vfunct_1.miz
begin
reserve x,X,Y for
set;
reserve C for non
empty
set;
reserve c for
Element of C;
reserve V for
RealNormSpace;
reserve f,f1,f2,f3 for
PartFunc of C, V;
reserve r,r1,r2,p for
Real;
definition
let C;
let V be non
empty
addLoopStr;
let f1,f2 be
PartFunc of C, V;
deffunc
F(
set) = ((f1
/. $1)
+ (f2
/. $1));
deffunc
G(
set) = ((f1
/. $1)
- (f2
/. $1));
defpred
P[
set] means $1
in ((
dom f1)
/\ (
dom f2));
set X = ((
dom f1)
/\ (
dom f2));
::
VFUNCT_1:def1
func f1
+ f2 ->
PartFunc of C, V means
:
Def1: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c st c
in (
dom it ) holds (it
/. c)
= ((f1
/. c)
+ (f2
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A1: for c holds c
in (
dom F) iff
P[c] and
A2: for c st c
in (
dom F) holds (F
/. c)
=
F(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A1,
A2,
SUBSET_1: 3;
end;
uniqueness
proof
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c st c
in (
dom f) holds (f
/. c)
=
F(c)) & ((
dom g)
= X & for c st c
in (
dom g) holds (g
/. c)
=
F(c)) holds f
= g from
PARTFUN2:sch 3;
end;
::
VFUNCT_1:def2
func f1
- f2 ->
PartFunc of C, V means
:
Def2: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c st c
in (
dom it ) holds (it
/. c)
= ((f1
/. c)
- (f2
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A3: for c holds c
in (
dom F) iff
P[c] and
A4: for c st c
in (
dom F) holds (F
/. c)
=
G(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A3,
A4,
SUBSET_1: 3;
end;
uniqueness
proof
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c be
Element of C st c
in (
dom f) holds (f
/. c)
=
G(c)) & ((
dom g)
= X & for c be
Element of C st c
in (
dom g) holds (g
/. c)
=
G(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
registration
let C;
let V be non
empty
addLoopStr;
let f1,f2 be
Function of C, V;
cluster (f1
+ f2) ->
total;
coherence
proof
thus (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1
.= (C
/\ (
dom f2)) by
FUNCT_2:def 1
.= (C
/\ C) by
FUNCT_2:def 1
.= C;
end;
cluster (f1
- f2) ->
total;
coherence
proof
thus (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) by
Def2
.= (C
/\ (
dom f2)) by
FUNCT_2:def 1
.= (C
/\ C) by
FUNCT_2:def 1
.= C;
end;
end
definition
let C;
let V be non
empty
RLSStruct;
let f1 be
PartFunc of C,
REAL ;
let f2 be
PartFunc of C, V;
deffunc
F(
Element of C) = ((f1
. $1)
* (f2
/. $1));
defpred
P[
set] means $1
in ((
dom f1)
/\ (
dom f2));
set X = ((
dom f1)
/\ (
dom f2));
::
VFUNCT_1:def3
func f1
(#) f2 ->
PartFunc of C, V means
:
Def3: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c st c
in (
dom it ) holds (it
/. c)
= ((f1
. c)
* (f2
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A1: for c holds c
in (
dom F) iff
P[c] and
A2: for c st c
in (
dom F) holds (F
/. c)
=
F(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A1,
A2,
SUBSET_1: 3;
end;
uniqueness
proof
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c be
Element of C st c
in (
dom f) holds (f
/. c)
=
F(c)) & ((
dom g)
= X & for c be
Element of C st c
in (
dom g) holds (g
/. c)
=
F(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
registration
let C;
let V be non
empty
RLSStruct;
let f1 be
Function of C,
REAL ;
let f2 be
Function of C, V;
cluster (f1
(#) f2) ->
total;
coherence
proof
thus (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def3
.= (C
/\ (
dom f2)) by
FUNCT_2:def 1
.= (C
/\ C) by
FUNCT_2:def 1
.= C;
end;
end
definition
let C;
let V be non
empty
RLSStruct;
let f be
PartFunc of C, V;
let r be
Real;
deffunc
F(
Element of C) = (r
* (f
/. $1));
defpred
P[
set] means $1
in (
dom f);
::
VFUNCT_1:def4
func r
(#) f ->
PartFunc of C, V means
:
Def4: (
dom it )
= (
dom f) & for c st c
in (
dom it ) holds (it
/. c)
= (r
* (f
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A1: for c holds c
in (
dom F) iff
P[c] and
A2: for c st c
in (
dom F) holds (F
/. c)
=
F(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A1,
A2,
SUBSET_1: 3;
end;
uniqueness
proof
set X = (
dom f);
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c be
Element of C st c
in (
dom f) holds (f
/. c)
=
F(c)) & ((
dom g)
= X & for c be
Element of C st c
in (
dom g) holds (g
/. c)
=
F(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
registration
let C;
let V be non
empty
RLSStruct;
let f be
Function of C, V;
let r;
cluster (r
(#) f) ->
total;
coherence
proof
thus (
dom (r
(#) f))
= (
dom f) by
Def4
.= C by
FUNCT_2:def 1;
end;
end
definition
let C;
let V be non
empty
addLoopStr;
let f be
PartFunc of C, V;
deffunc
G(
Element of C) = (
- (f
/. $1));
defpred
P[
set] means $1
in (
dom f);
::
VFUNCT_1:def5
func
- f ->
PartFunc of C, V means
:
Def5: (
dom it )
= (
dom f) & for c st c
in (
dom it ) holds (it
/. c)
= (
- (f
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A1: for c holds c
in (
dom F) iff
P[c] and
A2: for c st c
in (
dom F) holds (F
/. c)
=
G(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A1,
A2,
SUBSET_1: 3;
end;
uniqueness
proof
set X = (
dom f);
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c be
Element of C st c
in (
dom f) holds (f
/. c)
=
G(c)) & ((
dom g)
= X & for c be
Element of C st c
in (
dom g) holds (g
/. c)
=
G(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
registration
let C;
let V be non
empty
addLoopStr;
let f be
Function of C, V;
cluster (
- f) ->
total;
coherence
proof
thus (
dom (
- f))
= (
dom f) by
Def5
.= C by
FUNCT_2:def 1;
end;
end
theorem ::
VFUNCT_1:1
for f1 be
PartFunc of C,
REAL holds ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
= (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
proof
let f1 be
PartFunc of C,
REAL ;
thus ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
c= (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
proof
let x be
object;
assume
A1: x
in ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}));
then
A2: x
in (
dom (f1
(#) f2)) by
XBOOLE_0:def 5;
reconsider x1 = x as
Element of C by
A1;
not x
in ((f1
(#) f2)
"
{(
0. V)}) by
A1,
XBOOLE_0:def 5;
then not ((f1
(#) f2)
/. x1)
in
{(
0. V)} by
A2,
PARTFUN2: 26;
then ((f1
(#) f2)
/. x1)
<> (
0. V) by
TARSKI:def 1;
then
A3: ((f1
. x1)
* (f2
/. x1))
<> (
0. V) by
A2,
Def3;
then (f2
/. x1)
<> (
0. V);
then not (f2
/. x1)
in
{(
0. V)} by
TARSKI:def 1;
then
A4: not x1
in (f2
"
{(
0. V)}) by
PARTFUN2: 26;
A5: x1
in ((
dom f1)
/\ (
dom f2)) by
A2,
Def3;
then x1
in (
dom f2) by
XBOOLE_0:def 4;
then
A6: x
in ((
dom f2)
\ (f2
"
{(
0. V)})) by
A4,
XBOOLE_0:def 5;
(f1
. x1)
<>
0 by
A3,
RLVECT_1: 10;
then not (f1
. x1)
in
{
0 } by
TARSKI:def 1;
then
A7: not x1
in (f1
"
{
0 }) by
FUNCT_1:def 7;
x1
in (
dom f1) by
A5,
XBOOLE_0:def 4;
then x
in ((
dom f1)
\ (f1
"
{
0 })) by
A7,
XBOOLE_0:def 5;
hence thesis by
A6,
XBOOLE_0:def 4;
end;
thus (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
c= ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
proof
let x be
object;
assume
A8: x
in (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})));
then
reconsider x1 = x as
Element of C;
A9: x
in ((
dom f2)
\ (f2
"
{(
0. V)})) by
A8,
XBOOLE_0:def 4;
then
A10: x
in (
dom f2) by
XBOOLE_0:def 5;
not x
in (f2
"
{(
0. V)}) by
A9,
XBOOLE_0:def 5;
then not (f2
/. x1)
in
{(
0. V)} by
A10,
PARTFUN2: 26;
then
A11: (f2
/. x1)
<> (
0. V) by
TARSKI:def 1;
A12: x
in ((
dom f1)
\ (f1
"
{
0 })) by
A8,
XBOOLE_0:def 4;
then
A13: x
in (
dom f1) by
XBOOLE_0:def 5;
then x1
in ((
dom f1)
/\ (
dom f2)) by
A10,
XBOOLE_0:def 4;
then
A14: x1
in (
dom (f1
(#) f2)) by
Def3;
not x
in (f1
"
{
0 }) by
A12,
XBOOLE_0:def 5;
then not (f1
. x1)
in
{
0 } by
A13,
FUNCT_1:def 7;
then (f1
. x1)
<>
0 by
TARSKI:def 1;
then ((f1
. x1)
* (f2
/. x1))
<> (
0. V) by
A11,
RLVECT_1: 11;
then ((f1
(#) f2)
/. x1)
<> (
0. V) by
A14,
Def3;
then not ((f1
(#) f2)
/. x1)
in
{(
0. V)} by
TARSKI:def 1;
then not x
in ((f1
(#) f2)
"
{(
0. V)}) by
PARTFUN2: 26;
hence thesis by
A14,
XBOOLE_0:def 5;
end;
end;
theorem ::
VFUNCT_1:2
(
||.f.||
"
{
0 })
= (f
"
{(
0. V)}) & ((
- f)
"
{(
0. V)})
= (f
"
{(
0. V)})
proof
now
let c;
thus c
in (
||.f.||
"
{
0 }) implies c
in (f
"
{(
0. V)})
proof
assume
A1: c
in (
||.f.||
"
{
0 });
then
A2: c
in (
dom
||.f.||) by
FUNCT_1:def 7;
(
||.f.||
. c)
in
{
0 } by
A1,
FUNCT_1:def 7;
then (
||.f.||
. c)
=
0 by
TARSKI:def 1;
then
||.(f
/. c).||
=
0 by
A2,
NORMSP_0:def 3;
then (f
/. c)
= (
0. V) by
NORMSP_0:def 5;
then
A3: (f
/. c)
in
{(
0. V)} by
TARSKI:def 1;
c
in (
dom f) by
A2,
NORMSP_0:def 3;
hence thesis by
A3,
PARTFUN2: 26;
end;
assume
A4: c
in (f
"
{(
0. V)});
then c
in (
dom f) by
PARTFUN2: 26;
then
A5: c
in (
dom
||.f.||) by
NORMSP_0:def 3;
(f
/. c)
in
{(
0. V)} by
A4,
PARTFUN2: 26;
then (f
/. c)
= (
0. V) by
TARSKI:def 1;
then
||.(f
/. c).||
=
0 ;
then (
||.f.||
. c)
=
0 by
A5,
NORMSP_0:def 3;
then (
||.f.||
. c)
in
{
0 } by
TARSKI:def 1;
hence c
in (
||.f.||
"
{
0 }) by
A5,
FUNCT_1:def 7;
end;
hence (
||.f.||
"
{
0 })
= (f
"
{(
0. V)}) by
SUBSET_1: 3;
now
let c;
thus c
in ((
- f)
"
{(
0. V)}) implies c
in (f
"
{(
0. V)})
proof
assume
A6: c
in ((
- f)
"
{(
0. V)});
then
A7: c
in (
dom (
- f)) by
PARTFUN2: 26;
((
- f)
/. c)
in
{(
0. V)} by
A6,
PARTFUN2: 26;
then ((
- f)
/. c)
= (
0. V) by
TARSKI:def 1;
then (
- (
- (f
/. c)))
= (
- (
0. V)) by
A7,
Def5;
then (f
/. c)
= (
0. V);
then
A8: (f
/. c)
in
{(
0. V)} by
TARSKI:def 1;
c
in (
dom f) by
A7,
Def5;
hence thesis by
A8,
PARTFUN2: 26;
end;
assume
A9: c
in (f
"
{(
0. V)});
then c
in (
dom f) by
PARTFUN2: 26;
then
A10: c
in (
dom (
- f)) by
Def5;
(f
/. c)
in
{(
0. V)} by
A9,
PARTFUN2: 26;
then (f
/. c)
= (
0. V) by
TARSKI:def 1;
then ((
- f)
/. c)
= (
- (
0. V)) by
A10,
Def5;
then ((
- f)
/. c)
in
{(
0. V)} by
TARSKI:def 1;
hence c
in ((
- f)
"
{(
0. V)}) by
A10,
PARTFUN2: 26;
end;
hence thesis by
SUBSET_1: 3;
end;
theorem ::
VFUNCT_1:3
r
<>
0 implies ((r
(#) f)
"
{(
0. V)})
= (f
"
{(
0. V)})
proof
assume
A1: r
<>
0 ;
now
let c;
thus c
in ((r
(#) f)
"
{(
0. V)}) implies c
in (f
"
{(
0. V)})
proof
assume
A2: c
in ((r
(#) f)
"
{(
0. V)});
then
A3: c
in (
dom (r
(#) f)) by
PARTFUN2: 26;
((r
(#) f)
/. c)
in
{(
0. V)} by
A2,
PARTFUN2: 26;
then ((r
(#) f)
/. c)
= (
0. V) by
TARSKI:def 1;
then (r
* (f
/. c))
= (r
* (
0. V)) by
A3,
Def4;
then (f
/. c)
= (
0. V) by
A1,
RLVECT_1: 36;
then
A4: (f
/. c)
in
{(
0. V)} by
TARSKI:def 1;
c
in (
dom f) by
A3,
Def4;
hence thesis by
A4,
PARTFUN2: 26;
end;
assume
A5: c
in (f
"
{(
0. V)});
then c
in (
dom f) by
PARTFUN2: 26;
then
A6: c
in (
dom (r
(#) f)) by
Def4;
(f
/. c)
in
{(
0. V)} by
A5,
PARTFUN2: 26;
then (r
* (f
/. c))
= (r
* (
0. V)) by
TARSKI:def 1;
then ((r
(#) f)
/. c)
= (
0. V) by
A6,
Def4;
then ((r
(#) f)
/. c)
in
{(
0. V)} by
TARSKI:def 1;
hence c
in ((r
(#) f)
"
{(
0. V)}) by
A6,
PARTFUN2: 26;
end;
hence thesis by
SUBSET_1: 3;
end;
theorem ::
VFUNCT_1:4
Th4: for V be
Abelian non
empty
addLoopStr holds for f1,f2 be
PartFunc of C, V holds (f1
+ f2)
= (f2
+ f1)
proof
let V be
Abelian non
empty
addLoopStr;
let f1,f2 be
PartFunc of C, V;
A1: (
dom (f1
+ f2))
= ((
dom f2)
/\ (
dom f1)) by
Def1
.= (
dom (f2
+ f1)) by
Def1;
now
let c;
assume
A2: c
in (
dom (f1
+ f2));
hence ((f1
+ f2)
/. c)
= ((f2
/. c)
+ (f1
/. c)) by
Def1
.= ((f2
+ f1)
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
definition
let C;
let V be
Abelian non
empty
addLoopStr;
let f1,f2 be
PartFunc of C, V;
:: original:
+
redefine
func f1
+ f2;
commutativity by
Th4;
end
theorem ::
VFUNCT_1:5
for V be
add-associative non
empty
addLoopStr holds for f1,f2,f3 be
PartFunc of C, V holds ((f1
+ f2)
+ f3)
= (f1
+ (f2
+ f3))
proof
let V be
add-associative non
empty
addLoopStr;
let f1,f2,f3 be
PartFunc of C, V;
A1: (
dom ((f1
+ f2)
+ f3))
= ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def1
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
+ f3))) by
Def1
.= (
dom (f1
+ (f2
+ f3))) by
Def1;
now
let c;
assume
A2: c
in (
dom ((f1
+ f2)
+ f3));
then c
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def1;
then
A3: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
c
in ((
dom f1)
/\ (
dom (f2
+ f3))) by
A1,
A2,
Def1;
then
A4: c
in (
dom (f2
+ f3)) by
XBOOLE_0:def 4;
thus (((f1
+ f2)
+ f3)
/. c)
= (((f1
+ f2)
/. c)
+ (f3
/. c)) by
A2,
Def1
.= (((f1
/. c)
+ (f2
/. c))
+ (f3
/. c)) by
A3,
Def1
.= ((f1
/. c)
+ ((f2
/. c)
+ (f3
/. c))) by
RLVECT_1:def 3
.= ((f1
/. c)
+ ((f2
+ f3)
/. c)) by
A4,
Def1
.= ((f1
+ (f2
+ f3))
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:6
for V be
scalar-associative non
empty
RLSStruct holds for f1,f2 be
PartFunc of C,
REAL , f3 be
PartFunc of C, V holds ((f1
(#) f2)
(#) f3)
= (f1
(#) (f2
(#) f3))
proof
let V be
scalar-associative non
empty
RLSStruct;
let f1,f2 be
PartFunc of C,
REAL ;
let f3 be
PartFunc of C, V;
A1: (
dom ((f1
(#) f2)
(#) f3))
= ((
dom (f1
(#) f2))
/\ (
dom f3)) by
Def3
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
VALUED_1:def 4
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
(#) f3))) by
Def3
.= (
dom (f1
(#) (f2
(#) f3))) by
Def3;
now
let c;
assume
A2: c
in (
dom ((f1
(#) f2)
(#) f3));
then c
in ((
dom f1)
/\ (
dom (f2
(#) f3))) by
A1,
Def3;
then
A3: c
in (
dom (f2
(#) f3)) by
XBOOLE_0:def 4;
thus (((f1
(#) f2)
(#) f3)
/. c)
= (((f1
(#) f2)
. c)
* (f3
/. c)) by
A2,
Def3
.= (((f1
. c)
* (f2
. c))
* (f3
/. c)) by
VALUED_1: 5
.= ((f1
. c)
* ((f2
. c)
* (f3
/. c))) by
RLVECT_1:def 7
.= ((f1
. c)
* ((f2
(#) f3)
/. c)) by
A3,
Def3
.= ((f1
(#) (f2
(#) f3))
/. c) by
A1,
A2,
Def3;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:7
for V be
scalar-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C,
REAL holds for f3 be
Function of C, V holds ((f1
+ f2)
(#) f3)
= ((f1
(#) f3)
+ (f2
(#) f3))
proof
let V be
scalar-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C,
REAL ;
let f3 be
Function of C, V;
A1: (
dom ((f1
+ f2)
(#) f3))
= ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def3
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom f3)
/\ (
dom f3))) by
VALUED_1:def 1
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom f3))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f3))
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f3))
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom (f1
(#) f3))
/\ ((
dom f2)
/\ (
dom f3))) by
Def3
.= ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
Def3
.= (
dom ((f1
(#) f3)
+ (f2
(#) f3))) by
Def1;
now
let c;
assume
A2: c
in (
dom ((f1
+ f2)
(#) f3));
then c
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def3;
then
A3: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
A4: c
in ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
A1,
A2,
Def1;
then
A5: c
in (
dom (f1
(#) f3)) by
XBOOLE_0:def 4;
A6: c
in (
dom (f2
(#) f3)) by
A4,
XBOOLE_0:def 4;
thus (((f1
+ f2)
(#) f3)
/. c)
= (((f1
+ f2)
. c)
* (f3
/. c)) by
A2,
Def3
.= (((f1
. c)
+ (f2
. c))
* (f3
/. c)) by
A3,
VALUED_1:def 1
.= (((f1
. c)
* (f3
/. c))
+ ((f2
. c)
* (f3
/. c))) by
RLVECT_1:def 6
.= (((f1
(#) f3)
/. c)
+ ((f2
. c)
* (f3
/. c))) by
A5,
Def3
.= (((f1
(#) f3)
/. c)
+ ((f2
(#) f3)
/. c)) by
A6,
Def3
.= (((f1
(#) f3)
+ (f2
(#) f3))
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:8
for V be
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds for f3 be
Function of C,
REAL holds (f3
(#) (f1
+ f2))
= ((f3
(#) f1)
+ (f3
(#) f2))
proof
let V be
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
let f3 be
Function of C,
REAL ;
A1: (
dom (f3
(#) (f1
+ f2)))
= ((
dom f3)
/\ (
dom (f1
+ f2))) by
Def3
.= ((
dom f3)
/\ ((
dom f1)
/\ (
dom f2))) by
Def1
.= ((((
dom f3)
/\ (
dom f3))
/\ (
dom f1))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((((
dom f3)
/\ (
dom f1))
/\ (
dom f3))
/\ (
dom f2)) by
XBOOLE_1: 16
.= (((
dom f3)
/\ (
dom f1))
/\ ((
dom f3)
/\ (
dom f2))) by
XBOOLE_1: 16
.= ((
dom (f3
(#) f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def3
.= ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
Def3
.= (
dom ((f3
(#) f1)
+ (f3
(#) f2))) by
Def1;
now
let c;
assume
A2: c
in (
dom (f3
(#) (f1
+ f2)));
then c
in ((
dom f3)
/\ (
dom (f1
+ f2))) by
Def3;
then
A3: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
A4: c
in ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
A1,
A2,
Def1;
then
A5: c
in (
dom (f3
(#) f1)) by
XBOOLE_0:def 4;
A6: c
in (
dom (f3
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((f3
(#) (f1
+ f2))
/. c)
= ((f3
. c)
* ((f1
+ f2)
/. c)) by
A2,
Def3
.= ((f3
. c)
* ((f1
/. c)
+ (f2
/. c))) by
A3,
Def1
.= (((f3
. c)
* (f1
/. c))
+ ((f3
. c)
* (f2
/. c))) by
RLVECT_1:def 5
.= (((f3
(#) f1)
/. c)
+ ((f3
. c)
* (f2
/. c))) by
A5,
Def3
.= (((f3
(#) f1)
/. c)
+ ((f3
(#) f2)
/. c)) by
A6,
Def3
.= (((f3
(#) f1)
+ (f3
(#) f2))
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:9
for V be
scalar-associative non
empty
RLSStruct holds for f1 be
PartFunc of C,
REAL holds for f2 be
PartFunc of C, V holds (r
(#) (f1
(#) f2))
= ((r
(#) f1)
(#) f2)
proof
let V be
scalar-associative non
empty
RLSStruct;
let f1 be
PartFunc of C,
REAL ;
let f2 be
PartFunc of C, V;
A1: (
dom (r
(#) (f1
(#) f2)))
= (
dom (f1
(#) f2)) by
Def4
.= ((
dom f1)
/\ (
dom f2)) by
Def3
.= ((
dom (r
(#) f1))
/\ (
dom f2)) by
VALUED_1:def 5
.= (
dom ((r
(#) f1)
(#) f2)) by
Def3;
now
let c;
assume
A2: c
in (
dom (r
(#) (f1
(#) f2)));
then
A3: c
in (
dom (f1
(#) f2)) by
Def4;
c
in ((
dom (r
(#) f1))
/\ (
dom f2)) by
A1,
A2,
Def3;
then
A4: c
in (
dom (r
(#) f1)) by
XBOOLE_0:def 4;
thus ((r
(#) (f1
(#) f2))
/. c)
= (r
* ((f1
(#) f2)
/. c)) by
A2,
Def4
.= (r
* ((f1
. c)
* (f2
/. c))) by
A3,
Def3
.= ((r
* (f1
. c))
* (f2
/. c)) by
RLVECT_1:def 7
.= (((r
(#) f1)
. c)
* (f2
/. c)) by
A4,
VALUED_1:def 5
.= (((r
(#) f1)
(#) f2)
/. c) by
A1,
A2,
Def3;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:10
for V be
scalar-associative non
empty
RLSStruct holds for f1 be
PartFunc of C,
REAL holds for f2 be
PartFunc of C, V holds (r
(#) (f1
(#) f2))
= (f1
(#) (r
(#) f2))
proof
let V be
scalar-associative non
empty
RLSStruct;
let f1 be
PartFunc of C,
REAL ;
let f2 be
PartFunc of C, V;
A1: (
dom (r
(#) (f1
(#) f2)))
= (
dom (f1
(#) f2)) by
Def4
.= ((
dom f1)
/\ (
dom f2)) by
Def3
.= ((
dom f1)
/\ (
dom (r
(#) f2))) by
Def4
.= (
dom (f1
(#) (r
(#) f2))) by
Def3;
now
let c;
assume
A2: c
in (
dom (r
(#) (f1
(#) f2)));
then
A3: c
in (
dom (f1
(#) f2)) by
Def4;
c
in ((
dom f1)
/\ (
dom (r
(#) f2))) by
A1,
A2,
Def3;
then
A4: c
in (
dom (r
(#) f2)) by
XBOOLE_0:def 4;
thus ((r
(#) (f1
(#) f2))
/. c)
= (r
* ((f1
(#) f2)
/. c)) by
A2,
Def4
.= (r
* ((f1
. c)
* (f2
/. c))) by
A3,
Def3
.= (((f1
. c)
* r)
* (f2
/. c)) by
RLVECT_1:def 7
.= ((f1
. c)
* (r
* (f2
/. c))) by
RLVECT_1:def 7
.= ((f1
. c)
* ((r
(#) f2)
/. c)) by
A4,
Def4
.= ((f1
(#) (r
(#) f2))
/. c) by
A1,
A2,
Def3;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:11
for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C,
REAL holds for f3 be
Function of C, V holds ((f1
- f2)
(#) f3)
= ((f1
(#) f3)
- (f2
(#) f3))
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C,
REAL ;
let f3 be
Function of C, V;
A1: (
dom ((f1
- f2)
(#) f3))
= ((
dom (f1
- f2))
/\ (
dom f3)) by
Def3
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom f3)
/\ (
dom f3))) by
VALUED_1: 12
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom f3))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f3))
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f3))
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom (f1
(#) f3))
/\ ((
dom f2)
/\ (
dom f3))) by
Def3
.= ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
Def3
.= (
dom ((f1
(#) f3)
- (f2
(#) f3))) by
Def2;
now
let c;
assume
A2: c
in (
dom ((f1
- f2)
(#) f3));
then c
in ((
dom (f1
- f2))
/\ (
dom f3)) by
Def3;
then
A3: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
A4: c
in ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
A1,
A2,
Def2;
then
A5: c
in (
dom (f1
(#) f3)) by
XBOOLE_0:def 4;
A6: c
in (
dom (f2
(#) f3)) by
A4,
XBOOLE_0:def 4;
thus (((f1
- f2)
(#) f3)
/. c)
= (((f1
- f2)
. c)
* (f3
/. c)) by
A2,
Def3
.= (((f1
. c)
- (f2
. c))
* (f3
/. c)) by
A3,
VALUED_1: 13
.= (((f1
. c)
* (f3
/. c))
- ((f2
. c)
* (f3
/. c))) by
RLVECT_1: 35
.= (((f1
(#) f3)
/. c)
- ((f2
. c)
* (f3
/. c))) by
A5,
Def3
.= (((f1
(#) f3)
/. c)
- ((f2
(#) f3)
/. c)) by
A6,
Def3
.= (((f1
(#) f3)
- (f2
(#) f3))
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:12
for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds for f3 be
PartFunc of C,
REAL holds ((f3
(#) f1)
- (f3
(#) f2))
= (f3
(#) (f1
- f2))
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
let f3 be
PartFunc of C,
REAL ;
A1: (
dom ((f3
(#) f1)
- (f3
(#) f2)))
= ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
Def2
.= ((
dom (f3
(#) f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def3
.= (((
dom f3)
/\ (
dom f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def3
.= (((
dom f3)
/\ ((
dom f3)
/\ (
dom f1)))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((((
dom f3)
/\ (
dom f3))
/\ (
dom f1))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom f3)
/\ ((
dom f1)
/\ (
dom f2))) by
XBOOLE_1: 16
.= ((
dom f3)
/\ (
dom (f1
- f2))) by
Def2
.= (
dom (f3
(#) (f1
- f2))) by
Def3;
now
let c;
assume
A2: c
in (
dom (f3
(#) (f1
- f2)));
then c
in ((
dom f3)
/\ (
dom (f1
- f2))) by
Def3;
then
A3: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
A4: c
in ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
A1,
A2,
Def2;
then
A5: c
in (
dom (f3
(#) f1)) by
XBOOLE_0:def 4;
A6: c
in (
dom (f3
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((f3
(#) (f1
- f2))
/. c)
= ((f3
. c)
* ((f1
- f2)
/. c)) by
A2,
Def3
.= ((f3
. c)
* ((f1
/. c)
- (f2
/. c))) by
A3,
Def2
.= (((f3
. c)
* (f1
/. c))
- ((f3
. c)
* (f2
/. c))) by
RLVECT_1: 34
.= (((f3
(#) f1)
/. c)
- ((f3
. c)
* (f2
/. c))) by
A5,
Def3
.= (((f3
(#) f1)
/. c)
- ((f3
(#) f2)
/. c)) by
A6,
Def3
.= (((f3
(#) f1)
- (f3
(#) f2))
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:13
for V be
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds (r
(#) (f1
+ f2))
= ((r
(#) f1)
+ (r
(#) f2))
proof
let V be
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
A1: (
dom (r
(#) (f1
+ f2)))
= (
dom (f1
+ f2)) by
Def4
.= ((
dom f1)
/\ (
dom f2)) by
Def1
.= ((
dom f1)
/\ (
dom (r
(#) f2))) by
Def4
.= ((
dom (r
(#) f1))
/\ (
dom (r
(#) f2))) by
Def4
.= (
dom ((r
(#) f1)
+ (r
(#) f2))) by
Def1;
now
let c;
assume
A2: c
in (
dom (r
(#) (f1
+ f2)));
then
A3: c
in (
dom (f1
+ f2)) by
Def4;
A4: c
in ((
dom (r
(#) f1))
/\ (
dom (r
(#) f2))) by
A1,
A2,
Def1;
then
A5: c
in (
dom (r
(#) f1)) by
XBOOLE_0:def 4;
A6: c
in (
dom (r
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((r
(#) (f1
+ f2))
/. c)
= (r
* ((f1
+ f2)
/. c)) by
A2,
Def4
.= (r
* ((f1
/. c)
+ (f2
/. c))) by
A3,
Def1
.= ((r
* (f1
/. c))
+ (r
* (f2
/. c))) by
RLVECT_1:def 5
.= (((r
(#) f1)
/. c)
+ (r
* (f2
/. c))) by
A5,
Def4
.= (((r
(#) f1)
/. c)
+ ((r
(#) f2)
/. c)) by
A6,
Def4
.= (((r
(#) f1)
+ (r
(#) f2))
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:14
for V be
scalar-associative non
empty
RLSStruct holds for f be
PartFunc of C, V holds ((r
* p)
(#) f)
= (r
(#) (p
(#) f))
proof
let V be
scalar-associative non
empty
RLSStruct;
let f be
PartFunc of C, V;
A1: (
dom ((r
* p)
(#) f))
= (
dom f) by
Def4
.= (
dom (p
(#) f)) by
Def4
.= (
dom (r
(#) (p
(#) f))) by
Def4;
now
let c;
assume
A2: c
in (
dom ((r
* p)
(#) f));
then
A3: c
in (
dom (p
(#) f)) by
A1,
Def4;
thus (((r
* p)
(#) f)
/. c)
= ((r
* p)
* (f
/. c)) by
A2,
Def4
.= (r
* (p
* (f
/. c))) by
RLVECT_1:def 7
.= (r
* ((p
(#) f)
/. c)) by
A3,
Def4
.= ((r
(#) (p
(#) f))
/. c) by
A1,
A2,
Def4;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:15
for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds (r
(#) (f1
- f2))
= ((r
(#) f1)
- (r
(#) f2))
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-associative
scalar-unital
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
A1: (
dom (r
(#) (f1
- f2)))
= (
dom (f1
- f2)) by
Def4
.= ((
dom f1)
/\ (
dom f2)) by
Def2
.= ((
dom f1)
/\ (
dom (r
(#) f2))) by
Def4
.= ((
dom (r
(#) f1))
/\ (
dom (r
(#) f2))) by
Def4
.= (
dom ((r
(#) f1)
- (r
(#) f2))) by
Def2;
now
let c;
assume
A2: c
in (
dom (r
(#) (f1
- f2)));
then
A3: c
in (
dom (f1
- f2)) by
Def4;
A4: c
in ((
dom (r
(#) f1))
/\ (
dom (r
(#) f2))) by
A1,
A2,
Def2;
then
A5: c
in (
dom (r
(#) f1)) by
XBOOLE_0:def 4;
A6: c
in (
dom (r
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((r
(#) (f1
- f2))
/. c)
= (r
* ((f1
- f2)
/. c)) by
A2,
Def4
.= (r
* ((f1
/. c)
- (f2
/. c))) by
A3,
Def2
.= ((r
* (f1
/. c))
- (r
* (f2
/. c))) by
RLVECT_1: 34
.= (((r
(#) f1)
/. c)
- (r
* (f2
/. c))) by
A5,
Def4
.= (((r
(#) f1)
/. c)
- ((r
(#) f2)
/. c)) by
A6,
Def4
.= (((r
(#) f1)
- (r
(#) f2))
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:16
for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds (f1
- f2)
= ((
- 1)
(#) (f2
- f1))
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
A1: (
dom (f1
- f2))
= ((
dom f2)
/\ (
dom f1)) by
Def2
.= (
dom (f2
- f1)) by
Def2
.= (
dom ((
- 1)
(#) (f2
- f1))) by
Def4;
now
A2: (
dom (f1
- f2))
= ((
dom f2)
/\ (
dom f1)) by
Def2
.= (
dom (f2
- f1)) by
Def2;
let c such that
A3: c
in (
dom (f1
- f2));
thus ((f1
- f2)
/. c)
= ((f1
/. c)
- (f2
/. c)) by
A3,
Def2
.= (
- ((f2
/. c)
- (f1
/. c))) by
RLVECT_1: 33
.= ((
- 1)
* ((f2
/. c)
- (f1
/. c))) by
RLVECT_1: 16
.= ((
- 1)
* ((f2
- f1)
/. c)) by
A3,
A2,
Def2
.= (((
- 1)
(#) (f2
- f1))
/. c) by
A1,
A3,
Def4;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:17
for V be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr holds for f1,f2,f3 be
PartFunc of C, V holds (f1
- (f2
+ f3))
= ((f1
- f2)
- f3)
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian non
empty
addLoopStr;
let f1,f2,f3 be
PartFunc of C, V;
A1: (
dom (f1
- (f2
+ f3)))
= ((
dom f1)
/\ (
dom (f2
+ f3))) by
Def2
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
Def1
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
- f2))
/\ (
dom f3)) by
Def2
.= (
dom ((f1
- f2)
- f3)) by
Def2;
now
let c;
assume
A2: c
in (
dom (f1
- (f2
+ f3)));
then c
in ((
dom f1)
/\ (
dom (f2
+ f3))) by
Def2;
then
A3: c
in (
dom (f2
+ f3)) by
XBOOLE_0:def 4;
c
in ((
dom (f1
- f2))
/\ (
dom f3)) by
A1,
A2,
Def2;
then
A4: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
thus ((f1
- (f2
+ f3))
/. c)
= ((f1
/. c)
- ((f2
+ f3)
/. c)) by
A2,
Def2
.= ((f1
/. c)
- ((f2
/. c)
+ (f3
/. c))) by
A3,
Def1
.= (((f1
/. c)
- (f2
/. c))
- (f3
/. c)) by
RLVECT_1: 27
.= (((f1
- f2)
/. c)
- (f3
/. c)) by
A4,
Def2
.= (((f1
- f2)
- f3)
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:18
for V be
scalar-unital non
empty
RLSStruct holds for f be
PartFunc of C, V holds (1
(#) f)
= f
proof
let V be
scalar-unital non
empty
RLSStruct;
let f be
PartFunc of C, V;
A1:
now
let c;
assume c
in (
dom (1
(#) f));
hence ((1
(#) f)
/. c)
= (1
* (f
/. c)) by
Def4
.= (f
/. c) by
RLVECT_1:def 8;
end;
(
dom (1
(#) f))
= (
dom f) by
Def4;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:19
for V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for f1,f2,f3 be
PartFunc of C, V holds (f1
- (f2
- f3))
= ((f1
- f2)
+ f3)
proof
let V be
Abelian
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let f1,f2,f3 be
PartFunc of C, V;
A1: (
dom (f1
- (f2
- f3)))
= ((
dom f1)
/\ (
dom (f2
- f3))) by
Def2
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
Def2
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
- f2))
/\ (
dom f3)) by
Def2
.= (
dom ((f1
- f2)
+ f3)) by
Def1;
now
let c;
assume
A2: c
in (
dom (f1
- (f2
- f3)));
then c
in ((
dom f1)
/\ (
dom (f2
- f3))) by
Def2;
then
A3: c
in (
dom (f2
- f3)) by
XBOOLE_0:def 4;
c
in ((
dom (f1
- f2))
/\ (
dom f3)) by
A1,
A2,
Def1;
then
A4: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
thus ((f1
- (f2
- f3))
/. c)
= ((f1
/. c)
- ((f2
- f3)
/. c)) by
A2,
Def2
.= ((f1
/. c)
- ((f2
/. c)
- (f3
/. c))) by
A3,
Def2
.= (((f1
/. c)
- (f2
/. c))
+ (f3
/. c)) by
RLVECT_1: 29
.= (((f1
- f2)
/. c)
+ (f3
/. c)) by
A4,
Def2
.= (((f1
- f2)
+ f3)
/. c) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:20
for V be
add-associative non
empty
addLoopStr holds for f1,f2,f3 be
PartFunc of C, V holds (f1
+ (f2
- f3))
= ((f1
+ f2)
- f3)
proof
let V be
add-associative non
empty
addLoopStr;
let f1,f2,f3 be
PartFunc of C, V;
A1: (
dom (f1
+ (f2
- f3)))
= ((
dom f1)
/\ (
dom (f2
- f3))) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
Def2
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def1
.= (
dom ((f1
+ f2)
- f3)) by
Def2;
now
let c;
assume
A2: c
in (
dom (f1
+ (f2
- f3)));
then c
in ((
dom f1)
/\ (
dom (f2
- f3))) by
Def1;
then
A3: c
in (
dom (f2
- f3)) by
XBOOLE_0:def 4;
c
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
A1,
A2,
Def2;
then
A4: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
thus ((f1
+ (f2
- f3))
/. c)
= ((f1
/. c)
+ ((f2
- f3)
/. c)) by
A2,
Def1
.= ((f1
/. c)
+ ((f2
/. c)
- (f3
/. c))) by
A3,
Def2
.= (((f1
/. c)
+ (f2
/. c))
- (f3
/. c)) by
RLVECT_1:def 3
.= (((f1
+ f2)
/. c)
- (f3
/. c)) by
A4,
Def1
.= (((f1
+ f2)
- f3)
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:21
for V be
RealNormSpace-like non
empty
NORMSTR holds for f1 be
PartFunc of C,
REAL holds for f2 be
PartFunc of C, V holds
||.(f1
(#) f2).||
= ((
abs f1)
(#)
||.f2.||)
proof
let V be
RealNormSpace-like non
empty
NORMSTR;
let f1 be
PartFunc of C,
REAL ;
let f2 be
PartFunc of C, V;
A1: (
dom
||.(f1
(#) f2).||)
= (
dom (f1
(#) f2)) by
NORMSP_0:def 3
.= ((
dom f1)
/\ (
dom f2)) by
Def3
.= ((
dom f1)
/\ (
dom
||.f2.||)) by
NORMSP_0:def 3
.= ((
dom (
abs f1))
/\ (
dom
||.f2.||)) by
VALUED_1:def 11
.= (
dom ((
abs f1)
(#)
||.f2.||)) by
VALUED_1:def 4;
now
let c;
assume
A2: c
in (
dom
||.(f1
(#) f2).||);
then
A3: c
in (
dom (f1
(#) f2)) by
NORMSP_0:def 3;
c
in ((
dom (
abs f1))
/\ (
dom
||.f2.||)) by
A1,
A2,
VALUED_1:def 4;
then
A4: c
in (
dom
||.f2.||) by
XBOOLE_0:def 4;
thus (
||.(f1
(#) f2).||
. c)
=
||.((f1
(#) f2)
/. c).|| by
A2,
NORMSP_0:def 3
.=
||.((f1
. c)
* (f2
/. c)).|| by
A3,
Def3
.= (
|.(f1
. c).|
*
||.(f2
/. c).||) by
NORMSP_1:def 1
.= (((
abs f1)
. c)
*
||.(f2
/. c).||) by
VALUED_1: 18
.= (((
abs f1)
. c)
* (
||.f2.||
. c)) by
A4,
NORMSP_0:def 3
.= (((
abs f1)
(#)
||.f2.||)
. c) by
VALUED_1: 5;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_1:22
for V be
RealNormSpace-like non
empty
NORMSTR holds for f be
PartFunc of C, V holds
||.(r
(#) f).||
= (
|.r.|
(#)
||.f.||)
proof
let V be
RealNormSpace-like non
empty
NORMSTR;
let f be
PartFunc of C, V;
A1: (
dom
||.(r
(#) f).||)
= (
dom (r
(#) f)) by
NORMSP_0:def 3
.= (
dom f) by
Def4
.= (
dom
||.f.||) by
NORMSP_0:def 3
.= (
dom (
|.r.|
(#)
||.f.||)) by
VALUED_1:def 5;
now
let c;
assume
A2: c
in (
dom
||.(r
(#) f).||);
then
A3: c
in (
dom
||.f.||) by
A1,
VALUED_1:def 5;
A4: c
in (
dom (r
(#) f)) by
A2,
NORMSP_0:def 3;
thus (
||.(r
(#) f).||
. c)
=
||.((r
(#) f)
/. c).|| by
A2,
NORMSP_0:def 3
.=
||.(r
* (f
/. c)).|| by
A4,
Def4
.= (
|.r.|
*
||.(f
/. c).||) by
NORMSP_1:def 1
.= (
|.r.|
* (
||.f.||
. c)) by
A3,
NORMSP_0:def 3
.= ((
|.r.|
(#)
||.f.||)
. c) by
A1,
A2,
VALUED_1:def 5;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_1:23
Th23: for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
vector-distributive non
empty
RLSStruct holds for f be
PartFunc of C, V holds (
- f)
= ((
- 1)
(#) f)
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
vector-distributive non
empty
RLSStruct;
let f be
PartFunc of C, V;
A1: (
dom (
- f))
= (
dom f) by
Def5
.= (
dom ((
- 1)
(#) f)) by
Def4;
now
let c;
assume
A2: c
in (
dom ((
- 1)
(#) f));
hence ((
- f)
/. c)
= (
- (f
/. c)) by
A1,
Def5
.= ((
- 1)
* (f
/. c)) by
RLVECT_1: 16
.= (((
- 1)
(#) f)
/. c) by
A2,
Def4;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:24
Th24: for V be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for f be
PartFunc of C, V holds (
- (
- f))
= f
proof
let V be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let f be
PartFunc of C, V;
A1: (
dom (
- (
- f)))
= (
dom (
- f)) by
Def5;
A2: (
dom (
- f))
= (
dom f) by
Def5;
now
let c;
assume
A3: c
in (
dom f);
hence ((
- (
- f))
/. c)
= (
- ((
- f)
/. c)) by
A1,
A2,
Def5
.= (
- (
- (f
/. c))) by
A2,
A3,
Def5
.= (f
/. c);
end;
hence thesis by
A1,
A2,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:25
Th25: for V be non
empty
addLoopStr holds for f1,f2 be
PartFunc of C, V holds (f1
- f2)
= (f1
+ (
- f2))
proof
let V be non
empty
addLoopStr;
let f1,f2 be
PartFunc of C, V;
A1: (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) by
Def2
.= ((
dom f1)
/\ (
dom (
- f2))) by
Def5
.= (
dom (f1
+ (
- f2))) by
Def1;
now
let c;
assume
A2: c
in (
dom (f1
+ (
- f2)));
then c
in ((
dom f1)
/\ (
dom (
- f2))) by
Def1;
then
A3: c
in (
dom (
- f2)) by
XBOOLE_0:def 4;
thus ((f1
+ (
- f2))
/. c)
= ((f1
/. c)
+ ((
- f2)
/. c)) by
A2,
Def1
.= ((f1
/. c)
- (f2
/. c)) by
A3,
Def5
.= ((f1
- f2)
/. c) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:26
for V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
scalar-associative
vector-distributive non
empty
RLSStruct holds for f1,f2 be
PartFunc of C, V holds (f1
- (
- f2))
= (f1
+ f2)
proof
let V be
add-associative
right_zeroed
right_complementable
Abelian
scalar-distributive
scalar-unital
scalar-associative
vector-distributive non
empty
RLSStruct;
let f1,f2 be
PartFunc of C, V;
thus (f1
- (
- f2))
= (f1
+ (
- (
- f2))) by
Th25
.= (f1
+ f2) by
Th24;
end;
theorem ::
VFUNCT_1:27
Th27: ((f1
+ f2)
| X)
= ((f1
| X)
+ (f2
| X)) & ((f1
+ f2)
| X)
= ((f1
| X)
+ f2) & ((f1
+ f2)
| X)
= (f1
+ (f2
| X))
proof
A1:
now
let c;
assume
A2: c
in (
dom ((f1
+ f2)
| X));
then
A3: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (f1
+ f2)) by
A3,
XBOOLE_0:def 4;
then
A6: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A7: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A6,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A8: c
in (
dom (f1
| X)) by
RELAT_1: 61;
then c
in ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
A7,
XBOOLE_0:def 4;
then
A9: c
in (
dom ((f1
| X)
+ (f2
| X))) by
Def1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A2,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A5,
Def1
.= (((f1
| X)
/. c)
+ (f2
/. c)) by
A8,
PARTFUN2: 15
.= (((f1
| X)
/. c)
+ ((f2
| X)
/. c)) by
A7,
PARTFUN2: 15
.= (((f1
| X)
+ (f2
| X))
/. c) by
A9,
Def1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ (X
/\ X)) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ (X
/\ X))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (((
dom f2)
/\ X)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (X
/\ (
dom (f2
| X)))) by
RELAT_1: 61
.= (((
dom f1)
/\ X)
/\ (
dom (f2
| X))) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom ((f1
| X)
+ (f2
| X))) by
Def1;
hence ((f1
+ f2)
| X)
= ((f1
| X)
+ (f2
| X)) by
A1,
PARTFUN2: 1;
A10:
now
let c;
assume
A11: c
in (
dom ((f1
+ f2)
| X));
then
A12: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A13: c
in X by
XBOOLE_0:def 4;
A14: c
in (
dom (f1
+ f2)) by
A12,
XBOOLE_0:def 4;
then
A15: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A13,
XBOOLE_0:def 4;
then
A16: c
in (
dom (f1
| X)) by
RELAT_1: 61;
c
in (
dom f2) by
A15,
XBOOLE_0:def 4;
then c
in ((
dom (f1
| X))
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then
A17: c
in (
dom ((f1
| X)
+ f2)) by
Def1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A11,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A14,
Def1
.= (((f1
| X)
/. c)
+ (f2
/. c)) by
A16,
PARTFUN2: 15
.= (((f1
| X)
+ f2)
/. c) by
A17,
Def1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def1
.= (((
dom f1)
/\ X)
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom f2)) by
RELAT_1: 61
.= (
dom ((f1
| X)
+ f2)) by
Def1;
hence ((f1
+ f2)
| X)
= ((f1
| X)
+ f2) by
A10,
PARTFUN2: 1;
A18:
now
let c;
assume
A19: c
in (
dom ((f1
+ f2)
| X));
then
A20: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A21: c
in X by
XBOOLE_0:def 4;
A22: c
in (
dom (f1
+ f2)) by
A20,
XBOOLE_0:def 4;
then
A23: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A21,
XBOOLE_0:def 4;
then
A24: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A23,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ (
dom (f2
| X))) by
A24,
XBOOLE_0:def 4;
then
A25: c
in (
dom (f1
+ (f2
| X))) by
Def1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A19,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A22,
Def1
.= ((f1
/. c)
+ ((f2
| X)
/. c)) by
A24,
PARTFUN2: 15
.= ((f1
+ (f2
| X))
/. c) by
A25,
Def1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom (f1
+ (f2
| X))) by
Def1;
hence thesis by
A18,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:28
for f1 be
PartFunc of C,
REAL holds ((f1
(#) f2)
| X)
= ((f1
| X)
(#) (f2
| X)) & ((f1
(#) f2)
| X)
= ((f1
| X)
(#) f2) & ((f1
(#) f2)
| X)
= (f1
(#) (f2
| X))
proof
let f1 be
PartFunc of C,
REAL ;
A1:
now
let c;
assume
A2: c
in (
dom ((f1
(#) f2)
| X));
then
A3: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (f1
(#) f2)) by
A3,
XBOOLE_0:def 4;
then
A6: c
in ((
dom f1)
/\ (
dom f2)) by
Def3;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A7: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A6,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A8: c
in (
dom (f1
| X)) by
RELAT_1: 61;
then c
in ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
A7,
XBOOLE_0:def 4;
then
A9: c
in (
dom ((f1
| X)
(#) (f2
| X))) by
Def3;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A2,
PARTFUN2: 15
.= ((f1
. c)
* (f2
/. c)) by
A5,
Def3
.= (((f1
| X)
. c)
* (f2
/. c)) by
A8,
FUNCT_1: 47
.= (((f1
| X)
. c)
* ((f2
| X)
/. c)) by
A7,
PARTFUN2: 15
.= (((f1
| X)
(#) (f2
| X))
/. c) by
A9,
Def3;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ (X
/\ X)) by
Def3
.= ((
dom f1)
/\ ((
dom f2)
/\ (X
/\ X))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (((
dom f2)
/\ X)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (X
/\ (
dom (f2
| X)))) by
RELAT_1: 61
.= (((
dom f1)
/\ X)
/\ (
dom (f2
| X))) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom ((f1
| X)
(#) (f2
| X))) by
Def3;
hence ((f1
(#) f2)
| X)
= ((f1
| X)
(#) (f2
| X)) by
A1,
PARTFUN2: 1;
A10:
now
let c;
assume
A11: c
in (
dom ((f1
(#) f2)
| X));
then
A12: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A13: c
in X by
XBOOLE_0:def 4;
A14: c
in (
dom (f1
(#) f2)) by
A12,
XBOOLE_0:def 4;
then
A15: c
in ((
dom f1)
/\ (
dom f2)) by
Def3;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A13,
XBOOLE_0:def 4;
then
A16: c
in (
dom (f1
| X)) by
RELAT_1: 61;
c
in (
dom f2) by
A15,
XBOOLE_0:def 4;
then c
in ((
dom (f1
| X))
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then
A17: c
in (
dom ((f1
| X)
(#) f2)) by
Def3;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A11,
PARTFUN2: 15
.= ((f1
. c)
* (f2
/. c)) by
A14,
Def3
.= (((f1
| X)
. c)
* (f2
/. c)) by
A16,
FUNCT_1: 47
.= (((f1
| X)
(#) f2)
/. c) by
A17,
Def3;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def3
.= (((
dom f1)
/\ X)
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom f2)) by
RELAT_1: 61
.= (
dom ((f1
| X)
(#) f2)) by
Def3;
hence ((f1
(#) f2)
| X)
= ((f1
| X)
(#) f2) by
A10,
PARTFUN2: 1;
A18:
now
let c;
assume
A19: c
in (
dom ((f1
(#) f2)
| X));
then
A20: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A21: c
in X by
XBOOLE_0:def 4;
A22: c
in (
dom (f1
(#) f2)) by
A20,
XBOOLE_0:def 4;
then
A23: c
in ((
dom f1)
/\ (
dom f2)) by
Def3;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A21,
XBOOLE_0:def 4;
then
A24: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A23,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ (
dom (f2
| X))) by
A24,
XBOOLE_0:def 4;
then
A25: c
in (
dom (f1
(#) (f2
| X))) by
Def3;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A19,
PARTFUN2: 15
.= ((f1
. c)
* (f2
/. c)) by
A22,
Def3
.= ((f1
. c)
* ((f2
| X)
/. c)) by
A24,
PARTFUN2: 15
.= ((f1
(#) (f2
| X))
/. c) by
A25,
Def3;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def3
.= ((
dom f1)
/\ ((
dom f2)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom (f1
(#) (f2
| X))) by
Def3;
hence thesis by
A18,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:29
Th29: ((
- f)
| X)
= (
- (f
| X)) & (
||.f.||
| X)
=
||.(f
| X).||
proof
A1:
now
let c;
assume
A2: c
in (
dom ((
- f)
| X));
then
A3: c
in ((
dom (
- f))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (
- f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def5;
then c
in ((
dom f)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| X)) by
RELAT_1: 61;
then
A7: c
in (
dom (
- (f
| X))) by
Def5;
thus (((
- f)
| X)
/. c)
= ((
- f)
/. c) by
A2,
PARTFUN2: 15
.= (
- (f
/. c)) by
A5,
Def5
.= (
- ((f
| X)
/. c)) by
A6,
PARTFUN2: 15
.= ((
- (f
| X))
/. c) by
A7,
Def5;
end;
(
dom ((
- f)
| X))
= ((
dom (
- f))
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
Def5
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom (
- (f
| X))) by
Def5;
hence ((
- f)
| X)
= (
- (f
| X)) by
A1,
PARTFUN2: 1;
A8: (
dom (
||.f.||
| X))
= ((
dom
||.f.||)
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
NORMSP_0:def 3
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom
||.(f
| X).||) by
NORMSP_0:def 3;
now
let c;
assume
A9: c
in (
dom (
||.f.||
| X));
then
A10: c
in (
dom (f
| X)) by
A8,
NORMSP_0:def 3;
c
in ((
dom
||.f.||)
/\ X) by
A9,
RELAT_1: 61;
then
A11: c
in (
dom
||.f.||) by
XBOOLE_0:def 4;
thus ((
||.f.||
| X)
. c)
= (
||.f.||
. c) by
A9,
FUNCT_1: 47
.=
||.(f
/. c).|| by
A11,
NORMSP_0:def 3
.=
||.((f
| X)
/. c).|| by
A10,
PARTFUN2: 15
.= (
||.(f
| X).||
. c) by
A8,
A9,
NORMSP_0:def 3;
end;
hence thesis by
A8,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_1:30
((f1
- f2)
| X)
= ((f1
| X)
- (f2
| X)) & ((f1
- f2)
| X)
= ((f1
| X)
- f2) & ((f1
- f2)
| X)
= (f1
- (f2
| X))
proof
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= ((f1
| X)
+ ((
- f2)
| X)) by
Th27
.= ((f1
| X)
+ (
- (f2
| X))) by
Th29
.= ((f1
| X)
- (f2
| X)) by
Th25;
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= ((f1
| X)
+ (
- f2)) by
Th27
.= ((f1
| X)
- f2) by
Th25;
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= (f1
+ ((
- f2)
| X)) by
Th27
.= (f1
+ (
- (f2
| X))) by
Th29
.= (f1
- (f2
| X)) by
Th25;
end;
theorem ::
VFUNCT_1:31
((r
(#) f)
| X)
= (r
(#) (f
| X))
proof
A1:
now
let c;
assume
A2: c
in (
dom ((r
(#) f)
| X));
then
A3: c
in ((
dom (r
(#) f))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (r
(#) f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def4;
then c
in ((
dom f)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| X)) by
RELAT_1: 61;
then
A7: c
in (
dom (r
(#) (f
| X))) by
Def4;
thus (((r
(#) f)
| X)
/. c)
= ((r
(#) f)
/. c) by
A2,
PARTFUN2: 15
.= (r
* (f
/. c)) by
A5,
Def4
.= (r
* ((f
| X)
/. c)) by
A6,
PARTFUN2: 15
.= ((r
(#) (f
| X))
/. c) by
A7,
Def4;
end;
(
dom ((r
(#) f)
| X))
= ((
dom (r
(#) f))
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
Def4
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom (r
(#) (f
| X))) by
Def4;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_1:32
(f1 is
total & f2 is
total iff (f1
+ f2) is
total) & (f1 is
total & f2 is
total iff (f1
- f2) is
total)
proof
thus f1 is
total & f2 is
total iff (f1
+ f2) is
total
proof
thus f1 is
total & f2 is
total implies (f1
+ f2) is
total;
assume (f1
+ f2) is
total;
then ((
dom f1)
/\ (
dom f2))
= C by
Def1;
hence (
dom f1)
= C & (
dom f2)
= C by
XBOOLE_1: 17;
end;
thus f1 is
total & f2 is
total iff (f1
- f2) is
total
proof
thus f1 is
total & f2 is
total implies (f1
- f2) is
total;
assume (f1
- f2) is
total;
then ((
dom f1)
/\ (
dom f2))
= C by
Def2;
hence (
dom f1)
= C & (
dom f2)
= C by
XBOOLE_1: 17;
end;
end;
theorem ::
VFUNCT_1:33
for f1 be
PartFunc of C,
REAL holds (f1 is
total & f2 is
total iff (f1
(#) f2) is
total)
proof
let f1 be
PartFunc of C,
REAL ;
thus f1 is
total & f2 is
total implies (f1
(#) f2) is
total;
assume (f1
(#) f2) is
total;
then ((
dom f1)
/\ (
dom f2))
= C by
Def3;
hence (
dom f1)
= C & (
dom f2)
= C by
XBOOLE_1: 17;
end;
theorem ::
VFUNCT_1:34
f is
total iff (r
(#) f) is
total by
Def4;
theorem ::
VFUNCT_1:35
f is
total iff (
- f) is
total
proof
thus f is
total implies (
- f) is
total;
assume
A1: (
- f) is
total;
(
- f)
= ((
- 1)
(#) f) by
Th23;
hence thesis by
A1,
Def4;
end;
theorem ::
VFUNCT_1:36
f is
total iff
||.f.|| is
total by
NORMSP_0:def 3;
theorem ::
VFUNCT_1:37
f1 is
total & f2 is
total implies ((f1
+ f2)
/. c)
= ((f1
/. c)
+ (f2
/. c)) & ((f1
- f2)
/. c)
= ((f1
/. c)
- (f2
/. c))
proof
assume
A1: f1 is
total & f2 is
total;
then (
dom (f1
+ f2))
= C by
PARTFUN1:def 2;
hence ((f1
+ f2)
/. c)
= ((f1
/. c)
+ (f2
/. c)) by
Def1;
(
dom (f1
- f2))
= C by
A1,
PARTFUN1:def 2;
hence thesis by
Def2;
end;
theorem ::
VFUNCT_1:38
for f1 be
PartFunc of C,
REAL holds f1 is
total & f2 is
total implies ((f1
(#) f2)
/. c)
= ((f1
. c)
* (f2
/. c))
proof
let f1 be
PartFunc of C,
REAL ;
assume f1 is
total & f2 is
total;
then (
dom (f1
(#) f2))
= C by
PARTFUN1:def 2;
hence thesis by
Def3;
end;
theorem ::
VFUNCT_1:39
f is
total implies ((r
(#) f)
/. c)
= (r
* (f
/. c))
proof
assume f is
total;
then (
dom (r
(#) f))
= C by
PARTFUN1:def 2;
hence thesis by
Def4;
end;
theorem ::
VFUNCT_1:40
f is
total implies ((
- f)
/. c)
= (
- (f
/. c)) & (
||.f.||
. c)
=
||.(f
/. c).||
proof
assume
A1: f is
total;
then (
dom (
- f))
= C by
PARTFUN1:def 2;
hence ((
- f)
/. c)
= (
- (f
/. c)) by
Def5;
||.f.|| is
total by
A1,
NORMSP_0:def 3;
hence thesis by
NORMSP_0:def 3;
end;
definition
let C;
let V be non
empty
NORMSTR;
let f be
PartFunc of C, V;
let Y;
::
VFUNCT_1:def6
pred f
is_bounded_on Y means ex r st for c st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r;
end
theorem ::
VFUNCT_1:41
Y
c= X & f
is_bounded_on X implies f
is_bounded_on Y
proof
assume that
A1: Y
c= X and
A2: f
is_bounded_on X;
consider r such that
A3: for c st c
in (X
/\ (
dom f)) holds
||.(f
/. c).||
<= r by
A2;
take r;
let c;
assume c
in (Y
/\ (
dom f));
then c
in Y & c
in (
dom f) by
XBOOLE_0:def 4;
then c
in (X
/\ (
dom f)) by
A1,
XBOOLE_0:def 4;
hence thesis by
A3;
end;
theorem ::
VFUNCT_1:42
X
misses (
dom f) implies f
is_bounded_on X
proof
assume (X
/\ (
dom f))
=
{} ;
then for c holds c
in (X
/\ (
dom f)) implies
||.(f
/. c).||
<=
0 ;
hence thesis;
end;
theorem ::
VFUNCT_1:43
(
0
(#) f)
is_bounded_on Y
proof
now
take p =
0 ;
let c;
(
0
*
||.(f
/. c).||)
=
0 ;
then (
|.
0 .|
*
||.(f
/. c).||)
<=
0 by
ABSVALUE: 2;
then
A1:
||.(
0
* (f
/. c)).||
<=
0 by
NORMSP_1:def 1;
assume c
in (Y
/\ (
dom (
0
(#) f)));
then c
in (
dom (
0
(#) f)) by
XBOOLE_0:def 4;
hence
||.((
0
(#) f)
/. c).||
<= p by
A1,
Def4;
end;
hence thesis;
end;
theorem ::
VFUNCT_1:44
Th44: f
is_bounded_on Y implies (r
(#) f)
is_bounded_on Y
proof
assume f
is_bounded_on Y;
then
consider r1 such that
A1: for c st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r1;
take p = (
|.r.|
*
|.r1.|);
let c;
assume
A2: c
in (Y
/\ (
dom (r
(#) f)));
then
A3: c
in Y by
XBOOLE_0:def 4;
A4: c
in (
dom (r
(#) f)) by
A2,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def4;
then c
in (Y
/\ (
dom f)) by
A3,
XBOOLE_0:def 4;
then
A5:
||.(f
/. c).||
<= r1 by
A1;
r1
<=
|.r1.| by
ABSVALUE: 4;
then
|.r.|
>=
0 &
||.(f
/. c).||
<=
|.r1.| by
A5,
COMPLEX1: 46,
XXREAL_0: 2;
then (
|.r.|
*
||.(f
/. c).||)
<= (
|.r.|
*
|.r1.|) by
XREAL_1: 64;
then
||.(r
* (f
/. c)).||
<= p by
NORMSP_1:def 1;
hence thesis by
A4,
Def4;
end;
theorem ::
VFUNCT_1:45
Th45: f
is_bounded_on Y implies (
||.f.||
| Y) is
bounded & (
- f)
is_bounded_on Y
proof
assume
A1: f
is_bounded_on Y;
then
consider r1 such that
A2: for c st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r1;
now
let c be
object;
assume
A3: c
in (Y
/\ (
dom
||.f.||));
then
A4: c
in Y by
XBOOLE_0:def 4;
A5: c
in (
dom
||.f.||) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
NORMSP_0:def 3;
then c
in (Y
/\ (
dom f)) by
A4,
XBOOLE_0:def 4;
then
||.(f
/. c).||
>=
0 &
||.(f
/. c).||
<= r1 by
A2,
NORMSP_1: 4;
then
|.
||.(f
/. c).||.|
<= r1 by
ABSVALUE:def 1;
hence
|.(
||.f.||
. c).|
<= r1 by
A5,
NORMSP_0:def 3;
end;
hence (
||.f.||
| Y) is
bounded by
RFUNCT_1: 73;
((
- 1)
(#) f)
is_bounded_on Y by
A1,
Th44;
hence thesis by
Th23;
end;
theorem ::
VFUNCT_1:46
Th46: f1
is_bounded_on X & f2
is_bounded_on Y implies (f1
+ f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: f2
is_bounded_on Y;
consider r1 such that
A3: for c st c
in (X
/\ (
dom f1)) holds
||.(f1
/. c).||
<= r1 by
A1;
consider r2 such that
A4: for c st c
in (Y
/\ (
dom f2)) holds
||.(f2
/. c).||
<= r2 by
A2;
take r = (r1
+ r2);
let c;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
+ f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in Y by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
+ f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in (Y
/\ (
dom f2)) by
A7,
XBOOLE_0:def 4;
then
A10:
||.(f2
/. c).||
<= r2 by
A4;
A11: c
in X by
A6,
XBOOLE_0:def 4;
c
in (
dom f1) by
A9,
XBOOLE_0:def 4;
then c
in (X
/\ (
dom f1)) by
A11,
XBOOLE_0:def 4;
then
||.(f1
/. c).||
<= r1 by
A3;
then
||.((f1
/. c)
+ (f2
/. c)).||
<= (
||.(f1
/. c).||
+
||.(f2
/. c).||) & (
||.(f1
/. c).||
+
||.(f2
/. c).||)
<= r by
A10,
NORMSP_1:def 1,
XREAL_1: 7;
then
||.((f1
/. c)
+ (f2
/. c)).||
<= r by
XXREAL_0: 2;
hence thesis by
A8,
Def1;
end;
theorem ::
VFUNCT_1:47
for f1 be
PartFunc of C,
REAL holds (f1
| X) is
bounded & f2
is_bounded_on Y implies (f1
(#) f2)
is_bounded_on (X
/\ Y)
proof
let f1 be
PartFunc of C,
REAL ;
assume that
A1: (f1
| X) is
bounded and
A2: f2
is_bounded_on Y;
consider r1 be
Real such that
A3: for c be
object st c
in (X
/\ (
dom f1)) holds
|.(f1
. c).|
<= r1 by
A1,
RFUNCT_1: 73;
consider r2 such that
A4: for c st c
in (Y
/\ (
dom f2)) holds
||.(f2
/. c).||
<= r2 by
A2;
reconsider r1 as
Real;
now
take r = (r1
* r2);
let c;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
(#) f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in X by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
(#) f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def3;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in (X
/\ (
dom f1)) by
A7,
XBOOLE_0:def 4;
then
A10:
|.(f1
. c).|
<= r1 by
A3;
A11: c
in Y by
A6,
XBOOLE_0:def 4;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then c
in (Y
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
then
A12:
||.(f2
/. c).||
<= r2 by
A4;
0
<=
|.(f1
. c).| &
0
<=
||.(f2
/. c).|| by
COMPLEX1: 46,
NORMSP_1: 4;
then (
|.(f1
. c).|
*
||.(f2
/. c).||)
<= r by
A10,
A12,
XREAL_1: 66;
then
||.((f1
. c)
* (f2
/. c)).||
<= r by
NORMSP_1:def 1;
hence
||.((f1
(#) f2)
/. c).||
<= r by
A8,
Def3;
end;
hence thesis;
end;
theorem ::
VFUNCT_1:48
f1
is_bounded_on X & f2
is_bounded_on Y implies (f1
- f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: f2
is_bounded_on Y;
(
- f2)
is_bounded_on Y by
A2,
Th45;
then (f1
+ (
- f2))
is_bounded_on (X
/\ Y) by
A1,
Th46;
hence thesis by
Th25;
end;
theorem ::
VFUNCT_1:49
f
is_bounded_on X & f
is_bounded_on Y implies f
is_bounded_on (X
\/ Y)
proof
assume that
A1: f
is_bounded_on X and
A2: f
is_bounded_on Y;
consider r1 such that
A3: for c st c
in (X
/\ (
dom f)) holds
||.(f
/. c).||
<= r1 by
A1;
consider r2 such that
A4: for c st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r2 by
A2;
take r = (
|.r1.|
+
|.r2.|);
let c;
assume
A5: c
in ((X
\/ Y)
/\ (
dom f));
then
A6: c
in (
dom f) by
XBOOLE_0:def 4;
A7: c
in (X
\/ Y) by
A5,
XBOOLE_0:def 4;
now
per cases by
A7,
XBOOLE_0:def 3;
suppose c
in X;
then c
in (X
/\ (
dom f)) by
A6,
XBOOLE_0:def 4;
then
A8:
||.(f
/. c).||
<= r1 by
A3;
A9:
0
<=
|.r2.| by
COMPLEX1: 46;
r1
<=
|.r1.| by
ABSVALUE: 4;
then
||.(f
/. c).||
<=
|.r1.| by
A8,
XXREAL_0: 2;
then (
||.(f
/. c).||
+
0 )
<= r by
A9,
XREAL_1: 7;
hence thesis;
end;
suppose c
in Y;
then c
in (Y
/\ (
dom f)) by
A6,
XBOOLE_0:def 4;
then
A10:
||.(f
/. c).||
<= r2 by
A4;
A11:
0
<=
|.r1.| by
COMPLEX1: 46;
r2
<=
|.r2.| by
ABSVALUE: 4;
then
||.(f
/. c).||
<=
|.r2.| by
A10,
XXREAL_0: 2;
then (
0
+
||.(f
/. c).||)
<= r by
A11,
XREAL_1: 7;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
VFUNCT_1:50
(f1
| X) is
constant & (f2
| Y) is
constant implies ((f1
+ f2)
| (X
/\ Y)) is
constant & ((f1
- f2)
| (X
/\ Y)) is
constant
proof
assume that
A1: (f1
| X) is
constant and
A2: (f2
| Y) is
constant;
consider r1 be
VECTOR of V such that
A3: for c st c
in (X
/\ (
dom f1)) holds (f1
/. c)
= r1 by
A1,
PARTFUN2: 35;
consider r2 be
VECTOR of V such that
A4: for c st c
in (Y
/\ (
dom f2)) holds (f2
/. c)
= r2 by
A2,
PARTFUN2: 35;
now
let c;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
+ f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in X by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
+ f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then
A10: c
in (X
/\ (
dom f1)) by
A7,
XBOOLE_0:def 4;
A11: c
in Y by
A6,
XBOOLE_0:def 4;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then
A12: c
in (Y
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
thus ((f1
+ f2)
/. c)
= ((f1
/. c)
+ (f2
/. c)) by
A8,
Def1
.= (r1
+ (f2
/. c)) by
A3,
A10
.= (r1
+ r2) by
A4,
A12;
end;
hence ((f1
+ f2)
| (X
/\ Y)) is
constant by
PARTFUN2: 35;
now
let c;
assume
A13: c
in ((X
/\ Y)
/\ (
dom (f1
- f2)));
then
A14: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A15: c
in X by
XBOOLE_0:def 4;
A16: c
in (
dom (f1
- f2)) by
A13,
XBOOLE_0:def 4;
then
A17: c
in ((
dom f1)
/\ (
dom f2)) by
Def2;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then
A18: c
in (X
/\ (
dom f1)) by
A15,
XBOOLE_0:def 4;
A19: c
in Y by
A14,
XBOOLE_0:def 4;
c
in (
dom f2) by
A17,
XBOOLE_0:def 4;
then
A20: c
in (Y
/\ (
dom f2)) by
A19,
XBOOLE_0:def 4;
thus ((f1
- f2)
/. c)
= ((f1
/. c)
- (f2
/. c)) by
A16,
Def2
.= (r1
- (f2
/. c)) by
A3,
A18
.= (r1
- r2) by
A4,
A20;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_1:51
for f1 be
PartFunc of C,
REAL holds (f1
| X) is
constant & (f2
| Y) is
constant implies ((f1
(#) f2)
| (X
/\ Y)) is
constant
proof
let f1 be
PartFunc of C,
REAL ;
assume that
A1: (f1
| X) is
constant and
A2: (f2
| Y) is
constant;
consider r1 be
Element of
REAL such that
A3: for c st c
in (X
/\ (
dom f1)) holds (f1
. c)
= r1 by
A1,
PARTFUN2: 57;
consider r2 be
VECTOR of V such that
A4: for c st c
in (Y
/\ (
dom f2)) holds (f2
/. c)
= r2 by
A2,
PARTFUN2: 35;
now
let c;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
(#) f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in X by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
(#) f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def3;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then
A10: c
in (X
/\ (
dom f1)) by
A7,
XBOOLE_0:def 4;
A11: c
in Y by
A6,
XBOOLE_0:def 4;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then
A12: c
in (Y
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
thus ((f1
(#) f2)
/. c)
= ((f1
. c)
* (f2
/. c)) by
A8,
Def3
.= (r1
* (f2
/. c)) by
A3,
A10
.= (r1
* r2) by
A4,
A12;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_1:52
Th52: (f
| Y) is
constant implies ((p
(#) f)
| Y) is
constant
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
now
let c;
assume
A2: c
in (Y
/\ (
dom (p
(#) f)));
then
A3: c
in Y by
XBOOLE_0:def 4;
A4: c
in (
dom (p
(#) f)) by
A2,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def4;
then
A5: c
in (Y
/\ (
dom f)) by
A3,
XBOOLE_0:def 4;
thus ((p
(#) f)
/. c)
= (p
* (f
/. c)) by
A4,
Def4
.= (p
* r) by
A1,
A5;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_1:53
Th53: (f
| Y) is
constant implies (
||.f.||
| Y) is
constant & ((
- f)
| Y) is
constant
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
now
let c;
assume
A2: c
in (Y
/\ (
dom
||.f.||));
then
A3: c
in Y by
XBOOLE_0:def 4;
A4: c
in (
dom
||.f.||) by
A2,
XBOOLE_0:def 4;
then c
in (
dom f) by
NORMSP_0:def 3;
then
A5: c
in (Y
/\ (
dom f)) by
A3,
XBOOLE_0:def 4;
thus (
||.f.||
. c)
=
||.(f
/. c).|| by
A4,
NORMSP_0:def 3
.=
||.r.|| by
A1,
A5;
end;
hence (
||.f.||
| Y) is
constant by
PARTFUN2: 57;
now
take p = (
- r);
let c;
assume
A6: c
in (Y
/\ (
dom (
- f)));
then c
in (Y
/\ (
dom f)) by
Def5;
then
A7: (
- (f
/. c))
= p by
A1;
c
in (
dom (
- f)) by
A6,
XBOOLE_0:def 4;
hence ((
- f)
/. c)
= p by
A7,
Def5;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_1:54
Th54: (f
| Y) is
constant implies f
is_bounded_on Y
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
now
take p =
||.r.||;
let c;
assume c
in (Y
/\ (
dom f));
hence
||.(f
/. c).||
<= p by
A1;
end;
hence thesis;
end;
theorem ::
VFUNCT_1:55
(f
| Y) is
constant implies (for r holds (r
(#) f)
is_bounded_on Y) & (
- f)
is_bounded_on Y & (
||.f.||
| Y) is
bounded
proof
assume
A1: (f
| Y) is
constant;
hereby
let r;
((r
(#) f)
| Y) is
constant by
A1,
Th52;
hence (r
(#) f)
is_bounded_on Y by
Th54;
end;
((
- f)
| Y) is
constant by
A1,
Th53;
hence (
- f)
is_bounded_on Y by
Th54;
(
||.f.||
| Y) is
constant by
A1,
Th53;
hence thesis;
end;
theorem ::
VFUNCT_1:56
f1
is_bounded_on X & (f2
| Y) is
constant implies (f1
+ f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: (f2
| Y) is
constant;
f2
is_bounded_on Y by
A2,
Th54;
hence thesis by
A1,
Th46;
end;
theorem ::
VFUNCT_1:57
f1
is_bounded_on X & (f2
| Y) is
constant implies (f1
- f2)
is_bounded_on (X
/\ Y) & (f2
- f1)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: (f2
| Y) is
constant;
A3: f2
is_bounded_on Y by
A2,
Th54;
then (
- f2)
is_bounded_on Y by
Th45;
then
A4: (f1
+ (
- f2))
is_bounded_on (X
/\ Y) by
A1,
Th46;
(
- f1)
is_bounded_on X by
A1,
Th45;
then (f2
+ (
- f1))
is_bounded_on (Y
/\ X) by
A3,
Th46;
hence thesis by
A4,
Th25;
end;