ranknull.miz
    
    begin
    
    theorem :: 
    
    RANKNULL:1
    
    
    
    
    
    Th1: for f,g be 
    Function st g is 
    one-to-one & (f 
    | ( 
    rng g)) is 
    one-to-one & ( 
    rng g) 
    c= ( 
    dom f) holds (f 
    * g) is 
    one-to-one
    
    proof
    
      let f,g be
    Function such that 
    
      
    
    A1: g is 
    one-to-one and 
    
      
    
    A2: (f 
    | ( 
    rng g)) is 
    one-to-one and 
    
      
    
    A3: ( 
    rng g) 
    c= ( 
    dom f); 
    
      set h = (f
    * g); 
    
      
    
      
    
    A4: ( 
    dom h) 
    c= ( 
    dom g) by 
    FUNCT_1: 11;
    
      (
    dom g) 
    c= ( 
    dom h) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A5: x 
    in ( 
    dom g); 
    
        (g
    . x) 
    in ( 
    rng g) by 
    A5,
    FUNCT_1: 3;
    
        hence thesis by
    A3,
    A5,
    FUNCT_1: 11;
    
      end;
    
      then
    
      
    
    A6: ( 
    dom h) 
    = ( 
    dom g) by 
    A4;
    
      for x1,x2 be
    object st x1 
    in ( 
    dom h) & x2 
    in ( 
    dom h) & (h 
    . x1) 
    = (h 
    . x2) holds x1 
    = x2 
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A7: x1 
    in ( 
    dom h) and 
    
        
    
    A8: x2 
    in ( 
    dom h) and 
    
        
    
    A9: (h 
    . x1) 
    = (h 
    . x2); 
    
        
    
        
    
    A10: (h 
    . x1) 
    = (f 
    . (g 
    . x1)) & (h 
    . x2) 
    = (f 
    . (g 
    . x2)) by 
    A7,
    A8,
    FUNCT_1: 12;
    
        (
    dom (f 
    | ( 
    rng g))) 
    = ( 
    rng g) by 
    A3,
    RELAT_1: 62;
    
        then
    
        
    
    A11: (g 
    . x1) 
    in ( 
    dom (f 
    | ( 
    rng g))) by 
    A4,
    A7,
    FUNCT_1: 3;
    
        (g
    . x2) 
    in ( 
    rng g) by 
    A4,
    A8,
    FUNCT_1: 3;
    
        then
    
        
    
    A12: (g 
    . x2) 
    in ( 
    dom (f 
    | ( 
    rng g))) by 
    A3,
    RELAT_1: 62;
    
        (f
    . (g 
    . x1)) 
    = ((f 
    | ( 
    rng g)) 
    . (g 
    . x1)) & (f 
    . (g 
    . x2)) 
    = ((f 
    | ( 
    rng g)) 
    . (g 
    . x2)) by 
    A6,
    A7,
    A8,
    FUNCT_1: 3,
    FUNCT_1: 49;
    
        then (g
    . x1) 
    = (g 
    . x2) by 
    A2,
    A9,
    A10,
    A11,
    A12;
    
        hence thesis by
    A1,
    A4,
    A7,
    A8;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:2
    
    
    
    
    
    Th2: for f be 
    Function, X,Y be 
    set st X 
    c= Y & (f 
    | Y) is 
    one-to-one holds (f 
    | X) is 
    one-to-one
    
    proof
    
      let f be
    Function, X,Y be 
    set such that 
    
      
    
    A1: X 
    c= Y and 
    
      
    
    A2: (f 
    | Y) is 
    one-to-one;
    
      (f
    | X) 
    = ((f 
    | Y) 
    | X) by 
    A1,
    RELAT_1: 74;
    
      hence thesis by
    A2,
    FUNCT_1: 52;
    
    end;
    
    theorem :: 
    
    RANKNULL:3
    
    
    
    
    
    Th3: for V be 
    1-sorted, X,Y be 
    Subset of V holds X 
    meets Y iff ex v be 
    Element of V st v 
    in X & v 
    in Y 
    
    proof
    
      let V be
    1-sorted, X,Y be 
    Subset of V; 
    
      X
    meets Y implies ex v be 
    Element of V st v 
    in X & v 
    in Y 
    
      proof
    
        assume X
    meets Y; 
    
        then
    
        consider z be
    object such that 
    
        
    
    A1: z 
    in X and 
    
        
    
    A2: z 
    in Y by 
    XBOOLE_0: 3;
    
        reconsider v = z as
    Element of V by 
    A1;
    
        take v;
    
        thus thesis by
    A1,
    A2;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    reserve K for
    Ring, 
    
V1,W1 for
    VectSp of K; 
    
    reserve F for
    Field, 
    
V,W for
    VectSp of F; 
    
    registration
    
      let F be
    Field, V be 
    finite-dimensional  
    VectSp of F; 
    
      cluster 
    finite for 
    Basis of V; 
    
      existence
    
      proof
    
        consider A be
    finite  
    Subset of V such that 
    
        
    
    A1: A is 
    Basis of V by 
    MATRLIN:def 1;
    
        reconsider A as
    Basis of V by 
    A1;
    
        take A;
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      let F be
    Ring;
    
      let V,W be
    VectSp of F; 
    
      cluster 
    additive
    homogeneous for 
    Function of V, W; 
    
      existence
    
      proof
    
        set f = (
    FuncZero (( 
    [#] V),W)); 
    
        reconsider f as
    Function of V, W; 
    
        
    
        
    
    A1: for x,y be 
    Vector of V holds (f 
    . (x 
    + y)) 
    = ((f 
    . x) 
    + (f 
    . y)) by 
    RLVECT_1:def 4;
    
        take f;
    
        for a be
    Element of F, x be 
    Element of V holds (f 
    . (a 
    * x)) 
    = (a 
    * (f 
    . x)) by 
    VECTSP_1: 14;
    
        hence f is
    additive
    homogeneous by 
    A1,
    MOD_2:def 2,
    VECTSP_1:def 20;
    
      end;
    
    end
    
    theorem :: 
    
    RANKNULL:4
    
    
    
    
    
    Th4: ( 
    [#] V) is 
    finite implies V is 
    finite-dimensional
    
    proof
    
      set B = the
    Basis of V; 
    
      assume (
    [#] V) is 
    finite;
    
      then
    
      reconsider B as
    finite  
    Subset of V; 
    
      take B;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:5
    
    for V be
    finite-dimensional  
    VectSp of F st ( 
    card ( 
    [#] V)) 
    = 1 holds ( 
    dim V) 
    =  
    0  
    
    proof
    
      let V be
    finite-dimensional  
    VectSp of F such that 
    
      
    
    A1: ( 
    card ( 
    [#] V)) 
    = 1; 
    
      (
    [#] V) 
    =  
    {(
    0. V)} 
    
      proof
    
        ex y be
    object st ( 
    [#] V) 
    =  
    {y} by
    A1,
    CARD_2: 42;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then (
    (Omega). V) 
    = ( 
    (0). V) by 
    VECTSP_4:def 3;
    
      hence thesis by
    VECTSP_9: 29;
    
    end;
    
    theorem :: 
    
    RANKNULL:6
    
    (
    card ( 
    [#] V)) 
    = 2 implies ( 
    dim V) 
    = 1 
    
    proof
    
      assume
    
      
    
    A1: ( 
    card ( 
    [#] V)) 
    = 2; 
    
      then
    
      
    
    A2: ( 
    [#] V) is 
    finite;
    
      reconsider C = (
    [#] V) as 
    finite  
    set by 
    A1;
    
      reconsider V as
    finite-dimensional  
    VectSp of F by 
    A2,
    Th4;
    
      ex v be
    Vector of V st v 
    <> ( 
    0. V) & ( 
    (Omega). V) 
    = ( 
    Lin  
    {v})
    
      proof
    
        consider x,y be
    object such that 
    
        
    
    A3: x 
    <> y and 
    
        
    
    A4: ( 
    [#] V) 
    =  
    {x, y} by
    A1,
    CARD_2: 60;
    
        per cases by
    A4,
    TARSKI:def 2;
    
          suppose
    
          
    
    A5: x 
    = ( 
    0. V); 
    
          then
    
          reconsider x as
    Element of V; 
    
          reconsider y as
    Element of V by 
    A4,
    TARSKI:def 2;
    
          set L = (
    Lin  
    {y});
    
          take y;
    
          for v be
    Element of V holds v 
    in ( 
    (Omega). V) iff v 
    in L 
    
          proof
    
            let v be
    Element of V; 
    
            v
    in ( 
    (Omega). V) implies v 
    in L 
    
            proof
    
              assume v
    in ( 
    (Omega). V); 
    
              
    
              
    
    A6: y 
    in  
    {y} by
    TARSKI:def 1;
    
              
    
              
    
    A7: ( 
    0. L) 
    in L; 
    
              per cases by
    A4,
    TARSKI:def 2;
    
                suppose v
    = x; 
    
                hence thesis by
    A5,
    A7,
    VECTSP_4:def 2;
    
              end;
    
                suppose v
    = y; 
    
                hence thesis by
    A6,
    VECTSP_7: 8;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
          hence thesis by
    A3,
    A5,
    VECTSP_4: 30;
    
        end;
    
          suppose
    
          
    
    A8: y 
    = ( 
    0. V); 
    
          reconsider x as
    Element of V by 
    A4,
    TARSKI:def 2;
    
          reconsider y as
    Element of V by 
    A8;
    
          set L = (
    Lin  
    {x});
    
          take x;
    
          for v be
    Element of V holds v 
    in ( 
    (Omega). V) iff v 
    in L 
    
          proof
    
            let v be
    Element of V; 
    
            v
    in ( 
    (Omega). V) implies v 
    in L 
    
            proof
    
              assume v
    in ( 
    (Omega). V); 
    
              
    
              
    
    A9: x 
    in  
    {x} by
    TARSKI:def 1;
    
              
    
              
    
    A10: ( 
    0. L) 
    in L; 
    
              per cases by
    A4,
    TARSKI:def 2;
    
                suppose v
    = y; 
    
                hence thesis by
    A8,
    A10,
    VECTSP_4:def 2;
    
              end;
    
                suppose v
    = x; 
    
                hence thesis by
    A9,
    VECTSP_7: 8;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
          hence thesis by
    A3,
    A8,
    VECTSP_4: 30;
    
        end;
    
      end;
    
      hence thesis by
    VECTSP_9: 30;
    
    end;
    
    begin
    
    definition
    
      let F be
    Ring, V,W be 
    VectSp of F; 
    
      mode
    
    linear-transformation of V,W is 
    additive
    homogeneous  
    Function of V, W; 
    
    end
    
    reserve T for
    linear-transformation of V, W; 
    
    theorem :: 
    
    RANKNULL:7
    
    
    
    
    
    Th7: for V,W be non 
    empty  
    1-sorted, T be 
    Function of V, W holds ( 
    dom T) 
    = ( 
    [#] V) & ( 
    rng T) 
    c= ( 
    [#] W) 
    
    proof
    
      let V,W be non
    empty  
    1-sorted, T be 
    Function of V, W; 
    
      T is
    Element of ( 
    Funcs (( 
    [#] V),( 
    [#] W))) by 
    FUNCT_2: 8;
    
      hence thesis by
    FUNCT_2: 92;
    
    end;
    
    theorem :: 
    
    RANKNULL:8
    
    
    
    
    
    Th8: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for x,y be 
    Element of V holds ((T 
    . x) 
    - (T 
    . y)) 
    = (T 
    . (x 
    - y)) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let x,y be
    Element of V; 
    
      
    
      
    
    A1: (T 
    . (( 
    - ( 
    1. F)) 
    * y)) 
    = (( 
    - ( 
    1. F)) 
    * (T 
    . y)) by 
    MOD_2:def 2;
    
      (T
    . (x 
    - y)) 
    = ((T 
    . x) 
    + (T 
    . ( 
    - y))) & ( 
    - y) 
    = (( 
    - ( 
    1. F)) 
    * y) by 
    VECTSP_1: 14,
    VECTSP_1:def 20;
    
      hence thesis by
    A1,
    VECTSP_1: 14;
    
    end;
    
    theorem :: 
    
    RANKNULL:9
    
    
    
    
    
    Th9: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds (T 
    . ( 
    0. V)) 
    = ( 
    0. W) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      (
    0. V) 
    = (( 
    0. F) 
    * ( 
    0. V)) by 
    VECTSP_1: 14;
    
      
    
      then (T
    . ( 
    0. V)) 
    = (( 
    0. F) 
    * (T 
    . ( 
    0. V))) by 
    MOD_2:def 2
    
      .= (
    0. W) by 
    VECTSP_1: 14;
    
      hence thesis;
    
    end;
    
    definition
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      :: 
    
    RANKNULL:def1
    
      func
    
    ker T -> 
    strict  
    Subspace of V means 
    
      :
    
    Def1: ( 
    [#] it ) 
    = { u where u be 
    Element of V : (T 
    . u) 
    = ( 
    0. W) }; 
    
      existence
    
      proof
    
        set K = { u where u be
    Element of V : (T 
    . u) 
    = ( 
    0. W) }; 
    
        K
    c= ( 
    [#] V) 
    
        proof
    
          let x be
    object;
    
          assume x
    in K; 
    
          then ex u be
    Element of V st u 
    = x & (T 
    . u) 
    = ( 
    0. W); 
    
          hence thesis;
    
        end;
    
        then
    
        reconsider K as
    Subset of V; 
    
        
    
        
    
    A1: for v be 
    Element of V st v 
    in K holds (T 
    . v) 
    = ( 
    0. W) 
    
        proof
    
          let v be
    Element of V; 
    
          assume v
    in K; 
    
          then ex u be
    Element of V st u 
    = v & (T 
    . u) 
    = ( 
    0. W); 
    
          hence thesis;
    
        end;
    
        now
    
          let u be
    Element of V, a be 
    Element of F; 
    
          assume u
    in K; 
    
          then (T
    . u) 
    = ( 
    0. W) by 
    A1;
    
          
    
          then (T
    . (a 
    * u)) 
    = (a 
    * ( 
    0. W)) by 
    MOD_2:def 2
    
          .= (
    0. W) by 
    VECTSP_1: 14;
    
          hence (a
    * u) 
    in K; 
    
        end;
    
        then
    
        
    
    A2: for a be 
    Element of F, u be 
    Element of V st u 
    in K holds (a 
    * u) 
    in K; 
    
        (T
    . ( 
    0. V)) 
    = ( 
    0. W) by 
    Th9;
    
        then
    
        
    
    A3: ( 
    0. V) 
    in K; 
    
        now
    
          let u,v be
    Element of V; 
    
          assume u
    in K & v 
    in K; 
    
          then (T
    . u) 
    = ( 
    0. W) & (T 
    . v) 
    = ( 
    0. W) by 
    A1;
    
          
    
          then (T
    . (u 
    + v)) 
    = (( 
    0. W) 
    + ( 
    0. W)) by 
    VECTSP_1:def 20
    
          .= (
    0. W) by 
    RLVECT_1:def 4;
    
          hence (u
    + v) 
    in K; 
    
        end;
    
        then K is
    linearly-closed by 
    A2;
    
        then
    
        consider W be
    strict  
    Subspace of V such that 
    
        
    
    A4: K 
    = the 
    carrier of W by 
    A3,
    VECTSP_4: 34;
    
        take W;
    
        thus thesis by
    A4;
    
      end;
    
      uniqueness by
    VECTSP_4: 29;
    
    end
    
    theorem :: 
    
    RANKNULL:10
    
    
    
    
    
    Th10: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for x be 
    Element of V holds x 
    in ( 
    ker T) iff (T 
    . x) 
    = ( 
    0. W) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let x be
    Element of V; 
    
      thus x
    in ( 
    ker T) implies (T 
    . x) 
    = ( 
    0. W) 
    
      proof
    
        assume x
    in ( 
    ker T); 
    
        then
    
        
    
    A1: x 
    in ( 
    [#] ( 
    ker T)); 
    
        (
    [#] ( 
    ker T)) 
    = { u where u be 
    Element of V : (T 
    . u) 
    = ( 
    0. W) } by 
    Def1;
    
        then ex u be
    Element of V st u 
    = x & (T 
    . u) 
    = ( 
    0. W) by 
    A1;
    
        hence thesis;
    
      end;
    
      assume (T
    . x) 
    = ( 
    0. W); 
    
      then x
    in { u where u be 
    Element of V : (T 
    . u) 
    = ( 
    0. W) }; 
    
      then x
    in ( 
    [#] ( 
    ker T)) by 
    Def1;
    
      hence thesis;
    
    end;
    
    definition
    
      let V,W be non
    empty  
    1-sorted, T be 
    Function of V, W, X be 
    Subset of V; 
    
      :: original:
    .:
    
      redefine
    
      func T
    
    .: X -> 
    Subset of W ; 
    
      coherence
    
      proof
    
        (
    rng T) 
    c= ( 
    [#] W) & (T 
    .: X) 
    c= ( 
    rng T) by 
    Th7,
    RELAT_1: 111;
    
        hence thesis by
    XBOOLE_1: 1;
    
      end;
    
    end
    
    definition
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      :: 
    
    RANKNULL:def2
    
      func
    
    im T -> 
    strict  
    Subspace of W means 
    
      :
    
    Def2: ( 
    [#] it ) 
    = (T 
    .: ( 
    [#] V)); 
    
      existence
    
      proof
    
        reconsider U = (T
    .: ( 
    [#] V)) as 
    Subset of W; 
    
        
    
        
    
    A1: for u be 
    Element of W holds u 
    in U iff ex v be 
    Element of V st (T 
    . v) 
    = u 
    
        proof
    
          let u be
    Element of W; 
    
          thus u
    in U implies ex v be 
    Element of V st (T 
    . v) 
    = u 
    
          proof
    
            assume u
    in U; 
    
            then
    
            consider x be
    object such that x 
    in ( 
    dom T) and 
    
            
    
    A2: x 
    in ( 
    [#] V) and 
    
            
    
    A3: u 
    = (T 
    . x) by 
    FUNCT_1:def 6;
    
            reconsider x as
    Element of V by 
    A2;
    
            take x;
    
            thus thesis by
    A3;
    
          end;
    
          thus (ex v be
    Element of V st (T 
    . v) 
    = u) implies u 
    in U 
    
          proof
    
            given v be
    Element of V such that 
    
            
    
    A4: (T 
    . v) 
    = u; 
    
            v
    in ( 
    [#] V); 
    
            then v
    in ( 
    dom T) by 
    Th7;
    
            hence thesis by
    A4,
    FUNCT_1:def 6;
    
          end;
    
        end;
    
        
    
    A5: 
    
        now
    
          let u,v be
    Element of W such that 
    
          
    
    A6: u 
    in U and 
    
          
    
    A7: v 
    in U; 
    
          consider x be
    Element of V such that 
    
          
    
    A8: (T 
    . x) 
    = u by 
    A1,
    A6;
    
          consider y be
    Element of V such that 
    
          
    
    A9: (T 
    . y) 
    = v by 
    A1,
    A7;
    
          (u
    + v) 
    = (T 
    . (x 
    + y)) by 
    A8,
    A9,
    VECTSP_1:def 20;
    
          hence (u
    + v) 
    in U by 
    A1;
    
        end;
    
        now
    
          let a be
    Element of F, w be 
    Element of W; 
    
          assume w
    in U; 
    
          then
    
          consider v be
    Element of V such that 
    
          
    
    A10: (T 
    . v) 
    = w by 
    A1;
    
          (T
    . (a 
    * v)) 
    = (a 
    * w) by 
    A10,
    MOD_2:def 2;
    
          hence (a
    * w) 
    in U by 
    A1;
    
        end;
    
        then
    
        
    
    A11: U is 
    linearly-closed by 
    A5;
    
        (T
    . ( 
    0. V)) 
    = ( 
    0. W) by 
    Th9;
    
        then U
    <>  
    {} by 
    A1;
    
        then
    
        consider A be
    strict  
    Subspace of W such that 
    
        
    
    A12: U 
    = the 
    carrier of A by 
    A11,
    VECTSP_4: 34;
    
        take A;
    
        thus thesis by
    A12;
    
      end;
    
      uniqueness by
    VECTSP_4: 29;
    
    end
    
    theorem :: 
    
    RANKNULL:11
    
    for F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds ( 
    0. V) 
    in ( 
    ker T) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      (
    0. V) 
    = (( 
    0. F) 
    * ( 
    0. V)) by 
    VECTSP_1: 14;
    
      
    
      then (T
    . ( 
    0. V)) 
    = (( 
    0. F) 
    * (T 
    . ( 
    0. V))) by 
    MOD_2:def 2
    
      .= (
    0. W) by 
    VECTSP_1: 14;
    
      hence thesis by
    Th10;
    
    end;
    
    theorem :: 
    
    RANKNULL:12
    
    
    
    
    
    Th12: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for X be 
    Subset of V holds (T 
    .: X) is 
    Subset of ( 
    im T) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let X be
    Subset of V; 
    
      (
    [#] ( 
    im T)) 
    = (T 
    .: ( 
    [#] V)) by 
    Def2;
    
      hence thesis by
    RELAT_1: 123;
    
    end;
    
    theorem :: 
    
    RANKNULL:13
    
    
    
    
    
    Th13: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for y be 
    Element of W holds y 
    in ( 
    im T) iff ex x be 
    Element of V st y 
    = (T 
    . x) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let y be
    Element of W; 
    
      
    
      
    
    A1: y 
    in ( 
    im T) implies ex x be 
    Element of V st y 
    = (T 
    . x) 
    
      proof
    
        assume y
    in ( 
    im T); 
    
        then
    
        reconsider y as
    Element of ( 
    im T); 
    
        (
    [#] ( 
    im T)) 
    = (T 
    .: ( 
    [#] V)) by 
    Def2;
    
        then
    
        consider x be
    object such that x 
    in ( 
    dom T) and 
    
        
    
    A2: x 
    in ( 
    [#] V) and 
    
        
    
    A3: y 
    = (T 
    . x) by 
    FUNCT_1:def 6;
    
        reconsider x as
    Element of V by 
    A2;
    
        take x;
    
        thus thesis by
    A3;
    
      end;
    
      (ex x be
    Element of V st y 
    = (T 
    . x)) implies y 
    in ( 
    im T) 
    
      proof
    
        assume
    
        
    
    A4: ex x be 
    Element of V st y 
    = (T 
    . x); 
    
        (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
        then y
    in (T 
    .: ( 
    [#] V)) by 
    A4,
    FUNCT_1:def 6;
    
        then y
    in ( 
    [#] ( 
    im T)) by 
    Def2;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    RANKNULL:14
    
    for F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for x be 
    Element of ( 
    ker T) holds (T 
    . x) 
    = ( 
    0. W) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let x be
    Element of ( 
    ker T); 
    
      reconsider y = x as
    Element of V by 
    VECTSP_4: 10;
    
      y
    in ( 
    ker T); 
    
      hence thesis by
    Th10;
    
    end;
    
    theorem :: 
    
    RANKNULL:15
    
    
    
    
    
    Th15: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W st T is 
    one-to-one holds ( 
    ker T) 
    = ( 
    (0). V) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      reconsider Z = (
    (0). V) as 
    Subspace of ( 
    ker T) by 
    VECTSP_4: 39;
    
      assume
    
      
    
    A1: T is 
    one-to-one;
    
      for v be
    Element of ( 
    ker T) holds v 
    in Z 
    
      proof
    
        let v be
    Element of ( 
    ker T); 
    
        
    
        
    
    A2: v 
    in ( 
    ker T); 
    
        assume not v
    in Z; 
    
        then
    
        
    
    A3: not v 
    = ( 
    0. V) by 
    VECTSP_4: 35;
    
        
    
        
    
    A4: (T 
    . ( 
    0. V)) 
    = ( 
    0. W) & ( 
    dom T) 
    = ( 
    [#] V) by 
    Th7,
    Th9;
    
        reconsider v as
    Element of V by 
    VECTSP_4: 10;
    
        (T
    . v) 
    = ( 
    0. W) by 
    A2,
    Th10;
    
        hence thesis by
    A1,
    A3,
    A4;
    
      end;
    
      hence thesis by
    VECTSP_4: 32;
    
    end;
    
    theorem :: 
    
    RANKNULL:16
    
    
    
    
    
    Th16: for V be 
    finite-dimensional  
    VectSp of F holds ( 
    dim ( 
    (0). V)) 
    =  
    0  
    
    proof
    
      let V be
    finite-dimensional  
    VectSp of F; 
    
      (
    (Omega). ( 
    (0). V)) 
    = ( 
    (0). ( 
    (0). V)) by 
    VECTSP_4: 36;
    
      hence thesis by
    VECTSP_9: 29;
    
    end;
    
    theorem :: 
    
    RANKNULL:17
    
    
    
    
    
    Th17: for F be 
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for x,y be 
    Element of V st (T 
    . x) 
    = (T 
    . y) holds (x 
    - y) 
    in ( 
    ker T) 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      let x,y be
    Element of V such that 
    
      
    
    A1: (T 
    . x) 
    = (T 
    . y); 
    
      (T
    . (x 
    - y)) 
    = ((T 
    . x) 
    - (T 
    . y)) by 
    Th8
    
      .= (
    0. W) by 
    A1,
    VECTSP_1: 19;
    
      hence thesis by
    Th10;
    
    end;
    
    theorem :: 
    
    RANKNULL:18
    
    
    
    
    
    Th18: for F be 
    Ring, V,W be 
    VectSp of F holds for A be 
    Subset of V, x,y be 
    Element of V st (x 
    - y) 
    in ( 
    Lin A) holds x 
    in ( 
    Lin (A 
    \/  
    {y}))
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F; 
    
      let A be
    Subset of V, x,y be 
    Element of V such that 
    
      
    
    A1: (x 
    - y) 
    in ( 
    Lin A); 
    
      
    
      
    
    A2: ( 
    Lin (A 
    \/  
    {y}))
    = (( 
    Lin A) 
    + ( 
    Lin  
    {y})) by
    VECTSP_7: 15;
    
      y
    in  
    {y} by
    TARSKI:def 1;
    
      then
    
      
    
    A3: y 
    in ( 
    Lin  
    {y}) by
    VECTSP_7: 8;
    
      ((x
    - y) 
    + y) 
    = (x 
    - (y 
    - y)) by 
    RLVECT_1: 29
    
      .= (x
    - ( 
    0. V)) by 
    VECTSP_1: 19
    
      .= x by
    RLVECT_1: 13;
    
      hence thesis by
    A1,
    A3,
    A2,
    VECTSP_5: 1;
    
    end;
    
    begin
    
    theorem :: 
    
    RANKNULL:19
    
    
    
    
    
    Th19: for F be 
    Ring, V,W be 
    VectSp of F holds for X be 
    Subset of V st V is 
    Subspace of W holds X is 
    Subset of W 
    
    proof
    
      let F be
    Ring, V,W be 
    VectSp of F; 
    
      let X be
    Subset of V; 
    
      assume V is
    Subspace of W; 
    
      then
    
      
    
    A1: ( 
    [#] V) 
    c= ( 
    [#] W) by 
    VECTSP_4:def 2;
    
      X
    c= ( 
    [#] W) by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:20
    
    
    
    
    
    Th20: for A be 
    Subset of V st A is 
    linearly-independent holds A is 
    Basis of ( 
    Lin A) 
    
    proof
    
      let A be
    Subset of V such that 
    
      
    
    A1: A is 
    linearly-independent;
    
      A
    c= ( 
    [#] ( 
    Lin A)) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A2: x 
    in A; 
    
        reconsider x as
    Element of V by 
    A2;
    
        x
    in ( 
    Lin A) by 
    A2,
    VECTSP_7: 8;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider B = A as
    Subset of ( 
    Lin A); 
    
      
    
      
    
    A3: ( 
    Lin B) 
    = ( 
    Lin A) by 
    VECTSP_9: 17;
    
      B is
    linearly-independent by 
    A1,
    VECTSP_9: 12;
    
      hence thesis by
    A3,
    VECTSP_7:def 3;
    
    end;
    
    theorem :: 
    
    RANKNULL:21
    
    
    
    
    
    Th21: for A be 
    Subset of V, x be 
    Element of V st x 
    in ( 
    Lin A) & not x 
    in A holds (A 
    \/  
    {x}) is
    linearly-dependent
    
    proof
    
      let A be
    Subset of V, x be 
    Element of V such that 
    
      
    
    A1: x 
    in ( 
    Lin A) and 
    
      
    
    A2: not x 
    in A; 
    
      per cases ;
    
        suppose
    
        
    
    A3: A is 
    linearly-independent;
    
        x
    in ( 
    [#] ( 
    Lin A)) by 
    A1;
    
        then
    
        reconsider X =
    {x} as
    Subset of ( 
    Lin A) by 
    SUBSET_1: 41;
    
        reconsider A9 = A as
    Basis of ( 
    Lin A) by 
    A3,
    Th20;
    
        reconsider B = (A9
    \/ X) as 
    Subset of ( 
    Lin A); 
    
        X
    misses A9 
    
        proof
    
          assume X
    meets A9; 
    
          then ex y be
    object st y 
    in X & y 
    in A9 by 
    XBOOLE_0: 3;
    
          hence contradiction by
    A2,
    TARSKI:def 1;
    
        end;
    
        then B is
    linearly-dependent by 
    VECTSP_9: 15;
    
        hence thesis by
    VECTSP_9: 12;
    
      end;
    
        suppose A is
    linearly-dependent;
    
        hence thesis by
    VECTSP_7: 1,
    XBOOLE_1: 7;
    
      end;
    
    end;
    
    theorem :: 
    
    RANKNULL:22
    
    
    
    
    
    Th22: for A be 
    Subset of V, B be 
    Basis of V st A is 
    Basis of ( 
    ker T) & A 
    c= B holds (T 
    | (B 
    \ A)) is 
    one-to-one
    
    proof
    
      let A be
    Subset of V, B be 
    Basis of V such that 
    
      
    
    A1: A is 
    Basis of ( 
    ker T) and 
    
      
    
    A2: A 
    c= B; 
    
      reconsider A9 = A as
    Subset of V; 
    
      set f = (T
    | (B 
    \ A)); 
    
      let x1,x2 be
    object such that 
    
      
    
    A3: x1 
    in ( 
    dom f) and 
    
      
    
    A4: x2 
    in ( 
    dom f) and 
    
      
    
    A5: (f 
    . x1) 
    = (f 
    . x2) and 
    
      
    
    A6: x1 
    <> x2; 
    
      x2
    in ( 
    dom T) by 
    A4,
    RELAT_1: 57;
    
      then
    
      reconsider x2 as
    Element of V; 
    
      x1
    in ( 
    dom T) by 
    A3,
    RELAT_1: 57;
    
      then
    
      reconsider x1 as
    Element of V; 
    
      
    
      
    
    A7: x1 
    in (B 
    \ A) by 
    A3;
    
      
    
      
    
    A8: not x1 
    in (A9 
    \/  
    {x2})
    
      proof
    
        assume
    
        
    
    A9: x1 
    in (A9 
    \/  
    {x2});
    
        per cases by
    A9,
    XBOOLE_0:def 3;
    
          suppose x1
    in A9; 
    
          hence contradiction by
    A7,
    XBOOLE_0:def 5;
    
        end;
    
          suppose x1
    in  
    {x2};
    
          hence contradiction by
    A6,
    TARSKI:def 1;
    
        end;
    
      end;
    
      
    
      
    
    A10: x2 
    in (B 
    \ A) by 
    A4;
    
      then
    
      
    
    A11: (f 
    . x2) 
    = (T 
    . x2) by 
    FUNCT_1: 49;
    
      reconsider A as
    Basis of ( 
    ker T) by 
    A1;
    
      
    
      
    
    A12: ( 
    ker T) 
    = ( 
    Lin A) by 
    VECTSP_7:def 3;
    
      (f
    . x1) 
    = (T 
    . x1) by 
    A7,
    FUNCT_1: 49;
    
      then (x1
    - x2) 
    in ( 
    ker T) by 
    A5,
    A11,
    Th17;
    
      then (x1
    - x2) 
    in ( 
    Lin A9) by 
    A12,
    VECTSP_9: 17;
    
      then
    
      
    
    A13: x1 
    in ( 
    Lin (A9 
    \/  
    {x2})) by
    Th18;
    
      (
    {x2}
    \/  
    {x1})
    =  
    {x1, x2} by
    ENUMSET1: 1;
    
      then
    
      
    
    A14: ((A9 
    \/  
    {x2})
    \/  
    {x1})
    = (A9 
    \/  
    {x1, x2}) by
    XBOOLE_1: 4;
    
      
    {x1, x2}
    c= B 
    
      proof
    
        let z be
    object such that 
    
        
    
    A15: z 
    in  
    {x1, x2};
    
        per cases by
    A15,
    TARSKI:def 2;
    
          suppose z
    = x1; 
    
          hence thesis by
    A7,
    XBOOLE_0:def 5;
    
        end;
    
          suppose z
    = x2; 
    
          hence thesis by
    A10,
    XBOOLE_0:def 5;
    
        end;
    
      end;
    
      then
    
      
    
    A16: (A9 
    \/  
    {x1, x2})
    c= B by 
    A2,
    XBOOLE_1: 8;
    
      B is
    linearly-independent by 
    VECTSP_7:def 3;
    
      hence thesis by
    A13,
    A14,
    A8,
    A16,
    Th21,
    VECTSP_7: 1;
    
    end;
    
    theorem :: 
    
    RANKNULL:23
    
    for A be
    Subset of V, l be 
    Linear_Combination of A, x be 
    Element of V, a be 
    Element of F holds (l 
    +* (x,a)) is 
    Linear_Combination of (A 
    \/  
    {x})
    
    proof
    
      let A be
    Subset of V, l be 
    Linear_Combination of A, x be 
    Element of V, a be 
    Element of F; 
    
      set m = (l
    +* (x,a)); 
    
      
    
      
    
    A1: ( 
    dom m) 
    = ( 
    [#] V) by 
    FUNCT_2:def 1;
    
      (
    rng m) 
    c= ( 
    [#] F) 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng m); 
    
        then
    
        consider x9 be
    object such that 
    
        
    
    A2: x9 
    in ( 
    dom m) and 
    
        
    
    A3: (m 
    . x9) 
    = y by 
    FUNCT_1:def 3;
    
        
    
        
    
    A4: x9 
    in ( 
    dom l) by 
    A1,
    A2,
    FUNCT_2: 92;
    
        per cases ;
    
          suppose x9
    = x; 
    
          then (m
    . x9) 
    = a by 
    A4,
    FUNCT_7: 31;
    
          hence thesis by
    A3;
    
        end;
    
          suppose
    
          
    
    A5: x9 
    <> x; 
    
          
    
          
    
    A6: (l 
    . x9) 
    in ( 
    rng l) & ( 
    rng l) 
    c= ( 
    [#] F) by 
    A4,
    FUNCT_1: 3,
    FUNCT_2: 92;
    
          (m
    . x9) 
    = (l 
    . x9) by 
    A5,
    FUNCT_7: 32;
    
          hence thesis by
    A3,
    A6;
    
        end;
    
      end;
    
      then
    
      reconsider m as
    Element of ( 
    Funcs (( 
    [#] V),( 
    [#] F))) by 
    A1,
    FUNCT_2:def 2;
    
      set T = ((
    Carrier l) 
    \/  
    {x});
    
      for v be
    Element of V st not v 
    in T holds (m 
    . v) 
    = ( 
    0. F) 
    
      proof
    
        let v be
    Element of V such that 
    
        
    
    A7: not v 
    in T; 
    
         not v
    in  
    {x} by
    A7,
    XBOOLE_0:def 3;
    
        then v
    <> x by 
    TARSKI:def 1;
    
        then
    
        
    
    A8: (m 
    . v) 
    = (l 
    . v) by 
    FUNCT_7: 32;
    
         not v
    in ( 
    Carrier l) by 
    A7,
    XBOOLE_0:def 3;
    
        hence thesis by
    A8;
    
      end;
    
      then
    
      reconsider m as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
      
    
      
    
    A9: ( 
    Carrier m) 
    c= T 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    Carrier m); 
    
        then
    
        consider z be
    Element of V such that 
    
        
    
    A10: y 
    = z and 
    
        
    
    A11: (m 
    . z) 
    <> ( 
    0. F); 
    
        per cases ;
    
          suppose
    
          
    
    A12: z 
    = x; 
    
          x
    in  
    {x} &
    {x}
    c= T by 
    TARSKI:def 1,
    XBOOLE_1: 7;
    
          hence thesis by
    A10,
    A12;
    
        end;
    
          suppose z
    <> x; 
    
          then (m
    . z) 
    = (l 
    . z) by 
    FUNCT_7: 32;
    
          then
    
          
    
    A13: z 
    in ( 
    Carrier l) by 
    A11;
    
          (
    Carrier l) 
    c= T by 
    XBOOLE_1: 7;
    
          hence thesis by
    A10,
    A13;
    
        end;
    
      end;
    
      (
    Carrier l) 
    c= A by 
    VECTSP_6:def 4;
    
      then T
    c= (A 
    \/  
    {x}) by
    XBOOLE_1: 9;
    
      then (
    Carrier m) 
    c= (A 
    \/  
    {x}) by
    A9;
    
      hence thesis by
    VECTSP_6:def 4;
    
    end;
    
    definition
    
      let V be
    1-sorted, X be 
    Subset of V; 
    
      :: 
    
    RANKNULL:def3
    
      func V
    
    \ X -> 
    Subset of V equals (( 
    [#] V) 
    \ X); 
    
      coherence ;
    
    end
    
    definition
    
      let F be
    Field, V be 
    VectSp of F, l be 
    Linear_Combination of V, X be 
    Subset of V; 
    
      :: original:
    .:
    
      redefine
    
      func l
    
    .: X -> 
    Subset of F ; 
    
      coherence
    
      proof
    
        (l
    .: X) 
    c= ( 
    [#] F); 
    
        hence thesis;
    
      end;
    
    end
    
    reserve l for
    Linear_Combination of V; 
    
    registration
    
      let F be
    Field, V be 
    VectSp of F; 
    
      cluster 
    linearly-dependent for 
    Subset of V; 
    
      existence
    
      proof
    
        reconsider S =
    {(
    0. V)} as 
    Subset of V; 
    
        take S;
    
        (
    0. V) 
    in S by 
    TARSKI:def 1;
    
        hence thesis by
    VECTSP_7: 2;
    
      end;
    
    end
    
    definition
    
      let F be
    Field, V be 
    VectSp of F, l be 
    Linear_Combination of V, A be 
    Subset of V; 
    
      :: 
    
    RANKNULL:def4
    
      func l
    
    ! A -> 
    Linear_Combination of A equals ((l 
    | A) 
    +* ((V 
    \ A) 
    --> ( 
    0. F))); 
    
      coherence
    
      proof
    
        set f = ((l
    | A) 
    +* ((V 
    \ A) 
    --> ( 
    0. F))); 
    
        
    
        
    
    A1: ( 
    dom f) 
    = (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F)))) by 
    FUNCT_4:def 1;
    
        (
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
        then
    
        
    
    A3: ( 
    dom (l 
    | A)) 
    = A by 
    RELAT_1: 62;
    
        then
    
        
    
    A4: ( 
    dom f) 
    = ( 
    [#] V) by 
    A1,
    XBOOLE_1: 45;
    
        
    
        
    
    A5: (A 
    \/ (( 
    [#] V) 
    \ A)) 
    = ( 
    [#] V) by 
    XBOOLE_1: 45;
    
        (
    rng f) 
    c= ( 
    [#] F) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng f); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A6: x 
    in ( 
    dom f) and 
    
          
    
    A7: y 
    = (f 
    . x) by 
    FUNCT_1:def 3;
    
          reconsider x as
    Element of V by 
    A1,
    A3,
    A6,
    XBOOLE_1: 45;
    
          per cases by
    A5,
    XBOOLE_0:def 3;
    
            suppose
    
            
    
    A8: x 
    in A; 
    
            then not x
    in ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F))) by 
    XBOOLE_0:def 5;
    
            then
    
            
    
    A9: (f 
    . x) 
    = ((l 
    | A) 
    . x) by 
    FUNCT_4: 11;
    
            ((l
    | A) 
    . x) 
    = (l 
    . x) by 
    A8,
    FUNCT_1: 49;
    
            hence thesis by
    A7,
    A9;
    
          end;
    
            suppose
    
            
    
    A10: x 
    in (V 
    \ A); 
    
            then x
    in ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F))); 
    
            
    
            then (f
    . x) 
    = (((V 
    \ A) 
    --> ( 
    0. F)) 
    . x) by 
    FUNCT_4: 13
    
            .= (
    0. F) by 
    A10,
    FUNCOP_1: 7;
    
            hence thesis by
    A7;
    
          end;
    
        end;
    
        then
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] V),( 
    [#] F))) by 
    A4,
    FUNCT_2:def 2;
    
        ex T be
    finite  
    Subset of V st for v be 
    Element of V st not v 
    in T holds (f 
    . v) 
    = ( 
    0. F) 
    
        proof
    
          set D = { v where v be
    Element of V : (f 
    . v) 
    <> ( 
    0. F) }; 
    
          D
    c= ( 
    [#] V) 
    
          proof
    
            let x be
    object;
    
            assume x
    in D; 
    
            then ex v be
    Element of V st x 
    = v & (f 
    . v) 
    <> ( 
    0. F); 
    
            hence thesis;
    
          end;
    
          then
    
          reconsider D as
    Subset of V; 
    
          set C = (
    Carrier l); 
    
          D
    c= C 
    
          proof
    
            let x be
    object;
    
            assume x
    in D; 
    
            then
    
            consider v be
    Element of V such that 
    
            
    
    A11: x 
    = v and 
    
            
    
    A12: (f 
    . v) 
    <> ( 
    0. F); 
    
            
    
    A14: 
    
            now
    
              assume
    
              
    
    A15: v 
    in (V 
    \ A); 
    
              
    
              then (f
    . v) 
    = (((V 
    \ A) 
    --> ( 
    0. F)) 
    . v) by 
    A1,
    A4,
    FUNCT_4:def 1
    
              .= (
    0. F) by 
    A15,
    FUNCOP_1: 7;
    
              hence contradiction by
    A12;
    
            end;
    
            then v
    in A by 
    XBOOLE_0:def 5;
    
            then
    
            
    
    A16: ((l 
    | A) 
    . v) 
    = (l 
    . v) by 
    FUNCT_1: 49;
    
             not v
    in ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F))) by 
    A14;
    
            then (f
    . v) 
    = ((l 
    | A) 
    . v) by 
    FUNCT_4: 11;
    
            hence thesis by
    A11,
    A12,
    A16;
    
          end;
    
          then
    
          reconsider D as
    finite  
    Subset of V; 
    
          take D;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
        (
    Carrier f) 
    c= A 
    
        proof
    
          let x be
    object such that 
    
          
    
    A17: x 
    in ( 
    Carrier f); 
    
          reconsider x as
    Element of V by 
    A17;
    
          
    
          
    
    A18: (f 
    . x) 
    <> ( 
    0. F) by 
    A17,
    VECTSP_6: 2;
    
          now
    
            assume not x
    in A; 
    
            then
    
            
    
    A19: x 
    in (V 
    \ A) by 
    XBOOLE_0:def 5;
    
            then x
    in (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F)))) by 
    XBOOLE_0:def 3;
    
            then (f
    . x) 
    = (((V 
    \ A) 
    --> ( 
    0. F)) 
    . x) by 
    A19,
    FUNCT_4:def 1;
    
            hence contradiction by
    A18,
    A19,
    FUNCOP_1: 7;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    VECTSP_6:def 4;
    
      end;
    
    end
    
    theorem :: 
    
    RANKNULL:24
    
    
    
    
    
    Th24: l 
    = (l 
    ! ( 
    Carrier l)) 
    
    proof
    
      set f = (l
    | ( 
    Carrier l)); 
    
      set g = ((V
    \ ( 
    Carrier l)) 
    --> ( 
    0. F)); 
    
      set m = (f
    +* g); 
    
      
    
      
    
    A2: ( 
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      then (
    dom f) 
    = ( 
    Carrier l) by 
    RELAT_1: 62;
    
      then
    
      
    
    A3: (( 
    dom f) 
    \/ ( 
    dom g)) 
    = ( 
    [#] V) by 
    XBOOLE_1: 45;
    
      
    
      
    
    A4: for x be 
    object st x 
    in ( 
    dom l) holds (l 
    . x) 
    = (m 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom l); 
    
        then
    
        reconsider x as
    Element of V; 
    
        per cases ;
    
          suppose
    
          
    
    A5: x 
    in ( 
    Carrier l); 
    
          then not x
    in ( 
    dom g) by 
    XBOOLE_0:def 5;
    
          then (m
    . x) 
    = (f 
    . x) by 
    A3,
    FUNCT_4:def 1;
    
          hence thesis by
    A5,
    FUNCT_1: 49;
    
        end;
    
          suppose
    
          
    
    A6: not x 
    in ( 
    Carrier l); 
    
          then x
    in (V 
    \ ( 
    Carrier l)) by 
    XBOOLE_0:def 5;
    
          then (m
    . x) 
    = (g 
    . x) & (g 
    . x) 
    = ( 
    0. F) by 
    A3,
    FUNCOP_1: 7,
    FUNCT_4:def 1;
    
          hence thesis by
    A6;
    
        end;
    
      end;
    
      (
    dom l) 
    = ( 
    dom m) by 
    A2,
    A3,
    FUNCT_4:def 1;
    
      hence thesis by
    A4;
    
    end;
    
    
    
    
    
    Lm1: for X be 
    Subset of V holds (l 
    .: X) is 
    finite
    
    proof
    
      let X be
    Subset of V; 
    
      
    
      
    
    A1: l 
    = (l 
    ! ( 
    Carrier l)) by 
    Th24;
    
      ((
    rng (l 
    | ( 
    Carrier l))) 
    \/ ( 
    rng ((V 
    \ ( 
    Carrier l)) 
    --> ( 
    0. F)))) is 
    finite;
    
      then (
    rng l) is 
    finite by 
    A1,
    FINSET_1: 1,
    FUNCT_4: 17;
    
      hence thesis by
    FINSET_1: 1,
    RELAT_1: 111;
    
    end;
    
    theorem :: 
    
    RANKNULL:25
    
    
    
    
    
    Th25: for A be 
    Subset of V, v be 
    Element of V st v 
    in A holds ((l 
    ! A) 
    . v) 
    = (l 
    . v) 
    
    proof
    
      let A be
    Subset of V, v be 
    Element of V such that 
    
      
    
    A1: v 
    in A; 
    
      (
    dom (l 
    ! A)) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      then
    
      
    
    A2: (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F)))) 
    = ( 
    [#] V) by 
    FUNCT_4:def 1;
    
       not v
    in ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F))) by 
    A1,
    XBOOLE_0:def 5;
    
      
    
      then ((l
    ! A) 
    . v) 
    = ((l 
    | A) 
    . v) by 
    A2,
    FUNCT_4:def 1
    
      .= (l
    . v) by 
    A1,
    FUNCT_1: 49;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:26
    
    
    
    
    
    Th26: for A be 
    Subset of V, v be 
    Element of V st not v 
    in A holds ((l 
    ! A) 
    . v) 
    = ( 
    0. F) 
    
    proof
    
      let A be
    Subset of V, v be 
    Element of V; 
    
      assume not v
    in A; 
    
      then
    
      
    
    A1: v 
    in (V 
    \ A) by 
    XBOOLE_0:def 5;
    
      
    
      
    
    A2: ( 
    dom (l 
    ! A)) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      (
    dom ((V 
    \ A) 
    --> ( 
    0. F))) 
    = (V 
    \ A) & ( 
    dom (l 
    ! A)) 
    = (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((V 
    \ A) 
    --> ( 
    0. F)))) by 
    FUNCT_4:def 1;
    
      
    
      then ((l
    ! A) 
    . v) 
    = (((V 
    \ A) 
    --> ( 
    0. F)) 
    . v) by 
    A2,
    A1,
    FUNCT_4:def 1
    
      .= (
    0. F) by 
    A1,
    FUNCOP_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:27
    
    
    
    
    
    Th27: for A,B be 
    Subset of V, l be 
    Linear_Combination of B st A 
    c= B holds l 
    = ((l 
    ! A) 
    + (l 
    ! (B 
    \ A))) 
    
    proof
    
      let A,B be
    Subset of V, l be 
    Linear_Combination of B such that 
    
      
    
    A1: A 
    c= B; 
    
      set r = ((l
    ! A) 
    + (l 
    ! (B 
    \ A))); 
    
      let v be
    Element of V; 
    
      
    
      
    
    A2: v 
    in B implies (v 
    in A or v 
    in (B 
    \ A)) 
    
      proof
    
        assume
    
        
    
    A3: v 
    in B; 
    
        B
    = (A 
    \/ (B 
    \ A)) by 
    A1,
    XBOOLE_1: 45;
    
        hence thesis by
    A3,
    XBOOLE_0:def 3;
    
      end;
    
      per cases by
    A2;
    
        suppose
    
        
    
    A4: v 
    in A; 
    
        then not v
    in (B 
    \ A) by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A5: ((l 
    ! (B 
    \ A)) 
    . v) 
    = ( 
    0. F) by 
    Th26;
    
        ((l
    ! A) 
    . v) 
    = (l 
    . v) by 
    A4,
    Th25;
    
        
    
        then (r
    . v) 
    = ((l 
    . v) 
    + ( 
    0. F)) by 
    A5,
    VECTSP_6: 22
    
        .= (l
    . v) by 
    RLVECT_1: 4;
    
        hence (l
    . v) 
    = (r 
    . v); 
    
      end;
    
        suppose
    
        
    
    A6: v 
    in (B 
    \ A); 
    
        then not v
    in A by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A7: ((l 
    ! A) 
    . v) 
    = ( 
    0. F) by 
    Th26;
    
        ((l
    ! (B 
    \ A)) 
    . v) 
    = (l 
    . v) by 
    A6,
    Th25;
    
        
    
        then (r
    . v) 
    = (( 
    0. F) 
    + (l 
    . v)) by 
    A7,
    VECTSP_6: 22
    
        .= (l
    . v) by 
    RLVECT_1: 4;
    
        hence (l
    . v) 
    = (r 
    . v); 
    
      end;
    
        suppose
    
        
    
    A8: not v 
    in B; 
    
        (
    Carrier l) 
    c= B by 
    VECTSP_6:def 4;
    
        then
    
        
    
    A9: not v 
    in ( 
    Carrier l) by 
    A8;
    
         not v
    in (B 
    \ A) by 
    A8,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A10: ((l 
    ! (B 
    \ A)) 
    . v) 
    = ( 
    0. F) by 
    Th26;
    
         not v
    in A by 
    A1,
    A8;
    
        then ((l
    ! A) 
    . v) 
    = ( 
    0. F) by 
    Th26;
    
        
    
        then (r
    . v) 
    = (( 
    0. F) 
    + ( 
    0. F)) by 
    A10,
    VECTSP_6: 22
    
        .= (
    0. F) by 
    RLVECT_1: 4;
    
        hence (l
    . v) 
    = (r 
    . v) by 
    A9;
    
      end;
    
    end;
    
    registration
    
      let F be
    Field, V be 
    VectSp of F, l be 
    Linear_Combination of V, X be 
    Subset of V; 
    
      cluster (l 
    .: X) -> 
    finite;
    
      coherence by
    Lm1;
    
    end
    
    definition
    
      let V,W be non
    empty  
    1-sorted, T be 
    Function of V, W, X be 
    Subset of W; 
    
      :: original:
    "
    
      redefine
    
      func T
    
    " X -> 
    Subset of V ; 
    
      coherence
    
      proof
    
        (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
        hence thesis by
    RELAT_1: 132;
    
      end;
    
    end
    
    theorem :: 
    
    RANKNULL:28
    
    
    
    
    
    Th28: for X be 
    Subset of V st X 
    misses ( 
    Carrier l) holds (l 
    .: X) 
    c=  
    {(
    0. F)} 
    
    proof
    
      let X be
    Subset of V such that 
    
      
    
    A1: X 
    misses ( 
    Carrier l); 
    
      set M = (l
    .: X); 
    
      let y be
    object;
    
      assume y
    in M; 
    
      then
    
      consider x be
    object such that 
    
      
    
    A2: x 
    in ( 
    dom l) and 
    
      
    
    A3: x 
    in X and 
    
      
    
    A4: y 
    = (l 
    . x) by 
    FUNCT_1:def 6;
    
      reconsider x as
    Element of V by 
    A2;
    
      now
    
        assume (l
    . x) 
    <> ( 
    0. F); 
    
        then x
    in ( 
    Carrier l); 
    
        then x
    in (( 
    Carrier l) 
    /\ X) by 
    A3,
    XBOOLE_0:def 4;
    
        hence contradiction by
    A1;
    
      end;
    
      hence thesis by
    A4,
    TARSKI:def 1;
    
    end;
    
    definition
    
      let F be
    Field, V,W be 
    VectSp of F, l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      :: 
    
    RANKNULL:def5
    
      func T
    
    @ l -> 
    Linear_Combination of W means 
    
      :
    
    Def5: for w be 
    Element of W holds (it 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w})));
    
      existence
    
      proof
    
        defpred
    
    P[
    object, 
    object] means ex w be
    Element of W st $1 
    = w & $2 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w})));
    
        
    
        
    
    A1: for x be 
    object st x 
    in ( 
    [#] W) holds ex y be 
    object st 
    P[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    [#] W); 
    
          then
    
          reconsider x as
    Element of W; 
    
          take (
    Sum (l 
    .: (T 
    "  
    {x})));
    
          thus thesis;
    
        end;
    
        consider f be
    Function such that 
    
        
    
    A2: ( 
    dom f) 
    = ( 
    [#] W) and 
    
        
    
    A3: for x be 
    object st x 
    in ( 
    [#] W) holds 
    P[x, (f
    . x)] from 
    CLASSES1:sch 1(
    A1);
    
        
    
        
    
    A4: ( 
    rng f) 
    c= ( 
    [#] F) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng f); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A5: x 
    in ( 
    dom f) and 
    
          
    
    A6: (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          ex w be
    Element of W st x 
    = w & (f 
    . x) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w}))) by
    A2,
    A3,
    A5;
    
          hence thesis by
    A6;
    
        end;
    
        
    
        
    
    A7: for w be 
    Element of W holds (f 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w})))
    
        proof
    
          let w be
    Element of W; 
    
          ex w9 be
    Element of W st w 
    = w9 & (f 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w9}))) by
    A3;
    
          hence thesis;
    
        end;
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] W),( 
    [#] F))) by 
    A2,
    A4,
    FUNCT_2:def 2;
    
        ex T be
    finite  
    Subset of W st for w be 
    Element of W st not w 
    in T holds (f 
    . w) 
    = ( 
    0. F) 
    
        proof
    
          set X = { w where w be
    Element of W : (f 
    . w) 
    <> ( 
    0. F) }; 
    
          X
    c= ( 
    [#] W) 
    
          proof
    
            let x be
    object;
    
            assume x
    in X; 
    
            then ex w be
    Element of W st x 
    = w & (f 
    . w) 
    <> ( 
    0. F); 
    
            hence thesis;
    
          end;
    
          then
    
          reconsider X as
    Subset of W; 
    
          set C = (
    Carrier l); 
    
          reconsider TC = (T
    .: C) as 
    Subset of W; 
    
          X
    c= TC 
    
          proof
    
            let x be
    object;
    
            assume x
    in X; 
    
            then
    
            consider w be
    Element of W such that 
    
            
    
    A8: x 
    = w and 
    
            
    
    A9: (f 
    . w) 
    <> ( 
    0. F); 
    
            (T
    "  
    {w})
    meets ( 
    Carrier l) 
    
            proof
    
              assume
    
              
    
    A10: (T 
    "  
    {w})
    misses ( 
    Carrier l); 
    
              then
    
              
    
    A11: (l 
    .: (T 
    "  
    {w}))
    c=  
    {(
    0. F)} by 
    Th28;
    
              (
    Sum (l 
    .: (T 
    "  
    {w})))
    = ( 
    0. F) 
    
              proof
    
                per cases ;
    
                  suppose (l
    .: (T 
    "  
    {w}))
    = ( 
    {} F); 
    
                  hence thesis by
    RLVECT_2: 8;
    
                end;
    
                  suppose
    
                  
    
    A12: (l 
    .: (T 
    "  
    {w}))
    <> ( 
    {} F); 
    
                  
    
                  
    
    A13: 
    {(
    0. F)} 
    c= (l 
    .: (T 
    "  
    {w}))
    
                  proof
    
                    let y be
    object;
    
                    assume y
    in  
    {(
    0. F)}; 
    
                    then
    
                    
    
    A14: y 
    = ( 
    0. F) by 
    TARSKI:def 1;
    
                    ex z be
    object st z 
    in (l 
    .: (T 
    "  
    {w})) by
    A12,
    XBOOLE_0:def 1;
    
                    hence thesis by
    A11,
    A14,
    TARSKI:def 1;
    
                  end;
    
                  (l
    .: (T 
    "  
    {w}))
    c=  
    {(
    0. F)} by 
    A10,
    Th28;
    
                  then (l
    .: (T 
    "  
    {w}))
    =  
    {(
    0. F)} by 
    A13;
    
                  hence thesis by
    RLVECT_2: 9;
    
                end;
    
              end;
    
              hence contradiction by
    A7,
    A9;
    
            end;
    
            then
    
            consider y be
    object such that 
    
            
    
    A15: y 
    in (T 
    "  
    {w}) and
    
            
    
    A16: y 
    in ( 
    Carrier l) by 
    XBOOLE_0: 3;
    
            
    
            
    
    A17: ( 
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
            reconsider y as
    Element of V by 
    A16;
    
            (T
    . y) 
    in  
    {w} by
    A15,
    FUNCT_1:def 7;
    
            then (T
    . y) 
    = w by 
    TARSKI:def 1;
    
            hence thesis by
    A8,
    A16,
    A17,
    FUNCT_1:def 6;
    
          end;
    
          then
    
          reconsider X as
    finite  
    Subset of W; 
    
          take X;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of W by 
    VECTSP_6:def 1;
    
        take f;
    
        for w be
    Element of W holds (f 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w})))
    
        proof
    
          let w be
    Element of W; 
    
          ex w9 be
    Element of W st w 
    = w9 & (f 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w9}))) by
    A3;
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Linear_Combination of W such that 
    
        
    
    A18: for w be 
    Element of W holds (f 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w}))) and
    
        
    
    A19: for w be 
    Element of W holds (g 
    . w) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {w})));
    
        
    
        
    
    A20: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g 
    . x) 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    dom f); 
    
          then
    
          reconsider x as
    Element of W; 
    
          (f
    . x) 
    = ( 
    Sum (l 
    .: (T 
    "  
    {x}))) by
    A18;
    
          hence thesis by
    A19;
    
        end;
    
        (
    dom f) 
    = ( 
    [#] W) & ( 
    dom g) 
    = ( 
    [#] W) by 
    FUNCT_2: 92;
    
        hence thesis by
    A20;
    
      end;
    
    end
    
    theorem :: 
    
    RANKNULL:29
    
    
    
    
    
    Th29: (T 
    @ l) is 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) 
    
    proof
    
      (
    Carrier (T 
    @ l)) 
    c= (T 
    .: ( 
    Carrier l)) 
    
      proof
    
        let w be
    object such that 
    
        
    
    A1: w 
    in ( 
    Carrier (T 
    @ l)); 
    
        reconsider w as
    Element of W by 
    A1;
    
        
    
        
    
    A2: ((T 
    @ l) 
    . w) 
    <> ( 
    0. F) by 
    A1,
    VECTSP_6: 2;
    
        now
    
          assume
    
          
    
    A3: (T 
    "  
    {w})
    misses ( 
    Carrier l); 
    
          then
    
          
    
    A4: (l 
    .: (T 
    "  
    {w}))
    c=  
    {(
    0. F)} by 
    Th28;
    
          (
    Sum (l 
    .: (T 
    "  
    {w})))
    = ( 
    0. F) 
    
          proof
    
            per cases ;
    
              suppose (l
    .: (T 
    "  
    {w}))
    = ( 
    {} F); 
    
              hence thesis by
    RLVECT_2: 8;
    
            end;
    
              suppose
    
              
    
    A5: (l 
    .: (T 
    "  
    {w}))
    <> ( 
    {} F); 
    
              
    
              
    
    A6: 
    {(
    0. F)} 
    c= (l 
    .: (T 
    "  
    {w}))
    
              proof
    
                let y be
    object;
    
                assume y
    in  
    {(
    0. F)}; 
    
                then
    
                
    
    A7: y 
    = ( 
    0. F) by 
    TARSKI:def 1;
    
                ex z be
    object st z 
    in (l 
    .: (T 
    "  
    {w})) by
    A5,
    XBOOLE_0:def 1;
    
                hence thesis by
    A4,
    A7,
    TARSKI:def 1;
    
              end;
    
              (l
    .: (T 
    "  
    {w}))
    c=  
    {(
    0. F)} by 
    A3,
    Th28;
    
              then (l
    .: (T 
    "  
    {w}))
    =  
    {(
    0. F)} by 
    A6;
    
              hence thesis by
    RLVECT_2: 9;
    
            end;
    
          end;
    
          hence contradiction by
    A2,
    Def5;
    
        end;
    
        then
    
        consider x be
    object such that 
    
        
    
    A8: x 
    in (T 
    "  
    {w}) and
    
        
    
    A9: x 
    in ( 
    Carrier l) by 
    XBOOLE_0: 3;
    
        
    
        
    
    A10: x 
    in ( 
    dom T) by 
    A8,
    FUNCT_1:def 7;
    
        
    
        
    
    A11: (T 
    . x) 
    in  
    {w} by
    A8,
    FUNCT_1:def 7;
    
        reconsider x as
    Element of V by 
    A8;
    
        (T
    . x) 
    = w by 
    A11,
    TARSKI:def 1;
    
        hence thesis by
    A9,
    A10,
    FUNCT_1:def 6;
    
      end;
    
      hence thesis by
    VECTSP_6:def 4;
    
    end;
    
    theorem :: 
    
    RANKNULL:30
    
    
    
    
    
    Th30: ( 
    Carrier (T 
    @ l)) 
    c= (T 
    .: ( 
    Carrier l)) 
    
    proof
    
      (T
    @ l) is 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) by 
    Th29;
    
      hence thesis by
    VECTSP_6:def 4;
    
    end;
    
    theorem :: 
    
    RANKNULL:31
    
    
    
    
    
    Th31: for l,m be 
    Linear_Combination of V st ( 
    Carrier l) 
    misses ( 
    Carrier m) holds ( 
    Carrier (l 
    + m)) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) 
    
    proof
    
      let l,m be
    Linear_Combination of V such that 
    
      
    
    A1: ( 
    Carrier l) 
    misses ( 
    Carrier m); 
    
      thus (
    Carrier (l 
    + m)) 
    c= (( 
    Carrier l) 
    \/ ( 
    Carrier m)) by 
    VECTSP_6: 23;
    
      thus ((
    Carrier l) 
    \/ ( 
    Carrier m)) 
    c= ( 
    Carrier (l 
    + m)) 
    
      proof
    
        let v be
    object such that 
    
        
    
    A2: v 
    in (( 
    Carrier l) 
    \/ ( 
    Carrier m)); 
    
        per cases by
    A2,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A3: v 
    in ( 
    Carrier l); 
    
          then
    
          reconsider v as
    Element of V; 
    
           not v
    in ( 
    Carrier m) by 
    A1,
    A2,
    A3,
    XBOOLE_0: 5;
    
          then ((l
    + m) 
    . v) 
    = ((l 
    . v) 
    + (m 
    . v)) & (m 
    . v) 
    = ( 
    0. F) by 
    VECTSP_6: 22;
    
          then
    
          
    
    A4: ((l 
    + m) 
    . v) 
    = (l 
    . v) by 
    RLVECT_1: 4;
    
          (l
    . v) 
    <> ( 
    0. F) by 
    A3,
    VECTSP_6: 2;
    
          hence thesis by
    A4;
    
        end;
    
          suppose
    
          
    
    A5: v 
    in ( 
    Carrier m); 
    
          then
    
          reconsider v as
    Element of V; 
    
           not v
    in ( 
    Carrier l) by 
    A1,
    A2,
    A5,
    XBOOLE_0: 5;
    
          then ((l
    + m) 
    . v) 
    = ((l 
    . v) 
    + (m 
    . v)) & (l 
    . v) 
    = ( 
    0. F) by 
    VECTSP_6: 22;
    
          then
    
          
    
    A6: ((l 
    + m) 
    . v) 
    = (m 
    . v) by 
    RLVECT_1: 4;
    
          (m
    . v) 
    <> ( 
    0. F) by 
    A5,
    VECTSP_6: 2;
    
          hence thesis by
    A6;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    RANKNULL:32
    
    
    
    
    
    Th32: for l,m be 
    Linear_Combination of V st ( 
    Carrier l) 
    misses ( 
    Carrier m) holds ( 
    Carrier (l 
    - m)) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) 
    
    proof
    
      let l,m be
    Linear_Combination of V such that 
    
      
    
    A1: ( 
    Carrier l) 
    misses ( 
    Carrier m); 
    
      (
    Carrier ( 
    - m)) 
    = ( 
    Carrier m) by 
    VECTSP_6: 38;
    
      hence thesis by
    A1,
    Th31;
    
    end;
    
    theorem :: 
    
    RANKNULL:33
    
    
    
    
    
    Th33: for A,B be 
    Subset of V st A 
    c= B & B is 
    Basis of V holds V 
    is_the_direct_sum_of (( 
    Lin A),( 
    Lin (B 
    \ A))) 
    
    proof
    
      let A,B be
    Subset of V such that 
    
      
    
    A1: A 
    c= B and 
    
      
    
    A2: B is 
    Basis of V; 
    
      
    
      
    
    A3: (( 
    Lin A) 
    /\ ( 
    Lin (B 
    \ A))) 
    = ( 
    (0). V) 
    
      proof
    
        set U = ((
    Lin A) 
    /\ ( 
    Lin (B 
    \ A))); 
    
        reconsider W = (
    (0). V) as 
    strict  
    Subspace of U by 
    VECTSP_4: 39;
    
        for v be
    Element of U holds v 
    in W 
    
        proof
    
          let v be
    Element of U; 
    
          
    
          
    
    A4: B is 
    linearly-independent by 
    A2,
    VECTSP_7:def 3;
    
          
    
          
    
    A5: v 
    in U; 
    
          then v
    in ( 
    Lin A) by 
    VECTSP_5: 3;
    
          then
    
          consider l be
    Linear_Combination of A such that 
    
          
    
    A6: v 
    = ( 
    Sum l) by 
    VECTSP_7: 7;
    
          v
    in ( 
    Lin (B 
    \ A)) by 
    A5,
    VECTSP_5: 3;
    
          then
    
          consider m be
    Linear_Combination of (B 
    \ A) such that 
    
          
    
    A7: v 
    = ( 
    Sum m) by 
    VECTSP_7: 7;
    
          
    
          
    
    A8: ( 
    0. V) 
    = (( 
    Sum l) 
    - ( 
    Sum m)) by 
    A6,
    A7,
    VECTSP_1: 19
    
          .= (
    Sum (l 
    - m)) by 
    VECTSP_6: 47;
    
          
    
          
    
    A9: ( 
    Carrier (l 
    - m)) 
    c= (( 
    Carrier l) 
    \/ ( 
    Carrier m)) & (A 
    \/ (B 
    \ A)) 
    = B by 
    A1,
    VECTSP_6: 41,
    XBOOLE_1: 45;
    
          
    
          
    
    A10: ( 
    Carrier l) 
    c= A & ( 
    Carrier m) 
    c= (B 
    \ A) by 
    VECTSP_6:def 4;
    
          then ((
    Carrier l) 
    \/ ( 
    Carrier m)) 
    c= (A 
    \/ (B 
    \ A)) by 
    XBOOLE_1: 13;
    
          then (
    Carrier (l 
    - m)) 
    c= B by 
    A9;
    
          then
    
          reconsider n = (l
    - m) as 
    Linear_Combination of B by 
    VECTSP_6:def 4;
    
          A
    misses (B 
    \ A) by 
    XBOOLE_1: 79;
    
          then (
    Carrier n) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) by 
    A10,
    Th32,
    XBOOLE_1: 64;
    
          then (
    Carrier l) 
    =  
    {} by 
    A8,
    A4,
    VECTSP_7:def 1;
    
          then l
    = ( 
    ZeroLC V) by 
    VECTSP_6:def 3;
    
          then (
    Sum l) 
    = ( 
    0. V) by 
    VECTSP_6: 15;
    
          hence thesis by
    A6,
    VECTSP_4: 35;
    
        end;
    
        hence thesis by
    VECTSP_4: 32;
    
      end;
    
      (
    (Omega). V) 
    = (( 
    Lin A) 
    + ( 
    Lin (B 
    \ A))) 
    
      proof
    
        set U = ((
    Lin A) 
    + ( 
    Lin (B 
    \ A))); 
    
        
    
        
    
    A11: ( 
    [#] V) 
    c= ( 
    [#] U) 
    
        proof
    
          let v be
    object;
    
          assume v
    in ( 
    [#] V); 
    
          then
    
          reconsider v as
    Element of V; 
    
          v
    in ( 
    Lin B) by 
    A2,
    VECTSP_9: 10;
    
          then
    
          consider l be
    Linear_Combination of B such that 
    
          
    
    A12: v 
    = ( 
    Sum l) by 
    VECTSP_7: 7;
    
          set n = (l
    ! (B 
    \ A)); 
    
          set m = (l
    ! A); 
    
          
    
          
    
    A13: l 
    = (m 
    + n) by 
    A1,
    Th27;
    
          ex v1,v2 be
    Element of V st v1 
    in ( 
    Lin A) & v2 
    in ( 
    Lin (B 
    \ A)) & v 
    = (v1 
    + v2) 
    
          proof
    
            take (
    Sum m), ( 
    Sum n); 
    
            thus thesis by
    A12,
    A13,
    VECTSP_6: 44,
    VECTSP_7: 7;
    
          end;
    
          then v
    in (( 
    Lin A) 
    + ( 
    Lin (B 
    \ A))) by 
    VECTSP_5: 1;
    
          hence thesis;
    
        end;
    
        (
    [#] U) 
    c= ( 
    [#] V) by 
    VECTSP_4:def 2;
    
        then (
    [#] U) 
    = ( 
    [#] V) by 
    A11;
    
        hence thesis by
    VECTSP_4: 29;
    
      end;
    
      hence thesis by
    A3,
    VECTSP_5:def 4;
    
    end;
    
    theorem :: 
    
    RANKNULL:34
    
    
    
    
    
    Th34: for A be 
    Subset of V, l be 
    Linear_Combination of A, v be 
    Element of V st (T 
    | A) is 
    one-to-one & v 
    in A holds ex X be 
    Subset of V st X 
    misses A & (T 
    "  
    {(T
    . v)}) 
    = ( 
    {v}
    \/ X) 
    
    proof
    
      let A be
    Subset of V, l be 
    Linear_Combination of A, v be 
    Element of V such that 
    
      
    
    A1: (T 
    | A) is 
    one-to-one and 
    
      
    
    A2: v 
    in A; 
    
      set X = ((T
    "  
    {(T
    . v)}) 
    \  
    {v});
    
      
    
      
    
    A3: X 
    misses A 
    
      proof
    
        (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
        then
    
        
    
    A4: ( 
    dom (T 
    | A)) 
    = A by 
    RELAT_1: 62;
    
        assume X
    meets A; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A5: x 
    in X and 
    
        
    
    A6: x 
    in A by 
    XBOOLE_0: 3;
    
         not x
    in  
    {v} by
    A5,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A7: x 
    <> v by 
    TARSKI:def 1;
    
        x
    in (T 
    "  
    {(T
    . v)}) by 
    A5,
    XBOOLE_0:def 5;
    
        then (T
    . x) 
    in  
    {(T
    . v)} by 
    FUNCT_1:def 7;
    
        then
    
        
    
    A8: (T 
    . x) 
    = (T 
    . v) by 
    TARSKI:def 1;
    
        (T
    . x) 
    = ((T 
    | A) 
    . x) by 
    A6,
    FUNCT_1: 49;
    
        then ((T
    | A) 
    . v) 
    = ((T 
    | A) 
    . x) by 
    A2,
    A8,
    FUNCT_1: 49;
    
        hence thesis by
    A1,
    A2,
    A6,
    A7,
    A4;
    
      end;
    
      take X;
    
      
    {v}
    c= (T 
    "  
    {(T
    . v)}) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {v};
    
        then
    
        
    
    A9: x 
    = v by 
    TARSKI:def 1;
    
        (
    dom T) 
    = ( 
    [#] V) & (T 
    . v) 
    in  
    {(T
    . v)} by 
    Th7,
    TARSKI:def 1;
    
        hence thesis by
    A9,
    FUNCT_1:def 7;
    
      end;
    
      hence thesis by
    A3,
    XBOOLE_1: 45;
    
    end;
    
    theorem :: 
    
    RANKNULL:35
    
    
    
    
    
    Th35: for X be 
    Subset of V st X 
    misses ( 
    Carrier l) & X 
    <>  
    {} holds (l 
    .: X) 
    =  
    {(
    0. F)} 
    
    proof
    
      let X be
    Subset of V such that 
    
      
    
    A1: X 
    misses ( 
    Carrier l) and 
    
      
    
    A2: X 
    <>  
    {} ; 
    
      (
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      then
    
      
    
    A3: (l 
    .: X) 
    <>  
    {} by 
    A2,
    RELAT_1: 119;
    
      (l
    .: X) 
    c=  
    {(
    0. F)} by 
    A1,
    Th28;
    
      hence thesis by
    A3,
    ZFMISC_1: 33;
    
    end;
    
    theorem :: 
    
    RANKNULL:36
    
    
    
    
    
    Th36: for w be 
    Element of W st w 
    in ( 
    Carrier (T 
    @ l)) holds (T 
    "  
    {w})
    meets ( 
    Carrier l) 
    
    proof
    
      let w be
    Element of W; 
    
      assume w
    in ( 
    Carrier (T 
    @ l)); 
    
      then
    
      
    
    A1: ((T 
    @ l) 
    . w) 
    <> ( 
    0. F) by 
    VECTSP_6: 2;
    
      assume
    
      
    
    A2: (T 
    "  
    {w})
    misses ( 
    Carrier l); 
    
      per cases ;
    
        suppose (T
    "  
    {w})
    =  
    {} ; 
    
        
    
        then (
    Sum (l 
    .: (T 
    "  
    {w})))
    = ( 
    Sum ( 
    {} F)) 
    
        .= (
    0. F) by 
    RLVECT_2: 8;
    
        hence thesis by
    A1,
    Def5;
    
      end;
    
        suppose (T
    "  
    {w})
    <>  
    {} ; 
    
        then (l
    .: (T 
    "  
    {w}))
    =  
    {(
    0. F)} by 
    A2,
    Th35;
    
        then (
    Sum (l 
    .: (T 
    "  
    {w})))
    = ( 
    0. F) by 
    RLVECT_2: 9;
    
        hence thesis by
    A1,
    Def5;
    
      end;
    
    end;
    
    theorem :: 
    
    RANKNULL:37
    
    
    
    
    
    Th37: for v be 
    Element of V st (T 
    | ( 
    Carrier l)) is 
    one-to-one & v 
    in ( 
    Carrier l) holds ((T 
    @ l) 
    . (T 
    . v)) 
    = (l 
    . v) 
    
    proof
    
      let v be
    Element of V such that 
    
      
    
    A1: (T 
    | ( 
    Carrier l)) is 
    one-to-one and 
    
      
    
    A2: v 
    in ( 
    Carrier l); 
    
      consider X be
    Subset of V such that 
    
      
    
    A3: X 
    misses ( 
    Carrier l) and 
    
      
    
    A4: (T 
    "  
    {(T
    . v)}) 
    = ( 
    {v}
    \/ X) by 
    A1,
    A2,
    Th34;
    
      per cases ;
    
        suppose
    
        
    
    A5: X 
    =  
    {} ; 
    
        
    
        
    
    A6: ( 
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
        (l
    .:  
    {v})
    = ( 
    Im (l,v)) 
    
        .=
    {(l
    . v)} by 
    A6,
    FUNCT_1: 59;
    
        then (
    Sum (l 
    .: (T 
    "  
    {(T
    . v)}))) 
    = (l 
    . v) by 
    A4,
    A5,
    RLVECT_2: 9;
    
        hence thesis by
    Def5;
    
      end;
    
        suppose
    
        
    
    A7: X 
    <>  
    {} ; 
    
        
    
        
    
    A8: (l 
    .: X) 
    c=  
    {(
    0. F)} 
    
        proof
    
          let y be
    object;
    
          assume y
    in (l 
    .: X); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A9: x 
    in ( 
    dom l) and 
    
          
    
    A10: x 
    in X and 
    
          
    
    A11: y 
    = (l 
    . x) by 
    FUNCT_1:def 6;
    
          
    
          
    
    A12: not x 
    in ( 
    Carrier l) by 
    A3,
    A10,
    XBOOLE_0:def 4;
    
          reconsider x as
    Element of V by 
    A9;
    
          (l
    . x) 
    = ( 
    0. F) by 
    A12;
    
          hence thesis by
    A11,
    TARSKI:def 1;
    
        end;
    
        
    
        
    
    A13: (l 
    .: X) 
    misses (l 
    .:  
    {v})
    
        proof
    
          assume (l
    .: X) 
    meets (l 
    .:  
    {v});
    
          then
    
          consider x be
    object such that 
    
          
    
    A14: x 
    in (l 
    .: X) and 
    
          
    
    A15: x 
    in (l 
    .:  
    {v}) by
    XBOOLE_0: 3;
    
          
    
          
    
    A16: ( 
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
          (l
    .:  
    {v})
    = ( 
    Im (l,v)) 
    
          .=
    {(l
    . v)} by 
    A16,
    FUNCT_1: 59;
    
          then
    
          
    
    A17: x 
    = (l 
    . v) by 
    A15,
    TARSKI:def 1;
    
          x
    = ( 
    0. F) by 
    A8,
    A14,
    TARSKI:def 1;
    
          hence thesis by
    A2,
    A17,
    VECTSP_6: 2;
    
        end;
    
        
    
        
    
    A18: ( 
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
        
    {(
    0. F)} 
    c= (l 
    .: X) 
    
        proof
    
          consider y be
    object such that 
    
          
    
    A19: y 
    in X by 
    A7,
    XBOOLE_0:def 1;
    
          
    
          
    
    A20: not y 
    in ( 
    Carrier l) by 
    A3,
    A19,
    XBOOLE_0:def 4;
    
          reconsider y as
    Element of V by 
    A19;
    
          let x be
    object;
    
          assume x
    in  
    {(
    0. F)}; 
    
          then x
    = ( 
    0. F) by 
    TARSKI:def 1;
    
          then (l
    . y) 
    = x by 
    A20;
    
          hence thesis by
    A18,
    A19,
    FUNCT_1:def 6;
    
        end;
    
        then
    
        
    
    A21: (l 
    .: X) 
    =  
    {(
    0. F)} by 
    A8;
    
        
    
        
    
    A22: (l 
    .:  
    {v})
    = ( 
    Im (l,v)) 
    
        .=
    {(l
    . v)} by 
    A18,
    FUNCT_1: 59;
    
        (l
    .: (T 
    "  
    {(T
    . v)})) 
    = ((l 
    .:  
    {v})
    \/ (l 
    .: X)) by 
    A4,
    RELAT_1: 120;
    
        
    
        then (
    Sum (l 
    .: (T 
    "  
    {(T
    . v)}))) 
    = (( 
    Sum (l 
    .:  
    {v}))
    + ( 
    Sum (l 
    .: X))) by 
    A13,
    RLVECT_2: 12
    
        .= ((l
    . v) 
    + ( 
    Sum  
    {(
    0. F)})) by 
    A22,
    A21,
    RLVECT_2: 9
    
        .= ((l
    . v) 
    + ( 
    0. F)) by 
    RLVECT_2: 9
    
        .= (l
    . v) by 
    RLVECT_1: 4;
    
        hence thesis by
    Def5;
    
      end;
    
    end;
    
    theorem :: 
    
    RANKNULL:38
    
    
    
    
    
    Th38: for G be 
    FinSequence of V st ( 
    rng G) 
    = ( 
    Carrier l) & (T 
    | ( 
    Carrier l)) is 
    one-to-one holds (T 
    * (l 
    (#) G)) 
    = ((T 
    @ l) 
    (#) (T 
    * G)) 
    
    proof
    
      let G be
    FinSequence of V such that 
    
      
    
    A1: ( 
    rng G) 
    = ( 
    Carrier l) and 
    
      
    
    A2: (T 
    | ( 
    Carrier l)) is 
    one-to-one;
    
      reconsider R = ((T
    @ l) 
    (#) (T 
    * G)) as 
    FinSequence of W; 
    
      reconsider L = (T
    * (l 
    (#) G)) as 
    FinSequence of W; 
    
      
    
      
    
    A3: ( 
    len R) 
    = ( 
    len (T 
    * G)) by 
    VECTSP_6:def 5
    
      .= (
    len G) by 
    FINSEQ_2: 33;
    
      
    
      
    
    A4: ( 
    len L) 
    = ( 
    len (l 
    (#) G)) by 
    FINSEQ_2: 33
    
      .= (
    len G) by 
    VECTSP_6:def 5;
    
      for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len L) holds (L 
    . k) 
    = (R 
    . k) 
    
      proof
    
        
    
        
    
    A5: ( 
    dom R) 
    = ( 
    Seg ( 
    len G)) by 
    A3,
    FINSEQ_1:def 3;
    
        let k be
    Nat such that 
    
        
    
    A6: 1 
    <= k & k 
    <= ( 
    len L); 
    
        reconsider gk = (G
    /. k) as 
    Element of V; 
    
        (
    len (l 
    (#) G)) 
    = ( 
    len G) by 
    VECTSP_6:def 5;
    
        then
    
        
    
    A7: ( 
    dom (l 
    (#) G)) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A8: k 
    in ( 
    dom (l 
    (#) G)) by 
    A4,
    A6,
    A7;
    
        then
    
        
    
    A9: k 
    in ( 
    dom G) by 
    A7,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A10: (G 
    . k) 
    = (G 
    /. k) by 
    PARTFUN1:def 6;
    
        then
    
        reconsider Gk = (G
    . k) as 
    Element of V; 
    
        ((T
    * G) 
    . k) 
    = (T 
    . Gk) by 
    A9,
    FUNCT_1: 13;
    
        then
    
        reconsider TGk = ((T
    * G) 
    . k) as 
    Element of W; 
    
        ((l
    (#) G) 
    . k) 
    = ((l 
    . gk) 
    * gk) by 
    A8,
    VECTSP_6:def 5;
    
        
    
        then
    
        
    
    A11: (L 
    . k) 
    = (T 
    . ((l 
    . gk) 
    * gk)) by 
    A8,
    FUNCT_1: 13
    
        .= ((l
    . gk) 
    * (T 
    . gk)) by 
    MOD_2:def 2
    
        .= ((l
    . Gk) 
    * TGk) by 
    A9,
    A10,
    FUNCT_1: 13;
    
        (G
    . k) 
    in ( 
    rng G) & ((T 
    * G) 
    . k) 
    = (T 
    . (G 
    . k)) by 
    A9,
    FUNCT_1: 3,
    FUNCT_1: 13;
    
        then
    
        
    
    A12: ((T 
    @ l) 
    . ((T 
    * G) 
    . k)) 
    = (l 
    . (G 
    . k)) by 
    A1,
    A2,
    Th37;
    
        (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
        then (
    dom (T 
    * G)) 
    = ( 
    dom G) by 
    A1,
    RELAT_1: 27;
    
        then ((T
    * G) 
    /. k) 
    = ((T 
    * G) 
    . k) by 
    A9,
    PARTFUN1:def 6;
    
        hence thesis by
    A7,
    A8,
    A11,
    A5,
    A12,
    VECTSP_6:def 5;
    
      end;
    
      hence thesis by
    A4,
    A3;
    
    end;
    
    theorem :: 
    
    RANKNULL:39
    
    
    
    
    
    Th39: (T 
    | ( 
    Carrier l)) is 
    one-to-one implies (T 
    .: ( 
    Carrier l)) 
    = ( 
    Carrier (T 
    @ l)) 
    
    proof
    
      assume
    
      
    
    A1: (T 
    | ( 
    Carrier l)) is 
    one-to-one;
    
      
    
      
    
    A2: (T 
    .: ( 
    Carrier l)) 
    c= ( 
    Carrier (T 
    @ l)) 
    
      proof
    
        let w be
    object;
    
        assume w
    in (T 
    .: ( 
    Carrier l)); 
    
        then
    
        consider v be
    object such that 
    
        
    
    A3: v 
    in ( 
    dom T) and 
    
        
    
    A4: v 
    in ( 
    Carrier l) and 
    
        
    
    A5: (T 
    . v) 
    = w by 
    FUNCT_1:def 6;
    
        reconsider v as
    Element of V by 
    A3;
    
        ((T
    @ l) 
    . (T 
    . v)) 
    = (l 
    . v) & (l 
    . v) 
    <> ( 
    0. F) by 
    A1,
    A4,
    Th37,
    VECTSP_6: 2;
    
        hence thesis by
    A5;
    
      end;
    
      (
    Carrier (T 
    @ l)) 
    c= (T 
    .: ( 
    Carrier l)) by 
    Th30;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    RANKNULL:40
    
    
    
    
    
    Th40: for A be 
    Subset of V, B be 
    Basis of V, l be 
    Linear_Combination of (B 
    \ A) st A is 
    Basis of ( 
    ker T) & A 
    c= B holds (T 
    . ( 
    Sum l)) 
    = ( 
    Sum (T 
    @ l)) 
    
    proof
    
      let A be
    Subset of V, B be 
    Basis of V, l be 
    Linear_Combination of (B 
    \ A); 
    
      assume A is
    Basis of ( 
    ker T) & A 
    c= B; 
    
      then
    
      
    
    A1: (T 
    | (B 
    \ A)) is 
    one-to-one by 
    Th22;
    
      (
    Carrier l) 
    c= (B 
    \ A) by 
    VECTSP_6:def 4;
    
      then
    
      
    
    A2: ((T 
    | (B 
    \ A)) 
    | ( 
    Carrier l)) 
    = (T 
    | ( 
    Carrier l)) by 
    RELAT_1: 74;
    
      then
    
      
    
    A3: (T 
    | ( 
    Carrier l)) is 
    one-to-one by 
    A1,
    FUNCT_1: 52;
    
      consider G be
    FinSequence of V such that 
    
      
    
    A4: G is 
    one-to-one and 
    
      
    
    A5: ( 
    rng G) 
    = ( 
    Carrier l) and 
    
      
    
    A6: ( 
    Sum l) 
    = ( 
    Sum (l 
    (#) G)) by 
    VECTSP_6:def 6;
    
      set H = (T
    * G); 
    
      reconsider H as
    FinSequence of W; 
    
      
    
      
    
    A7: ( 
    rng H) 
    = (T 
    .: ( 
    Carrier l)) by 
    A5,
    RELAT_1: 127
    
      .= (
    Carrier (T 
    @ l)) by 
    A3,
    Th39;
    
      (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
      then H is
    one-to-one by 
    A4,
    A5,
    A1,
    A2,
    Th1,
    FUNCT_1: 52;
    
      then
    
      
    
    A8: ( 
    Sum (T 
    @ l)) 
    = ( 
    Sum ((T 
    @ l) 
    (#) H)) by 
    A7,
    VECTSP_6:def 6;
    
      (T
    * (l 
    (#) G)) 
    = ((T 
    @ l) 
    (#) H) by 
    A5,
    A3,
    Th38;
    
      hence thesis by
    A6,
    A8,
    MATRLIN: 16;
    
    end;
    
    theorem :: 
    
    RANKNULL:41
    
    
    
    
    
    Th41: for X be 
    Subset of V st X is 
    linearly-dependent holds ex l be 
    Linear_Combination of X st ( 
    Carrier l) 
    <>  
    {} & ( 
    Sum l) 
    = ( 
    0. V) 
    
    proof
    
      let X be
    Subset of V; 
    
      assume X is
    linearly-dependent;
    
      then not (for l be
    Linear_Combination of X st ( 
    Sum l) 
    = ( 
    0. V) holds ( 
    Carrier l) 
    =  
    {} ) by 
    VECTSP_7:def 1;
    
      hence thesis;
    
    end;
    
    definition
    
      let F be
    Field, V,W be 
    VectSp of F, X be 
    Subset of V, T be 
    linear-transformation of V, W, l be 
    Linear_Combination of (T 
    .: X); 
    
      assume
    
      
    
    A1: (T 
    | X) is 
    one-to-one;
    
      :: 
    
    RANKNULL:def6
    
      func T
    
    # l -> 
    Linear_Combination of X equals 
    
      :
    
    Def6: ((l 
    * T) 
    +* ((V 
    \ X) 
    --> ( 
    0. F))); 
    
      coherence
    
      proof
    
        (
    rng (l 
    * T)) 
    c= ( 
    rng l) & ( 
    rng l) 
    c= ( 
    [#] F) by 
    FUNCT_2: 92,
    RELAT_1: 26;
    
        then
    
        
    
    A2: ( 
    rng (l 
    * T)) 
    c= ( 
    [#] F); 
    
        (
    dom l) 
    = ( 
    [#] W) by 
    FUNCT_2: 92;
    
        then (
    rng T) 
    c= ( 
    dom l) by 
    Th7;
    
        then
    
        
    
    A3: ( 
    dom (l 
    * T)) 
    = ( 
    dom T) by 
    RELAT_1: 27;
    
        set f = ((l
    * T) 
    +* ((V 
    \ X) 
    --> ( 
    0. F))); 
    
        
    
        
    
    A4: ( 
    dom ((V 
    \ X) 
    --> ( 
    0. F))) 
    = (( 
    [#] V) 
    \ X); 
    
        (
    rng ((V 
    \ X) 
    --> ( 
    0. F))) 
    c=  
    {(
    0. F)} by 
    FUNCOP_1: 13;
    
        then (
    rng ((V 
    \ X) 
    --> ( 
    0. F))) 
    c= ( 
    [#] F) by 
    XBOOLE_1: 1;
    
        then (
    rng f) 
    c= (( 
    rng (l 
    * T)) 
    \/ ( 
    rng ((V 
    \ X) 
    --> ( 
    0. F)))) & (( 
    rng (l 
    * T)) 
    \/ ( 
    rng ((V 
    \ X) 
    --> ( 
    0. F)))) 
    c= ( 
    [#] F) by 
    A2,
    FUNCT_4: 17,
    XBOOLE_1: 8;
    
        then
    
        
    
    A5: ( 
    rng f) 
    c= ( 
    [#] F); 
    
        (
    dom T) 
    = ( 
    [#] V) & (( 
    [#] V) 
    \/ (( 
    [#] V) 
    \ X)) 
    = ( 
    [#] V) by 
    Th7,
    XBOOLE_1: 12;
    
        then (
    dom f) 
    = ( 
    [#] V) by 
    A3,
    A4,
    FUNCT_4:def 1;
    
        then
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] V),( 
    [#] F))) by 
    A5,
    FUNCT_2:def 2;
    
        ex T be
    finite  
    Subset of V st for v be 
    Element of V st not v 
    in T holds (f 
    . v) 
    = ( 
    0. F) 
    
        proof
    
          set C = { v where v be
    Element of V : (f 
    . v) 
    <> ( 
    0. F) }; 
    
          C
    c= ( 
    [#] V) 
    
          proof
    
            let x be
    object;
    
            assume x
    in C; 
    
            then ex v be
    Element of V st v 
    = x & (f 
    . v) 
    <> ( 
    0. F); 
    
            hence thesis;
    
          end;
    
          then
    
          reconsider C as
    Subset of V; 
    
          ex g be
    Function st g is 
    one-to-one & ( 
    dom g) 
    = C & ( 
    rng g) 
    c= ( 
    Carrier l) 
    
          proof
    
            set S = ((T
    " ( 
    Carrier l)) 
    /\ X); 
    
            set g = (T
    | S); 
    
            take g;
    
            
    
            
    
    A6: C 
    c= S 
    
            proof
    
              let x be
    object such that 
    
              
    
    A7: x 
    in C; 
    
              
    
              
    
    A8: ex v be 
    Element of V st v 
    = x & (f 
    . v) 
    <> ( 
    0. F) by 
    A7;
    
              reconsider x as
    Element of V by 
    A7;
    
              
    
    A9: 
    
              now
    
                assume not x
    in X; 
    
                then
    
                
    
    A10: x 
    in (V 
    \ X) by 
    XBOOLE_0:def 5;
    
                then x
    in ( 
    dom ((V 
    \ X) 
    --> ( 
    0. F))); 
    
                then (f
    . x) 
    = (((V 
    \ X) 
    --> ( 
    0. F)) 
    . x) by 
    FUNCT_4: 13;
    
                hence contradiction by
    A8,
    A10,
    FUNCOP_1: 7;
    
              end;
    
              then not x
    in (V 
    \ X) by 
    XBOOLE_0:def 5;
    
              then
    
              
    
    A11: (f 
    . x) 
    = ((l 
    * T) 
    . x) by 
    A4,
    FUNCT_4: 11;
    
              
    
              
    
    A12: ( 
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
              then ((l
    * T) 
    . x) 
    = (l 
    . (T 
    . x)) by 
    FUNCT_1: 13;
    
              then (T
    . x) 
    in ( 
    Carrier l) by 
    A8,
    A11;
    
              then x
    in (T 
    " ( 
    Carrier l)) by 
    A12,
    FUNCT_1:def 7;
    
              hence thesis by
    A9,
    XBOOLE_0:def 4;
    
            end;
    
            
    
            
    
    A13: ( 
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
            
    
            
    
    A14: ( 
    rng g) 
    c= ( 
    Carrier l) 
    
            proof
    
              let y be
    object;
    
              assume y
    in ( 
    rng g); 
    
              then
    
              consider x be
    object such that 
    
              
    
    A15: x 
    in ( 
    dom g) and 
    
              
    
    A16: y 
    = (g 
    . x) by 
    FUNCT_1:def 3;
    
              x
    in (T 
    " ( 
    Carrier l)) by 
    A15,
    XBOOLE_0:def 4;
    
              then (T
    . x) 
    in ( 
    Carrier l) by 
    FUNCT_1:def 7;
    
              hence thesis by
    A15,
    A16,
    FUNCT_1: 49;
    
            end;
    
            S
    c= C 
    
            proof
    
              let x be
    object such that 
    
              
    
    A17: x 
    in S; 
    
              
    
              
    
    A18: x 
    in X by 
    A17,
    XBOOLE_0:def 4;
    
              
    
              
    
    A19: x 
    in (T 
    " ( 
    Carrier l)) by 
    A17,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A20: x 
    in ( 
    dom T) by 
    FUNCT_1:def 7;
    
              
    
              
    
    A21: (T 
    . x) 
    in ( 
    Carrier l) by 
    A19,
    FUNCT_1:def 7;
    
              reconsider x as
    Element of V by 
    A17;
    
              
    
              
    
    A22: (l 
    . (T 
    . x)) 
    <> ( 
    0. F) by 
    A21,
    VECTSP_6: 2;
    
               not x
    in ( 
    dom ((V 
    \ X) 
    --> ( 
    0. F))) by 
    A18,
    XBOOLE_0:def 5;
    
              then
    
              
    
    A23: (f 
    . x) 
    = ((l 
    * T) 
    . x) by 
    FUNCT_4: 11;
    
              ((l
    * T) 
    . x) 
    = (l 
    . (T 
    . x)) by 
    A20,
    FUNCT_1: 13;
    
              hence thesis by
    A23,
    A22;
    
            end;
    
            then S
    = C by 
    A6;
    
            hence thesis by
    A1,
    A13,
    A14,
    Th2,
    RELAT_1: 62,
    XBOOLE_1: 17;
    
          end;
    
          then (
    card C) 
    c= ( 
    card ( 
    Carrier l)) by 
    CARD_1: 10;
    
          then
    
          reconsider C as
    finite  
    Subset of V; 
    
          take C;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
        (
    Carrier f) 
    c= X 
    
        proof
    
          let x be
    object such that 
    
          
    
    A24: x 
    in ( 
    Carrier f); 
    
          reconsider x as
    Element of V by 
    A24;
    
          now
    
            assume not x
    in X; 
    
            then
    
            
    
    A25: x 
    in (V 
    \ X) by 
    XBOOLE_0:def 5;
    
            
    
            then (f
    . x) 
    = (((V 
    \ X) 
    --> ( 
    0. F)) 
    . x) by 
    A4,
    FUNCT_4: 13
    
            .= (
    0. F) by 
    A25,
    FUNCOP_1: 7;
    
            hence contradiction by
    A24,
    VECTSP_6: 2;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    VECTSP_6:def 4;
    
      end;
    
    end
    
    theorem :: 
    
    RANKNULL:42
    
    
    
    
    
    Th42: for X be 
    Subset of V, l be 
    Linear_Combination of (T 
    .: X), v be 
    Element of V st v 
    in X & (T 
    | X) is 
    one-to-one holds ((T 
    # l) 
    . v) 
    = (l 
    . (T 
    . v)) 
    
    proof
    
      let X be
    Subset of V, l be 
    Linear_Combination of (T 
    .: X), v be 
    Element of V; 
    
      assume v
    in X & (T 
    | X) is 
    one-to-one;
    
      then ( not v
    in ( 
    dom ((V 
    \ X) 
    --> ( 
    0. F)))) & (T 
    # l) 
    = ((l 
    * T) 
    +* ((V 
    \ X) 
    --> ( 
    0. F))) by 
    Def6,
    XBOOLE_0:def 5;
    
      then
    
      
    
    A1: ((T 
    # l) 
    . v) 
    = ((l 
    * T) 
    . v) by 
    FUNCT_4: 11;
    
      (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
      hence thesis by
    A1,
    FUNCT_1: 13;
    
    end;
    
    theorem :: 
    
    RANKNULL:43
    
    
    
    
    
    Th43: for X be 
    Subset of V, l be 
    Linear_Combination of (T 
    .: X) st (T 
    | X) is 
    one-to-one holds (T 
    @ (T 
    # l)) 
    = l 
    
    proof
    
      let X be
    Subset of V, l be 
    Linear_Combination of (T 
    .: X) such that 
    
      
    
    A1: (T 
    | X) is 
    one-to-one;
    
      let w be
    Element of W; 
    
      set m = (T
    @ (T 
    # l)); 
    
      per cases ;
    
        suppose
    
        
    
    A2: w 
    in ( 
    Carrier l); 
    
        then
    
        
    
    A3: (l 
    . w) 
    <> ( 
    0. F) by 
    VECTSP_6: 2;
    
        
    
        
    
    A4: ( 
    dom (T 
    # l)) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
        (
    Carrier l) 
    c= (T 
    .: X) by 
    VECTSP_6:def 4;
    
        then
    
        consider v be
    object such that 
    
        
    
    A5: v 
    in ( 
    dom T) and 
    
        
    
    A6: v 
    in X and 
    
        
    
    A7: w 
    = (T 
    . v) by 
    A2,
    FUNCT_1:def 6;
    
        reconsider v as
    Element of V by 
    A5;
    
        consider B be
    Subset of V such that 
    
        
    
    A8: B 
    misses X and 
    
        
    
    A9: (T 
    "  
    {(T
    . v)}) 
    = ( 
    {v}
    \/ B) by 
    A1,
    A6,
    Th34;
    
        
    
        
    
    A10: ((T 
    # l) 
    . v) 
    = (l 
    . (T 
    . v)) by 
    A1,
    A6,
    Th42;
    
        
    
        
    
    A11: ((T 
    # l) 
    .:  
    {v})
    = ( 
    Im ((T 
    # l),v)) 
    
        .=
    {((T
    # l) 
    . v)} by 
    A4,
    FUNCT_1: 59;
    
        
    
        
    
    A12: (m 
    . w) 
    = ( 
    Sum ((T 
    # l) 
    .: (T 
    "  
    {(T
    . v)}))) by 
    A7,
    Def5
    
        .= (
    Sum ( 
    {(l
    . (T 
    . v))} 
    \/ ((T 
    # l) 
    .: B))) by 
    A9,
    A10,
    A11,
    RELAT_1: 120;
    
        per cases ;
    
          suppose B
    =  
    {} ; 
    
          
    
          then (m
    . w) 
    = ( 
    Sum ( 
    {(l
    . (T 
    . v))} 
    \/ ( 
    {} F))) by 
    A12
    
          .= (l
    . w) by 
    A7,
    RLVECT_2: 9;
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    A13: B 
    <>  
    {} ; 
    
          (
    Carrier (T 
    # l)) 
    c= X by 
    VECTSP_6:def 4;
    
          then B
    misses ( 
    Carrier (T 
    # l)) by 
    A8,
    XBOOLE_1: 63;
    
          
    
          then (m
    . w) 
    = ( 
    Sum ( 
    {(l
    . (T 
    . v))} 
    \/  
    {(
    0. F)})) by 
    A12,
    A13,
    Th35
    
          .= ((
    Sum  
    {(l
    . (T 
    . v))}) 
    + ( 
    Sum  
    {(
    0. F)})) by 
    A3,
    A7,
    RLVECT_2: 12,
    ZFMISC_1: 11
    
          .= ((l
    . (T 
    . v)) 
    + ( 
    Sum  
    {(
    0. F)})) by 
    RLVECT_2: 9
    
          .= ((l
    . (T 
    . v)) 
    + ( 
    0. F)) by 
    RLVECT_2: 9
    
          .= (l
    . w) by 
    A7,
    RLVECT_1: 4;
    
          hence thesis;
    
        end;
    
      end;
    
        suppose
    
        
    
    A14: not w 
    in ( 
    Carrier l); 
    
        then
    
        
    
    A15: (l 
    . w) 
    = ( 
    0. F); 
    
        now
    
          assume
    
          
    
    A16: (m 
    . w) 
    <> ( 
    0. F); 
    
          then w
    in ( 
    Carrier m); 
    
          then (T
    "  
    {w})
    meets ( 
    Carrier (T 
    # l)) by 
    Th36;
    
          then
    
          consider v be
    Element of V such that 
    
          
    
    A17: v 
    in (T 
    "  
    {w}) and
    
          
    
    A18: v 
    in ( 
    Carrier (T 
    # l)) by 
    Th3;
    
          (T
    . v) 
    in  
    {w} by
    A17,
    FUNCT_1:def 7;
    
          then
    
          
    
    A19: (T 
    . v) 
    = w by 
    TARSKI:def 1;
    
          
    
          
    
    A20: ( 
    Carrier (T 
    # l)) 
    c= X by 
    VECTSP_6:def 4;
    
          then (T
    | ( 
    Carrier (T 
    # l))) is 
    one-to-one by 
    A1,
    Th2;
    
          
    
          then (m
    . w) 
    = ((T 
    # l) 
    . v) by 
    A18,
    A19,
    Th37
    
          .= (
    0. F) by 
    A1,
    A15,
    A18,
    A19,
    A20,
    Th42;
    
          hence contradiction by
    A16;
    
        end;
    
        hence thesis by
    A14;
    
      end;
    
    end;
    
    begin
    
    definition
    
      let F be
    Field, V,W be 
    finite-dimensional  
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      :: 
    
    RANKNULL:def7
    
      func
    
    rank (T) -> 
    Nat equals ( 
    dim ( 
    im T)); 
    
      coherence ;
    
      :: 
    
    RANKNULL:def8
    
      func
    
    nullity (T) -> 
    Nat equals ( 
    dim ( 
    ker T)); 
    
      coherence ;
    
    end
    
    ::$Notion-Name
    
    theorem :: 
    
    RANKNULL:44
    
    
    
    
    
    Th44: for V,W be 
    finite-dimensional  
    VectSp of F, T be 
    linear-transformation of V, W holds ( 
    dim V) 
    = (( 
    rank T) 
    + ( 
    nullity T)) 
    
    proof
    
      let V,W be
    finite-dimensional  
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      set A = the
    finite  
    Basis of ( 
    ker T); 
    
      reconsider A9 = A as
    Subset of V by 
    Th19;
    
      consider B be
    Basis of V such that 
    
      
    
    A1: A 
    c= B by 
    VECTSP_9: 13;
    
      reconsider B as
    finite  
    Subset of V by 
    VECTSP_9: 20;
    
      reconsider X = (B
    \ A9) as 
    finite  
    Subset of B by 
    XBOOLE_1: 36;
    
      reconsider X as
    finite  
    Subset of V; 
    
      
    
      
    
    A2: B 
    = (A 
    \/ X) by 
    A1,
    XBOOLE_1: 45;
    
      reconsider B as
    finite  
    Basis of V; 
    
      reconsider A as
    finite  
    Basis of ( 
    ker T); 
    
      reconsider C = (T
    .: X) as 
    finite  
    Subset of W; 
    
      
    
      
    
    A3: (T 
    | X) is 
    one-to-one by 
    A1,
    Th22;
    
      
    
      
    
    A4: C is 
    linearly-independent
    
      proof
    
        assume C is
    linearly-dependent;
    
        then
    
        consider l be
    Linear_Combination of C such that 
    
        
    
    A5: ( 
    Carrier l) 
    <>  
    {} and 
    
        
    
    A6: ( 
    Sum l) 
    = ( 
    0. W) by 
    Th41;
    
        ex m be
    Linear_Combination of X st l 
    = (T 
    @ m) 
    
        proof
    
          reconsider l9 = l as
    Linear_Combination of (T 
    .: X); 
    
          set m = (T
    # l9); 
    
          take m;
    
          thus thesis by
    A3,
    Th43;
    
        end;
    
        then
    
        consider m be
    Linear_Combination of (B 
    \ A9) such that 
    
        
    
    A7: l 
    = (T 
    @ m); 
    
        (T
    . ( 
    Sum m)) 
    = ( 
    0. W) by 
    A1,
    A6,
    A7,
    Th40;
    
        then (
    Sum m) 
    in ( 
    ker T) by 
    Th10;
    
        then (
    Sum m) 
    in ( 
    Lin A) by 
    VECTSP_7:def 3;
    
        then (
    Sum m) 
    in ( 
    Lin A9) by 
    VECTSP_9: 17;
    
        then
    
        consider n be
    Linear_Combination of A9 such that 
    
        
    
    A8: ( 
    Sum m) 
    = ( 
    Sum n) by 
    VECTSP_7: 7;
    
        
    
        
    
    A9: ( 
    Carrier (m 
    - n)) 
    c= (( 
    Carrier m) 
    \/ ( 
    Carrier n)) & ((B 
    \ A9) 
    \/ A9) 
    = B by 
    A1,
    VECTSP_6: 41,
    XBOOLE_1: 45;
    
        
    
        
    
    A10: ( 
    Carrier m) 
    c= (B 
    \ A9) & ( 
    Carrier n) 
    c= A by 
    VECTSP_6:def 4;
    
        then ((
    Carrier m) 
    \/ ( 
    Carrier n)) 
    c= ((B 
    \ A9) 
    \/ A) by 
    XBOOLE_1: 13;
    
        then (
    Carrier (m 
    - n)) 
    c= B by 
    A9;
    
        then
    
        reconsider o = (m
    - n) as 
    Linear_Combination of B by 
    VECTSP_6:def 4;
    
        
    
        
    
    A11: B is 
    linearly-independent by 
    VECTSP_7:def 3;
    
        ((
    Sum m) 
    - ( 
    Sum n)) 
    = ( 
    0. V) by 
    A8,
    VECTSP_1: 19;
    
        then (
    Sum (m 
    - n)) 
    = ( 
    0. V) by 
    VECTSP_6: 47;
    
        then
    
        
    
    A12: ( 
    Carrier o) 
    =  
    {} by 
    A11,
    VECTSP_7:def 1;
    
        A9
    misses (B 
    \ A9) by 
    XBOOLE_1: 79;
    
        then (
    Carrier (m 
    - n)) 
    = (( 
    Carrier m) 
    \/ ( 
    Carrier n)) by 
    A10,
    Th32,
    XBOOLE_1: 64;
    
        then (
    Carrier m) 
    =  
    {} by 
    A12;
    
        then (T
    .: ( 
    Carrier m)) 
    =  
    {} ; 
    
        hence thesis by
    A5,
    A7,
    Th30,
    XBOOLE_1: 3;
    
      end;
    
      (
    dom T) 
    = ( 
    [#] V) by 
    Th7;
    
      then X
    c= ( 
    dom (T 
    | X)) by 
    RELAT_1: 62;
    
      then (X,((T
    | X) 
    .: X)) 
    are_equipotent by 
    A3,
    CARD_1: 33;
    
      then (X,C)
    are_equipotent by 
    RELAT_1: 129;
    
      then
    
      
    
    A13: ( 
    card C) 
    = ( 
    card X) by 
    CARD_1: 5;
    
      reconsider C as
    finite  
    Subset of ( 
    im T) by 
    Th12;
    
      reconsider L = (
    Lin C) as 
    strict  
    Subspace of ( 
    im T); 
    
      for v be
    Element of ( 
    im T) holds v 
    in L 
    
      proof
    
        reconsider A9 = A as
    Subset of V by 
    Th19;
    
        let v be
    Element of ( 
    im T); 
    
        reconsider v9 = v as
    Element of W by 
    VECTSP_4: 10;
    
        reconsider C9 = C as
    Subset of W; 
    
        v
    in ( 
    im T); 
    
        then
    
        consider u be
    Element of V such that 
    
        
    
    A14: (T 
    . u) 
    = v9 by 
    Th13;
    
        V
    is_the_direct_sum_of (( 
    Lin A9),( 
    Lin (B 
    \ A9))) by 
    A1,
    Th33;
    
        then
    
        
    
    A15: ( 
    (Omega). V) 
    = (( 
    Lin A9) 
    + ( 
    Lin (B 
    \ A9))) by 
    VECTSP_5:def 4;
    
        u
    in ( 
    (Omega). V); 
    
        then
    
        consider u1,u2 be
    Element of V such that 
    
        
    
    A16: u1 
    in ( 
    Lin A9) and 
    
        
    
    A17: u2 
    in ( 
    Lin (B 
    \ A9)) and 
    
        
    
    A18: u 
    = (u1 
    + u2) by 
    A15,
    VECTSP_5: 1;
    
        consider l be
    Linear_Combination of (B 
    \ A9) such that 
    
        
    
    A19: u2 
    = ( 
    Sum l) by 
    A17,
    VECTSP_7: 7;
    
        (
    Lin A) 
    = ( 
    ker T) by 
    VECTSP_7:def 3;
    
        then u1
    in ( 
    ker T) by 
    A16,
    VECTSP_9: 17;
    
        then
    
        
    
    A20: (T 
    . u1) 
    = ( 
    0. W) by 
    Th10;
    
        (T
    @ l) is 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) & ( 
    Carrier l) 
    c= (B 
    \ A9) by 
    Th29,
    VECTSP_6:def 4;
    
        then
    
        reconsider m = (T
    @ l) as 
    Linear_Combination of C9 by 
    RELAT_1: 123,
    VECTSP_6: 4;
    
        (T
    . u) 
    = ((T 
    . u1) 
    + (T 
    . u2)) by 
    A18,
    VECTSP_1:def 20;
    
        then
    
        
    
    A21: (T 
    . u) 
    = (T 
    . u2) by 
    A20,
    RLVECT_1: 4;
    
        ex m be
    Linear_Combination of C9 st v 
    = ( 
    Sum m) 
    
        proof
    
          take m;
    
          thus thesis by
    A1,
    A14,
    A21,
    A19,
    Th40;
    
        end;
    
        then v
    in ( 
    Lin C9) by 
    VECTSP_7: 7;
    
        hence thesis by
    VECTSP_9: 17;
    
      end;
    
      then
    
      
    
    A22: ( 
    Lin C) 
    = ( 
    im T) by 
    VECTSP_4: 32;
    
      reconsider C as
    linearly-independent  
    Subset of ( 
    im T) by 
    A4,
    VECTSP_9: 12;
    
      reconsider C as
    finite  
    Basis of ( 
    im T) by 
    A22,
    VECTSP_7:def 3;
    
      
    
      
    
    A23: ( 
    nullity T) 
    = ( 
    card A) & ( 
    rank T) 
    = ( 
    card C) by 
    VECTSP_9:def 1;
    
      (
    dim V) 
    = ( 
    card B) by 
    VECTSP_9:def 1
    
      .= ((
    rank T) 
    + ( 
    nullity T)) by 
    A2,
    A13,
    A23,
    CARD_2: 40,
    XBOOLE_1: 79;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RANKNULL:45
    
    for V,W be
    finite-dimensional  
    VectSp of F, T be 
    linear-transformation of V, W st T is 
    one-to-one holds ( 
    dim V) 
    = ( 
    rank T) 
    
    proof
    
      let V,W be
    finite-dimensional  
    VectSp of F, T be 
    linear-transformation of V, W; 
    
      assume T is
    one-to-one;
    
      then (
    ker T) 
    = ( 
    (0). V) by 
    Th15;
    
      then
    
      
    
    A1: ( 
    nullity T) 
    =  
    0 by 
    Th16;
    
      (
    dim V) 
    = (( 
    rank T) 
    + ( 
    nullity T)) by 
    Th44
    
      .= (
    rank T) by 
    A1;
    
      hence thesis;
    
    end;