groeb_2.miz
begin
theorem ::
GROEB_2:1
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
FinSequence of L, n be
Element of
NAT st for k be
Element of
NAT st k
in (
dom p) & k
> n holds (p
. k)
= (
0. L) holds (
Sum p)
= (
Sum (p
| n))
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
FinSequence of L, n be
Element of
NAT ;
defpred
P[
Nat] means for p be
FinSequence of L, n be
Element of
NAT st (
len p)
= $1 & for k be
Element of
NAT st k
in (
dom p) & k
> n holds (p
. k)
= (
0. L) holds (
Sum p)
= (
Sum (p
| n));
A1:
now
let k be
Nat;
assume
A2:
P[k];
now
let p be
FinSequence of L, n be
Element of
NAT ;
assume that
A3: (
len p)
= (k
+ 1) and
A4: for l be
Element of
NAT st l
in (
dom p) & l
> n holds (p
. l)
= (
0. L);
A5: (
dom p)
= (
Seg (k
+ 1)) by
A3,
FINSEQ_1:def 3;
set q = (p
| (
Seg k));
reconsider q as
FinSequence of L by
FINSEQ_1: 18;
A6: k
<= (
len p) by
A3,
NAT_1: 11;
then
A7: (
len q)
= k by
FINSEQ_1: 17;
k
<= (k
+ 1) & (
dom q)
= (
Seg k) by
A6,
FINSEQ_1: 17,
NAT_1: 11;
then
A8: (
dom q)
c= (
dom p) by
A5,
FINSEQ_1: 5;
A9: q
= (p
| k) by
FINSEQ_1:def 15;
A10: (q
^
<*(p
/. (k
+ 1))*>)
= (q
^
<*(p
. (k
+ 1))*>) by
A5,
FINSEQ_1: 4,
PARTFUN1:def 6
.= p by
A3,
FINSEQ_3: 55;
now
per cases ;
case
A11: k
< n;
A12: (
dom (p
| n))
= (
dom (p
| (
Seg n))) by
FINSEQ_1:def 15;
A13: (k
+ 1)
<= n by
A11,
NAT_1: 13;
A14:
now
let u be
object;
assume
A15: u
in (
dom p);
then
reconsider u9 = u as
Element of
NAT ;
A16: u
in (
Seg (k
+ 1)) by
A3,
A15,
FINSEQ_1:def 3;
then u9
<= (k
+ 1) by
FINSEQ_1: 1;
then
A17: u9
<= n by
A13,
XXREAL_0: 2;
1
<= u9 by
A16,
FINSEQ_1: 1;
then u9
in (
Seg n) by
A17,
FINSEQ_1: 1;
then u9
in ((
dom p)
/\ (
Seg n)) by
A15,
XBOOLE_0:def 4;
hence u
in (
dom (p
| n)) by
A12,
RELAT_1: 61;
end;
A18: for x be
object st x
in (
dom (p
| (
Seg n))) holds ((p
| (
Seg n))
. x)
= (p
. x) by
FUNCT_1: 47;
now
let u be
object;
assume u
in (
dom (p
| n));
then
A19: u
in (
dom (p
| (
Seg n))) by
FINSEQ_1:def 15;
(
dom (p
| (
Seg n)))
c= (
dom p) by
RELAT_1: 60;
hence u
in (
dom p) by
A19;
end;
then (
dom (p
| n))
= (
dom p) by
A14,
TARSKI: 2;
then (p
| (
Seg n))
= p by
A12,
A18,
FUNCT_1: 2;
hence (
Sum (p
| n))
= (
Sum p) by
FINSEQ_1:def 15;
end;
case
A20: n
<= k;
A21:
now
let l be
Element of
NAT ;
assume that
A22: l
in (
dom q) and
A23: l
> n;
A24: (p
. l)
= (
0. L) by
A4,
A8,
A22,
A23;
thus (q
. l)
= (q
/. l) by
A22,
PARTFUN1:def 6
.= (p
/. l) by
A9,
A22,
FINSEQ_4: 70
.= (
0. L) by
A8,
A22,
A24,
PARTFUN1:def 6;
end;
(k
+ 1)
> n by
A20,
NAT_1: 13;
then
A25: (
0. L)
= (p
. (k
+ 1)) by
A4,
A5,
FINSEQ_1: 4
.= (p
/. (k
+ 1)) by
A5,
FINSEQ_1: 4,
PARTFUN1:def 6;
thus (
Sum p)
= ((
Sum q)
+ (
Sum
<*(p
/. (k
+ 1))*>)) by
A10,
RLVECT_1: 41
.= ((
Sum q)
+ (p
/. (k
+ 1))) by
RLVECT_1: 44
.= (
Sum q) by
A25,
RLVECT_1:def 4
.= (
Sum (q
| n)) by
A2,
A7,
A21
.= (
Sum (p
| n)) by
A9,
A20,
FINSEQ_1: 82;
end;
end;
hence (
Sum p)
= (
Sum (p
| n));
end;
hence
P[(k
+ 1)];
end;
A26:
P[
0 ] by
FINSEQ_1: 58;
A27: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A26,
A1);
A28: ex k be
Element of
NAT st (
len p)
= k;
assume for k be
Element of
NAT st k
in (
dom p) & k
> n holds (p
. k)
= (
0. L);
hence thesis by
A27,
A28;
end;
theorem ::
GROEB_2:2
for L be
add-associative
right_zeroed
Abelian non
empty
addLoopStr, f be
FinSequence of L, i,j be
Element of
NAT holds (
Sum (
Swap (f,i,j)))
= (
Sum f)
proof
let L be
add-associative
right_zeroed
Abelian non
empty
addLoopStr, f be
FinSequence of L, i,j be
Element of
NAT ;
per cases ;
suppose not (1
<= i & i
<= (
len f) & 1
<= j & j
<= (
len f));
hence thesis by
FINSEQ_7:def 2;
end;
suppose
A1: 1
<= i & i
<= (
len f) & 1
<= j & j
<= (
len f);
then j
in (
Seg (
len f)) by
FINSEQ_1: 1;
then
A2: j
in (
dom f) by
FINSEQ_1:def 3;
i
in (
Seg (
len f)) by
A1,
FINSEQ_1: 1;
then
A3: i
in (
dom f) by
FINSEQ_1:def 3;
now
per cases by
XXREAL_0: 1;
case i
= j;
hence thesis by
FINSEQ_7: 19;
end;
case
A4: i
< j;
then (
Swap (f,i,j))
= (((((f
| (i
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. i)*>)
^ (f
/^ j)) by
A1,
FINSEQ_7: 27;
then
A5: (
Sum (
Swap (f,i,j)))
= ((
Sum ((((f
| (i
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. i)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= (((
Sum (((f
| (i
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= ((((
Sum ((f
| (i
-' 1))
^
<*(f
/. j)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= (((((
Sum (f
| (i
-' 1)))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= (((((
Sum (f
| (i
-' 1)))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum (f
/^ j))) by
RLVECT_1:def 3
.= (((((
Sum (f
| (i
-' 1)))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum (f
/^ j))) by
RLVECT_1:def 3
.= ((((
Sum ((f
| (i
-' 1))
^
<*(f
/. i)*>))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= ((((
Sum ((f
| (i
-' 1))
^
<*(f
/. i)*>))
+ (
Sum ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1:def 3
.= (((
Sum (((f
| (i
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1))))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= ((
Sum ((((f
| (i
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. j)*>))
+ (
Sum (f
/^ j))) by
RLVECT_1: 41
.= (
Sum (((((f
| (i
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. j)*>)
^ (f
/^ j))) by
RLVECT_1: 41;
(((((f
| (i
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. j)*>)
^ (f
/^ j))
= (((((f
| (i
-' 1))
^
<*(f
. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
/. j)*>)
^ (f
/^ j)) by
A3,
PARTFUN1:def 6
.= (((((f
| (i
-' 1))
^
<*(f
. i)*>)
^ ((f
/^ i)
| ((j
-' i)
-' 1)))
^
<*(f
. j)*>)
^ (f
/^ j)) by
A2,
PARTFUN1:def 6
.= f by
A1,
A4,
FINSEQ_7: 1;
hence thesis by
A5;
end;
case
A6: i
> j;
then (
Swap (f,j,i))
= (((((f
| (j
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. j)*>)
^ (f
/^ i)) by
A1,
FINSEQ_7: 27;
then
A7: (
Sum (
Swap (f,j,i)))
= ((
Sum ((((f
| (j
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. j)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= (((
Sum (((f
| (j
-' 1))
^
<*(f
/. i)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= ((((
Sum ((f
| (j
-' 1))
^
<*(f
/. i)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= (((((
Sum (f
| (j
-' 1)))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= (((((
Sum (f
| (j
-' 1)))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum (f
/^ i))) by
RLVECT_1:def 3
.= (((((
Sum (f
| (j
-' 1)))
+ (
Sum
<*(f
/. j)*>))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum (f
/^ i))) by
RLVECT_1:def 3
.= ((((
Sum ((f
| (j
-' 1))
^
<*(f
/. j)*>))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= ((((
Sum ((f
| (j
-' 1))
^
<*(f
/. j)*>))
+ (
Sum ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1:def 3
.= (((
Sum (((f
| (j
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1))))
+ (
Sum
<*(f
/. i)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= ((
Sum ((((f
| (j
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. i)*>))
+ (
Sum (f
/^ i))) by
RLVECT_1: 41
.= (
Sum (((((f
| (j
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. i)*>)
^ (f
/^ i))) by
RLVECT_1: 41;
(((((f
| (j
-' 1))
^
<*(f
/. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. i)*>)
^ (f
/^ i))
= (((((f
| (j
-' 1))
^
<*(f
. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
/. i)*>)
^ (f
/^ i)) by
A2,
PARTFUN1:def 6
.= (((((f
| (j
-' 1))
^
<*(f
. j)*>)
^ ((f
/^ j)
| ((i
-' j)
-' 1)))
^
<*(f
. i)*>)
^ (f
/^ i)) by
A3,
PARTFUN1:def 6
.= f by
A1,
A6,
FINSEQ_7: 1;
hence thesis by
A7,
FINSEQ_7: 21;
end;
end;
hence thesis;
end;
end;
definition
let X be
set, b1,b2 be
bag of X;
assume
A1: b2
divides b1;
::
GROEB_2:def1
func b1
/ b2 ->
bag of X means
:
Def1: (b2
+ it )
= b1;
existence by
A1,
TERMORD: 1;
uniqueness
proof
let b3,b4 be
bag of X;
assume
A2: (b2
+ b3)
= b1;
assume
A3: (b2
+ b4)
= b1;
A4:
now
let x be
object;
assume x
in (
dom b3);
thus (b3
. x)
= (((b2
. x)
+ (b3
. x))
-' (b2
. x)) by
NAT_D: 34
.= ((b1
. x)
-' (b2
. x)) by
A2,
PRE_POLY:def 5
.= (((b2
. x)
+ (b4
. x))
-' (b2
. x)) by
A3,
PRE_POLY:def 5
.= (b4
. x) by
NAT_D: 34;
end;
(
dom b3)
= X by
PARTFUN1:def 2
.= (
dom b4) by
PARTFUN1:def 2;
hence thesis by
A4,
FUNCT_1: 2;
end;
end
definition
let X be
set, b1,b2 be
bag of X;
::
GROEB_2:def2
func
lcm (b1,b2) ->
bag of X means
:
Def2: for k be
object holds (it
. k)
= (
max ((b1
. k),(b2
. k)));
existence
proof
defpred
Q[
object,
object] means $2
= (
max ((b1
. $1),(b2
. $1)));
A1: for x be
object st x
in X holds ex y be
object st
Q[x, y];
consider b be
Function such that
A2: (
dom b)
= X & for x be
object st x
in X holds
Q[x, (b
. x)] from
CLASSES1:sch 1(
A1);
reconsider b as
ManySortedSet of X by
A2,
PARTFUN1:def 2,
RELAT_1:def 18;
now
let u be
object;
assume u
in (
rng b);
then
consider x be
object such that
A3: x
in (
dom b) & u
= (b
. x) by
FUNCT_1:def 3;
u
= (
max ((b1
. x),(b2
. x))) by
A2,
A3;
hence u
in
NAT by
ORDINAL1:def 12;
end;
then
A4: (
rng b)
c=
NAT by
TARSKI:def 3;
now
let u be
object;
A5: (
support b)
c= (
dom b) by
PRE_POLY: 37;
assume
A6: u
in (
support b);
then
A7: (b
. u)
<>
0 by
PRE_POLY:def 7;
now
assume
A8: not u
in ((
support b1)
\/ (
support b2));
then not u
in (
support b2) by
XBOOLE_0:def 3;
then
A9: (b2
. u)
=
0 by
PRE_POLY:def 7;
not u
in (
support b1) by
A8,
XBOOLE_0:def 3;
then (b1
. u)
=
0 by
PRE_POLY:def 7;
then (
max ((b1
. u),(b2
. u)))
=
0 by
A9;
hence contradiction by
A2,
A6,
A7,
A5;
end;
hence u
in ((
support b1)
\/ (
support b2));
end;
then (
support b)
c= ((
support b1)
\/ (
support b2)) by
TARSKI:def 3;
then
reconsider b as
bag of X by
A4,
PRE_POLY:def 8,
VALUED_0:def 6;
A10: (
dom b)
= X by
PARTFUN1:def 2
.= (
dom b2) by
PARTFUN1:def 2;
take b;
A11: (
dom b)
= X by
PARTFUN1:def 2
.= (
dom b1) by
PARTFUN1:def 2;
now
let k be
object;
now
per cases ;
case k
in (
dom b);
hence (b
. k)
= (
max ((b1
. k),(b2
. k))) by
A2;
end;
case
A12: not k
in (
dom b);
then (b1
. k)
=
0 & (b2
. k)
=
0 by
A11,
A10,
FUNCT_1:def 2;
hence (b
. k)
= (
max ((b1
. k),(b2
. k))) by
A12,
FUNCT_1:def 2;
end;
end;
hence (b
. k)
= (
max ((b1
. k),(b2
. k)));
end;
hence thesis;
end;
uniqueness
proof
let b3,b4 be
bag of X;
assume
A13: for k be
object holds (b3
. k)
= (
max ((b1
. k),(b2
. k)));
assume
A14: for k be
object holds (b4
. k)
= (
max ((b1
. k),(b2
. k)));
A15:
now
let u be
object;
assume u
in (
dom b3);
thus (b3
. u)
= (
max ((b1
. u),(b2
. u))) by
A13
.= (b4
. u) by
A14;
end;
(
dom b3)
= X by
PARTFUN1:def 2
.= (
dom b4) by
PARTFUN1:def 2;
hence thesis by
A15,
FUNCT_1: 2;
end;
commutativity ;
idempotence ;
end
notation
let X be
set, b1,b2 be
bag of X;
synonym b1
lcm b2 for
lcm (b1,b2);
end
definition
let X be
set, b1,b2 be
bag of X;
::
GROEB_2:def3
pred b1,b2
are_disjoint means for i be
object holds (b1
. i)
=
0 or (b2
. i)
=
0 ;
end
notation
let X be
set, b1,b2 be
bag of X;
antonym b1,b2
are_non_disjoint for b1,b2
are_disjoint ;
end
theorem ::
GROEB_2:3
Th3: for X be
set, b1,b2 be
bag of X holds b1
divides (
lcm (b1,b2)) & b2
divides (
lcm (b1,b2))
proof
let X be
set, b1,b2 be
bag of X;
set bb = (
lcm (b1,b2));
now
let k be
object;
(b1
. k)
<= (
max ((b1
. k),(b2
. k))) by
XXREAL_0: 25;
hence (b1
. k)
<= (bb
. k) by
Def2;
end;
hence b1
divides (
lcm (b1,b2)) by
PRE_POLY:def 11;
now
let k be
object;
(b2
. k)
<= (
max ((b1
. k),(b2
. k))) by
XXREAL_0: 25;
hence (b2
. k)
<= (bb
. k) by
Def2;
end;
hence thesis by
PRE_POLY:def 11;
end;
theorem ::
GROEB_2:4
Th4: for X be
set, b1,b2,b3 be
bag of X holds b1
divides b3 & b2
divides b3 implies (
lcm (b1,b2))
divides b3
proof
let X be
set, b1,b2,b3 be
bag of X;
assume that
A1: b1
divides b3 and
A2: b2
divides b3;
now
let k be
object;
assume k
in X;
now
per cases by
XXREAL_0: 16;
case (
max ((b1
. k),(b2
. k)))
= (b1
. k);
hence (
max ((b1
. k),(b2
. k)))
<= (b3
. k) by
A1,
PRE_POLY:def 11;
end;
case (
max ((b1
. k),(b2
. k)))
= (b2
. k);
hence (
max ((b1
. k),(b2
. k)))
<= (b3
. k) by
A2,
PRE_POLY:def 11;
end;
end;
hence ((
lcm (b1,b2))
. k)
<= (b3
. k) by
Def2;
end;
hence thesis by
PRE_POLY: 46;
end;
theorem ::
GROEB_2:5
for X be
set, b1,b2 be
bag of X holds (b1,b2)
are_disjoint iff (
lcm (b1,b2))
= (b1
+ b2)
proof
let X be
set, b1,b2 be
bag of X;
A1:
now
assume
A2: (
lcm (b1,b2))
= (b1
+ b2);
now
let k be
object;
A3: ((
lcm (b1,b2))
. k)
= (
max ((b1
. k),(b2
. k))) by
Def2;
now
per cases by
A2,
A3,
XXREAL_0: 16;
case ((b1
+ b2)
. k)
= (b1
. k);
then ((b1
. k)
+ (b2
. k))
= ((b1
. k)
+
0 ) by
PRE_POLY:def 5;
hence (b2
. k)
=
0 ;
end;
case ((b1
+ b2)
. k)
= (b2
. k);
then ((b1
. k)
+ (b2
. k))
= (
0
+ (b2
. k)) by
PRE_POLY:def 5;
hence (b1
. k)
=
0 ;
end;
end;
hence (b1
. k)
=
0 or (b2
. k)
=
0 ;
end;
hence (b1,b2)
are_disjoint ;
end;
now
assume
A4: (b1,b2)
are_disjoint ;
now
let k be
object;
now
per cases by
A4;
case
A5: (b1
. k)
=
0 ;
hence ((b1
+ b2)
. k)
= (
0
+ (b2
. k)) by
PRE_POLY:def 5
.= (
max ((b1
. k),(b2
. k))) by
A5,
XXREAL_0:def 10;
end;
case
A6: (b2
. k)
=
0 ;
hence ((b1
+ b2)
. k)
= ((b1
. k)
+
0 ) by
PRE_POLY:def 5
.= (
max ((b1
. k),(b2
. k))) by
A6,
XXREAL_0:def 10;
end;
end;
hence ((b1
+ b2)
. k)
= (
max ((b1
. k),(b2
. k)));
end;
hence (
lcm (b1,b2))
= (b1
+ b2) by
Def2;
end;
hence thesis by
A1;
end;
theorem ::
GROEB_2:6
Th6: for X be
set, b be
bag of X holds (b
/ b)
= (
EmptyBag X)
proof
let X be
set, b be
bag of X;
(b
+ (
EmptyBag X))
= b by
PRE_POLY: 53;
hence thesis by
Def1;
end;
theorem ::
GROEB_2:7
Th7: for X be
set, b1,b2 be
bag of X holds b2
divides b1 iff (
lcm (b1,b2))
= b1
proof
let X be
set, b1,b2 be
bag of X;
now
assume
A1: b2
divides b1;
for k be
object holds (b1
. k)
= (
max ((b1
. k),(b2
. k))) by
XXREAL_0:def 10,
A1,
PRE_POLY:def 11;
hence (
lcm (b1,b2))
= b1 by
Def2;
end;
hence thesis by
Th3;
end;
theorem ::
GROEB_2:8
for X be
set, b1,b2,b3 be
bag of X holds b1
divides (
lcm (b2,b3)) implies (
lcm (b2,b1))
divides (
lcm (b2,b3))
proof
let X be
set, b1,b2,b3 be
bag of X;
assume
A1: b1
divides (
lcm (b2,b3));
for k be
object st k
in X holds ((
lcm (b2,b1))
. k)
<= ((
lcm (b2,b3))
. k)
proof
let k be
object;
assume k
in X;
(b1
. k)
<= ((
lcm (b2,b3))
. k) by
A1,
PRE_POLY:def 11;
then
A2: (b1
. k)
<= (
max ((b2
. k),(b3
. k))) by
Def2;
(b2
. k)
<= (
max ((b2
. k),(b3
. k))) by
XXREAL_0: 25;
then (
max ((b2
. k),(b1
. k)))
<= (
max ((b2
. k),(b3
. k))) by
A2,
XXREAL_0: 28;
then (
max ((b2
. k),(b1
. k)))
<= ((
lcm (b2,b3))
. k) by
Def2;
hence thesis by
Def2;
end;
hence thesis by
PRE_POLY: 46;
end;
theorem ::
GROEB_2:9
for X be
set, b1,b2,b3 be
bag of X holds (
lcm (b2,b1))
divides (
lcm (b2,b3)) implies (
lcm (b1,b3))
divides (
lcm (b2,b3))
proof
let X be
set, b1,b2,b3 be
bag of X;
assume
A1: (
lcm (b2,b1))
divides (
lcm (b2,b3));
for k be
object st k
in X holds ((
lcm (b1,b3))
. k)
<= ((
lcm (b2,b3))
. k)
proof
let k be
object;
assume k
in X;
A2: (b3
. k)
<= (
max ((b2
. k),(b3
. k))) by
XXREAL_0: 25;
((
lcm (b2,b1))
. k)
<= ((
lcm (b2,b3))
. k) by
A1,
PRE_POLY:def 11;
then (
max ((b2
. k),(b1
. k)))
<= ((
lcm (b2,b3))
. k) by
Def2;
then
A3: (
max ((b2
. k),(b1
. k)))
<= (
max ((b2
. k),(b3
. k))) by
Def2;
(b1
. k)
<= (
max ((b2
. k),(b1
. k))) by
XXREAL_0: 25;
then (b1
. k)
<= (
max ((b2
. k),(b3
. k))) by
A3,
XXREAL_0: 2;
then (
max ((b1
. k),(b3
. k)))
<= (
max ((b2
. k),(b3
. k))) by
A2,
XXREAL_0: 28;
then (
max ((b1
. k),(b3
. k)))
<= ((
lcm (b2,b3))
. k) by
Def2;
hence thesis by
Def2;
end;
hence thesis by
PRE_POLY: 46;
end;
theorem ::
GROEB_2:10
for n be
set, b1,b2,b3 be
bag of n holds (
lcm (b1,b3))
divides (
lcm (b2,b3)) implies b1
divides (
lcm (b2,b3))
proof
let X be
set, b1,b2,b3 be
bag of X;
assume
A1: (
lcm (b1,b3))
divides (
lcm (b2,b3));
for k be
object st k
in X holds (b1
. k)
<= ((
lcm (b2,b3))
. k)
proof
let k be
object;
assume k
in X;
((
lcm (b1,b3))
. k)
<= ((
lcm (b2,b3))
. k) by
A1,
PRE_POLY:def 11;
then (
max ((b1
. k),(b3
. k)))
<= ((
lcm (b2,b3))
. k) by
Def2;
then
A2: (
max ((b1
. k),(b3
. k)))
<= (
max ((b2
. k),(b3
. k))) by
Def2;
(b1
. k)
<= (
max ((b1
. k),(b3
. k))) by
XXREAL_0: 25;
then (b1
. k)
<= (
max ((b2
. k),(b3
. k))) by
A2,
XXREAL_0: 2;
hence thesis by
Def2;
end;
hence thesis by
PRE_POLY: 46;
end;
theorem ::
GROEB_2:11
for n be
Element of
NAT , T be
connected
admissible
TermOrder of n, P be non
empty
Subset of (
Bags n) holds ex b be
bag of n st b
in P & for b9 be
bag of n st b9
in P holds b
<= (b9,T)
proof
let n be
Element of
NAT , T be
connected
admissible
TermOrder of n, P be non
empty
Subset of (
Bags n);
set R =
RelStr (# (
Bags n), T #), m = (
MinElement (P,R));
A1: T
is_connected_in (
field T) by
RELAT_2:def 14;
reconsider b = m as
bag of n;
A2: m
is_minimal_wrt (P,the
InternalRel of R) by
BAGORDER:def 17;
A3:
now
let b9 be
bag of n;
b
<= (b,T) by
TERMORD: 6;
then
[b, b]
in T by
TERMORD:def 2;
then
A4: b
in (
field T) by
RELAT_1: 15;
b9
<= (b9,T) by
TERMORD: 6;
then
[b9, b9]
in T by
TERMORD:def 2;
then
A5: b9
in (
field T) by
RELAT_1: 15;
assume
A6: b9
in P;
now
per cases ;
case b9
= b;
hence b
<= (b9,T) by
TERMORD: 6;
end;
case
A7: b9
<> b;
then not
[b9, b]
in T by
A2,
A6,
WAYBEL_4:def 25;
then
[b, b9]
in T by
A1,
A4,
A5,
A7,
RELAT_2:def 6;
hence b
<= (b9,T) by
TERMORD:def 2;
end;
end;
hence b
<= (b9,T);
end;
m
in P by
BAGORDER:def 17;
hence thesis by
A3;
end;
registration
let L be
add-associative
right_zeroed
right_complementable non
trivial
addLoopStr, a be non
zero
Element of L;
cluster (
- a) -> non
zero;
coherence
proof
now
assume (
- a)
= (
0. L);
then (
- (
- a))
= (
0. L) by
RLVECT_1: 12;
hence contradiction by
RLVECT_1: 17;
end;
hence thesis;
end;
end
registration
let X be
set, L be
left_zeroed
right_zeroed
add-cancelable
distributive non
empty
doubleLoopStr, m be
Monomial of X, L, a be
Element of L;
cluster (a
* m) ->
monomial-like;
coherence
proof
set p = (a
* m);
now
per cases by
POLYNOM7: 6;
case
A1: (
Support m)
=
{} ;
now
set b = the
Element of (
Support p);
assume
A2: (
Support p)
<>
{} ;
then b
in (
Support p);
then
reconsider b as
Element of (
Bags X);
(p
. b)
= (a
* (m
. b)) by
POLYNOM7:def 9
.= (a
* (
0. L)) by
A1,
POLYNOM1:def 4
.= (
0. L) by
BINOM: 2;
hence contradiction by
A2,
POLYNOM1:def 4;
end;
hence thesis by
POLYNOM7: 6;
end;
case ex b be
bag of X st (
Support m)
=
{b};
then
consider b be
bag of X such that
A3: (
Support m)
=
{b};
reconsider b as
Element of (
Bags X) by
PRE_POLY:def 12;
now
per cases ;
case
A4: a
= (
0. L);
now
set b = the
Element of (
Support p);
assume
A5: (
Support p)
<>
{} ;
then b
in (
Support p);
then
reconsider b as
Element of (
Bags X);
(p
. b)
= (a
* (m
. b)) by
POLYNOM7:def 9
.= (
0. L) by
A4,
BINOM: 1;
hence contradiction by
A5,
POLYNOM1:def 4;
end;
hence (
Support p)
=
{} ;
end;
case a
<> (
0. L);
A6:
now
let b9 be
Element of (
Bags X);
assume b9
<> b;
then not b9
in (
Support m) by
A3,
TARSKI:def 1;
then
A7: (m
. b9)
= (
0. L) by
POLYNOM1:def 4;
(p
. b9)
= (a
* (m
. b9)) by
POLYNOM7:def 9;
hence (p
. b9)
= (
0. L) by
A7,
BINOM: 2;
end;
now
per cases ;
case
A8: (a
* (m
. b))
= (
0. L);
now
set b9 = the
Element of (
Support p);
assume
A9: (
Support p)
<>
{} ;
then b9
in (
Support p);
then
reconsider b9 as
Element of (
Bags X);
A10: (p
. b9)
<> (
0. L) by
A9,
POLYNOM1:def 4;
then b9
= b by
A6;
hence contradiction by
A8,
A10,
POLYNOM7:def 9;
end;
hence (
Support p)
=
{} ;
end;
case
A11: (a
* (m
. b))
<> (
0. L);
A12:
now
let u be
object;
assume
A13: u
in (
Support p);
then
reconsider u9 = u as
Element of (
Bags X);
(p
. u9)
<> (
0. L) by
A13,
POLYNOM1:def 4;
then u9
= b by
A6;
hence u
in
{b} by
TARSKI:def 1;
end;
now
let u be
object;
assume u
in
{b};
then
A14: u
= b by
TARSKI:def 1;
(p
. b)
<> (
0. L) by
A11,
POLYNOM7:def 9;
hence u
in (
Support p) by
A14,
POLYNOM1:def 4;
end;
hence (
Support p)
=
{b} by
A12,
TARSKI: 2;
end;
end;
hence thesis by
POLYNOM7: 6;
end;
end;
hence thesis by
POLYNOM7: 6;
end;
end;
hence thesis;
end;
end
registration
let n be
Ordinal, L be
left_zeroed
right_zeroed
add-cancelable
distributive
domRing-like non
trivial
doubleLoopStr, p be
non-zero
Polynomial of n, L, a be non
zero
Element of L;
cluster (a
* p) ->
non-zero;
coherence
proof
set b = the
Element of (
Support p);
set ap = (a
* p);
p
<> (
0_ (n,L)) by
POLYNOM7:def 1;
then
A1: (
Support p)
<>
{} by
POLYNOM7: 1;
then b
in (
Support p);
then
reconsider b as
Element of (
Bags n);
(p
. b)
<> (
0. L) by
A1,
POLYNOM1:def 4;
then (a
* (p
. b))
<> (
0. L) by
VECTSP_2:def 1;
then (ap
. b)
<> (
0. L) by
POLYNOM7:def 9;
then b
in (
Support ap) by
POLYNOM1:def 4;
then ap
<> (
0_ (n,L)) by
POLYNOM7: 1;
hence thesis by
POLYNOM7:def 1;
end;
end
theorem ::
GROEB_2:12
Th12: for n be
Ordinal, L be
right_zeroed
right-distributive non
empty
doubleLoopStr, p,q be
Series of n, L, b be
bag of n holds (b
*' (p
+ q))
= ((b
*' p)
+ (b
*' q))
proof
let n be
Ordinal, L be
right_zeroed
right-distributive non
empty
doubleLoopStr, p1,p2 be
Series of n, L, b be
bag of n;
set q1 = (b
*' (p1
+ p2)), q2 = ((b
*' p1)
+ (b
*' p2));
A1:
now
let x be
object;
assume x
in (
dom q1);
then
reconsider u = x as
bag of n;
now
per cases ;
case
A2: b
divides u;
hence (q1
. u)
= ((p1
+ p2)
. (u
-' b)) by
POLYRED:def 1
.= ((p1
. (u
-' b))
+ (p2
. (u
-' b))) by
POLYNOM1: 15
.= (((b
*' p1)
. u)
+ (p2
. (u
-' b))) by
A2,
POLYRED:def 1
.= (((b
*' p1)
. u)
+ ((b
*' p2)
. u)) by
A2,
POLYRED:def 1
.= (q2
. u) by
POLYNOM1: 15;
end;
case
A3: not b
divides u;
hence (q1
. u)
= (
0. L) by
POLYRED:def 1
.= ((
0. L)
+ (
0. L)) by
RLVECT_1:def 4
.= (((b
*' p1)
. u)
+ (
0. L)) by
A3,
POLYRED:def 1
.= (((b
*' p1)
. u)
+ ((b
*' p2)
. u)) by
A3,
POLYRED:def 1
.= (q2
. u) by
POLYNOM1: 15;
end;
end;
hence (q1
. x)
= (q2
. x);
end;
(
dom q1)
= (
Bags n) by
FUNCT_2:def 1
.= (
dom q2) by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
GROEB_2:13
Th13: for n be
Ordinal, L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Series of n, L, b be
bag of n holds (b
*' (
- p))
= (
- (b
*' p))
proof
let n be
Ordinal, L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr, p be
Series of n, L, b be
bag of n;
set q1 = (b
*' (
- p)), q2 = (
- (b
*' p));
A1:
now
let x be
object;
assume x
in (
dom q1);
then
reconsider u = x as
bag of n;
now
per cases ;
case
A2: b
divides u;
then
A3: ((b
*' p)
. u)
= (p
. (u
-' b)) by
POLYRED:def 1;
thus (q1
. u)
= ((
- p)
. (u
-' b)) by
A2,
POLYRED:def 1
.= (
- (p
. (u
-' b))) by
POLYNOM1: 17
.= ((
- (b
*' p))
. u) by
A3,
POLYNOM1: 17;
end;
case
A4: not b
divides u;
then
A5: ((b
*' p)
. u)
= (
0. L) by
POLYRED:def 1;
thus (q1
. u)
= (
0. L) by
A4,
POLYRED:def 1
.= (
- (
0. L)) by
RLVECT_1: 12
.= (q2
. u) by
A5,
POLYNOM1: 17;
end;
end;
hence (q1
. x)
= (q2
. x);
end;
(
dom q1)
= (
Bags n) by
FUNCT_2:def 1
.= (
dom q2) by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
GROEB_2:14
Th14: for n be
Ordinal, L be
left_zeroed
right_add-cancelable
right-distributive non
empty
doubleLoopStr, p be
Series of n, L, b be
bag of n, a be
Element of L holds (b
*' (a
* p))
= (a
* (b
*' p))
proof
let n be
Ordinal, L be
left_zeroed
right_add-cancelable
right-distributive non
empty
doubleLoopStr, p be
Series of n, L, b be
bag of n, a be
Element of L;
set q1 = (b
*' (a
* p)), q2 = (a
* (b
*' p));
A1:
now
let x be
object;
assume x
in (
dom q1);
then
reconsider u = x as
bag of n;
now
per cases ;
case
A2: b
divides u;
hence (q1
. u)
= ((a
* p)
. (u
-' b)) by
POLYRED:def 1
.= (a
* (p
. (u
-' b))) by
POLYNOM7:def 9
.= (a
* ((b
*' p)
. u)) by
A2,
POLYRED:def 1
.= (q2
. u) by
POLYNOM7:def 9;
end;
case
A3: not b
divides u;
hence (q1
. u)
= (
0. L) by
POLYRED:def 1
.= (a
* (
0. L)) by
BINOM: 2
.= (a
* ((b
*' p)
. u)) by
A3,
POLYRED:def 1
.= (q2
. u) by
POLYNOM7:def 9;
end;
end;
hence (q1
. x)
= (q2
. x);
end;
(
dom q1)
= (
Bags n) by
FUNCT_2:def 1
.= (
dom q2) by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
GROEB_2:15
Th15: for n be
Ordinal, L be
right-distributive non
empty
doubleLoopStr, p,q be
Series of n, L, a be
Element of L holds (a
* (p
+ q))
= ((a
* p)
+ (a
* q))
proof
let n be
Ordinal, L be
right-distributive non
empty
doubleLoopStr, p1,p2 be
Series of n, L, b be
Element of L;
set q1 = (b
* (p1
+ p2)), q2 = ((b
* p1)
+ (b
* p2));
A1:
now
let x be
object;
assume x
in (
dom q1);
then
reconsider u = x as
bag of n;
(q1
. u)
= (b
* ((p1
+ p2)
. u)) by
POLYNOM7:def 9
.= (b
* ((p1
. u)
+ (p2
. u))) by
POLYNOM1: 15
.= ((b
* (p1
. u))
+ (b
* (p2
. u))) by
VECTSP_1:def 2
.= (((b
* p1)
. u)
+ (b
* (p2
. u))) by
POLYNOM7:def 9
.= (((b
* p1)
. u)
+ ((b
* p2)
. u)) by
POLYNOM7:def 9
.= (((b
* p1)
+ (b
* p2))
. u) by
POLYNOM1: 15;
hence (q1
. x)
= (q2
. x);
end;
(
dom q1)
= (
Bags n) by
FUNCT_2:def 1
.= (
dom q2) by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
GROEB_2:16
Th16: for X be
set, L be
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr, a be
Element of L holds (
- (a
| (X,L)))
= ((
- a)
| (X,L))
proof
let n be
set, L be
add-associative
right_zeroed
right_complementable non
empty
doubleLoopStr, a be
Element of L;
A1:
now
let u be
object;
assume u
in (
dom ((
- a)
| (n,L)));
then
reconsider u9 = u as
Element of (
Bags n);
now
per cases ;
case
A2: u9
= (
EmptyBag n);
hence (
- ((a
| (n,L))
. u9))
= (
- a) by
POLYNOM7: 18
.= (((
- a)
| (n,L))
. u9) by
A2,
POLYNOM7: 18;
end;
case
A3: u9
<> (
EmptyBag n);
(
- (
0. L))
= (
0. L) by
RLVECT_1: 12;
hence (
- ((a
| (n,L))
. u9))
= (
0. L) by
A3,
POLYNOM7: 18
.= (((
- a)
| (n,L))
. u9) by
A3,
POLYNOM7: 18;
end;
end;
hence (((
- a)
| (n,L))
. u)
= ((
- (a
| (n,L)))
. u) by
POLYNOM1: 17;
end;
(
dom (
- (a
| (n,L))))
= (
Bags n) by
FUNCT_2:def 1
.= (
dom ((
- a)
| (n,L))) by
FUNCT_2:def 1;
hence thesis by
A1,
FUNCT_1: 2;
end;
Lm1: for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, f be
Polynomial of n, L, g be
object, P be
Subset of (
Polynom-Ring (n,L)) holds (
PolyRedRel (P,T))
reduces (f,g) implies g is
Polynomial of n, L
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, f be
Polynomial of n, L, g be
object, P be
Subset of (
Polynom-Ring (n,L));
set R = (
PolyRedRel (P,T));
assume R
reduces (f,g);
then
consider p be
RedSequence of R such that
A1: (p
. 1)
= f and
A2: (p
. (
len p))
= g by
REWRITE1:def 3;
A3: 1
<= (
len p) by
NAT_1: 14;
reconsider l = ((
len p)
- 1) as
Element of
NAT by
INT_1: 5,
NAT_1: 14;
set h = (p
. l);
1
<= (l
+ 1) by
NAT_1: 12;
then (l
+ 1)
in (
Seg (
len p)) by
FINSEQ_1: 1;
then
A4: (l
+ 1)
in (
dom p) by
FINSEQ_1:def 3;
per cases ;
suppose (
len p)
= 1;
hence thesis by
A1,
A2;
end;
suppose (
len p)
<> 1;
then (
0
+ 1)
< (l
+ 1) by
A3,
XXREAL_0: 1;
then
A5: 1
<= l by
NAT_1: 13;
l
<= (l
+ 1) by
NAT_1: 13;
then l
in (
Seg (
len p)) by
A5,
FINSEQ_1: 1;
then l
in (
dom p) by
FINSEQ_1:def 3;
then
[h, g]
in R by
A2,
A4,
REWRITE1:def 2;
then
consider h9,g9 be
object such that
A6:
[h, g]
=
[h9, g9] and h9
in (
NonZero (
Polynom-Ring (n,L))) and
A7: g9
in the
carrier of (
Polynom-Ring (n,L)) by
RELSET_1: 2;
g
= g9 by
A6,
XTUPLE_0: 1;
hence thesis by
A7,
POLYNOM1:def 11;
end;
end;
begin
theorem ::
GROEB_2:17
Th17: for n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, P be
Subset of (
Polynom-Ring (n,L)) holds (for p1,p2 be
Polynomial of n, L st p1
<> p2 & p1
in P & p2
in P holds for m1,m2 be
Monomial of n, L st (
HM ((m1
*' p1),T))
= (
HM ((m2
*' p2),T)) holds (
PolyRedRel (P,T))
reduces (((m1
*' p1)
- (m2
*' p2)),(
0_ (n,L)))) implies P
is_Groebner_basis_wrt T
proof
let n be
Element of
NAT , T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, P be
Subset of (
Polynom-Ring (n,L));
assume
A1: for p1,p2 be
Polynomial of n, L st p1
<> p2 & p1
in P & p2
in P holds for m1,m2 be
Monomial of n, L st (
HM ((m1
*' p1),T))
= (
HM ((m2
*' p2),T)) holds (
PolyRedRel (P,T))
reduces (((m1
*' p1)
- (m2
*' p2)),(
0_ (n,L)));
set R = (
PolyRedRel (P,T));
A2: (
0_ (n,L))
= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
now
let a,b,c be
object;
assume that
A3:
[a, b]
in R and
A4:
[a, c]
in R;
consider f,f1 be
object such that
A5: f
in (
NonZero (
Polynom-Ring (n,L))) and
A6: f1
in the
carrier of (
Polynom-Ring (n,L)) and
A7:
[a, b]
=
[f, f1] by
A3,
ZFMISC_1:def 2;
A8: not f
in
{(
0_ (n,L))} by
A2,
A5,
XBOOLE_0:def 5;
reconsider f as
Polynomial of n, L by
A5,
POLYNOM1:def 11;
f
<> (
0_ (n,L)) by
A8,
TARSKI:def 1;
then
reconsider f as
non-zero
Polynomial of n, L by
POLYNOM7:def 1;
reconsider f1 as
Polynomial of n, L by
A6,
POLYNOM1:def 11;
f
reduces_to (f1,P,T) by
A3,
A7,
POLYRED:def 13;
then
consider g1 be
Polynomial of n, L such that
A9: g1
in P and
A10: f
reduces_to (f1,g1,T) by
POLYRED:def 7;
ex b1 be
bag of n st f
reduces_to (f1,g1,b1,T) by
A10,
POLYRED:def 6;
then
A11: g1
<> (
0_ (n,L)) by
POLYRED:def 5;
consider f9,f2 be
object such that f9
in (
NonZero (
Polynom-Ring (n,L))) and
A12: f2
in the
carrier of (
Polynom-Ring (n,L)) and
A13:
[a, c]
=
[f9, f2] by
A4,
ZFMISC_1:def 2;
reconsider f2 as
Polynomial of n, L by
A12,
POLYNOM1:def 11;
A14: f2
= c by
A13,
XTUPLE_0: 1;
reconsider g1 as
non-zero
Polynomial of n, L by
A11,
POLYNOM7:def 1;
consider m1 be
Monomial of n, L such that
A15: f1
= (f
- (m1
*' g1)) and
A16: not (
HT ((m1
*' g1),T))
in (
Support f1) and (
HT ((m1
*' g1),T))
<= ((
HT (f,T)),T) by
A10,
GROEB_1: 2;
A17: f9
= a by
A13,
XTUPLE_0: 1;
A18: f9
= a by
A13,
XTUPLE_0: 1
.= f by
A7,
XTUPLE_0: 1;
then f
reduces_to (f2,P,T) by
A4,
A13,
POLYRED:def 13;
then
consider g2 be
Polynomial of n, L such that
A19: g2
in P and
A20: f
reduces_to (f2,g2,T) by
POLYRED:def 7;
ex b2 be
bag of n st f
reduces_to (f2,g2,b2,T) by
A20,
POLYRED:def 6;
then
A21: g2
<> (
0_ (n,L)) by
POLYRED:def 5;
then
reconsider g2 as
non-zero
Polynomial of n, L by
POLYNOM7:def 1;
consider m2 be
Monomial of n, L such that
A22: f2
= (f
- (m2
*' g2)) and
A23: not (
HT ((m2
*' g2),T))
in (
Support f2) and (
HT ((m2
*' g2),T))
<= ((
HT (f,T)),T) by
A20,
GROEB_1: 2;
set mg1 = (m1
*' g1), mg2 = (m2
*' g2);
A24: f1
= b by
A7,
XTUPLE_0: 1;
now
per cases ;
case m1
= (
0_ (n,L));
then f1
= (f
- (
0_ (n,L))) by
A15,
POLYRED: 5
.= f by
POLYRED: 4;
then
A25: R
reduces (b,c) by
A4,
A18,
A24,
A17,
REWRITE1: 15;
R
reduces (c,c) by
REWRITE1: 12;
hence (b,c)
are_convergent_wrt R by
A25,
REWRITE1:def 7;
end;
case m2
= (
0_ (n,L));
then f2
= (f
- (
0_ (n,L))) by
A22,
POLYRED: 5
.= f by
POLYRED: 4;
then
A26: R
reduces (c,b) by
A3,
A18,
A14,
A17,
REWRITE1: 15;
R
reduces (b,b) by
REWRITE1: 12;
hence (b,c)
are_convergent_wrt R by
A26,
REWRITE1:def 7;
end;
case m1
<> (
0_ (n,L)) & m2
<> (
0_ (n,L));
then
reconsider m1, m2 as
non-zero
Monomial of n, L by
POLYNOM7:def 1;
((
HT (m1,T))
+ (
HT (g1,T)))
in (
Support mg1) by
TERMORD: 29;
then
A27: mg1
<> (
0_ (n,L)) by
POLYNOM7: 1;
((
HT (m2,T))
+ (
HT (g2,T)))
in (
Support mg2) by
TERMORD: 29;
then
A28: mg2
<> (
0_ (n,L)) by
POLYNOM7: 1;
A29: (
HC (g2,T))
<> (
0. L);
A30: (
- (
- (m1
*' g1)))
= (m1
*' g1) by
POLYNOM1: 19;
A31: (f2
- f1)
= ((f
+ (
- (m2
*' g2)))
- (f
- (m1
*' g1))) by
A15,
A22,
POLYNOM1:def 7
.= ((f
+ (
- (m2
*' g2)))
- (f
+ (
- (m1
*' g1)))) by
POLYNOM1:def 7
.= ((f
+ (
- (m2
*' g2)))
+ (
- (f
+ (
- (m1
*' g1))))) by
POLYNOM1:def 7
.= ((f
+ (
- (m2
*' g2)))
+ ((
- f)
+ (
- (
- (m1
*' g1))))) by
POLYRED: 1
.= (f
+ ((
- (m2
*' g2))
+ ((
- f)
+ (m1
*' g1)))) by
A30,
POLYNOM1: 21
.= (f
+ ((
- f)
+ ((
- (m2
*' g2))
+ (m1
*' g1)))) by
POLYNOM1: 21
.= ((f
+ (
- f))
+ ((
- (m2
*' g2))
+ (m1
*' g1))) by
POLYNOM1: 21
.= ((
0_ (n,L))
+ ((
- (m2
*' g2))
+ (m1
*' g1))) by
POLYRED: 3
.= ((m1
*' g1)
+ (
- (m2
*' g2))) by
POLYRED: 2
.= (mg1
- mg2) by
POLYNOM1:def 7;
A32: (
HC (g1,T))
<> (
0. L);
A33: (
- (
- mg1))
= mg1 by
POLYNOM1: 19;
(
PolyRedRel (P,T))
reduces ((f2
- f1),(
0_ (n,L)))
proof
now
per cases ;
case (mg1
- mg2)
= (
0_ (n,L));
hence thesis by
A31,
REWRITE1: 12;
end;
case
A34: (mg1
- mg2)
<> (
0_ (n,L));
now
per cases ;
case g1
= g2;
then (f2
- f1)
= ((m1
*' g1)
+ (
- (m2
*' g1))) by
A31,
POLYNOM1:def 7
.= ((g1
*' m1)
+ ((
- m2)
*' g1)) by
POLYRED: 6
.= ((m1
+ (
- m2))
*' g1) by
POLYNOM1: 26;
hence thesis by
A9,
POLYRED: 45;
end;
case
A35: g1
<> g2;
now
per cases ;
case
A36: (
HT (mg1,T))
<> (
HT (mg2,T));
now
per cases ;
case (
HT (mg2,T))
< ((
HT (mg1,T)),T);
then not (
HT (mg1,T))
<= ((
HT (mg2,T)),T) by
TERMORD: 5;
then not (
HT (mg1,T))
in (
Support mg2) by
TERMORD:def 6;
then
A37: (mg2
. (
HT (mg1,T)))
= (
0. L) by
POLYNOM1:def 4;
A38: ((mg1
- mg2)
. (
HT (mg1,T)))
= ((mg1
+ (
- mg2))
. (
HT (mg1,T))) by
POLYNOM1:def 7
.= ((mg1
. (
HT (mg1,T)))
+ ((
- mg2)
. (
HT (mg1,T)))) by
POLYNOM1: 15
.= ((mg1
. (
HT (mg1,T)))
+ (
- (mg2
. (
HT (mg1,T))))) by
POLYNOM1: 17
.= ((mg1
. (
HT (mg1,T)))
+ (
0. L)) by
A37,
RLVECT_1: 12
.= (mg1
. (
HT (mg1,T))) by
RLVECT_1:def 4
.= (
HC (mg1,T)) by
TERMORD:def 7;
then ((mg1
- mg2)
. (
HT (mg1,T)))
<> (
0. L) by
A27,
TERMORD: 17;
then
A39: (
HT (mg1,T))
in (
Support (mg1
- mg2)) by
POLYNOM1:def 4;
A40: ((
HT (m1,T))
+ (
HT (g1,T)))
= (
HT (mg1,T)) by
TERMORD: 31;
((mg1
- mg2)
- ((((mg1
- mg2)
. (
HT (mg1,T)))
/ (
HC (g1,T)))
* ((
HT (m1,T))
*' g1)))
= ((mg1
- mg2)
- ((((
HC (m1,T))
* (
HC (g1,T)))
/ (
HC (g1,T)))
* ((
HT (m1,T))
*' g1))) by
A38,
TERMORD: 32
.= ((mg1
- mg2)
- ((((
HC (m1,T))
* (
HC (g1,T)))
* ((
HC (g1,T))
" ))
* ((
HT (m1,T))
*' g1)))
.= ((mg1
- mg2)
- (((
HC (m1,T))
* ((
HC (g1,T))
* ((
HC (g1,T))
" )))
* ((
HT (m1,T))
*' g1))) by
GROUP_1:def 3
.= ((mg1
- mg2)
- (((
HC (m1,T))
* (
1. L))
* ((
HT (m1,T))
*' g1))) by
A32,
VECTSP_1:def 10
.= ((mg1
- mg2)
- ((
HC (m1,T))
* ((
HT (m1,T))
*' g1)))
.= ((mg1
- mg2)
- ((
Monom ((
HC (m1,T)),(
HT (m1,T))))
*' g1)) by
POLYRED: 22
.= ((mg1
- mg2)
- ((
Monom ((
coefficient m1),(
HT (m1,T))))
*' g1)) by
TERMORD: 23
.= ((mg1
- mg2)
- ((
Monom ((
coefficient m1),(
term m1)))
*' g1)) by
TERMORD: 23
.= ((mg1
- mg2)
- mg1) by
POLYNOM7: 11
.= ((mg1
+ (
- mg2))
- mg1) by
POLYNOM1:def 7
.= ((mg1
+ (
- mg2))
+ (
- mg1)) by
POLYNOM1:def 7
.= ((mg1
+ (
- mg1))
+ (
- mg2)) by
POLYNOM1: 21
.= ((
0_ (n,L))
+ (
- mg2)) by
POLYRED: 3
.= (
- mg2) by
POLYRED: 2;
then (mg1
- mg2)
reduces_to ((
- mg2),g1,(
HT (mg1,T)),T) by
A11,
A34,
A39,
A40,
POLYRED:def 5;
then (mg1
- mg2)
reduces_to ((
- mg2),g1,T) by
POLYRED:def 6;
then (mg1
- mg2)
reduces_to ((
- mg2),P,T) by
A9,
POLYRED:def 7;
then
[(mg1
- mg2), (
- mg2)]
in R by
POLYRED:def 13;
then
A41: R
reduces ((mg1
- mg2),(
- mg2)) by
REWRITE1: 15;
R
reduces (((
- m2)
*' g2),(
0_ (n,L))) by
A19,
POLYRED: 45;
then R
reduces ((
- mg2),(
0_ (n,L))) by
POLYRED: 6;
hence thesis by
A31,
A41,
REWRITE1: 16;
end;
case not (
HT (mg2,T))
< ((
HT (mg1,T)),T);
then (
HT (mg1,T))
<= ((
HT (mg2,T)),T) by
TERMORD: 5;
then (
HT (mg1,T))
< ((
HT (mg2,T)),T) by
A36,
TERMORD:def 3;
then not (
HT (mg2,T))
<= ((
HT (mg1,T)),T) by
TERMORD: 5;
then not (
HT (mg2,T))
in (
Support mg1) by
TERMORD:def 6;
then
A42: (mg1
. (
HT (mg2,T)))
= (
0. L) by
POLYNOM1:def 4;
A43: ((mg2
- mg1)
. (
HT (mg2,T)))
= ((mg2
+ (
- mg1))
. (
HT (mg2,T))) by
POLYNOM1:def 7
.= ((mg2
. (
HT (mg2,T)))
+ ((
- mg1)
. (
HT (mg2,T)))) by
POLYNOM1: 15
.= ((mg2
. (
HT (mg2,T)))
+ (
- (mg1
. (
HT (mg2,T))))) by
POLYNOM1: 17
.= ((mg2
. (
HT (mg2,T)))
+ (
0. L)) by
A42,
RLVECT_1: 12
.= (mg2
. (
HT (mg2,T))) by
RLVECT_1:def 4
.= (
HC (mg2,T)) by
TERMORD:def 7;
then ((mg2
- mg1)
. (
HT (mg2,T)))
<> (
0. L) by
A28,
TERMORD: 17;
then
A44: (
HT (mg2,T))
in (
Support (mg2
- mg1)) by
POLYNOM1:def 4;
reconsider x = (
- (
0_ (n,L))) as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
A45: ((
HT (m2,T))
+ (
HT (g2,T)))
= (
HT (mg2,T)) by
TERMORD: 31;
reconsider x as
Element of (
Polynom-Ring (n,L));
(
0. (
Polynom-Ring (n,L)))
= (
0_ (n,L)) by
POLYNOM1:def 11;
then
A46: (x
+ (
0. (
Polynom-Ring (n,L))))
= ((
- (
0_ (n,L)))
+ (
0_ (n,L))) by
POLYNOM1:def 11
.= (
0_ (n,L)) by
POLYRED: 3
.= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
A47:
now
assume (mg2
- mg1)
= (
0_ (n,L));
then (
- (mg2
+ (
- mg1)))
= (
- (
0_ (n,L))) by
POLYNOM1:def 7;
then ((
- mg2)
+ (
- (
- mg1)))
= (
- (
0_ (n,L))) by
POLYRED: 1;
then (mg1
+ (
- mg2))
= (
- (
0. (
Polynom-Ring (n,L)))) by
A33,
A46,
RLVECT_1: 6
.= (
0. (
Polynom-Ring (n,L))) by
RLVECT_1: 12
.= (
0_ (n,L)) by
POLYNOM1:def 11;
hence contradiction by
A34,
POLYNOM1:def 7;
end;
((mg2
- mg1)
- ((((mg2
- mg1)
. (
HT (mg2,T)))
/ (
HC (g2,T)))
* ((
HT (m2,T))
*' g2)))
= ((mg2
- mg1)
- ((((
HC (m2,T))
* (
HC (g2,T)))
/ (
HC (g2,T)))
* ((
HT (m2,T))
*' g2))) by
A43,
TERMORD: 32
.= ((mg2
- mg1)
- ((((
HC (m2,T))
* (
HC (g2,T)))
* ((
HC (g2,T))
" ))
* ((
HT (m2,T))
*' g2)))
.= ((mg2
- mg1)
- (((
HC (m2,T))
* ((
HC (g2,T))
* ((
HC (g2,T))
" )))
* ((
HT (m2,T))
*' g2))) by
GROUP_1:def 3
.= ((mg2
- mg1)
- (((
HC (m2,T))
* (
1. L))
* ((
HT (m2,T))
*' g2))) by
A29,
VECTSP_1:def 10
.= ((mg2
- mg1)
- ((
HC (m2,T))
* ((
HT (m2,T))
*' g2)))
.= ((mg2
- mg1)
- ((
Monom ((
HC (m2,T)),(
HT (m2,T))))
*' g2)) by
POLYRED: 22
.= ((mg2
- mg1)
- ((
Monom ((
coefficient m2),(
HT (m2,T))))
*' g2)) by
TERMORD: 23
.= ((mg2
- mg1)
- ((
Monom ((
coefficient m2),(
term m2)))
*' g2)) by
TERMORD: 23
.= ((mg2
- mg1)
- mg2) by
POLYNOM7: 11
.= ((mg2
+ (
- mg1))
- mg2) by
POLYNOM1:def 7
.= ((mg2
+ (
- mg1))
+ (
- mg2)) by
POLYNOM1:def 7
.= ((mg2
+ (
- mg2))
+ (
- mg1)) by
POLYNOM1: 21
.= ((
0_ (n,L))
+ (
- mg1)) by
POLYRED: 3
.= (
- mg1) by
POLYRED: 2;
then (mg2
- mg1)
reduces_to ((
- mg1),g2,(
HT (mg2,T)),T) by
A21,
A44,
A45,
A47,
POLYRED:def 5;
then (mg2
- mg1)
reduces_to ((
- mg1),g2,T) by
POLYRED:def 6;
then (mg2
- mg1)
reduces_to ((
- mg1),P,T) by
A19,
POLYRED:def 7;
then
[(mg2
- mg1), (
- mg1)]
in R by
POLYRED:def 13;
then
A48: R
reduces ((mg2
- mg1),(
- mg1)) by
REWRITE1: 15;
A49: (
- (
1_ (n,L)))
= (
- ((
1. L)
| (n,L))) by
POLYNOM7: 20
.= ((
- (
1. L))
| (n,L)) by
Th16;
R
reduces (((
- m1)
*' g1),(
0_ (n,L))) by
A9,
POLYRED: 45;
then R
reduces ((
- mg1),(
0_ (n,L))) by
POLYRED: 6;
then R
reduces ((mg2
- mg1),(
0_ (n,L))) by
A48,
REWRITE1: 16;
then
A50: R
reduces (((
- (
1_ (n,L)))
*' (mg2
- mg1)),((
- (
1_ (n,L)))
*' (
0_ (n,L)))) by
A49,
POLYRED: 47;
((
- (
1_ (n,L)))
*' (mg2
- mg1))
= ((
- (
1_ (n,L)))
*' (mg2
+ (
- mg1))) by
POLYNOM1:def 7
.= (((
- (
1_ (n,L)))
*' mg2)
+ ((
- (
1_ (n,L)))
*' (
- mg1))) by
POLYNOM1: 26
.= ((
- ((
1_ (n,L))
*' mg2))
+ ((
- (
1_ (n,L)))
*' (
- mg1))) by
POLYRED: 6
.= (((
1_ (n,L))
*' (
- mg2))
+ ((
- (
1_ (n,L)))
*' (
- mg1))) by
POLYRED: 6
.= (((
1_ (n,L))
*' (
- mg2))
+ (
- ((
1_ (n,L))
*' (
- mg1)))) by
POLYRED: 6
.= (((
1_ (n,L))
*' (
- mg2))
+ ((
1_ (n,L))
*' (
- (
- mg1)))) by
POLYRED: 6
.= ((
- mg2)
+ ((
1_ (n,L))
*' mg1)) by
A33,
POLYNOM1: 30
.= (mg1
+ (
- mg2)) by
POLYNOM1: 30
.= (mg1
- mg2) by
POLYNOM1:def 7;
hence thesis by
A31,
A50,
POLYNOM1: 28;
end;
end;
hence thesis;
end;
case
A51: (
HT (mg1,T))
= (
HT (mg2,T));
((f
- mg2)
. (
HT (mg2,T)))
= (
0. L) by
A22,
A23,
POLYNOM1:def 4;
then ((f
+ (
- mg2))
. (
HT (mg2,T)))
= (
0. L) by
POLYNOM1:def 7;
then ((f
. (
HT (mg2,T)))
+ ((
- mg2)
. (
HT (mg2,T))))
= (
0. L) by
POLYNOM1: 15;
then ((f
. (
HT (mg2,T)))
+ (
- (mg2
. (
HT (mg2,T)))))
= (
0. L) by
POLYNOM1: 17;
then
A52: (f
. (
HT (mg2,T)))
= (
- (
- (mg2
. (
HT (mg2,T))))) by
RLVECT_1: 6;
((f
- mg1)
. (
HT (mg1,T)))
= (
0. L) by
A15,
A16,
POLYNOM1:def 4;
then ((f
+ (
- mg1))
. (
HT (mg1,T)))
= (
0. L) by
POLYNOM1:def 7;
then ((f
. (
HT (mg1,T)))
+ ((
- mg1)
. (
HT (mg1,T))))
= (
0. L) by
POLYNOM1: 15;
then ((f
. (
HT (mg1,T)))
+ (
- (mg1
. (
HT (mg1,T)))))
= (
0. L) by
POLYNOM1: 17;
then
A53: (f
. (
HT (mg1,T)))
= (
- (
- (mg1
. (
HT (mg1,T))))) by
RLVECT_1: 6;
(
HC (mg1,T))
= (mg1
. (
HT (mg1,T))) by
TERMORD:def 7
.= (f
. (
HT (mg1,T))) by
A53,
RLVECT_1: 17
.= (mg2
. (
HT (mg2,T))) by
A51,
A52,
RLVECT_1: 17
.= (
HC (mg2,T)) by
TERMORD:def 7;
then (
HM (mg1,T))
= (
Monom ((
HC (mg2,T)),(
HT (mg2,T)))) by
A51,
TERMORD:def 8
.= (
HM (mg2,T)) by
TERMORD:def 8;
hence thesis by
A1,
A9,
A19,
A31,
A35;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
hence (b,c)
are_convergent_wrt R by
A24,
A14,
POLYRED: 50,
REWRITE1: 40;
end;
end;
hence (b,c)
are_convergent_wrt R;
end;
then (
PolyRedRel (P,T)) is
locally-confluent by
REWRITE1:def 24;
hence thesis by
GROEB_1:def 3;
end;
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p1,p2 be
Polynomial of n, L;
::
GROEB_2:def4
func
S-Poly (p1,p2,T) ->
Polynomial of n, L equals (((
HC (p2,T))
* (((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))
*' p1))
- ((
HC (p1,T))
* (((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))
*' p2)));
coherence ;
end
Lm2: for L be
add-associative
left_zeroed
right_zeroed
add-cancelable
right_complementable
associative
distributive
well-unital non
empty
doubleLoopStr, P be
Subset of L, p be
Element of L st p
in P holds p
in (P
-Ideal )
proof
let L be
add-associative
left_zeroed
right_zeroed
add-cancelable
associative
distributive
well-unital
right_complementable non
empty
doubleLoopStr, P be
Subset of L, p be
Element of L;
set f =
<*p*>;
assume
A1: p
in P;
then
reconsider P9 = P as non
empty
Subset of L;
now
let i be
set;
assume
A2: i
in (
dom f);
(
dom f)
=
{1} by
FINSEQ_1: 2,
FINSEQ_1: 38;
then i
= 1 by
A2,
TARSKI:def 1;
then (f
/. i)
= (f
. 1) by
A2,
PARTFUN1:def 6
.= p by
FINSEQ_1: 40
.= ((
1. L)
* p)
.= (((
1. L)
* p)
* (
1. L));
hence ex u,v be
Element of L, a be
Element of P9 st (f
/. i)
= ((u
* a)
* v) by
A1;
end;
then
reconsider f as
LinearCombination of P9 by
IDEAL_1:def 8;
(
Sum f)
= p by
RLVECT_1: 44;
hence thesis by
IDEAL_1: 60;
end;
Lm3: for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
well-unital
distributive non
trivial
doubleLoopStr, p,q be
Polynomial of n, L, f,g be
Element of (
Polynom-Ring (n,L)) holds (f
= p & g
= q) implies (f
- g)
= (p
- q)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
well-unital
distributive non
trivial
doubleLoopStr, p,q be
Polynomial of n, L, f,g be
Element of (
Polynom-Ring (n,L));
assume that
A1: f
= p and
A2: g
= q;
reconsider x = (
- q) as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider x as
Element of (
Polynom-Ring (n,L));
(x
+ g)
= ((
- q)
+ q) by
A2,
POLYNOM1:def 11
.= (
0_ (n,L)) by
POLYRED: 3
.= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
then
A3: (
- q)
= (
- g) by
RLVECT_1: 6;
thus (p
- q)
= (p
+ (
- q)) by
POLYNOM1:def 7
.= (f
+ (
- g)) by
A1,
A3,
POLYNOM1:def 11
.= (f
- g);
end;
theorem ::
GROEB_2:18
Th18: for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible
Abelian non
trivial
doubleLoopStr, P be
Subset of (
Polynom-Ring (n,L)), p1,p2 be
Polynomial of n, L st p1
in P & p2
in P holds (
S-Poly (p1,p2,T))
in (P
-Ideal )
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible
Abelian non
trivial
doubleLoopStr, P be
Subset of (
Polynom-Ring (n,L)), p1,p2 be
Polynomial of n, L;
assume that
A1: p1
in P and
A2: p2
in P;
set q1 = (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))), q2 = (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))));
reconsider p19 = p1, p29 = p2 as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider p19, p29 as
Element of (
Polynom-Ring (n,L));
reconsider q19 = q1, q29 = q2 as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider q19, q29 as
Element of (
Polynom-Ring (n,L));
p29
in (P
-Ideal ) by
A2,
Lm2;
then
A3: (q29
* p29)
in (P
-Ideal ) by
IDEAL_1:def 2;
p19
in (P
-Ideal ) by
A1,
Lm2;
then (q19
* p19)
in (P
-Ideal ) by
IDEAL_1:def 2;
then
A4: ((q19
* p19)
- (q29
* p29))
in (P
-Ideal ) by
A3,
IDEAL_1: 16;
set q = (
S-Poly (p1,p2,T));
A5: (q1
*' p1)
= (q19
* p19) & (q2
*' p2)
= (q29
* p29) by
POLYNOM1:def 11;
q
= ((q1
*' p1)
- ((
HC (p1,T))
* (((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))
*' p2))) by
POLYRED: 22
.= ((q1
*' p1)
- (q2
*' p2)) by
POLYRED: 22;
hence thesis by
A4,
A5,
Lm3;
end;
theorem ::
GROEB_2:19
Th19: for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, m1,m2 be
Monomial of n, L holds (
S-Poly (m1,m2,T))
= (
0_ (n,L))
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, m1,m2 be
Monomial of n, L;
per cases ;
suppose
A1: m1
= (
0_ (n,L));
A2: (
HC ((
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T))))),T))
= (
coefficient (
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))))) by
TERMORD: 23
.= (
HC ((
0_ (n,L)),T)) by
POLYNOM7: 9
.= (
0. L) by
TERMORD: 17;
thus (
S-Poly (m1,m2,T))
= (((
Monom ((
HC (m2,T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))))
*' (
0_ (n,L)))
- ((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))
*' m2))) by
A1,
POLYRED: 22
.= ((
0_ (n,L))
- ((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))
*' m2))) by
POLYNOM1: 28
.= ((
0_ (n,L))
- ((
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))))
*' m2)) by
POLYRED: 22
.= ((
0_ (n,L))
- ((
0_ (n,L))
*' m2)) by
A2,
TERMORD: 17
.= ((
0_ (n,L))
- (
0_ (n,L))) by
POLYRED: 5
.= (
0_ (n,L)) by
POLYNOM1: 24;
end;
suppose
A3: m2
= (
0_ (n,L));
A4: (
HC ((
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T))))),T))
= (
coefficient (
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))))) by
TERMORD: 23
.= (
HC ((
0_ (n,L)),T)) by
POLYNOM7: 9
.= (
0. L) by
TERMORD: 17;
thus (
S-Poly (m1,m2,T))
= (((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))
*' m1))
- ((
Monom ((
HC (m1,T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))))
*' (
0_ (n,L)))) by
A3,
POLYRED: 22
.= (((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))
*' m1))
- (
0_ (n,L))) by
POLYNOM1: 28
.= (((
Monom ((
HC ((
0_ (n,L)),T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))))
*' m1)
- (
0_ (n,L))) by
POLYRED: 22
.= (((
0_ (n,L))
*' m1)
- (
0_ (n,L))) by
A4,
TERMORD: 17
.= ((
0_ (n,L))
- (
0_ (n,L))) by
POLYRED: 5
.= (
0_ (n,L)) by
POLYNOM1: 24;
end;
suppose
A5: m1
<> (
0_ (n,L)) & m2
<> (
0_ (n,L));
then (
HC (m2,T))
<> (
0. L) by
TERMORD: 17;
then
A6: (
HC (m2,T)) is non
zero;
(
HC (m1,T))
<> (
0. L) by
A5,
TERMORD: 17;
then
A7: (
HC (m1,T)) is non
zero;
A8: (
HT (m2,T))
divides (
lcm ((
HT (m1,T)),(
HT (m2,T)))) by
Th3;
A9: m2
= (
Monom ((
coefficient m2),(
term m2))) by
POLYNOM7: 11
.= (
Monom ((
HC (m2,T)),(
term m2))) by
TERMORD: 23
.= (
Monom ((
HC (m2,T)),(
HT (m2,T)))) by
TERMORD: 23;
A10: (
HT (m1,T))
divides (
lcm ((
HT (m1,T)),(
HT (m2,T)))) by
Th3;
A11: m1
= (
Monom ((
coefficient m1),(
term m1))) by
POLYNOM7: 11
.= (
Monom ((
HC (m1,T)),(
term m1))) by
TERMORD: 23
.= (
Monom ((
HC (m1,T)),(
HT (m1,T)))) by
TERMORD: 23;
A12: ((
HC (m1,T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))
*' m2))
= ((
Monom ((
HC (m1,T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))))
*' m2) by
POLYRED: 22
.= (
Monom (((
HC (m2,T))
* (
HC (m1,T))),(((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m2,T)))
+ (
HT (m2,T))))) by
A7,
A6,
A9,
TERMORD: 3
.= (
Monom (((
HC (m2,T))
* (
HC (m1,T))),(
lcm ((
HT (m1,T)),(
HT (m2,T)))))) by
A8,
Def1;
((
HC (m2,T))
* (((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))
*' m1))
= ((
Monom ((
HC (m2,T)),((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))))
*' m1) by
POLYRED: 22
.= (
Monom (((
HC (m2,T))
* (
HC (m1,T))),(((
lcm ((
HT (m1,T)),(
HT (m2,T))))
/ (
HT (m1,T)))
+ (
HT (m1,T))))) by
A7,
A6,
A11,
TERMORD: 3
.= (
Monom (((
HC (m2,T))
* (
HC (m1,T))),(
lcm ((
HT (m1,T)),(
HT (m2,T)))))) by
A10,
Def1;
hence thesis by
A12,
POLYNOM1: 24;
end;
end;
theorem ::
GROEB_2:20
Th20: for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p be
Polynomial of n, L holds (
S-Poly (p,(
0_ (n,L)),T))
= (
0_ (n,L)) & (
S-Poly ((
0_ (n,L)),p,T))
= (
0_ (n,L))
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p be
Polynomial of n, L;
set p2 = (
0_ (n,L));
thus (
S-Poly (p,(
0_ (n,L)),T))
= (((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p,T)))
*' p))
- ((
Monom ((
HC (p,T)),((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))
*' (
0_ (n,L)))) by
POLYRED: 22
.= (((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p,T)))
*' p))
- (
0_ (n,L))) by
POLYNOM1: 28
.= (((
0. L)
* (((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p,T)))
*' p))
- (
0_ (n,L))) by
TERMORD: 17
.= ((((
0. L)
| (n,L))
*' (((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p,T)))
*' p))
- (
0_ (n,L))) by
POLYNOM7: 27
.= (((
0_ (n,L))
*' (((
lcm ((
HT (p,T)),(
HT (p2,T))))
/ (
HT (p,T)))
*' p))
- (
0_ (n,L))) by
POLYNOM7: 19
.= ((
0_ (n,L))
- (
0_ (n,L))) by
POLYRED: 5
.= (
0_ (n,L)) by
POLYRED: 4;
thus (
S-Poly ((
0_ (n,L)),p,T))
= (((
Monom ((
HC (p,T)),((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p2,T)))))
*' (
0_ (n,L)))
- ((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p,T)))
*' p))) by
POLYRED: 22
.= ((
0_ (n,L))
- ((
HC ((
0_ (n,L)),T))
* (((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p,T)))
*' p))) by
POLYNOM1: 28
.= ((
0_ (n,L))
- ((
0. L)
* (((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p,T)))
*' p))) by
TERMORD: 17
.= ((
0_ (n,L))
- (((
0. L)
| (n,L))
*' (((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p,T)))
*' p))) by
POLYNOM7: 27
.= ((
0_ (n,L))
- ((
0_ (n,L))
*' (((
lcm ((
HT (p2,T)),(
HT (p,T))))
/ (
HT (p,T)))
*' p))) by
POLYNOM7: 19
.= ((
0_ (n,L))
- (
0_ (n,L))) by
POLYRED: 5
.= (
0_ (n,L)) by
POLYRED: 4;
end;
theorem ::
GROEB_2:21
for n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p1,p2 be
Polynomial of n, L holds (
S-Poly (p1,p2,T))
= (
0_ (n,L)) or (
HT ((
S-Poly (p1,p2,T)),T))
< ((
lcm ((
HT (p1,T)),(
HT (p2,T)))),T)
proof
let n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p1,p2 be
Polynomial of n, L;
assume
A1: (
S-Poly (p1,p2,T))
<> (
0_ (n,L));
set sp = (
S-Poly (p1,p2,T)), g1 = ((
HC (p2,T))
* (((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))
*' p1)), g2 = ((
HC (p1,T))
* (((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))
*' p2));
per cases ;
suppose p1
= (
0_ (n,L)) or p2
= (
0_ (n,L));
hence thesis by
A1,
Th20;
end;
suppose
A2: p1
<> (
0_ (n,L)) & p2
<> (
0_ (n,L));
then
A3: (
HC (p2,T))
<> (
0. L) by
TERMORD: 17;
then
A4: (
HC (p2,T)) is non
zero;
A5: (
HT ((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))),T))
= (
term (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))))) by
TERMORD: 23
.= ((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))) by
A4,
POLYNOM7: 10;
A6: p1 is
non-zero by
A2,
POLYNOM7:def 1;
(
HC ((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))),T))
= (
coefficient (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))))) by
TERMORD: 23
.= (
HC (p2,T)) by
POLYNOM7: 9;
then (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))))
<> (
0_ (n,L)) by
A3,
TERMORD: 17;
then
A7: (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))) is
non-zero by
POLYNOM7:def 1;
A8: (
HC (g1,T))
= (
HC (((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))))
*' p1),T)) by
POLYRED: 22
.= ((
HC ((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))),T))
* (
HC (p1,T))) by
A6,
A7,
TERMORD: 32
.= ((
coefficient (
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))))
* (
HC (p1,T))) by
TERMORD: 23
.= ((
HC (p1,T))
* (
HC (p2,T))) by
POLYNOM7: 9;
A9: (
HT (p1,T))
divides (
lcm ((
HT (p1,T)),(
HT (p2,T)))) by
Th3;
A10: (
HT (g1,T))
= (
HT (((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T)))))
*' p1),T)) by
POLYRED: 22
.= ((
HT ((
Monom ((
HC (p2,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p1,T))))),T))
+ (
HT (p1,T))) by
A6,
A7,
TERMORD: 31
.= (
lcm ((
HT (p1,T)),(
HT (p2,T)))) by
A9,
A5,
Def1;
A11: (
HC (p1,T))
<> (
0. L) by
A2,
TERMORD: 17;
then
A12: (
HC (p1,T)) is non
zero;
A13: (
HT ((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))),T))
= (
term (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))) by
TERMORD: 23
.= ((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))) by
A12,
POLYNOM7: 10;
A14: p2 is
non-zero by
A2,
POLYNOM7:def 1;
(
HC ((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))),T))
= (
coefficient (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))) by
TERMORD: 23
.= (
HC (p1,T)) by
POLYNOM7: 9;
then (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))
<> (
0_ (n,L)) by
A11,
TERMORD: 17;
then
A15: (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))) is
non-zero by
POLYNOM7:def 1;
(
Support sp)
<>
{} by
A1,
POLYNOM7: 1;
then
A16: (
HT (sp,T))
in (
Support sp) by
TERMORD:def 6;
A17: (
HT (p2,T))
divides (
lcm ((
HT (p1,T)),(
HT (p2,T)))) by
Th3;
A18: (
HC (g2,T))
= (
HC (((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))
*' p2),T)) by
POLYRED: 22
.= ((
HC ((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))),T))
* (
HC (p2,T))) by
A14,
A15,
TERMORD: 32
.= ((
coefficient (
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))))
* (
HC (p2,T))) by
TERMORD: 23
.= ((
HC (p1,T))
* (
HC (p2,T))) by
POLYNOM7: 9;
A19: (
HT (g2,T))
= (
HT (((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T)))))
*' p2),T)) by
POLYRED: 22
.= ((
HT ((
Monom ((
HC (p1,T)),((
lcm ((
HT (p1,T)),(
HT (p2,T))))
/ (
HT (p2,T))))),T))
+ (
HT (p2,T))) by
A14,
A15,
TERMORD: 31
.= (
lcm ((
HT (p1,T)),(
HT (p2,T)))) by
A17,
A13,
Def1;
then (sp
. (
lcm ((
HT (p1,T)),(
HT (p2,T)))))
= ((g1
+ (
- g2))
. (
HT (g2,T))) by
POLYNOM1:def 7
.= ((g1
. (
HT (g2,T)))
+ ((
- g2)
. (
HT (g2,T)))) by
POLYNOM1: 15
.= ((g1
. (
HT (g2,T)))
+ (
- (g2
. (
HT (g2,T))))) by
POLYNOM1: 17
.= ((
HC (g1,T))
+ (
- (g2
. (
HT (g2,T))))) by
A10,
A19,
TERMORD:def 7
.= ((
HC (g1,T))
+ (
- (
HC (g2,T)))) by
TERMORD:def 7
.= (
0. L) by
A8,
A18,
RLVECT_1: 5;
then
A20: not (
lcm ((
HT (p1,T)),(
HT (p2,T))))
in (
Support sp) by
POLYNOM1:def 4;
(
HT (sp,T))
<= ((
max ((
HT (g1,T)),(
HT (g2,T)),T)),T) by
GROEB_1: 7;
then (
HT (sp,T))
<= ((
lcm ((
HT (p1,T)),(
HT (p2,T)))),T) by
A10,
A19,
TERMORD: 12;
hence thesis by
A16,
A20,
TERMORD:def 3;
end;
end;
theorem ::
GROEB_2:22
for n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p1,p2 be
non-zero
Polynomial of n, L holds (
HT (p2,T))
divides (
HT (p1,T)) implies ((
HC (p2,T))
* p1)
top_reduces_to ((
S-Poly (p1,p2,T)),p2,T)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, p1,p2 be
non-zero
Polynomial of n, L;
set hcp2 = (
HC (p2,T));
assume
A1: (
HT (p2,T))
divides (
HT (p1,T));
then
consider b be
bag of n such that
A2: (
HT (p1,T))
= ((
HT (p2,T))
+ b) by
TERMORD: 1;
set g = ((hcp2
* p1)
- ((((hcp2
* p1)
. (
HT (p1,T)))
/ (
HC (p2,T)))
* (b
*' p2)));
A3: p2
<> (
0_ (n,L)) by
POLYNOM7:def 1;
A4: hcp2
<> (
0. L);
p1
<> (
0_ (n,L)) by
POLYNOM7:def 1;
then (
Support p1)
<>
{} by
POLYNOM7: 1;
then
A5: (
HT (p1,T))
in (
Support p1) by
TERMORD:def 6;
A6: (
Support p1)
c= (
Support (hcp2
* p1)) by
POLYRED: 20;
then (hcp2
* p1)
<> (
0_ (n,L)) by
A5,
POLYNOM7: 1;
then
A7: (
HT ((hcp2
* p1),T))
= (
HT (p1,T)) & (hcp2
* p1)
reduces_to (g,p2,(
HT (p1,T)),T) by
A3,
A5,
A2,
A6,
POLYRED: 21,
POLYRED:def 5;
A8: (
lcm ((
HT (p1,T)),(
HT (p2,T))))
= (
HT (p1,T)) by
A1,
Th7;
g
= ((hcp2
* p1)
- (((hcp2
* (p1
. (
HT (p1,T))))
/ (
HC (p2,T)))
* (b
*' p2))) by
POLYNOM7:def 9
.= ((hcp2
* p1)
- (((hcp2
* (
HC (p1,T)))
/ (
HC (p2,T)))
* (b
*' p2))) by
TERMORD:def 7
.= ((hcp2
* p1)
- (((hcp2
* (
HC (p1,T)))
* ((
HC (p2,T))
" ))
* (b
*' p2)))
.= ((hcp2
* p1)
- (((
HC (p1,T))
* (hcp2
* ((
HC (p2,T))
" )))
* (b
*' p2))) by
GROUP_1:def 3
.= ((hcp2
* p1)
- (((
HC (p1,T))
* (
1. L))
* (b
*' p2))) by
A4,
VECTSP_1:def 10
.= ((hcp2
* p1)
- ((
HC (p1,T))
* (b
*' p2)))
.= (((
HC (p2,T))
* ((
EmptyBag n)
*' p1))
- ((
HC (p1,T))
* (b
*' p2))) by
POLYRED: 17
.= (((
HC (p2,T))
* (((
HT (p1,T))
/ (
HT (p1,T)))
*' p1))
- ((
HC (p1,T))
* (b
*' p2))) by
Th6
.= (
S-Poly (p1,p2,T)) by
A1,
A2,
A8,
Def1;
hence thesis by
A7,
POLYRED:def 10;
end;
theorem ::
GROEB_2:23
for n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L)) holds G
is_Groebner_basis_wrt T implies (for g1,g2,h be
Polynomial of n, L st g1
in G & g2
in G & h
is_a_normal_form_of ((
S-Poly (g1,g2,T)),(
PolyRedRel (G,T))) holds h
= (
0_ (n,L)))
proof
let n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L));
assume
A1: G
is_Groebner_basis_wrt T;
set R = (
PolyRedRel (G,T));
A2: (
0_ (n,L))
= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
per cases ;
suppose G
=
{} ;
hence thesis;
end;
suppose G
<>
{} ;
then
reconsider G as non
empty
Subset of (
Polynom-Ring (n,L));
A3: R is
locally-confluent by
A1,
GROEB_1:def 3;
now
A4:
now
assume not (
0_ (n,L))
is_a_normal_form_wrt R;
then
consider b be
object such that
A5:
[(
0_ (n,L)), b]
in R by
REWRITE1:def 5;
consider f1,f2 be
object such that
A6: f1
in (
NonZero (
Polynom-Ring (n,L))) and f2
in the
carrier of (
Polynom-Ring (n,L)) and
A7:
[(
0_ (n,L)), b]
=
[f1, f2] by
A5,
ZFMISC_1:def 2;
A8: f1
= (
0_ (n,L)) by
A7,
XTUPLE_0: 1;
not f1
in
{(
0_ (n,L))} by
A2,
A6,
XBOOLE_0:def 5;
hence contradiction by
A8,
TARSKI:def 1;
end;
let g1,g2,h be
Polynomial of n, L;
assume that
A9: g1
in G & g2
in G and
A10: h
is_a_normal_form_of ((
S-Poly (g1,g2,T)),R);
(
S-Poly (g1,g2,T))
in (G
-Ideal ) by
A9,
Th18;
then R
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L))) by
A3,
GROEB_1: 15;
then
A11: ((
S-Poly (g1,g2,T)),(
0_ (n,L)))
are_convertible_wrt R by
REWRITE1: 25;
R
reduces ((
S-Poly (g1,g2,T)),h) by
A10,
REWRITE1:def 6;
then (h,(
S-Poly (g1,g2,T)))
are_convertible_wrt R by
REWRITE1: 25;
then
A12: (h,(
0_ (n,L)))
are_convertible_wrt R by
A11,
REWRITE1: 30;
h
is_a_normal_form_wrt R by
A10,
REWRITE1:def 6;
hence h
= (
0_ (n,L)) by
A3,
A4,
A12,
REWRITE1:def 19;
end;
hence thesis;
end;
end;
theorem ::
GROEB_2:24
for n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
Abelian
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L)) holds (for g1,g2,h be
Polynomial of n, L st g1
in G & g2
in G & h
is_a_normal_form_of ((
S-Poly (g1,g2,T)),(
PolyRedRel (G,T))) holds h
= (
0_ (n,L))) implies (for g1,g2 be
Polynomial of n, L st g1
in G & g2
in G holds (
PolyRedRel (G,T))
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L))))
proof
let n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
Abelian
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L));
set R = (
PolyRedRel (G,T));
assume
A1: for g1,g2,h be
Polynomial of n, L st g1
in G & g2
in G & h
is_a_normal_form_of ((
S-Poly (g1,g2,T)),(
PolyRedRel (G,T))) holds h
= (
0_ (n,L));
now
let g1,g2 be
Polynomial of n, L;
now
per cases ;
case (
S-Poly (g1,g2,T))
in (
field R);
hence (
S-Poly (g1,g2,T))
has_a_normal_form_wrt R by
REWRITE1:def 14;
end;
case not (
S-Poly (g1,g2,T))
in (
field R);
hence (
S-Poly (g1,g2,T))
has_a_normal_form_wrt R by
REWRITE1: 46;
end;
end;
then
consider q be
object such that
A2: q
is_a_normal_form_of ((
S-Poly (g1,g2,T)),R) by
REWRITE1:def 11;
R
reduces ((
S-Poly (g1,g2,T)),q) by
A2,
REWRITE1:def 6;
then
reconsider q as
Polynomial of n, L by
Lm1;
assume g1
in G & g2
in G;
then q
= (
0_ (n,L)) by
A1,
A2;
hence R
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L))) by
A2,
REWRITE1:def 6;
end;
hence thesis;
end;
theorem ::
GROEB_2:25
Th25: for n be
Element of
NAT , T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L)) st not ((
0_ (n,L))
in G) holds (for g1,g2 be
Polynomial of n, L st g1
in G & g2
in G holds (
PolyRedRel (G,T))
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L)))) implies G
is_Groebner_basis_wrt T
proof
let n be
Element of
NAT , T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L));
assume
A1: not (
0_ (n,L))
in G;
assume
A2: for g1,g2 be
Polynomial of n, L st g1
in G & g2
in G holds (
PolyRedRel (G,T))
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L)));
now
let g1,g2 be
Polynomial of n, L;
assume that g1
<> g2 and
A3: g1
in G and
A4: g2
in G;
thus for m1,m2 be
Monomial of n, L st (
HM ((m1
*' g1),T))
= (
HM ((m2
*' g2),T)) holds (
PolyRedRel (G,T))
reduces (((m1
*' g1)
- (m2
*' g2)),(
0_ (n,L)))
proof
set a1 = (
HC (g1,T)), a2 = (
HC (g2,T));
set t1 = (
HT (g1,T)), t2 = (
HT (g2,T));
let m1,m2 be
Monomial of n, L;
assume
A5: (
HM ((m1
*' g1),T))
= (
HM ((m2
*' g2),T));
A6: a2
<> (
0. L) by
A1,
A4,
TERMORD: 17;
reconsider g1, g2 as
non-zero
Polynomial of n, L by
A1,
A3,
A4,
POLYNOM7:def 1;
set b1 = (
coefficient m1), b2 = (
coefficient m2);
set u1 = (
term m1), u2 = (
term m2);
A7: a1
<> (
0. L) by
A1,
A3,
TERMORD: 17;
then
reconsider a1, a2 as non
zero
Element of L by
A6,
STRUCT_0:def 12;
A8: (
HC ((m1
*' g1),T))
= (
coefficient (
HM ((m1
*' g1),T))) by
TERMORD: 22
.= (
HC ((m2
*' g2),T)) by
A5,
TERMORD: 22;
now
per cases ;
case
A9: b1
= (
0. L) or b2
= (
0. L);
now
per cases by
A9;
case b1
= (
0. L);
then (
HC (m1,T))
= (
0. L) by
TERMORD: 23;
then m1
= (
0_ (n,L)) by
TERMORD: 17;
then
A10: (m1
*' g1)
= (
0_ (n,L)) by
POLYRED: 5;
then (
HC ((m2
*' g2),T))
= (
0. L) by
A8,
TERMORD: 17;
then (m2
*' g2)
= (
0_ (n,L)) by
TERMORD: 17;
then ((m1
*' g1)
- (m2
*' g2))
= (
0_ (n,L)) by
A10,
POLYRED: 4;
hence thesis by
REWRITE1: 12;
end;
case b2
= (
0. L);
then (
HC (m2,T))
= (
0. L) by
TERMORD: 23;
then m2
= (
0_ (n,L)) by
TERMORD: 17;
then
A11: (m2
*' g2)
= (
0_ (n,L)) by
POLYRED: 5;
then (
HC ((m1
*' g1),T))
= (
0. L) by
A8,
TERMORD: 17;
then (m1
*' g1)
= (
0_ (n,L)) by
TERMORD: 17;
then ((m1
*' g1)
- (m2
*' g2))
= (
0_ (n,L)) by
A11,
POLYRED: 4;
hence thesis by
REWRITE1: 12;
end;
end;
hence thesis;
end;
case
A12: b1
<> (
0. L) & b2
<> (
0. L);
then
reconsider b1, b2 as non
zero
Element of L by
STRUCT_0:def 12;
(b2
* a2)
<> (
0. L) by
VECTSP_2:def 1;
then
A13: (b2
* a2) is non
zero;
t1
divides (
lcm (t1,t2)) by
Th3;
then
consider s1 be
bag of n such that
A14: (t1
+ s1)
= (
lcm (t1,t2)) by
TERMORD: 1;
(
HC (m2,T))
<> (
0. L) by
A12,
TERMORD: 23;
then
A15: m2
<> (
0_ (n,L)) by
TERMORD: 17;
(
HC (m1,T))
<> (
0. L) by
A12,
TERMORD: 23;
then m1
<> (
0_ (n,L)) by
TERMORD: 17;
then
reconsider m1, m2 as
non-zero
Monomial of n, L by
A15,
POLYNOM7:def 1;
A16: (
Monom ((b1
* a1),(u1
+ t1)))
= ((
Monom (b1,u1))
*' (
Monom (a1,t1))) by
TERMORD: 3
.= (m1
*' (
Monom (a1,t1))) by
POLYNOM7: 11
.= ((
HM (m1,T))
*' (
Monom (a1,t1))) by
TERMORD: 23
.= ((
HM (m1,T))
*' (
HM (g1,T))) by
TERMORD:def 8
.= (
HM ((m2
*' g2),T)) by
A5,
TERMORD: 33
.= ((
HM (m2,T))
*' (
HM (g2,T))) by
TERMORD: 33
.= ((
HM (m2,T))
*' (
Monom (a2,t2))) by
TERMORD:def 8
.= (m2
*' (
Monom (a2,t2))) by
TERMORD: 23
.= ((
Monom (b2,u2))
*' (
Monom (a2,t2))) by
POLYNOM7: 11
.= (
Monom ((b2
* a2),(u2
+ t2))) by
TERMORD: 3;
then (b1
* a1)
= (
coefficient (
Monom ((b2
* a2),(u2
+ t2)))) by
POLYNOM7: 9
.= (b2
* a2) by
POLYNOM7: 9;
then ((b1
* a1)
/ a2)
= ((b2
* a2)
* (a2
" ))
.= (b2
* (a2
* (a2
" ))) by
GROUP_1:def 3
.= (b2
* (
1. L)) by
A6,
VECTSP_1:def 10;
then
A17: (b2
/ a1)
= (((b1
* a1)
/ a2)
/ a1)
.= (((b1
* a1)
* (a2
" ))
/ a1)
.= (((b1
* a1)
* (a2
" ))
* (a1
" ))
.= (((b1
* (a2
" ))
* a1)
* (a1
" )) by
GROUP_1:def 3
.= ((b1
* (a2
" ))
* (a1
* (a1
" ))) by
GROUP_1:def 3
.= ((b1
* (a2
" ))
* (
1. L)) by
A7,
VECTSP_1:def 10
.= (b1
* (a2
" ))
.= (b1
/ a2);
(b1
* a1)
<> (
0. L) by
VECTSP_2:def 1;
then (b1
* a1) is non
zero;
then
A18: (u1
+ t1)
= (
term (
Monom ((b2
* a2),(u2
+ t2)))) by
A16,
POLYNOM7: 10
.= (u2
+ t2) by
A13,
POLYNOM7: 10;
then t1
divides (u1
+ t1) & t2
divides (u1
+ t1) by
TERMORD: 1;
then (
lcm (t1,t2))
divides (u1
+ t1) by
Th4;
then
consider v be
bag of n such that
A19: (u1
+ t1)
= ((
lcm (t1,t2))
+ v) by
TERMORD: 1;
(u1
+ t1)
= ((v
+ s1)
+ t1) by
A14,
A19,
PRE_POLY: 35;
then
A20: u1
= (((v
+ s1)
+ t1)
-' t1) by
PRE_POLY: 48
.= (v
+ s1) by
PRE_POLY: 48;
t2
divides (
lcm (t1,t2)) by
Th3;
then
consider s2 be
bag of n such that
A21: (t2
+ s2)
= (
lcm (t1,t2)) by
TERMORD: 1;
(u2
+ t2)
= ((v
+ s2)
+ t2) by
A18,
A21,
A19,
PRE_POLY: 35;
then
A22: u2
= (((v
+ s2)
+ t2)
-' t2) by
PRE_POLY: 48
.= (v
+ s2) by
PRE_POLY: 48;
(
HT (g2,T))
divides (
lcm ((
HT (g1,T)),(
HT (g2,T)))) by
Th3;
then
A23: s2
= ((
lcm ((
HT (g1,T)),(
HT (g2,T))))
/ (
HT (g2,T))) by
A21,
Def1;
A24: ((b2
/ a1)
* a1)
= ((b2
* (a1
" ))
* a1)
.= (b2
* ((a1
" )
* a1)) by
GROUP_1:def 3
.= (b2
* (
1. L)) by
A7,
VECTSP_1:def 10
.= b2;
(
HT (g1,T))
divides (
lcm ((
HT (g1,T)),(
HT (g2,T)))) by
Th3;
then
A25: s1
= ((
lcm ((
HT (g1,T)),(
HT (g2,T))))
/ (
HT (g1,T))) by
A14,
Def1;
A26: ((b1
/ a2)
* a2)
= ((b1
* (a2
" ))
* a2)
.= (b1
* ((a2
" )
* a2)) by
GROUP_1:def 3
.= (b1
* (
1. L)) by
A6,
VECTSP_1:def 10;
((m1
*' g1)
- (m2
*' g2))
= (((
Monom (b1,u1))
*' g1)
- (m2
*' g2)) by
POLYNOM7: 11
.= (((
Monom (b1,u1))
*' g1)
- ((
Monom (b2,u2))
*' g2)) by
POLYNOM7: 11
.= ((b1
* ((v
+ s1)
*' g1))
- ((
Monom (b2,(v
+ s2)))
*' g2)) by
A20,
A22,
POLYRED: 22
.= ((b1
* (v
*' (s1
*' g1)))
- ((
Monom (b2,(v
+ s2)))
*' g2)) by
POLYRED: 18
.= ((b1
* (v
*' (s1
*' g1)))
- (b2
* ((v
+ s2)
*' g2))) by
POLYRED: 22
.= ((b1
* (v
*' (s1
*' g1)))
- (b2
* (v
*' (s2
*' g2)))) by
POLYRED: 18
.= ((b1
* (v
*' (s1
*' g1)))
+ (
- (b2
* (v
*' (s2
*' g2))))) by
POLYNOM1:def 7
.= ((b1
* (v
*' (s1
*' g1)))
+ (b2
* (
- (v
*' (s2
*' g2))))) by
POLYRED: 9
.= ((((b1
/ a2)
* a2)
* (v
*' (s1
*' g1)))
+ (((b2
/ a1)
* a1)
* (
- (v
*' (s2
*' g2))))) by
A26,
A24
.= ((((b1
/ a2)
* a2)
* (v
*' (s1
*' g1)))
+ (((b2
/ a1)
* a1)
* (v
*' (
- (s2
*' g2))))) by
Th13
.= ((((b1
/ a2)
* a2)
* (v
*' (s1
*' g1)))
+ ((b1
/ a2)
* (a1
* (v
*' (
- (s2
*' g2)))))) by
A17,
POLYRED: 11
.= (((b1
/ a2)
* (a2
* (v
*' (s1
*' g1))))
+ ((b1
/ a2)
* (a1
* (v
*' (
- (s2
*' g2)))))) by
POLYRED: 11
.= ((b1
/ a2)
* ((a2
* (v
*' (s1
*' g1)))
+ (a1
* (v
*' (
- (s2
*' g2)))))) by
Th15
.= ((b1
/ a2)
* ((a2
* (v
*' (s1
*' g1)))
+ (v
*' (a1
* (
- (s2
*' g2)))))) by
Th14
.= ((b1
/ a2)
* ((a2
* (v
*' (s1
*' g1)))
+ (v
*' (
- (a1
* (s2
*' g2)))))) by
POLYRED: 9
.= ((b1
/ a2)
* ((v
*' (a2
* (s1
*' g1)))
+ (v
*' (
- (a1
* (s2
*' g2)))))) by
Th14
.= ((b1
/ a2)
* (v
*' ((a2
* (s1
*' g1))
+ (
- (a1
* (s2
*' g2)))))) by
Th12
.= ((b1
/ a2)
* (v
*' (
S-Poly (g1,g2,T)))) by
A25,
A23,
POLYNOM1:def 7
.= ((
Monom ((b1
/ a2),v))
*' (
S-Poly (g1,g2,T))) by
POLYRED: 22;
hence thesis by
A2,
A3,
A4,
POLYRED: 48;
end;
end;
hence thesis;
end;
end;
hence thesis by
Th17;
end;
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, P be
Subset of (
Polynom-Ring (n,L));
::
GROEB_2:def5
func
S-Poly (P,T) ->
Subset of (
Polynom-Ring (n,L)) equals { (
S-Poly (p1,p2,T)) where p1,p2 be
Polynomial of n, L : p1
in P & p2
in P };
coherence
proof
set M = { (
S-Poly (p1,p2,T)) where p1,p2 be
Polynomial of n, L : p1
in P & p2
in P };
now
let u be
object;
assume u
in M;
then ex p1,p2 be
Polynomial of n, L st u
= (
S-Poly (p1,p2,T)) & p1
in P & p2
in P;
hence u
in the
carrier of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
end;
hence thesis by
TARSKI:def 3;
end;
end
registration
let n be
Ordinal, T be
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, P be
finite
Subset of (
Polynom-Ring (n,L));
cluster (
S-Poly (P,T)) ->
finite;
coherence
proof
defpred
P[
object,
object] means ex p1,p2 be
Polynomial of n, L st p1
= ($1
`1 ) & ($1
`2 )
= p2 & p1
in P & p2
in P & $2
= (
S-Poly (p1,p2,T));
A1: for x be
object st x
in
[:P, P:] holds ex y be
object st
P[x, y]
proof
let x be
object;
assume x
in
[:P, P:];
then
consider p1,p2 be
object such that
A2: p1
in P & p2
in P and
A3:
[p1, p2]
= x by
ZFMISC_1:def 2;
reconsider p1, p2 as
Polynomial of n, L by
A2,
POLYNOM1:def 11;
take (
S-Poly (p1,p2,T));
take p1, p2;
thus (x
`1 )
= p1 by
A3;
thus (x
`2 )
= p2 by
A3;
thus thesis by
A2;
end;
consider f be
Function such that
A4: (
dom f)
=
[:P, P:] & for x be
object st x
in
[:P, P:] holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
A5:
now
let v be
object;
assume v
in (
S-Poly (P,T));
then
consider p1,p2 be
Polynomial of n, L such that
A6: v
= (
S-Poly (p1,p2,T)) and
A7: p1
in P & p2
in P;
A8:
[p1, p2]
in (
dom f) by
A4,
A7,
ZFMISC_1:def 2;
then
consider p19,p29 be
Polynomial of n, L such that
A9: (
[p1, p2]
`1 )
= p19 & (
[p1, p2]
`2 )
= p29 and p19
in P and p29
in P and
A10: (f
.
[p1, p2])
= (
S-Poly (p19,p29,T)) by
A4;
p1
= p19 & p2
= p29 by
A9;
hence v
in (
rng f) by
A6,
A8,
A10,
FUNCT_1:def 3;
end;
now
let v be
object;
assume v
in (
rng f);
then
consider u be
object such that
A11: u
in (
dom f) and
A12: v
= (f
. u) by
FUNCT_1:def 3;
ex p1,p2 be
Polynomial of n, L st p1
= (u
`1 ) & (u
`2 )
= p2 & p1
in P & p2
in P & (f
. u)
= (
S-Poly (p1,p2,T)) by
A4,
A11;
hence v
in (
S-Poly (P,T)) by
A12;
end;
then (
rng f)
= (
S-Poly (P,T)) by
A5,
TARSKI: 2;
hence thesis by
A4,
FINSET_1: 8;
end;
end
theorem ::
GROEB_2:26
for n be
Element of
NAT , T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L)) st not ((
0_ (n,L))
in G) & for g be
Polynomial of n, L st g
in G holds g is
Monomial of n, L holds G
is_Groebner_basis_wrt T
proof
let n be
Element of
NAT , T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be
Subset of (
Polynom-Ring (n,L));
assume that
A1: not (
0_ (n,L))
in G and
A2: for g be
Polynomial of n, L st g
in G holds g is
Monomial of n, L;
now
let g1,g2 be
Polynomial of n, L;
assume g1
in G & g2
in G;
then g1 is
Monomial of n, L & g2 is
Monomial of n, L by
A2;
then (
S-Poly (g1,g2,T))
= (
0_ (n,L)) by
Th19;
hence (
PolyRedRel (G,T))
reduces ((
S-Poly (g1,g2,T)),(
0_ (n,L))) by
REWRITE1: 12;
end;
hence thesis by
A1,
Th25;
end;
begin
theorem ::
GROEB_2:27
for L be non
empty
multLoopStr, P be non
empty
Subset of L, A be
LeftLinearCombination of P, i be
Element of
NAT holds (A
| i) is
LeftLinearCombination of P
proof
let L be non
empty
multLoopStr, P be non
empty
Subset of L, A be
LeftLinearCombination of P, j be
Element of
NAT ;
set C = (A
| (
Seg j));
reconsider C as
FinSequence of the
carrier of L by
FINSEQ_1: 18;
now
let i be
set;
A1: (
dom C)
c= (
dom A) by
RELAT_1: 60;
assume
A2: i
in (
dom C);
then (C
. i)
= (A
. i) by
FUNCT_1: 47;
then (C
/. i)
= (A
. i) by
A2,
PARTFUN1:def 6
.= (A
/. i) by
A2,
A1,
PARTFUN1:def 6;
hence ex u be
Element of L, a be
Element of P st (C
/. i)
= (u
* a) by
A2,
A1,
IDEAL_1:def 9;
end;
then C is
LeftLinearCombination of P by
IDEAL_1:def 9;
hence thesis by
FINSEQ_1:def 15;
end;
theorem ::
GROEB_2:28
for L be non
empty
multLoopStr, P be non
empty
Subset of L, A be
LeftLinearCombination of P, i be
Element of
NAT holds (A
/^ i) is
LeftLinearCombination of P
proof
let L be non
empty
multLoopStr, P be non
empty
Subset of L, A be
LeftLinearCombination of P, j be
Element of
NAT ;
set C = (A
/^ j);
reconsider C as
FinSequence of the
carrier of L;
now
per cases ;
case
A1: j
<= (
len A);
then
reconsider m = ((
len A)
- j) as
Element of
NAT by
INT_1: 5;
now
let i be
set;
assume
A2: i
in (
dom C);
then
reconsider k = i as
Element of
NAT ;
A3: (
dom C)
= (
Seg (
len C)) by
FINSEQ_1:def 3
.= (
Seg m) by
A1,
RFINSEQ:def 1;
then k
<= ((
len A)
- j) by
A2,
FINSEQ_1: 1;
then
A4: (k
+ j)
<= (((
len A)
+ (
- j))
+ j) by
XREAL_1: 6;
A5: k
<= (k
+ j) by
NAT_1: 11;
1
<= k by
A2,
A3,
FINSEQ_1: 1;
then 1
<= (k
+ j) by
A5,
XXREAL_0: 2;
then (j
+ k)
in (
Seg (
len A)) by
A4,
FINSEQ_1: 1;
then (j
+ k)
in (
dom A) by
FINSEQ_1:def 3;
then ex u be
Element of L, a be
Element of P st (A
/. (j
+ k))
= (u
* a) by
IDEAL_1:def 9;
hence ex u be
Element of L, a be
Element of P st (C
/. i)
= (u
* a) by
A2,
FINSEQ_5: 27;
end;
hence thesis by
IDEAL_1:def 9;
end;
case not j
<= (
len A);
then C
= (
<*> the
carrier of L) by
RFINSEQ:def 1;
then for i be
set st i
in (
dom C) holds ex u be
Element of L, a be
Element of P st (C
/. i)
= (u
* a);
hence thesis by
IDEAL_1:def 9;
end;
end;
hence thesis;
end;
theorem ::
GROEB_2:29
for L be non
empty
multLoopStr, P,Q be non
empty
Subset of L, A be
LeftLinearCombination of P holds P
c= Q implies A is
LeftLinearCombination of Q
proof
let L be non
empty
multLoopStr, P,Q be non
empty
Subset of L, A be
LeftLinearCombination of P;
assume
A1: P
c= Q;
now
let i be
set;
assume i
in (
dom A);
then
consider u be
Element of L, a be
Element of P such that
A2: (A
/. i)
= (u
* a) by
IDEAL_1:def 9;
a
in P;
hence ex u be
Element of L, a be
Element of Q st (A
/. i)
= (u
* a) by
A1,
A2;
end;
hence thesis by
IDEAL_1:def 9;
end;
definition
let n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P;
:: original:
^
redefine
func A
^ B ->
LeftLinearCombination of P ;
coherence
proof
(A
^ B) is
LeftLinearCombination of (P
\/ P);
hence thesis;
end;
end
definition
let n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
::
GROEB_2:def6
pred A
is_MonomialRepresentation_of f means (
Sum A)
= f & for i be
Element of
NAT st i
in (
dom A) holds ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & (A
/. i)
= (m
*' p);
end
theorem ::
GROEB_2:30
for n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f holds (
Support f)
c= (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) })
proof
let n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
assume
A1: A
is_MonomialRepresentation_of f;
defpred
P[
Nat] means for f be
Polynomial of n, L, A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f & (
len A)
= $1 holds (
Support f)
c= (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) });
A2: ex n be
Element of
NAT st (
len A)
= n;
A3:
now
let k be
Nat;
assume
A4:
P[k];
for f be
Polynomial of n, L, A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f & (
len A)
= (k
+ 1) holds (
Support f)
c= (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) })
proof
A5: k
<= (k
+ 1) by
NAT_1: 11;
let f be
Polynomial of n, L, A be
LeftLinearCombination of P;
assume that
A6: A
is_MonomialRepresentation_of f and
A7: (
len A)
= (k
+ 1);
A8: A
<> (
<*> the
carrier of (
Polynom-Ring (n,L))) by
A7;
A9: (
Sum A)
= f by
A6;
reconsider A as non
empty
LeftLinearCombination of P by
A8;
consider A9 be
LeftLinearCombination of P, e be
Element of (
Polynom-Ring (n,L)) such that
A10: A
= (A9
^
<*e*>) and
<*e*> is
LeftLinearCombination of P by
IDEAL_1: 33;
A11: (
dom A)
= (
Seg (k
+ 1)) by
A7,
FINSEQ_1:def 3;
reconsider ep = (
Sum
<*e*>) as
Polynomial of n, L by
POLYNOM1:def 11;
reconsider g = (
Sum A9) as
Polynomial of n, L by
POLYNOM1:def 11;
f
= ((
Sum A9)
+ (
Sum
<*e*>)) by
A9,
A10,
RLVECT_1: 41
.= (g
+ ep) by
POLYNOM1:def 11;
then
A12: (
Support f)
c= ((
Support g)
\/ (
Support ep)) by
POLYNOM1: 20;
A13: (
len A)
= ((
len A9)
+ (
len
<*e*>)) by
A10,
FINSEQ_1: 22
.= ((
len A9)
+ 1) by
FINSEQ_1: 39;
then (
dom A9)
= (
Seg k) by
A7,
FINSEQ_1:def 3;
then
A14: (
dom A9)
c= (
dom A) by
A11,
A5,
FINSEQ_1: 5;
now
let i be
Element of
NAT ;
assume
A15: i
in (
dom A9);
then (A
/. i)
= (A
. i) by
A14,
PARTFUN1:def 6
.= (A9
. i) by
A10,
A15,
FINSEQ_1:def 7
.= (A9
/. i) by
A15,
PARTFUN1:def 6;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & (A9
/. i)
= (m
*' p) by
A6,
A14,
A15;
end;
then A9
is_MonomialRepresentation_of g;
then
A16: (
Support g)
c= (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A9) & (A9
/. i)
= (m
*' p) }) by
A4,
A7,
A13;
now
let x be
object;
assume
A17: x
in (
Support f);
then
reconsider u = x as
Element of (
Bags n);
now
per cases by
A12,
A17,
XBOOLE_0:def 3;
case u
in (
Support g);
then
consider Y be
set such that
A18: u
in Y and
A19: Y
in { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A9) & (A9
/. i)
= (m
*' p) } by
A16,
TARSKI:def 4;
consider m9 be
Monomial of n, L, p9 be
Polynomial of n, L such that
A20: Y
= (
Support (m9
*' p9)) and
A21: ex i be
Element of
NAT st i
in (
dom A9) & (A9
/. i)
= (m9
*' p9) by
A19;
consider i be
Element of
NAT such that
A22: i
in (
dom A9) and
A23: (A9
/. i)
= (m9
*' p9) by
A21;
(A
/. i)
= (A
. i) by
A14,
A22,
PARTFUN1:def 6
.= (A9
. i) by
A10,
A22,
FINSEQ_1:def 7
.= (A9
/. i) by
A22,
PARTFUN1:def 6;
then Y
in { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) } by
A14,
A20,
A22,
A23;
hence u
in (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) }) by
A18,
TARSKI:def 4;
end;
case
A24: u
in (
Support ep);
1
<= (
len A) by
A7,
NAT_1: 11;
then
A25: (
len A)
in (
Seg (
len A)) by
FINSEQ_1: 1;
(
dom A)
= (
Seg (
len A)) by
FINSEQ_1:def 3;
then
A26: ex m9 be
Monomial of n, L, p9 be
Polynomial of n, L st p9
in P & (A
/. (
len A))
= (m9
*' p9) by
A6,
A25;
A27: (A
. (
len A))
= e & e
= (
Sum
<*e*>) by
A10,
A13,
FINSEQ_1: 42,
RLVECT_1: 44;
A28: (
len A)
in (
dom A) by
A25,
FINSEQ_1:def 3;
then (A
/. (
len A))
= (A
. (
len A)) by
PARTFUN1:def 6;
then (
Support ep)
in { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) } by
A28,
A26,
A27;
hence u
in (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) }) by
A24,
TARSKI:def 4;
end;
end;
hence x
in (
union { (
Support (m
*' p)) where m be
Monomial of n, L, p be
Polynomial of n, L : ex i be
Element of
NAT st i
in (
dom A) & (A
/. i)
= (m
*' p) });
end;
hence thesis by
TARSKI:def 3;
end;
hence
P[(k
+ 1)];
end;
A29:
P[
0 ]
proof
let f be
Polynomial of n, L, A be
LeftLinearCombination of P;
assume that
A30: A
is_MonomialRepresentation_of f and
A31: (
len A)
=
0 ;
A
= (
<*> the
carrier of (
Polynom-Ring (n,L))) by
A31;
then (
Sum A)
= (
0. (
Polynom-Ring (n,L))) by
RLVECT_1: 43;
then f
= (
0. (
Polynom-Ring (n,L))) by
A30;
then f
= (
0_ (n,L)) by
POLYNOM1:def 11;
then (
Support f)
=
{} by
POLYNOM7: 1;
hence thesis by
XBOOLE_1: 2;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A29,
A3);
hence thesis by
A1,
A2;
end;
theorem ::
GROEB_2:31
for n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f & B
is_MonomialRepresentation_of g holds (A
^ B)
is_MonomialRepresentation_of (f
+ g)
proof
let n be
Ordinal, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P;
assume that
A1: A
is_MonomialRepresentation_of f and
A2: B
is_MonomialRepresentation_of g;
A3:
now
let i be
Element of
NAT ;
assume
A4: i
in (
dom (A
^ B));
now
per cases by
A4,
FINSEQ_1: 25;
case
A5: i
in (
dom A);
(
dom A)
c= (
dom (A
^ B)) by
FINSEQ_1: 26;
then ((A
^ B)
/. i)
= ((A
^ B)
. i) by
A5,
PARTFUN1:def 6
.= (A
. i) by
A5,
FINSEQ_1:def 7
.= (A
/. i) by
A5,
PARTFUN1:def 6;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p) by
A1,
A5;
end;
case ex k be
Nat st k
in (
dom B) & i
= ((
len A)
+ k);
then
consider k be
Nat such that
A6: k
in (
dom B) and
A7: i
= ((
len A)
+ k);
i
in (
dom (A
^ B)) by
A6,
A7,
FINSEQ_1: 28;
then ((A
^ B)
/. i)
= ((A
^ B)
. i) by
PARTFUN1:def 6
.= (B
. k) by
A6,
A7,
FINSEQ_1:def 7
.= (B
/. k) by
A6,
PARTFUN1:def 6;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p) by
A2,
A6;
end;
end;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p);
end;
reconsider f9 = f, g9 = g as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider f9, g9 as
Element of (
Polynom-Ring (n,L));
(
Sum (A
^ B))
= ((
Sum A)
+ (
Sum B)) by
RLVECT_1: 41
.= (f9
+ (
Sum B)) by
A1
.= (f9
+ g9) by
A2
.= (f
+ g) by
POLYNOM1:def 11;
hence thesis by
A3;
end;
Lm4: for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f holds for b be
bag of n holds (for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L)) implies (f
. b)
= (
0. L)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
assume
A1: A
is_MonomialRepresentation_of f;
let b be
bag of n;
assume
A2: for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L);
defpred
P[
Nat] means for f be
Polynomial of n, L, A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f & f
= (
Sum A) & (
len A)
= $1 holds (for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L)) implies (f
. b)
= (
0. L);
A3:
now
let k be
Nat;
assume
A4:
P[k];
for f be
Polynomial of n, L, A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f & f
= (
Sum A) & (
len A)
= (k
+ 1) holds (for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L)) implies (f
. b)
= (
0. L)
proof
let f be
Polynomial of n, L, A be
LeftLinearCombination of P;
assume that
A5: A
is_MonomialRepresentation_of f and
A6: f
= (
Sum A) and
A7: (
len A)
= (k
+ 1);
set B = (A
| (
Seg k));
reconsider B as
FinSequence of (
Polynom-Ring (n,L)) by
FINSEQ_1: 18;
reconsider B as
LeftLinearCombination of P by
IDEAL_1: 42;
set g = (
Sum B);
reconsider g as
Polynomial of n, L by
POLYNOM1:def 11;
A8: (
dom A)
= (
Seg (k
+ 1)) by
A7,
FINSEQ_1:def 3;
then (k
+ 1)
in (
dom A) by
FINSEQ_1: 4;
then
A9: ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & (A
/. (k
+ 1))
= (m
*' p) by
A5;
A10: k
<= (
len A) by
A7,
NAT_1: 11;
then k
<= (k
+ 1) & (
dom B)
= (
Seg k) by
FINSEQ_1: 17,
NAT_1: 11;
then
A11: (
dom B)
c= (
dom A) by
A8,
FINSEQ_1: 5;
now
let i be
Element of
NAT ;
assume
A12: i
in (
dom B);
then (B
/. i)
= (B
. i) by
PARTFUN1:def 6
.= (A
. i) by
A12,
FUNCT_1: 47
.= (A
/. i) by
A11,
A12,
PARTFUN1:def 6;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & (B
/. i)
= (m
*' p) by
A5,
A11,
A12;
end;
then
A13: B
is_MonomialRepresentation_of g;
assume
A14: for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L);
A15:
now
let i be
Element of
NAT ;
assume
A16: i
in (
dom B);
now
let m be
Monomial of n, L, p be
Polynomial of n, L;
assume that
A17: (B
. i)
= (m
*' p) and
A18: p
in P;
(A
. i)
= (m
*' p) by
A16,
A17,
FUNCT_1: 47;
hence ((m
*' p)
. b)
= (
0. L) by
A14,
A11,
A16,
A18;
end;
hence for m be
Monomial of n, L, p be
Polynomial of n, L st (B
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L);
end;
reconsider h = (A
/. (k
+ 1)) as
Polynomial of n, L by
POLYNOM1:def 11;
(B
^
<*(A
/. (k
+ 1))*>)
= (B
^
<*(A
. (k
+ 1))*>) by
A8,
FINSEQ_1: 4,
PARTFUN1:def 6
.= A by
A7,
FINSEQ_3: 55;
then f
= ((
Sum B)
+ (
Sum
<*(A
/. (k
+ 1))*>)) by
A6,
RLVECT_1: 41
.= ((
Sum B)
+ (A
/. (k
+ 1))) by
RLVECT_1: 44
.= (g
+ h) by
POLYNOM1:def 11;
then
A19: (f
. b)
= ((g
. b)
+ (h
. b)) by
POLYNOM1: 15;
(A
/. (k
+ 1))
= (A
. (k
+ 1)) by
A8,
FINSEQ_1: 4,
PARTFUN1:def 6;
then
A20: (
0. L)
= (h
. b) by
A14,
A8,
A9,
FINSEQ_1: 4;
(
len B)
= k by
A10,
FINSEQ_1: 17;
then (g
. b)
= (
0. L) by
A4,
A13,
A15;
hence thesis by
A19,
A20,
RLVECT_1:def 4;
end;
hence
P[(k
+ 1)];
end;
A21:
P[
0 ]
proof
let f be
Polynomial of n, L, A be
LeftLinearCombination of P;
assume that A
is_MonomialRepresentation_of f and
A22: f
= (
Sum A) & (
len A)
=
0 ;
assume for i be
Element of
NAT st i
in (
dom A) holds for m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P holds ((m
*' p)
. b)
= (
0. L);
A
= (
<*> the
carrier of (
Polynom-Ring (n,L))) by
A22;
then f
= (
Sum (
<*> the
carrier of (
Polynom-Ring (n,L)))) by
A22
.= (
0. (
Polynom-Ring (n,L))) by
RLVECT_1: 43
.= (
0_ (n,L)) by
POLYNOM1:def 11;
hence thesis by
POLYNOM1: 22;
end;
A23: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A21,
A3);
A24: ex n be
Element of
NAT st n
= (
len A);
thus thesis by
A1,
A2,
A23,
A24;
end;
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P, b be
bag of n;
::
GROEB_2:def7
pred A
is_Standard_Representation_of f,P,b,T means (
Sum A)
= f & for i be
Element of
NAT st i
in (
dom A) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
/. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T);
end
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
::
GROEB_2:def8
pred A
is_Standard_Representation_of f,P,T means A
is_Standard_Representation_of (f,P,(
HT (f,T)),T);
end
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), b be
bag of n;
::
GROEB_2:def9
pred f
has_a_Standard_Representation_of P,b,T means ex A be
LeftLinearCombination of P st A
is_Standard_Representation_of (f,P,b,T);
end
definition
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L));
::
GROEB_2:def10
pred f
has_a_Standard_Representation_of P,T means ex A be
LeftLinearCombination of P st A
is_Standard_Representation_of (f,P,T);
end
theorem ::
GROEB_2:32
Th32: for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P, b be
bag of n holds A
is_Standard_Representation_of (f,P,b,T) implies A
is_MonomialRepresentation_of f
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P, b be
bag of n;
assume
A1: A
is_Standard_Representation_of (f,P,b,T);
A2:
now
let i be
Element of
NAT ;
assume i
in (
dom A);
then ex m9 be
non-zero
Monomial of n, L, p9 be
non-zero
Polynomial of n, L st p9
in P & (A
/. i)
= (m9
*' p9) & (
HT ((m9
*' p9),T))
<= (b,T) by
A1;
hence ex m be
Monomial of n, L, p be
Polynomial of n, L st p
in P & (A
/. i)
= (m
*' p);
end;
(
Sum A)
= f by
A1;
hence thesis by
A2;
end;
Lm5: for n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L)) st f
= f9 & g
= g9 holds for P be non
empty
Subset of (
Polynom-Ring (n,L)) holds (
PolyRedRel (P,T))
reduces (f,g) implies ex A be
LeftLinearCombination of P st f9
= (g9
+ (
Sum A)) & for i be
Element of
NAT st i
in (
dom A) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T)
proof
let n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L));
assume
A1: f
= f9 & g
= g9;
defpred
P[
Nat] means for f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L)) st f
= f9 & g
= g9 holds for P be non
empty
Subset of (
Polynom-Ring (n,L)), R be
RedSequence of (
PolyRedRel (P,T)) st (R
. 1)
= f & (R
. (
len R))
= g & (
len R)
= $1 holds ex A be
LeftLinearCombination of P st f9
= (g9
+ (
Sum A)) & for i be
Element of
NAT st i
in (
dom A) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T);
let P be non
empty
Subset of (
Polynom-Ring (n,L));
assume (
PolyRedRel (P,T))
reduces (f,g);
then
consider R be
RedSequence of (
PolyRedRel (P,T)) such that
A2: (R
. 1)
= f & (R
. (
len R))
= g by
REWRITE1:def 3;
A3: (
0_ (n,L))
= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
A4:
now
let k be
Nat;
assume
A5: 1
<= k;
thus
P[k] implies
P[(k
+ 1)]
proof
assume
A6:
P[k];
for f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L)) st f
= f9 & g
= g9 holds for P be non
empty
Subset of (
Polynom-Ring (n,L)), R be
RedSequence of (
PolyRedRel (P,T)) st (R
. 1)
= f & (R
. (
len R))
= g & (
len R)
= (k
+ 1) holds ex A be
LeftLinearCombination of P st f9
= (g9
+ (
Sum A)) & for i be
Element of
NAT st i
in (
dom A) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T)
proof
let f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L));
assume that
A7: f
= f9 and
A8: g
= g9;
let P be non
empty
Subset of (
Polynom-Ring (n,L)), R be
RedSequence of (
PolyRedRel (P,T));
assume that
A9: (R
. 1)
= f and
A10: (R
. (
len R))
= g and
A11: (
len R)
= (k
+ 1);
set Q = (R
| (
Seg k));
reconsider Q as
FinSequence by
FINSEQ_1: 15;
A12: k
<= (k
+ 1) by
NAT_1: 11;
then
A13: (
dom Q)
= (
Seg k) by
A11,
FINSEQ_1: 17;
A14: (
dom R)
= (
Seg (k
+ 1)) by
A11,
FINSEQ_1:def 3;
A15:
now
let i be
Nat;
assume that
A16: i
in (
dom Q) and
A17: (i
+ 1)
in (
dom Q);
(i
+ 1)
<= k by
A13,
A17,
FINSEQ_1: 1;
then
A18: (i
+ 1)
<= (k
+ 1) by
A12,
XXREAL_0: 2;
i
<= k by
A13,
A16,
FINSEQ_1: 1;
then
A19: i
<= (k
+ 1) by
A12,
XXREAL_0: 2;
1
<= (i
+ 1) by
A13,
A17,
FINSEQ_1: 1;
then
A20: (i
+ 1)
in (
dom R) by
A14,
A18,
FINSEQ_1: 1;
1
<= i by
A13,
A16,
FINSEQ_1: 1;
then i
in (
dom R) by
A14,
A19,
FINSEQ_1: 1;
then
A21:
[(R
. i), (R
. (i
+ 1))]
in (
PolyRedRel (P,T)) by
A20,
REWRITE1:def 2;
(R
. i)
= (Q
. i) by
A16,
FUNCT_1: 47;
hence
[(Q
. i), (Q
. (i
+ 1))]
in (
PolyRedRel (P,T)) by
A17,
A21,
FUNCT_1: 47;
end;
(
len Q)
= k by
A11,
A12,
FINSEQ_1: 17;
then
reconsider Q as
RedSequence of (
PolyRedRel (P,T)) by
A5,
A15,
REWRITE1:def 2;
A22: 1
in (
dom Q) by
A5,
A13,
FINSEQ_1: 1;
then
A23: (Q
. 1)
= f by
A9,
FUNCT_1: 47;
1
<= (k
+ 1) by
NAT_1: 11;
then
A24: (k
+ 1)
in (
dom R) by
A14,
FINSEQ_1: 1;
k
in (
dom R) by
A5,
A14,
A12,
FINSEQ_1: 1;
then
A25:
[(R
. k), (R
. (k
+ 1))]
in (
PolyRedRel (P,T)) by
A24,
REWRITE1:def 2;
then
consider h9,g2 be
object such that
A26:
[(R
. k), (R
. (k
+ 1))]
=
[h9, g2] and
A27: h9
in (
NonZero (
Polynom-Ring (n,L))) and
A28: g2
in the
carrier of (
Polynom-Ring (n,L)) by
RELSET_1: 2;
A29: (R
. k)
= h9 by
A26,
XTUPLE_0: 1;
reconsider g2 as
Polynomial of n, L by
A28,
POLYNOM1:def 11;
not h9
in
{(
0_ (n,L))} by
A3,
A27,
XBOOLE_0:def 5;
then h9
<> (
0_ (n,L)) by
TARSKI:def 1;
then
reconsider h9 as
non-zero
Polynomial of n, L by
A27,
POLYNOM1:def 11,
POLYNOM7:def 1;
A30: (Q
. k)
= h9 by
A5,
A13,
A29,
FINSEQ_1: 3,
FUNCT_1: 47;
then
reconsider u9 = (Q
. k) as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider u = u9 as
Polynomial of n, L by
POLYNOM1:def 11;
(Q
. (
len Q))
= u by
A11,
A12,
FINSEQ_1: 17;
then
consider A9 be
LeftLinearCombination of P such that
A31: f9
= (u9
+ (
Sum A9)) and
A32: for i be
Element of
NAT st i
in (
dom A9) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A9
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A6,
A7,
A11,
A12,
A23,
FINSEQ_1: 17;
A33: k
in (
dom Q) by
A5,
A13,
FINSEQ_1: 3;
now
per cases ;
case u9
= g9;
hence thesis by
A31,
A32;
end;
case
A34: u9
<> g9;
reconsider hh = h9 as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
A35: (
PolyRedRel (P,T))
reduces (f,h9) by
A5,
A33,
A30,
A22,
A23,
REWRITE1: 17;
A36: (R
. (k
+ 1))
= g2 by
A26,
XTUPLE_0: 1;
then
reconsider gg = g2 as
Element of (
Polynom-Ring (n,L)) by
A8,
A10,
A11;
h9
reduces_to (g2,P,T) by
A25,
A26,
POLYRED:def 13;
then
consider p9 be
Polynomial of n, L such that
A37: p9
in P and
A38: h9
reduces_to (g2,p9,T) by
POLYRED:def 7;
consider m9 be
Monomial of n, L such that
A39: g2
= (h9
- (m9
*' p9)) and not (
HT ((m9
*' p9),T))
in (
Support g2) and
A40: (
HT ((m9
*' p9),T))
<= ((
HT (h9,T)),T) by
A38,
GROEB_1: 2;
A41:
now
assume p9
= (
0_ (n,L));
then g2
= (h9
- (
0_ (n,L))) by
A39,
POLYRED: 5
.= (Q
. k) by
A30,
POLYRED: 4;
hence contradiction by
A8,
A10,
A11,
A34,
A36;
end;
A42:
now
assume m9
= (
0_ (n,L));
then g2
= (h9
- (
0_ (n,L))) by
A39,
POLYRED: 5
.= (Q
. k) by
A30,
POLYRED: 4;
hence contradiction by
A8,
A10,
A11,
A34,
A36;
end;
reconsider mp = (m9
*' p9) as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
reconsider pp = p9 as
Element of P by
A37;
set B = (A9
^
<*mp*>);
reconsider mm = m9 as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
A43: gg
= (hh
- mp) by
A39,
Lm3;
reconsider m9 as
non-zero
Monomial of n, L by
A42,
POLYNOM7:def 1;
reconsider p9 as
non-zero
Polynomial of n, L by
A41,
POLYNOM7:def 1;
(
len B)
= ((
len A9)
+ (
len
<*(m9
*' p9)*>)) by
FINSEQ_1: 22
.= ((
len A9)
+ 1) by
FINSEQ_1: 40;
then
A44: (
dom B)
= (
Seg ((
len A9)
+ 1)) by
FINSEQ_1:def 3;
A45: mp
= (mm
* pp) by
POLYNOM1:def 11;
now
let i be
set;
assume
A46: i
in (
dom B);
then
reconsider j = i as
Element of
NAT ;
A47: j
<= ((
len A9)
+ 1) by
A44,
A46,
FINSEQ_1: 1;
A48: 1
<= j by
A44,
A46,
FINSEQ_1: 1;
now
per cases ;
case j
= ((
len A9)
+ 1);
then mp
= (B
. j) by
FINSEQ_1: 42
.= (B
/. j) by
A46,
PARTFUN1:def 6;
hence ex u be
Element of (
Polynom-Ring (n,L)), a be
Element of P st (B
/. i)
= (u
* a) by
A45;
end;
case j
<> ((
len A9)
+ 1);
then j
< ((
len A9)
+ 1) by
A47,
XXREAL_0: 1;
then j
<= (
len A9) by
NAT_1: 13;
then j
in (
Seg (
len A9)) by
A48,
FINSEQ_1: 1;
then
A49: j
in (
dom A9) by
FINSEQ_1:def 3;
then
consider m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L such that
A50: p
in P and
A51: (A9
. j)
= (m
*' p) and (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A32;
reconsider a9 = p as
Element of P by
A50;
reconsider u9 = m as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
A52: (B
. j)
= (B
/. j) by
A46,
PARTFUN1:def 6;
(u9
* a9)
= (m
*' p) by
POLYNOM1:def 11
.= (B
/. j) by
A49,
A51,
A52,
FINSEQ_1:def 7;
hence ex u be
Element of (
Polynom-Ring (n,L)), a be
Element of P st (B
/. i)
= (u
* a);
end;
end;
hence ex u be
Element of (
Polynom-Ring (n,L)), a be
Element of P st (B
/. i)
= (u
* a);
end;
then
reconsider B as
LeftLinearCombination of P by
IDEAL_1:def 9;
h9
is_reducible_wrt (p9,T) by
A38,
POLYRED:def 8;
then h9
<> (
0_ (n,L)) by
POLYRED: 37;
then (
HT (h9,T))
<= ((
HT (f,T)),T) by
A35,
POLYRED: 44;
then
A53: (
HT ((m9
*' p9),T))
<= ((
HT (f,T)),T) by
A40,
TERMORD: 8;
A54:
now
let i be
Element of
NAT ;
assume
A55: i
in (
dom B);
then
A56: i
<= ((
len A9)
+ 1) by
A44,
FINSEQ_1: 1;
A57: 1
<= i by
A44,
A55,
FINSEQ_1: 1;
now
per cases ;
case i
= ((
len A9)
+ 1);
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (B
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A37,
A53,
FINSEQ_1: 42;
end;
case i
<> ((
len A9)
+ 1);
then i
< ((
len A9)
+ 1) by
A56,
XXREAL_0: 1;
then i
<= (
len A9) by
NAT_1: 13;
then i
in (
Seg (
len A9)) by
A57,
FINSEQ_1: 1;
then
A58: i
in (
dom A9) by
FINSEQ_1:def 3;
then
consider m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L such that
A59: p
in P and
A60: (A9
. i)
= (m
*' p) and
A61: (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A32;
(B
. i)
= (m
*' p) by
A58,
A60,
FINSEQ_1:def 7;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (B
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A59,
A61;
end;
end;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (B
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T);
end;
take B;
(gg
+ (
Sum B))
= (gg
+ ((
Sum A9)
+ (
Sum
<*mp*>))) by
RLVECT_1: 41
.= (gg
+ ((
Sum A9)
+ mp)) by
RLVECT_1: 44
.= ((hh
+ (
- mp))
+ ((
Sum A9)
+ mp)) by
A43
.= (hh
+ ((
- mp)
+ ((
Sum A9)
+ mp))) by
RLVECT_1:def 3
.= (hh
+ ((
Sum A9)
+ ((
- mp)
+ mp))) by
RLVECT_1:def 3
.= (hh
+ ((
Sum A9)
+ (
0. (
Polynom-Ring (n,L))))) by
RLVECT_1: 5
.= (hh
+ (
Sum A9)) by
RLVECT_1: 4
.= f9 by
A5,
A13,
A29,
A31,
FINSEQ_1: 3,
FUNCT_1: 47;
hence thesis by
A8,
A10,
A11,
A36,
A54;
end;
end;
hence thesis;
end;
hence thesis;
end;
end;
A62:
P[1]
proof
set A = (
<*> the
carrier of (
Polynom-Ring (n,L)));
let f,g be
Polynomial of n, L, f9,g9 be
Element of (
Polynom-Ring (n,L));
assume
A63: f
= f9 & g
= g9;
let P be non
empty
Subset of (
Polynom-Ring (n,L)), R be
RedSequence of (
PolyRedRel (P,T));
for i be
set st i
in (
dom A) holds ex u be
Element of (
Polynom-Ring (n,L)), a be
Element of P st (A
/. i)
= (u
* a);
then
reconsider A as
LeftLinearCombination of P by
IDEAL_1:def 9;
assume
A64: (R
. 1)
= f & (R
. (
len R))
= g & (
len R)
= 1;
take A;
f9
= (g9
+ (
0. (
Polynom-Ring (n,L)))) by
A63,
A64,
RLVECT_1:def 4
.= (g9
+ (
Sum A)) by
RLVECT_1: 43;
hence thesis;
end;
A65: for k be
Nat st 1
<= k holds
P[k] from
NAT_1:sch 8(
A62,
A4);
1
<= (
len R) by
NAT_1: 14;
hence thesis by
A1,
A65,
A2;
end;
theorem ::
GROEB_2:33
for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n st A
is_Standard_Representation_of (f,P,b,T) & B
is_Standard_Representation_of (g,P,b,T) holds (A
^ B)
is_Standard_Representation_of ((f
+ g),P,b,T)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n;
assume that
A1: A
is_Standard_Representation_of (f,P,b,T) and
A2: B
is_Standard_Representation_of (g,P,b,T);
A3:
now
let i be
Element of
NAT ;
assume
A4: i
in (
dom (A
^ B));
now
per cases by
A4,
FINSEQ_1: 25;
case
A5: i
in (
dom A);
((A
^ B)
/. i)
= ((A
^ B)
. i) by
A4,
PARTFUN1:def 6
.= (A
. i) by
A5,
FINSEQ_1:def 7
.= (A
/. i) by
A5,
PARTFUN1:def 6;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T) by
A1,
A5;
end;
case ex k be
Nat st k
in (
dom B) & i
= ((
len A)
+ k);
then
consider k be
Nat such that
A6: k
in (
dom B) and
A7: i
= ((
len A)
+ k);
((A
^ B)
/. i)
= ((A
^ B)
. i) by
A4,
PARTFUN1:def 6
.= (B
. k) by
A6,
A7,
FINSEQ_1:def 7
.= (B
/. k) by
A6,
PARTFUN1:def 6;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T) by
A2,
A6;
end;
end;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & ((A
^ B)
/. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T);
end;
f
= (
Sum A) & g
= (
Sum B) by
A1,
A2;
then (f
+ g)
= ((
Sum A)
+ (
Sum B)) by
POLYNOM1:def 11
.= (
Sum (A
^ B)) by
RLVECT_1: 41;
hence thesis by
A3;
end;
theorem ::
GROEB_2:34
for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n, i be
Element of
NAT st A
is_Standard_Representation_of (f,P,b,T) & B
= (A
| i) & g
= (
Sum (A
/^ i)) holds B
is_Standard_Representation_of ((f
- g),P,b,T)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n, i be
Element of
NAT ;
assume that
A1: A
is_Standard_Representation_of (f,P,b,T) and
A2: B
= (A
| i) and
A3: g
= (
Sum (A
/^ i));
A4: (
Sum A)
= f by
A1;
(
dom (A
| (
Seg i)))
c= (
dom A) by
RELAT_1: 60;
then
A5: (
dom B)
c= (
dom A) by
A2,
FINSEQ_1:def 15;
A6:
now
let j be
Element of
NAT ;
assume
A7: j
in (
dom B);
then
A8: j
in (
dom (A
| (
Seg i))) by
A2,
FINSEQ_1:def 15;
(A
/. j)
= (A
. j) by
A5,
A7,
PARTFUN1:def 6
.= ((A
| (
Seg i))
. j) by
A8,
FUNCT_1: 47
.= (B
. j) by
A2,
FINSEQ_1:def 15
.= (B
/. j) by
A7,
PARTFUN1:def 6;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (B
/. j)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T) by
A1,
A5,
A7;
end;
A
= (B
^ (A
/^ i)) by
A2,
RFINSEQ: 8;
then (
Sum A)
= ((
Sum B)
+ (
Sum (A
/^ i))) by
RLVECT_1: 41;
then ((
Sum A)
+ (
- (
Sum (A
/^ i))))
= ((
Sum B)
+ ((
Sum (A
/^ i))
+ (
- (
Sum (A
/^ i))))) by
RLVECT_1:def 3
.= ((
Sum B)
+ (
0. (
Polynom-Ring (n,L)))) by
RLVECT_1: 5
.= (
Sum B) by
RLVECT_1:def 4;
then (
Sum B)
= ((
Sum A)
- (
Sum (A
/^ i)))
.= (f
- g) by
A3,
A4,
Lm3;
hence thesis by
A6;
end;
theorem ::
GROEB_2:35
for n be
Ordinal, T be
connected
TermOrder of n, L be
Abelian
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n, i be
Element of
NAT st A
is_Standard_Representation_of (f,P,b,T) & B
= (A
/^ i) & g
= (
Sum (A
| i)) & i
<= (
len A) holds B
is_Standard_Representation_of ((f
- g),P,b,T)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
Abelian
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f,g be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A,B be
LeftLinearCombination of P, b be
bag of n, i be
Element of
NAT ;
assume that
A1: A
is_Standard_Representation_of (f,P,b,T) and
A2: B
= (A
/^ i) and
A3: g
= (
Sum (A
| i)) and
A4: i
<= (
len A);
A5: (
Sum A)
= f by
A1;
A6:
now
let j be
Element of
NAT ;
assume
A7: j
in (
dom B);
then
A8: (j
+ i)
in (
dom A) by
A2,
FINSEQ_5: 26;
(B
/. j)
= (B
. j) by
A7,
PARTFUN1:def 6
.= (A
. (j
+ i)) by
A2,
A4,
A7,
RFINSEQ:def 1
.= (A
/. (j
+ i)) by
A8,
PARTFUN1:def 6;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (B
/. j)
= (m
*' p) & (
HT ((m
*' p),T))
<= (b,T) by
A1,
A8;
end;
A
= ((A
| i)
^ B) by
A2,
RFINSEQ: 8;
then (
Sum A)
= ((
Sum (A
| i))
+ (
Sum B)) by
RLVECT_1: 41;
then ((
Sum A)
+ (
- (
Sum (A
| i))))
= (((
Sum (A
| i))
+ (
- (
Sum (A
| i))))
+ (
Sum B)) by
RLVECT_1:def 3
.= ((
0. (
Polynom-Ring (n,L)))
+ (
Sum B)) by
RLVECT_1: 5
.= (
Sum B) by
ALGSTR_1:def 2;
then (
Sum B)
= ((
Sum A)
- (
Sum (A
| i)))
.= (f
- g) by
A3,
A5,
Lm3;
hence thesis by
A6;
end;
theorem ::
GROEB_2:36
Th36: for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P st A
is_MonomialRepresentation_of f holds ex i be
Element of
NAT , m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st i
in (
dom A) & p
in P & (A
. i)
= (m
*' p) & (
HT (f,T))
<= ((
HT ((m
*' p),T)),T)
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
(
HC (f,T))
<> (
0. L);
then
A1: (f
. (
HT (f,T)))
<> (
0. L) by
TERMORD:def 7;
assume A
is_MonomialRepresentation_of f;
then
consider i be
Element of
NAT such that
A2: i
in (
dom A) and
A3: ex m be
Monomial of n, L, p be
Polynomial of n, L st (A
. i)
= (m
*' p) & p
in P & ((m
*' p)
. (
HT (f,T)))
<> (
0. L) by
A1,
Lm4;
consider m be
Monomial of n, L, p be
Polynomial of n, L such that
A4: (A
. i)
= (m
*' p) and
A5: ((m
*' p)
. (
HT (f,T)))
<> (
0. L) and
A6: p
in P by
A3;
A7: (m
*' p)
<> (
0_ (n,L)) by
A5,
POLYNOM1: 22;
then
A8: m
<> (
0_ (n,L)) by
POLYRED: 5;
p
<> (
0_ (n,L)) by
A7,
POLYNOM1: 28;
then
reconsider p as
non-zero
Polynomial of n, L by
POLYNOM7:def 1;
reconsider m as
non-zero
Monomial of n, L by
A8,
POLYNOM7:def 1;
(
HT (f,T))
in (
Support (m
*' p)) by
A5,
POLYNOM1:def 4;
then (
HT (f,T))
<= ((
HT ((m
*' p),T)),T) by
TERMORD:def 6;
hence thesis by
A2,
A4,
A6;
end;
theorem ::
GROEB_2:37
Th37: for n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P st A
is_Standard_Representation_of (f,P,T) holds ex i be
Element of
NAT , m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & i
in (
dom A) & (A
/. i)
= (m
*' p) & (
HT (f,T))
= (
HT ((m
*' p),T))
proof
let n be
Ordinal, T be
connected
TermOrder of n, L be
right_zeroed
add-associative
right_complementable
well-unital
distributive non
trivial non
empty
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)), A be
LeftLinearCombination of P;
assume A
is_Standard_Representation_of (f,P,T);
then
A1: A
is_Standard_Representation_of (f,P,(
HT (f,T)),T);
then
consider i be
Element of
NAT , m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L such that
A2: i
in (
dom A) and p
in P and
A3: (A
. i)
= (m
*' p) and
A4: (
HT (f,T))
<= ((
HT ((m
*' p),T)),T) by
Th32,
Th36;
consider m9 be
non-zero
Monomial of n, L, p9 be
non-zero
Polynomial of n, L such that
A5: p9
in P and
A6: (A
/. i)
= (m9
*' p9) and
A7: (
HT ((m9
*' p9),T))
<= ((
HT (f,T)),T) by
A1,
A2;
take i, m9, p9;
(m
*' p)
= (m9
*' p9) by
A2,
A3,
A6,
PARTFUN1:def 6;
hence thesis by
A2,
A4,
A5,
A6,
A7,
TERMORD: 7;
end;
theorem ::
GROEB_2:38
Th38: for n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)) holds (
PolyRedRel (P,T))
reduces (f,(
0_ (n,L))) implies f
has_a_Standard_Representation_of (P,T)
proof
let n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, f be
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L));
reconsider f9 = f as
Element of (
Polynom-Ring (n,L)) by
POLYNOM1:def 11;
A1: (
0_ (n,L))
= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
assume (
PolyRedRel (P,T))
reduces (f,(
0_ (n,L)));
then
consider A be
LeftLinearCombination of P such that
A2: f9
= ((
0. (
Polynom-Ring (n,L)))
+ (
Sum A)) and
A3: for i be
Element of
NAT st i
in (
dom A) holds ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A1,
Lm5;
A4:
now
let i be
Element of
NAT ;
assume
A5: i
in (
dom A);
then ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A3;
hence ex m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L st p
in P & (A
/. i)
= (m
*' p) & (
HT ((m
*' p),T))
<= ((
HT (f,T)),T) by
A5,
PARTFUN1:def 6;
end;
f
= (
Sum A) by
A2,
RLVECT_1:def 4;
then A
is_Standard_Representation_of (f,P,(
HT (f,T)),T) by
A4;
then A
is_Standard_Representation_of (f,P,T);
hence thesis;
end;
theorem ::
GROEB_2:39
Th39: for n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L)) holds f
has_a_Standard_Representation_of (P,T) implies f
is_top_reducible_wrt (P,T)
proof
let n be
Ordinal, T be
admissible
connected
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
almost_left_invertible non
trivial
doubleLoopStr, f be
non-zero
Polynomial of n, L, P be non
empty
Subset of (
Polynom-Ring (n,L));
assume f
has_a_Standard_Representation_of (P,T);
then
consider A be
LeftLinearCombination of P such that
A1: A
is_Standard_Representation_of (f,P,T);
consider i be
Element of
NAT , m be
non-zero
Monomial of n, L, p be
non-zero
Polynomial of n, L such that
A2: p
in P and i
in (
dom A) and (A
/. i)
= (m
*' p) and
A3: (
HT (f,T))
= (
HT ((m
*' p),T)) by
A1,
Th37;
set s = (
HT (m,T));
A4: (
HT (f,T))
= (s
+ (
HT (p,T))) by
A3,
TERMORD: 31;
set g = (f
- (((f
. (
HT (f,T)))
/ (
HC (p,T)))
* (s
*' p)));
A5: f
<> (
0_ (n,L)) by
POLYNOM7:def 1;
then (
Support f)
<>
{} by
POLYNOM7: 1;
then p
<> (
0_ (n,L)) & (
HT (f,T))
in (
Support f) by
POLYNOM7:def 1,
TERMORD:def 6;
then f
reduces_to (g,p,(
HT (f,T)),T) by
A5,
A4,
POLYRED:def 5;
then f
top_reduces_to (g,p,T) by
POLYRED:def 10;
then f
is_top_reducible_wrt (p,T) by
POLYRED:def 11;
hence thesis by
A2,
POLYRED:def 12;
end;
theorem ::
GROEB_2:40
for n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, G be non
empty
Subset of (
Polynom-Ring (n,L)) holds G
is_Groebner_basis_wrt T iff for f be
non-zero
Polynomial of n, L st f
in (G
-Ideal ) holds f
has_a_Standard_Representation_of (G,T)
proof
let n be
Element of
NAT , T be
connected
admissible
TermOrder of n, L be
add-associative
right_complementable
right_zeroed
commutative
associative
well-unital
distributive
Abelian
almost_left_invertible non
degenerated non
empty
doubleLoopStr, P be non
empty
Subset of (
Polynom-Ring (n,L));
A1:
now
assume for f be
non-zero
Polynomial of n, L st f
in (P
-Ideal ) holds f
has_a_Standard_Representation_of (P,T);
then for f be
non-zero
Polynomial of n, L st f
in (P
-Ideal ) holds f
is_top_reducible_wrt (P,T) by
Th39;
then for b be
bag of n st b
in (
HT ((P
-Ideal ),T)) holds ex b9 be
bag of n st b9
in (
HT (P,T)) & b9
divides b by
GROEB_1: 18;
then (
HT ((P
-Ideal ),T))
c= (
multiples (
HT (P,T))) by
GROEB_1: 19;
then (
PolyRedRel (P,T)) is
locally-confluent by
GROEB_1: 20;
hence P
is_Groebner_basis_wrt T by
GROEB_1:def 3;
end;
A2: (
0_ (n,L))
= (
0. (
Polynom-Ring (n,L))) by
POLYNOM1:def 11;
now
assume P
is_Groebner_basis_wrt T;
then (
PolyRedRel (P,T)) is
locally-confluent by
GROEB_1:def 3;
hence for f be
non-zero
Polynomial of n, L st f
in (P
-Ideal ) holds f
has_a_Standard_Representation_of (P,T) by
A2,
Th38,
GROEB_1: 15;
end;
hence thesis by
A1;
end;