seq_4.miz
    
    begin
    
    reserve n,k,k1,m,m1,n1,n2,l for
    Nat;
    
    reserve r,r1,r2,p,p1,g,g1,g2,s,s1,s2,t for
    Real;
    
    reserve seq,seq1,seq2 for
    Real_Sequence;
    
    reserve Nseq for
    increasing  
    sequence of 
    NAT ; 
    
    reserve x for
    set;
    
    reserve X,Y for
    Subset of 
    REAL ; 
    
    theorem :: 
    
    SEQ_4:1
    
    
    
    
    
    Th1: for X, Y st for r, p st r 
    in X & p 
    in Y holds r 
    < p holds ex g st for r, p st r 
    in X & p 
    in Y holds r 
    <= g & g 
    <= p 
    
    proof
    
      let X, Y;
    
      assume for r, p st r
    in X & p 
    in Y holds r 
    < p; 
    
      then for r, p st r
    in X & p 
    in Y holds r 
    <= p; 
    
      then
    
      consider g such that
    
      
    
    A1: for r, p st r 
    in X & p 
    in Y holds r 
    <= g & g 
    <= p by 
    AXIOMS: 1;
    
      reconsider g as
    Real;
    
      take g;
    
      thus thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:2
    
    
    
    
    
    Th2: 
    0  
    < p & (ex r st r 
    in X) & (for r st r 
    in X holds (r 
    + p) 
    in X) implies for g holds ex r st r 
    in X & g 
    < r 
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    < p and 
    
      
    
    A2: ex r st r 
    in X and 
    
      
    
    A3: for r st r 
    in X holds (r 
    + p) 
    in X and 
    
      
    
    A4: ex g st for r st r 
    in X holds not g 
    < r; 
    
      defpred
    
    X[
    Real] means for r st r
    in X holds not $1 
    < r; 
    
      consider Y such that
    
      
    
    A5: for p1 be 
    Element of 
    REAL holds p1 
    in Y iff 
    X[p1] from
    SUBSET_1:sch 3;
    
      now
    
        let r, p1 such that
    
        
    
    A6: r 
    in X and 
    
        
    
    A7: p1 
    in Y; 
    
        (r
    + p) 
    in X by 
    A3,
    A6;
    
        then
    
        
    
    A8: (r 
    + p) 
    <= p1 by 
    A5,
    A7;
    
        (r
    +  
    0 qua 
    Nat)
    < (r 
    + p) by 
    A1,
    XREAL_1: 8;
    
        hence r
    < p1 by 
    A8,
    XXREAL_0: 2;
    
      end;
    
      then
    
      consider g2 such that
    
      
    
    A9: for r, p1 st r 
    in X & p1 
    in Y holds r 
    <= g2 & g2 
    <= p1 by 
    Th1;
    
      consider g1 such that
    
      
    
    A10: for r st r 
    in X holds not g1 
    < r by 
    A4;
    
      g1
    in  
    REAL by 
    XREAL_0:def 1;
    
      then
    
      
    
    A11: g1 
    in Y by 
    A10,
    A5;
    
      reconsider g2p = (g2
    - p) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    
    A12: 
    
      now
    
        assume not (g2
    - p) 
    in Y; 
    
        then not
    X[g2p] by
    A5;
    
        then
    
        consider r1 be
    Real such that 
    
        
    
    A13: r1 
    in X & g2p 
    < r1; 
    
        ((g2
    - p) 
    + p) 
    < (r1 
    + p) & (r1 
    + p) 
    in X by 
    A3,
    A13,
    XREAL_1: 6;
    
        hence contradiction by
    A11,
    A9;
    
      end;
    
      (
    - p) 
    < ( 
    -  
    0 qua 
    Nat) by
    A1;
    
      then (g2
    + ( 
    - p)) 
    < (g2 
    +  
    0 qua 
    Nat) by
    XREAL_1: 6;
    
      hence contradiction by
    A2,
    A9,
    A12;
    
    end;
    
    theorem :: 
    
    SEQ_4:3
    
    
    
    
    
    Th3: for r holds ex n st r 
    < n 
    
    proof
    
      let r;
    
      for r st r
    in  
    NAT holds (r 
    + 1) 
    in  
    NAT by 
    AXIOMS: 2;
    
      then
    
      consider p such that
    
      
    
    A1: p 
    in  
    NAT and 
    
      
    
    A2: r 
    < p by 
    Th2,
    NUMBERS: 19;
    
      consider n1 such that
    
      
    
    A3: n1 
    = p by 
    A1;
    
      take n1;
    
      thus thesis by
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    SEQ_4:4
    
    X is
    real-bounded iff ex s st 
    0  
    < s & for r st r 
    in X holds 
    |.r.|
    < s 
    
    proof
    
      thus X is
    real-bounded implies ex s st 
    0  
    < s & for r st r 
    in X holds 
    |.r.|
    < s 
    
      proof
    
        assume
    
        
    
    A1: X is 
    real-bounded;
    
        then
    
        consider s1 such that
    
        
    
    A2: s1 is 
    UpperBound of X by 
    XXREAL_2:def 10;
    
        
    
        
    
    A3: for r st r 
    in X holds r 
    <= s1 by 
    A2,
    XXREAL_2:def 1;
    
        consider s2 such that
    
        
    
    A4: s2 is 
    LowerBound of X by 
    A1,
    XXREAL_2:def 9;
    
        
    
        
    
    A5: for r st r 
    in X holds s2 
    <= r by 
    A4,
    XXREAL_2:def 2;
    
        take s = ((
    |.s1.|
    +  
    |.s2.|)
    + 1); 
    
        
    
        
    
    A6: 
    0  
    <=  
    |.s1.| by
    COMPLEX1: 46;
    
        
    
        
    
    A7: 
    0  
    <=  
    |.s2.| by
    COMPLEX1: 46;
    
        hence
    0  
    < s by 
    A6;
    
        let r such that
    
        
    
    A8: r 
    in X; 
    
        s1
    <=  
    |.s1.| & r
    <= s1 by 
    A3,
    A8,
    ABSVALUE: 4;
    
        then r
    <=  
    |.s1.| by
    XXREAL_0: 2;
    
        then (r
    +  
    0 qua 
    Nat)
    <= ( 
    |.s1.|
    +  
    |.s2.|) by
    A7,
    XREAL_1: 7;
    
        then
    
        
    
    A9: r 
    < s by 
    XREAL_1: 8;
    
        (
    -  
    |.s2.|)
    <= s2 & s2 
    <= r by 
    A5,
    A8,
    ABSVALUE: 4;
    
        then (
    -  
    |.s2.|)
    <= r by 
    XXREAL_0: 2;
    
        then ((
    -  
    |.s1.|)
    + ( 
    -  
    |.s2.|))
    <= ( 
    0 qua 
    Nat
    + r) by 
    A6,
    XREAL_1: 7;
    
        then
    
        
    
    A10: ((( 
    -  
    |.s1.|)
    -  
    |.s2.|)
    + ( 
    - 1)) 
    < (r 
    +  
    0 qua 
    Nat) by
    XREAL_1: 8;
    
        (((
    -  
    |.s1.|)
    -  
    |.s2.|)
    - 1) 
    = ( 
    - (( 
    |.s1.|
    +  
    |.s2.|)
    + 1)); 
    
        hence thesis by
    A9,
    A10,
    SEQ_2: 1;
    
      end;
    
      given s such that
    0  
    < s and 
    
      
    
    A11: for r st r 
    in X holds 
    |.r.|
    < s; 
    
      thus X is
    bounded_below
    
      proof
    
        take (
    - s); 
    
        let r be
    ExtReal;
    
        assume
    
        
    
    A12: r 
    in X; 
    
        then
    
        reconsider r as
    Real;
    
        
    |.r.|
    < s by 
    A11,
    A12;
    
        then
    
        
    
    A13: ( 
    - s) 
    < ( 
    -  
    |.r.|) by
    XREAL_1: 24;
    
        (
    -  
    |.r.|)
    <= r by 
    ABSVALUE: 4;
    
        hence thesis by
    A13,
    XXREAL_0: 2;
    
      end;
    
      take s;
    
      let r be
    ExtReal;
    
      assume
    
      
    
    A14: r 
    in X; 
    
      then
    
      reconsider r as
    Real;
    
      r
    <=  
    |.r.| by
    ABSVALUE: 4;
    
      hence thesis by
    A11,
    A14,
    XXREAL_0: 2;
    
    end;
    
    definition
    
      let r;
    
      :: original:
    {
    
      redefine
    
      func
    
    {r} ->
    Subset of 
    REAL ; 
    
      coherence
    
      proof
    
        
    {r}
    c=  
    REAL by 
    XREAL_0:def 1;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:5
    
    
    
    
    
    Th5: for X be 
    real-membered  
    set holds X is non 
    empty
    bounded_above implies ex g st (for r st r 
    in X holds r 
    <= g) & for s st 
    0  
    < s holds ex r st r 
    in X & (g 
    - s) 
    < r 
    
    proof
    
      let X be
    real-membered  
    set;
    
      assume that
    
      
    
    A1: X is non 
    empty and 
    
      
    
    A2: X is 
    bounded_above;
    
      consider p1 such that
    
      
    
    A3: p1 is 
    UpperBound of X by 
    A2;
    
      
    
      
    
    A4: for r st r 
    in X holds r 
    <= p1 by 
    A3,
    XXREAL_2:def 1;
    
      defpred
    
    X[
    Real] means for r st r
    in X holds r 
    <= $1; 
    
      consider Y such that
    
      
    
    A5: for p be 
    Element of 
    REAL holds p 
    in Y iff 
    X[p] from
    SUBSET_1:sch 3;
    
      X is
    Subset of 
    REAL & for r, p st r 
    in X & p 
    in Y holds r 
    <= p by 
    A5,
    MEMBERED: 3;
    
      then
    
      consider g1 such that
    
      
    
    A6: for r, p st r 
    in X & p 
    in Y holds r 
    <= g1 & g1 
    <= p by 
    AXIOMS: 1;
    
      reconsider g1 as
    Real;
    
      take g = g1;
    
      
    
      
    
    A7: ex r1 be 
    Real st r1 
    in X by 
    A1;
    
      
    
    A8: 
    
      now
    
        given s1 such that
    
        
    
    A9: 
    0  
    < s1 and 
    
        
    
    A10: for r st r 
    in X holds not (g 
    - s1) 
    < r; 
    
        reconsider gs1 = (g
    - s1) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        gs1
    in Y by 
    A5,
    A10;
    
        then g
    <= (g 
    - s1) by 
    A7,
    A6;
    
        then (g
    - (g 
    - s1)) 
    <= ((g 
    - s1) 
    - (g 
    - s1)) by 
    XREAL_1: 9;
    
        hence contradiction by
    A9;
    
      end;
    
      p1
    in  
    REAL by 
    XREAL_0:def 1;
    
      then p1
    in Y by 
    A4,
    A5;
    
      hence thesis by
    A6,
    A8;
    
    end;
    
    theorem :: 
    
    SEQ_4:6
    
    
    
    
    
    Th6: for X be 
    real-membered  
    set holds (for r st r 
    in X holds r 
    <= g1) & (for s st 
    0  
    < s holds ex r st (r 
    in X & (g1 
    - s) 
    < r)) & (for r st r 
    in X holds r 
    <= g2) & (for s st 
    0  
    < s holds ex r st (r 
    in X & (g2 
    - s) 
    < r)) implies g1 
    = g2 
    
    proof
    
      let X be
    real-membered  
    set;
    
      assume that
    
      
    
    A1: for r st r 
    in X holds r 
    <= g1 and 
    
      
    
    A2: for s st 
    0  
    < s holds ex r st r 
    in X & (g1 
    - s) 
    < r and 
    
      
    
    A3: for r st r 
    in X holds r 
    <= g2 and 
    
      
    
    A4: for s st 
    0  
    < s holds ex r st r 
    in X & (g2 
    - s) 
    < r; 
    
      
    
    A5: 
    
      now
    
        assume g2
    < g1; 
    
        then ex r1 st r1
    in X & (g1 
    - (g1 
    - g2)) 
    < r1 by 
    A2,
    XREAL_1: 50;
    
        hence contradiction by
    A3;
    
      end;
    
      now
    
        assume g1
    < g2; 
    
        then ex r1 st r1
    in X & (g2 
    - (g2 
    - g1)) 
    < r1 by 
    A4,
    XREAL_1: 50;
    
        hence contradiction by
    A1;
    
      end;
    
      hence thesis by
    A5,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    SEQ_4:7
    
    
    
    
    
    Th7: for X be 
    real-membered  
    set holds X is non 
    empty
    bounded_below implies ex g st (for r st r 
    in X holds g 
    <= r) & for s st 
    0  
    < s holds ex r st r 
    in X & r 
    < (g 
    + s) 
    
    proof
    
      let X be
    real-membered  
    set;
    
      assume that
    
      
    
    A1: X is non 
    empty and 
    
      
    
    A2: X is 
    bounded_below;
    
      
    
      
    
    A3: ex r1 be 
    Real st r1 
    in X by 
    A1;
    
      consider p1 such that
    
      
    
    A4: p1 is 
    LowerBound of X by 
    A2;
    
      
    
      
    
    A5: for r st r 
    in X holds p1 
    <= r by 
    A4,
    XXREAL_2:def 2;
    
      reconsider X as
    Subset of 
    REAL by 
    MEMBERED: 3;
    
      defpred
    
    X[
    Real] means for r st r
    in X holds $1 
    <= r; 
    
      consider Y such that
    
      
    
    A6: for p be 
    Element of 
    REAL holds p 
    in Y iff 
    X[p] from
    SUBSET_1:sch 3;
    
      for p, r st p
    in Y & r 
    in X holds p 
    <= r by 
    A6;
    
      then
    
      consider g1 such that
    
      
    
    A7: for p, r st p 
    in Y & r 
    in X holds p 
    <= g1 & g1 
    <= r by 
    AXIOMS: 1;
    
      reconsider g1 as
    Real;
    
      take g = g1;
    
      
    
    A8: 
    
      now
    
        given s1 such that
    
        
    
    A9: 
    0  
    < s1 and 
    
        
    
    A10: for r st r 
    in X holds not r 
    < (g 
    + s1); 
    
        reconsider gs1 = (g
    + s1) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        gs1
    in Y by 
    A6,
    A10;
    
        then (g
    + s1) 
    <= g by 
    A3,
    A7;
    
        then ((g
    + s1) 
    - g) 
    <= (g 
    - g) by 
    XREAL_1: 9;
    
        hence contradiction by
    A9;
    
      end;
    
      p1
    in  
    REAL by 
    XREAL_0:def 1;
    
      then p1
    in Y by 
    A5,
    A6;
    
      hence thesis by
    A7,
    A8;
    
    end;
    
    theorem :: 
    
    SEQ_4:8
    
    
    
    
    
    Th8: for X be 
    real-membered  
    set holds (for r st r 
    in X holds g1 
    <= r) & (for s st 
    0  
    < s holds ex r st (r 
    in X & r 
    < (g1 
    + s))) & (for r st r 
    in X holds g2 
    <= r) & (for s st 
    0  
    < s holds ex r st (r 
    in X & r 
    < (g2 
    + s))) implies g1 
    = g2 
    
    proof
    
      let X be
    real-membered  
    set;
    
      assume that
    
      
    
    A1: for r st r 
    in X holds g1 
    <= r and 
    
      
    
    A2: for s st 
    0  
    < s holds ex r st r 
    in X & r 
    < (g1 
    + s) and 
    
      
    
    A3: for r st r 
    in X holds g2 
    <= r and 
    
      
    
    A4: for s st 
    0  
    < s holds ex r st r 
    in X & r 
    < (g2 
    + s); 
    
      
    
    A5: 
    
      now
    
        assume g2
    < g1; 
    
        then ex r1 st r1
    in X & r1 
    < (g2 
    + (g1 
    - g2)) by 
    A4,
    XREAL_1: 50;
    
        hence contradiction by
    A1;
    
      end;
    
      now
    
        assume g1
    < g2; 
    
        then ex r1 st r1
    in X & r1 
    < (g1 
    + (g2 
    - g1)) by 
    A2,
    XREAL_1: 50;
    
        hence contradiction by
    A3;
    
      end;
    
      hence thesis by
    A5,
    XXREAL_0: 1;
    
    end;
    
    definition
    
      let X be
    real-membered  
    set;
    
      assume
    
      
    
    A1: X is non 
    empty
    bounded_above;
    
      :: 
    
    SEQ_4:def1
    
      func
    
    upper_bound X -> 
    Real means 
    
      :
    
    Def1: (for r st r 
    in X holds r 
    <= it ) & for s st 
    0  
    < s holds ex r st r 
    in X & (it 
    - s) 
    < r; 
    
      existence by
    A1,
    Th5;
    
      uniqueness by
    Th6;
    
    end
    
    definition
    
      let X be
    real-membered  
    set;
    
      assume
    
      
    
    A1: X is non 
    empty
    bounded_below;
    
      :: 
    
    SEQ_4:def2
    
      func
    
    lower_bound X -> 
    Real means 
    
      :
    
    Def2: (for r st r 
    in X holds it 
    <= r) & for s st 
    0  
    < s holds ex r st r 
    in X & r 
    < (it 
    + s); 
    
      existence by
    A1,
    Th7;
    
      uniqueness by
    Th8;
    
    end
    
    
    
    
    
    Lm1: for X be non 
    empty
    real-membered  
    set st (for s st s 
    in X holds s 
    >= r) & for t st for s st s 
    in X holds s 
    >= t holds r 
    >= t holds r 
    = ( 
    lower_bound X) 
    
    proof
    
      let X be non
    empty
    real-membered  
    set;
    
      assume that
    
      
    
    A1: for s st s 
    in X holds s 
    >= r and 
    
      
    
    A2: for t st for s st s 
    in X holds s 
    >= t holds r 
    >= t; 
    
      
    
      
    
    A3: for s be 
    Real st 
    0  
    < s holds not for t be 
    Real st t 
    in X holds t 
    >= (r 
    + s) by 
    A2,
    XREAL_1: 29;
    
      X is
    bounded_below
    
      proof
    
        take r;
    
        let s be
    ExtReal;
    
        assume s
    in X; 
    
        hence thesis by
    A1;
    
      end;
    
      hence thesis by
    A1,
    A3,
    Def2;
    
    end;
    
    
    
    
    
    Lm2: for X be non 
    empty
    real-membered  
    set, r st (for s st s 
    in X holds s 
    <= r) & for t st for s st s 
    in X holds s 
    <= t holds r 
    <= t holds r 
    = ( 
    upper_bound X) 
    
    proof
    
      let X be non
    empty
    real-membered  
    set, r; 
    
      assume that
    
      
    
    A1: for s st s 
    in X holds s 
    <= r and 
    
      
    
    A2: for t st for s st s 
    in X holds s 
    <= t holds r 
    <= t; 
    
      
    
    A3: 
    
      now
    
        let s be
    Real such that 
    
        
    
    A4: 
    0  
    < s; 
    
        assume for t be
    Real st t 
    in X holds (r 
    - s) 
    >= t; 
    
        then r
    <= (r 
    - s) by 
    A2;
    
        then (r
    + s) 
    <= r by 
    XREAL_1: 19;
    
        hence contradiction by
    A4,
    XREAL_1: 29;
    
      end;
    
      X is
    bounded_above
    
      proof
    
        take r;
    
        let s be
    ExtReal;
    
        assume s
    in X; 
    
        hence thesis by
    A1;
    
      end;
    
      hence thesis by
    A1,
    A3,
    Def1;
    
    end;
    
    registration
    
      let X be non
    empty
    bounded_below
    real-membered  
    set;
    
      identify
    inf X with 
    lower_bound X; 
    
      compatibility
    
      proof
    
        
    
    A1: 
    
        now
    
          let t;
    
          assume for s st s
    in X holds s 
    >= t; 
    
          then for x be
    ExtReal st x 
    in X holds t 
    <= x; 
    
          then t is
    LowerBound of X by 
    XXREAL_2:def 2;
    
          hence (
    inf X) 
    >= t by 
    XXREAL_2:def 4;
    
        end;
    
        for s st s
    in X holds s 
    >= ( 
    inf X) by 
    XXREAL_2: 3;
    
        hence thesis by
    A1,
    Lm1;
    
      end;
    
    end
    
    registration
    
      let X be non
    empty
    bounded_above
    real-membered  
    set;
    
      identify
    sup X with 
    upper_bound X; 
    
      compatibility
    
      proof
    
        
    
    A1: 
    
        now
    
          let t;
    
          assume for s st s
    in X holds t 
    >= s; 
    
          then for x be
    ExtReal st x 
    in X holds x 
    <= t; 
    
          then t is
    UpperBound of X by 
    XXREAL_2:def 1;
    
          hence t
    >= ( 
    sup X) by 
    XXREAL_2:def 3;
    
        end;
    
        for s st s
    in X holds s 
    <= ( 
    sup X) by 
    XXREAL_2: 4;
    
        hence thesis by
    A1,
    Lm2;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:9
    
    
    
    
    
    Th9: ( 
    lower_bound  
    {r})
    = r & ( 
    upper_bound  
    {r})
    = r by 
    XXREAL_2: 11,
    XXREAL_2: 13;
    
    theorem :: 
    
    SEQ_4:10
    
    
    
    
    
    Th10: ( 
    lower_bound  
    {r})
    = ( 
    upper_bound  
    {r})
    
    proof
    
      (
    lower_bound  
    {r})
    = r by 
    XXREAL_2: 13;
    
      hence thesis by
    XXREAL_2: 11;
    
    end;
    
    theorem :: 
    
    SEQ_4:11
    
    X is
    real-bounded non 
    empty implies ( 
    lower_bound X) 
    <= ( 
    upper_bound X) 
    
    proof
    
      assume X is
    real-bounded non 
    empty;
    
      then
    
      reconsider X as
    real-bounded non 
    empty
    real-membered  
    set;
    
      (
    lower_bound X) 
    <= ( 
    upper_bound X) by 
    XXREAL_2: 40;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:12
    
    X is
    real-bounded non 
    empty implies ((ex r, p st r 
    in X & p 
    in X & p 
    <> r) iff ( 
    lower_bound X) 
    < ( 
    upper_bound X)) 
    
    proof
    
      assume that
    
      
    
    A1: X is 
    real-bounded and 
    
      
    
    A2: X is non 
    empty;
    
      thus (ex r, p st r
    in X & p 
    in X & p 
    <> r) implies ( 
    lower_bound X) 
    < ( 
    upper_bound X) 
    
      proof
    
        given r, p such that
    
        
    
    A3: r 
    in X and 
    
        
    
    A4: p 
    in X and 
    
        
    
    A5: p 
    <> r; 
    
        
    
    A6: 
    
        now
    
          assume
    
          
    
    A7: r 
    < p; 
    
          (
    lower_bound X) 
    <= r by 
    A1,
    A3,
    Def2;
    
          then
    
          
    
    A8: ( 
    lower_bound X) 
    < p by 
    A7,
    XXREAL_0: 2;
    
          p
    <= ( 
    upper_bound X) by 
    A1,
    A4,
    Def1;
    
          hence thesis by
    A8,
    XXREAL_0: 2;
    
        end;
    
        now
    
          assume
    
          
    
    A9: p 
    < r; 
    
          (
    lower_bound X) 
    <= p by 
    A1,
    A4,
    Def2;
    
          then
    
          
    
    A10: ( 
    lower_bound X) 
    < r by 
    A9,
    XXREAL_0: 2;
    
          r
    <= ( 
    upper_bound X) by 
    A1,
    A3,
    Def1;
    
          hence thesis by
    A10,
    XXREAL_0: 2;
    
        end;
    
        hence thesis by
    A5,
    A6,
    XXREAL_0: 1;
    
      end;
    
      consider r be
    Element of 
    REAL such that 
    
      
    
    A11: r 
    in X by 
    A2;
    
      assume that
    
      
    
    A12: ( 
    lower_bound X) 
    < ( 
    upper_bound X) and 
    
      
    
    A13: for r, p st r 
    in X & p 
    in X holds p 
    = r; 
    
      for x be
    object holds x 
    in X iff x 
    = r by 
    A13,
    A11;
    
      then X
    =  
    {r} by
    TARSKI:def 1;
    
      hence contradiction by
    A12,
    Th10;
    
    end;
    
    theorem :: 
    
    SEQ_4:13
    
    
    
    
    
    Th13: seq is 
    convergent implies ( 
    abs seq) is 
    convergent
    
    proof
    
      assume seq is
    convergent;
    
      then
    
      consider g1 such that
    
      
    
    A1: for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p; 
    
      reconsider g1 as
    Real;
    
      take g =
    |.g1.|;
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n1 such that
    
      
    
    A2: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A1;
    
      take n = n1;
    
      let m;
    
      
    |.(g1
    - (seq 
    . m)).| 
    =  
    |.(
    - ((seq 
    . m) 
    - g1)).| 
    
      .=
    |.((seq
    . m) 
    - g1).| by 
    COMPLEX1: 52;
    
      then (g
    -  
    |.(seq
    . m).|) 
    <=  
    |.((seq
    . m) 
    - g1).| by 
    COMPLEX1: 59;
    
      then (
    |.(seq
    . m).| 
    - g) 
    <=  
    |.((seq
    . m) 
    - g1).| & ( 
    -  
    |.((seq
    . m) 
    - g1).|) 
    <= ( 
    - (g 
    -  
    |.(seq
    . m).|)) by 
    COMPLEX1: 59,
    XREAL_1: 24;
    
      then
    |.(
    |.(seq
    . m).| 
    - g).| 
    <=  
    |.((seq
    . m) 
    - g1).| by 
    ABSVALUE: 5;
    
      then
    
      
    
    A3: 
    |.(((
    abs seq) 
    . m) 
    - g).| 
    <=  
    |.((seq
    . m) 
    - g1).| by 
    SEQ_1: 12;
    
      assume n
    <= m; 
    
      then
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A2;
    
      hence thesis by
    A3,
    XXREAL_0: 2;
    
    end;
    
    registration
    
      let seq be
    convergent  
    Real_Sequence;
    
      cluster ( 
    abs seq) -> 
    convergent;
    
      coherence by
    Th13;
    
    end
    
    theorem :: 
    
    SEQ_4:14
    
    seq is
    convergent implies ( 
    lim ( 
    abs seq)) 
    =  
    |.(
    lim seq).| 
    
    proof
    
      assume
    
      
    
    A1: seq is 
    convergent;
    
      now
    
        let p;
    
        assume
    0  
    < p; 
    
        then
    
        consider n1 such that
    
        
    
    A2: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A1,
    SEQ_2:def 7;
    
        take n = n1;
    
        let m;
    
        
    |.((
    lim seq) 
    - (seq 
    . m)).| 
    =  
    |.(
    - ((seq 
    . m) 
    - ( 
    lim seq))).| 
    
        .=
    |.((seq
    . m) 
    - ( 
    lim seq)).| by 
    COMPLEX1: 52;
    
        then (
    |.(
    lim seq).| 
    -  
    |.(seq
    . m).|) 
    <=  
    |.((seq
    . m) 
    - ( 
    lim seq)).| by 
    COMPLEX1: 59;
    
        then (
    |.(seq
    . m).| 
    -  
    |.(
    lim seq).|) 
    <=  
    |.((seq
    . m) 
    - ( 
    lim seq)).| & ( 
    -  
    |.((seq
    . m) 
    - ( 
    lim seq)).|) 
    <= ( 
    - ( 
    |.(
    lim seq).| 
    -  
    |.(seq
    . m).|)) by 
    COMPLEX1: 59,
    XREAL_1: 24;
    
        then
    |.(
    |.(seq
    . m).| 
    -  
    |.(
    lim seq).|).| 
    <=  
    |.((seq
    . m) 
    - ( 
    lim seq)).| by 
    ABSVALUE: 5;
    
        then
    
        
    
    A3: 
    |.(((
    abs seq) 
    . m) 
    -  
    |.(
    lim seq).|).| 
    <=  
    |.((seq
    . m) 
    - ( 
    lim seq)).| by 
    SEQ_1: 12;
    
        assume n
    <= m; 
    
        then
    |.((seq
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A2;
    
        hence
    |.(((
    abs seq) 
    . m) 
    -  
    |.(
    lim seq).|).| 
    < p by 
    A3,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A1,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:15
    
    (
    abs seq) is 
    convergent & ( 
    lim ( 
    abs seq)) 
    =  
    0 implies seq is 
    convergent & ( 
    lim seq) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: ( 
    abs seq) is 
    convergent and 
    
      
    
    A2: ( 
    lim ( 
    abs seq)) 
    =  
    0 ; 
    
      
    
    A3: 
    
      now
    
        let n;
    
        (
    -  
    |.(seq
    . n).|) 
    <= (seq 
    . n) by 
    ABSVALUE: 4;
    
        then
    
        
    
    A4: ( 
    - (( 
    abs seq) 
    . n)) 
    <= (seq 
    . n) by 
    SEQ_1: 12;
    
        (seq
    . n) 
    <=  
    |.(seq
    . n).| by 
    ABSVALUE: 4;
    
        hence ((
    - ( 
    abs seq)) 
    . n) 
    <= (seq 
    . n) & (seq 
    . n) 
    <= (( 
    abs seq) 
    . n) by 
    A4,
    SEQ_1: 10,
    SEQ_1: 12;
    
      end;
    
      
    
      
    
    A5: ( 
    - ( 
    abs seq)) is 
    convergent & ( 
    lim ( 
    - ( 
    abs seq))) 
    = ( 
    - ( 
    lim ( 
    abs seq))) by 
    A1,
    SEQ_2: 10;
    
      hence seq is
    convergent by 
    A1,
    A2,
    A3,
    SEQ_2: 19;
    
      thus thesis by
    A1,
    A2,
    A5,
    A3,
    SEQ_2: 20;
    
    end;
    
    theorem :: 
    
    SEQ_4:16
    
    
    
    
    
    Th16: seq1 is 
    subsequence of seq & seq is 
    convergent implies seq1 is 
    convergent
    
    proof
    
      assume that
    
      
    
    A1: seq1 is 
    subsequence of seq and 
    
      
    
    A2: seq is 
    convergent;
    
      consider g1 such that
    
      
    
    A3: for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A2;
    
      take g1;
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n1 such that
    
      
    
    A4: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A3;
    
      take n = n1;
    
      let m such that
    
      
    
    A5: n 
    <= m; 
    
      consider Nseq such that
    
      
    
    A6: seq1 
    = (seq 
    * Nseq) by 
    A1,
    VALUED_0:def 17;
    
      m
    <= (Nseq 
    . m) by 
    SEQM_3: 14;
    
      then
    
      
    
    A7: n 
    <= (Nseq 
    . m) by 
    A5,
    XXREAL_0: 2;
    
      m
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then (seq1
    . m) 
    = (seq 
    . (Nseq 
    . m)) by 
    A6,
    FUNCT_2: 15;
    
      hence thesis by
    A4,
    A7;
    
    end;
    
    theorem :: 
    
    SEQ_4:17
    
    
    
    
    
    Th17: seq1 is 
    subsequence of seq & seq is 
    convergent implies ( 
    lim seq1) 
    = ( 
    lim seq) 
    
    proof
    
      assume that
    
      
    
    A1: seq1 is 
    subsequence of seq and 
    
      
    
    A2: seq is 
    convergent;
    
      consider Nseq such that
    
      
    
    A3: seq1 
    = (seq 
    * Nseq) by 
    A1,
    VALUED_0:def 17;
    
      
    
    A4: 
    
      now
    
        let p;
    
        assume
    0  
    < p; 
    
        then
    
        consider n1 such that
    
        
    
    A5: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A2,
    SEQ_2:def 7;
    
        take n = n1;
    
        let m such that
    
        
    
    A6: n 
    <= m; 
    
        m
    <= (Nseq 
    . m) by 
    SEQM_3: 14;
    
        then
    
        
    
    A7: n 
    <= (Nseq 
    . m) by 
    A6,
    XXREAL_0: 2;
    
        m
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (seq1
    . m) 
    = (seq 
    . (Nseq 
    . m)) by 
    A3,
    FUNCT_2: 15;
    
        hence
    |.((seq1
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A5,
    A7;
    
      end;
    
      seq1 is
    convergent by 
    A1,
    A2,
    Th16;
    
      hence thesis by
    A4,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:18
    
    
    
    
    
    Th18: seq is 
    convergent & (ex k st for n st k 
    <= n holds (seq1 
    . n) 
    = (seq 
    . n)) implies seq1 is 
    convergent
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    convergent and 
    
      
    
    A2: ex k st for n st k 
    <= n holds (seq1 
    . n) 
    = (seq 
    . n); 
    
      consider g1 such that
    
      
    
    A3: for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A1;
    
      consider k such that
    
      
    
    A4: for n st k 
    <= n holds (seq1 
    . n) 
    = (seq 
    . n) by 
    A2;
    
      take g = g1;
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n1 such that
    
      
    
    A5: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A3;
    
      
    
    A6: 
    
      now
    
        assume
    
        
    
    A7: n1 
    <= k; 
    
        take n = k;
    
        let m;
    
        assume
    
        
    
    A8: n 
    <= m; 
    
        then n1
    <= m by 
    A7,
    XXREAL_0: 2;
    
        then
    |.((seq
    . m) 
    - g1).| 
    < p by 
    A5;
    
        hence
    |.((seq1
    . m) 
    - g).| 
    < p by 
    A4,
    A8;
    
      end;
    
      now
    
        assume
    
        
    
    A9: k 
    <= n1; 
    
        take n = n1;
    
        let m;
    
        assume
    
        
    
    A10: n 
    <= m; 
    
        then (seq1
    . m) 
    = (seq 
    . m) by 
    A4,
    A9,
    XXREAL_0: 2;
    
        hence
    |.((seq1
    . m) 
    - g).| 
    < p by 
    A5,
    A10;
    
      end;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    SEQ_4:19
    
    seq is
    convergent & (ex k st for n st k 
    <= n holds (seq1 
    . n) 
    = (seq 
    . n)) implies ( 
    lim seq) 
    = ( 
    lim seq1) 
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    convergent;
    
      given k such that
    
      
    
    A2: for n st k 
    <= n holds (seq1 
    . n) 
    = (seq 
    . n); 
    
      
    
    A3: 
    
      now
    
        let p;
    
        assume
    0  
    < p; 
    
        then
    
        consider n1 such that
    
        
    
    A4: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A1,
    SEQ_2:def 7;
    
        
    
    A5: 
    
        now
    
          assume
    
          
    
    A6: n1 
    <= k; 
    
          take n = k;
    
          let m;
    
          assume
    
          
    
    A7: n 
    <= m; 
    
          then n1
    <= m by 
    A6,
    XXREAL_0: 2;
    
          then
    |.((seq
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A4;
    
          hence
    |.((seq1
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A2,
    A7;
    
        end;
    
        now
    
          assume
    
          
    
    A8: k 
    <= n1; 
    
          take n = n1;
    
          let m;
    
          assume
    
          
    
    A9: n 
    <= m; 
    
          then (seq1
    . m) 
    = (seq 
    . m) by 
    A2,
    A8,
    XXREAL_0: 2;
    
          hence
    |.((seq1
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A4,
    A9;
    
        end;
    
        hence ex n st for m st n
    <= m holds 
    |.((seq1
    . m) 
    - ( 
    lim seq)).| 
    < p by 
    A5;
    
      end;
    
      seq1 is
    convergent by 
    A1,
    A2,
    Th18;
    
      hence thesis by
    A3,
    SEQ_2:def 7;
    
    end;
    
    registration
    
      let seq be
    convergent  
    Real_Sequence;
    
      let k;
    
      cluster (seq 
    ^\ k) -> 
    convergent;
    
      coherence by
    Th16;
    
    end
    
    theorem :: 
    
    SEQ_4:20
    
    seq is
    convergent implies ( 
    lim (seq 
    ^\ k)) 
    = ( 
    lim seq) by 
    Th17;
    
    theorem :: 
    
    SEQ_4:21
    
    
    
    
    
    Th21: (seq 
    ^\ k) is 
    convergent implies seq is 
    convergent
    
    proof
    
      assume (seq
    ^\ k) is 
    convergent;
    
      then
    
      consider g1 such that
    
      
    
    A1: for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.(((seq
    ^\ k) 
    . m) 
    - g1).| 
    < p; 
    
      take g1;
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n1 such that
    
      
    
    A2: for m st n1 
    <= m holds 
    |.(((seq
    ^\ k) 
    . m) 
    - g1).| 
    < p by 
    A1;
    
      take n = (n1
    + k); 
    
      let m;
    
      assume
    
      
    
    A3: n 
    <= m; 
    
      then
    
      consider l be
    Nat such that 
    
      
    
    A4: m 
    = ((n1 
    + k) 
    + l) by 
    NAT_1: 10;
    
      reconsider l as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      (m
    - k) 
    = (((n1 
    + l) 
    + k) 
    + ( 
    - k)) by 
    A4;
    
      then
    
      consider m1 be
    Element of 
    NAT such that 
    
      
    
    A5: m1 
    = (m 
    - k); 
    
      now
    
        assume not n1
    <= m1; 
    
        then (m1
    + k) 
    < (n1 
    + k) by 
    XREAL_1: 6;
    
        hence contradiction by
    A3,
    A5;
    
      end;
    
      then
    
      
    
    A6: 
    |.(((seq
    ^\ k) 
    . m1) 
    - g1).| 
    < p by 
    A2;
    
      (m1
    + k) 
    = m by 
    A5;
    
      hence thesis by
    A6,
    NAT_1:def 3;
    
    end;
    
    theorem :: 
    
    SEQ_4:22
    
    (seq
    ^\ k) is 
    convergent implies ( 
    lim seq) 
    = ( 
    lim (seq 
    ^\ k)) 
    
    proof
    
      assume
    
      
    
    A1: (seq 
    ^\ k) is 
    convergent;
    
      
    
    A2: 
    
      now
    
        let p;
    
        assume
    0  
    < p; 
    
        then
    
        consider n1 such that
    
        
    
    A3: for m st n1 
    <= m holds 
    |.(((seq
    ^\ k) 
    . m) 
    - ( 
    lim (seq 
    ^\ k))).| 
    < p by 
    A1,
    SEQ_2:def 7;
    
        take n = (n1
    + k); 
    
        let m;
    
        assume
    
        
    
    A4: n 
    <= m; 
    
        then
    
        consider l be
    Nat such that 
    
        
    
    A5: m 
    = ((n1 
    + k) 
    + l) by 
    NAT_1: 10;
    
        reconsider l as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        (m
    - k) 
    = (((n1 
    + l) 
    + k) 
    + ( 
    - k)) by 
    A5;
    
        then
    
        consider m1 such that
    
        
    
    A6: m1 
    = (m 
    - k); 
    
        now
    
          assume not n1
    <= m1; 
    
          then (m1
    + k) 
    < (n1 
    + k) by 
    XREAL_1: 6;
    
          hence contradiction by
    A4,
    A6;
    
        end;
    
        then
    
        
    
    A7: 
    |.(((seq
    ^\ k) 
    . m1) 
    - ( 
    lim (seq 
    ^\ k))).| 
    < p by 
    A3;
    
        (m1
    + k) 
    = m by 
    A6;
    
        hence
    |.((seq
    . m) 
    - ( 
    lim (seq 
    ^\ k))).| 
    < p by 
    A7,
    NAT_1:def 3;
    
      end;
    
      seq is
    convergent by 
    A1,
    Th21;
    
      hence thesis by
    A2,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:23
    
    
    
    
    
    Th23: seq is 
    convergent & ( 
    lim seq) 
    <>  
    0 implies ex k st (seq 
    ^\ k) is 
    non-zero
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    convergent and 
    
      
    
    A2: ( 
    lim seq) 
    <>  
    0 ; 
    
      consider n1 such that
    
      
    
    A3: for m st n1 
    <= m holds ( 
    |.(
    lim seq).| 
    / 2) 
    <  
    |.(seq
    . m).| by 
    A1,
    A2,
    SEQ_2: 16;
    
      take k = n1;
    
      now
    
        let n;
    
        (
    0 qua 
    Nat
    + k) 
    <= (n 
    + k) by 
    XREAL_1: 7;
    
        then (
    |.(
    lim seq).| 
    / 2) 
    <  
    |.(seq
    . (n 
    + k)).| by 
    A3;
    
        then
    
        
    
    A4: ( 
    |.(
    lim seq).| 
    / 2) 
    <  
    |.((seq
    ^\ k) 
    . n).| by 
    NAT_1:def 3;
    
        
    0  
    <  
    |.(
    lim seq).| by 
    A2,
    COMPLEX1: 47;
    
        then (
    0  
    / 2) 
    < ( 
    |.(
    lim seq).| 
    / 2); 
    
        hence ((seq
    ^\ k) 
    . n) 
    <>  
    0 by 
    A4,
    ABSVALUE: 2;
    
      end;
    
      hence thesis by
    SEQ_1: 5;
    
    end;
    
    theorem :: 
    
    SEQ_4:24
    
    seq is
    convergent & ( 
    lim seq) 
    <>  
    0 implies ex seq1 st seq1 is 
    subsequence of seq & seq1 is 
    non-zero
    
    proof
    
      assume seq is
    convergent & ( 
    lim seq) 
    <>  
    0 ; 
    
      then
    
      consider k such that
    
      
    
    A1: (seq 
    ^\ k) is 
    non-zero by 
    Th23;
    
      take (seq
    ^\ k); 
    
      thus thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:25
    
    
    
    
    
    Th25: seq is 
    constant & (r 
    in ( 
    rng seq) or ex n st (seq 
    . n) 
    = r) implies ( 
    lim seq) 
    = r 
    
    proof
    
      assume
    
      
    
    A1: seq is 
    constant;
    
      then
    
      consider r1 be
    Element of 
    REAL such that 
    
      
    
    A2: ( 
    rng seq) 
    =  
    {r1} by
    FUNCT_2: 111;
    
      
    
    A3: 
    
      now
    
        assume that
    
        
    
    A4: r 
    in ( 
    rng seq); 
    
        consider r2 be
    Element of 
    REAL such that 
    
        
    
    A5: for n be 
    Nat holds (seq 
    . n) 
    = r2 by 
    A1,
    VALUED_0:def 18;
    
        
    
        
    
    A6: r 
    = r1 by 
    A4,
    A2,
    TARSKI:def 1;
    
        reconsider zz =
    0 as 
    Nat;
    
        now
    
          let p such that
    
          
    
    A7: 
    0  
    < p; 
    
          take n = zz;
    
          let m such that n
    <= m; 
    
          m
    in  
    NAT by 
    ORDINAL1:def 12;
    
          then m
    in ( 
    dom seq) by 
    FUNCT_2:def 1;
    
          then (seq
    . m) 
    in ( 
    rng seq) by 
    FUNCT_1:def 3;
    
          then r2
    in ( 
    rng seq) by 
    A5;
    
          then r2
    = r by 
    A2,
    A6,
    TARSKI:def 1;
    
          then (seq
    . m) 
    = r by 
    A5;
    
          hence
    |.((seq
    . m) 
    - r).| 
    < p by 
    A7,
    ABSVALUE: 2;
    
        end;
    
        hence thesis by
    A1,
    SEQ_2:def 7;
    
      end;
    
      
    
    A8: 
    
      now
    
        assume that
    
        
    
    A9: ex n st (seq 
    . n) 
    = r; 
    
        consider n such that
    
        
    
    A10: (seq 
    . n) 
    = r by 
    A9;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then n
    in ( 
    dom seq) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A3,
    A10,
    FUNCT_1:def 3;
    
      end;
    
      assume r
    in ( 
    rng seq) or ex n st (seq 
    . n) 
    = r; 
    
      hence thesis by
    A3,
    A8;
    
    end;
    
    theorem :: 
    
    SEQ_4:26
    
    seq is
    constant implies for n holds ( 
    lim seq) 
    = (seq 
    . n) by 
    Th25;
    
    theorem :: 
    
    SEQ_4:27
    
    seq is
    convergent & ( 
    lim seq) 
    <>  
    0 implies for seq1 st seq1 is 
    subsequence of seq & seq1 is 
    non-zero holds ( 
    lim (seq1 
    " )) 
    = (( 
    lim seq) 
    " ) 
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    convergent and 
    
      
    
    A2: ( 
    lim seq) 
    <>  
    0 ; 
    
      let seq1 such that
    
      
    
    A3: seq1 is 
    subsequence of seq and 
    
      
    
    A4: seq1 is 
    non-zero;
    
      (
    lim seq1) 
    = ( 
    lim seq) by 
    A1,
    A3,
    Th17;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    Th16,
    SEQ_2: 22;
    
    end;
    
    ::$Canceled
    
    
    
    
    
    LmTh28: (for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r))) implies for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p 
    
    proof
    
      assume
    
      
    
    A0: for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r)); 
    
      let p such that
    
      
    
    A1: 
    0  
    < p; 
    
      consider n such that
    
      
    
    A3: n 
    > ((1 
    / p) 
    - r) by 
    Th3;
    
      take n;
    
      let m such that
    
      
    
    A2: n 
    <= m; 
    
      
    
      
    
    B0: (seq 
    . m) 
    = (1 
    / (m 
    + r)) by 
    A0;
    
      ((1
    / p) 
    - r) 
    < m by 
    A3,
    A2,
    XXREAL_0: 2;
    
      then
    
      
    
    A4: (((1 
    / p) 
    - r) 
    + r) 
    < (m 
    + r) by 
    XREAL_1: 8;
    
      then ((p
    " ) 
    " ) 
    > ((m 
    + r) 
    " ) by 
    A1,
    XREAL_1: 88;
    
      then
    
      
    
    B1: (1 
    / (m 
    + r)) 
    < p; 
    
      
    
      
    
    B2: ( 
    - p) 
    < ( 
    -  
    0 ) by 
    A1;
    
      
    0  
    <= (m 
    + r) by 
    A1,
    A4;
    
      then (
    - p) 
    < (1 
    / (m 
    + r)) by 
    B2;
    
      hence thesis by
    B0,
    B1,
    SEQ_2: 1;
    
    end;
    
    
    
    
    
    Th28: (for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r))) implies seq is 
    convergent
    
    proof
    
      assume
    
      
    
    A0: for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r)); 
    
      take
    0 ; 
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n such that
    
      
    
    A2: for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p by 
    A0,
    LmTh28;
    
      take n;
    
      thus thesis by
    A2;
    
    end;
    
    
    
    
    
    Th29: (for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r))) implies ( 
    lim seq) 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: for n holds (seq 
    . n) 
    = (1 
    / (n 
    + r)); 
    
      then
    
      
    
    A2: seq is 
    convergent by 
    Th28;
    
      for p st
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p by 
    A1,
    LmTh28;
    
      hence thesis by
    A2,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:31
    
    (for n holds (seq
    . n) 
    = (g 
    / (n 
    + r))) implies seq is 
    convergent & ( 
    lim seq) 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A2: for n holds (seq 
    . n) 
    = (g 
    / (n 
    + r)); 
    
      reconsider r1 = r as
    Real;
    
      deffunc
    
    U(
    Nat) = (1
    / ($1 
    + r1)); 
    
      consider seq1 such that
    
      
    
    A3: for n holds (seq1 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      
    
    A4: 
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus ((g
    (#) seq1) 
    . n) 
    = (g 
    * (seq1 
    . n)) by 
    SEQ_1: 9
    
        .= (g
    * (1 
    / (n 
    + r))) by 
    A3
    
        .= (g
    * (1 
    * ((n 
    + r) 
    " ))) 
    
        .= (g
    / (n 
    + r)) 
    
        .= (seq
    . n) by 
    A2;
    
      end;
    
      
    
      
    
    A5: (g 
    (#) seq1) is 
    convergent by 
    A3,
    Th28,
    SEQ_2: 7;
    
      (
    lim (g 
    (#) seq1)) 
    = (g 
    * ( 
    lim seq1)) by 
    A3,
    Th28,
    SEQ_2: 8
    
      .= (g
    *  
    0 qua 
    Nat) by
    A3,
    Th29
    
      .=
    0 ; 
    
      hence thesis by
    A5,
    A4,
    FUNCT_2: 63;
    
    end;
    
    ::$Canceled
    
    
    
    
    
    LmTh32: 
    0  
    <= r & (for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r))) implies for p st 
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p 
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    <= r and 
    
      
    
    A2: for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r)); 
    
      let p;
    
      consider k1 such that
    
      
    
    A3: (p 
    " ) 
    < k1 by 
    Th3;
    
      assume
    
      
    
    A4: 
    0  
    < p; 
    
      then
    
      
    
    A5: k1 
    >  
    0 by 
    A3;
    
      then k1
    >= (1 
    +  
    0 qua 
    Nat) by
    NAT_1: 13;
    
      then k1
    <= (k1 
    * k1) by 
    XREAL_1: 151;
    
      then
    
      
    
    A6: (k1 
    + r) 
    <= ((k1 
    * k1) 
    + r) by 
    XREAL_1: 6;
    
      take n = k1;
    
      let m such that
    
      
    
    A7: n 
    <= m; 
    
      (n
    * n) 
    <= (m 
    * m) by 
    A7,
    XREAL_1: 66;
    
      then
    
      
    
    A8: ((n 
    * n) 
    + r) 
    <= ((m 
    * m) 
    + r) by 
    XREAL_1: 6;
    
      ((p
    " ) 
    +  
    0 qua 
    Nat)
    < (k1 
    + r) by 
    A1,
    A3,
    XREAL_1: 8;
    
      then ((p
    " ) 
    +  
    0 qua 
    Nat)
    < ((k1 
    * k1) 
    + r) by 
    A6,
    XXREAL_0: 2;
    
      then (1
    / ((k1 
    * k1) 
    + r)) 
    < (1 
    / (p 
    " )) by 
    A4,
    XREAL_1: 76;
    
      then
    
      
    
    A9: (1 
    / ((k1 
    * k1) 
    + r)) 
    < (1 
    * ((p 
    " ) 
    " )); 
    
      
    0  
    < (n 
    ^2 ) by 
    A5;
    
      then (1
    / ((m 
    * m) 
    + r)) 
    <= (1 
    / ((n 
    * n) 
    + r)) by 
    A1,
    A8,
    XREAL_1: 118;
    
      then
    
      
    
    A10: (1 
    / ((m 
    * m) 
    + r)) 
    < p by 
    A9,
    XXREAL_0: 2;
    
      (seq
    . m) 
    = (1 
    / ((m 
    * m) 
    + r)) by 
    A2;
    
      hence thesis by
    A1,
    A10,
    ABSVALUE:def 1;
    
    end;
    
    
    
    
    
    Th32: 
    0  
    <= r & (for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r))) implies seq is 
    convergent
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    <= r and 
    
      
    
    A2: for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r)); 
    
      take
    0 ; 
    
      let p;
    
      assume
    0  
    < p; 
    
      then
    
      consider n such that
    
      
    
    A3: for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p by 
    A1,
    A2,
    LmTh32;
    
      take n;
    
      thus thesis by
    A3;
    
    end;
    
    
    
    
    
    Th33: 
    0  
    <= r & (for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r))) implies ( 
    lim seq) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    <= r and 
    
      
    
    A2: for n holds (seq 
    . n) 
    = (1 
    / ((n 
    * n) 
    + r)); 
    
      
    
      
    
    A3: seq is 
    convergent by 
    A1,
    A2,
    Th32;
    
      for p st
    0  
    < p holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    -  
    0 ).| 
    < p by 
    A1,
    A2,
    LmTh32;
    
      hence thesis by
    A3,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:35
    
    
    0  
    <= r & (for n holds (seq 
    . n) 
    = (g 
    / ((n 
    * n) 
    + r))) implies seq is 
    convergent & ( 
    lim seq) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    <= r and 
    
      
    
    A2: for n holds (seq 
    . n) 
    = (g 
    / ((n 
    * n) 
    + r)); 
    
      reconsider r1 = r as
    Real;
    
      deffunc
    
    U(
    Nat) = (1
    / (($1 
    * $1) 
    + r1)); 
    
      consider seq1 such that
    
      
    
    A3: for n holds (seq1 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      
    
    A4: 
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus ((g
    (#) seq1) 
    . n) 
    = (g 
    * (seq1 
    . n)) by 
    SEQ_1: 9
    
        .= (g
    * (1 
    / ((n 
    * n) 
    + r))) by 
    A3
    
        .= (g
    * (1 
    * (((n 
    * n) 
    + r) 
    " ))) 
    
        .= (g
    / ((n 
    * n) 
    + r)) 
    
        .= (seq
    . n) by 
    A2;
    
      end;
    
      
    
      
    
    A5: (g 
    (#) seq1) is 
    convergent by 
    A1,
    A3,
    Th32,
    SEQ_2: 7;
    
      (
    lim (g 
    (#) seq1)) 
    = (g 
    * ( 
    lim seq1)) by 
    A1,
    A3,
    Th32,
    SEQ_2: 8
    
      .= (g
    *  
    0 qua 
    Nat) by
    A1,
    A3,
    Th33
    
      .=
    0 ; 
    
      hence thesis by
    A5,
    A4,
    FUNCT_2: 63;
    
    end;
    
    registration
    
      cluster 
    non-decreasing
    bounded_above -> 
    convergent for 
    Real_Sequence;
    
      coherence
    
      proof
    
        let seq be
    Real_Sequence;
    
        assume that
    
        
    
    A1: seq is 
    non-decreasing and 
    
        
    
    A2: seq is 
    bounded_above;
    
        consider r2 such that
    
        
    
    A3: for n holds (seq 
    . n) 
    < r2 by 
    A2;
    
        defpred
    
    X[
    Real] means ex n st $1
    = (seq 
    . n); 
    
        consider X such that
    
        
    
    A4: for p be 
    Element of 
    REAL holds p 
    in X iff 
    X[p] from
    SUBSET_1:sch 3;
    
        
    
    A5: 
    
        now
    
          take r = r2;
    
          let p;
    
          assume p
    in X; 
    
          then ex n1 st p
    = (seq 
    . n1) by 
    A4;
    
          hence p
    <= r by 
    A3;
    
        end;
    
        
    
        
    
    A6: (ex r st for p be 
    Real st p 
    in X holds p 
    <= r) implies X is 
    bounded_above
    
        proof
    
          given r such that
    
          
    
    A7: for p be 
    Real st p 
    in X holds p 
    <= r; 
    
          take r;
    
          let p be
    ExtReal;
    
          thus thesis by
    A7;
    
        end;
    
        take g = (
    upper_bound X); 
    
        let s;
    
        assume
    
        
    
    A8: 
    0  
    < s; 
    
        (seq
    .  
    0 ) 
    in X by 
    A4;
    
        then
    
        consider p1 such that
    
        
    
    A9: p1 
    in X and 
    
        
    
    A10: (( 
    upper_bound X) 
    - s) 
    < p1 by 
    A6,
    A8,
    Def1;
    
        consider n1 such that
    
        
    
    A11: p1 
    = (seq 
    . n1) by 
    A4,
    A9;
    
        take n = n1;
    
        let m;
    
        assume n
    <= m; 
    
        then (seq
    . n) 
    <= (seq 
    . m) by 
    A1,
    SEQM_3: 6;
    
        then (g
    + ( 
    - s)) 
    < (seq 
    . m) by 
    A10,
    A11,
    XXREAL_0: 2;
    
        then
    
        
    
    A12: ( 
    - s) 
    < ((seq 
    . m) 
    - g) by 
    XREAL_1: 20;
    
        (seq
    . m) 
    in X by 
    A4;
    
        then (seq
    . m) 
    <= g by 
    A6,
    A5,
    Def1;
    
        then ((seq
    . m) 
    +  
    0 qua 
    Nat)
    < (g 
    + s) by 
    A8,
    XREAL_1: 8;
    
        then ((seq
    . m) 
    - g) 
    < s by 
    XREAL_1: 19;
    
        hence thesis by
    A12,
    SEQ_2: 1;
    
      end;
    
    end
    
    registration
    
      cluster 
    non-increasing
    bounded_below -> 
    convergent for 
    Real_Sequence;
    
      coherence
    
      proof
    
        let seq be
    Real_Sequence;
    
        assume that
    
        
    
    A1: seq is 
    non-increasing and 
    
        
    
    A2: seq is 
    bounded_below;
    
        defpred
    
    X[
    Real] means ex n st $1
    = (seq 
    . n); 
    
        consider X such that
    
        
    
    A3: for p be 
    Element of 
    REAL holds p 
    in X iff 
    X[p] from
    SUBSET_1:sch 3;
    
        take g = (
    lower_bound X); 
    
        let s;
    
        assume
    
        
    
    A4: 
    0  
    < s; 
    
        
    
        
    
    A5: (ex r st for p be 
    Real st p 
    in X holds r 
    <= p) implies X is 
    bounded_below
    
        proof
    
          given r such that
    
          
    
    A6: for p be 
    Real st p 
    in X holds r 
    <= p; 
    
          take r;
    
          let p be
    ExtReal;
    
          thus thesis by
    A6;
    
        end;
    
        (seq
    .  
    0 ) 
    in X by 
    A3;
    
        then
    
        consider p1 such that
    
        
    
    A7: p1 
    in X and 
    
        
    
    A8: p1 
    < (( 
    lower_bound X) 
    + s) by 
    A5,
    A4,
    Def2;
    
        consider n1 such that
    
        
    
    A9: p1 
    = (seq 
    . n1) by 
    A3,
    A7;
    
        take n = n1;
    
        let m;
    
        consider r1 such that
    
        
    
    A10: for n holds r1 
    < (seq 
    . n) by 
    A2;
    
        
    
    A11: 
    
        now
    
          take r = r1;
    
          let p;
    
          assume p
    in X; 
    
          then ex n1 st p
    = (seq 
    . n1) by 
    A3;
    
          hence r
    <= p by 
    A10;
    
        end;
    
        (seq
    . m) 
    in X by 
    A3;
    
        then (
    0 qua 
    Nat
    + g) 
    <= (seq 
    . m) by 
    A5,
    A11,
    Def2;
    
        then
    
        
    
    A12: 
    0  
    <= ((seq 
    . m) 
    - g) by 
    XREAL_1: 19;
    
        assume n
    <= m; 
    
        then (seq
    . m) 
    <= (seq 
    . n) by 
    A1,
    SEQM_3: 8;
    
        then (seq
    . m) 
    < (g 
    + s) by 
    A8,
    A9,
    XXREAL_0: 2;
    
        then
    
        
    
    A13: ((seq 
    . m) 
    - g) 
    < s by 
    XREAL_1: 19;
    
        (
    - s) 
    < ( 
    -  
    0 qua 
    Nat) by
    A4;
    
        hence thesis by
    A13,
    A12,
    SEQ_2: 1;
    
      end;
    
    end
    
    registration
    
      cluster 
    monotone
    bounded -> 
    convergent for 
    Real_Sequence;
    
      coherence
    
      proof
    
        let seq be
    Real_Sequence;
    
        assume that
    
        
    
    A1: seq is 
    monotone and 
    
        
    
    A2: seq is 
    bounded;
    
        
    
        
    
    A3: seq is 
    non-increasing implies thesis by 
    A2;
    
        seq is
    non-decreasing implies thesis by 
    A2;
    
        hence thesis by
    A1,
    A3,
    SEQM_3:def 5;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:36
    
    
    
    
    
    Th36: seq is 
    monotone & seq is 
    bounded implies seq is 
    convergent;
    
    theorem :: 
    
    SEQ_4:37
    
    seq is
    bounded_above & seq is 
    non-decreasing implies for n holds (seq 
    . n) 
    <= ( 
    lim seq) 
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    bounded_above and 
    
      
    
    A2: seq is 
    non-decreasing;
    
      let m;
    
      set seq1 = (
    NAT  
    --> (seq 
    . m)); 
    
      deffunc
    
    U(
    Nat) = (seq
    . ($1 
    + m)); 
    
      consider seq2 such that
    
      
    
    A3: for n holds (seq2 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      
    
    A4: 
    
      now
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (seq1
    . n) 
    = (seq 
    . m) & (seq2 
    . n) 
    = (seq 
    . (m 
    + n)) by 
    A3,
    FUNCOP_1: 7;
    
        hence (seq1
    . n) 
    <= (seq2 
    . n) by 
    A2,
    SEQM_3: 5;
    
      end;
    
      (seq1
    .  
    0 ) 
    = (seq 
    . m); 
    
      then
    
      
    
    A5: ( 
    lim seq1) 
    = (seq 
    . m) by 
    Th25;
    
      for n be
    Nat holds (seq2 
    . n) 
    =  
    U(n) by
    A3;
    
      then
    
      
    
    A6: seq2 
    = (seq 
    ^\ m) by 
    NAT_1:def 3;
    
      then (
    lim seq2) 
    = ( 
    lim seq) by 
    A1,
    A2,
    Th17;
    
      hence thesis by
    A1,
    A2,
    A5,
    A6,
    A4,
    SEQ_2: 18;
    
    end;
    
    theorem :: 
    
    SEQ_4:38
    
    seq is
    bounded_below & seq is 
    non-increasing implies for n holds ( 
    lim seq) 
    <= (seq 
    . n) 
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    bounded_below and 
    
      
    
    A2: seq is 
    non-increasing;
    
      let m;
    
      set seq1 = (
    NAT  
    --> (seq 
    . m)); 
    
      deffunc
    
    U(
    Nat) = (seq
    . ($1 
    + m)); 
    
      consider seq2 such that
    
      
    
    A3: for n holds (seq2 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      
    
    A4: 
    
      now
    
        let n;
    
        n
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (seq1
    . n) 
    = (seq 
    . m) & (seq2 
    . n) 
    = (seq 
    . (m 
    + n)) by 
    A3,
    FUNCOP_1: 7;
    
        hence (seq2
    . n) 
    <= (seq1 
    . n) by 
    A2,
    SEQM_3: 7;
    
      end;
    
      (seq1
    .  
    0 ) 
    = (seq 
    . m); 
    
      then
    
      
    
    A5: ( 
    lim seq1) 
    = (seq 
    . m) by 
    Th25;
    
      for n be
    Nat holds (seq2 
    . n) 
    =  
    U(n) by
    A3;
    
      then
    
      
    
    A6: seq2 
    = (seq 
    ^\ m) by 
    NAT_1:def 3;
    
      then (
    lim seq2) 
    = ( 
    lim seq) by 
    A1,
    A2,
    Th17;
    
      hence thesis by
    A1,
    A2,
    A5,
    A6,
    A4,
    SEQ_2: 18;
    
    end;
    
    theorem :: 
    
    SEQ_4:39
    
    
    
    
    
    Th39: for seq holds ex Nseq st (seq 
    * Nseq) is 
    monotone
    
    proof
    
      let seq;
    
      defpred
    
    X[
    Nat] means for m st $1
    < m holds (seq 
    . $1) 
    < (seq 
    . m); 
    
      consider XN be
    Subset of 
    NAT such that 
    
      
    
    A1: for n be 
    Element of 
    NAT holds n 
    in XN iff 
    X[n] from
    SUBSET_1:sch 3;
    
      
    
    A2: 
    
      now
    
        given k1 such that
    
        
    
    A3: for n st n 
    in XN holds n 
    <= k1; 
    
        set seq1 = (seq
    ^\ (1 
    + k1)); 
    
        defpred
    
    P[
    set, 
    set, 
    set] means for k, l st k
    = $2 & l 
    = $3 holds k 
    < l & (seq1 
    . l) 
    <= (seq1 
    . k) & for m st k 
    < m & (seq1 
    . m) 
    <= (seq1 
    . k) holds l 
    <= m; 
    
        
    
    A4: 
    
        now
    
          let k;
    
          
    
          
    
    A5: k 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          assume k1
    < k; 
    
          then not k
    in XN by 
    A3;
    
          then
    
          consider m such that
    
          
    
    A6: k 
    < m and 
    
          
    
    A7: not (seq 
    . k) 
    < (seq 
    . m) by 
    A1,
    A5;
    
          take n = m;
    
          thus k
    < n by 
    A6;
    
          thus (seq
    . n) 
    <= (seq 
    . k) by 
    A7;
    
        end;
    
        
    
    A8: 
    
        now
    
          let k;
    
          (
    0 qua 
    Nat
    + k1) 
    < ((k 
    + 1) 
    + k1) by 
    XREAL_1: 8;
    
          then
    
          consider n such that
    
          
    
    A9: ((k 
    + 1) 
    + k1) 
    < n and 
    
          
    
    A10: (seq 
    . n) 
    <= (seq 
    . ((k 
    + 1) 
    + k1)) by 
    A4;
    
          consider m be
    Nat such that 
    
          
    
    A11: n 
    = (((k 
    + 1) 
    + k1) 
    + m) by 
    A9,
    NAT_1: 10;
    
          reconsider m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (n
    - (1 
    + k1)) 
    = ((k 
    +  
    0 qua 
    Nat)
    + m) by 
    A11;
    
          then
    
          consider n1 be
    Element of 
    NAT such that 
    
          
    
    A12: n1 
    = (n 
    - (1 
    + k1)); 
    
          (seq
    . n) 
    <= (seq 
    . (k 
    + (1 
    + k1))) by 
    A10;
    
          then
    
          
    
    A13: (seq 
    . n) 
    <= (seq1 
    . k) by 
    NAT_1:def 3;
    
          take l = n1;
    
          now
    
            assume not k
    < l; 
    
            then ((n
    - (1 
    + k1)) 
    + (1 
    + k1)) 
    <= (k 
    + (1 
    + k1)) by 
    A12,
    XREAL_1: 6;
    
            hence contradiction by
    A9;
    
          end;
    
          hence k
    < l; 
    
          n
    = (l 
    + (1 
    + k1)) by 
    A12;
    
          hence (seq1
    . l) 
    <= (seq1 
    . k) by 
    A13,
    NAT_1:def 3;
    
        end;
    
        
    
        
    
    A14: for n be 
    Nat holds for x be 
    Element of 
    NAT holds ex y be 
    Element of 
    NAT st 
    P[n, x, y]
    
        proof
    
          let n be
    Nat, x be 
    Element of 
    NAT ; 
    
          defpred
    
    X[
    Nat] means x
    < $1 & (seq1 
    . $1) 
    <= (seq1 
    . x); 
    
          ex n be
    Element of 
    NAT st 
    X[n] by
    A8;
    
          then
    
          
    
    A15: ex n be 
    Nat st 
    X[n];
    
          ex l be
    Nat st 
    X[l] & for m be
    Nat st 
    X[m] holds l
    <= m from 
    NAT_1:sch 5(
    A15);
    
          then
    
          consider l be
    Nat such that 
    
          
    
    A16: x 
    < l & (seq1 
    . l) 
    <= (seq1 
    . x) & for m be 
    Nat st x 
    < m & (seq1 
    . m) 
    <= (seq1 
    . x) holds l 
    <= m; 
    
          take l;
    
          l
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A16;
    
        end;
    
        consider f be
    sequence of 
    NAT such that (f 
    .  
    0 ) 
    =  
    0 and 
    
        
    
    A17: for n be 
    Nat holds 
    P[n, (f
    . n), (f 
    . (n 
    + 1))] from 
    RECDEF_1:sch 2(
    A14);
    
        
    
        
    
    A18: ( 
    dom f) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        (
    rng f) 
    c=  
    REAL ; 
    
        then
    
        reconsider f as
    Real_Sequence by 
    A18,
    RELSET_1: 4;
    
        for n holds (f
    . n) 
    < (f 
    . (n 
    + 1)) by 
    A17;
    
        then
    
        reconsider f as
    increasing  
    sequence of 
    NAT by 
    SEQM_3:def 6;
    
        consider Nseq such that
    
        
    
    A19: seq1 
    = (seq 
    * Nseq) by 
    VALUED_0:def 17;
    
        reconsider Nseq1 = (Nseq
    * f) as 
    increasing  
    sequence of 
    NAT ; 
    
        take Nseq1;
    
        now
    
          let n;
    
          
    
          
    
    A20: n 
    in  
    NAT & (n 
    + 1) 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          (seq1
    . (f 
    . (n 
    + 1))) 
    <= (seq1 
    . (f 
    . n)) by 
    A17;
    
          then ((seq1
    * f) 
    . (n 
    + 1)) 
    <= (seq1 
    . (f 
    . n)) by 
    FUNCT_2: 15;
    
          then (((seq
    * Nseq) 
    * f) 
    . (n 
    + 1)) 
    <= ((seq1 
    * f) 
    . n) by 
    A19,
    FUNCT_2: 15,
    A20;
    
          then ((seq
    * Nseq1) 
    . (n 
    + 1)) 
    <= (((seq 
    * Nseq) 
    * f) 
    . n) by 
    A19,
    RELAT_1: 36;
    
          hence ((seq
    * Nseq1) 
    . (n 
    + 1)) 
    <= ((seq 
    * Nseq1) 
    . n) by 
    RELAT_1: 36;
    
        end;
    
        then (seq
    * Nseq1) is 
    non-increasing;
    
        hence (seq
    * Nseq1) is 
    monotone by 
    SEQM_3:def 5;
    
      end;
    
      now
    
        defpred
    
    P[
    set, 
    set, 
    set] means for k,l be
    Element of 
    NAT st k 
    = $2 & l 
    = $3 holds l 
    in XN & k 
    < l & for m st m 
    in XN & k 
    < m holds l 
    <= m; 
    
        assume
    
        
    
    A21: for l holds ex n st n 
    in XN & not n 
    <= l; 
    
        then
    
        consider n1 such that
    
        
    
    A22: n1 
    in XN and not n1 
    <=  
    0 ; 
    
        reconsider O9 = n1 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A23: for n be 
    Nat holds for x be 
    Element of 
    NAT holds ex y be 
    Element of 
    NAT st 
    P[n, x, y]
    
        proof
    
          let n be
    Nat, x be 
    Element of 
    NAT ; 
    
          defpred
    
    X[
    Nat] means $1
    in XN & x 
    < $1; 
    
          ex n be
    Nat st 
    X[n] by
    A21;
    
          then ex n be
    Element of 
    NAT st 
    X[n];
    
          then
    
          
    
    A24: ex n be 
    Nat st 
    X[n];
    
          ex l be
    Nat st 
    X[l] & for m be
    Nat st 
    X[m] holds l
    <= m from 
    NAT_1:sch 5(
    A24);
    
          then
    
          consider l be
    Nat such that 
    
          
    
    A25: l 
    in XN & x 
    < l & for m be 
    Nat st m 
    in XN & x 
    < m holds l 
    <= m; 
    
          reconsider l as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          take l;
    
          thus thesis by
    A25;
    
        end;
    
        consider f be
    sequence of 
    NAT such that 
    
        
    
    A26: (f 
    .  
    0 ) 
    = O9 and 
    
        
    
    A27: for n be 
    Nat holds 
    P[n, (f
    . n), (f 
    . (n 
    + 1))] from 
    RECDEF_1:sch 2(
    A23);
    
        
    
        
    
    A28: ( 
    dom f) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        (
    rng f) 
    c=  
    REAL ; 
    
        then
    
        reconsider f as
    Real_Sequence by 
    A28,
    RELSET_1: 4;
    
        
    
        
    
    A29: for n holds n is 
    Element of 
    NAT & (f 
    . n) is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        
    
    A30: 
    
        now
    
          let n;
    
          (f
    . n) is 
    Element of 
    NAT & (f 
    . (n 
    + 1)) is 
    Element of 
    NAT by 
    A29;
    
          hence (f
    . n) 
    < (f 
    . (n 
    + 1)) by 
    A27;
    
        end;
    
        
    
    A31: 
    
        now
    
          defpred
    
    X[
    Nat] means (f
    . $1) 
    in XN; 
    
          let n;
    
          
    
    A32: 
    
          now
    
            let k such that
    X[k];
    
            (f
    . k) is 
    Element of 
    NAT & (f 
    . (k 
    + 1)) is 
    Element of 
    NAT by 
    A29;
    
            hence
    X[(k
    + 1)] by 
    A27;
    
          end;
    
          
    
          
    
    A33: 
    X[
    0 ] by 
    A22,
    A26;
    
          thus for n holds
    X[n] from
    NAT_1:sch 2(
    A33,
    A32);
    
        end;
    
        reconsider f as
    increasing  
    sequence of 
    NAT by 
    A30,
    SEQM_3:def 6;
    
        take Nseq = f;
    
        now
    
          let n;
    
          
    
          
    
    A34: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          (Nseq
    . n) 
    in XN & (Nseq 
    . n) 
    < (Nseq 
    . (n 
    + 1)) by 
    A31,
    A30;
    
          then (seq
    . (Nseq 
    . n)) 
    < (seq 
    . (Nseq 
    . (n 
    + 1))) by 
    A1;
    
          then ((seq
    * Nseq) 
    . n) 
    < (seq 
    . (Nseq 
    . (n 
    + 1))) by 
    FUNCT_2: 15,
    A34;
    
          hence ((seq
    * Nseq) 
    . n) 
    < ((seq 
    * Nseq) 
    . (n 
    + 1)) by 
    FUNCT_2: 15;
    
        end;
    
        then (seq
    * Nseq) is 
    increasing;
    
        hence (seq
    * Nseq) is 
    monotone by 
    SEQM_3:def 5;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    ::$Notion-Name
    
    theorem :: 
    
    SEQ_4:40
    
    
    
    
    
    Th40: seq is 
    bounded implies ex seq1 st seq1 is 
    subsequence of seq & seq1 is 
    convergent
    
    proof
    
      assume
    
      
    
    A1: seq is 
    bounded;
    
      consider Nseq such that
    
      
    
    A2: (seq 
    * Nseq) is 
    monotone by 
    Th39;
    
      take seq1 = (seq
    * Nseq); 
    
      thus seq1 is
    subsequence of seq; 
    
      thus thesis by
    A1,
    A2,
    Th36,
    SEQM_3: 29;
    
    end;
    
    ::$Notion-Name
    
    theorem :: 
    
    SEQ_4:41
    
    seq is
    convergent iff for s st 
    0  
    < s holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - (seq 
    . n)).| 
    < s 
    
    proof
    
      thus seq is
    convergent implies for s st 
    0  
    < s holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - (seq 
    . n)).| 
    < s 
    
      proof
    
        assume seq is
    convergent;
    
        then
    
        consider g1 such that
    
        
    
    A1: for s st 
    0  
    < s holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < s; 
    
        let s;
    
        assume
    0  
    < s; 
    
        then
    
        consider n1 such that
    
        
    
    A2: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - g1).| 
    < (s 
    / 2) by 
    A1;
    
        take n = n1;
    
        let m;
    
        assume n
    <= m; 
    
        then
    
        
    
    A3: 
    |.((seq
    . m) 
    - g1).| 
    < (s 
    / 2) by 
    A2;
    
        
    
        
    
    A4: 
    |.(((seq
    . m) 
    - g1) 
    + (g1 
    - (seq 
    . n))).| 
    <= ( 
    |.((seq
    . m) 
    - g1).| 
    +  
    |.(g1
    - (seq 
    . n)).|) by 
    COMPLEX1: 56;
    
        
    |.((seq
    . n) 
    - g1).| 
    < (s 
    / 2) by 
    A2;
    
        then
    |.(
    - (g1 
    - (seq 
    . n))).| 
    < (s 
    / 2); 
    
        then
    |.(g1
    - (seq 
    . n)).| 
    < (s 
    / 2) by 
    COMPLEX1: 52;
    
        then (
    |.((seq
    . m) 
    - g1).| 
    +  
    |.(g1
    - (seq 
    . n)).|) 
    < ((s 
    / 2) 
    + (s 
    / 2)) by 
    A3,
    XREAL_1: 8;
    
        hence thesis by
    A4,
    XXREAL_0: 2;
    
      end;
    
      assume
    
      
    
    A5: for s st 
    0  
    < s holds ex n st for m st n 
    <= m holds 
    |.((seq
    . m) 
    - (seq 
    . n)).| 
    < s; 
    
      then
    
      consider n1 such that
    
      
    
    A6: for m st n1 
    <= m holds 
    |.((seq
    . m) 
    - (seq 
    . n1)).| 
    < 1; 
    
      consider r1 such that
    
      
    
    A7: 
    0  
    < r1 and 
    
      
    
    A8: for m st m 
    <= n1 holds 
    |.(seq
    . m).| 
    < r1 by 
    SEQ_2: 4;
    
      now
    
        take r = ((r1
    +  
    |.(seq
    . n1).|) 
    + 1); 
    
        (
    0 qua 
    Nat
    +  
    0 qua 
    Nat)
    < (r1 
    +  
    |.(seq
    . n1).|) by 
    A7,
    COMPLEX1: 46,
    XREAL_1: 8;
    
        hence
    0  
    < r; 
    
        let m;
    
        
    
    A9: 
    
        now
    
          assume n1
    <= m; 
    
          then
    
          
    
    A10: 
    |.((seq
    . m) 
    - (seq 
    . n1)).| 
    < 1 by 
    A6;
    
          (
    |.(seq
    . m).| 
    -  
    |.(seq
    . n1).|) 
    <=  
    |.((seq
    . m) 
    - (seq 
    . n1)).| by 
    COMPLEX1: 59;
    
          then (
    |.(seq
    . m).| 
    -  
    |.(seq
    . n1).|) 
    < 1 by 
    A10,
    XXREAL_0: 2;
    
          then ((
    |.(seq
    . m).| 
    -  
    |.(seq
    . n1).|) 
    +  
    |.(seq
    . n1).|) 
    < (1 
    +  
    |.(seq
    . n1).|) by 
    XREAL_1: 6;
    
          then (
    0 qua 
    Nat
    +  
    |.(seq
    . m).|) 
    < (r1 
    + ( 
    |.(seq
    . n1).| 
    + 1)) by 
    A7,
    XREAL_1: 8;
    
          hence
    |.(seq
    . m).| 
    < r; 
    
        end;
    
        now
    
          assume m
    <= n1; 
    
          then
    |.(seq
    . m).| 
    < r1 by 
    A8;
    
          then (
    |.(seq
    . m).| 
    +  
    0 qua 
    Nat)
    < (r1 
    +  
    |.(seq
    . n1).|) by 
    COMPLEX1: 46,
    XREAL_1: 8;
    
          hence
    |.(seq
    . m).| 
    < r by 
    XREAL_1: 8;
    
        end;
    
        hence
    |.(seq
    . m).| 
    < r by 
    A9;
    
      end;
    
      then seq is
    bounded by 
    SEQ_2: 3;
    
      then
    
      consider seq1 such that
    
      
    
    A11: seq1 is 
    subsequence of seq and 
    
      
    
    A12: seq1 is 
    convergent by 
    Th40;
    
      consider g1 such that
    
      
    
    A13: for s st 
    0  
    < s holds ex n st for m st n 
    <= m holds 
    |.((seq1
    . m) 
    - g1).| 
    < s by 
    A12;
    
      take g1;
    
      let s;
    
      assume
    
      
    
    A14: 
    0  
    < s; 
    
      then
    
      consider n1 such that
    
      
    
    A15: for m st n1 
    <= m holds 
    |.((seq1
    . m) 
    - g1).| 
    < (s 
    / 3) by 
    A13;
    
      consider n2 such that
    
      
    
    A16: for m st n2 
    <= m holds 
    |.((seq
    . m) 
    - (seq 
    . n2)).| 
    < (s 
    / 3) by 
    A5,
    A14;
    
      take n = (n1
    + n2); 
    
      let m such that
    
      
    
    A17: n 
    <= m; 
    
      consider Nseq such that
    
      
    
    A18: seq1 
    = (seq 
    * Nseq) by 
    A11,
    VALUED_0:def 17;
    
      
    
      
    
    A19: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      n1
    <= n by 
    NAT_1: 12;
    
      then n1
    <= m by 
    A17,
    XXREAL_0: 2;
    
      then
    |.(((seq
    * Nseq) 
    . m) 
    - g1).| 
    < (s 
    / 3) by 
    A18,
    A15;
    
      then
    
      
    
    A20: 
    |.((seq
    . (Nseq 
    . m)) 
    - g1).| 
    < (s 
    / 3) by 
    FUNCT_2: 15,
    A19;
    
      n2
    <= n by 
    NAT_1: 12;
    
      then
    
      
    
    A21: n2 
    <= m by 
    A17,
    XXREAL_0: 2;
    
      m
    <= (Nseq 
    . m) by 
    SEQM_3: 14;
    
      then n2
    <= (Nseq 
    . m) by 
    A21,
    XXREAL_0: 2;
    
      then
    |.((seq
    . (Nseq 
    . m)) 
    - (seq 
    . n2)).| 
    < (s 
    / 3) by 
    A16;
    
      then
    |.(
    - ((seq 
    . n2) 
    - (seq 
    . (Nseq 
    . m)))).| 
    < (s 
    / 3); 
    
      then
    
      
    
    A22: 
    |.((seq
    . n2) 
    - (seq 
    . (Nseq 
    . m))).| 
    < (s 
    / 3) by 
    COMPLEX1: 52;
    
      
    |.((seq
    . m) 
    - (seq 
    . n2)).| 
    < (s 
    / 3) by 
    A16,
    A21;
    
      then
    
      
    
    A23: ( 
    |.((seq
    . m) 
    - (seq 
    . n2)).| 
    +  
    |.((seq
    . n2) 
    - (seq 
    . (Nseq 
    . m))).|) 
    < ((s 
    / 3) 
    + (s 
    / 3)) by 
    A22,
    XREAL_1: 8;
    
      
    |.(((seq
    . m) 
    - (seq 
    . n2)) 
    + ((seq 
    . n2) 
    - (seq 
    . (Nseq 
    . m)))).| 
    <= ( 
    |.((seq
    . m) 
    - (seq 
    . n2)).| 
    +  
    |.((seq
    . n2) 
    - (seq 
    . (Nseq 
    . m))).|) by 
    COMPLEX1: 56;
    
      then
    |.((seq
    . m) 
    - (seq 
    . (Nseq 
    . m))).| 
    < ((s 
    / 3) 
    + (s 
    / 3)) by 
    A23,
    XXREAL_0: 2;
    
      then
    
      
    
    A24: ( 
    |.((seq
    . m) 
    - (seq 
    . (Nseq 
    . m))).| 
    +  
    |.((seq
    . (Nseq 
    . m)) 
    - g1).|) 
    < (((s 
    / 3) 
    + (s 
    / 3)) 
    + (s 
    / 3)) by 
    A20,
    XREAL_1: 8;
    
      
    |.(((seq
    . m) 
    - (seq 
    . (Nseq 
    . m))) 
    + ((seq 
    . (Nseq 
    . m)) 
    - g1)).| 
    <= ( 
    |.((seq
    . m) 
    - (seq 
    . (Nseq 
    . m))).| 
    +  
    |.((seq
    . (Nseq 
    . m)) 
    - g1).|) by 
    COMPLEX1: 56;
    
      hence thesis by
    A24,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    SEQ_4:42
    
    seq is
    constant & seq1 is 
    convergent implies ( 
    lim (seq 
    + seq1)) 
    = ((seq 
    .  
    0 ) 
    + ( 
    lim seq1)) & ( 
    lim (seq 
    - seq1)) 
    = ((seq 
    .  
    0 ) 
    - ( 
    lim seq1)) & ( 
    lim (seq1 
    - seq)) 
    = (( 
    lim seq1) 
    - (seq 
    .  
    0 )) & ( 
    lim (seq 
    (#) seq1)) 
    = ((seq 
    .  
    0 ) 
    * ( 
    lim seq1)) 
    
    proof
    
      assume that
    
      
    
    A1: seq is 
    constant and 
    
      
    
    A2: seq1 is 
    convergent;
    
      
    
      thus (
    lim (seq 
    + seq1)) 
    = (( 
    lim seq) 
    + ( 
    lim seq1)) by 
    A1,
    A2,
    SEQ_2: 6
    
      .= ((seq
    .  
    0 ) 
    + ( 
    lim seq1)) by 
    A1,
    Th25;
    
      
    
      thus (
    lim (seq 
    - seq1)) 
    = (( 
    lim seq) 
    - ( 
    lim seq1)) by 
    A1,
    A2,
    SEQ_2: 12
    
      .= ((seq
    .  
    0 ) 
    - ( 
    lim seq1)) by 
    A1,
    Th25;
    
      
    
      thus (
    lim (seq1 
    - seq)) 
    = (( 
    lim seq1) 
    - ( 
    lim seq)) by 
    A1,
    A2,
    SEQ_2: 12
    
      .= ((
    lim seq1) 
    - (seq 
    .  
    0 )) by 
    A1,
    Th25;
    
      
    
      thus (
    lim (seq 
    (#) seq1)) 
    = (( 
    lim seq) 
    * ( 
    lim seq1)) by 
    A1,
    A2,
    SEQ_2: 15
    
      .= ((seq
    .  
    0 ) 
    * ( 
    lim seq1)) by 
    A1,
    Th25;
    
    end;
    
    begin
    
    theorem :: 
    
    SEQ_4:43
    
    
    
    
    
    Th43: for X be non 
    empty
    real-membered  
    set holds for t st for s st s 
    in X holds s 
    >= t holds ( 
    lower_bound X) 
    >= t 
    
    proof
    
      let X be non
    empty
    real-membered  
    set;
    
      set r = (
    lower_bound X); 
    
      let t;
    
      assume
    
      
    
    A1: for s st s 
    in X holds s 
    >= t; 
    
      set s = (t
    - r); 
    
      assume r
    < t; 
    
      then
    
      
    
    A2: s 
    >  
    0 by 
    XREAL_1: 50;
    
      X is
    bounded_below
    
      proof
    
        take t;
    
        let s be
    ExtReal;
    
        thus thesis by
    A1;
    
      end;
    
      then ex t9 be
    Real st t9 
    in X & t9 
    < (r 
    + s) by 
    A2,
    Def2;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:44
    
    
    
    
    
    Th44: for X be non 
    empty
    real-membered  
    set st (for s st s 
    in X holds s 
    >= r) & for t st for s st s 
    in X holds s 
    >= t holds r 
    >= t holds r 
    = ( 
    lower_bound X) by 
    Lm1;
    
    theorem :: 
    
    SEQ_4:45
    
    
    
    
    
    Th45: for X be non 
    empty
    real-membered  
    set, r holds for t st for s st s 
    in X holds s 
    <= t holds ( 
    upper_bound X) 
    <= t 
    
    proof
    
      let X be non
    empty
    real-membered  
    set, r; 
    
      set r = (
    upper_bound X); 
    
      let t;
    
      assume
    
      
    
    A1: for s st s 
    in X holds s 
    <= t; 
    
      set s = (r
    - t); 
    
      assume r
    > t; 
    
      then
    
      
    
    A2: s 
    >  
    0 by 
    XREAL_1: 50;
    
      X is
    bounded_above
    
      proof
    
        take t;
    
        let s be
    ExtReal;
    
        thus thesis by
    A1;
    
      end;
    
      then ex t9 be
    Real st t9 
    in X & (r 
    - s) 
    < t9 by 
    A2,
    Def1;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:46
    
    
    
    
    
    Th46: for X be non 
    empty
    real-membered  
    set, r st (for s st s 
    in X holds s 
    <= r) & for t st for s st s 
    in X holds s 
    <= t holds r 
    <= t holds r 
    = ( 
    upper_bound X) by 
    Lm2;
    
    theorem :: 
    
    SEQ_4:47
    
    for X be non
    empty
    real-membered  
    set, Y be 
    real-membered  
    set st X 
    c= Y & Y is 
    bounded_below holds ( 
    lower_bound Y) 
    <= ( 
    lower_bound X) 
    
    proof
    
      let X be non
    empty
    real-membered  
    set, Y be 
    real-membered  
    set;
    
      assume X
    c= Y & Y is 
    bounded_below;
    
      then t
    in X implies t 
    >= ( 
    lower_bound Y) by 
    Def2;
    
      hence thesis by
    Th43;
    
    end;
    
    theorem :: 
    
    SEQ_4:48
    
    for X be non
    empty
    real-membered  
    set, Y be 
    real-membered  
    set st X 
    c= Y & Y is 
    bounded_above holds ( 
    upper_bound X) 
    <= ( 
    upper_bound Y) 
    
    proof
    
      let X be non
    empty
    real-membered  
    set, Y be 
    real-membered  
    set;
    
      assume X
    c= Y & Y is 
    bounded_above;
    
      then t
    in X implies t 
    <= ( 
    upper_bound Y) by 
    Def1;
    
      hence thesis by
    Th45;
    
    end;
    
    definition
    
      let A be non
    empty
    natural-membered  
    set;
    
      :: original:
    min
    
      redefine
    
      func
    
    min A -> 
    Element of 
    NAT ; 
    
      coherence by
    ORDINAL1:def 12;
    
    end
    
    begin
    
    reserve k,n for
    Nat, 
    
r,r9,r1,r2 for
    Real, 
    
c,c9,c1,c2,c3 for
    Element of 
    COMPLEX ; 
    
    theorem :: 
    
    SEQ_4:49
    
    
    0c  
    is_a_unity_wrt  
    addcomplex by 
    BINOP_2: 1,
    SETWISEO: 14;
    
    theorem :: 
    
    SEQ_4:50
    
    
    
    
    
    Th50: 
    compcomplex  
    is_an_inverseOp_wrt  
    addcomplex  
    
    proof
    
      let c;
    
      
    
      thus (
    addcomplex  
    . (c,( 
    compcomplex  
    . c))) 
    = (c 
    + ( 
    compcomplex  
    . c)) by 
    BINOP_2:def 3
    
      .= (c
    + ( 
    - c)) by 
    BINOP_2:def 1
    
      .= (
    the_unity_wrt  
    addcomplex ) by 
    BINOP_2: 1;
    
      
    
      thus (
    addcomplex  
    . (( 
    compcomplex  
    . c),c)) 
    = (( 
    compcomplex  
    . c) 
    + c) by 
    BINOP_2:def 3
    
      .= ((
    - c) 
    + c) by 
    BINOP_2:def 1
    
      .= (
    the_unity_wrt  
    addcomplex ) by 
    BINOP_2: 1;
    
    end;
    
    theorem :: 
    
    SEQ_4:51
    
    
    
    
    
    Th51: 
    addcomplex is 
    having_an_inverseOp by 
    Th50;
    
    theorem :: 
    
    SEQ_4:52
    
    
    
    
    
    Th52: ( 
    the_inverseOp_wrt  
    addcomplex ) 
    =  
    compcomplex by 
    Th50,
    Th51,
    FINSEQOP:def 3;
    
    definition
    
      :: original:
    diffcomplex
    
      redefine
    
      :: 
    
    SEQ_4:def3
    
      func
    
    diffcomplex equals ( 
    addcomplex  
    * (( 
    id  
    COMPLEX ), 
    compcomplex )); 
    
      compatibility
    
      proof
    
        let b be
    BinOp of 
    COMPLEX ; 
    
        now
    
          let c1, c2;
    
          
    
          thus (
    diffcomplex  
    . (c1,c2)) 
    = (c1 
    - c2) by 
    BINOP_2:def 4
    
          .= (c1
    + ( 
    - c2)) 
    
          .= (
    addcomplex  
    . (c1,( 
    - c2))) by 
    BINOP_2:def 3
    
          .= (
    addcomplex  
    . (c1,( 
    compcomplex  
    . c2))) by 
    BINOP_2:def 1
    
          .= ((
    addcomplex  
    * (( 
    id  
    COMPLEX ), 
    compcomplex )) 
    . (c1,c2)) by 
    FINSEQOP: 82;
    
        end;
    
        hence thesis by
    BINOP_1: 2;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:53
    
    
    1r  
    is_a_unity_wrt  
    multcomplex by 
    BINOP_2: 6,
    SETWISEO: 14;
    
    theorem :: 
    
    SEQ_4:54
    
    
    
    
    
    Th54: 
    multcomplex  
    is_distributive_wrt  
    addcomplex  
    
    proof
    
      now
    
        let c1, c2, c3;
    
        
    
        thus (
    multcomplex  
    . (c1,( 
    addcomplex  
    . (c2,c3)))) 
    = ( 
    multcomplex  
    . (c1,(c2 
    + c3))) by 
    BINOP_2:def 3
    
        .= (c1
    * (c2 
    + c3)) by 
    BINOP_2:def 5
    
        .= ((c1
    * c2) 
    + (c1 
    * c3)) 
    
        .= (
    addcomplex  
    . ((c1 
    * c2),(c1 
    * c3))) by 
    BINOP_2:def 3
    
        .= (
    addcomplex  
    . (( 
    multcomplex  
    . (c1,c2)),(c1 
    * c3))) by 
    BINOP_2:def 5
    
        .= (
    addcomplex  
    . (( 
    multcomplex  
    . (c1,c2)),( 
    multcomplex  
    . (c1,c3)))) by 
    BINOP_2:def 5;
    
        
    
        thus (
    multcomplex  
    . (( 
    addcomplex  
    . (c1,c2)),c3)) 
    = ( 
    multcomplex  
    . ((c1 
    + c2),c3)) by 
    BINOP_2:def 3
    
        .= ((c1
    + c2) 
    * c3) by 
    BINOP_2:def 5
    
        .= ((c1
    * c3) 
    + (c2 
    * c3)) 
    
        .= (
    addcomplex  
    . ((c1 
    * c3),(c2 
    * c3))) by 
    BINOP_2:def 3
    
        .= (
    addcomplex  
    . (( 
    multcomplex  
    . (c1,c3)),(c2 
    * c3))) by 
    BINOP_2:def 5
    
        .= (
    addcomplex  
    . (( 
    multcomplex  
    . (c1,c3)),( 
    multcomplex  
    . (c2,c3)))) by 
    BINOP_2:def 5;
    
      end;
    
      hence thesis by
    BINOP_1: 11;
    
    end;
    
    definition
    
      let c be
    Complex;
    
      :: 
    
    SEQ_4:def4
    
      func c
    
    multcomplex -> 
    UnOp of 
    COMPLEX equals ( 
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))); 
    
      coherence
    
      proof
    
        reconsider c9 = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
        (
    multcomplex  
    [;] (c9,( 
    id  
    COMPLEX ))) is 
    UnOp of 
    COMPLEX ; 
    
        hence thesis;
    
      end;
    
    end
    
    
    
    
    
    Lm3: (( 
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) 
    . c9) 
    = (c 
    * c9) 
    
    proof
    
      
    
      thus ((
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) 
    . c9) 
    = ( 
    multcomplex  
    . (c,(( 
    id  
    COMPLEX ) 
    . c9))) by 
    FUNCOP_1: 53
    
      .= (
    multcomplex  
    . (c,c9)) 
    
      .= (c
    * c9) by 
    BINOP_2:def 5;
    
    end;
    
    theorem :: 
    
    SEQ_4:55
    
    ((c
    multcomplex ) 
    . c9) 
    = (c 
    * c9) by 
    Lm3;
    
    theorem :: 
    
    SEQ_4:56
    
    (c
    multcomplex ) 
    is_distributive_wrt  
    addcomplex by 
    Th54,
    FINSEQOP: 54;
    
    definition
    
      :: 
    
    SEQ_4:def5
    
      func
    
    abscomplex -> 
    Function of 
    COMPLEX , 
    REAL means 
    
      :
    
    Def5: for c holds (it 
    . c) 
    =  
    |.c.|;
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of 
    COMPLEX ) = ( 
    In ( 
    |.$1.|,
    REAL )); 
    
        consider F be
    Function of 
    COMPLEX , 
    REAL such that 
    
        
    
    A1: for c holds (F 
    . c) 
    =  
    F(c) from
    FUNCT_2:sch 4;
    
        take F;
    
        let c;
    
        
    
        thus (F
    . c) 
    =  
    F(c) by
    A1
    
        .=
    |.c.|;
    
      end;
    
      uniqueness from
    BINOP_2:sch 1;
    
    end
    
    reserve z,z1,z2 for
    FinSequence of 
    COMPLEX ; 
    
    definition
    
      let z1, z2;
    
      :: original:
    +
    
      redefine
    
      :: 
    
    SEQ_4:def6
    
      func z1
    
    + z2 -> 
    FinSequence of 
    COMPLEX equals ( 
    addcomplex  
    .: (z1,z2)); 
    
      coherence
    
      proof
    
        thus (
    rng (z1 
    + z2)) 
    c=  
    COMPLEX ; 
    
      end;
    
      compatibility
    
      proof
    
        set g = (
    addcomplex  
    .: (z1,z2)); 
    
        (
    dom  
    addcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    [:(
    rng z1), ( 
    rng z2):] 
    c= ( 
    dom  
    addcomplex ) by 
    ZFMISC_1: 96;
    
        then
    
        
    
    A1: ( 
    dom (z1 
    + z2)) 
    = (( 
    dom z1) 
    /\ ( 
    dom z2)) & ( 
    dom g) 
    = (( 
    dom z1) 
    /\ ( 
    dom z2)) by 
    FUNCOP_1: 69,
    VALUED_1:def 1;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A2: x 
    in ( 
    dom (z1 
    + z2)); 
    
          
    
          hence ((z1
    + z2) 
    . x) 
    = ((z1 
    . x) 
    + (z2 
    . x)) by 
    VALUED_1:def 1
    
          .= (
    addcomplex  
    . ((z1 
    . x),(z2 
    . x))) by 
    BINOP_2:def 3
    
          .= (g
    . x) by 
    A1,
    A2,
    FUNCOP_1: 22;
    
        end;
    
        hence thesis by
    A1,
    FUNCT_1: 2;
    
      end;
    
      :: original:
    -
    
      redefine
    
      :: 
    
    SEQ_4:def7
    
      func z1
    
    - z2 -> 
    FinSequence of 
    COMPLEX equals ( 
    diffcomplex  
    .: (z1,z2)); 
    
      coherence
    
      proof
    
        thus (
    rng (z1 
    - z2)) 
    c=  
    COMPLEX ; 
    
      end;
    
      compatibility
    
      proof
    
        set g = (
    diffcomplex  
    .: (z1,z2)); 
    
        (
    dom  
    diffcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    [:(
    rng z1), ( 
    rng z2):] 
    c= ( 
    dom  
    diffcomplex ) by 
    ZFMISC_1: 96;
    
        then
    
        
    
    A3: ( 
    dom g) 
    = (( 
    dom z1) 
    /\ ( 
    dom z2)) by 
    FUNCOP_1: 69;
    
        
    
        
    
    A4: ( 
    dom (z1 
    - z2)) 
    = (( 
    dom z1) 
    /\ ( 
    dom z2)) by 
    VALUED_1: 12;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A5: x 
    in ( 
    dom (z1 
    - z2)); 
    
          
    
          hence ((z1
    - z2) 
    . x) 
    = ((z1 
    . x) 
    - (z2 
    . x)) by 
    VALUED_1: 13
    
          .= (
    diffcomplex  
    . ((z1 
    . x),(z2 
    . x))) by 
    BINOP_2:def 4
    
          .= (g
    . x) by 
    A4,
    A3,
    A5,
    FUNCOP_1: 22;
    
        end;
    
        hence thesis by
    A3,
    FUNCT_1: 2,
    VALUED_1: 12;
    
      end;
    
    end
    
    definition
    
      let z;
    
      :: original:
    -
    
      redefine
    
      :: 
    
    SEQ_4:def8
    
      func
    
    - z -> 
    FinSequence of 
    COMPLEX equals ( 
    compcomplex  
    * z); 
    
      coherence
    
      proof
    
        thus (
    rng ( 
    - z)) 
    c=  
    COMPLEX ; 
    
      end;
    
      compatibility
    
      proof
    
        set g = (
    compcomplex  
    * z); 
    
        (
    dom  
    compcomplex ) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
        then (
    rng z) 
    c= ( 
    dom  
    compcomplex ); 
    
        then
    
        
    
    A1: ( 
    dom g) 
    = ( 
    dom z) by 
    RELAT_1: 27;
    
        
    
        
    
    A2: ( 
    dom ( 
    - z)) 
    = ( 
    dom z) by 
    VALUED_1: 8;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A3: x 
    in ( 
    dom ( 
    - z)); 
    
          
    
          thus ((
    - z) 
    . x) 
    = ( 
    - (z 
    . x)) by 
    VALUED_1: 8
    
          .= (
    compcomplex  
    . (z 
    . x)) by 
    BINOP_2:def 1
    
          .= (g
    . x) by 
    A2,
    A1,
    A3,
    FUNCT_1: 12;
    
        end;
    
        hence thesis by
    A1,
    FUNCT_1: 2,
    VALUED_1: 8;
    
      end;
    
    end
    
    notation
    
      let z;
    
      let c be
    Complex;
    
      synonym c 
    
    * z for c 
    (#) z; 
    
    end
    
    definition
    
      let z;
    
      let c be
    Complex;
    
      :: original:
    *
    
      redefine
    
      :: 
    
    SEQ_4:def9
    
      func c
    
    * z -> 
    FinSequence of 
    COMPLEX equals ((c 
    multcomplex ) 
    * z); 
    
      coherence
    
      proof
    
        thus (
    rng (c 
    (#) z)) 
    c=  
    COMPLEX ; 
    
      end;
    
      compatibility
    
      proof
    
        set g = ((c
    multcomplex ) 
    * z); 
    
        (
    dom (c 
    multcomplex )) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
        then (
    rng z) 
    c= ( 
    dom (c 
    multcomplex )); 
    
        then
    
        
    
    A1: ( 
    dom (c 
    (#) z)) 
    = ( 
    dom z) & ( 
    dom g) 
    = ( 
    dom z) by 
    RELAT_1: 27,
    VALUED_1:def 5;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A2: x 
    in ( 
    dom (c 
    (#) z)); 
    
          
    
          
    
    A3: c is 
    Element of 
    COMPLEX & (z 
    . x) is 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
          
    
          thus ((c
    (#) z) 
    . x) 
    = (c 
    * (z 
    . x)) by 
    VALUED_1: 6
    
          .= ((c
    multcomplex ) 
    . (z 
    . x)) by 
    A3,
    Lm3
    
          .= (g
    . x) by 
    A1,
    A2,
    FUNCT_1: 12;
    
        end;
    
        hence thesis by
    A1,
    FUNCT_1: 2;
    
      end;
    
    end
    
    definition
    
      let z;
    
      :: original:
    abs
    
      redefine
    
      :: 
    
    SEQ_4:def10
    
      func
    
    abs z -> 
    FinSequence of 
    REAL equals ( 
    abscomplex  
    * z); 
    
      coherence
    
      proof
    
        thus (
    rng ( 
    abs z)) 
    c=  
    REAL ; 
    
      end;
    
      compatibility
    
      proof
    
        set g = (
    abscomplex  
    * z); 
    
        (
    dom  
    abscomplex ) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
        then (
    rng z) 
    c= ( 
    dom  
    abscomplex ); 
    
        then
    
        
    
    A1: ( 
    dom ( 
    abs z)) 
    = ( 
    dom z) & ( 
    dom g) 
    = ( 
    dom z) by 
    RELAT_1: 27,
    VALUED_1:def 11;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A2: x 
    in ( 
    dom ( 
    abs z)); 
    
          
    
          
    
    A3: (z 
    . x) is 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
          
    
          thus ((
    abs z) 
    . x) 
    =  
    |.(z
    . x).| by 
    VALUED_1: 18
    
          .= (
    abscomplex  
    . (z 
    . x)) by 
    A3,
    Def5
    
          .= (g
    . x) by 
    A1,
    A2,
    FUNCT_1: 12;
    
        end;
    
        hence thesis by
    A1,
    FUNCT_1: 2;
    
      end;
    
    end
    
    definition
    
      let n;
    
      :: 
    
    SEQ_4:def11
    
      func
    
    COMPLEX n -> 
    FinSequenceSet of 
    COMPLEX equals (n 
    -tuples_on  
    COMPLEX ); 
    
      correctness ;
    
    end
    
    registration
    
      let n;
    
      cluster ( 
    COMPLEX n) -> non 
    empty;
    
      coherence ;
    
    end
    
    reserve x,z,z1,z2,z3 for
    Element of ( 
    COMPLEX n), 
    
A,B for
    Subset of ( 
    COMPLEX n); 
    
    
    
    
    
    Lm4: ( 
    dom z) 
    = ( 
    Seg n) 
    
    proof
    
      (
    len z) 
    = n by 
    CARD_1:def 7;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    SEQ_4:57
    
    
    
    
    
    Th57: k 
    in ( 
    Seg n) implies (z 
    . k) 
    in  
    COMPLEX  
    
    proof
    
      (
    len z) 
    = n by 
    CARD_1:def 7;
    
      then (
    Seg n) 
    = ( 
    dom z) by 
    FINSEQ_1:def 3;
    
      hence thesis by
    FINSEQ_2: 11;
    
    end;
    
    definition
    
      let n, z1, z2;
    
      :: original:
    +
    
      redefine
    
      func z1
    
    + z2 -> 
    Element of ( 
    COMPLEX n) ; 
    
      coherence by
    FINSEQ_2: 120;
    
    end
    
    theorem :: 
    
    SEQ_4:58
    
    
    
    
    
    Th58: k 
    in ( 
    Seg n) & c1 
    = (z1 
    . k) & c2 
    = (z2 
    . k) implies ((z1 
    + z2) 
    . k) 
    = (c1 
    + c2) 
    
    proof
    
      assume that
    
      
    
    A1: k 
    in ( 
    Seg n) and 
    
      
    
    A2: c1 
    = (z1 
    . k) & c2 
    = (z2 
    . k); 
    
      k
    in ( 
    dom (z1 
    + z2)) by 
    A1,
    Lm4;
    
      
    
      hence ((z1
    + z2) 
    . k) 
    = ( 
    addcomplex  
    . (c1,c2)) by 
    A2,
    FUNCOP_1: 22
    
      .= (c1
    + c2) by 
    BINOP_2:def 3;
    
    end;
    
    definition
    
      let n;
    
      :: 
    
    SEQ_4:def12
    
      func
    
    0c n -> 
    FinSequence of 
    COMPLEX equals (n 
    |->  
    0c ); 
    
      correctness ;
    
    end
    
    definition
    
      let n;
    
      :: original:
    0c
    
      redefine
    
      func
    
    0c n -> 
    Element of ( 
    COMPLEX n) ; 
    
      coherence ;
    
    end
    
    theorem :: 
    
    SEQ_4:59
    
    (z
    + ( 
    0c n)) 
    = z & z 
    = (( 
    0c n) 
    + z) by 
    BINOP_2: 1,
    FINSEQOP: 56;
    
    definition
    
      let n, z;
    
      :: original:
    -
    
      redefine
    
      func
    
    - z -> 
    Element of ( 
    COMPLEX n) ; 
    
      coherence by
    FINSEQ_2: 113;
    
    end
    
    theorem :: 
    
    SEQ_4:60
    
    
    
    
    
    Th60: k 
    in ( 
    Seg n) & c 
    = (z 
    . k) implies (( 
    - z) 
    . k) 
    = ( 
    - c) 
    
    proof
    
      assume that
    
      
    
    A1: k 
    in ( 
    Seg n) and 
    
      
    
    A2: c 
    = (z 
    . k); 
    
      k
    in ( 
    dom ( 
    - z)) by 
    A1,
    Lm4;
    
      
    
      hence ((
    - z) 
    . k) 
    = ( 
    compcomplex  
    . c) by 
    A2,
    FUNCT_1: 12
    
      .= (
    - c) by 
    BINOP_2:def 1;
    
    end;
    
    
    
    
    
    Lm5: ( 
    - ( 
    0c n)) 
    = ( 
    0c n) 
    
    proof
    
      
    
      thus (
    - ( 
    0c n)) 
    = (n 
    |-> ( 
    compcomplex  
    .  
    0c )) by 
    FINSEQOP: 16
    
      .= (n
    |-> ( 
    -  
    0c qua 
    Complex)) by
    BINOP_2:def 1
    
      .= (
    0c n); 
    
    end;
    
    theorem :: 
    
    SEQ_4:61
    
    (z
    + ( 
    - z)) 
    = ( 
    0c n) & (( 
    - z) 
    + z) 
    = ( 
    0c n) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73;
    
    theorem :: 
    
    SEQ_4:62
    
    (z1
    + z2) 
    = ( 
    0c n) implies z1 
    = ( 
    - z2) & z2 
    = ( 
    - z1) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 74;
    
    ::$Canceled
    
    theorem :: 
    
    SEQ_4:64
    
    (
    - z1) 
    = ( 
    - z2) implies z1 
    = z2 
    
    proof
    
      assume (
    - z1) 
    = ( 
    - z2); 
    
      
    
      hence z1
    = ( 
    - ( 
    - z2)) 
    
      .= z2;
    
    end;
    
    
    
    
    
    Lm6: (z1 
    + z) 
    = (z2 
    + z) implies z1 
    = z2 
    
    proof
    
      assume (z1
    + z) 
    = (z2 
    + z); 
    
      then (z1
    + (z 
    + ( 
    - z))) 
    = ((z2 
    + z) 
    + ( 
    - z)) by 
    FINSEQOP: 28;
    
      then
    
      
    
    A1: (z1 
    + (z 
    + ( 
    - z))) 
    = (z2 
    + (z 
    + ( 
    - z))) by 
    FINSEQOP: 28;
    
      (z
    + ( 
    - z)) 
    = ( 
    0c n) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73;
    
      then z1
    = (z2 
    + ( 
    0c n)) by 
    A1,
    BINOP_2: 1,
    FINSEQOP: 56;
    
      hence thesis by
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    SEQ_4:65
    
    (z1
    + z) 
    = (z2 
    + z) or (z1 
    + z) 
    = (z 
    + z2) implies z1 
    = z2 by 
    Lm6;
    
    theorem :: 
    
    SEQ_4:66
    
    
    
    
    
    Th65: ( 
    - (z1 
    + z2)) 
    = (( 
    - z1) 
    + ( 
    - z2)) 
    
    proof
    
      ((z1
    + z2) 
    + (( 
    - z1) 
    + ( 
    - z2))) 
    = (((z2 
    + z1) 
    + ( 
    - z1)) 
    + ( 
    - z2)) by 
    FINSEQOP: 28
    
      .= ((z2
    + (z1 
    + ( 
    - z1))) 
    + ( 
    - z2)) by 
    FINSEQOP: 28
    
      .= ((z2
    + ( 
    0c n)) 
    + ( 
    - z2)) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73
    
      .= (z2
    + ( 
    - z2)) by 
    BINOP_2: 1,
    FINSEQOP: 56
    
      .= (
    0c n) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73;
    
      hence thesis by
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 74;
    
    end;
    
    definition
    
      let n, z1, z2;
    
      :: original:
    -
    
      redefine
    
      func z1
    
    - z2 -> 
    Element of ( 
    COMPLEX n) ; 
    
      coherence by
    FINSEQ_2: 120;
    
    end
    
    theorem :: 
    
    SEQ_4:67
    
    k
    in ( 
    Seg n) implies ((z1 
    - z2) 
    . k) 
    = ((z1 
    . k) 
    - (z2 
    . k)) 
    
    proof
    
      assume that
    
      
    
    A1: k 
    in ( 
    Seg n); 
    
      set c1 = (z1
    . k), c2 = (z2 
    . k); 
    
      k
    in ( 
    dom (z1 
    - z2)) by 
    A1,
    Lm4;
    
      
    
      hence ((z1
    - z2) 
    . k) 
    = ( 
    diffcomplex  
    . (c1,c2)) by 
    FUNCOP_1: 22
    
      .= (c1
    - c2) by 
    BINOP_2:def 4;
    
    end;
    
    theorem :: 
    
    SEQ_4:68
    
    (z
    - ( 
    0c n)) 
    = z 
    
    proof
    
      
    
      thus (z
    - ( 
    0c n)) 
    = (z 
    + ( 
    0c n)) by 
    Lm5
    
      .= z by
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    SEQ_4:69
    
    ((
    0c n) 
    - z) 
    = ( 
    - z) 
    
    proof
    
      
    
      thus ((
    0c n) 
    - z) 
    = (( 
    0c n) 
    + ( 
    - z)) 
    
      .= (
    - z) by 
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    SEQ_4:70
    
    (z1
    - ( 
    - z2)) 
    = (z1 
    + z2); 
    
    theorem :: 
    
    SEQ_4:71
    
    
    
    
    
    Th70: ( 
    - (z1 
    - z2)) 
    = (z2 
    - z1) 
    
    proof
    
      
    
      thus (
    - (z1 
    - z2)) 
    = (( 
    - z1) 
    + ( 
    - ( 
    - z2))) by 
    Th65
    
      .= (z2
    - z1); 
    
    end;
    
    theorem :: 
    
    SEQ_4:72
    
    
    
    
    
    Th71: ( 
    - (z1 
    - z2)) 
    = (( 
    - z1) 
    + z2) 
    
    proof
    
      
    
      thus (
    - (z1 
    - z2)) 
    = (( 
    - z1) 
    + ( 
    - ( 
    - z2))) by 
    Th65
    
      .= ((
    - z1) 
    + z2); 
    
    end;
    
    theorem :: 
    
    SEQ_4:73
    
    
    
    
    
    Th72: (z 
    - z) 
    = ( 
    0c n) 
    
    proof
    
      
    
      thus (z
    - z) 
    = (z 
    + ( 
    - z)) 
    
      .= (
    0c n) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73;
    
    end;
    
    theorem :: 
    
    SEQ_4:74
    
    
    
    
    
    Th73: (z1 
    - z2) 
    = ( 
    0c n) implies z1 
    = z2 
    
    proof
    
      assume (z1
    - z2) 
    = ( 
    0c n); 
    
      then (z1
    + ( 
    - z2)) 
    = ( 
    0c n); 
    
      then z1
    = ( 
    - ( 
    - z2)) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 74;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:75
    
    
    
    
    
    Th74: ((z1 
    - z2) 
    - z3) 
    = (z1 
    - (z2 
    + z3)) 
    
    proof
    
      
    
      thus ((z1
    - z2) 
    - z3) 
    = ((z1 
    + ( 
    - z2)) 
    + ( 
    - z3)) 
    
      .= (z1
    + (( 
    - z2) 
    + ( 
    - z3))) by 
    FINSEQOP: 28
    
      .= (z1
    - (z2 
    + z3)) by 
    Th65;
    
    end;
    
    theorem :: 
    
    SEQ_4:76
    
    
    
    
    
    Th75: (z1 
    + (z2 
    - z3)) 
    = ((z1 
    + z2) 
    - z3) 
    
    proof
    
      
    
      thus (z1
    + (z2 
    - z3)) 
    = (z1 
    + (z2 
    + ( 
    - z3))) 
    
      .= ((z1
    + z2) 
    + ( 
    - z3)) by 
    FINSEQOP: 28
    
      .= ((z1
    + z2) 
    - z3); 
    
    end;
    
    theorem :: 
    
    SEQ_4:77
    
    (z1
    - (z2 
    - z3)) 
    = ((z1 
    - z2) 
    + z3) 
    
    proof
    
      
    
      thus (z1
    - (z2 
    - z3)) 
    = (z1 
    + (( 
    - z2) 
    + z3)) by 
    Th71
    
      .= ((z1
    + ( 
    - z2)) 
    + z3) by 
    FINSEQOP: 28
    
      .= ((z1
    - z2) 
    + z3); 
    
    end;
    
    theorem :: 
    
    SEQ_4:78
    
    ((z1
    - z2) 
    + z3) 
    = ((z1 
    + z3) 
    - z2) by 
    Th75;
    
    theorem :: 
    
    SEQ_4:79
    
    
    
    
    
    Th78: z1 
    = ((z1 
    + z) 
    - z) 
    
    proof
    
      
    
      thus z1
    = (z1 
    + ( 
    0c n)) by 
    BINOP_2: 1,
    FINSEQOP: 56
    
      .= (z1
    + (z 
    - z)) by 
    Th72
    
      .= ((z1
    + z) 
    - z) by 
    Th75;
    
    end;
    
    theorem :: 
    
    SEQ_4:80
    
    
    
    
    
    Th79: (z1 
    + (z2 
    - z1)) 
    = z2 
    
    proof
    
      
    
      thus (z1
    + (z2 
    - z1)) 
    = ((z2 
    + ( 
    - z1)) 
    + z1) 
    
      .= (z2
    + (( 
    - z1) 
    + z1)) by 
    FINSEQOP: 28
    
      .= (z2
    + ( 
    0c n)) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73
    
      .= z2 by
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    SEQ_4:81
    
    
    
    
    
    Th80: z1 
    = ((z1 
    - z) 
    + z) 
    
    proof
    
      
    
      thus z1
    = (z1 
    + ( 
    0c n)) by 
    BINOP_2: 1,
    FINSEQOP: 56
    
      .= (z1
    + (( 
    - z) 
    + z)) by 
    Th51,
    Th52,
    BINOP_2: 1,
    FINSEQOP: 73
    
      .= ((z1
    + ( 
    - z)) 
    + z) by 
    FINSEQOP: 28
    
      .= ((z1
    - z) 
    + z); 
    
    end;
    
    definition
    
      let n, z, c;
    
      :: original:
    *
    
      redefine
    
      func c
    
    * z -> 
    Element of ( 
    COMPLEX n) ; 
    
      coherence by
    FINSEQ_2: 113;
    
    end
    
    theorem :: 
    
    SEQ_4:82
    
    
    
    
    
    Th81: k 
    in ( 
    Seg n) & c9 
    = (z 
    . k) implies ((c 
    * z) 
    . k) 
    = (c 
    * c9) 
    
    proof
    
      assume that
    
      
    
    A1: k 
    in ( 
    Seg n) and 
    
      
    
    A2: c9 
    = (z 
    . k); 
    
      k
    in ( 
    dom (c 
    * z)) by 
    A1,
    Lm4;
    
      
    
      hence ((c
    * z) 
    . k) 
    = ((c 
    multcomplex ) 
    . c9) by 
    A2,
    FUNCT_1: 12
    
      .= (c
    * c9) by 
    Lm3;
    
    end;
    
    theorem :: 
    
    SEQ_4:83
    
    (c1
    * (c2 
    * z)) 
    = ((c1 
    * c2) 
    * z) 
    
    proof
    
      
    
      thus ((c1
    * c2) 
    * z) 
    = (( 
    multcomplex  
    [;] (( 
    multcomplex  
    . (c1,c2)),( 
    id  
    COMPLEX ))) 
    * z) by 
    BINOP_2:def 5
    
      .= ((
    multcomplex  
    [;] (c1,( 
    multcomplex  
    [;] (c2,( 
    id  
    COMPLEX ))))) 
    * z) by 
    FUNCOP_1: 62
    
      .= (((
    multcomplex  
    [;] (c1,( 
    id  
    COMPLEX ))) 
    * ( 
    multcomplex  
    [;] (c2,( 
    id  
    COMPLEX )))) 
    * z) by 
    FUNCOP_1: 55
    
      .= (c1
    * (c2 
    * z)) by 
    RELAT_1: 36;
    
    end;
    
    theorem :: 
    
    SEQ_4:84
    
    ((c1
    + c2) 
    * z) 
    = ((c1 
    * z) 
    + (c2 
    * z)) 
    
    proof
    
      set c1M = (
    multcomplex  
    [;] (c1,( 
    id  
    COMPLEX ))), c2M = ( 
    multcomplex  
    [;] (c2,( 
    id  
    COMPLEX ))); 
    
      
    
      thus ((c1
    + c2) 
    * z) 
    = (( 
    multcomplex  
    [;] (( 
    addcomplex  
    . (c1,c2)),( 
    id  
    COMPLEX ))) 
    * z) by 
    BINOP_2:def 3
    
      .= ((
    addcomplex  
    .: (c1M,c2M)) 
    * z) by 
    Th54,
    FINSEQOP: 35
    
      .= ((c1
    * z) 
    + (c2 
    * z)) by 
    FUNCOP_1: 25;
    
    end;
    
    theorem :: 
    
    SEQ_4:85
    
    (c
    * (z1 
    + z2)) 
    = ((c 
    * z1) 
    + (c 
    * z2)) by 
    Th54,
    FINSEQOP: 51,
    FINSEQOP: 54;
    
    theorem :: 
    
    SEQ_4:86
    
    (
    1r  
    * z) 
    = z 
    
    proof
    
      
    
      
    
    A1: ( 
    rng z) 
    c=  
    COMPLEX ; 
    
      
    
      thus (
    1r  
    * z) 
    = (( 
    id  
    COMPLEX ) 
    * z) by 
    BINOP_2: 6,
    FINSEQOP: 44
    
      .= z by
    A1,
    RELAT_1: 53;
    
    end;
    
    theorem :: 
    
    SEQ_4:87
    
    (
    0c  
    * z) 
    = ( 
    0c n) 
    
    proof
    
      
    
      
    
    A1: ( 
    rng z) 
    c=  
    COMPLEX ; 
    
      
    
      thus (
    0c  
    * z) 
    = ( 
    multcomplex  
    [;] ( 
    0c ,(( 
    id  
    COMPLEX ) 
    * z))) by 
    FUNCOP_1: 34
    
      .= (
    multcomplex  
    [;] ( 
    0c ,z)) by 
    A1,
    RELAT_1: 53
    
      .= (
    0c n) by 
    Th51,
    Th54,
    BINOP_2: 1,
    FINSEQOP: 76;
    
    end;
    
    theorem :: 
    
    SEQ_4:88
    
    ((
    -  
    1r ) 
    * z) 
    = ( 
    - z); 
    
    definition
    
      let n, z;
    
      :: original:
    abs
    
      redefine
    
      func
    
    abs z -> 
    Element of (n 
    -tuples_on  
    REAL ) ; 
    
      correctness by
    FINSEQ_2: 113;
    
    end
    
    theorem :: 
    
    SEQ_4:89
    
    
    
    
    
    Th88: k 
    in ( 
    Seg n) & c 
    = (z 
    . k) implies (( 
    abs z) 
    . k) 
    =  
    |.c.|
    
    proof
    
      assume that
    
      
    
    A1: k 
    in ( 
    Seg n) and 
    
      
    
    A2: c 
    = (z 
    . k); 
    
      (
    len ( 
    abs z)) 
    = n by 
    CARD_1:def 7;
    
      then k
    in ( 
    dom ( 
    abs z)) by 
    A1,
    FINSEQ_1:def 3;
    
      
    
      hence ((
    abs z) 
    . k) 
    = ( 
    abscomplex  
    . c) by 
    A2,
    FUNCT_1: 12
    
      .=
    |.c.| by
    Def5;
    
    end;
    
    theorem :: 
    
    SEQ_4:90
    
    
    
    
    
    Th89: ( 
    abs ( 
    0c n)) 
    = (n 
    |->  
    0 ) 
    
    proof
    
      
    
      thus (
    abs ( 
    0c n)) 
    = (n 
    |-> ( 
    abscomplex  
    .  
    0c )) by 
    FINSEQOP: 16
    
      .= (n
    |->  
    0 ) by 
    Def5,
    COMPLEX1: 44;
    
    end;
    
    theorem :: 
    
    SEQ_4:91
    
    
    
    
    
    Th90: ( 
    abs ( 
    - z)) 
    = ( 
    abs z) 
    
    proof
    
      now
    
        let j be
    Nat;
    
        assume
    
        
    
    A1: j 
    in ( 
    Seg n); 
    
        then
    
        reconsider c = (z
    . j), c9 = (( 
    - z) 
    . j) as 
    Element of 
    COMPLEX by 
    Th57;
    
        
    
        thus ((
    abs ( 
    - z)) 
    . j) 
    =  
    |.c9.| by
    A1,
    Th88
    
        .=
    |.(
    - c).| by 
    A1,
    Th60
    
        .=
    |.c.| by
    COMPLEX1: 52
    
        .= ((
    abs z) 
    . j) by 
    A1,
    Th88;
    
      end;
    
      hence thesis by
    FINSEQ_2: 119;
    
    end;
    
    theorem :: 
    
    SEQ_4:92
    
    
    
    
    
    Th91: ( 
    abs (c 
    * z)) 
    = ( 
    |.c.|
    * ( 
    abs z)) 
    
    proof
    
      now
    
        let j be
    Nat;
    
        reconsider w = j as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        assume
    
        
    
    A1: j 
    in ( 
    Seg n); 
    
        then
    
        reconsider c9 = (z
    . j), cc = ((c 
    * z) 
    . j) as 
    Element of 
    COMPLEX by 
    Th57;
    
        reconsider ac = ((
    abs z) 
    . w) as 
    Real;
    
        
    
        thus ((
    abs (c 
    * z)) 
    . j) 
    =  
    |.cc.| by
    A1,
    Th88
    
        .=
    |.(c
    * c9).| by 
    A1,
    Th81
    
        .= (
    |.c.|
    *  
    |.c9.|) by
    COMPLEX1: 65
    
        .= (
    |.c.|
    * ac) by 
    A1,
    Th88
    
        .= ((
    |.c.|
    * ( 
    abs z)) 
    . j) by 
    RVSUM_1: 45;
    
      end;
    
      hence thesis by
    FINSEQ_2: 119;
    
    end;
    
    definition
    
      let z be
    FinSequence of 
    COMPLEX ; 
    
      :: 
    
    SEQ_4:def13
    
      func
    
    |.z.| ->
    Real equals ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    SEQ_4:93
    
    
    
    
    
    Th92: 
    |.(
    0c n).| 
    =  
    0  
    
    proof
    
      
    
      thus
    |.(
    0c n).| 
    = ( 
    sqrt ( 
    Sum ( 
    sqr (n 
    |->  
    0 qua 
    Real)))) by
    Th89
    
      .= (
    sqrt ( 
    Sum (n 
    |-> ( 
    0 qua 
    Real
    ^2 )))) by 
    RVSUM_1: 56
    
      .= (
    sqrt (n 
    *  
    0 qua 
    Nat)) by
    RVSUM_1: 80
    
      .=
    0 by 
    SQUARE_1: 17;
    
    end;
    
    theorem :: 
    
    SEQ_4:94
    
    
    
    
    
    Th93: 
    |.z.|
    =  
    0 implies z 
    = ( 
    0c n) 
    
    proof
    
      assume
    
      
    
    A1: 
    |.z.|
    =  
    0 ; 
    
      now
    
        let j be
    Nat;
    
        assume
    
        
    
    A2: j 
    in ( 
    Seg n); 
    
        then
    
        reconsider c = (z
    . j) as 
    Element of 
    COMPLEX by 
    Th57;
    
        
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs z))) by 
    RVSUM_1: 86;
    
        then ((
    abs z) 
    . j) 
    = ((n 
    |->  
    0 ) 
    . j) by 
    A1,
    RVSUM_1: 91,
    SQUARE_1: 24;
    
        then
    |.c.|
    = ((n 
    |->  
    0 ) 
    . j) by 
    A2,
    Th88;
    
        then c
    =  
    0c by 
    COMPLEX1: 45;
    
        hence (z
    . j) 
    = ((n 
    |->  
    0c ) 
    . j); 
    
      end;
    
      hence thesis by
    FINSEQ_2: 119;
    
    end;
    
    theorem :: 
    
    SEQ_4:95
    
    
    
    
    
    Th94: 
    0  
    <=  
    |.z.|
    
    proof
    
      
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs z))) by 
    RVSUM_1: 86;
    
      hence thesis by
    SQUARE_1:def 2;
    
    end;
    
    theorem :: 
    
    SEQ_4:96
    
    
    |.(
    - z).| 
    =  
    |.z.| by
    Th90;
    
    theorem :: 
    
    SEQ_4:97
    
    
    |.(c
    * z).| 
    = ( 
    |.c.|
    *  
    |.z.|)
    
    proof
    
      
    
      
    
    A1: 
    0  
    <= ( 
    |.c.|
    ^2 ) & 
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs z))) by 
    RVSUM_1: 86,
    XREAL_1: 63;
    
      
    
      thus
    |.(c
    * z).| 
    = ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    |.c.|
    * ( 
    abs z))))) by 
    Th91
    
      .= (
    sqrt ( 
    Sum (( 
    |.c.|
    ^2 ) 
    * ( 
    sqr ( 
    abs z))))) by 
    RVSUM_1: 58
    
      .= (
    sqrt (( 
    |.c.|
    ^2 ) 
    * ( 
    Sum ( 
    sqr ( 
    abs z))))) by 
    RVSUM_1: 87
    
      .= ((
    sqrt ( 
    |.c.|
    ^2 )) 
    * ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z))))) by 
    A1,
    SQUARE_1: 29
    
      .= (
    |.c.|
    *  
    |.z.|) by
    COMPLEX1: 46,
    SQUARE_1: 22;
    
    end;
    
    theorem :: 
    
    SEQ_4:98
    
    
    
    
    
    Th97: 
    |.(z1
    + z2).| 
    <= ( 
    |.z1.|
    +  
    |.z2.|)
    
    proof
    
      
    
      
    
    A1: 
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs (z1 
    + z2)))) by 
    RVSUM_1: 86;
    
      
    
      
    
    A2: 
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs z1))) by 
    RVSUM_1: 86;
    
      then
    
      
    
    A3: 
    0  
    <= ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z1)))) by 
    SQUARE_1:def 2;
    
      
    
      
    
    A4: for k be 
    Nat holds k 
    in ( 
    Seg n) implies 
    0  
    <= (( 
    mlt (( 
    abs z1),( 
    abs z2))) 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        set r = ((
    mlt (( 
    abs z1),( 
    abs z2))) 
    . k); 
    
        assume
    
        
    
    A5: k 
    in ( 
    Seg n); 
    
        then
    
        reconsider c1 = (z1
    . k), c2 = (z2 
    . k) as 
    Element of 
    COMPLEX by 
    Th57;
    
        ((
    abs z1) 
    . k) 
    =  
    |.c1.| & ((
    abs z2) 
    . k) 
    =  
    |.c2.| by
    A5,
    Th88;
    
        then
    
        
    
    A6: r 
    = ( 
    |.c1.|
    *  
    |.c2.|) by
    RVSUM_1: 60;
    
        
    0  
    <=  
    |.c1.| &
    0  
    <=  
    |.c2.| by
    COMPLEX1: 46;
    
        hence thesis by
    A6;
    
      end;
    
      
    0  
    <= (( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))) 
    ^2 ) by 
    XREAL_1: 63;
    
      then
    
      
    
    A7: ( 
    sqrt (( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))) 
    ^2 )) 
    <= ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2))))) by 
    RVSUM_1: 92,
    SQUARE_1: 26;
    
      (
    len ( 
    mlt (( 
    abs z1),( 
    abs z2)))) 
    = n by 
    CARD_1:def 7;
    
      then (
    dom ( 
    mlt (( 
    abs z1),( 
    abs z2)))) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
      then (
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))) 
    <= ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2))))) by 
    A4,
    A7,
    RVSUM_1: 84,
    SQUARE_1: 22;
    
      then (2
    * ( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2))))) 
    <= (2 
    * ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2)))))) by 
    XREAL_1: 64;
    
      then ((
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    <= (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2))))))) by 
    XREAL_1: 7;
    
      then
    
      
    
    A8: ((( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) 
    <= ((( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2))))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    XREAL_1: 7;
    
      
    
      
    
    A9: for k be 
    Nat holds k 
    in ( 
    Seg n) implies (( 
    sqr ( 
    abs (z1 
    + z2))) 
    . k) 
    <= (( 
    sqr (( 
    abs z1) 
    + ( 
    abs z2))) 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        set r2 = ((
    sqr (( 
    abs z1) 
    + ( 
    abs z2))) 
    . k); 
    
        (
    len (( 
    abs z1) 
    + ( 
    abs z2))) 
    = n by 
    CARD_1:def 7;
    
        then
    
        
    
    A10: ( 
    dom (( 
    abs z1) 
    + ( 
    abs z2))) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
        assume
    
        
    
    A11: k 
    in ( 
    Seg n); 
    
        then
    
        reconsider c12 = ((z1
    + z2) 
    . k) as 
    Element of 
    COMPLEX by 
    Th57;
    
        reconsider abs912 = ((
    abs (z1 
    + z2)) 
    . k) as 
    Real;
    
        
    0  
    <=  
    |.c12.| by
    COMPLEX1: 46;
    
        then
    
        
    
    A12: 
    0  
    <= abs912 by 
    A11,
    Th88;
    
        reconsider abs1 = ((
    abs z1) 
    . k), abs2 = (( 
    abs z2) 
    . k) as 
    Real;
    
        reconsider c1 = (z1
    . k), c2 = (z2 
    . k) as 
    Element of 
    COMPLEX by 
    A11,
    Th57;
    
        reconsider abs12 = (((
    abs z1) 
    + ( 
    abs z2)) 
    . k) as 
    Real;
    
        
    |.(c1
    + c2).| 
    <= ( 
    |.c1.|
    +  
    |.c2.|) by
    COMPLEX1: 56;
    
        then
    |.c12.|
    <= ( 
    |.c1.|
    +  
    |.c2.|) by
    A11,
    Th58;
    
        then
    |.c12.|
    <= ( 
    |.c1.|
    + abs2) by 
    A11,
    Th88;
    
        then
    |.c12.|
    <= (abs1 
    + abs2) by 
    A11,
    Th88;
    
        then
    |.c12.|
    <= abs12 by 
    A11,
    A10,
    VALUED_1:def 1;
    
        then abs912
    <= abs12 by 
    A11,
    Th88;
    
        then (abs912
    ^2 ) 
    <= (abs12 
    ^2 ) by 
    A12,
    SQUARE_1: 15;
    
        then (abs912
    ^2 ) 
    <= r2 by 
    VALUED_1: 11;
    
        hence thesis by
    VALUED_1: 11;
    
      end;
    
      
    
      
    
    A13: 
    0  
    <= ( 
    Sum ( 
    sqr ( 
    abs z2))) by 
    RVSUM_1: 86;
    
      then
    
      
    
    A14: 
    0  
    <= ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    SQUARE_1:def 2;
    
      
    
      
    
    A15: ( 
    Sum ( 
    sqr ( 
    abs z1))) 
    = (( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z1)))) 
    ^2 ) by 
    A2,
    SQUARE_1:def 2;
    
      
    
      
    
    A16: (( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z2)))) 
    ^2 ) 
    = ( 
    Sum ( 
    sqr ( 
    abs z2))) by 
    A13,
    SQUARE_1:def 2;
    
      (
    Sum ( 
    sqr (( 
    abs z1) 
    + ( 
    abs z2)))) 
    = ( 
    Sum ((( 
    sqr ( 
    abs z1)) 
    + (2 
    * ( 
    mlt (( 
    abs z1),( 
    abs z2))))) 
    + ( 
    sqr ( 
    abs z2)))) by 
    RVSUM_1: 68
    
      .= ((
    Sum (( 
    sqr ( 
    abs z1)) 
    + (2 
    * ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    RVSUM_1: 89
    
      .= (((
    Sum ( 
    sqr ( 
    abs z1))) 
    + ( 
    Sum (2 
    * ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    RVSUM_1: 89
    
      .= (((
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    RVSUM_1: 87;
    
      then (
    Sum ( 
    sqr ( 
    abs (z1 
    + z2)))) 
    <= ((( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    Sum ( 
    mlt (( 
    abs z1),( 
    abs z2)))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    A9,
    RVSUM_1: 82;
    
      then (
    Sum ( 
    sqr ( 
    abs (z1 
    + z2)))) 
    <= ((( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * ( 
    sqrt (( 
    Sum ( 
    sqr ( 
    abs z1))) 
    * ( 
    Sum ( 
    sqr ( 
    abs z2))))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    A8,
    XXREAL_0: 2;
    
      then (
    Sum ( 
    sqr ( 
    abs (z1 
    + z2)))) 
    <= ((( 
    Sum ( 
    sqr ( 
    abs z1))) 
    + (2 
    * (( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z1)))) 
    * ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z2))))))) 
    + ( 
    Sum ( 
    sqr ( 
    abs z2)))) by 
    A2,
    A13,
    SQUARE_1: 29;
    
      then (
    sqrt ( 
    Sum ( 
    sqr ( 
    abs (z1 
    + z2))))) 
    <= ( 
    sqrt ((( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z1)))) 
    + ( 
    sqrt ( 
    Sum ( 
    sqr ( 
    abs z2))))) 
    ^2 )) by 
    A15,
    A16,
    A1,
    SQUARE_1: 26;
    
      hence thesis by
    A3,
    A14,
    SQUARE_1: 22;
    
    end;
    
    theorem :: 
    
    SEQ_4:99
    
    
    
    
    
    Th98: 
    |.(z1
    - z2).| 
    <= ( 
    |.z1.|
    +  
    |.z2.|)
    
    proof
    
      
    |.(z1
    - z2).| 
    <= ( 
    |.z1.|
    +  
    |.(
    - z2).|) by 
    Th97;
    
      hence thesis by
    Th90;
    
    end;
    
    theorem :: 
    
    SEQ_4:100
    
    (
    |.z1.|
    -  
    |.z2.|)
    <=  
    |.(z1
    + z2).| 
    
    proof
    
      z1
    = ((z1 
    + z2) 
    - z2) by 
    Th78;
    
      then
    |.z1.|
    <= ( 
    |.(z1
    + z2).| 
    +  
    |.z2.|) by
    Th98;
    
      hence thesis by
    XREAL_1: 20;
    
    end;
    
    theorem :: 
    
    SEQ_4:101
    
    (
    |.z1.|
    -  
    |.z2.|)
    <=  
    |.(z1
    - z2).| 
    
    proof
    
      z1
    = ((z1 
    - z2) 
    + z2) by 
    Th80;
    
      then
    |.z1.|
    <= ( 
    |.(z1
    - z2).| 
    +  
    |.z2.|) by
    Th97;
    
      hence thesis by
    XREAL_1: 20;
    
    end;
    
    theorem :: 
    
    SEQ_4:102
    
    
    
    
    
    Th101: 
    |.(z1
    - z2).| 
    =  
    0 iff z1 
    = z2 
    
    proof
    
      thus
    |.(z1
    - z2).| 
    =  
    0 implies z1 
    = z2 
    
      proof
    
        assume
    |.(z1
    - z2).| 
    =  
    0 ; 
    
        then (z1
    - z2) 
    = ( 
    0c n) by 
    Th93;
    
        hence thesis by
    Th73;
    
      end;
    
      assume z1
    = z2; 
    
      then (z1
    - z2) 
    = ( 
    0c n) by 
    Th72;
    
      hence thesis by
    Th92;
    
    end;
    
    theorem :: 
    
    SEQ_4:103
    
    z1
    <> z2 implies 
    0  
    <  
    |.(z1
    - z2).| 
    
    proof
    
      assume z1
    <> z2; 
    
      then
    0  
    <>  
    |.(z1
    - z2).| by 
    Th101;
    
      hence thesis by
    Th94;
    
    end;
    
    theorem :: 
    
    SEQ_4:104
    
    
    
    
    
    Th103: 
    |.(z1
    - z2).| 
    =  
    |.(z2
    - z1).| 
    
    proof
    
      
    
      thus
    |.(z1
    - z2).| 
    =  
    |.(
    - (z2 
    - z1)).| by 
    Th70
    
      .=
    |.(z2
    - z1).| by 
    Th90;
    
    end;
    
    theorem :: 
    
    SEQ_4:105
    
    
    
    
    
    Th104: 
    |.(z1
    - z2).| 
    <= ( 
    |.(z1
    - z).| 
    +  
    |.(z
    - z2).|) 
    
    proof
    
      
    |.(z1
    - z2).| 
    =  
    |.(((z1
    - z) 
    + z) 
    - z2).| by 
    Th80
    
      .=
    |.((z1
    - z) 
    + (z 
    - z2)).| by 
    Th75;
    
      hence thesis by
    Th97;
    
    end;
    
    definition
    
      let n;
    
      let A be
    Subset of ( 
    COMPLEX n); 
    
      :: 
    
    SEQ_4:def14
    
      attr A is
    
    open means for x st x 
    in A holds ex r st 
    0  
    < r & for z st 
    |.z.|
    < r holds (x 
    + z) 
    in A; 
    
    end
    
    definition
    
      let n;
    
      let A be
    Subset of ( 
    COMPLEX n); 
    
      :: 
    
    SEQ_4:def15
    
      attr A is
    
    closed means for x st for r st r 
    >  
    0 holds ex z st 
    |.z.|
    < r & (x 
    + z) 
    in A holds x 
    in A; 
    
    end
    
    theorem :: 
    
    SEQ_4:106
    
    for A be
    Subset of ( 
    COMPLEX n) st A 
    =  
    {} holds A is 
    open;
    
    theorem :: 
    
    SEQ_4:107
    
    for A be
    Subset of ( 
    COMPLEX n) st A 
    = ( 
    COMPLEX n) holds A is 
    open
    
    proof
    
      let A be
    Subset of ( 
    COMPLEX n); 
    
      assume
    
      
    
    A1: A 
    = ( 
    COMPLEX n); 
    
      let x such that x
    in A; 
    
      reconsider j = 1 as
    Element of 
    REAL by 
    NUMBERS: 19;
    
      take j;
    
      thus
    0  
    < j; 
    
      let z such that
    |.z.|
    < j; 
    
      thus thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:108
    
    for AA be
    Subset-Family of ( 
    COMPLEX n) st for A be 
    Subset of ( 
    COMPLEX n) st A 
    in AA holds A is 
    open holds for A be 
    Subset of ( 
    COMPLEX n) st A 
    = ( 
    union AA) holds A is 
    open
    
    proof
    
      let AA be
    Subset-Family of ( 
    COMPLEX n) such that 
    
      
    
    A1: for A be 
    Subset of ( 
    COMPLEX n) st A 
    in AA holds A is 
    open;
    
      let A be
    Subset of ( 
    COMPLEX n) such that 
    
      
    
    A2: A 
    = ( 
    union AA); 
    
      let x;
    
      assume x
    in A; 
    
      then
    
      consider B be
    set such that 
    
      
    
    A3: x 
    in B and 
    
      
    
    A4: B 
    in AA by 
    A2,
    TARSKI:def 4;
    
      reconsider B as
    Subset of ( 
    COMPLEX n) by 
    A4;
    
      B is
    open by 
    A1,
    A4;
    
      then
    
      consider r such that
    
      
    
    A5: 
    0  
    < r and 
    
      
    
    A6: for z st 
    |.z.|
    < r holds (x 
    + z) 
    in B by 
    A3;
    
      take r;
    
      thus
    0  
    < r by 
    A5;
    
      let z;
    
      assume
    |.z.|
    < r; 
    
      then (x
    + z) 
    in B by 
    A6;
    
      hence thesis by
    A2,
    A4,
    TARSKI:def 4;
    
    end;
    
    theorem :: 
    
    SEQ_4:109
    
    for A,B be
    Subset of ( 
    COMPLEX n) st A is 
    open & B is 
    open holds for C be 
    Subset of ( 
    COMPLEX n) st C 
    = (A 
    /\ B) holds C is 
    open
    
    proof
    
      let A,B be
    Subset of ( 
    COMPLEX n) such that 
    
      
    
    A1: A is 
    open and 
    
      
    
    A2: B is 
    open;
    
      let C be
    Subset of ( 
    COMPLEX n) such that 
    
      
    
    A3: C 
    = (A 
    /\ B); 
    
      let x;
    
      assume
    
      
    
    A4: x 
    in C; 
    
      then x
    in A by 
    A3,
    XBOOLE_0:def 4;
    
      then
    
      consider r1 such that
    
      
    
    A5: 
    0  
    < r1 and 
    
      
    
    A6: for z st 
    |.z.|
    < r1 holds (x 
    + z) 
    in A by 
    A1;
    
      x
    in B by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      then
    
      consider r2 such that
    
      
    
    A7: 
    0  
    < r2 and 
    
      
    
    A8: for z st 
    |.z.|
    < r2 holds (x 
    + z) 
    in B by 
    A2;
    
      take (
    min (r1,r2)); 
    
      thus
    0  
    < ( 
    min (r1,r2)) by 
    A5,
    A7,
    XXREAL_0: 15;
    
      let z;
    
      assume
    
      
    
    A9: 
    |.z.|
    < ( 
    min (r1,r2)); 
    
      (
    min (r1,r2)) 
    <= r2 by 
    XXREAL_0: 17;
    
      then
    |.z.|
    < r2 by 
    A9,
    XXREAL_0: 2;
    
      then
    
      
    
    A10: (x 
    + z) 
    in B by 
    A8;
    
      (
    min (r1,r2)) 
    <= r1 by 
    XXREAL_0: 17;
    
      then
    |.z.|
    < r1 by 
    A9,
    XXREAL_0: 2;
    
      then (x
    + z) 
    in A by 
    A6;
    
      hence thesis by
    A3,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    definition
    
      let n, x, r;
    
      :: 
    
    SEQ_4:def16
    
      func
    
    Ball (x,r) -> 
    Subset of ( 
    COMPLEX n) equals { z : 
    |.(z
    - x).| 
    < r }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    FinSequence of 
    COMPLEX ] means 
    |.($1
    - x).| 
    < r; 
    
        { z :
    P[z] }
    c= ( 
    COMPLEX n) from 
    FRAENKEL:sch 10;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:110
    
    
    
    
    
    Th109: z 
    in ( 
    Ball (x,r)) iff 
    |.(x
    - z).| 
    < r 
    
    proof
    
      
    
      
    
    A1: z 
    in { z2 : 
    |.(z2
    - x).| 
    < r } iff ex z1 st z 
    = z1 & 
    |.(z1
    - x).| 
    < r; 
    
      
    |.(z
    - x).| 
    =  
    |.(x
    - z).| by 
    Th103;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:111
    
    
    0  
    < r implies x 
    in ( 
    Ball (x,r)) 
    
    proof
    
      assume
    
      
    
    A1: 
    0  
    < r; 
    
      
    |.(x
    - x).| 
    =  
    0 by 
    Th101;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:112
    
    (
    Ball (z1,r1)) is 
    open
    
    proof
    
      let x;
    
      assume x
    in ( 
    Ball (z1,r1)); 
    
      then
    
      
    
    A1: 
    |.(z1
    - x).| 
    < r1 by 
    Th109;
    
      take r = (r1
    -  
    |.(z1
    - x).|); 
    
      thus
    0  
    < r by 
    A1,
    XREAL_1: 50;
    
      let z;
    
      assume
    |.z.|
    < r; 
    
      then
    
      
    
    A2: ( 
    |.z.|
    +  
    |.(z1
    - x).|) 
    < (r 
    +  
    |.(z1
    - x).|) by 
    XREAL_1: 6;
    
      ((z1
    - x) 
    - z) 
    = (z1 
    - (x 
    + z)) by 
    Th74;
    
      then
    |.(z1
    - (x 
    + z)).| 
    <= ( 
    |.z.|
    +  
    |.(z1
    - x).|) by 
    Th98;
    
      then
    |.(z1
    - (x 
    + z)).| 
    < (r 
    +  
    |.(z1
    - x).|) by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    Th109;
    
    end;
    
    definition
    
      let n, x, A;
    
      :: 
    
    SEQ_4:def17
    
      func
    
    dist (x,A) -> 
    Real means 
    
      :
    
    Def17: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : z 
    in A } holds it 
    = ( 
    lower_bound X); 
    
      existence
    
      proof
    
        deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
        deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
        defpred
    
    P[
    set] means $1
    in A; 
    
        reconsider X = {
    f(z) where z be
    Element of ( 
    COMPLEX n) : 
    P[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
        
    
        
    
    A1: 
    f(z)
    =  
    g(z);
    
        
    
        
    
    A2: { 
    f(z1) where z1 be
    Element of ( 
    COMPLEX n) : 
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A1);
    
        take L = (
    lower_bound X); 
    
        thus thesis by
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let r1,r2 be
    Real such that 
    
        
    
    A3: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : z 
    in A } holds r1 
    = ( 
    lower_bound X) and 
    
        
    
    A4: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : z 
    in A } holds r2 
    = ( 
    lower_bound X); 
    
        deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
        deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
        defpred
    
    P[
    set] means $1
    in A; 
    
        reconsider X = {
    f(z) where z be
    Element of ( 
    COMPLEX n) : 
    P[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
        
    
        
    
    A1: 
    f(z)
    =  
    g(z);
    
        
    
        
    
    A2: { 
    f(z1) where z1 be
    Element of ( 
    COMPLEX n) : 
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A1);
    
        r1
    = ( 
    lower_bound X) by 
    A3,
    A2;
    
        hence thesis by
    A4,
    A2;
    
      end;
    
    end
    
    definition
    
      let n, A, r;
    
      :: 
    
    SEQ_4:def18
    
      func
    
    Ball (A,r) -> 
    Subset of ( 
    COMPLEX n) equals { z : ( 
    dist (z,A)) 
    < r }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    Element of ( 
    COMPLEX n)] means ( 
    dist ($1,A)) 
    < r; 
    
        { z :
    P[z] }
    c= ( 
    COMPLEX n) from 
    FRAENKEL:sch 10;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:113
    
    
    
    
    
    Th112: for X be 
    Subset of 
    REAL , r st X 
    <>  
    {} & for r9 st r9 
    in X holds r 
    <= r9 holds ( 
    lower_bound X) 
    >= r 
    
    proof
    
      let X be
    Subset of 
    REAL , r such that 
    
      
    
    A1: X 
    <>  
    {} and 
    
      
    
    A2: for r9 st r9 
    in X holds r 
    <= r9; 
    
      for r9 be
    ExtReal st r9 
    in X holds r 
    <= r9 by 
    A2;
    
      then r is
    LowerBound of X by 
    XXREAL_2:def 2;
    
      then
    
      
    
    A3: X is 
    bounded_below;
    
      now
    
        let r9 be
    Real;
    
        assume r9
    >  
    0 ; 
    
        then
    
        consider r1 be
    Real such that 
    
        
    
    A4: r1 
    in X and 
    
        
    
    A5: r1 
    < (( 
    lower_bound X) 
    + r9) by 
    A1,
    A3,
    Def2;
    
        r
    <= r1 by 
    A2,
    A4;
    
        hence ((
    lower_bound X) 
    + r9) 
    >= r by 
    A5,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    XREAL_1: 41;
    
    end;
    
    theorem :: 
    
    SEQ_4:114
    
    
    
    
    
    Th113: A 
    <>  
    {} implies ( 
    dist (x,A)) 
    >=  
    0  
    
    proof
    
      defpred
    
    P[
    set] means $1
    in A; 
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
      deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
      reconsider X = {
    f(z) :
    P[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      
    
      
    
    A1: 
    f(z)
    =  
    g(z);
    
      
    
      
    
    A2: { 
    f(z1) where z1 be
    Element of ( 
    COMPLEX n) : 
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A1);
    
      assume A
    <>  
    {} ; 
    
      then
    
      consider z1 such that
    
      
    
    A3: z1 
    in A by 
    SUBSET_1: 4;
    
      
    
      
    
    A4: 
    |.(x
    - z1).| 
    in X by 
    A3,
    A2;
    
      
    
    A5: 
    
      now
    
        let r9;
    
        assume r9
    in X; 
    
        then ex z st r9
    =  
    f(z) & z
    in A; 
    
        hence r9
    >=  
    0 by 
    Th94;
    
      end;
    
      (
    dist (x,A)) 
    = ( 
    lower_bound X) by 
    Def17,
    A2;
    
      hence thesis by
    A4,
    A5,
    Th112;
    
    end;
    
    theorem :: 
    
    SEQ_4:115
    
    
    
    
    
    Th114: A 
    <>  
    {} implies ( 
    dist ((x 
    + z),A)) 
    <= (( 
    dist (x,A)) 
    +  
    |.z.|)
    
    proof
    
      defpred
    
    P[
    set] means $1
    in A; 
    
      deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.((x
    + z) 
    - $1).|, 
    REAL )); 
    
      deffunc
    
    h(
    Element of ( 
    COMPLEX n)) = 
    |.((x
    + z) 
    - $1).|; 
    
      reconsider Y = {
    g(z1) :
    P[z1] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
      deffunc
    
    f1(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
      
    
      
    
    A1: for z1 be 
    Element of ( 
    COMPLEX n) holds 
    h(z1)
    =  
    g(z1);
    
      
    
      
    
    A2: { 
    h(z1) :
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A1);
    
      
    
      
    
    A3: for z1 be 
    Element of ( 
    COMPLEX n) holds 
    f(z1)
    =  
    f1(z1);
    
      
    
      
    
    A4: { 
    f(z1) :
    P[z1] }
    = { 
    f1(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A3);
    
      
    
      
    
    A5: Y is 
    bounded_below
    
      proof
    
        take
    0 ; 
    
        let r be
    ExtReal;
    
        assume r
    in Y; 
    
        then ex z1 st r
    =  
    |.((x
    + z) 
    - z1).| & z1 
    in A by 
    A2;
    
        hence thesis by
    Th94;
    
      end;
    
      reconsider X = {
    f(z1) :
    P[z1] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      assume A
    <>  
    {} ; 
    
      then
    
      consider z2 such that
    
      
    
    A6: z2 
    in A by 
    SUBSET_1: 4;
    
      
    
      
    
    A7: ( 
    dist ((x 
    + z),A)) 
    = ( 
    lower_bound Y) by 
    Def17,
    A2;
    
      
    
    A8: 
    
      now
    
        let r9;
    
        assume r9
    in X; 
    
        then
    
        consider z3 such that
    
        
    
    A9: r9 
    =  
    |.(x
    - z3).| and 
    
        
    
    A10: z3 
    in A by 
    A4;
    
        
    |.((x
    + z) 
    - z3).| 
    =  
    |.((x
    - z3) 
    + z).| by 
    Th75;
    
        then
    
        
    
    A11: 
    |.((x
    + z) 
    - z3).| 
    <= (r9 
    +  
    |.z.|) by
    A9,
    Th97;
    
        
    |.((x
    + z) 
    - z3).| 
    in Y by 
    A10,
    A2;
    
        then
    |.((x
    + z) 
    - z3).| 
    >= ( 
    dist ((x 
    + z),A)) by 
    A7,
    A5,
    Def2;
    
        then (r9
    +  
    |.z.|)
    >= ( 
    dist ((x 
    + z),A)) by 
    A11,
    XXREAL_0: 2;
    
        hence r9
    >= (( 
    dist ((x 
    + z),A)) 
    -  
    |.z.|) by
    XREAL_1: 20;
    
      end;
    
      
    
      
    
    A12: 
    |.(x
    - z2).| 
    in X by 
    A6,
    A4;
    
      (
    dist (x,A)) 
    = ( 
    lower_bound X) by 
    Def17,
    A4;
    
      then ((
    dist ((x 
    + z),A)) 
    -  
    |.z.|)
    <= ( 
    dist (x,A)) by 
    A12,
    A8,
    Th112;
    
      hence thesis by
    XREAL_1: 20;
    
    end;
    
    theorem :: 
    
    SEQ_4:116
    
    
    
    
    
    Th115: x 
    in A implies ( 
    dist (x,A)) 
    =  
    0  
    
    proof
    
      defpred
    
    P[
    set] means $1
    in A; 
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
      deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
      reconsider X = {
    f(z) :
    P[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      
    
      
    
    A1: 
    f(z)
    =  
    g(z);
    
      
    
      
    
    A2: { 
    f(z1) where z1 be
    Element of ( 
    COMPLEX n) : 
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A1);
    
      assume
    
      
    
    A3: x 
    in A; 
    
      then
    
      
    
    A4: 
    |.(x
    - x).| 
    in X by 
    A2;
    
      
    
    A5: 
    
      now
    
        reconsider r =
    |.(x
    - x).| as 
    Real;
    
        let r1 be
    Real such that 
    
        
    
    A6: 
    0  
    < r1; 
    
        take r;
    
        thus r
    in X by 
    A3,
    A2;
    
        thus r
    < ( 
    0 qua 
    Nat
    + r1) by 
    A6,
    Th101;
    
      end;
    
      
    
    A7: 
    
      now
    
        let r be
    Real;
    
        assume r
    in X; 
    
        then ex z st r
    =  
    |.(x
    - z).| & z 
    in A by 
    A2;
    
        hence
    0  
    <= r by 
    Th94;
    
      end;
    
      
    
      
    
    A8: X is 
    bounded_below
    
      proof
    
        take
    0 ; 
    
        let x be
    ExtReal;
    
        thus thesis by
    A7;
    
      end;
    
      
    
      thus (
    dist (x,A)) 
    = ( 
    lower_bound X) by 
    Def17,
    A2
    
      .=
    0 by 
    A4,
    A7,
    A8,
    A5,
    Def2;
    
    end;
    
    theorem :: 
    
    SEQ_4:117
    
     not x
    in A & A 
    <>  
    {} & A is 
    closed implies ( 
    dist (x,A)) 
    >  
    0  
    
    proof
    
      assume that
    
      
    
    A1: not x 
    in A and 
    
      
    
    A2: A 
    <>  
    {} and 
    
      
    
    A3: for x st for r st r 
    >  
    0 holds ex z st 
    |.z.|
    < r & (x 
    + z) 
    in A holds x 
    in A and 
    
      
    
    A4: ( 
    dist (x,A)) 
    <=  
    0 ; 
    
      
    
      
    
    A5: ( 
    dist (x,A)) 
    =  
    0 by 
    A2,
    A4,
    Th113;
    
      now
    
        deffunc
    
    f(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
        deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
        defpred
    
    P[
    set] means $1
    in A; 
    
        
    
        
    
    A6: 
    f(z)
    =  
    g(z);
    
        
    
        
    
    A7: { 
    f(z1) where z1 be
    Element of ( 
    COMPLEX n) : 
    P[z1] }
    = { 
    g(z2) where z2 be
    Element of ( 
    COMPLEX n) : 
    P[z2] } from
    FRAENKEL:sch 5(
    A6);
    
        reconsider X = {
    f(z) :
    P[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
        let r such that
    
        
    
    A8: r 
    >  
    0 ; 
    
        consider z such that
    
        
    
    A9: z 
    in A by 
    A2,
    SUBSET_1: 4;
    
        
    
        
    
    A10: X is 
    bounded_below
    
        proof
    
          take
    0 ; 
    
          let r be
    ExtReal;
    
          assume r
    in X; 
    
          then ex z st r
    =  
    |.(x
    - z).| & z 
    in A by 
    A7;
    
          hence thesis by
    Th94;
    
        end;
    
        
    
        
    
    A11: 
    |.(x
    - z).| 
    in X by 
    A9,
    A7;
    
        (
    dist (x,A)) 
    = ( 
    lower_bound X) & ( 
    0 qua 
    Nat
    + r) 
    = r by 
    Def17,
    A7;
    
        then
    
        consider r9 be
    Real such that 
    
        
    
    A12: r9 
    in X and 
    
        
    
    A13: r9 
    < r by 
    A5,
    A8,
    A11,
    A10,
    Def2;
    
        consider z1 such that
    
        
    
    A14: r9 
    =  
    |.(x
    - z1).| & z1 
    in A by 
    A12,
    A7;
    
        take z = (z1
    - x); 
    
        thus
    |.z.|
    < r & (x 
    + z) 
    in A by 
    A13,
    A14,
    Th79,
    Th103;
    
      end;
    
      hence contradiction by
    A1,
    A3;
    
    end;
    
    theorem :: 
    
    SEQ_4:118
    
    A
    <>  
    {} implies ( 
    |.(z1
    - x).| 
    + ( 
    dist (x,A))) 
    >= ( 
    dist (z1,A)) 
    
    proof
    
      (x
    + (z1 
    - x)) 
    = z1 by 
    Th79;
    
      hence thesis by
    Th114;
    
    end;
    
    theorem :: 
    
    SEQ_4:119
    
    
    
    
    
    Th118: z 
    in ( 
    Ball (A,r)) iff ( 
    dist (z,A)) 
    < r 
    
    proof
    
      z
    in { z2 : ( 
    dist (z2,A)) 
    < r } iff ex z1 st z 
    = z1 & ( 
    dist (z1,A)) 
    < r; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:120
    
    
    
    
    
    Th119: 
    0  
    < r & x 
    in A implies x 
    in ( 
    Ball (A,r)) 
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    < r and 
    
      
    
    A2: x 
    in A; 
    
      (
    dist (x,A)) 
    =  
    0 by 
    A2,
    Th115;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:121
    
    
    0  
    < r implies A 
    c= ( 
    Ball (A,r)) by 
    Th119;
    
    theorem :: 
    
    SEQ_4:122
    
    A
    <>  
    {} implies ( 
    Ball (A,r1)) is 
    open
    
    proof
    
      assume
    
      
    
    A1: A 
    <>  
    {} ; 
    
      let x;
    
      assume x
    in ( 
    Ball (A,r1)); 
    
      then
    
      
    
    A2: ( 
    dist (x,A)) 
    < r1 by 
    Th118;
    
      take r = (r1
    - ( 
    dist (x,A))); 
    
      thus
    0  
    < r by 
    A2,
    XREAL_1: 50;
    
      let z;
    
      assume
    |.z.|
    < r; 
    
      then
    
      
    
    A3: ( 
    |.z.|
    + ( 
    dist (x,A))) 
    < (r 
    + ( 
    dist (x,A))) by 
    XREAL_1: 6;
    
      (
    dist ((x 
    + z),A)) 
    <= ( 
    |.z.|
    + ( 
    dist (x,A))) by 
    A1,
    Th114;
    
      then (
    dist ((x 
    + z),A)) 
    < (r 
    + ( 
    dist (x,A))) by 
    A3,
    XXREAL_0: 2;
    
      hence thesis;
    
    end;
    
    definition
    
      let n, A, B;
    
      :: 
    
    SEQ_4:def19
    
      func
    
    dist (A,B) -> 
    Real means 
    
      :
    
    Def19: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : x 
    in A & z 
    in B } holds it 
    = ( 
    lower_bound X); 
    
      existence
    
      proof
    
        deffunc
    
    f(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.($1
    - $2).|, 
    REAL )); 
    
        deffunc
    
    g(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = 
    |.($1
    - $2).|; 
    
        defpred
    
    P[
    set, 
    set] means $1
    in A & $2 
    in B; 
    
        reconsider X = {
    f(x,z) :
    P[x, z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
        
    
        
    
    A1: for z1,z2 be 
    Element of ( 
    COMPLEX n) holds 
    f(z1,z2)
    =  
    g(z1,z2);
    
        
    
        
    
    A2: { 
    f(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] }
    = { 
    g(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] } from
    FRAENKEL:sch 7(
    A1);
    
        take L = (
    lower_bound X); 
    
        thus thesis by
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let r1,r2 be
    Real such that 
    
        
    
    A3: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : x 
    in A & z 
    in B } holds r1 
    = ( 
    lower_bound X) and 
    
        
    
    A4: for X be 
    Subset of 
    REAL st X 
    = { 
    |.(x
    - z).| : x 
    in A & z 
    in B } holds r2 
    = ( 
    lower_bound X); 
    
        deffunc
    
    f(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.($1
    - $2).|, 
    REAL )); 
    
        deffunc
    
    g(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = 
    |.($1
    - $2).|; 
    
        defpred
    
    P[
    set, 
    set] means $1
    in A & $2 
    in B; 
    
        reconsider X = {
    f(x,z) :
    P[x, z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
        
    
        
    
    A1: for z1,z2 be 
    Element of ( 
    COMPLEX n) holds 
    f(z1,z2)
    =  
    g(z1,z2);
    
        
    
        
    
    A2: { 
    f(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] }
    = { 
    g(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] } from
    FRAENKEL:sch 7(
    A1);
    
        r1
    = ( 
    lower_bound X) by 
    A3,
    A2;
    
        hence thesis by
    A4,
    A2;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:123
    
    for X,Y be
    Subset of 
    REAL holds X 
    <>  
    {} & Y 
    <>  
    {} implies (X 
    ++ Y) 
    <>  
    {} ; 
    
    theorem :: 
    
    SEQ_4:124
    
    
    
    
    
    Th123: for X,Y be 
    Subset of 
    REAL holds X is 
    bounded_below & Y is 
    bounded_below implies (X 
    ++ Y) is 
    bounded_below
    
    proof
    
      let X,Y be
    Subset of 
    REAL ; 
    
      assume X is
    bounded_below;
    
      then
    
      consider r1 be
    Real such that 
    
      
    
    A1: r1 is 
    LowerBound of X; 
    
      
    
      
    
    A2: for r be 
    Real st r 
    in X holds r1 
    <= r by 
    A1,
    XXREAL_2:def 2;
    
      assume Y is
    bounded_below;
    
      then
    
      consider r2 be
    Real such that 
    
      
    
    A3: r2 is 
    LowerBound of Y; 
    
      
    
      
    
    A4: for r be 
    Real st r 
    in Y holds r2 
    <= r by 
    A3,
    XXREAL_2:def 2;
    
      take (r1
    + r2); 
    
      let r be
    ExtReal;
    
      assume r
    in (X 
    ++ Y); 
    
      then r
    in { (r22 
    + r12) where r22,r12 be 
    Complex : r22 
    in X & r12 
    in Y } by 
    MEMBER_1:def 6;
    
      then
    
      consider r22,r12 be
    Complex such that 
    
      
    
    A5: r 
    = (r22 
    + r12) and 
    
      
    
    A6: r22 
    in X and 
    
      
    
    A7: r12 
    in Y; 
    
      reconsider r9 = r22, r99 = r12 as
    Real by 
    A6,
    A7;
    
      
    
      
    
    A8: r2 
    <= r99 by 
    A4,
    A7;
    
      r1
    <= r9 by 
    A2,
    A6;
    
      hence thesis by
    A5,
    A8,
    XREAL_1: 7;
    
    end;
    
    theorem :: 
    
    SEQ_4:125
    
    
    
    
    
    Th124: for X,Y be 
    Subset of 
    REAL st X 
    <>  
    {} & X is 
    bounded_below & Y 
    <>  
    {} & Y is 
    bounded_below holds ( 
    lower_bound (X 
    ++ Y)) 
    = (( 
    lower_bound X) 
    + ( 
    lower_bound Y)) 
    
    proof
    
      let X,Y be
    Subset of 
    REAL such that 
    
      
    
    A1: X 
    <>  
    {} and 
    
      
    
    A2: X is 
    bounded_below and 
    
      
    
    A3: Y 
    <>  
    {} and 
    
      
    
    A4: Y is 
    bounded_below;
    
      
    
    A5: 
    
      now
    
        let r9 be
    Real;
    
        assume
    0  
    < r9; 
    
        then
    
        
    
    A6: (r9 
    / 2) 
    >  
    0 ; 
    
        then
    
        consider r1 be
    Real such that 
    
        
    
    A7: r1 
    in X and 
    
        
    
    A8: r1 
    < (( 
    lower_bound X) 
    + (r9 
    / 2)) by 
    A1,
    A2,
    Def2;
    
        consider r2 be
    Real such that 
    
        
    
    A9: r2 
    in Y and 
    
        
    
    A10: r2 
    < (( 
    lower_bound Y) 
    + (r9 
    / 2)) by 
    A3,
    A4,
    A6,
    Def2;
    
        reconsider r = (r1
    + r2) as 
    Real;
    
        take r;
    
        thus r
    in (X 
    ++ Y) by 
    A7,
    A9,
    MEMBER_1: 46;
    
        (((
    lower_bound X) 
    + (r9 
    / 2)) 
    + (( 
    lower_bound Y) 
    + (r9 
    / 2))) 
    = ((( 
    lower_bound X) 
    + ( 
    lower_bound Y)) 
    + r9); 
    
        hence r
    < ((( 
    lower_bound X) 
    + ( 
    lower_bound Y)) 
    + r9) by 
    A8,
    A10,
    XREAL_1: 8;
    
      end;
    
      
    
    A11: 
    
      now
    
        let r be
    Real;
    
        assume r
    in (X 
    ++ Y); 
    
        then r
    in { (r22 
    + r12) where r22,r12 be 
    Complex : r22 
    in X & r12 
    in Y } by 
    MEMBER_1:def 6;
    
        then
    
        consider r11,r22 be
    Complex such that 
    
        
    
    A12: r 
    = (r11 
    + r22) and 
    
        
    
    A13: r11 
    in X & r22 
    in Y; 
    
        reconsider r1 = r11, r2 = r22 as
    Real by 
    A13;
    
        r1
    >= ( 
    lower_bound X) & r2 
    >= ( 
    lower_bound Y) by 
    A2,
    A4,
    A13,
    Def2;
    
        hence ((
    lower_bound X) 
    + ( 
    lower_bound Y)) 
    <= r by 
    A12,
    XREAL_1: 7;
    
      end;
    
      (X
    ++ Y) 
    <>  
    {} & (X 
    ++ Y) is 
    bounded_below by 
    A1,
    A2,
    A3,
    A4,
    Th123;
    
      hence thesis by
    A11,
    A5,
    Def2;
    
    end;
    
    theorem :: 
    
    SEQ_4:126
    
    
    
    
    
    Th125: for X,Y be 
    Subset of 
    REAL st Y is 
    bounded_below & X 
    <>  
    {} & for r st r 
    in X holds ex r1 st r1 
    in Y & r1 
    <= r holds ( 
    lower_bound X) 
    >= ( 
    lower_bound Y) 
    
    proof
    
      let X,Y be
    Subset of 
    REAL such that 
    
      
    
    A1: Y is 
    bounded_below and 
    
      
    
    A2: X 
    <>  
    {} and 
    
      
    
    A3: for r st r 
    in X holds ex r1 st r1 
    in Y & r1 
    <= r; 
    
      now
    
        let r1;
    
        assume r1
    in X; 
    
        then
    
        consider r2 such that
    
        
    
    A4: r2 
    in Y and 
    
        
    
    A5: r2 
    <= r1 by 
    A3;
    
        (
    lower_bound Y) 
    <= r2 by 
    A1,
    A4,
    Def2;
    
        hence r1
    >= ( 
    lower_bound Y) by 
    A5,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A2,
    Th112;
    
    end;
    
    theorem :: 
    
    SEQ_4:127
    
    
    
    
    
    Th126: A 
    <>  
    {} & B 
    <>  
    {} implies ( 
    dist (A,B)) 
    >=  
    0  
    
    proof
    
      defpred
    
    P[
    set, 
    set] means $1
    in A & $2 
    in B; 
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = 
    |.($1
    - $2).|; 
    
      deffunc
    
    g(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.($1
    - $2).|, 
    REAL )); 
    
      
    
      
    
    A1: for z1,z2 be 
    Element of ( 
    COMPLEX n) holds 
    f(z1,z2)
    =  
    g(z1,z2);
    
      
    
      
    
    A2: { 
    f(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] }
    = { 
    g(z1,z2) where z1,z2 be
    Element of ( 
    COMPLEX n) : 
    P[z1, z2] } from
    FRAENKEL:sch 7(
    A1);
    
      reconsider Z = {
    g(z1,z) where z1,z be
    Element of ( 
    COMPLEX n) : 
    P[z1, z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
      assume that
    
      
    
    A3: A 
    <>  
    {} and 
    
      
    
    A4: B 
    <>  
    {} ; 
    
      consider z1 such that
    
      
    
    A5: z1 
    in A by 
    A3,
    SUBSET_1: 4;
    
      
    
    A6: 
    
      now
    
        let r9;
    
        assume r9
    in Z; 
    
        then ex z1, z st r9
    =  
    |.(z1
    - z).| & z1 
    in A & z 
    in B by 
    A2;
    
        hence r9
    >=  
    0 by 
    Th94;
    
      end;
    
      consider z2 such that
    
      
    
    A7: z2 
    in B by 
    A4,
    SUBSET_1: 4;
    
      
    
      
    
    A8: ( 
    dist (A,B)) 
    = ( 
    lower_bound Z) by 
    Def19,
    A2;
    
      
    |.(z1
    - z2).| 
    in Z by 
    A5,
    A7,
    A2;
    
      hence thesis by
    A8,
    A6,
    Th112;
    
    end;
    
    theorem :: 
    
    SEQ_4:128
    
    (
    dist (A,B)) 
    = ( 
    dist (B,A)) 
    
    proof
    
      defpred
    
    R[
    set, 
    set] means $1
    in B & $2 
    in A; 
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.($1
    - $2).|, 
    REAL )); 
    
      deffunc
    
    f1(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = 
    |.($1
    - $2).|; 
    
      reconsider Y = {
    f(z,z1) where z,z1 be
    Element of ( 
    COMPLEX n) : 
    R[z, z1] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
      defpred
    
    P[
    set, 
    set] means $1
    in A & $2 
    in B; 
    
      reconsider X = {
    f(z1,z) where z1,z be
    Element of ( 
    COMPLEX n) : 
    P[z1, z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
      
    
    A1: 
    
      now
    
        let r be
    Element of 
    REAL ; 
    
        
    
    A2: 
    
        now
    
          given z, z1 such that
    
          
    
    A3: r 
    =  
    f(z,z1) & z
    in B & z1 
    in A; 
    
          take z1, z;
    
          thus r
    =  
    f(z1,z) & z1
    in A & z 
    in B by 
    A3,
    Th103;
    
        end;
    
        now
    
          given z1, z such that
    
          
    
    A4: r 
    =  
    f(z1,z) & z1
    in A & z 
    in B; 
    
          take z, z1;
    
          thus r
    =  
    f(z,z1) & z
    in B & z1 
    in A by 
    A4,
    Th103;
    
        end;
    
        hence r
    in X iff r 
    in Y by 
    A2;
    
      end;
    
      
    
      
    
    A5: 
    f(z,z1)
    =  
    f1(z,z1);
    
      
    
      
    
    A6: { 
    f(z,z1) where z,z1 be
    Element of ( 
    COMPLEX n) : 
    R[z, z1] }
    = { 
    f1(z,z1) where z,z1 be
    Element of ( 
    COMPLEX n) : 
    R[z, z1] } from
    FRAENKEL:sch 7(
    A5);
    
      {
    f(z1,z) where z1,z be
    Element of ( 
    COMPLEX n) : 
    P[z1, z] }
    = { 
    f1(z1,z) where z1,z be
    Element of ( 
    COMPLEX n) : 
    P[z1, z] } from
    FRAENKEL:sch 7(
    A5);
    
      then (
    dist (A,B)) 
    = ( 
    lower_bound X) & ( 
    dist (B,A)) 
    = ( 
    lower_bound Y) by 
    Def19,
    A6;
    
      hence thesis by
    A1,
    SUBSET_1: 3;
    
    end;
    
    theorem :: 
    
    SEQ_4:129
    
    
    
    
    
    Th128: A 
    <>  
    {} & B 
    <>  
    {} implies (( 
    dist (x,A)) 
    + ( 
    dist (x,B))) 
    >= ( 
    dist (A,B)) 
    
    proof
    
      defpred
    
    Y[
    set] means $1
    in B; 
    
      deffunc
    
    g(
    Element of ( 
    COMPLEX n)) = 
    |.(x
    - $1).|; 
    
      deffunc
    
    g1(
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.(x
    - $1).|, 
    REAL )); 
    
      reconsider Y = {
    g1(z) :
    Y[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      defpred
    
    P[
    set, 
    set] means $1
    in A & $2 
    in B; 
    
      defpred
    
    X[
    set] means $1
    in A; 
    
      deffunc
    
    f(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = ( 
    In ( 
    |.($1
    - $2).|, 
    REAL )); 
    
      deffunc
    
    f1(
    Element of ( 
    COMPLEX n), 
    Element of ( 
    COMPLEX n)) = 
    |.($1
    - $2).|; 
    
      reconsider X = {
    g1(z) :
    X[z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 8;
    
      assume that
    
      
    
    A1: A 
    <>  
    {} and 
    
      
    
    A2: B 
    <>  
    {} ; 
    
      consider z2 such that
    
      
    
    A3: z2 
    in B by 
    A2,
    SUBSET_1: 4;
    
      
    
      
    
    A4: Y 
    <>  
    {} & Y is 
    bounded_below
    
      proof
    
        
    g1(z2)
    in Y by 
    A3;
    
        hence Y
    <>  
    {} ; 
    
        take
    0 ; 
    
        let r be
    ExtReal;
    
        assume r
    in Y; 
    
        then ex z1 st r
    =  
    g1(z1) & z1
    in B; 
    
        hence thesis by
    Th94;
    
      end;
    
      
    
      
    
    A5: 
    g1(z)
    =  
    g(z);
    
      
    
      
    
    A6: { 
    g1(z) :
    Y[z] }
    = { 
    g(z1) :
    Y[z1] } from
    FRAENKEL:sch 5(
    A5);
    
      {
    g1(z) :
    X[z] }
    = { 
    g(z1) :
    X[z1] } from
    FRAENKEL:sch 5(
    A5);
    
      then
    
      
    
    A7: ( 
    lower_bound X) 
    = ( 
    dist (x,A)) & ( 
    lower_bound Y) 
    = ( 
    dist (x,B)) by 
    Def17,
    A6;
    
      
    
      
    
    A8: 
    g1(z2)
    in Y by 
    A3;
    
      reconsider Z = {
    f(z1,z) where z1, z :
    P[z1, z] } as
    Subset of 
    REAL from 
    DOMAIN_1:sch 9;
    
      consider z1 such that
    
      
    
    A9: z1 
    in A by 
    A1,
    SUBSET_1: 4;
    
      (X
    ++ Y) 
    c=  
    REAL by 
    MEMBERED: 3;
    
      then
    
      reconsider XY = (X
    ++ Y) as 
    Subset of 
    REAL ; 
    
      
    
      
    
    A10: for r st r 
    in XY holds ex r1 st r1 
    in Z & r1 
    <= r 
    
      proof
    
        let r;
    
        assume r
    in XY; 
    
        then r
    in { (r2 
    + r1) where r2,r1 be 
    Complex : r2 
    in X & r1 
    in Y } by 
    MEMBER_1:def 6;
    
        then
    
        consider r2,r1 be
    Complex such that 
    
        
    
    A11: r 
    = (r2 
    + r1) and 
    
        
    
    A12: r2 
    in X and 
    
        
    
    A13: r1 
    in Y; 
    
        consider z2 such that
    
        
    
    A14: r1 
    =  
    g1(z2) & z2
    in B by 
    A13;
    
        consider z1 such that
    
        
    
    A15: r2 
    =  
    g1(z1) and
    
        
    
    A16: z1 
    in A by 
    A12;
    
        take r3 =
    f(z1,z2);
    
        r2
    =  
    |.(z1
    - x).| by 
    A15,
    Th103;
    
        hence r3
    in Z & r3 
    <= r by 
    A11,
    A16,
    A14,
    Th104;
    
      end;
    
      
    
      
    
    A17: Z is 
    bounded_below
    
      proof
    
        take
    0 ; 
    
        let r be
    ExtReal;
    
        assume r
    in Z; 
    
        then ex z1, z st r
    =  
    f(z1,z) &
    P[z1, z];
    
        hence thesis by
    Th94;
    
      end;
    
      
    
      
    
    A18: X 
    <>  
    {} & X is 
    bounded_below
    
      proof
    
        
    g1(z1)
    in X by 
    A9;
    
        hence X
    <>  
    {} ; 
    
        take
    0 ; 
    
        let r be
    ExtReal;
    
        assume r
    in X; 
    
        then ex z st r
    =  
    g1(z) & z
    in A; 
    
        hence thesis by
    Th94;
    
      end;
    
      
    
      
    
    A19: for z3, z holds 
    f(z3,z)
    =  
    f1(z3,z);
    
      {
    f(z3,z) where z3,z be
    Element of ( 
    COMPLEX n) : 
    P[z3, z] }
    = { 
    f1(z3,z) where z3,z be
    Element of ( 
    COMPLEX n) : 
    P[z3, z] } from
    FRAENKEL:sch 7(
    A19);
    
      then
    
      
    
    A20: ( 
    lower_bound Z) 
    = ( 
    dist (A,B)) by 
    Def19;
    
      
    g1(z1)
    in X by 
    A9;
    
      then (
    |.(x
    - z1).| 
    +  
    |.(x
    - z2).|) 
    in (X 
    ++ Y) by 
    A8,
    MEMBER_1: 46;
    
      then XY
    <>  
    {} ; 
    
      then (
    lower_bound XY) 
    >= ( 
    lower_bound Z) by 
    A17,
    A10,
    Th125;
    
      hence thesis by
    A18,
    A4,
    A7,
    A20,
    Th124;
    
    end;
    
    theorem :: 
    
    SEQ_4:130
    
    A
    meets B implies ( 
    dist (A,B)) 
    =  
    0  
    
    proof
    
      assume A
    meets B; 
    
      then
    
      consider z be
    object such that 
    
      
    
    A1: z 
    in A and 
    
      
    
    A2: z 
    in B by 
    XBOOLE_0: 3;
    
      reconsider z as
    Element of ( 
    COMPLEX n) by 
    A1;
    
      (
    dist (z,A)) 
    =  
    0 & ( 
    dist (z,B)) 
    =  
    0 by 
    A1,
    A2,
    Th115;
    
      then (
    0 qua 
    Nat
    +  
    0 qua 
    Nat)
    >= ( 
    dist (A,B)) by 
    A1,
    A2,
    Th128;
    
      hence thesis by
    A1,
    A2,
    Th126;
    
    end;
    
    definition
    
      let n;
    
      :: 
    
    SEQ_4:def20
    
      func
    
    ComplexOpenSets (n) -> 
    Subset-Family of ( 
    COMPLEX n) equals { A where A be 
    Subset of ( 
    COMPLEX n) : A is 
    open };
    
      coherence
    
      proof
    
        set S = { A where A be
    Subset of ( 
    COMPLEX n) : A is 
    open };
    
        S
    c= ( 
    bool ( 
    COMPLEX n)) 
    
        proof
    
          let x be
    object;
    
          assume x
    in S; 
    
          then ex A be
    Subset of ( 
    COMPLEX n) st x 
    = A & A is 
    open;
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:131
    
    for A be
    Subset of ( 
    COMPLEX n) holds A 
    in ( 
    ComplexOpenSets n) iff A is 
    open
    
    proof
    
      let B be
    Subset of ( 
    COMPLEX n); 
    
      B
    in { A where A be 
    Subset of ( 
    COMPLEX n) : A is 
    open } iff ex C be
    Subset of ( 
    COMPLEX n) st B 
    = C & C is 
    open;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:132
    
    for A be
    Subset of ( 
    COMPLEX n) holds A is 
    closed iff (A 
    ` ) is 
    open
    
    proof
    
      let A be
    Subset of ( 
    COMPLEX n); 
    
      thus A is
    closed implies (A 
    ` ) is 
    open
    
      proof
    
        assume
    
        
    
    A1: for x st for r st r 
    >  
    0 holds ex z st 
    |.z.|
    < r & (x 
    + z) 
    in A holds x 
    in A; 
    
        let x;
    
        assume x
    in (A 
    ` ); 
    
        then not x
    in A by 
    XBOOLE_0:def 5;
    
        then
    
        consider r such that
    
        
    
    A2: r 
    >  
    0 and 
    
        
    
    A3: for z st 
    |.z.|
    < r holds not (x 
    + z) 
    in A by 
    A1;
    
        take r;
    
        thus
    0  
    < r by 
    A2;
    
        let z;
    
        assume
    |.z.|
    < r; 
    
        hence thesis by
    A3,
    SUBSET_1: 29;
    
      end;
    
      assume
    
      
    
    A4: for x st x 
    in (A 
    ` ) holds ex r st 
    0  
    < r & for z st 
    |.z.|
    < r holds (x 
    + z) 
    in (A 
    ` ); 
    
      let x such that
    
      
    
    A5: for r st r 
    >  
    0 holds ex z st 
    |.z.|
    < r & (x 
    + z) 
    in A; 
    
      now
    
        let r;
    
        assume r
    >  
    0 ; 
    
        then
    
        consider z such that
    
        
    
    A6: 
    |.z.|
    < r & (x 
    + z) 
    in A by 
    A5;
    
        take z;
    
        thus
    |.z.|
    < r & not (x 
    + z) 
    in (A 
    ` ) by 
    A6,
    XBOOLE_0:def 5;
    
      end;
    
      then not x
    in (A 
    ` ) by 
    A4;
    
      hence thesis by
    SUBSET_1: 29;
    
    end;
    
    begin
    
    reserve v,v1,v2 for
    FinSequence of 
    REAL , 
    
n,m,k for
    Nat, 
    
x for
    set;
    
    defpred
    
    P[
    Nat] means for R be
    finite  
    Subset of 
    REAL st R 
    <>  
    {} & ( 
    card R) 
    = $1 holds R is 
    bounded_above & ( 
    upper_bound R) 
    in R & R is 
    bounded_below & ( 
    lower_bound R) 
    in R; 
    
    
    
    
    
    Lm7: 
    P[
    0 ]; 
    
    
    
    
    
    Lm8: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
    proof
    
      let n such that
    
      
    
    A1: 
    P[n];
    
      let R be
    finite  
    Subset of 
    REAL such that 
    
      
    
    A2: R 
    <>  
    {} and 
    
      
    
    A3: ( 
    card R) 
    = (n 
    + 1); 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A4: n 
    =  
    0 ; 
    
          thus R is
    bounded_above;
    
          consider x be
    object such that 
    
          
    
    A5: R 
    =  
    {x} by
    A3,
    A4,
    CARD_2: 42;
    
          x
    in R by 
    A5,
    TARSKI:def 1;
    
          then
    
          reconsider r = x as
    Real;
    
          (
    upper_bound R) 
    = r by 
    A5,
    Th9;
    
          hence (
    upper_bound R) 
    in R by 
    A5,
    TARSKI:def 1;
    
          thus R is
    bounded_below;
    
          (
    lower_bound R) 
    = r by 
    A5,
    Th9;
    
          hence (
    lower_bound R) 
    in R by 
    A5,
    TARSKI:def 1;
    
        end;
    
          suppose
    
          
    
    A6: n 
    <>  
    0 ; 
    
          set x = the
    Element of R; 
    
          reconsider x as
    Real;
    
          reconsider X = (R
    \  
    {x}) as
    finite  
    Subset of 
    REAL ; 
    
          set u = (
    upper_bound X), m = ( 
    max (x,u)), l = ( 
    lower_bound X), mi = ( 
    min (x,l)); 
    
          
    {x}
    c= R by 
    A2,
    ZFMISC_1: 31;
    
          then (
    card (R 
    \  
    {x}))
    = (( 
    card R) 
    - ( 
    card  
    {x})) by
    CARD_2: 44;
    
          
    
          then
    
          
    
    A7: ( 
    card X) 
    = ((n 
    + 1) 
    - 1) by 
    A3,
    CARD_1: 30
    
          .= n;
    
          then
    
          
    
    A8: ( 
    upper_bound X) 
    in X by 
    A1,
    A6,
    CARD_1: 27;
    
          
    
    A9: 
    
          now
    
            reconsider s = m as
    Real;
    
            let r be
    Real such that 
    
            
    
    A10: 
    0  
    < r; 
    
            take s;
    
            now
    
              per cases by
    XXREAL_0: 16;
    
                suppose m
    = x; 
    
                hence s
    in R by 
    A2;
    
                thus (m
    - r) 
    < s by 
    A10,
    XREAL_1: 44;
    
              end;
    
                suppose m
    = u; 
    
                hence s
    in R by 
    A8,
    XBOOLE_0:def 5;
    
                thus (m
    - r) 
    < s by 
    A10,
    XREAL_1: 44;
    
              end;
    
            end;
    
            hence s
    in R & (m 
    - r) 
    < s; 
    
          end;
    
          
    
          
    
    A11: ( 
    lower_bound X) 
    in X by 
    A1,
    A6,
    A7,
    CARD_1: 27;
    
          
    
    A12: 
    
          now
    
            reconsider s = mi as
    Real;
    
            let r be
    Real such that 
    
            
    
    A13: 
    0  
    < r; 
    
            take s;
    
            now
    
              per cases by
    XXREAL_0: 15;
    
                suppose mi
    = x; 
    
                hence s
    in R by 
    A2;
    
                thus s
    < (mi 
    + r) by 
    A13,
    XREAL_1: 29;
    
              end;
    
                suppose mi
    = l; 
    
                hence s
    in R by 
    A11,
    XBOOLE_0:def 5;
    
                thus s
    < (mi 
    + r) by 
    A13,
    XREAL_1: 29;
    
              end;
    
            end;
    
            hence s
    in R & s 
    < (mi 
    + r); 
    
          end;
    
          thus R is
    bounded_above;
    
          
    
          
    
    A14: u 
    <= m by 
    XXREAL_0: 25;
    
          
    
    A15: 
    
          now
    
            let s be
    Real such that 
    
            
    
    A16: s 
    in R; 
    
            now
    
              per cases ;
    
                suppose s
    = x; 
    
                hence s
    <= m by 
    XXREAL_0: 25;
    
              end;
    
                suppose s
    <> x; 
    
                then not s
    in  
    {x} by
    TARSKI:def 1;
    
                then s
    in X by 
    A16,
    XBOOLE_0:def 5;
    
                then s
    <= u by 
    Def1;
    
                hence s
    <= m by 
    A14,
    XXREAL_0: 2;
    
              end;
    
            end;
    
            hence s
    <= m; 
    
          end;
    
          now
    
            per cases by
    XXREAL_0: 16;
    
              suppose m
    = x; 
    
              hence m
    in R by 
    A2;
    
            end;
    
              suppose m
    = u; 
    
              hence m
    in R by 
    A8,
    XBOOLE_0:def 5;
    
            end;
    
          end;
    
          hence (
    upper_bound R) 
    in R by 
    A15,
    A9,
    Def1;
    
          thus R is
    bounded_below;
    
          
    
          
    
    A17: mi 
    <= l by 
    XXREAL_0: 17;
    
          
    
    A18: 
    
          now
    
            let s be
    Real such that 
    
            
    
    A19: s 
    in R; 
    
            now
    
              per cases ;
    
                suppose s
    = x; 
    
                hence mi
    <= s by 
    XXREAL_0: 17;
    
              end;
    
                suppose s
    <> x; 
    
                then not s
    in  
    {x} by
    TARSKI:def 1;
    
                then s
    in X by 
    A19,
    XBOOLE_0:def 5;
    
                then l
    <= s by 
    Def2;
    
                hence mi
    <= s by 
    A17,
    XXREAL_0: 2;
    
              end;
    
            end;
    
            hence mi
    <= s; 
    
          end;
    
          now
    
            per cases by
    XXREAL_0: 15;
    
              suppose mi
    = x; 
    
              hence mi
    in R by 
    A2;
    
            end;
    
              suppose mi
    = l; 
    
              hence mi
    in R by 
    A11,
    XBOOLE_0:def 5;
    
            end;
    
          end;
    
          hence (
    lower_bound R) 
    in R by 
    A18,
    A12,
    Def2;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm9: for n holds 
    P[n] from
    NAT_1:sch 2(
    Lm7,
    Lm8);
    
    theorem :: 
    
    SEQ_4:133
    
    
    
    
    
    Th132: for R be 
    finite  
    Subset of 
    REAL holds R 
    <>  
    {} implies R is 
    bounded_above & ( 
    upper_bound R) 
    in R & R is 
    bounded_below & ( 
    lower_bound R) 
    in R 
    
    proof
    
      let R be
    finite  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    A1: R 
    <>  
    {} ; 
    
      
    P[(
    card R)] by 
    Lm9;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SEQ_4:134
    
    for n be
    Nat holds for f be 
    FinSequence holds 1 
    <= n & (n 
    + 1) 
    <= ( 
    len f) iff n 
    in ( 
    dom f) & (n 
    + 1) 
    in ( 
    dom f) 
    
    proof
    
      let n be
    Nat;
    
      let f be
    FinSequence;
    
      thus 1
    <= n & (n 
    + 1) 
    <= ( 
    len f) implies n 
    in ( 
    dom f) & (n 
    + 1) 
    in ( 
    dom f) 
    
      proof
    
        assume that
    
        
    
    A1: 1 
    <= n and 
    
        
    
    A2: (n 
    + 1) 
    <= ( 
    len f); 
    
        n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
        then 1
    <= (n 
    + 1) & n 
    <= ( 
    len f) by 
    A2,
    NAT_1: 11,
    XXREAL_0: 2;
    
        hence thesis by
    A1,
    A2,
    FINSEQ_3: 25;
    
      end;
    
      thus thesis by
    FINSEQ_3: 25;
    
    end;
    
    theorem :: 
    
    SEQ_4:135
    
    for n be
    Nat holds for f be 
    FinSequence holds 1 
    <= n & (n 
    + 2) 
    <= ( 
    len f) iff n 
    in ( 
    dom f) & (n 
    + 1) 
    in ( 
    dom f) & (n 
    + 2) 
    in ( 
    dom f) 
    
    proof
    
      let n be
    Nat;
    
      let f be
    FinSequence;
    
      thus 1
    <= n & (n 
    + 2) 
    <= ( 
    len f) implies n 
    in ( 
    dom f) & (n 
    + 1) 
    in ( 
    dom f) & (n 
    + 2) 
    in ( 
    dom f) 
    
      proof
    
        assume that
    
        
    
    A1: 1 
    <= n and 
    
        
    
    A2: (n 
    + 2) 
    <= ( 
    len f); 
    
        (n
    + 1) 
    <= ((n 
    + 1) 
    + 1) by 
    NAT_1: 11;
    
        then
    
        
    
    A3: 1 
    <= (n 
    + 1) & (n 
    + 1) 
    <= ( 
    len f) by 
    A2,
    NAT_1: 11,
    XXREAL_0: 2;
    
        n
    <= (n 
    + 2) by 
    NAT_1: 11;
    
        then 1
    <= (n 
    + 2) & n 
    <= ( 
    len f) by 
    A1,
    A2,
    XXREAL_0: 2;
    
        hence thesis by
    A1,
    A2,
    A3,
    FINSEQ_3: 25;
    
      end;
    
      assume that
    
      
    
    A4: n 
    in ( 
    dom f) and (n 
    + 1) 
    in ( 
    dom f) and 
    
      
    
    A5: (n 
    + 2) 
    in ( 
    dom f); 
    
      thus thesis by
    A4,
    A5,
    FINSEQ_3: 25;
    
    end;
    
    theorem :: 
    
    SEQ_4:136
    
    for D be non
    empty  
    set, f1,f2 be 
    FinSequence of D, n st 1 
    <= n & n 
    <= ( 
    len f2) holds ((f1 
    ^ f2) 
    /. (n 
    + ( 
    len f1))) 
    = (f2 
    /. n) 
    
    proof
    
      let D be non
    empty  
    set, f1,f2 be 
    FinSequence of D, n such that 
    
      
    
    A1: 1 
    <= n and 
    
      
    
    A2: n 
    <= ( 
    len f2); 
    
      
    
      
    
    A3: ( 
    len f1) 
    < (n 
    + ( 
    len f1)) by 
    A1,
    NAT_1: 19;
    
      (
    len (f1 
    ^ f2)) 
    = (( 
    len f1) 
    + ( 
    len f2)) by 
    FINSEQ_1: 22;
    
      then
    
      
    
    A4: (n 
    + ( 
    len f1)) 
    <= ( 
    len (f1 
    ^ f2)) by 
    A2,
    XREAL_1: 6;
    
      (n
    + ( 
    len f1)) 
    >= n by 
    NAT_1: 11;
    
      then (n
    + ( 
    len f1)) 
    >= 1 by 
    A1,
    XXREAL_0: 2;
    
      
    
      hence ((f1
    ^ f2) 
    /. (n 
    + ( 
    len f1))) 
    = ((f1 
    ^ f2) 
    . (n 
    + ( 
    len f1))) by 
    A4,
    FINSEQ_4: 15
    
      .= (f2
    . ((n 
    + ( 
    len f1)) 
    - ( 
    len f1))) by 
    A3,
    A4,
    FINSEQ_1: 24
    
      .= (f2
    /. n) by 
    A1,
    A2,
    FINSEQ_4: 15;
    
    end;
    
    theorem :: 
    
    SEQ_4:137
    
    v is
    increasing implies for n, m st n 
    in ( 
    dom v) & m 
    in ( 
    dom v) & n 
    <= m holds (v 
    . n) 
    <= (v 
    . m) 
    
    proof
    
      assume
    
      
    
    A1: v is 
    increasing;
    
      let n, m such that
    
      
    
    A2: n 
    in ( 
    dom v) & m 
    in ( 
    dom v) and 
    
      
    
    A3: n 
    <= m; 
    
      now
    
        per cases ;
    
          suppose n
    = m; 
    
          hence thesis;
    
        end;
    
          suppose n
    <> m; 
    
          then n
    < m by 
    A3,
    XXREAL_0: 1;
    
          hence thesis by
    A1,
    A2,
    SEQM_3:def 1;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:138
    
    
    
    
    
    Th137: v is 
    increasing implies for n, m st n 
    in ( 
    dom v) & m 
    in ( 
    dom v) & n 
    <> m holds (v 
    . n) 
    <> (v 
    . m) 
    
    proof
    
      assume
    
      
    
    A1: v is 
    increasing;
    
      let n, m;
    
      assume that
    
      
    
    A2: n 
    in ( 
    dom v) & m 
    in ( 
    dom v) and 
    
      
    
    A3: n 
    <> m; 
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          suppose n
    < m; 
    
          hence thesis by
    A1,
    A2,
    SEQM_3:def 1;
    
        end;
    
          suppose n
    > m; 
    
          hence thesis by
    A1,
    A2,
    SEQM_3:def 1;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SEQ_4:139
    
    
    
    
    
    Th138: v is 
    increasing & v1 
    = (v 
    | ( 
    Seg n)) implies v1 is 
    increasing
    
    proof
    
      assume that
    
      
    
    A1: v is 
    increasing and 
    
      
    
    A2: v1 
    = (v 
    | ( 
    Seg n)); 
    
      now
    
        per cases ;
    
          suppose n
    <= ( 
    len v); 
    
          then (
    Seg n) 
    c= ( 
    Seg ( 
    len v)) by 
    FINSEQ_1: 5;
    
          then
    
          
    
    A3: ( 
    Seg n) 
    c= ( 
    dom v) by 
    FINSEQ_1:def 3;
    
          then (
    Seg n) 
    = (( 
    dom v) 
    /\ ( 
    Seg n)) by 
    XBOOLE_1: 28;
    
          then
    
          
    
    A4: ( 
    dom v1) 
    = ( 
    Seg n) by 
    A2,
    RELAT_1: 61;
    
          now
    
            let m, k such that
    
            
    
    A5: m 
    in ( 
    dom v1) & k 
    in ( 
    dom v1) and 
    
            
    
    A6: m 
    < k; 
    
            set r = (v1
    . m), s = (v1 
    . k); 
    
            r
    = (v 
    . m) & s 
    = (v 
    . k) by 
    A2,
    A5,
    FUNCT_1: 47;
    
            hence r
    < s by 
    A1,
    A3,
    A4,
    A5,
    A6,
    SEQM_3:def 1;
    
          end;
    
          hence thesis by
    SEQM_3:def 1;
    
        end;
    
          suppose (
    len v) 
    <= n; 
    
          hence thesis by
    A1,
    A2,
    FINSEQ_2: 20;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    defpred
    
    P1[
    Nat] means for v st (
    card ( 
    rng v)) 
    = $1 holds ex v1 st ( 
    rng v1) 
    = ( 
    rng v) & ( 
    len v1) 
    = ( 
    card ( 
    rng v)) & v1 is 
    increasing;
    
    
    
    
    
    Lm10: 
    P1[
    0 ] 
    
    proof
    
      let v;
    
      assume (
    card ( 
    rng v)) 
    =  
    0 ; 
    
      then
    
      
    
    A1: ( 
    rng v) 
    =  
    {} ; 
    
      take v1 = v;
    
      thus (
    rng v1) 
    = ( 
    rng v); 
    
      thus (
    len v1) 
    = ( 
    card ( 
    rng v)) by 
    A1,
    RELAT_1: 41;
    
      for n, m holds n
    in ( 
    dom v1) & m 
    in ( 
    dom v1) & n 
    < m implies (v1 
    . n) 
    < (v1 
    . m) by 
    A1,
    RELAT_1: 38,
    RELAT_1: 41;
    
      hence thesis by
    SEQM_3:def 1;
    
    end;
    
    
    
    
    
    Lm11: for n st 
    P1[n] holds
    P1[(n
    + 1)] 
    
    proof
    
      let n such that
    
      
    
    A1: 
    P1[n];
    
      let v such that
    
      
    
    A2: ( 
    card ( 
    rng v)) 
    = (n 
    + 1); 
    
      now
    
        reconsider R = (
    rng v) as 
    finite  
    Subset of 
    REAL ; 
    
        set u = (
    upper_bound R), X = (R 
    \  
    {u});
    
        set f = (X
    |` v); 
    
        (
    Seq f) 
    = (f 
    * ( 
    Sgm ( 
    dom f))) & ( 
    rng ( 
    Sgm ( 
    dom f))) 
    = ( 
    dom f) by 
    FINSEQ_1: 50;
    
        
    
        then
    
        
    
    A3: ( 
    rng ( 
    Seq f)) 
    = ( 
    rng f) by 
    RELAT_1: 28
    
        .= X by
    RELAT_1: 89,
    XBOOLE_1: 36;
    
        then
    
        reconsider f1 = (
    Seq f) as 
    FinSequence of 
    REAL by 
    FINSEQ_1:def 4;
    
        reconsider X as
    finite  
    set;
    
        (
    upper_bound R) 
    in R by 
    A2,
    Th132,
    CARD_1: 27;
    
        then
    
        
    
    A4: 
    {u}
    c= R by 
    ZFMISC_1: 31;
    
        then
    
        
    
    A5: ( 
    card X) 
    = (( 
    card R) 
    - ( 
    card  
    {u})) by
    CARD_2: 44;
    
        
    
        
    
    A6: ( 
    card  
    {u})
    = 1 by 
    CARD_1: 30;
    
        then
    
        consider v2 such that
    
        
    
    A7: ( 
    rng v2) 
    = ( 
    rng f1) and 
    
        
    
    A8: ( 
    len v2) 
    = ( 
    card ( 
    rng f1)) and 
    
        
    
    A9: v2 is 
    increasing by 
    A1,
    A2,
    A3,
    A5;
    
        reconsider uu = u as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        take v1 = (v2
    ^  
    <*uu*>);
    
        
    
        thus (
    rng v1) 
    = (X 
    \/ ( 
    rng  
    <*u*>)) by
    A3,
    A7,
    FINSEQ_1: 31
    
        .= (((
    rng v) 
    \  
    {u})
    \/  
    {u}) by
    FINSEQ_1: 39
    
        .= ((
    rng v) 
    \/  
    {u}) by
    XBOOLE_1: 39
    
        .= (
    rng v) by 
    A4,
    XBOOLE_1: 12;
    
        
    
        thus
    
        
    
    A10: ( 
    len v1) 
    = (n 
    + ( 
    len  
    <*u*>)) by
    A2,
    A3,
    A5,
    A6,
    A8,
    FINSEQ_1: 22
    
        .= (
    card ( 
    rng v)) by 
    A2,
    FINSEQ_1: 39;
    
        now
    
          let k, m;
    
          assume that
    
          
    
    A11: k 
    in ( 
    dom v1) and 
    
          
    
    A12: m 
    in ( 
    dom v1) and 
    
          
    
    A13: k 
    < m; 
    
          
    
          
    
    A14: 1 
    <= m by 
    A12,
    FINSEQ_3: 25;
    
          
    
          
    
    A15: m 
    <= ( 
    len v1) by 
    A12,
    FINSEQ_3: 25;
    
          set r = (v1
    . k), s = (v1 
    . m); 
    
          
    
          
    
    A16: 1 
    <= k by 
    A11,
    FINSEQ_3: 25;
    
          
    
          
    
    A17: k 
    <= ( 
    len v1) by 
    A11,
    FINSEQ_3: 25;
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A18: m 
    = ( 
    len v1); 
    
              k
    < ( 
    len v1) by 
    A13,
    A15,
    XXREAL_0: 2;
    
              then k
    <= ( 
    len v2) by 
    A2,
    A3,
    A5,
    A6,
    A8,
    A10,
    NAT_1: 13;
    
              then
    
              
    
    A19: k 
    in ( 
    dom v2) by 
    A16,
    FINSEQ_3: 25;
    
              then r
    = (v2 
    . k) by 
    FINSEQ_1:def 7;
    
              then
    
              
    
    A20: r 
    in ( 
    rng v2) by 
    A19,
    FUNCT_1:def 3;
    
              then r
    in R by 
    A3,
    A7,
    XBOOLE_0:def 5;
    
              then
    
              
    
    A21: r 
    <= u by 
    Def1;
    
               not r
    in  
    {u} by
    A3,
    A7,
    A20,
    XBOOLE_0:def 5;
    
              then
    
              
    
    A22: r 
    <> u by 
    TARSKI:def 1;
    
              s
    = u by 
    A2,
    A3,
    A5,
    A6,
    A8,
    A10,
    A18,
    FINSEQ_1: 42;
    
              hence r
    < s by 
    A21,
    A22,
    XXREAL_0: 1;
    
            end;
    
              suppose m
    <> ( 
    len v1); 
    
              then m
    < ( 
    len v1) by 
    A15,
    XXREAL_0: 1;
    
              then m
    <= ( 
    len v2) by 
    A2,
    A3,
    A5,
    A6,
    A8,
    A10,
    NAT_1: 13;
    
              then
    
              
    
    A23: m 
    in ( 
    dom v2) by 
    A14,
    FINSEQ_3: 25;
    
              then
    
              
    
    A24: s 
    = (v2 
    . m) by 
    FINSEQ_1:def 7;
    
              k
    < ( 
    len v1) by 
    A13,
    A17,
    A15,
    XXREAL_0: 1;
    
              then k
    <= ( 
    len v2) by 
    A2,
    A3,
    A5,
    A6,
    A8,
    A10,
    NAT_1: 13;
    
              then
    
              
    
    A25: k 
    in ( 
    dom v2) by 
    A16,
    FINSEQ_3: 25;
    
              then r
    = (v2 
    . k) by 
    FINSEQ_1:def 7;
    
              hence r
    < s by 
    A9,
    A13,
    A25,
    A23,
    A24,
    SEQM_3:def 1;
    
            end;
    
          end;
    
          hence r
    < s; 
    
        end;
    
        hence v1 is
    increasing by 
    SEQM_3:def 1;
    
      end;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm12: for n holds 
    P1[n] from
    NAT_1:sch 2(
    Lm10,
    Lm11);
    
    theorem :: 
    
    SEQ_4:140
    
    for v holds ex v1 st (
    rng v1) 
    = ( 
    rng v) & ( 
    len v1) 
    = ( 
    card ( 
    rng v)) & v1 is 
    increasing by 
    Lm12;
    
    defpred
    
    P3[
    Nat] means for v1, v2 st (
    len v1) 
    = $1 & ( 
    len v2) 
    = $1 & ( 
    rng v1) 
    = ( 
    rng v2) & v1 is 
    increasing & v2 is 
    increasing holds v1 
    = v2; 
    
    
    
    
    
    Lm13: 
    P3[
    0 ] 
    
    proof
    
      let v1, v2;
    
      assume that
    
      
    
    A1: ( 
    len v1) 
    =  
    0 and 
    
      
    
    A2: ( 
    len v2) 
    =  
    0 and ( 
    rng v1) 
    = ( 
    rng v2) and v1 is 
    increasing and v2 is 
    increasing;
    
      v1
    =  
    {} by 
    A1;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm14: for n st 
    P3[n] holds
    P3[(n
    + 1)] 
    
    proof
    
      let n such that
    
      
    
    A1: 
    P3[n];
    
      let v1, v2 such that
    
      
    
    A2: ( 
    len v1) 
    = (n 
    + 1) and 
    
      
    
    A3: ( 
    len v2) 
    = (n 
    + 1) and 
    
      
    
    A4: ( 
    rng v1) 
    = ( 
    rng v2) and 
    
      
    
    A5: v1 is 
    increasing and 
    
      
    
    A6: v2 is 
    increasing;
    
      reconsider X = (
    rng v1) as 
    Subset of 
    REAL ; 
    
      set u = (
    upper_bound X); 
    
      X
    <>  
    {} by 
    A2,
    CARD_1: 27,
    RELAT_1: 41;
    
      then
    
      
    
    A7: ( 
    upper_bound X) 
    in X by 
    Th132;
    
      then
    
      consider m be
    Nat such that 
    
      
    
    A8: m 
    in ( 
    dom v2) and 
    
      
    
    A9: (v2 
    . m) 
    = u by 
    A4,
    FINSEQ_2: 10;
    
      reconsider m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      
    
      
    
    A10: m 
    <= ( 
    len v2) by 
    A8,
    FINSEQ_3: 25;
    
      
    
      
    
    A11: n 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
      then (
    Seg n) 
    c= ( 
    Seg (n 
    + 1)) by 
    FINSEQ_1: 5;
    
      then
    
      
    
    A12: ( 
    Seg n) 
    = (( 
    Seg (n 
    + 1)) 
    /\ ( 
    Seg n)) by 
    XBOOLE_1: 28;
    
      (
    dom v2) 
    = ( 
    Seg ( 
    len v2)) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A13: ( 
    dom (v2 
    | ( 
    Seg n))) 
    = ( 
    Seg n) by 
    A3,
    A12,
    RELAT_1: 61;
    
      (
    dom v1) 
    = ( 
    Seg ( 
    len v1)) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A14: ( 
    dom (v1 
    | ( 
    Seg n))) 
    = ( 
    Seg n) by 
    A2,
    A12,
    RELAT_1: 61;
    
      then
    
      reconsider f1 = (v1
    | ( 
    Seg n)), f2 = (v2 
    | ( 
    Seg n)) as 
    FinSequence by 
    A13,
    FINSEQ_1:def 2;
    
      (
    rng f2) 
    c= ( 
    rng v2) by 
    RELAT_1: 70;
    
      then
    
      
    
    A15: ( 
    rng f2) 
    c=  
    REAL by 
    XBOOLE_1: 1;
    
      (
    rng f1) 
    c= ( 
    rng v1) by 
    RELAT_1: 70;
    
      then (
    rng f1) 
    c=  
    REAL by 
    XBOOLE_1: 1;
    
      then
    
      reconsider f1, f2 as
    FinSequence of 
    REAL by 
    A15,
    FINSEQ_1:def 4;
    
      consider k be
    Nat such that 
    
      
    
    A16: k 
    in ( 
    dom v1) and 
    
      
    
    A17: (v1 
    . k) 
    = u by 
    A7,
    FINSEQ_2: 10;
    
      reconsider k as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      
    
      
    
    A18: k 
    <= ( 
    len v1) by 
    A16,
    FINSEQ_3: 25;
    
      
    
      
    
    A19: 1 
    <= k by 
    A16,
    FINSEQ_3: 25;
    
      
    
    A20: 
    
      now
    
        assume k
    <> ( 
    len v1); 
    
        then k
    < ( 
    len v1) by 
    A18,
    XXREAL_0: 1;
    
        then
    
        
    
    A21: (k 
    + 1) 
    <= ( 
    len v1) by 
    NAT_1: 13;
    
        reconsider s = (v1
    . (k 
    + 1)) as 
    Real;
    
        
    
        
    
    A22: k 
    < (k 
    + 1) by 
    NAT_1: 13;
    
        1
    <= (k 
    + 1) by 
    A19,
    NAT_1: 13;
    
        then
    
        
    
    A23: (k 
    + 1) 
    in ( 
    dom v1) by 
    A21,
    FINSEQ_3: 25;
    
        then (v1
    . (k 
    + 1)) 
    in ( 
    rng v1) by 
    FUNCT_1:def 3;
    
        then s
    <= u by 
    Def1;
    
        hence contradiction by
    A5,
    A16,
    A17,
    A23,
    A22,
    SEQM_3:def 1;
    
      end;
    
      
    
      
    
    A24: 1 
    <= m by 
    A8,
    FINSEQ_3: 25;
    
      
    
    A25: 
    
      now
    
        assume m
    <> ( 
    len v2); 
    
        then m
    < ( 
    len v2) by 
    A10,
    XXREAL_0: 1;
    
        then
    
        
    
    A26: (m 
    + 1) 
    <= ( 
    len v2) by 
    NAT_1: 13;
    
        reconsider s = (v2
    . (m 
    + 1)) as 
    Real;
    
        
    
        
    
    A27: m 
    < (m 
    + 1) by 
    NAT_1: 13;
    
        1
    <= (m 
    + 1) by 
    A24,
    NAT_1: 13;
    
        then
    
        
    
    A28: (m 
    + 1) 
    in ( 
    dom v2) by 
    A26,
    FINSEQ_3: 25;
    
        then (v2
    . (m 
    + 1)) 
    in ( 
    rng v2) by 
    FUNCT_1:def 3;
    
        then s
    <= u by 
    A4,
    Def1;
    
        hence contradiction by
    A6,
    A8,
    A9,
    A28,
    A27,
    SEQM_3:def 1;
    
      end;
    
      n
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then
    
      
    
    A29: ( 
    len f1) 
    = n by 
    A14,
    FINSEQ_1:def 3;
    
      then
    
      
    
    A30: ( 
    dom f1) 
    c= ( 
    dom v1) by 
    A2,
    A11,
    FINSEQ_3: 30;
    
      
    
      
    
    A31: ( 
    rng f1) 
    = (( 
    rng v1) 
    \  
    {u})
    
      proof
    
        thus (
    rng f1) 
    c= (( 
    rng v1) 
    \  
    {u})
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng f1); 
    
          then
    
          consider i be
    Nat such that 
    
          
    
    A32: i 
    in ( 
    dom f1) and 
    
          
    
    A33: (f1 
    . i) 
    = x by 
    FINSEQ_2: 10;
    
          
    
          
    
    A34: x 
    = (v1 
    . i) by 
    A32,
    A33,
    FUNCT_1: 47;
    
          
    
          
    
    A35: (v1 
    . i) 
    in ( 
    rng v1) by 
    A30,
    A32,
    FUNCT_1:def 3;
    
          i
    <= n by 
    A14,
    A32,
    FINSEQ_1: 1;
    
          then i
    <> (n 
    + 1) by 
    NAT_1: 13;
    
          then x
    <> u by 
    A2,
    A5,
    A16,
    A17,
    A20,
    A30,
    A32,
    A34,
    Th137;
    
          then not x
    in  
    {u} by
    TARSKI:def 1;
    
          hence thesis by
    A34,
    A35,
    XBOOLE_0:def 5;
    
        end;
    
        let x be
    object;
    
        assume
    
        
    
    A36: x 
    in (( 
    rng v1) 
    \  
    {u});
    
        then x
    in ( 
    rng v1) by 
    XBOOLE_0:def 5;
    
        then
    
        consider i be
    Nat such that 
    
        
    
    A37: i 
    in ( 
    dom v1) and 
    
        
    
    A38: (v1 
    . i) 
    = x by 
    FINSEQ_2: 10;
    
        
    
        
    
    A39: i 
    <= ( 
    len v1) by 
    A37,
    FINSEQ_3: 25;
    
         not x
    in  
    {u} by
    A36,
    XBOOLE_0:def 5;
    
        then i
    <> ( 
    len v1) by 
    A17,
    A20,
    A38,
    TARSKI:def 1;
    
        then i
    < ( 
    len v1) by 
    A39,
    XXREAL_0: 1;
    
        then
    
        
    
    A40: i 
    <= ( 
    len f1) by 
    A2,
    A29,
    NAT_1: 13;
    
        1
    <= i by 
    A37,
    FINSEQ_3: 25;
    
        then
    
        
    
    A41: i 
    in ( 
    dom f1) by 
    A40,
    FINSEQ_3: 25;
    
        then (f1
    . i) 
    in ( 
    rng f1) by 
    FUNCT_1:def 3;
    
        hence thesis by
    A38,
    A41,
    FUNCT_1: 47;
    
      end;
    
      
    
      
    
    A42: ( 
    dom v1) 
    = ( 
    Seg ( 
    len v1)) by 
    FINSEQ_1:def 3;
    
      
    
    A43: 
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A44: i 
    in ( 
    dom v1); 
    
        then
    
        
    
    A45: 1 
    <= i by 
    A42,
    FINSEQ_1: 1;
    
        
    
        
    
    A46: i 
    <= (( 
    len f1) 
    + 1) by 
    A2,
    A29,
    A42,
    A44,
    FINSEQ_1: 1;
    
        now
    
          per cases ;
    
            suppose i
    = (( 
    len f1) 
    + 1); 
    
            hence ((f1
    ^  
    <*u*>)
    . i) 
    = (v1 
    . i) by 
    A2,
    A17,
    A20,
    A29,
    FINSEQ_1: 42;
    
          end;
    
            suppose i
    <> (( 
    len f1) 
    + 1); 
    
            then i
    < (( 
    len f1) 
    + 1) by 
    A46,
    XXREAL_0: 1;
    
            then i
    <= ( 
    len f1) by 
    NAT_1: 13;
    
            then
    
            
    
    A47: i 
    in ( 
    dom f1) by 
    A14,
    A29,
    A45;
    
            
    
            hence ((f1
    ^  
    <*u*>)
    . i) 
    = (f1 
    . i) by 
    FINSEQ_1:def 7
    
            .= (v1
    . i) by 
    A47,
    FUNCT_1: 47;
    
          end;
    
        end;
    
        hence ((f1
    ^  
    <*u*>)
    . i) 
    = (v1 
    . i); 
    
      end;
    
      (
    len (f1 
    ^  
    <*u*>))
    = (n 
    + ( 
    len  
    <*u*>)) by
    A29,
    FINSEQ_1: 22
    
      .= (
    len v1) by 
    A2,
    FINSEQ_1: 39;
    
      then
    
      
    
    A48: v1 
    = (f1 
    ^  
    <*u*>) by
    A43,
    FINSEQ_2: 9;
    
      n
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then
    
      
    
    A49: ( 
    len f2) 
    = n by 
    A13,
    FINSEQ_1:def 3;
    
      
    
      then
    
      
    
    A50: ( 
    len (f2 
    ^  
    <*u*>))
    = (n 
    + ( 
    len  
    <*u*>)) by
    FINSEQ_1: 22
    
      .= (
    len v2) by 
    A3,
    FINSEQ_1: 39;
    
      
    
      
    
    A51: ( 
    dom f2) 
    c= ( 
    dom v2) by 
    A3,
    A11,
    A49,
    FINSEQ_3: 30;
    
      
    
      
    
    A52: ( 
    rng f2) 
    = (( 
    rng v2) 
    \  
    {u})
    
      proof
    
        thus (
    rng f2) 
    c= (( 
    rng v2) 
    \  
    {u})
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng f2); 
    
          then
    
          consider i be
    Nat such that 
    
          
    
    A53: i 
    in ( 
    dom f2) and 
    
          
    
    A54: (f2 
    . i) 
    = x by 
    FINSEQ_2: 10;
    
          
    
          
    
    A55: x 
    = (v2 
    . i) by 
    A53,
    A54,
    FUNCT_1: 47;
    
          
    
          
    
    A56: (v2 
    . i) 
    in ( 
    rng v2) by 
    A51,
    A53,
    FUNCT_1:def 3;
    
          i
    <= n by 
    A13,
    A53,
    FINSEQ_1: 1;
    
          then i
    <> (n 
    + 1) by 
    NAT_1: 13;
    
          then x
    <> u by 
    A3,
    A6,
    A8,
    A9,
    A25,
    A51,
    A53,
    A55,
    Th137;
    
          then not x
    in  
    {u} by
    TARSKI:def 1;
    
          hence thesis by
    A55,
    A56,
    XBOOLE_0:def 5;
    
        end;
    
        let x be
    object;
    
        assume
    
        
    
    A57: x 
    in (( 
    rng v2) 
    \  
    {u});
    
        then x
    in ( 
    rng v2) by 
    XBOOLE_0:def 5;
    
        then
    
        consider i be
    Nat such that 
    
        
    
    A58: i 
    in ( 
    dom v2) and 
    
        
    
    A59: (v2 
    . i) 
    = x by 
    FINSEQ_2: 10;
    
        
    
        
    
    A60: i 
    <= ( 
    len v2) by 
    A58,
    FINSEQ_3: 25;
    
         not x
    in  
    {u} by
    A57,
    XBOOLE_0:def 5;
    
        then i
    <> ( 
    len v2) by 
    A9,
    A25,
    A59,
    TARSKI:def 1;
    
        then i
    < ( 
    len v2) by 
    A60,
    XXREAL_0: 1;
    
        then
    
        
    
    A61: i 
    <= ( 
    len f2) by 
    A3,
    A49,
    NAT_1: 13;
    
        1
    <= i by 
    A58,
    FINSEQ_3: 25;
    
        then
    
        
    
    A62: i 
    in ( 
    dom f2) by 
    A61,
    FINSEQ_3: 25;
    
        then (f2
    . i) 
    in ( 
    rng f2) by 
    FUNCT_1:def 3;
    
        hence thesis by
    A59,
    A62,
    FUNCT_1: 47;
    
      end;
    
      
    
      
    
    A63: ( 
    dom v2) 
    = ( 
    Seg ( 
    len v2)) by 
    FINSEQ_1:def 3;
    
      
    
    A64: 
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A65: i 
    in ( 
    dom v2); 
    
        then
    
        
    
    A66: 1 
    <= i by 
    A63,
    FINSEQ_1: 1;
    
        
    
        
    
    A67: i 
    <= (( 
    len f2) 
    + 1) by 
    A3,
    A49,
    A63,
    A65,
    FINSEQ_1: 1;
    
        now
    
          per cases ;
    
            suppose i
    = (( 
    len f2) 
    + 1); 
    
            hence ((f2
    ^  
    <*u*>)
    . i) 
    = (v2 
    . i) by 
    A3,
    A9,
    A25,
    A49,
    FINSEQ_1: 42;
    
          end;
    
            suppose i
    <> (( 
    len f2) 
    + 1); 
    
            then i
    < (( 
    len f2) 
    + 1) by 
    A67,
    XXREAL_0: 1;
    
            then i
    <= ( 
    len f2) by 
    NAT_1: 13;
    
            then
    
            
    
    A68: i 
    in ( 
    dom f2) by 
    A13,
    A49,
    A66;
    
            
    
            hence ((f2
    ^  
    <*u*>)
    . i) 
    = (f2 
    . i) by 
    FINSEQ_1:def 7
    
            .= (v2
    . i) by 
    A68,
    FUNCT_1: 47;
    
          end;
    
        end;
    
        hence ((f2
    ^  
    <*u*>)
    . i) 
    = (v2 
    . i); 
    
      end;
    
      f1 is
    increasing & f2 is 
    increasing by 
    A5,
    A6,
    Th138;
    
      then f1
    = f2 by 
    A1,
    A4,
    A29,
    A49,
    A31,
    A52;
    
      hence thesis by
    A48,
    A50,
    A64,
    FINSEQ_2: 9;
    
    end;
    
    
    
    
    
    Lm15: for n holds 
    P3[n] from
    NAT_1:sch 2(
    Lm13,
    Lm14);
    
    theorem :: 
    
    SEQ_4:141
    
    for v1, v2 st (
    len v1) 
    = ( 
    len v2) & ( 
    rng v1) 
    = ( 
    rng v2) & v1 is 
    increasing & v2 is 
    increasing holds v1 
    = v2 by 
    Lm15;
    
    definition
    
      let v;
    
      :: 
    
    SEQ_4:def21
    
      func
    
    Incr (v) -> 
    increasing  
    FinSequence of 
    REAL means 
    
      :
    
    Def21: ( 
    rng it ) 
    = ( 
    rng v) & ( 
    len it ) 
    = ( 
    card ( 
    rng v)); 
    
      existence
    
      proof
    
        consider v1 such that
    
        
    
    A1: ( 
    rng v1) 
    = ( 
    rng v) & ( 
    len v1) 
    = ( 
    card ( 
    rng v)) and 
    
        
    
    A2: v1 is 
    increasing by 
    Lm12;
    
        reconsider v1 as
    increasing  
    FinSequence of 
    REAL by 
    A2;
    
        take v1;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness by
    Lm15;
    
    end
    
    registration
    
      let v be non
    empty  
    FinSequence of 
    REAL ; 
    
      cluster ( 
    Incr v) -> non 
    empty;
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    len ( 
    Incr v)) 
    = ( 
    card ( 
    rng v)) by 
    Def21;
    
        assume (
    Incr v) is 
    empty;
    
        then (
    rng v) 
    =  
    {} by 
    A1;
    
        hence contradiction;
    
      end;
    
    end
    
    registration
    
      cluster non 
    empty
    bounded_above
    bounded_below for 
    Subset of 
    REAL ; 
    
      existence
    
      proof
    
        reconsider A =
    {
    0 } as 
    Subset of 
    REAL ; 
    
        take A;
    
        thus A is non
    empty;
    
        thus A is
    bounded_above;
    
        take
    0 ; 
    
        let t be
    ExtReal;
    
        assume t
    in A; 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    SEQ_4:142
    
    for A,B be non
    empty
    bounded_below  
    Subset of 
    REAL holds ( 
    lower_bound (A 
    \/ B)) 
    = ( 
    min (( 
    lower_bound A),( 
    lower_bound B))) 
    
    proof
    
      let A,B be non
    empty
    bounded_below  
    Subset of 
    REAL ; 
    
      set r = (
    min (( 
    lower_bound A),( 
    lower_bound B))); 
    
      
    
      
    
    A1: r 
    <= ( 
    lower_bound B) by 
    XXREAL_0: 17;
    
      
    
      
    
    A2: for r1 be 
    Real st for t be 
    Real st t 
    in (A 
    \/ B) holds t 
    >= r1 holds r 
    >= r1 
    
      proof
    
        let r1 be
    Real;
    
        assume
    
        
    
    A3: for t be 
    Real st t 
    in (A 
    \/ B) holds t 
    >= r1; 
    
        now
    
          let t be
    Real;
    
          assume t
    in B; 
    
          then t
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
          hence t
    >= r1 by 
    A3;
    
        end;
    
        then
    
        
    
    A4: ( 
    lower_bound B) 
    >= r1 by 
    Th43;
    
        now
    
          let t be
    Real;
    
          assume t
    in A; 
    
          then t
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
          hence t
    >= r1 by 
    A3;
    
        end;
    
        then (
    lower_bound A) 
    >= r1 by 
    Th43;
    
        hence thesis by
    A4,
    XXREAL_0: 20;
    
      end;
    
      
    
      
    
    A5: r 
    <= ( 
    lower_bound A) by 
    XXREAL_0: 17;
    
      for t be
    Real st t 
    in (A 
    \/ B) holds t 
    >= r 
    
      proof
    
        let t be
    Real;
    
        assume t
    in (A 
    \/ B); 
    
        then t
    in A or t 
    in B by 
    XBOOLE_0:def 3;
    
        then (
    lower_bound A) 
    <= t or ( 
    lower_bound B) 
    <= t by 
    Def2;
    
        hence thesis by
    A5,
    A1,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A2,
    Th44;
    
    end;
    
    theorem :: 
    
    SEQ_4:143
    
    for A,B be non
    empty
    bounded_above  
    Subset of 
    REAL holds ( 
    upper_bound (A 
    \/ B)) 
    = ( 
    max (( 
    upper_bound A),( 
    upper_bound B))) 
    
    proof
    
      let A,B be non
    empty
    bounded_above  
    Subset of 
    REAL ; 
    
      set r = (
    max (( 
    upper_bound A),( 
    upper_bound B))); 
    
      
    
      
    
    A1: r 
    >= ( 
    upper_bound B) by 
    XXREAL_0: 25;
    
      
    
      
    
    A2: for r1 be 
    Real st for t be 
    Real st t 
    in (A 
    \/ B) holds t 
    <= r1 holds r 
    <= r1 
    
      proof
    
        let r1 be
    Real;
    
        assume
    
        
    
    A3: for t be 
    Real st t 
    in (A 
    \/ B) holds t 
    <= r1; 
    
        now
    
          let t be
    Real;
    
          assume t
    in B; 
    
          then t
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
          hence t
    <= r1 by 
    A3;
    
        end;
    
        then
    
        
    
    A4: ( 
    upper_bound B) 
    <= r1 by 
    Th45;
    
        now
    
          let t be
    Real;
    
          assume t
    in A; 
    
          then t
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
          hence t
    <= r1 by 
    A3;
    
        end;
    
        then (
    upper_bound A) 
    <= r1 by 
    Th45;
    
        hence thesis by
    A4,
    XXREAL_0: 28;
    
      end;
    
      
    
      
    
    A5: r 
    >= ( 
    upper_bound A) by 
    XXREAL_0: 25;
    
      for t be
    Real st t 
    in (A 
    \/ B) holds t 
    <= r 
    
      proof
    
        let t be
    Real;
    
        assume t
    in (A 
    \/ B); 
    
        then t
    in A or t 
    in B by 
    XBOOLE_0:def 3;
    
        then (
    upper_bound A) 
    >= t or ( 
    upper_bound B) 
    >= t by 
    Def1;
    
        hence thesis by
    A5,
    A1,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A2,
    Th46;
    
    end;
    
    theorem :: 
    
    SEQ_4:144
    
    for R be non
    empty  
    Subset of 
    REAL , r0 be 
    Real st for r be 
    Real st r 
    in R holds r 
    <= r0 holds ( 
    upper_bound R) 
    <= r0 
    
    proof
    
      let R be non
    empty  
    Subset of 
    REAL , r0 be 
    Real;
    
      assume
    
      
    
    A1: for r be 
    Real st r 
    in R holds r 
    <= r0; 
    
      then for r be
    ExtReal st r 
    in R holds r 
    <= r0; 
    
      then r0 is
    UpperBound of R by 
    XXREAL_2:def 1;
    
      then
    
      
    
    A2: R is 
    bounded_above;
    
      now
    
        set r1 = ((
    upper_bound R) 
    - r0); 
    
        assume (
    upper_bound R) 
    > r0; 
    
        then r1
    >  
    0 by 
    XREAL_1: 50;
    
        then ex r be
    Real st r 
    in R & (( 
    upper_bound R) 
    - r1) 
    < r by 
    A2,
    Def1;
    
        hence contradiction by
    A1;
    
      end;
    
      hence thesis;
    
    end;