0: 32;
A124: 1
<= i19 & i19
<= (
len G) by
A121,
MATRIX_0: 32;
then
A125: ((G
* (i19,j1))
`2 )
= ((G
* (1,j1))
`2 ) by
A8,
A12,
GOBOARD5: 1;
A126:
now
assume j1
<= j19;
then ((G
* (i19,j19))
`2 )
>= ((G
* (i1,j1))
`2 ) by
A8,
A27,
A124,
A123,
A125,
SPRECT_3: 12;
hence contradiction by
A21,
A24,
A28,
A39,
A4,
A32,
A114,
A118,
A120,
A119,
A122,
GOBOARD5: 4;
end;
A127: ((F
* (i,(j
+ 1)))
`2 )
= ((F
* (1,(j
+ 1)))
`2 ) by
A42,
A36,
A32,
A115,
GOBOARD5: 1;
A128: 1
<= j19 by
A121,
MATRIX_0: 32;
A129: ((G
* (i19,j2))
`2 )
= ((G
* (1,j2))
`2 ) by
A16,
A11,
A124,
GOBOARD5: 1;
now
assume j2
>= j19;
then ((G
* (i2,j2))
`2 )
>= ((G
* (i19,j19))
`2 ) by
A11,
A124,
A128,
A113,
A129,
SPRECT_3: 12;
hence contradiction by
A23,
A42,
A36,
A40,
A6,
A29,
A115,
A118,
A120,
A127,
A122,
GOBOARD5: 4;
end;
hence contradiction by
A111,
A126,
NAT_1: 13;
end;
now
assume j
>= k;
then
A130: ((F
* (i,j))
`2 )
>= ((F
* (m,k))
`2 ) by
A24,
A28,
A45,
A33,
A44,
A41,
SPRECT_3: 12;
j1
> j2 by
A111,
NAT_1: 13;
hence contradiction by
A21,
A23,
A4,
A6,
A12,
A14,
A13,
A16,
A27,
A15,
A130,
GOBOARD5: 4;
end;
then (j
+ 1)
<= k by
NAT_1: 13;
then (j
+ 1)
= k by
A112,
XXREAL_0: 1;
then
A131: (
right_cell (f,n))
= (
cell (F,(m
-' 1),j)) & (
left_cell (f,n))
= (
cell (F,m,j)) by
A1,
A20,
A21,
A22,
A23,
A30,
A29,
GOBOARD5:def 6,
GOBOARD5:def 7;
A132:
now
assume
A133: m
<> i;
per cases by
A133,
XXREAL_0: 1;
suppose m
< i;
hence contradiction by
A21,
A23,
A24,
A45,
A39,
A36,
A43,
A46,
A4,
A6,
A26,
A17,
A111,
GOBOARD5: 3;
end;
suppose m
> i;
hence contradiction by
A21,
A23,
A28,
A45,
A39,
A42,
A43,
A46,
A4,
A6,
A26,
A17,
A111,
GOBOARD5: 3;
end;
end;
(
right_cell (f,n,G))
= (
cell (G,(i1
-' 1),j2)) & (
left_cell (f,n,G))
= (
cell (G,i1,j2)) by
A1,
A2,
A3,
A4,
A5,
A6,
A9,
A111,
Def1,
Def2;
hence thesis by
A19,
A22,
A23,
A5,
A6,
A111,
A132,
A131,
Th10,
Th11;
end;
end;
definition
let f, G, k;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G;
then
consider i1,j1,i2,j2 be
Nat such that
A1:
[i1, j1]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A2: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
JORDAN8: 3;
::
GOBRD13:def4
func
front_right_cell (f,k,G) ->
Subset of (
TOP-REAL 2) means
:
Def3: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & it
= (
cell (G,i2,j2)) or (i1
+ 1)
= i2 & j1
= j2 & it
= (
cell (G,i2,(j2
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & it
= (
cell (G,(i2
-' 1),j2)) or i1
= i2 & j1
= (j2
+ 1) & it
= (
cell (G,(i2
-' 1),(j2
-' 1)));
existence
proof
per cases by
A2;
suppose
A3: i1
= i2 & (j1
+ 1)
= j2;
take (
cell (G,i2,j2));
let i19,j19,i29,j29 be
Nat;
assume
A4:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A3,
A4,
GOBOARD1: 5;
end;
suppose
A5: (i1
+ 1)
= i2 & j1
= j2;
take (
cell (G,i2,(j2
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume
A6:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A5,
A6,
GOBOARD1: 5;
end;
suppose
A7: i1
= (i2
+ 1) & j1
= j2;
take (
cell (G,(i2
-' 1),j2));
let i19,j19,i29,j29 be
Nat;
assume
A8:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A7,
A8,
GOBOARD1: 5;
end;
suppose
A9: i1
= i2 & j1
= (j2
+ 1);
take (
cell (G,(i2
-' 1),(j2
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume
A10:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A9,
A10,
GOBOARD1: 5;
end;
end;
uniqueness
proof
let P1,P2 be
Subset of (
TOP-REAL 2) such that
A11: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P1
= (
cell (G,i2,j2)) or (i1
+ 1)
= i2 & j1
= j2 & P1
= (
cell (G,i2,(j2
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & P1
= (
cell (G,(i2
-' 1),j2)) or i1
= i2 & j1
= (j2
+ 1) & P1
= (
cell (G,(i2
-' 1),(j2
-' 1))) and
A12: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P2
= (
cell (G,i2,j2)) or (i1
+ 1)
= i2 & j1
= j2 & P2
= (
cell (G,i2,(j2
-' 1))) or i1
= (i2
+ 1) & j1
= j2 & P2
= (
cell (G,(i2
-' 1),j2)) or i1
= i2 & j1
= (j2
+ 1) & P2
= (
cell (G,(i2
-' 1),(j2
-' 1)));
per cases by
A2;
suppose
A13: i1
= i2 & (j1
+ 1)
= j2;
A14: j2
<= (j2
+ 1) by
NAT_1: 11;
A15: j1
< j2 by
A13,
XREAL_1: 29;
hence P1
= (
cell (G,i2,j2)) by
A1,
A11,
A14
.= P2 by
A1,
A12,
A15,
A14;
end;
suppose
A16: (i1
+ 1)
= i2 & j1
= j2;
A17: i2
<= (i2
+ 1) by
NAT_1: 11;
A18: i1
< i2 by
A16,
XREAL_1: 29;
hence P1
= (
cell (G,i2,(j2
-' 1))) by
A1,
A11,
A17
.= P2 by
A1,
A12,
A18,
A17;
end;
suppose
A19: i1
= (i2
+ 1) & j1
= j2;
A20: i1
<= (i1
+ 1) by
NAT_1: 11;
A21: i2
< i1 by
A19,
XREAL_1: 29;
hence P1
= (
cell (G,(i2
-' 1),j2)) by
A1,
A11,
A20
.= P2 by
A1,
A12,
A21,
A20;
end;
suppose
A22: i1
= i2 & j1
= (j2
+ 1);
A23: j1
<= (j1
+ 1) by
NAT_1: 11;
A24: j2
< j1 by
A22,
XREAL_1: 29;
hence P1
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A1,
A11,
A23
.= P2 by
A1,
A12,
A24,
A23;
end;
end;
::
GOBRD13:def5
func
front_left_cell (f,k,G) ->
Subset of (
TOP-REAL 2) means
:
Def4: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & it
= (
cell (G,(i2
-' 1),j2)) or (i1
+ 1)
= i2 & j1
= j2 & it
= (
cell (G,i2,j2)) or i1
= (i2
+ 1) & j1
= j2 & it
= (
cell (G,(i2
-' 1),(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & it
= (
cell (G,i2,(j2
-' 1)));
existence
proof
per cases by
A2;
suppose
A25: i1
= i2 & (j1
+ 1)
= j2;
take (
cell (G,(i2
-' 1),j2));
let i19,j19,i29,j29 be
Nat;
assume
A26:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A25,
A26,
GOBOARD1: 5;
end;
suppose
A27: (i1
+ 1)
= i2 & j1
= j2;
take (
cell (G,i2,j2));
let i19,j19,i29,j29 be
Nat;
assume
A28:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A27,
A28,
GOBOARD1: 5;
end;
suppose
A29: i1
= (i2
+ 1) & j1
= j2;
take (
cell (G,(i2
-' 1),(j2
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume
A30:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A29,
A30,
GOBOARD1: 5;
end;
suppose
A31: i1
= i2 & j1
= (j2
+ 1);
take (
cell (G,i2,(j2
-' 1)));
let i19,j19,i29,j29 be
Nat;
assume
A32:
[i19, j19]
in (
Indices G) &
[i29, j29]
in (
Indices G) & (f
/. k)
= (G
* (i19,j19)) & (f
/. (k
+ 1))
= (G
* (i29,j29));
then i2
= i29 & j1
= j19 by
A1,
GOBOARD1: 5;
hence thesis by
A1,
A31,
A32,
GOBOARD1: 5;
end;
end;
uniqueness
proof
let P1,P2 be
Subset of (
TOP-REAL 2) such that
A33: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P1
= (
cell (G,(i2
-' 1),j2)) or (i1
+ 1)
= i2 & j1
= j2 & P1
= (
cell (G,i2,j2)) or i1
= (i2
+ 1) & j1
= j2 & P1
= (
cell (G,(i2
-' 1),(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & P1
= (
cell (G,i2,(j2
-' 1))) and
A34: for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 & P2
= (
cell (G,(i2
-' 1),j2)) or (i1
+ 1)
= i2 & j1
= j2 & P2
= (
cell (G,i2,j2)) or i1
= (i2
+ 1) & j1
= j2 & P2
= (
cell (G,(i2
-' 1),(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) & P2
= (
cell (G,i2,(j2
-' 1)));
per cases by
A2;
suppose
A35: i1
= i2 & (j1
+ 1)
= j2;
A36: j2
<= (j2
+ 1) by
NAT_1: 11;
A37: j1
< j2 by
A35,
XREAL_1: 29;
hence P1
= (
cell (G,(i2
-' 1),j2)) by
A1,
A33,
A36
.= P2 by
A1,
A34,
A37,
A36;
end;
suppose
A38: (i1
+ 1)
= i2 & j1
= j2;
A39: i2
<= (i2
+ 1) by
NAT_1: 11;
A40: i1
< i2 by
A38,
XREAL_1: 29;
hence P1
= (
cell (G,i2,j2)) by
A1,
A33,
A39
.= P2 by
A1,
A34,
A40,
A39;
end;
suppose
A41: i1
= (i2
+ 1) & j1
= j2;
A42: i1
<= (i1
+ 1) by
NAT_1: 11;
A43: i2
< i1 by
A41,
XREAL_1: 29;
hence P1
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A1,
A33,
A42
.= P2 by
A1,
A34,
A43,
A42;
end;
suppose
A44: i1
= i2 & j1
= (j2
+ 1);
A45: j1
<= (j1
+ 1) by
NAT_1: 11;
A46: j2
< j1 by
A44,
XREAL_1: 29;
hence P1
= (
cell (G,i2,(j2
-' 1))) by
A1,
A33,
A45
.= P2 by
A1,
A34,
A46,
A45;
end;
end;
end
theorem ::
GOBRD13:34
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1))) implies (
front_left_cell (f,k,G))
= (
cell (G,(i
-' 1),(j
+ 1)))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1)));
hence thesis by
A1,
Def4;
end;
theorem ::
GOBRD13:35
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1))) implies (
front_right_cell (f,k,G))
= (
cell (G,i,(j
+ 1)))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[i, (j
+ 1)]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* (i,(j
+ 1)));
hence thesis by
A1,
Def3;
end;
theorem ::
GOBRD13:36
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j)) implies (
front_left_cell (f,k,G))
= (
cell (G,(i
+ 1),j))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j));
hence thesis by
A1,
Def4;
end;
theorem ::
GOBRD13:37
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j)) implies (
front_right_cell (f,k,G))
= (
cell (G,(i
+ 1),(j
-' 1)))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* (i,j)) & (f
/. (k
+ 1))
= (G
* ((i
+ 1),j));
hence thesis by
A1,
Def3;
end;
theorem ::
GOBRD13:38
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
front_left_cell (f,k,G))
= (
cell (G,(i
-' 1),(j
-' 1)))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def4;
end;
theorem ::
GOBRD13:39
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
front_right_cell (f,k,G))
= (
cell (G,(i
-' 1),j))
proof
A1: i
< (i
+ 1) & (i
+ 1)
<= ((i
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, j]
in (
Indices G) &
[(i
+ 1), j]
in (
Indices G) & (f
/. k)
= (G
* ((i
+ 1),j)) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def3;
end;
theorem ::
GOBRD13:40
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
front_left_cell (f,k,G))
= (
cell (G,i,(j
-' 1)))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def4;
end;
theorem ::
GOBRD13:41
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j)) implies (
front_right_cell (f,k,G))
= (
cell (G,(i
-' 1),(j
-' 1)))
proof
A1: j
< (j
+ 1) & (j
+ 1)
<= ((j
+ 1)
+ 1) by
XREAL_1: 29;
assume 1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G &
[i, (j
+ 1)]
in (
Indices G) &
[i, j]
in (
Indices G) & (f
/. k)
= (G
* (i,(j
+ 1))) & (f
/. (k
+ 1))
= (G
* (i,j));
hence thesis by
A1,
Def3;
end;
theorem ::
GOBRD13:42
1
<= k & (k
+ 1)
<= (
len f) & f
is_sequence_on G & (k
+ 1)
<= n implies (
front_left_cell (f,k,G))
= (
front_left_cell ((f
| n),k,G)) & (
front_right_cell (f,k,G))
= (
front_right_cell ((f
| n),k,G))
proof
assume that
A1: 1
<= k and
A2: (k
+ 1)
<= (
len f) and
A3: f
is_sequence_on G and
A4: (k
+ 1)
<= n;
per cases ;
suppose (
len f)
<= n;
hence thesis by
FINSEQ_1: 58;
end;
suppose n
< (
len f);
then
A5: (
len (f
| n))
= n by
FINSEQ_1: 59;
then k
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 134;
then
A6: ((f
| n)
/. k)
= (f
/. k) by
FINSEQ_4: 70;
(k
+ 1)
in (
dom (f
| n)) by
A1,
A4,
A5,
SEQ_4: 134;
then
A7: ((f
| n)
/. (k
+ 1))
= (f
/. (k
+ 1)) by
FINSEQ_4: 70;
set lf = (
front_left_cell (f,k,G)), lfn = (
front_left_cell ((f
| n),k,G)), rf = (
front_right_cell (f,k,G)), rfn = (
front_right_cell ((f
| n),k,G));
A8: (f
| n)
is_sequence_on G by
A3,
GOBOARD1: 22;
consider i1,j1,i2,j2 be
Nat such that
A9:
[i1, j1]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f
/. (k
+ 1))
= (G
* (i2,j2)) and
A10: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A1,
A2,
A3,
JORDAN8: 3;
A11: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A12: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A10;
suppose
A13: i1
= i2 & (j1
+ 1)
= j2;
hence lf
= (
cell (G,(i2
-' 1),j2)) by
A1,
A2,
A3,
A9,
A11,
Def4
.= lfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A13,
Def4;
thus rf
= (
cell (G,i2,j2)) by
A1,
A2,
A3,
A9,
A11,
A13,
Def3
.= rfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A13,
Def3;
end;
suppose
A14: (i1
+ 1)
= i2 & j1
= j2;
hence lf
= (
cell (G,i2,j2)) by
A1,
A2,
A3,
A9,
A12,
Def4
.= lfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A14,
Def4;
thus rf
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A3,
A9,
A12,
A14,
Def3
.= rfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A14,
Def3;
end;
suppose
A15: i1
= (i2
+ 1) & j1
= j2;
hence lf
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A1,
A2,
A3,
A9,
A12,
Def4
.= lfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A15,
Def4;
thus rf
= (
cell (G,(i2
-' 1),j2)) by
A1,
A2,
A3,
A9,
A12,
A15,
Def3
.= rfn by
A1,
A4,
A9,
A12,
A8,
A5,
A6,
A7,
A15,
Def3;
end;
suppose
A16: i1
= i2 & j1
= (j2
+ 1);
hence lf
= (
cell (G,i2,(j2
-' 1))) by
A1,
A2,
A3,
A9,
A11,
Def4
.= lfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A16,
Def4;
thus rf
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A1,
A2,
A3,
A9,
A11,
A16,
Def3
.= rfn by
A1,
A4,
A9,
A11,
A8,
A5,
A6,
A7,
A16,
Def3;
end;
end;
hence thesis;
end;
end;
definition
let D be
set;
let f be
FinSequence of D, G be
Matrix of D, k;
::
GOBRD13:def6
pred f
turns_right k,G means for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 &
[(i2
+ 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
+ 1),j2)) or (i1
+ 1)
= i2 & j1
= j2 &
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
-' 1))) or i1
= (i2
+ 1) & j1
= j2 &
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
+ 1))) or i1
= i2 & j1
= (j2
+ 1) &
[(i2
-' 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
-' 1),j2));
::
GOBRD13:def7
pred f
turns_left k,G means for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 &
[(i2
-' 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
-' 1),j2)) or (i1
+ 1)
= i2 & j1
= j2 &
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
+ 1))) or i1
= (i2
+ 1) & j1
= j2 &
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
-' 1))) or i1
= i2 & j1
= (j2
+ 1) &
[(i2
+ 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
+ 1),j2));
::
GOBRD13:def8
pred f
goes_straight k,G means for i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & (f
/. k)
= (G
* (i1,j1)) & (f
/. (k
+ 1))
= (G
* (i2,j2)) holds i1
= i2 & (j1
+ 1)
= j2 &
[i2, (j2
+ 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
+ 1))) or (i1
+ 1)
= i2 & j1
= j2 &
[(i2
+ 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
+ 1),j2)) or i1
= (i2
+ 1) & j1
= j2 &
[(i2
-' 1), j2]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* ((i2
-' 1),j2)) or i1
= i2 & j1
= (j2
+ 1) &
[i2, (j2
-' 1)]
in (
Indices G) & (f
/. (k
+ 2))
= (G
* (i2,(j2
-' 1)));
end
reserve D for
set,
f,f1,f2 for
FinSequence of D,
G for
Matrix of D;
theorem ::
GOBRD13:43
1
<= k & (k
+ 2)
<= n & (f
| n)
turns_right (k,G) implies f
turns_right (k,G)
proof
assume that
A1: 1
<= k & (k
+ 2)
<= n and
A2: (f
| n)
turns_right (k,G);
per cases ;
suppose (
len f)
<= n;
hence thesis by
A2,
FINSEQ_1: 58;
end;
suppose
A3: n
< (
len f);
let i19,j19,i29,j29 be
Nat;
A4: (
len (f
| n))
= n by
A3,
FINSEQ_1: 59;
then (k
+ 1)
in (
dom (f
| n)) by
A1,
SEQ_4: 135;
then
A5: ((f
| n)
/. (k
+ 1))
= (f
/. (k
+ 1)) by
FINSEQ_4: 70;
(k
+ 2)
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then
A6: ((f
| n)
/. (k
+ 2))
= (f
/. (k
+ 2)) by
FINSEQ_4: 70;
k
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then ((f
| n)
/. k)
= (f
/. k) by
FINSEQ_4: 70;
hence thesis by
A2,
A5,
A6;
end;
end;
theorem ::
GOBRD13:44
1
<= k & (k
+ 2)
<= n & (f
| n)
turns_left (k,G) implies f
turns_left (k,G)
proof
assume that
A1: 1
<= k & (k
+ 2)
<= n and
A2: (f
| n)
turns_left (k,G);
per cases ;
suppose (
len f)
<= n;
hence thesis by
A2,
FINSEQ_1: 58;
end;
suppose
A3: n
< (
len f);
let i19,j19,i29,j29 be
Nat;
A4: (
len (f
| n))
= n by
A3,
FINSEQ_1: 59;
then (k
+ 1)
in (
dom (f
| n)) by
A1,
SEQ_4: 135;
then
A5: ((f
| n)
/. (k
+ 1))
= (f
/. (k
+ 1)) by
FINSEQ_4: 70;
(k
+ 2)
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then
A6: ((f
| n)
/. (k
+ 2))
= (f
/. (k
+ 2)) by
FINSEQ_4: 70;
k
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then ((f
| n)
/. k)
= (f
/. k) by
FINSEQ_4: 70;
hence thesis by
A2,
A5,
A6;
end;
end;
theorem ::
GOBRD13:45
1
<= k & (k
+ 2)
<= n & (f
| n)
goes_straight (k,G) implies f
goes_straight (k,G)
proof
assume that
A1: 1
<= k & (k
+ 2)
<= n and
A2: (f
| n)
goes_straight (k,G);
per cases ;
suppose (
len f)
<= n;
hence thesis by
A2,
FINSEQ_1: 58;
end;
suppose
A3: n
< (
len f);
let i19,j19,i29,j29 be
Nat;
A4: (
len (f
| n))
= n by
A3,
FINSEQ_1: 59;
then (k
+ 1)
in (
dom (f
| n)) by
A1,
SEQ_4: 135;
then
A5: ((f
| n)
/. (k
+ 1))
= (f
/. (k
+ 1)) by
FINSEQ_4: 70;
(k
+ 2)
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then
A6: ((f
| n)
/. (k
+ 2))
= (f
/. (k
+ 2)) by
FINSEQ_4: 70;
k
in (
dom (f
| n)) by
A1,
A4,
SEQ_4: 135;
then ((f
| n)
/. k)
= (f
/. k) by
FINSEQ_4: 70;
hence thesis by
A2,
A5,
A6;
end;
end;
theorem ::
GOBRD13:46
1
< k & (k
+ 1)
<= (
len f1) & (k
+ 1)
<= (
len f2) & f1
is_sequence_on G & (f1
| k)
= (f2
| k) & f1
turns_right ((k
-' 1),G) & f2
turns_right ((k
-' 1),G) implies (f1
| (k
+ 1))
= (f2
| (k
+ 1))
proof
assume that
A1: 1
< k and
A2: (k
+ 1)
<= (
len f1) and
A3: (k
+ 1)
<= (
len f2) and
A4: f1
is_sequence_on G and
A5: (f1
| k)
= (f2
| k) and
A6: f1
turns_right ((k
-' 1),G) and
A7: f2
turns_right ((k
-' 1),G);
A8: 1
<= (k
-' 1) by
A1,
NAT_D: 49;
A9: k
<= (k
+ 1) by
NAT_1: 12;
then k
<= (
len (f1
| k)) by
A2,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A10: k
in (
dom (f1
| k)) by
A1,
FINSEQ_3: 25;
then
A11: (f2
/. k)
= ((f2
| k)
/. k) by
A5,
FINSEQ_4: 70;
(k
-' 1)
<= k by
NAT_D: 35;
then (k
-' 1)
<= (
len (f1
| k)) by
A2,
A9,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A12: (k
-' 1)
in (
dom (f1
| k)) by
A8,
FINSEQ_3: 25;
then
A13: (f2
/. (k
-' 1))
= ((f2
| k)
/. (k
-' 1)) by
A5,
FINSEQ_4: 70;
A14: (f1
/. k)
= ((f1
| k)
/. k) by
A10,
FINSEQ_4: 70;
A15: (f1
/. (k
-' 1))
= ((f1
| k)
/. (k
-' 1)) by
A12,
FINSEQ_4: 70;
A16: k
= ((k
-' 1)
+ 1) by
A1,
XREAL_1: 235;
k
<= (
len f1) by
A2,
A9,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A17:
[i1, j1]
in (
Indices G) & (f1
/. (k
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f1
/. k)
= (G
* (i2,j2)) and
A18: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A4,
A8,
A16,
JORDAN8: 3;
A19: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A20: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A18;
suppose
A21: i1
= i2 & (j1
+ 1)
= j2;
hence (f1
/. (k
+ 1))
= (G
* ((i2
+ 1),j2)) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A21;
end;
suppose
A22: (i1
+ 1)
= i2 & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
-' 1))) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A22;
end;
suppose
A23: i1
= (i2
+ 1) & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
+ 1))) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A23;
end;
suppose
A24: i1
= i2 & j1
= (j2
+ 1);
hence (f1
/. (k
+ 1))
= (G
* ((i2
-' 1),j2)) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A24;
end;
end;
hence (f1
| (k
+ 1))
= ((f2
| k)
^
<*(f2
/. (k
+ 1))*>) by
A2,
A5,
FINSEQ_5: 82
.= (f2
| (k
+ 1)) by
A3,
FINSEQ_5: 82;
end;
theorem ::
GOBRD13:47
1
< k & (k
+ 1)
<= (
len f1) & (k
+ 1)
<= (
len f2) & f1
is_sequence_on G & (f1
| k)
= (f2
| k) & f1
turns_left ((k
-' 1),G) & f2
turns_left ((k
-' 1),G) implies (f1
| (k
+ 1))
= (f2
| (k
+ 1))
proof
assume that
A1: 1
< k and
A2: (k
+ 1)
<= (
len f1) and
A3: (k
+ 1)
<= (
len f2) and
A4: f1
is_sequence_on G and
A5: (f1
| k)
= (f2
| k) and
A6: f1
turns_left ((k
-' 1),G) and
A7: f2
turns_left ((k
-' 1),G);
A8: 1
<= (k
-' 1) by
A1,
NAT_D: 49;
A9: k
<= (k
+ 1) by
NAT_1: 12;
then k
<= (
len (f1
| k)) by
A2,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A10: k
in (
dom (f1
| k)) by
A1,
FINSEQ_3: 25;
then
A11: (f2
/. k)
= ((f2
| k)
/. k) by
A5,
FINSEQ_4: 70;
(k
-' 1)
<= k by
NAT_D: 35;
then (k
-' 1)
<= (
len (f1
| k)) by
A2,
A9,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A12: (k
-' 1)
in (
dom (f1
| k)) by
A8,
FINSEQ_3: 25;
then
A13: (f2
/. (k
-' 1))
= ((f2
| k)
/. (k
-' 1)) by
A5,
FINSEQ_4: 70;
A14: (f1
/. k)
= ((f1
| k)
/. k) by
A10,
FINSEQ_4: 70;
A15: (f1
/. (k
-' 1))
= ((f1
| k)
/. (k
-' 1)) by
A12,
FINSEQ_4: 70;
A16: k
= ((k
-' 1)
+ 1) by
A1,
XREAL_1: 235;
k
<= (
len f1) by
A2,
A9,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A17:
[i1, j1]
in (
Indices G) & (f1
/. (k
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f1
/. k)
= (G
* (i2,j2)) and
A18: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A4,
A8,
A16,
JORDAN8: 3;
A19: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A20: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A18;
suppose
A21: i1
= i2 & (j1
+ 1)
= j2;
hence (f1
/. (k
+ 1))
= (G
* ((i2
-' 1),j2)) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A21;
end;
suppose
A22: (i1
+ 1)
= i2 & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
+ 1))) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A22;
end;
suppose
A23: i1
= (i2
+ 1) & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
-' 1))) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A23;
end;
suppose
A24: i1
= i2 & j1
= (j2
+ 1);
hence (f1
/. (k
+ 1))
= (G
* ((i2
+ 1),j2)) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A24;
end;
end;
hence (f1
| (k
+ 1))
= ((f2
| k)
^
<*(f2
/. (k
+ 1))*>) by
A2,
A5,
FINSEQ_5: 82
.= (f2
| (k
+ 1)) by
A3,
FINSEQ_5: 82;
end;
theorem ::
GOBRD13:48
1
< k & (k
+ 1)
<= (
len f1) & (k
+ 1)
<= (
len f2) & f1
is_sequence_on G & (f1
| k)
= (f2
| k) & f1
goes_straight ((k
-' 1),G) & f2
goes_straight ((k
-' 1),G) implies (f1
| (k
+ 1))
= (f2
| (k
+ 1))
proof
assume that
A1: 1
< k and
A2: (k
+ 1)
<= (
len f1) and
A3: (k
+ 1)
<= (
len f2) and
A4: f1
is_sequence_on G and
A5: (f1
| k)
= (f2
| k) and
A6: f1
goes_straight ((k
-' 1),G) and
A7: f2
goes_straight ((k
-' 1),G);
A8: 1
<= (k
-' 1) by
A1,
NAT_D: 49;
A9: k
<= (k
+ 1) by
NAT_1: 12;
then k
<= (
len (f1
| k)) by
A2,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A10: k
in (
dom (f1
| k)) by
A1,
FINSEQ_3: 25;
then
A11: (f2
/. k)
= ((f2
| k)
/. k) by
A5,
FINSEQ_4: 70;
(k
-' 1)
<= k by
NAT_D: 35;
then (k
-' 1)
<= (
len (f1
| k)) by
A2,
A9,
FINSEQ_1: 59,
XXREAL_0: 2;
then
A12: (k
-' 1)
in (
dom (f1
| k)) by
A8,
FINSEQ_3: 25;
then
A13: (f2
/. (k
-' 1))
= ((f2
| k)
/. (k
-' 1)) by
A5,
FINSEQ_4: 70;
A14: (f1
/. k)
= ((f1
| k)
/. k) by
A10,
FINSEQ_4: 70;
A15: (f1
/. (k
-' 1))
= ((f1
| k)
/. (k
-' 1)) by
A12,
FINSEQ_4: 70;
A16: k
= ((k
-' 1)
+ 1) by
A1,
XREAL_1: 235;
k
<= (
len f1) by
A2,
A9,
XXREAL_0: 2;
then
consider i1,j1,i2,j2 be
Nat such that
A17:
[i1, j1]
in (
Indices G) & (f1
/. (k
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & (f1
/. k)
= (G
* (i2,j2)) and
A18: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A4,
A8,
A16,
JORDAN8: 3;
A19: (j1
+ 1)
> j1 & (j2
+ 1)
> j2 by
NAT_1: 13;
A20: (i1
+ 1)
> i1 & (i2
+ 1)
> i2 by
NAT_1: 13;
now
per cases by
A18;
suppose
A21: i1
= i2 & (j1
+ 1)
= j2;
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
+ 1))) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A21;
end;
suppose
A22: (i1
+ 1)
= i2 & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* ((i2
+ 1),j2)) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A22;
end;
suppose
A23: i1
= (i2
+ 1) & j1
= j2;
hence (f1
/. (k
+ 1))
= (G
* ((i2
-' 1),j2)) by
A6,
A16,
A17,
A20
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A20,
A23;
end;
suppose
A24: i1
= i2 & j1
= (j2
+ 1);
hence (f1
/. (k
+ 1))
= (G
* (i2,(j2
-' 1))) by
A6,
A16,
A17,
A19
.= (f2
/. (k
+ 1)) by
A5,
A7,
A16,
A15,
A14,
A13,
A11,
A17,
A19,
A24;
end;
end;
hence (f1
| (k
+ 1))
= ((f2
| k)
^
<*(f2
/. (k
+ 1))*>) by
A2,
A5,
FINSEQ_5: 82
.= (f2
| (k
+ 1)) by
A3,
FINSEQ_5: 82;
end;