matrix16.miz
begin
reserve i,j,k,n,l for
Element of
NAT ,
K for
Field,
a,b,c for
Element of K,
p,q for
FinSequence of K,
M1,M2,M3 for
Matrix of n, K;
Lm1: for k be
Nat st k
<= n & k
>= 1 holds ((k
- 1)
mod n)
= (k
- 1)
proof
let k be
Nat;
assume that
A1: k
<= n and
A2: k
>= 1;
A3: (k
- 1)
>= (1
- 1) by
A2,
XREAL_1: 9;
A4: (n
- 1)
< n by
XREAL_1: 44;
(k
- 1)
<= (n
- 1) by
A1,
XREAL_1: 9;
then (k
- 1)
< n by
A4,
XXREAL_0: 2;
hence thesis by
A3,
NAT_D: 63;
end;
Lm2: for n,i,j be
Nat st i
in (
Seg n) & j
in (
Seg n) holds (((j
- i)
mod n)
+ 1)
in (
Seg n)
proof
let n,i,j be
Nat;
assume that
A1: i
in (
Seg n) and
A2: j
in (
Seg n);
i
<= n & 1
<= j by
A1,
A2,
FINSEQ_1: 1;
then
A3: (1
- n)
<= (j
- i) by
XREAL_1: 13;
1
<= i & j
<= n by
A1,
A2,
FINSEQ_1: 1;
then
A4: (j
- i)
<= (n
- 1) by
XREAL_1: 13;
(
- n)
<= ((
- n)
+ 1) by
XREAL_1: 29;
then
A5: (
- n)
<= (j
- i) by
A3,
XXREAL_0: 2;
(n
- 1)
< n by
XREAL_1: 44;
then
A6: (j
- i)
< n by
A4,
XXREAL_0: 2;
((j
- i)
mod n)
<= (n
- 1)
proof
per cases ;
suppose
0
<= (j
- i);
hence thesis by
A4,
A6,
NAT_D: 63;
end;
suppose
A7:
0
> (j
- i);
then (j
- i)
<= (
- 1) by
INT_1: 8;
then (n
+ (j
- i))
<= (n
+ (
- 1)) by
XREAL_1: 6;
hence thesis by
A5,
A7,
NAT_D: 63;
end;
end;
then
A8: (((j
- i)
mod n)
+ 1)
<= ((n
- 1)
+ 1) by
XREAL_1: 6;
n
>
0 by
A1,
FINTOPO5: 2;
then ((j
- i)
mod n)
>=
0 by
NAT_D: 62;
then (((j
- i)
mod n)
+ 1)
>= (
0
+ 1) & (((j
- i)
mod n)
+ 1)
in
NAT by
INT_1: 3,
XREAL_1: 6;
hence thesis by
A8;
end;
Lm3: for n,i,j be
Nat holds (
[i, j]
in
[:(
Seg n), (
Seg n):] or
[j, i]
in
[:(
Seg n), (
Seg n):]) implies (((j
- i)
mod n)
+ 1)
in (
Seg n)
proof
let n,i,j be
Nat;
assume
[i, j]
in
[:(
Seg n), (
Seg n):] or
[j, i]
in
[:(
Seg n), (
Seg n):];
then i
in (
Seg n) & j
in (
Seg n) by
ZFMISC_1: 87;
hence thesis by
Lm2;
end;
theorem ::
MATRIX16:1
((
1_ K)
* p)
= p
proof
A1: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A2: (
Seg (
len ((
1_ K)
* p)))
= (
Seg (
len p)) & (
dom ((
1_ K)
* p))
= (
Seg (
len ((
1_ K)
* p))) by
FINSEQ_1:def 3,
MATRIXR1: 16;
for i be
Nat st i
in (
dom p) holds (((
1_ K)
* p)
. i)
= (p
. i)
proof
let i be
Nat;
A3: (
rng p)
c= the
carrier of K by
FINSEQ_1:def 4;
assume
A4: i
in (
dom p);
then
A5: (p
. i)
in (
dom (the
multF of K
[;] ((
1_ K),(
id the
carrier of K)))) by
A2,
A1,
FUNCT_1: 11;
(p
. i)
in (
rng p) by
A4,
FUNCT_1: 3;
then
reconsider b = (p
. i) as
Element of K by
A3;
(((
1_ K)
* p)
. i)
= (((
1_ K)
multfield )
. (p
. i)) by
A4,
FUNCT_1: 13
.= (the
multF of K
. ((
1_ K),((
id the
carrier of K)
. (p
. i)))) by
A5,
FUNCOP_1: 32
.= ((
1_ K)
* b)
.= (p
. i);
hence thesis;
end;
hence thesis by
A2,
A1,
FINSEQ_1: 13;
end;
theorem ::
MATRIX16:2
((
- (
1_ K))
* p)
= (
- p)
proof
A1: (
Seg (
len ((
- (
1_ K))
* p)))
= (
Seg (
len p)) & (
dom ((
- (
1_ K))
* p))
= (
Seg (
len ((
- (
1_ K))
* p))) by
FINSEQ_1:def 3,
MATRIXR1: 16;
A2: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A3: for i be
Nat st i
in (
dom p) holds (((
- (
1_ K))
* p)
. i)
= ((
- p)
. i)
proof
let i be
Nat;
A4: (
rng p)
c= the
carrier of K by
FINSEQ_1:def 4;
assume
A5: i
in (
dom p);
then
A6: (p
. i)
in (
dom (the
multF of K
[;] ((
- (
1_ K)),(
id the
carrier of K)))) by
A1,
A2,
FUNCT_1: 11;
(p
. i)
in (
rng p) by
A5,
FUNCT_1: 3;
then
reconsider b = (p
. i) as
Element of K by
A4;
(((
- (
1_ K))
* b)
+ b)
= (((
- (
1_ K))
* b)
+ ((
1_ K)
* b))
.= (((
- (
1_ K))
+ (
1_ K))
* b) by
VECTSP_1:def 7
.= ((
0. K)
* b) by
RLVECT_1: 5
.= (
0. K);
then (((
- (
1_ K))
* b)
+ (b
+ (
- b)))
= ((
0. K)
+ (
- b)) by
RLVECT_1:def 3;
then ((
0. K)
+ (
- b))
= (((
- (
1_ K))
* b)
+ (
0. K)) by
RLVECT_1: 5
.= ((
- (
1_ K))
* b) by
RLVECT_1: 4;
then
A7: ((
- (
1_ K))
* b)
= (
- b) by
RLVECT_1: 4;
(((
- (
1_ K))
* p)
. i)
= (((
- (
1_ K))
multfield )
. (p
. i)) by
A5,
FUNCT_1: 13
.= (the
multF of K
. ((
- (
1_ K)),((
id the
carrier of K)
. (p
. i)))) by
A6,
FUNCOP_1: 32
.= (the
multF of K
. ((
- (
1_ K)),b))
.= ((
comp K)
. b) by
A7,
VECTSP_1:def 13
.= ((
- p)
. i) by
A5,
FUNCT_1: 13;
hence thesis;
end;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A8: (
len (
- p))
= (
len p) by
CARD_1:def 7;
(
dom (
- p))
= (
Seg (
len (
- p))) & (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
hence thesis by
A1,
A3,
A8,
FINSEQ_1: 13;
end;
definition
let K be
set;
let M be
Matrix of K;
let p be
FinSequence;
::
MATRIX16:def1
pred M
is_line_circulant_about p means (
len p)
= (
width M) & for i,j be
Nat st
[i, j]
in (
Indices M) holds (M
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1));
end
definition
let K be
set;
let M be
Matrix of K;
::
MATRIX16:def2
attr M is
line_circulant means ex p be
FinSequence of K st (
len p)
= (
width M) & M
is_line_circulant_about p;
end
definition
let K be non
empty
set;
let p be
FinSequence of K;
::
MATRIX16:def3
attr p is
first-line-of-circulant means ex M be
Matrix of (
len p), K st M
is_line_circulant_about p;
end
definition
let K be
set;
let M be
Matrix of K;
let p be
FinSequence;
::
MATRIX16:def4
pred M
is_col_circulant_about p means (
len p)
= (
len M) & for i,j be
Nat st
[i, j]
in (
Indices M) holds (M
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1));
end
definition
let K be
set;
let M be
Matrix of K;
::
MATRIX16:def5
attr M is
col_circulant means ex p be
FinSequence of K st (
len p)
= (
len M) & M
is_col_circulant_about p;
end
definition
let K be non
empty
set;
let p be
FinSequence of K;
::
MATRIX16:def6
attr p is
first-col-of-circulant means ex M be
Matrix of (
len p), K st M
is_col_circulant_about p;
end
definition
let K be non
empty
set, p be
FinSequence of K;
assume
A1: p is
first-line-of-circulant;
::
MATRIX16:def7
func
LCirc (p) ->
Matrix of (
len p), K means
:
Def7: it
is_line_circulant_about p;
existence by
A1;
uniqueness
proof
let M1,M2 be
Matrix of (
len p), K;
assume that
A2: M1
is_line_circulant_about p and
A3: M2
is_line_circulant_about p;
A4: (
Indices M1)
= (
Indices M2) by
MATRIX_0: 26;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (M2
* (i,j))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
then (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1)) by
A2;
hence thesis by
A3,
A4,
A5;
end;
hence thesis by
MATRIX_0: 27;
end;
end
definition
let K be non
empty
set, p be
FinSequence of K;
assume
A1: p is
first-col-of-circulant;
::
MATRIX16:def8
func
CCirc (p) ->
Matrix of (
len p), K means
:
Def8: it
is_col_circulant_about p;
existence by
A1;
uniqueness
proof
let M1,M2 be
Matrix of (
len p), K;
assume that
A2: M1
is_col_circulant_about p and
A3: M2
is_col_circulant_about p;
A4: (
Indices M1)
= (
Indices M2) by
MATRIX_0: 26;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (M2
* (i,j))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
then (M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1)) by
A2;
hence thesis by
A3,
A4,
A5;
end;
hence thesis by
MATRIX_0: 27;
end;
end
registration
let K be
Field;
cluster
first-line-of-circulant
first-col-of-circulant for
FinSequence of K;
existence
proof
A1: (
0. (K,1,1))
= (1
|-> (1
|-> (
0. K)));
set M1 = (
0. (K,1));
take p = (1
|-> (
0. K));
A2: (
len (1
|-> (
0. K)))
= 1 by
CARD_1:def 7;
A3: (
Indices (
0. (K,1)))
=
[:(
Seg 1), (
Seg 1):] by
MATRIX_0: 24;
A4: for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
then (((i
- j)
mod 1)
+ 1)
in (
Seg 1) by
A3,
Lm3;
then (((
Seg 1)
--> (
0. K))
. (((i
- j)
mod 1)
+ 1))
= (
0. K) by
FUNCOP_1: 7;
hence thesis by
A2,
A1,
A5,
MATRIX_3: 1;
end;
A6: for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A7:
[i, j]
in (
Indices M1);
then (((j
- i)
mod 1)
+ 1)
in (
Seg 1) by
A3,
Lm3;
then (((
Seg 1)
--> (
0. K))
. (((j
- i)
mod 1)
+ 1))
= (
0. K) by
FUNCOP_1: 7;
hence thesis by
A2,
A1,
A7,
MATRIX_3: 1;
end;
(
width (
0. (K,1)))
= 1 by
MATRIX_0: 24;
then M1
is_line_circulant_about p by
A2,
A6;
hence p is
first-line-of-circulant by
A2;
(
len (
0. (K,1)))
= 1 by
MATRIX_0: 24;
then M1
is_col_circulant_about p by
A2,
A4;
hence thesis by
A2;
end;
end
registration
let K, n;
cluster (
0. (K,n)) ->
line_circulant
col_circulant;
coherence
proof
set p = (n
|-> (
0. K));
A1: (
len (
0. (K,n)))
= n by
MATRIX_0: 24;
A2: (
0. (K,n,n))
= (n
|-> (n
|-> (
0. K)));
set M1 = (
0. (K,n));
A3: (
len (n
|-> (
0. K)))
= n by
CARD_1:def 7;
A4: (
Indices (
0. (K,n)))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
then (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A4,
Lm3;
then (((i
- j)
mod (
len p))
+ 1)
in (
Seg n) by
CARD_1:def 7;
then (((
Seg n)
--> (
0. K))
. (((i
- j)
mod (
len p))
+ 1))
= (
0. K) by
FUNCOP_1: 7;
hence thesis by
A2,
A5,
MATRIX_3: 1;
end;
then
A6: M1
is_col_circulant_about p by
A1,
A3;
A7: (
width (
0. (K,n)))
= n by
MATRIX_0: 24;
thus M1 is
line_circulant
proof
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices M1);
then (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A4,
Lm3;
then (((
Seg n)
--> (
0. K))
. (((j
- i)
mod n)
+ 1))
= (
0. K) by
FUNCOP_1: 7;
hence thesis by
A3,
A2,
A8,
MATRIX_3: 1;
end;
then M1
is_line_circulant_about p by
A7,
A3;
then
consider p be
FinSequence of K such that
A9: (
len p)
= (
width M1) & M1
is_line_circulant_about p;
take p;
thus thesis by
A9;
end;
consider p be
FinSequence of K such that
A10: (
len p)
= (
len M1) & M1
is_col_circulant_about p by
A6;
take p;
thus thesis by
A10;
end;
end
registration
let K;
let n;
let a be
Element of K;
cluster ((n,n)
--> a) ->
line_circulant;
coherence
proof
set p = (n
|-> a);
A1: (
width ((n,n)
--> a))
= n & (
len p)
= n by
CARD_1:def 7,
MATRIX_0: 24;
A2: (
Indices ((n,n)
--> a))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices ((n,n)
--> a)) holds (((n,n)
--> a)
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A3:
[i, j]
in (
Indices ((n,n)
--> a));
then (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A2,
Lm3;
then (((j
- i)
mod (
len p))
+ 1)
in (
Seg n) by
CARD_1:def 7;
then (((
Seg n)
--> a)
. (((j
- i)
mod (
len p))
+ 1))
= a by
FUNCOP_1: 7;
hence thesis by
A3,
MATRIX_0: 46;
end;
then ((n,n)
--> a)
is_line_circulant_about p by
A1;
hence thesis;
end;
cluster ((n,n)
--> a) ->
col_circulant;
coherence
proof
set M1 = ((n,n)
--> a);
set p = (n
|-> a);
A4: (
len ((n,n)
--> a))
= n & (
len p)
= n by
CARD_1:def 7;
A5: (
Indices ((n,n)
--> a))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
A6:
[i, j]
in (
Indices M1);
then (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A5,
Lm3;
then (((i
- j)
mod (
len p))
+ 1)
in (
Seg n) by
CARD_1:def 7;
then (((
Seg n)
--> a)
. (((i
- j)
mod (
len p))
+ 1))
= a by
FUNCOP_1: 7;
hence thesis by
A6,
MATRIX_0: 46;
end;
then M1
is_col_circulant_about p by
A4;
hence thesis;
end;
end
registration
let K;
cluster
line_circulant
col_circulant for
Matrix of K;
existence
proof
take ((1,1)
--> (
0. K));
thus thesis;
end;
end
reserve D for non
empty
set,
t for
FinSequence of D,
A for
Matrix of n, D;
theorem ::
MATRIX16:3
A is
line_circulant & n
>
0 implies (A
@ ) is
col_circulant
proof
assume that
A1: A is
line_circulant and
A2: n
>
0 ;
consider p be
FinSequence of D such that
A3: (
len p)
= (
width A) and
A4: A
is_line_circulant_about p by
A1;
(
width A)
= n by
MATRIX_0: 24;
then
A5: (
len (A
@ ))
= (
len p) by
A2,
A3,
MATRIX_0: 54;
for i,j be
Nat st
[i, j]
in (
Indices (A
@ )) holds ((A
@ )
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
A6: (
Indices A)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume
[i, j]
in (
Indices (A
@ ));
then
[i, j]
in (
Indices A) by
MATRIX_0: 26;
then i
in (
Seg n) & j
in (
Seg n) by
A6,
ZFMISC_1: 87;
then
A7:
[j, i]
in (
Indices A) by
A6,
ZFMISC_1: 87;
then ((A
@ )
* (i,j))
= (A
* (j,i)) by
MATRIX_0:def 6;
hence thesis by
A4,
A7;
end;
then (A
@ )
is_col_circulant_about p by
A5;
then
consider p be
FinSequence of D such that
A8: (
len p)
= (
len (A
@ )) & (A
@ )
is_col_circulant_about p;
take p;
thus thesis by
A8;
end;
theorem ::
MATRIX16:4
A
is_line_circulant_about t & n
>
0 implies t
= (
Line (A,1))
proof
assume that
A1: A
is_line_circulant_about t and
A2: n
>
0 ;
A3: (
width A)
= n by
MATRIX_0: 24;
then
A4: (
dom t)
= (
Seg (
len t)) & (
len t)
= n by
A1,
FINSEQ_1:def 3;
A5: for k be
Nat st k
in (
dom t) holds (t
. k)
= ((
Line (A,1))
. k)
proof
let k be
Nat;
assume
A6: k
in (
dom t);
then
A7: 1
<= k & k
<= n by
A4,
FINSEQ_1: 1;
n
>= (
0
+ 1) by
A2,
INT_1: 7;
then 1
in (
Seg n);
then
[1, k]
in
[:(
Seg n), (
Seg n):] by
A4,
A6,
ZFMISC_1:def 2;
then
A8:
[1, k]
in (
Indices A) by
MATRIX_0: 24;
((
Line (A,1))
. k)
= (A
* (1,k)) by
A3,
A4,
A6,
MATRIX_0:def 7
.= (t
. (((k
- 1)
mod (
len t))
+ 1)) by
A1,
A8
.= (t
. (((k
- 1)
mod n)
+ 1)) by
A1,
A3
.= (t
. ((k
- 1)
+ 1)) by
A7,
Lm1;
hence thesis;
end;
(
len (
Line (A,1)))
= n by
A3,
MATRIX_0:def 7;
then (
dom (
Line (A,1)))
= (
dom t) by
A4,
FINSEQ_1:def 3;
hence thesis by
A5,
FINSEQ_1: 13;
end;
theorem ::
MATRIX16:5
A is
line_circulant &
[i, j]
in
[:(
Seg n), (
Seg n):] & k
= (i
+ 1) & l
= (j
+ 1) & i
< n & j
< n implies (A
* (i,j))
= (A
* (k,l))
proof
assume that
A1: A is
line_circulant and
A2:
[i, j]
in
[:(
Seg n), (
Seg n):] and
A3: k
= (i
+ 1) and
A4: l
= (j
+ 1) and
A5: i
< n and
A6: j
< n;
consider p be
FinSequence of D such that (
len p)
= (
width A) and
A7: A
is_line_circulant_about p by
A1;
A8: (
Indices A)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
j
in (
Seg n) by
A2,
ZFMISC_1: 87;
then 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A9: 1
<= (j
+ 1) by
XXREAL_0: 2;
(j
+ 1)
<= n by
A6,
INT_1: 7;
then
A10: l
in (
Seg n) by
A4,
A9;
i
in (
Seg n) by
A2,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
then
A11: 1
<= (i
+ 1) by
XXREAL_0: 2;
(i
+ 1)
<= n by
A5,
INT_1: 7;
then k
in (
Seg n) by
A3,
A11;
then
[k, l]
in (
Indices A) by
A8,
A10,
ZFMISC_1: 87;
then (A
* (k,l))
= (p
. (((l
- k)
mod (
len p))
+ 1)) by
A7
.= (p
. (((j
- i)
mod (
len p))
+ 1)) by
A3,
A4
.= (A
* (i,j)) by
A2,
A7,
A8;
hence thesis;
end;
theorem ::
MATRIX16:6
Th6: M1 is
line_circulant implies (a
* M1) is
line_circulant
proof
A1: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
line_circulant;
then
consider p be
FinSequence of K such that
A2: (
len p)
= (
width M1) and
A3: M1
is_line_circulant_about p;
A4: (
width M1)
= n by
MATRIX_0: 24;
then
A5: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
A6: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A7: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (a
* M1));
then
A9: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A1,
Lm3;
then
A10: (((j
- i)
mod (
len p))
+ 1)
in (
dom (a
* p)) by
A2,
A4,
A6,
MATRIXR1: 16;
A11:
[i, j]
in (
Indices M1) by
A1,
A8,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A11
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A4,
A5,
A9,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A4,
A5,
A9,
POLYNOM1:def 1
.= ((a
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A10,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
A12: (
width (a
* M1))
= n & (
len (a
* p))
= (
len p) by
MATRIXR1: 16,
MATRIX_0: 24;
(
len p)
= n by
A2,
MATRIX_0: 24;
then (a
* M1)
is_line_circulant_about (a
* p) by
A12,
A7;
then
consider q be
FinSequence of K such that
A13: (
len q)
= (
width (a
* M1)) & (a
* M1)
is_line_circulant_about q;
take q;
thus thesis by
A13;
end;
theorem ::
MATRIX16:7
Th7: M1 is
line_circulant & M2 is
line_circulant implies (M1
+ M2) is
line_circulant
proof
assume that
A1: M1 is
line_circulant and
A2: M2 is
line_circulant;
consider p be
FinSequence of K such that
A3: (
len p)
= (
width M1) and
A4: M1
is_line_circulant_about p by
A1;
A5: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A6: (
Indices (M1
+ M2))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A7: (
width M1)
= n by
MATRIX_0: 24;
then
A8: (
dom p)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
consider q be
FinSequence of K such that
A9: (
len q)
= (
width M2) and
A10: M2
is_line_circulant_about q by
A2;
A11: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A12: (
width M2)
= n by
MATRIX_0: 24;
then (
dom q)
= (
Seg n) by
A9,
FINSEQ_1:def 3;
then
A13: (
dom (p
+ q))
= (
dom p) by
A8,
POLYNOM1: 1;
then
A14: (
len (p
+ q))
= n by
A8,
FINSEQ_1:def 3;
A15: (
width (M1
+ M2))
= n by
MATRIX_0: 24;
A16: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume
A17:
[i, j]
in (
Indices (M1
+ M2));
then
A18: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom (p
+ q)) by
A6,
A8,
A16,
A13,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A11,
A6,
A17,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A10,
A5,
A6,
A17
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A4,
A9,
A11,
A7,
A12,
A6,
A14,
A17
.= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A18,
FUNCOP_1: 22;
hence thesis;
end;
then (M1
+ M2)
is_line_circulant_about (p
+ q) by
A15,
A14;
then
consider r be
FinSequence of K such that
A19: (
len r)
= (
width (M1
+ M2)) & (M1
+ M2)
is_line_circulant_about r;
take r;
thus thesis by
A19;
end;
theorem ::
MATRIX16:8
Th8: M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant implies ((M1
+ M2)
+ M3) is
line_circulant
proof
assume that
A1: M1 is
line_circulant & M2 is
line_circulant and
A2: M3 is
line_circulant;
(M1
+ M2) is
line_circulant by
A1,
Th7;
hence thesis by
A2,
Th7;
end;
theorem ::
MATRIX16:9
M1 is
line_circulant & M2 is
line_circulant implies ((a
* M1)
+ (b
* M2)) is
line_circulant
proof
assume M1 is
line_circulant & M2 is
line_circulant;
then (a
* M1) is
line_circulant & (b
* M2) is
line_circulant by
Th6;
hence thesis by
Th7;
end;
theorem ::
MATRIX16:10
M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant implies (((a
* M1)
+ (b
* M2))
+ (c
* M3)) is
line_circulant
proof
assume that
A1: M1 is
line_circulant & M2 is
line_circulant and
A2: M3 is
line_circulant;
A3: (c
* M3) is
line_circulant by
A2,
Th6;
(a
* M1) is
line_circulant & (b
* M2) is
line_circulant by
A1,
Th6;
hence thesis by
A3,
Th8;
end;
theorem ::
MATRIX16:11
Th11: M1 is
line_circulant implies (
- M1) is
line_circulant
proof
A1: (
width M1)
= n by
MATRIX_0: 24;
A2: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
line_circulant;
then
consider p be
FinSequence of K such that
A3: (
len p)
= (
width M1) and
A4: M1
is_line_circulant_about p;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A5: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A6: (
width (
- M1))
= n & (
len (
- p))
= (
len p) by
CARD_1:def 7,
MATRIX_0: 24;
A7: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) holds ((
- M1)
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
- M1));
then (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A2,
Lm3;
then
A9: (((j
- i)
mod (
len p))
+ 1)
in (
dom p) by
A3,
A1,
FINSEQ_1:def 3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A7,
A2,
A8,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A4,
A7,
A2,
A8
.= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A9,
FUNCT_1: 13;
hence thesis by
A5,
CARD_1:def 7;
end;
then (
- M1)
is_line_circulant_about (
- p) by
A3,
A1,
A6;
then
consider r be
FinSequence of K such that
A10: (
len r)
= (
width (
- M1)) & (
- M1)
is_line_circulant_about r;
take r;
thus thesis by
A10;
end;
theorem ::
MATRIX16:12
M1 is
line_circulant & M2 is
line_circulant implies (M1
- M2) is
line_circulant
proof
assume that
A1: M1 is
line_circulant and
A2: M2 is
line_circulant;
(
- M2) is
line_circulant by
A2,
Th11;
hence thesis by
A1,
Th7;
end;
theorem ::
MATRIX16:13
Th13: M1 is
line_circulant & M2 is
line_circulant implies ((a
* M1)
- (b
* M2)) is
line_circulant
proof
assume that
A1: M1 is
line_circulant and
A2: M2 is
line_circulant;
(b
* M2) is
line_circulant by
A2,
Th6;
then
A3: (
- (b
* M2)) is
line_circulant by
Th11;
(a
* M1) is
line_circulant by
A1,
Th6;
hence thesis by
A3,
Th7;
end;
theorem ::
MATRIX16:14
M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant implies (((a
* M1)
+ (b
* M2))
- (c
* M3)) is
line_circulant
proof
assume that
A1: M1 is
line_circulant & M2 is
line_circulant and
A2: M3 is
line_circulant;
(c
* M3) is
line_circulant by
A2,
Th6;
then
A3: (
- (c
* M3)) is
line_circulant by
Th11;
(a
* M1) is
line_circulant & (b
* M2) is
line_circulant by
A1,
Th6;
then ((a
* M1)
+ (b
* M2)) is
line_circulant by
Th7;
hence thesis by
A3,
Th7;
end;
theorem ::
MATRIX16:15
M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant implies (((a
* M1)
- (b
* M2))
- (c
* M3)) is
line_circulant
proof
assume that
A1: M1 is
line_circulant & M2 is
line_circulant and
A2: M3 is
line_circulant;
(c
* M3) is
line_circulant by
A2,
Th6;
then
A3: (
- (c
* M3)) is
line_circulant by
Th11;
((a
* M1)
- (b
* M2)) is
line_circulant by
A1,
Th13;
hence thesis by
A3,
Th7;
end;
theorem ::
MATRIX16:16
M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant implies (((a
* M1)
- (b
* M2))
+ (c
* M3)) is
line_circulant
proof
assume M1 is
line_circulant & M2 is
line_circulant & M3 is
line_circulant;
then (c
* M3) is
line_circulant & ((a
* M1)
- (b
* M2)) is
line_circulant by
Th6,
Th13;
hence thesis by
Th7;
end;
theorem ::
MATRIX16:17
A is
col_circulant & n
>
0 implies (A
@ ) is
line_circulant
proof
assume that
A1: A is
col_circulant and
A2: n
>
0 ;
consider p be
FinSequence of D such that
A3: (
len p)
= (
len A) and
A4: A
is_col_circulant_about p by
A1;
(
width A)
= n by
MATRIX_0: 24;
then
A5: (
width (A
@ ))
= (
len p) by
A2,
A3,
MATRIX_0: 54;
for i,j be
Nat st
[i, j]
in (
Indices (A
@ )) holds ((A
@ )
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
A6: (
Indices A)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume
[i, j]
in (
Indices (A
@ ));
then
[i, j]
in (
Indices A) by
MATRIX_0: 26;
then i
in (
Seg n) & j
in (
Seg n) by
A6,
ZFMISC_1: 87;
then
A7:
[j, i]
in (
Indices A) by
A6,
ZFMISC_1: 87;
then ((A
@ )
* (i,j))
= (A
* (j,i)) by
MATRIX_0:def 6;
hence thesis by
A4,
A7;
end;
then (A
@ )
is_line_circulant_about p by
A5;
then
consider p be
FinSequence of D such that
A8: (
len p)
= (
width (A
@ )) & (A
@ )
is_line_circulant_about p;
take p;
thus thesis by
A8;
end;
theorem ::
MATRIX16:18
A
is_col_circulant_about t & n
>
0 implies t
= (
Col (A,1))
proof
assume that
A1: A
is_col_circulant_about t and
A2: n
>
0 ;
A3: (
len A)
= n by
MATRIX_0: 24;
then
A4: (
len t)
= n by
A1;
A5: (
dom t)
= (
Seg (
len t)) by
FINSEQ_1:def 3;
(
len (
Col (A,1)))
= n by
A3,
MATRIX_0:def 8;
then
A6: (
dom (
Col (A,1)))
= (
dom t) by
A5,
A4,
FINSEQ_1:def 3;
for k be
Nat st k
in (
dom t) holds (t
. k)
= ((
Col (A,1))
. k)
proof
let k be
Nat;
assume
A7: k
in (
dom t);
then
A8: 1
<= k & k
<= n by
A5,
A4,
FINSEQ_1: 1;
n
>= (
0
+ 1) by
A2,
INT_1: 7;
then 1
in (
Seg n);
then
[k, 1]
in
[:(
Seg n), (
Seg n):] by
A5,
A4,
A7,
ZFMISC_1:def 2;
then
A9:
[k, 1]
in (
Indices A) by
MATRIX_0: 24;
(
len (
Col (A,1)))
= (
len A) by
MATRIX_0:def 8;
then (
dom (
Col (A,1)))
= (
Seg (
len A)) by
FINSEQ_1:def 3;
then k
in (
dom A) by
A6,
A7,
FINSEQ_1:def 3;
then ((
Col (A,1))
. k)
= (A
* (k,1)) by
MATRIX_0:def 8
.= (t
. (((k
- 1)
mod (
len t))
+ 1)) by
A1,
A9
.= (t
. ((k
- 1)
+ 1)) by
A4,
A8,
Lm1;
hence thesis;
end;
hence thesis by
A6,
FINSEQ_1: 13;
end;
theorem ::
MATRIX16:19
A is
col_circulant &
[i, j]
in
[:(
Seg n), (
Seg n):] & k
= (i
+ 1) & l
= (j
+ 1) & i
< n & j
< n implies (A
* (i,j))
= (A
* (k,l))
proof
assume that
A1: A is
col_circulant and
A2:
[i, j]
in
[:(
Seg n), (
Seg n):] and
A3: k
= (i
+ 1) and
A4: l
= (j
+ 1) and
A5: i
< n and
A6: j
< n;
A7:
[i, j]
in (
Indices A) by
A2,
MATRIX_0: 24;
j
in (
Seg n) by
A2,
ZFMISC_1: 87;
then 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A8: 1
<= l by
A4,
XXREAL_0: 2;
l
<= n by
A4,
A6,
INT_1: 7;
then
A9: l
in (
Seg n) by
A8;
i
in (
Seg n) by
A2,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
then
A10: 1
<= k by
A3,
XXREAL_0: 2;
consider p be
FinSequence of D such that (
len p)
= (
len A) and
A11: A
is_col_circulant_about p by
A1;
k
<= n by
A3,
A5,
INT_1: 7;
then (
Indices A)
=
[:(
Seg n), (
Seg n):] & k
in (
Seg n) by
A10,
MATRIX_0: 24;
then
[k, l]
in (
Indices A) by
A9,
ZFMISC_1: 87;
then (A
* (k,l))
= (p
. (((k
- l)
mod (
len p))
+ 1)) by
A11
.= (p
. (((i
- j)
mod (
len p))
+ 1)) by
A3,
A4
.= (A
* (i,j)) by
A11,
A7;
hence thesis;
end;
theorem ::
MATRIX16:20
Th20: M1 is
col_circulant implies (a
* M1) is
col_circulant
proof
A1: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
col_circulant;
then
consider p be
FinSequence of K such that
A2: (
len p)
= (
len M1) and
A3: M1
is_col_circulant_about p;
A4: (
len M1)
= n by
MATRIX_0: 24;
then
A5: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
A6: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
A7: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A8: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume
[i, j]
in (
Indices (a
* M1));
then
A9:
[i, j]
in (
Indices M1) by
MATRIX_0: 26;
then
A10: (((i
- j)
mod (
len p))
+ 1)
in (
Seg n) by
A2,
A1,
A4,
Lm3;
((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
A9,
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A3,
A9
.= ((a
multfield )
. (p
/. (((i
- j)
mod (
len p))
+ 1))) by
A5,
A10,
PARTFUN1:def 6
.= (a
* (p
/. (((i
- j)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((i
- j)
mod (
len p))
+ 1)) by
A5,
A10,
POLYNOM1:def 1
.= ((a
* p)
. (((i
- j)
mod (
len p))
+ 1)) by
A2,
A4,
A6,
A7,
A10,
PARTFUN1:def 6;
hence thesis;
end;
A11: (
len (a
* M1))
= n by
MATRIX_0: 24;
(
len p)
= n by
A2,
MATRIX_0: 24;
then (a
* M1)
is_col_circulant_about (a
* p) by
A11,
A6,
A8;
then
consider q be
FinSequence of K such that
A12: (
len q)
= (
len (a
* M1)) & (a
* M1)
is_col_circulant_about q;
take q;
thus thesis by
A12;
end;
theorem ::
MATRIX16:21
Th21: M1 is
col_circulant & M2 is
col_circulant implies (M1
+ M2) is
col_circulant
proof
assume that
A1: M1 is
col_circulant and
A2: M2 is
col_circulant;
consider p be
FinSequence of K such that
A3: (
len p)
= (
len M1) and
A4: M1
is_col_circulant_about p by
A1;
A5: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A6: (
Indices (M1
+ M2))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
consider q be
FinSequence of K such that
A7: (
len q)
= (
len M2) and
A8: M2
is_col_circulant_about q by
A2;
A9: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A10: (
len (M1
+ M2))
= n by
MATRIX_0: 24;
A11: (
len M1)
= n by
MATRIX_0: 24;
then
A12: (
dom p)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
A13: (
len M2)
= n by
MATRIX_0: 24;
then (
dom q)
= (
Seg n) by
A7,
FINSEQ_1:def 3;
then
A14: (
dom (p
+ q))
= (
dom p) by
A12,
POLYNOM1: 1;
then
A15: (
len (p
+ q))
= n by
A12,
FINSEQ_1:def 3;
A16: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (((i
- j)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume
A17:
[i, j]
in (
Indices (M1
+ M2));
then
A18: (((i
- j)
mod (
len (p
+ q)))
+ 1)
in (
Seg n) by
A6,
A12,
A16,
A14,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A9,
A6,
A17,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((i
- j)
mod (
len q))
+ 1)))) by
A8,
A5,
A6,
A17
.= (the
addF of K
. ((p
. (((i
- j)
mod (
len (p
+ q)))
+ 1)),(q
. (((i
- j)
mod (
len (p
+ q)))
+ 1)))) by
A4,
A7,
A9,
A11,
A13,
A6,
A15,
A17
.= ((p
+ q)
. (((i
- j)
mod (
len (p
+ q)))
+ 1)) by
A12,
A14,
A18,
FUNCOP_1: 22;
hence thesis;
end;
then (M1
+ M2)
is_col_circulant_about (p
+ q) by
A10,
A15;
then
consider r be
FinSequence of K such that
A19: (
len r)
= (
len (M1
+ M2)) & (M1
+ M2)
is_col_circulant_about r;
take r;
thus thesis by
A19;
end;
theorem ::
MATRIX16:22
Th22: M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant implies ((M1
+ M2)
+ M3) is
col_circulant
proof
assume that
A1: M1 is
col_circulant & M2 is
col_circulant and
A2: M3 is
col_circulant;
(M1
+ M2) is
col_circulant by
A1,
Th21;
hence thesis by
A2,
Th21;
end;
theorem ::
MATRIX16:23
M1 is
col_circulant & M2 is
col_circulant implies ((a
* M1)
+ (b
* M2)) is
col_circulant
proof
assume M1 is
col_circulant & M2 is
col_circulant;
then (a
* M1) is
col_circulant & (b
* M2) is
col_circulant by
Th20;
hence thesis by
Th21;
end;
theorem ::
MATRIX16:24
M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant implies (((a
* M1)
+ (b
* M2))
+ (c
* M3)) is
col_circulant
proof
assume that
A1: M1 is
col_circulant & M2 is
col_circulant and
A2: M3 is
col_circulant;
A3: (c
* M3) is
col_circulant by
A2,
Th20;
(a
* M1) is
col_circulant & (b
* M2) is
col_circulant by
A1,
Th20;
hence thesis by
A3,
Th22;
end;
theorem ::
MATRIX16:25
Th25: M1 is
col_circulant implies (
- M1) is
col_circulant
proof
A1: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A2: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
col_circulant;
then
consider p be
FinSequence of K such that
A3: (
len p)
= (
len M1) and
A4: M1
is_col_circulant_about p;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A5: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A6: (
len (
- M1))
= n & (
len (
- p))
= (
len p) by
CARD_1:def 7,
MATRIX_0: 24;
A7: (
len M1)
= n by
MATRIX_0: 24;
then
A8: (
dom p)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) holds ((
- M1)
* (i,j))
= ((
- p)
. (((i
- j)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume
A9:
[i, j]
in (
Indices (
- M1));
then
A10: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A2,
Lm3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A1,
A2,
A9,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A4,
A1,
A2,
A9
.= ((
- p)
. (((i
- j)
mod (
len p))
+ 1)) by
A3,
A7,
A8,
A10,
FUNCT_1: 13;
hence thesis by
A5,
CARD_1:def 7;
end;
then (
- M1)
is_col_circulant_about (
- p) by
A3,
A7,
A6;
then
consider r be
FinSequence of K such that
A11: (
len r)
= (
len (
- M1)) & (
- M1)
is_col_circulant_about r;
take r;
thus thesis by
A11;
end;
theorem ::
MATRIX16:26
M1 is
col_circulant & M2 is
col_circulant implies (M1
- M2) is
col_circulant
proof
assume that
A1: M1 is
col_circulant and
A2: M2 is
col_circulant;
(
- M2) is
col_circulant by
A2,
Th25;
hence thesis by
A1,
Th21;
end;
theorem ::
MATRIX16:27
Th27: M1 is
col_circulant & M2 is
col_circulant implies ((a
* M1)
- (b
* M2)) is
col_circulant
proof
assume that
A1: M1 is
col_circulant and
A2: M2 is
col_circulant;
(b
* M2) is
col_circulant by
A2,
Th20;
then
A3: (
- (b
* M2)) is
col_circulant by
Th25;
(a
* M1) is
col_circulant by
A1,
Th20;
hence thesis by
A3,
Th21;
end;
theorem ::
MATRIX16:28
M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant implies (((a
* M1)
+ (b
* M2))
- (c
* M3)) is
col_circulant
proof
assume that
A1: M1 is
col_circulant & M2 is
col_circulant and
A2: M3 is
col_circulant;
(c
* M3) is
col_circulant by
A2,
Th20;
then
A3: (
- (c
* M3)) is
col_circulant by
Th25;
(a
* M1) is
col_circulant & (b
* M2) is
col_circulant by
A1,
Th20;
then ((a
* M1)
+ (b
* M2)) is
col_circulant by
Th21;
hence thesis by
A3,
Th21;
end;
theorem ::
MATRIX16:29
M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant implies (((a
* M1)
- (b
* M2))
- (c
* M3)) is
col_circulant
proof
assume that
A1: M1 is
col_circulant & M2 is
col_circulant and
A2: M3 is
col_circulant;
(c
* M3) is
col_circulant by
A2,
Th20;
then
A3: (
- (c
* M3)) is
col_circulant by
Th25;
((a
* M1)
- (b
* M2)) is
col_circulant by
A1,
Th27;
hence thesis by
A3,
Th21;
end;
theorem ::
MATRIX16:30
M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant implies (((a
* M1)
- (b
* M2))
+ (c
* M3)) is
col_circulant
proof
assume M1 is
col_circulant & M2 is
col_circulant & M3 is
col_circulant;
then (c
* M3) is
col_circulant & ((a
* M1)
- (b
* M2)) is
col_circulant by
Th20,
Th27;
hence thesis by
Th21;
end;
theorem ::
MATRIX16:31
Th31: p is
first-line-of-circulant implies (
- p) is
first-line-of-circulant
proof
set n = (
len p);
assume p is
first-line-of-circulant;
then
consider M1 be
Matrix of (
len p), K such that
A1: M1
is_line_circulant_about p;
set M2 = (
- M1);
A2: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A3: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A4: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A5: (
len (
- p))
= (
len p) by
CARD_1:def 7;
A6: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) holds ((
- M1)
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
- M1));
then
A9: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
Lm3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A2,
A3,
A8,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A1,
A2,
A3,
A8
.= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A6,
A9,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
(
width (
- M1))
= n by
MATRIX_0: 24;
then M2
is_line_circulant_about (
- p) by
A5,
A7;
then
consider M2 be
Matrix of (
len (
- p)), K such that
A10: M2
is_line_circulant_about (
- p) by
A5;
take M2;
thus thesis by
A10;
end;
theorem ::
MATRIX16:32
p is
first-line-of-circulant implies (
LCirc (
- p))
= (
- (
LCirc p))
proof
set n = (
len p);
A1: (
len (
LCirc p))
= (
len p) & (
width (
LCirc p))
= (
len p) by
MATRIX_0: 24;
A2: (
Indices (
LCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A3: (
len (
- p))
= (
len p) by
CARD_1:def 7;
assume
A4: p is
first-line-of-circulant;
then (
- p) is
first-line-of-circulant by
Th31;
then
A5: (
LCirc (
- p))
is_line_circulant_about (
- p) by
Def7;
A6: (
LCirc p)
is_line_circulant_about p by
A4,
Def7;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
LCirc p)) holds ((
LCirc (
- p))
* (i,j))
= (
- ((
LCirc p)
* (i,j)))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
LCirc p));
then (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A2,
Lm3;
then
A9: (((j
- i)
mod (
len p))
+ 1)
in (
dom p) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
LCirc (
- p))) by
A3,
A8,
MATRIX_0: 26;
then ((
LCirc (
- p))
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len (
- p)))
+ 1)) by
A5
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A9,
FUNCT_1: 13
.= ((
comp K)
. ((
LCirc p)
* (i,j))) by
A6,
A8
.= (
- ((
LCirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
(
len (
LCirc (
- p)))
= (
len p) & (
width (
LCirc (
- p)))
= (
len p) by
A3,
MATRIX_0: 24;
hence thesis by
A1,
A7,
MATRIX_3:def 2;
end;
theorem ::
MATRIX16:33
Th33: p is
first-line-of-circulant & q is
first-line-of-circulant & (
len p)
= (
len q) implies (p
+ q) is
first-line-of-circulant
proof
set n = (
len p);
assume that
A1: p is
first-line-of-circulant and
A2: q is
first-line-of-circulant and
A3: (
len p)
= (
len q);
consider M2 be
Matrix of n, K such that
A4: M2
is_line_circulant_about q by
A2,
A3;
A5: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
(
dom q)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
then
A7: (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A8: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
consider M1 be
Matrix of n, K such that
A9: M1
is_line_circulant_about p by
A1;
A10: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
set M3 = (M1
+ M2);
A11: (
width (M1
+ M2))
= n by
MATRIX_0: 24;
A12: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M3) holds (M3
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume
A13:
[i, j]
in (
Indices (M1
+ M2));
then
A14:
[i, j]
in (
Indices M1) by
A10,
MATRIX_0: 24;
then
A15: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom (p
+ q)) by
A10,
A6,
A5,
A7,
Lm3;
A16:
[i, j]
in (
Indices M2) by
A12,
A13,
MATRIX_0: 24;
(M3
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A14,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A4,
A16
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A3,
A9,
A8,
A14
.= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A15,
FUNCOP_1: 22;
hence thesis;
end;
then (M1
+ M2)
is_line_circulant_about (p
+ q) by
A11,
A8;
then
consider M3 be
Matrix of (
len (p
+ q)), K such that (
len (p
+ q))
= (
width M3) and
A17: M3
is_line_circulant_about (p
+ q) by
A11;
take M3;
thus thesis by
A17;
end;
theorem ::
MATRIX16:34
Th34: (
len p)
= (
len q) & p is
first-line-of-circulant & q is
first-line-of-circulant implies (
LCirc (p
+ q))
= ((
LCirc p)
+ (
LCirc q))
proof
set n = (
len p);
assume that
A1: (
len p)
= (
len q) and
A2: p is
first-line-of-circulant and
A3: q is
first-line-of-circulant;
A4: (
LCirc q)
is_line_circulant_about q & (
Indices (
LCirc p))
= (
Indices (
LCirc q)) by
A1,
A3,
Def7,
MATRIX_0: 26;
(p
+ q) is
first-line-of-circulant by
A1,
A2,
A3,
Th33;
then
A5: (
LCirc (p
+ q))
is_line_circulant_about (p
+ q) by
Def7;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
A7: (
LCirc p)
is_line_circulant_about p by
A2,
Def7;
A8: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A9: (
Indices (
LCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
(
dom q)
= (
Seg n) by
A1,
FINSEQ_1:def 3;
then (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A10: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
then
A11: (
Indices (
LCirc p))
= (
Indices (
LCirc (p
+ q))) by
MATRIX_0: 26;
A12: for i,j be
Nat holds
[i, j]
in (
Indices (
LCirc p)) implies ((
LCirc (p
+ q))
* (i,j))
= (((
LCirc p)
* (i,j))
+ ((
LCirc q)
* (i,j)))
proof
let i,j be
Nat;
assume
A13:
[i, j]
in (
Indices (
LCirc p));
then
A14: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A9,
Lm3;
((
LCirc (p
+ q))
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A5,
A11,
A13
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A8,
A10,
A14,
FUNCOP_1: 22
.= (the
addF of K
. (((
LCirc p)
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A1,
A10,
A7,
A13
.= (((
LCirc p)
* (i,j))
+ ((
LCirc q)
* (i,j))) by
A4,
A13;
hence thesis;
end;
A15: (
len (
LCirc p))
= (
len p) & (
width (
LCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
LCirc (p
+ q)))
= (
len p) & (
width (
LCirc (p
+ q)))
= (
len p) by
A10,
MATRIX_0: 24;
hence thesis by
A15,
A12,
MATRIX_3:def 3;
end;
theorem ::
MATRIX16:35
Th35: p is
first-col-of-circulant implies (
- p) is
first-col-of-circulant
proof
set n = (
len p);
assume p is
first-col-of-circulant;
then
consider M1 be
Matrix of n, K such that
A1: M1
is_col_circulant_about p;
set M2 = (
- M1);
A2: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A3: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A4: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A5: (
len (
- p))
= (
len p) by
CARD_1:def 7;
A6: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) holds ((
- M1)
* (i,j))
= ((
- p)
. (((i
- j)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
- M1));
then
A9: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A3,
Lm3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A2,
A3,
A8,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A1,
A2,
A3,
A8
.= ((
- p)
. (((i
- j)
mod (
len p))
+ 1)) by
A6,
A9,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
(
len (
- M1))
= n by
MATRIX_0: 24;
then M2
is_col_circulant_about (
- p) by
A5,
A7;
then
consider M2 be
Matrix of (
len (
- p)), K such that
A10: M2
is_col_circulant_about (
- p) by
A5;
take M2;
thus thesis by
A10;
end;
theorem ::
MATRIX16:36
for p be
FinSequence of K st p is
first-col-of-circulant holds (
CCirc (
- p))
= (
- (
CCirc p))
proof
let p;
set n = (
len p);
A1: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A2: (
Indices (
CCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume
A3: p is
first-col-of-circulant;
then
A4: (
CCirc p)
is_col_circulant_about p by
Def8;
(
- p) is
first-col-of-circulant by
A3,
Th35;
then
A5: (
CCirc (
- p))
is_col_circulant_about (
- p) by
Def8;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A6: (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A7: (
Indices (
CCirc p))
= (
Indices (
CCirc (
- p))) by
MATRIX_0: 26;
A8: for i,j be
Nat st
[i, j]
in (
Indices (
CCirc p)) holds ((
CCirc (
- p))
* (i,j))
= (
- ((
CCirc p)
* (i,j)))
proof
let i,j be
Nat;
assume
A9:
[i, j]
in (
Indices (
CCirc p));
then
A10: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A2,
Lm3;
((
CCirc (
- p))
* (i,j))
= ((
- p)
. (((i
- j)
mod (
len (
- p)))
+ 1)) by
A5,
A7,
A9
.= ((
comp K)
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A6,
A1,
A10,
FUNCT_1: 13
.= ((
comp K)
. ((
CCirc p)
* (i,j))) by
A4,
A9
.= (
- ((
CCirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
A11: (
len (
CCirc p))
= (
len p) & (
width (
CCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
CCirc (
- p)))
= (
len p) & (
width (
CCirc (
- p)))
= (
len p) by
A6,
MATRIX_0: 24;
hence thesis by
A11,
A8,
MATRIX_3:def 2;
end;
theorem ::
MATRIX16:37
Th37: p is
first-col-of-circulant & q is
first-col-of-circulant & (
len p)
= (
len q) implies (p
+ q) is
first-col-of-circulant
proof
set n = (
len p);
assume that
A1: p is
first-col-of-circulant and
A2: q is
first-col-of-circulant and
A3: (
len p)
= (
len q);
consider M2 be
Matrix of n, K such that
A4: M2
is_col_circulant_about q by
A2,
A3;
A5: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
(
dom q)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
then
A7: (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A8: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
consider M1 be
Matrix of n, K such that
A9: M1
is_col_circulant_about p by
A1;
A10: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
set M3 = (M1
+ M2);
A11: (
len (M1
+ M2))
= n by
MATRIX_0: 24;
A12: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M3) holds (M3
* (i,j))
= ((p
+ q)
. (((i
- j)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume
A13:
[i, j]
in (
Indices (M1
+ M2));
then
A14:
[i, j]
in (
Indices M1) by
A10,
MATRIX_0: 24;
then
A15: (((i
- j)
mod (
len (p
+ q)))
+ 1)
in (
dom (p
+ q)) by
A10,
A6,
A5,
A7,
Lm3;
A16:
[i, j]
in (
Indices M2) by
A12,
A13,
MATRIX_0: 24;
(M3
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A14,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((i
- j)
mod (
len q))
+ 1)))) by
A4,
A16
.= (the
addF of K
. ((p
. (((i
- j)
mod (
len (p
+ q)))
+ 1)),(q
. (((i
- j)
mod (
len (p
+ q)))
+ 1)))) by
A3,
A9,
A8,
A14
.= ((p
+ q)
. (((i
- j)
mod (
len (p
+ q)))
+ 1)) by
A15,
FUNCOP_1: 22;
hence thesis;
end;
then (M1
+ M2)
is_col_circulant_about (p
+ q) by
A11,
A8;
then
consider M3 be
Matrix of (
len (p
+ q)), K such that (
len (p
+ q))
= (
len M3) and
A17: M3
is_col_circulant_about (p
+ q) by
A11;
take M3;
thus thesis by
A17;
end;
theorem ::
MATRIX16:38
Th38: (
len p)
= (
len q) & p is
first-col-of-circulant & q is
first-col-of-circulant implies (
CCirc (p
+ q))
= ((
CCirc p)
+ (
CCirc q))
proof
set n = (
len p);
assume that
A1: (
len p)
= (
len q) and
A2: p is
first-col-of-circulant and
A3: q is
first-col-of-circulant;
A4: (
CCirc q)
is_col_circulant_about q & (
Indices (
CCirc p))
= (
Indices (
CCirc q)) by
A1,
A3,
Def8,
MATRIX_0: 26;
(p
+ q) is
first-col-of-circulant by
A1,
A2,
A3,
Th37;
then
A5: (
CCirc (p
+ q))
is_col_circulant_about (p
+ q) by
Def8;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
A7: (
CCirc p)
is_col_circulant_about p by
A2,
Def8;
A8: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A9: (
Indices (
CCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
(
dom q)
= (
Seg n) by
A1,
FINSEQ_1:def 3;
then (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A10: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
then
A11: (
Indices (
CCirc p))
= (
Indices (
CCirc (p
+ q))) by
MATRIX_0: 26;
A12: for i,j be
Nat holds
[i, j]
in (
Indices (
CCirc p)) implies ((
CCirc (p
+ q))
* (i,j))
= (((
CCirc p)
* (i,j))
+ ((
CCirc q)
* (i,j)))
proof
let i,j be
Nat;
assume
A13:
[i, j]
in (
Indices (
CCirc p));
then
A14: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A9,
Lm3;
((
CCirc (p
+ q))
* (i,j))
= ((p
+ q)
. (((i
- j)
mod (
len (p
+ q)))
+ 1)) by
A5,
A11,
A13
.= (the
addF of K
. ((p
. (((i
- j)
mod (
len (p
+ q)))
+ 1)),(q
. (((i
- j)
mod (
len (p
+ q)))
+ 1)))) by
A8,
A10,
A14,
FUNCOP_1: 22
.= (the
addF of K
. (((
CCirc p)
* (i,j)),(q
. (((i
- j)
mod (
len q))
+ 1)))) by
A1,
A10,
A7,
A13
.= (((
CCirc p)
* (i,j))
+ ((
CCirc q)
* (i,j))) by
A4,
A13;
hence thesis;
end;
A15: (
len (
CCirc p))
= (
len p) & (
width (
CCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
CCirc (p
+ q)))
= (
len p) & (
width (
CCirc (p
+ q)))
= (
len p) by
A10,
MATRIX_0: 24;
hence thesis by
A15,
A12,
MATRIX_3:def 3;
end;
theorem ::
MATRIX16:39
n
>
0 implies (
1. (K,n)) is
col_circulant
proof
assume
A1: n
>
0 ;
set M1 = (
1. (K,n));
A2: (
Indices (
1. (K,n)))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
set p = (
Col (M1,1));
A3: (
len (
1. (K,n)))
= n by
MATRIX_0: 24;
then
A4: (
len p)
= n by
MATRIX_0:def 8;
A5: (
dom M1)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
A6: (
width (
1. (K,n)))
= n by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
A7: ((i
- j)
mod n)
>=
0 by
A1,
NAT_D: 62;
then
A8: (((i
- j)
mod n)
+ 1)
in
NAT by
INT_1: 3;
assume
A9:
[i, j]
in (
Indices M1);
then
A10: j
in (
Seg n) by
A2,
ZFMISC_1: 87;
then
A11: 1
<= j by
FINSEQ_1: 1;
A12: j
<= n by
A10,
FINSEQ_1: 1;
A13: i
in (
Seg n) by
A2,
A9,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then
A14: (1
- n)
<= (i
- j) by
A12,
XREAL_1: 13;
(
- n)
<= ((
- n)
+ 1) by
XREAL_1: 29;
then
A15: (
- n)
<= (i
- j) by
A14,
XXREAL_0: 2;
i
<= n by
A13,
FINSEQ_1: 1;
then
A16: (i
- j)
<= (n
- 1) by
A11,
XREAL_1: 13;
(n
- 1)
< n by
XREAL_1: 44;
then
A17: (i
- j)
< n by
A16,
XXREAL_0: 2;
((i
- j)
mod n)
<= (n
- 1)
proof
per cases ;
suppose
0
<= (i
- j);
hence thesis by
A16,
A17,
NAT_D: 63;
end;
suppose
A18:
0
> (i
- j);
then (i
- j)
<= (
- 1) by
INT_1: 8;
then (n
+ (i
- j))
<= (n
+ (
- 1)) by
XREAL_1: 6;
hence thesis by
A15,
A18,
NAT_D: 63;
end;
end;
then
A19: (((i
- j)
mod n)
+ 1)
<= ((n
- 1)
+ 1) by
XREAL_1: 6;
(((i
- j)
mod n)
+ 1)
>= (
0
+ 1) by
A7,
XREAL_1: 6;
then
A20: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A19,
A8;
then
A21: (((i
- j)
mod (
len p))
+ 1)
in (
Seg n) by
A3,
MATRIX_0:def 8;
(M1
* (i,j))
= (p
. (((i
- j)
mod (
len p))
+ 1))
proof
per cases ;
suppose
A22: i
= j;
(
0
+ 1)
<= n by
A1,
NAT_1: 13;
then 1
in (
Seg n);
then
A23:
[1, 1]
in (
Indices M1) by
A2,
ZFMISC_1: 87;
((i
- j)
mod (
len p))
=
0 by
A1,
A4,
A22,
NAT_D: 63;
then (p
. (((i
- j)
mod (
len p))
+ 1))
= (M1
* (1,1)) by
A5,
A21,
MATRIX_0:def 8
.= (
1_ K) by
A23,
MATRIX_1:def 3;
hence thesis by
A9,
A22,
MATRIX_1:def 3;
end;
suppose
A24: i
<> j;
then
A25: (i
- j)
<>
0 ;
((i
- j)
mod n)
<>
0
proof
per cases ;
suppose
0
<= (i
- j);
hence thesis by
A17,
A25,
NAT_D: 63;
end;
suppose
A26:
0
> (i
- j);
((1
- n)
+ n)
<= ((i
- j)
+ n) by
A14,
XREAL_1: 6;
hence thesis by
A15,
A26,
NAT_D: 63;
end;
end;
then
A27: (((i
- j)
mod (
len p))
+ 1)
<> 1 by
A3,
MATRIX_0:def 8;
set l = (((i
- j)
mod (
len p))
+ 1);
reconsider l as
Nat by
A3,
A8,
MATRIX_0:def 8;
(
0
+ 1)
<= n by
A1,
NAT_1: 13;
then
A28: 1
in (
Seg n);
l
in (
dom M1) by
A3,
A4,
A20,
FINSEQ_1:def 3;
then
A29:
[l, 1]
in (
Indices M1) by
A6,
A28,
ZFMISC_1: 87;
(p
. l)
= (M1
* (l,1)) by
A5,
A21,
MATRIX_0:def 8
.= (
0. K) by
A27,
A29,
MATRIX_1:def 3;
hence thesis by
A9,
A24,
MATRIX_1:def 3;
end;
end;
hence thesis;
end;
then M1
is_col_circulant_about p by
A3,
A4;
then
consider p be
FinSequence of K such that
A30: (
len p)
= (
len M1) & M1
is_col_circulant_about p;
take p;
thus thesis by
A30;
end;
theorem ::
MATRIX16:40
n
>
0 implies (
1. (K,n)) is
line_circulant
proof
set M1 = (
1. (K,n));
set p = (
Line (M1,1));
assume
A1: n
>
0 ;
A2: (
Indices (
1. (K,n)))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A3: (
width (
1. (K,n)))
= n by
MATRIX_0: 24;
then
A4: (
len p)
= n by
MATRIX_0:def 7;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
A5: ((j
- i)
mod n)
>=
0 by
A1,
NAT_D: 62;
then
A6: (((j
- i)
mod n)
+ 1)
in
NAT by
INT_1: 3;
assume
A7:
[i, j]
in (
Indices M1);
then
A8: j
in (
Seg n) by
A2,
ZFMISC_1: 87;
then
A9: 1
<= j by
FINSEQ_1: 1;
A10: j
<= n by
A8,
FINSEQ_1: 1;
A11: i
in (
Seg n) by
A2,
A7,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then
A12: (j
- i)
<= (n
- 1) by
A10,
XREAL_1: 13;
(n
- 1)
< n by
XREAL_1: 44;
then
A13: (j
- i)
< n by
A12,
XXREAL_0: 2;
i
<= n by
A11,
FINSEQ_1: 1;
then
A14: (1
- n)
<= (j
- i) by
A9,
XREAL_1: 13;
(
- n)
<= ((
- n)
+ 1) by
XREAL_1: 29;
then
A15: (
- n)
<= (j
- i) by
A14,
XXREAL_0: 2;
((j
- i)
mod n)
<= (n
- 1)
proof
per cases ;
suppose
0
<= (j
- i);
hence thesis by
A12,
A13,
NAT_D: 63;
end;
suppose
A16:
0
> (j
- i);
then (j
- i)
<= (
- 1) by
INT_1: 8;
then (n
+ (j
- i))
<= (n
+ (
- 1)) by
XREAL_1: 6;
hence thesis by
A15,
A16,
NAT_D: 63;
end;
end;
then
A17: (((j
- i)
mod n)
+ 1)
<= ((n
- 1)
+ 1) by
XREAL_1: 6;
(((j
- i)
mod n)
+ 1)
>= (
0
+ 1) by
A5,
XREAL_1: 6;
then
A18: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A17,
A6;
then
A19: (((j
- i)
mod (
len p))
+ 1)
in (
Seg n) by
A3,
MATRIX_0:def 7;
(M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
per cases ;
suppose
A20: i
= j;
(
0
+ 1)
<= n by
A1,
NAT_1: 13;
then 1
in (
Seg n);
then
A21:
[1, 1]
in (
Indices M1) by
A2,
ZFMISC_1: 87;
((j
- i)
mod (
len p))
=
0 by
A1,
A4,
A20,
NAT_D: 63;
then (p
. (((j
- i)
mod (
len p))
+ 1))
= (M1
* (1,1)) by
A3,
A19,
MATRIX_0:def 7
.= (
1_ K) by
A21,
MATRIX_1:def 3;
hence thesis by
A7,
A20,
MATRIX_1:def 3;
end;
suppose
A22: i
<> j;
((j
- i)
mod n)
<>
0
proof
per cases ;
suppose
0
<= (j
- i);
then ((j
- i)
mod n)
= (j
- i) by
A13,
NAT_D: 63;
hence thesis by
A22;
end;
suppose
A23:
0
> (j
- i);
((1
- n)
+ n)
<= ((j
- i)
+ n) by
A14,
XREAL_1: 6;
hence thesis by
A15,
A23,
NAT_D: 63;
end;
end;
then
A24: (((j
- i)
mod (
len p))
+ 1)
<> 1 by
A3,
MATRIX_0:def 7;
set l = (((j
- i)
mod (
len p))
+ 1);
reconsider l as
Nat by
A3,
A6,
MATRIX_0:def 7;
(
0
+ 1)
<= n by
A1,
NAT_1: 13;
then
A25: 1
in (
Seg n);
l
in (
Seg n) by
A3,
A18,
MATRIX_0:def 7;
then
A26:
[1, l]
in (
Indices M1) by
A2,
A25,
ZFMISC_1: 87;
(p
. l)
= (M1
* (1,l)) by
A3,
A19,
MATRIX_0:def 7
.= (
0. K) by
A24,
A26,
MATRIX_1:def 3;
hence thesis by
A7,
A22,
MATRIX_1:def 3;
end;
end;
hence thesis;
end;
then M1
is_line_circulant_about p by
A3,
A4;
then
consider p be
FinSequence of K such that
A27: (
len p)
= (
width M1) & M1
is_line_circulant_about p;
take p;
thus thesis by
A27;
end;
theorem ::
MATRIX16:41
Th41: p is
first-line-of-circulant implies (a
* p) is
first-line-of-circulant
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume p is
first-line-of-circulant;
then
consider M1 be
Matrix of n, K such that
A2: M1
is_line_circulant_about p;
A3: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A4: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
A5: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A6: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
let i,j be
Nat;
assume
A7:
[i, j]
in (
Indices (a
* M1));
then
A8: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
Lm3;
then
A9: (((j
- i)
mod (
len p))
+ 1)
in (
dom (a
* p)) by
A5,
MATRIXR1: 16;
A10:
[i, j]
in (
Indices M1) by
A3,
A7,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A10
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A4,
A8,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A4,
A8,
POLYNOM1:def 1
.= ((a
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A9,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
(
width (a
* M1))
= n by
MATRIX_0: 24;
then (a
* M1)
is_line_circulant_about (a
* p) by
A1,
A6;
then
consider M2 be
Matrix of (
len (a
* p)), K such that
A11: M2
is_line_circulant_about (a
* p) by
A1;
take M2;
thus thesis by
A11;
end;
theorem ::
MATRIX16:42
Th42: p is
first-line-of-circulant implies (
LCirc (a
* p))
= (a
* (
LCirc p))
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume
A2: p is
first-line-of-circulant;
then (a
* p) is
first-line-of-circulant by
Th41;
then
A3: (
LCirc (a
* p))
is_line_circulant_about (a
* p) by
Def7;
A4: (
Indices (
LCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A5: (
LCirc p)
is_line_circulant_about p by
A2,
Def7;
A6: for i,j be
Nat st
[i, j]
in (
Indices (
LCirc p)) holds ((
LCirc (a
* p))
* (i,j))
= (a
* ((
LCirc p)
* (i,j)))
proof
let i,j be
Nat;
A7: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
assume
A8:
[i, j]
in (
Indices (
LCirc p));
then
A9: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A4,
Lm3;
A10: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
LCirc (a
* p))) by
A1,
A8,
MATRIX_0: 26;
then ((
LCirc (a
* p))
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1)) by
A3
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A1,
A9,
A7,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A9,
A10,
POLYNOM1:def 1
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A9,
A10,
PARTFUN1:def 6
.= ((a
multfield )
. ((
LCirc p)
* (i,j))) by
A5,
A8
.= (a
* ((
LCirc p)
* (i,j))) by
FVSUM_1: 49;
hence thesis;
end;
A11: (
len (
LCirc p))
= (
len p) & (
width (
LCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
LCirc (a
* p)))
= (
len p) & (
width (
LCirc (a
* p)))
= (
len p) by
A1,
MATRIX_0: 24;
hence thesis by
A11,
A6,
MATRIX_3:def 5;
end;
theorem ::
MATRIX16:43
p is
first-line-of-circulant implies ((a
* (
LCirc p))
+ (b
* (
LCirc p)))
= (
LCirc ((a
+ b)
* p))
proof
A1: (
len (b
* p))
= (
len p) by
MATRIXR1: 16;
A2: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
assume
A3: p is
first-line-of-circulant;
then
A4: (a
* p) is
first-line-of-circulant & (b
* p) is
first-line-of-circulant by
Th41;
(a
* (
LCirc p))
= (
LCirc (a
* p)) & (b
* (
LCirc p))
= (
LCirc (b
* p)) by
A3,
Th42;
then ((a
* (
LCirc p))
+ (b
* (
LCirc p)))
= (
LCirc ((a
* p)
+ (b
* p))) by
A4,
A1,
Th34,
MATRIXR1: 16;
hence thesis by
A2,
FVSUM_1: 55;
end;
theorem ::
MATRIX16:44
p is
first-line-of-circulant & q is
first-line-of-circulant & (
len p)
= (
len q) implies ((a
* (
LCirc p))
+ (a
* (
LCirc q)))
= (
LCirc (a
* (p
+ q)))
proof
assume that
A1: p is
first-line-of-circulant & q is
first-line-of-circulant and
A2: (
len p)
= (
len q);
A3: (
len (
LCirc p))
= (
len p) & (
width (
LCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
LCirc q))
= (
len p) & (
width (
LCirc q))
= (
len p) by
A2,
MATRIX_0: 24;
then ((a
* (
LCirc p))
+ (a
* (
LCirc q)))
= (a
* ((
LCirc p)
+ (
LCirc q))) by
A3,
MATRIX_5: 20
.= (a
* (
LCirc (p
+ q))) by
A1,
A2,
Th34
.= (
LCirc (a
* (p
+ q))) by
A1,
A2,
Th33,
Th42;
hence thesis;
end;
theorem ::
MATRIX16:45
p is
first-line-of-circulant & q is
first-line-of-circulant & (
len p)
= (
len q) implies ((a
* (
LCirc p))
+ (b
* (
LCirc q)))
= (
LCirc ((a
* p)
+ (b
* q)))
proof
set n = (
len p);
assume that
A1: p is
first-line-of-circulant and
A2: q is
first-line-of-circulant and
A3: (
len p)
= (
len q);
A4: (a
* p) is
first-line-of-circulant & (b
* q) is
first-line-of-circulant by
A1,
A2,
Th41;
A5: (
len (b
* q))
= n by
A3,
MATRIXR1: 16;
((a
* (
LCirc p))
+ (b
* (
LCirc q)))
= ((
LCirc (a
* p))
+ (b
* (
LCirc q))) by
A1,
Th42
.= ((
LCirc (a
* p))
+ (
LCirc (b
* q))) by
A2,
Th42
.= (
LCirc ((a
* p)
+ (b
* q))) by
A4,
A5,
Th34,
MATRIXR1: 16;
hence thesis;
end;
theorem ::
MATRIX16:46
Th46: p is
first-col-of-circulant implies (a
* p) is
first-col-of-circulant
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume p is
first-col-of-circulant;
then
consider M1 be
Matrix of n, K such that
A2: M1
is_col_circulant_about p;
A3: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A4: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
A5: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A6: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((i
- j)
mod (
len (a
* p)))
+ 1))
proof
let i,j be
Nat;
assume
A7:
[i, j]
in (
Indices (a
* M1));
then
A8: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A3,
Lm3;
then
A9: (((i
- j)
mod (
len p))
+ 1)
in (
dom (a
* p)) by
A5,
MATRIXR1: 16;
A10:
[i, j]
in (
Indices M1) by
A3,
A7,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A2,
A10
.= ((a
multfield )
. (p
/. (((i
- j)
mod (
len p))
+ 1))) by
A4,
A8,
PARTFUN1:def 6
.= (a
* (p
/. (((i
- j)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((i
- j)
mod (
len p))
+ 1)) by
A4,
A8,
POLYNOM1:def 1
.= ((a
* p)
. (((i
- j)
mod (
len p))
+ 1)) by
A9,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
(
len (a
* M1))
= n by
MATRIX_0: 24;
then (a
* M1)
is_col_circulant_about (a
* p) by
A1,
A6;
then
consider M2 be
Matrix of (
len (a
* p)), K such that
A11: M2
is_col_circulant_about (a
* p) by
A1;
take M2;
thus thesis by
A11;
end;
theorem ::
MATRIX16:47
Th47: p is
first-col-of-circulant implies (
CCirc (a
* p))
= (a
* (
CCirc p))
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume
A2: p is
first-col-of-circulant;
then (a
* p) is
first-col-of-circulant by
Th46;
then
A3: (
CCirc (a
* p))
is_col_circulant_about (a
* p) by
Def8;
A4: (
Indices (
CCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A5: (
CCirc p)
is_col_circulant_about p by
A2,
Def8;
A6: for i,j be
Nat st
[i, j]
in (
Indices (
CCirc p)) holds ((
CCirc (a
* p))
* (i,j))
= (a
* ((
CCirc p)
* (i,j)))
proof
let i,j be
Nat;
A7: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
assume
A8:
[i, j]
in (
Indices (
CCirc p));
then
A9: (((i
- j)
mod n)
+ 1)
in (
Seg n) by
A4,
Lm3;
A10: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
CCirc (a
* p))) by
A1,
A8,
MATRIX_0: 26;
then ((
CCirc (a
* p))
* (i,j))
= ((a
* p)
. (((i
- j)
mod (
len (a
* p)))
+ 1)) by
A3
.= ((a
* p)
/. (((i
- j)
mod (
len p))
+ 1)) by
A1,
A9,
A7,
PARTFUN1:def 6
.= (a
* (p
/. (((i
- j)
mod (
len p))
+ 1))) by
A9,
A10,
POLYNOM1:def 1
.= ((a
multfield )
. (p
/. (((i
- j)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((i
- j)
mod (
len p))
+ 1))) by
A9,
A10,
PARTFUN1:def 6
.= ((a
multfield )
. ((
CCirc p)
* (i,j))) by
A5,
A8
.= (a
* ((
CCirc p)
* (i,j))) by
FVSUM_1: 49;
hence thesis;
end;
A11: (
len (
CCirc p))
= (
len p) & (
width (
CCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
CCirc (a
* p)))
= (
len p) & (
width (
CCirc (a
* p)))
= (
len p) by
A1,
MATRIX_0: 24;
hence thesis by
A11,
A6,
MATRIX_3:def 5;
end;
theorem ::
MATRIX16:48
p is
first-col-of-circulant implies ((a
* (
CCirc p))
+ (b
* (
CCirc p)))
= (
CCirc ((a
+ b)
* p))
proof
A1: (
len (b
* p))
= (
len p) by
MATRIXR1: 16;
A2: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
assume
A3: p is
first-col-of-circulant;
then
A4: (a
* p) is
first-col-of-circulant & (b
* p) is
first-col-of-circulant by
Th46;
(a
* (
CCirc p))
= (
CCirc (a
* p)) & (b
* (
CCirc p))
= (
CCirc (b
* p)) by
A3,
Th47;
then ((a
* (
CCirc p))
+ (b
* (
CCirc p)))
= (
CCirc ((a
* p)
+ (b
* p))) by
A4,
A1,
Th38,
MATRIXR1: 16;
hence thesis by
A2,
FVSUM_1: 55;
end;
theorem ::
MATRIX16:49
p is
first-col-of-circulant & q is
first-col-of-circulant & (
len p)
= (
len q) & (
len p)
>
0 implies ((a
* (
CCirc p))
+ (a
* (
CCirc q)))
= (
CCirc (a
* (p
+ q)))
proof
assume that
A1: p is
first-col-of-circulant & q is
first-col-of-circulant and
A2: (
len p)
= (
len q);
A3: (
len (
CCirc p))
= (
len p) & (
width (
CCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
CCirc q))
= (
len p) & (
width (
CCirc q))
= (
len p) by
A2,
MATRIX_0: 24;
then ((a
* (
CCirc p))
+ (a
* (
CCirc q)))
= (a
* ((
CCirc p)
+ (
CCirc q))) by
A3,
MATRIX_5: 20
.= (a
* (
CCirc (p
+ q))) by
A1,
A2,
Th38
.= (
CCirc (a
* (p
+ q))) by
A1,
A2,
Th37,
Th47;
hence thesis;
end;
theorem ::
MATRIX16:50
p is
first-col-of-circulant & q is
first-col-of-circulant & (
len p)
= (
len q) implies ((a
* (
CCirc p))
+ (b
* (
CCirc q)))
= (
CCirc ((a
* p)
+ (b
* q)))
proof
set n = (
len p);
assume that
A1: p is
first-col-of-circulant and
A2: q is
first-col-of-circulant and
A3: (
len p)
= (
len q);
A4: (a
* p) is
first-col-of-circulant & (b
* q) is
first-col-of-circulant by
A1,
A2,
Th46;
A5: (
len (b
* q))
= n by
A3,
MATRIXR1: 16;
((a
* (
CCirc p))
+ (b
* (
CCirc q)))
= ((
CCirc (a
* p))
+ (b
* (
CCirc q))) by
A1,
Th47
.= ((
CCirc (a
* p))
+ (
CCirc (b
* q))) by
A2,
Th47
.= (
CCirc ((a
* p)
+ (b
* q))) by
A4,
A5,
Th38,
MATRIXR1: 16;
hence thesis;
end;
notation
let K be
set;
let M be
Matrix of K;
synonym M is
circulant for M is
line_circulant;
end
begin
definition
let K be
Field;
let M1 be
Matrix of K;
let p be
FinSequence of K;
::
MATRIX16:def9
pred M1
is_anti-circular_about p means (
len p)
= (
width M1) & (for i,j be
Nat st
[i, j]
in (
Indices M1) & i
<= j holds (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))) & for i,j be
Nat st
[i, j]
in (
Indices M1) & i
>= j holds (M1
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len p))
+ 1));
end
definition
let K be
Field;
let M be
Matrix of K;
::
MATRIX16:def10
attr M is
anti-circular means ex p be
FinSequence of K st (
len p)
= (
width M) & M
is_anti-circular_about p;
end
definition
let K be
Field;
let p be
FinSequence of K;
::
MATRIX16:def11
attr p is
first-line-of-anti-circular means ex M be
Matrix of (
len p), K st M
is_anti-circular_about p;
end
definition
let K be
Field, p be
FinSequence of K;
assume
A1: p is
first-line-of-anti-circular;
::
MATRIX16:def12
func
ACirc (p) ->
Matrix of (
len p), K means
:
Def12: it
is_anti-circular_about p;
existence by
A1;
uniqueness
proof
let M1,M2 be
Matrix of (
len p), K;
assume that
A2: M1
is_anti-circular_about p and
A3: M2
is_anti-circular_about p;
A4: (
Indices M1)
= (
Indices M2) by
MATRIX_0: 26;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (M2
* (i,j))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
per cases ;
suppose
A6: i
<= j;
then (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A5;
hence thesis by
A3,
A4,
A5,
A6;
end;
suppose
A7: i
> j;
then (M1
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A5;
hence thesis by
A3,
A4,
A5,
A7;
end;
end;
hence thesis by
MATRIX_0: 27;
end;
end
theorem ::
MATRIX16:51
M1 is
anti-circular implies (a
* M1) is
anti-circular
proof
A1: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
anti-circular;
then
consider p be
FinSequence of K such that
A2: (
len p)
= (
width M1) and
A3: M1
is_anti-circular_about p;
A4: (
width M1)
= n by
MATRIX_0: 24;
then
A5: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
A6: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A7: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & i
<= j holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
let i,j be
Nat;
assume that
A8:
[i, j]
in (
Indices (a
* M1)) and
A9: i
<= j;
A10: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A1,
A8,
Lm3;
then
A11: (((j
- i)
mod (
len p))
+ 1)
in (
dom (a
* p)) by
A2,
A4,
A6,
MATRIXR1: 16;
A12:
[i, j]
in (
Indices M1) by
A1,
A8,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A9,
A12
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A4,
A5,
A10,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A4,
A5,
A10,
POLYNOM1:def 1
.= ((a
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A11,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
A13: (
width (a
* M1))
= n by
MATRIX_0: 24;
A14: (
len p)
= n by
A2,
MATRIX_0: 24;
A15: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & i
>= j holds ((a
* M1)
* (i,j))
= ((
- (a
* p))
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
(
len (a
* (
- p)))
= (
len (
- p)) by
MATRIXR1: 16;
then
A16: (
dom (a
* (
- p)))
= (
Seg (
len (
- p))) by
FINSEQ_1:def 3
.= (
dom (
- p)) by
FINSEQ_1:def 3;
A17: (a
* p) is
Element of (n
-tuples_on the
carrier of K) by
A15,
A14,
FINSEQ_2: 92;
let i,j be
Nat;
assume that
A18:
[i, j]
in (
Indices (a
* M1)) and
A19: i
>= j;
A20: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A1,
A18,
Lm3;
A21: p is
Element of (n
-tuples_on the
carrier of K) by
A14,
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
A14,
FINSEQ_2: 113;
then (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A22: (
dom (
- p))
= (
Seg n) by
A2,
A4,
FINSEQ_1:def 3;
A23:
[i, j]
in (
Indices M1) by
A1,
A18,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A19,
A23
.= ((a
multfield )
. ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A4,
A20,
A22,
PARTFUN1:def 6
.= (a
* ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* (
- p))
/. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A4,
A20,
A22,
POLYNOM1:def 1
.= ((a
* (
- p))
. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A4,
A20,
A22,
A16,
PARTFUN1:def 6
.= ((a
* ((
- (
1_ K))
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A21,
FVSUM_1: 59
.= (((a
* (
- (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A21,
FVSUM_1: 54
.= (((
- (a
* (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 8
.= (((
- a)
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= (((
- ((
1_ K)
* a))
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= ((((
- (
1_ K))
* a)
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 9
.= (((
- (
1_ K))
* (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A21,
FVSUM_1: 54
.= ((
- (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A17,
FVSUM_1: 59;
hence thesis by
MATRIXR1: 16;
end;
then (a
* M1)
is_anti-circular_about (a
* p) by
A13,
A15,
A14,
A7;
then
consider q be
FinSequence of K such that
A24: (
len q)
= (
width (a
* M1)) & (a
* M1)
is_anti-circular_about q;
take q;
thus thesis by
A24;
end;
theorem ::
MATRIX16:52
Th52: M1 is
anti-circular & M2 is
anti-circular implies (M1
+ M2) is
anti-circular
proof
assume that
A1: M1 is
anti-circular and
A2: M2 is
anti-circular;
consider p be
FinSequence of K such that
A3: (
len p)
= (
width M1) and
A4: M1
is_anti-circular_about p by
A1;
A5: (
width M1)
= n by
MATRIX_0: 24;
then
A6: (
dom p)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
consider q be
FinSequence of K such that
A7: (
len q)
= (
width M2) and
A8: M2
is_anti-circular_about q by
A2;
A9: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A10: (
width M2)
= n by
MATRIX_0: 24;
then (
dom q)
= (
Seg n) by
A7,
FINSEQ_1:def 3;
then
A11: (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A12: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
A13: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A14: (
dom (
- p))
= (
Seg n) by
A3,
A5,
FINSEQ_1:def 3;
A15: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A16: (
Indices (M1
+ M2))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A17: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A18: q is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- q) is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then (
len (
- q))
= (
len q) by
CARD_1:def 7;
then
A19: (
dom (
- q))
= (
Seg n) by
A7,
A10,
FINSEQ_1:def 3;
A20: for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & i
>= j holds ((M1
+ M2)
* (i,j))
= ((
- (p
+ q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume that
A21:
[i, j]
in (
Indices (M1
+ M2)) and
A22: i
>= j;
(
dom ((
- p)
+ (
- q)))
= (
dom (
- p)) by
A14,
A19,
POLYNOM1: 1;
then
A23: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom ((
- p)
+ (
- q))) by
A16,
A6,
A9,
A14,
A11,
A21,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A17,
A16,
A21,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),((
- q)
. (((j
- i)
mod (
len q))
+ 1)))) by
A8,
A15,
A16,
A21,
A22
.= (the
addF of K
. (((
- p)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),((
- q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A4,
A7,
A17,
A5,
A10,
A16,
A12,
A21,
A22
.= (((
- p)
+ (
- q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A23,
FUNCOP_1: 22
.= ((
- (p
+ q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A3,
A7,
A13,
A18,
A5,
A10,
FVSUM_1: 31;
hence thesis;
end;
A24: (
width (M1
+ M2))
= n by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & i
<= j holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume that
A25:
[i, j]
in (
Indices (M1
+ M2)) and
A26: i
<= j;
A27: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom (p
+ q)) by
A16,
A6,
A9,
A11,
A25,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A17,
A16,
A25,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A8,
A15,
A16,
A25,
A26
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A4,
A7,
A17,
A5,
A10,
A16,
A12,
A25,
A26
.= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A27,
FUNCOP_1: 22;
hence thesis;
end;
then (M1
+ M2)
is_anti-circular_about (p
+ q) by
A24,
A12,
A20;
then
consider r be
FinSequence of K such that
A28: (
len r)
= (
width (M1
+ M2)) & (M1
+ M2)
is_anti-circular_about r;
take r;
thus thesis by
A28;
end;
theorem ::
MATRIX16:53
for K be
Fanoian
Field, n,i,j be
Nat, M1 be
Matrix of n, K st
[i, j]
in (
Indices M1) & i
= j & M1 is
anti-circular holds (M1
* (i,j))
= (
0. K)
proof
let K be
Fanoian
Field;
let n,i,j be
Nat;
let M1 be
Matrix of n, K;
assume that
A1:
[i, j]
in (
Indices M1) and
A2: i
= j and
A3: M1 is
anti-circular;
consider p be
FinSequence of K such that
A4: (
len p)
= (
width M1) and
A5: M1
is_anti-circular_about p by
A3;
A6: (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1)) by
A1,
A2,
A5;
A7: (
width M1)
= n by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then (
len (
- p))
= (
len p) by
CARD_1:def 7;
then (
Indices M1)
=
[:(
Seg n), (
Seg n):] & (
dom (
- p))
= (
Seg n) by
A4,
A7,
FINSEQ_1:def 3,
MATRIX_0: 24;
then
A8: (((j
- i)
mod (
len p))
+ 1)
in (
dom (
- p)) by
A1,
A4,
A7,
Lm3;
(M1
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A1,
A2,
A5
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A8,
FUNCT_1: 12
.= (
- (M1
* (i,j))) by
A6,
VECTSP_1:def 13;
then ((M1
* (i,j))
+ (M1
* (i,j)))
= (
0. K) by
RLVECT_1: 5;
then (((
1_ K)
* (M1
* (i,j)))
+ (M1
* (i,j)))
= (
0. K);
then (((
1_ K)
* (M1
* (i,j)))
+ ((
1_ K)
* (M1
* (i,j))))
= (
0. K);
then ((
1_ K)
+ (
1_ K))
<> (
0. K) & (((
1_ K)
+ (
1_ K))
* (M1
* (i,j)))
= (
0. K) by
VECTSP_1:def 7,
VECTSP_1:def 19;
hence thesis by
VECTSP_1: 12;
end;
theorem ::
MATRIX16:54
M1 is
anti-circular &
[i, j]
in
[:(
Seg n), (
Seg n):] & k
= (i
+ 1) & l
= (j
+ 1) & i
< n & j
< n implies (M1
* (k,l))
= (M1
* (i,j))
proof
now
per cases ;
case
A1: i
<= j;
then
A2: (i
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
A3: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume that
A4: M1 is
anti-circular and
A5:
[i, j]
in
[:(
Seg n), (
Seg n):] and
A6: k
= (i
+ 1) and
A7: l
= (j
+ 1) and
A8: i
< n and
A9: j
< n;
j
in (
Seg n) by
A5,
ZFMISC_1: 87;
then 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A10: 1
<= (j
+ 1) by
XXREAL_0: 2;
(j
+ 1)
<= n by
A9,
INT_1: 7;
then
A11: l
in (
Seg n) by
A7,
A10;
i
in (
Seg n) by
A5,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
then
A12: 1
<= (i
+ 1) by
XXREAL_0: 2;
consider p be
FinSequence of K such that (
len p)
= (
width M1) and
A13: M1
is_anti-circular_about p by
A4;
(i
+ 1)
<= n by
A8,
INT_1: 7;
then k
in (
Seg n) by
A6,
A12;
then
[k, l]
in (
Indices M1) by
A3,
A11,
ZFMISC_1: 87;
then (M1
* (k,l))
= (p
. (((l
- k)
mod (
len p))
+ 1)) by
A6,
A7,
A13,
A2
.= (p
. (((j
- i)
mod (
len p))
+ 1)) by
A6,
A7
.= (M1
* (i,j)) by
A1,
A5,
A13,
A3;
hence thesis;
end;
case
A14: i
>= j;
then
A15: (i
+ 1)
>= (j
+ 1) by
XREAL_1: 6;
A16: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume that
A17: M1 is
anti-circular and
A18:
[i, j]
in
[:(
Seg n), (
Seg n):] and
A19: k
= (i
+ 1) and
A20: l
= (j
+ 1) and
A21: i
< n and
A22: j
< n;
j
in (
Seg n) by
A18,
ZFMISC_1: 87;
then 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (j
+ 1) by
XREAL_1: 6;
then
A23: 1
<= (j
+ 1) by
XXREAL_0: 2;
(j
+ 1)
<= n by
A22,
INT_1: 7;
then
A24: l
in (
Seg n) by
A20,
A23;
i
in (
Seg n) by
A18,
ZFMISC_1: 87;
then 1
<= i by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
then
A25: 1
<= (i
+ 1) by
XXREAL_0: 2;
consider p be
FinSequence of K such that (
len p)
= (
width M1) and
A26: M1
is_anti-circular_about p by
A17;
(i
+ 1)
<= n by
A21,
INT_1: 7;
then k
in (
Seg n) by
A19,
A25;
then
[k, l]
in (
Indices M1) by
A16,
A24,
ZFMISC_1: 87;
then (M1
* (k,l))
= ((
- p)
. (((l
- k)
mod (
len p))
+ 1)) by
A19,
A20,
A26,
A15
.= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A19,
A20
.= (M1
* (i,j)) by
A14,
A18,
A26,
A16;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
MATRIX16:55
Th55: M1 is
anti-circular implies (
- M1) is
anti-circular
proof
A1: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume M1 is
anti-circular;
then
consider p be
FinSequence of K such that
A2: (
len p)
= (
width M1) and
A3: M1
is_anti-circular_about p;
set r = (
- p);
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A4: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
A5: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A6: (
width M1)
= n by
MATRIX_0: 24;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & i
<= j holds ((
- M1)
* (i,j))
= (r
. (((j
- i)
mod (
len r))
+ 1))
proof
let i,j be
Nat;
assume that
A8:
[i, j]
in (
Indices (
- M1)) and
A9: i
<= j;
(((j
- i)
mod n)
+ 1)
in (
Seg n) by
A5,
A8,
Lm3;
then
A10: (((j
- i)
mod (
len p))
+ 1)
in (
dom p) by
A2,
A6,
FINSEQ_1:def 3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A1,
A5,
A8,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A1,
A5,
A8,
A9
.= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A10,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
A11: (
width (
- M1))
= n by
MATRIX_0: 24;
A12: (
len (
- p))
= (
len p) by
A4,
CARD_1:def 7;
then
A13: (
dom (
- p))
= (
Seg (
len p)) by
FINSEQ_1:def 3;
for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & i
>= j holds ((
- M1)
* (i,j))
= ((
- r)
. (((j
- i)
mod (
len r))
+ 1))
proof
let i,j be
Nat;
assume that
A14:
[i, j]
in (
Indices (
- M1)) and
A15: i
>= j;
A16: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A5,
A14,
Lm3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A1,
A5,
A14,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A1,
A5,
A14,
A15
.= ((
- (
- p))
. (((j
- i)
mod (
len p))
+ 1)) by
A2,
A6,
A13,
A16,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
then (
- M1)
is_anti-circular_about r by
A2,
A6,
A11,
A12,
A7;
then
consider r be
FinSequence of K such that
A17: (
len r)
= (
width (
- M1)) & (
- M1)
is_anti-circular_about r;
take r;
thus thesis by
A17;
end;
theorem ::
MATRIX16:56
M1 is
anti-circular & M2 is
anti-circular implies (M1
- M2) is
anti-circular
proof
assume that
A1: M1 is
anti-circular and
A2: M2 is
anti-circular;
(
- M2) is
anti-circular by
A2,
Th55;
hence thesis by
A1,
Th52;
end;
theorem ::
MATRIX16:57
M1
is_anti-circular_about p & n
>
0 implies p
= (
Line (M1,1))
proof
assume that
A1: M1
is_anti-circular_about p and
A2: n
>
0 ;
A3: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A4: (
width M1)
= n by
MATRIX_0: 24;
then
A5: (
len p)
= n by
A1;
A6: for k be
Nat st k
in (
dom p) holds (p
. k)
= ((
Line (M1,1))
. k)
proof
let k be
Nat;
assume
A7: k
in (
dom p);
then
A8: 1
<= k by
A3,
FINSEQ_1: 1;
n
>= (
0
+ 1) by
A2,
INT_1: 7;
then 1
in (
Seg n);
then
[1, k]
in
[:(
Seg n), (
Seg n):] by
A3,
A5,
A7,
ZFMISC_1:def 2;
then
A9:
[1, k]
in (
Indices M1) by
MATRIX_0: 24;
A10: k
<= n by
A3,
A5,
A7,
FINSEQ_1: 1;
((
Line (M1,1))
. k)
= (M1
* (1,k)) by
A4,
A3,
A5,
A7,
MATRIX_0:def 7
.= (p
. (((k
- 1)
mod (
len p))
+ 1)) by
A1,
A8,
A9
.= (p
. (((k
- 1)
mod n)
+ 1)) by
A1,
A4
.= (p
. ((k
- 1)
+ 1)) by
A8,
A10,
Lm1;
hence thesis;
end;
(
len (
Line (M1,1)))
= n by
A4,
MATRIX_0:def 7;
then (
dom (
Line (M1,1)))
= (
dom p) by
A3,
A5,
FINSEQ_1:def 3;
hence thesis by
A6,
FINSEQ_1: 13;
end;
theorem ::
MATRIX16:58
Th58: p is
first-line-of-anti-circular implies (
- p) is
first-line-of-anti-circular
proof
set n = (
len p);
assume p is
first-line-of-anti-circular;
then
consider M1 be
Matrix of (
len p), K such that
A1: M1
is_anti-circular_about p;
set M2 = (
- M1);
A2: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A3: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A4: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A5: (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A6: (
dom (
- p))
= (
Seg (
len p)) by
FINSEQ_1:def 3;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & i
>= j holds ((
- M1)
* (i,j))
= ((
- (
- p))
. (((j
- i)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume that
A8:
[i, j]
in (
Indices (
- M1)) and
A9: i
>= j;
A10: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
A8,
Lm3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A2,
A3,
A8,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A1,
A2,
A3,
A8,
A9
.= ((
- (
- p))
. (((j
- i)
mod (
len p))
+ 1)) by
A6,
A10,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
A11: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & i
<= j holds ((
- M1)
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len (
- p)))
+ 1))
proof
let i,j be
Nat;
assume that
A12:
[i, j]
in (
Indices (
- M1)) and
A13: i
<= j;
(((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
A12,
Lm3;
then
A14: (((j
- i)
mod (
len p))
+ 1)
in (
dom p) by
FINSEQ_1:def 3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A2,
A3,
A12,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A1,
A2,
A3,
A12,
A13
.= ((
- p)
. (((j
- i)
mod (
len p))
+ 1)) by
A14,
FUNCT_1: 13;
hence thesis by
A4,
CARD_1:def 7;
end;
(
width (
- M1))
= n by
MATRIX_0: 24;
then M2
is_anti-circular_about (
- p) by
A5,
A11,
A7;
then
consider M2 be
Matrix of (
len (
- p)), K such that
A15: M2
is_anti-circular_about (
- p) by
A5;
take M2;
thus thesis by
A15;
end;
theorem ::
MATRIX16:59
p is
first-line-of-anti-circular implies (
ACirc (
- p))
= (
- (
ACirc p))
proof
set n = (
len p);
A1: (
len (
ACirc p))
= (
len p) & (
width (
ACirc p))
= (
len p) by
MATRIX_0: 24;
A2: (
Indices (
ACirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A3: (
len (
- p))
= (
len p) by
CARD_1:def 7;
assume
A4: p is
first-line-of-anti-circular;
then (
- p) is
first-line-of-anti-circular by
Th58;
then
A5: (
ACirc (
- p))
is_anti-circular_about (
- p) by
Def12;
A6: (
ACirc p)
is_anti-circular_about p by
A4,
Def12;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
ACirc p)) holds ((
ACirc (
- p))
* (i,j))
= (
- ((
ACirc p)
* (i,j)))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
ACirc p));
now
per cases ;
case
A9: i
<= j;
(((j
- i)
mod n)
+ 1)
in (
Seg n) by
A2,
A8,
Lm3;
then
A10: (((j
- i)
mod (
len p))
+ 1)
in (
dom p) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
ACirc (
- p))) by
A3,
A8,
MATRIX_0: 26;
then ((
ACirc (
- p))
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len (
- p)))
+ 1)) by
A5,
A9
.= ((
comp K)
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A10,
FUNCT_1: 13
.= ((
comp K)
. ((
ACirc p)
* (i,j))) by
A6,
A8,
A9
.= (
- ((
ACirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
case
A11: i
>= j;
(((j
- i)
mod n)
+ 1)
in (
Seg n) by
A2,
A8,
Lm3;
then
A12: (((j
- i)
mod (
len p))
+ 1)
in (
dom (
- p)) by
A3,
FINSEQ_1:def 3;
[i, j]
in (
Indices (
ACirc (
- p))) by
A3,
A8,
MATRIX_0: 26;
then ((
ACirc (
- p))
* (i,j))
= ((
- (
- p))
. (((j
- i)
mod (
len (
- p)))
+ 1)) by
A5,
A11
.= ((
comp K)
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A12,
FUNCT_1: 13
.= ((
comp K)
. ((
ACirc p)
* (i,j))) by
A6,
A8,
A11
.= (
- ((
ACirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
end;
hence thesis;
end;
(
len (
ACirc (
- p)))
= (
len p) & (
width (
ACirc (
- p)))
= (
len p) by
A3,
MATRIX_0: 24;
hence thesis by
A1,
A7,
MATRIX_3:def 2;
end;
theorem ::
MATRIX16:60
Th60: p is
first-line-of-anti-circular & q is
first-line-of-anti-circular & (
len p)
= (
len q) implies (p
+ q) is
first-line-of-anti-circular
proof
set n = (
len p);
assume that
A1: p is
first-line-of-anti-circular and
A2: q is
first-line-of-anti-circular and
A3: (
len p)
= (
len q);
consider M2 be
Matrix of n, K such that
A4: M2
is_anti-circular_about q by
A2,
A3;
A5: (
width M2)
= n by
MATRIX_0: 24;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
(
len q)
= (
width M2) by
A4;
then (
dom q)
= (
Seg n) by
A5,
FINSEQ_1:def 3;
then
A7: (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A8: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
consider M1 be
Matrix of n, K such that
A9: M1
is_anti-circular_about p by
A1;
A10: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
set M3 = (M1
+ M2);
A11: q is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- q) is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A12: (
len (
- q))
= (
len q) by
CARD_1:def 7;
A13: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A14: (
Indices (M1
+ M2))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A15: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A16: for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & i
<= j holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume that
A17:
[i, j]
in (
Indices (M1
+ M2)) and
A18: i
<= j;
A19: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom (p
+ q)) by
A14,
A6,
A15,
A7,
A17,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A10,
A14,
A17,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A4,
A13,
A14,
A17,
A18
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A3,
A9,
A10,
A14,
A8,
A17,
A18
.= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A19,
FUNCOP_1: 22;
hence thesis;
end;
A20: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A21: (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A22: (
dom (
- p))
= (
Seg n) by
FINSEQ_1:def 3;
A23: for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & i
>= j holds ((M1
+ M2)
* (i,j))
= ((
- (p
+ q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1))
proof
let i,j be
Nat;
assume that
A24:
[i, j]
in (
Indices (M1
+ M2)) and
A25: i
>= j;
(
dom (
- p))
= (
Seg (
len p)) & (
dom (
- q))
= (
Seg (
len q)) by
A21,
A12,
FINSEQ_1:def 3;
then (
dom ((
- p)
+ (
- q)))
= (
dom (
- p)) by
A3,
POLYNOM1: 1;
then
A26: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom ((
- p)
+ (
- q))) by
A14,
A6,
A15,
A22,
A7,
A24,
Lm3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A10,
A14,
A24,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),((
- q)
. (((j
- i)
mod (
len q))
+ 1)))) by
A4,
A13,
A14,
A24,
A25
.= (the
addF of K
. (((
- p)
. (((j
- i)
mod (
len p))
+ 1)),((
- q)
. (((j
- i)
mod (
len q))
+ 1)))) by
A9,
A10,
A14,
A24,
A25
.= (((
- p)
+ (
- q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A3,
A8,
A26,
FUNCOP_1: 22
.= ((
- (p
+ q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A3,
A20,
A11,
FVSUM_1: 31;
hence thesis;
end;
(
width (M1
+ M2))
= n by
MATRIX_0: 24;
then (
len (p
+ q))
= (
width (M1
+ M2)) by
A6,
A7,
FINSEQ_1:def 3;
then (
len (M1
+ M2))
= n & M3
is_anti-circular_about (p
+ q) by
A16,
A23,
MATRIX_0: 24;
then
consider M3 be
Matrix of (
len (p
+ q)), K such that (
len (p
+ q))
= (
len M3) and
A27: M3
is_anti-circular_about (p
+ q) by
A8;
take M3;
thus thesis by
A27;
end;
theorem ::
MATRIX16:61
Th61: p is
first-line-of-anti-circular & q is
first-line-of-anti-circular & (
len p)
= (
len q) implies (
ACirc (p
+ q))
= ((
ACirc p)
+ (
ACirc q))
proof
set n = (
len p);
assume that
A1: p is
first-line-of-anti-circular and
A2: q is
first-line-of-anti-circular and
A3: (
len p)
= (
len q);
A4: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
(
dom q)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
then
A5: (
dom (p
+ q))
= (
dom p) by
A4,
POLYNOM1: 1;
then
A6: (
len (p
+ q))
= n by
A4,
FINSEQ_1:def 3;
then
A7: (
Indices (
ACirc p))
= (
Indices (
ACirc (p
+ q))) by
MATRIX_0: 26;
A8: (
Indices (
ACirc p))
= (
Indices (
ACirc q)) by
A3,
MATRIX_0: 26;
A9: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A10: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A11: (
len (
- p))
= (
len p) by
CARD_1:def 7;
A12: (
Indices (
ACirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
(p
+ q) is
first-line-of-anti-circular by
A1,
A2,
A3,
Th60;
then
A13: (
ACirc (p
+ q))
is_anti-circular_about (p
+ q) by
Def12;
A14: (
ACirc q)
is_anti-circular_about q by
A2,
Def12;
A15: q is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- q) is
Element of ((
len q)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A16: (
len (
- q))
= (
len q) by
CARD_1:def 7;
A17: (
ACirc p)
is_anti-circular_about p by
A1,
Def12;
A18: (
Indices (
ACirc q))
=
[:(
Seg n), (
Seg n):] by
A3,
MATRIX_0: 24;
A19: for i,j be
Nat holds
[i, j]
in (
Indices (
ACirc p)) implies ((
ACirc (p
+ q))
* (i,j))
= (((
ACirc p)
* (i,j))
+ ((
ACirc q)
* (i,j)))
proof
let i,j be
Nat;
assume
A20:
[i, j]
in (
Indices (
ACirc p));
then
A21: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A12,
Lm3;
now
per cases ;
case
A22: i
<= j;
then ((
ACirc (p
+ q))
* (i,j))
= ((p
+ q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A13,
A7,
A20
.= (the
addF of K
. ((p
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),(q
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A9,
A6,
A21,
FUNCOP_1: 22
.= (the
addF of K
. (((
ACirc p)
* (i,j)),(q
. (((j
- i)
mod (
len q))
+ 1)))) by
A3,
A6,
A17,
A20,
A22
.= (((
ACirc p)
* (i,j))
+ ((
ACirc q)
* (i,j))) by
A14,
A8,
A20,
A22;
hence thesis;
end;
case
A23: i
>= j;
A24: (
dom (
- p))
= (
Seg (
len p)) by
A11,
FINSEQ_1:def 3;
(
dom (
- q))
= (
Seg (
len q)) by
A16,
FINSEQ_1:def 3;
then (
dom p)
= (
Seg n) & (
dom ((
- p)
+ (
- q)))
= (
dom (
- p)) by
A3,
A24,
FINSEQ_1:def 3,
POLYNOM1: 1;
then
A25: (((j
- i)
mod (
len (p
+ q)))
+ 1)
in (
dom ((
- p)
+ (
- q))) by
A9,
A5,
A12,
A20,
A24,
Lm3;
((
ACirc (p
+ q))
* (i,j))
= ((
- (p
+ q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A13,
A7,
A20,
A23
.= (((
- p)
+ (
- q))
. (((j
- i)
mod (
len (p
+ q)))
+ 1)) by
A3,
A10,
A15,
FVSUM_1: 31
.= (the
addF of K
. (((
- p)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)),((
- q)
. (((j
- i)
mod (
len (p
+ q)))
+ 1)))) by
A25,
FUNCOP_1: 22
.= (the
addF of K
. (((
ACirc p)
* (i,j)),((
- q)
. (((j
- i)
mod (
len q))
+ 1)))) by
A3,
A6,
A17,
A20,
A23
.= (((
ACirc p)
* (i,j))
+ ((
ACirc q)
* (i,j))) by
A14,
A12,
A18,
A20,
A23;
hence thesis;
end;
end;
hence thesis;
end;
A26: (
len (
ACirc p))
= (
len p) & (
width (
ACirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
ACirc (p
+ q)))
= (
len p) & (
width (
ACirc (p
+ q)))
= (
len p) by
A6,
MATRIX_0: 24;
hence thesis by
A26,
A19,
MATRIX_3:def 3;
end;
theorem ::
MATRIX16:62
Th62: p is
first-line-of-anti-circular implies (a
* p) is
first-line-of-anti-circular
proof
set n = (
len p);
A1: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
assume p is
first-line-of-anti-circular;
then
consider M1 be
Matrix of n, K such that
A2: M1
is_anti-circular_about p;
A3: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A4: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
A5: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & i
>= j holds ((a
* M1)
* (i,j))
= ((
- (a
* p))
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
(
len (a
* (
- p)))
= (
len (
- p)) by
MATRIXR1: 16;
then
A6: (
dom (a
* (
- p)))
= (
Seg (
len (
- p))) by
FINSEQ_1:def 3
.= (
dom (
- p)) by
FINSEQ_1:def 3;
A7: (a
* p) is
Element of (n
-tuples_on the
carrier of K) by
A4,
FINSEQ_2: 92;
let i,j be
Nat;
assume that
A8:
[i, j]
in (
Indices (a
* M1)) and
A9: i
>= j;
A10: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
A8,
Lm3;
A11: p is
Element of (n
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A12: (
dom (
- p))
= (
Seg n) by
FINSEQ_1:def 3;
A13:
[i, j]
in (
Indices M1) by
A3,
A8,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A9,
A13
.= ((a
multfield )
. ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
A10,
A12,
PARTFUN1:def 6
.= (a
* ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* (
- p))
/. (((j
- i)
mod (
len p))
+ 1)) by
A10,
A12,
POLYNOM1:def 1
.= ((a
* (
- p))
. (((j
- i)
mod (
len p))
+ 1)) by
A10,
A12,
A6,
PARTFUN1:def 6
.= ((a
* ((
- (
1_ K))
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A11,
FVSUM_1: 59
.= (((a
* (
- (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A11,
FVSUM_1: 54
.= (((
- (a
* (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 8
.= (((
- a)
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= (((
- ((
1_ K)
* a))
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= ((((
- (
1_ K))
* a)
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 9
.= (((
- (
1_ K))
* (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A11,
FVSUM_1: 54
.= ((
- (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A7,
FVSUM_1: 59;
hence thesis by
MATRIXR1: 16;
end;
A14: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A15: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & i
<= j holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1))
proof
let i,j be
Nat;
assume that
A16:
[i, j]
in (
Indices (a
* M1)) and
A17: i
<= j;
A18: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A3,
A16,
Lm3;
then
A19: (((j
- i)
mod (
len p))
+ 1)
in (
dom (a
* p)) by
A14,
MATRIXR1: 16;
A20:
[i, j]
in (
Indices M1) by
A3,
A16,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A2,
A17,
A20
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A1,
A18,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A1,
A18,
POLYNOM1:def 1
.= ((a
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A19,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
(
width (a
* M1))
= n by
MATRIX_0: 24;
then (a
* M1)
is_anti-circular_about (a
* p) by
A4,
A15,
A5;
then
consider M2 be
Matrix of (
len (a
* p)), K such that
A21: M2
is_anti-circular_about (a
* p) by
A4;
take M2;
thus thesis by
A21;
end;
theorem ::
MATRIX16:63
Th63: p is
first-line-of-anti-circular implies (
ACirc (a
* p))
= (a
* (
ACirc p))
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume
A2: p is
first-line-of-anti-circular;
then
A3: (
ACirc p)
is_anti-circular_about p by
Def12;
(a
* p) is
first-line-of-anti-circular by
A2,
Th62;
then
A4: (
ACirc (a
* p))
is_anti-circular_about (a
* p) by
Def12;
A5: (
Indices (
ACirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A6: for i,j be
Nat st
[i, j]
in (
Indices (
ACirc p)) holds ((
ACirc (a
* p))
* (i,j))
= (a
* ((
ACirc p)
* (i,j)))
proof
let i,j be
Nat;
assume
A7:
[i, j]
in (
Indices (
ACirc p));
then
A8: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A5,
Lm3;
A9:
[i, j]
in (
Indices (
ACirc (a
* p))) by
A1,
A7,
MATRIX_0: 26;
now
per cases ;
case
A10: i
<= j;
A11: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A12: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
((
ACirc (a
* p))
* (i,j))
= ((a
* p)
. (((j
- i)
mod (
len (a
* p)))
+ 1)) by
A4,
A9,
A10
.= ((a
* p)
/. (((j
- i)
mod (
len p))
+ 1)) by
A1,
A8,
A11,
PARTFUN1:def 6
.= (a
* (p
/. (((j
- i)
mod (
len p))
+ 1))) by
A8,
A12,
POLYNOM1:def 1
.= ((a
multfield )
. (p
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((j
- i)
mod (
len p))
+ 1))) by
A8,
A12,
PARTFUN1:def 6
.= ((a
multfield )
. ((
ACirc p)
* (i,j))) by
A3,
A7,
A10
.= (a
* ((
ACirc p)
* (i,j))) by
FVSUM_1: 49;
hence thesis;
end;
case
A13: i
>= j;
(
len (a
* (
- p)))
= (
len (
- p)) by
MATRIXR1: 16;
then
A14: (
dom (a
* (
- p)))
= (
Seg (
len (
- p))) by
FINSEQ_1:def 3
.= (
dom (
- p)) by
FINSEQ_1:def 3;
A15: (a
* p) is
Element of (n
-tuples_on the
carrier of K) by
A1,
FINSEQ_2: 92;
A16: p is
Element of (n
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then (
len (
- p))
= (
len p) by
CARD_1:def 7;
then
A17: (
dom (
- p))
= (
Seg n) by
FINSEQ_1:def 3;
(a
* ((
ACirc p)
* (i,j)))
= ((a
multfield )
. ((
ACirc p)
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. ((
- p)
. (((j
- i)
mod (
len p))
+ 1))) by
A3,
A7,
A13
.= ((a
multfield )
. ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
A8,
A17,
PARTFUN1:def 6
.= (a
* ((
- p)
/. (((j
- i)
mod (
len p))
+ 1))) by
FVSUM_1: 49
.= ((a
* (
- p))
/. (((j
- i)
mod (
len p))
+ 1)) by
A8,
A17,
POLYNOM1:def 1
.= ((a
* (
- p))
. (((j
- i)
mod (
len p))
+ 1)) by
A8,
A17,
A14,
PARTFUN1:def 6
.= ((a
* ((
- (
1_ K))
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A16,
FVSUM_1: 59
.= (((a
* (
- (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
A16,
FVSUM_1: 54
.= (((
- (a
* (
1_ K)))
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 8
.= (((
- a)
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= (((
- ((
1_ K)
* a))
* p)
. (((j
- i)
mod (
len p))
+ 1))
.= ((((
- (
1_ K))
* a)
* p)
. (((j
- i)
mod (
len p))
+ 1)) by
VECTSP_1: 9
.= (((
- (
1_ K))
* (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A16,
FVSUM_1: 54
.= ((
- (a
* p))
. (((j
- i)
mod (
len p))
+ 1)) by
A15,
FVSUM_1: 59
.= ((
ACirc (a
* p))
* (i,j)) by
A1,
A4,
A9,
A13;
hence thesis;
end;
end;
hence thesis;
end;
A18: (
len (
ACirc p))
= (
len p) & (
width (
ACirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
ACirc (a
* p)))
= (
len p) & (
width (
ACirc (a
* p)))
= (
len p) by
A1,
MATRIX_0: 24;
hence thesis by
A18,
A6,
MATRIX_3:def 5;
end;
theorem ::
MATRIX16:64
p is
first-line-of-anti-circular implies ((a
* (
ACirc p))
+ (b
* (
ACirc p)))
= (
ACirc ((a
+ b)
* p))
proof
A1: (
len (b
* p))
= (
len p) by
MATRIXR1: 16;
A2: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
assume
A3: p is
first-line-of-anti-circular;
then
A4: (a
* p) is
first-line-of-anti-circular & (b
* p) is
first-line-of-anti-circular by
Th62;
((a
* (
ACirc p))
+ (b
* (
ACirc p)))
= ((
ACirc (a
* p))
+ (b
* (
ACirc p))) by
A3,
Th63
.= ((
ACirc (a
* p))
+ (
ACirc (b
* p))) by
A3,
Th63
.= (
ACirc ((a
* p)
+ (b
* p))) by
A4,
A1,
Th61,
MATRIXR1: 16;
hence thesis by
A2,
FVSUM_1: 55;
end;
theorem ::
MATRIX16:65
p is
first-line-of-anti-circular & q is
first-line-of-anti-circular & (
len p)
= (
len q) implies ((a
* (
ACirc p))
+ (a
* (
ACirc q)))
= (
ACirc (a
* (p
+ q)))
proof
assume that
A1: p is
first-line-of-anti-circular & q is
first-line-of-anti-circular and
A2: (
len p)
= (
len q);
A3: (
len (
ACirc p))
= (
len p) & (
width (
ACirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
ACirc q))
= (
len p) & (
width (
ACirc q))
= (
len p) by
A2,
MATRIX_0: 24;
then ((a
* (
ACirc p))
+ (a
* (
ACirc q)))
= (a
* ((
ACirc p)
+ (
ACirc q))) by
A3,
MATRIX_5: 20
.= (a
* (
ACirc (p
+ q))) by
A1,
A2,
Th61
.= (
ACirc (a
* (p
+ q))) by
A1,
A2,
Th60,
Th63;
hence thesis;
end;
theorem ::
MATRIX16:66
p is
first-line-of-anti-circular & q is
first-line-of-anti-circular & (
len p)
= (
len q) implies ((a
* (
ACirc p))
+ (b
* (
ACirc q)))
= (
ACirc ((a
* p)
+ (b
* q)))
proof
set n = (
len p);
assume that
A1: p is
first-line-of-anti-circular and
A2: q is
first-line-of-anti-circular and
A3: (
len p)
= (
len q);
A4: (a
* p) is
first-line-of-anti-circular & (b
* q) is
first-line-of-anti-circular by
A1,
A2,
Th62;
A5: (
len (b
* q))
= n by
A3,
MATRIXR1: 16;
((a
* (
ACirc p))
+ (b
* (
ACirc q)))
= ((
ACirc (a
* p))
+ (b
* (
ACirc q))) by
A1,
Th63
.= ((
ACirc (a
* p))
+ (
ACirc (b
* q))) by
A2,
Th63
.= (
ACirc ((a
* p)
+ (b
* q))) by
A4,
A5,
Th61,
MATRIXR1: 16;
hence thesis;
end;
registration
let K, n;
cluster (
0. (K,n)) ->
anti-circular;
coherence
proof
set p = (n
|-> (
0. K));
A1: (
width (
0. (K,n)))
= n by
MATRIX_0: 24;
A2: (
0. (K,n,n))
= (n
|-> (n
|-> (
0. K)));
set M1 = (
0. (K,n));
A3: (
len (n
|-> (
0. K)))
= n by
CARD_1:def 7;
A4: (
Indices (
0. (K,n)))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A5: for i,j be
Nat st
[i, j]
in (
Indices M1) & i
>= j holds (M1
* (i,j))
= ((
- p)
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume that
A6:
[i, j]
in (
Indices M1) and i
>= j;
A7: (((j
- i)
mod n)
+ 1)
in (
Seg n) by
A4,
A6,
Lm3;
((
- p)
. (((j
- i)
mod (
len p))
+ 1))
= ((n
|-> (
- (
0. K)))
. (((j
- i)
mod n)
+ 1)) by
A3,
FVSUM_1: 25
.= (
- (
0. K)) by
A7,
FUNCOP_1: 7
.= (
0. K) by
VECTSP_2: 3;
hence thesis by
A2,
A6,
MATRIX_3: 1;
end;
for i,j be
Nat st
[i, j]
in (
Indices M1) & i
<= j holds (M1
* (i,j))
= (p
. (((j
- i)
mod (
len p))
+ 1))
proof
let i,j be
Nat;
assume that
A8:
[i, j]
in (
Indices M1) and i
<= j;
(((j
- i)
mod n)
+ 1)
in (
Seg n) by
A4,
A8,
Lm3;
then (((
Seg n)
--> (
0. K))
. (((j
- i)
mod n)
+ 1))
= (
0. K) by
FUNCOP_1: 7;
hence thesis by
A3,
A2,
A8,
MATRIX_3: 1;
end;
then M1
is_anti-circular_about p by
A1,
A3,
A5;
then
consider p be
FinSequence of K such that
A9: (
len p)
= (
width M1) & M1
is_anti-circular_about p;
take p;
thus thesis by
A9;
end;
end