roughif2.miz
begin
theorem ::
ROUGHIF2:1
LemacikX1: for a,b,c be
Real st a
<= b & b
>
0 & c
>=
0 holds (a
/ b)
<= ((a
+ c)
/ (b
+ c))
proof
let a,b,c be
Real;
assume
A1: a
<= b & b
>
0 & c
>=
0 ;
then (a
* c)
<= (b
* c) by
XREAL_1: 64;
then ((a
* b)
+ (a
* c))
<= ((a
* b)
+ (b
* c)) by
XREAL_1: 6;
then (a
* (b
+ c))
<= (b
* (a
+ c));
hence thesis by
XREAL_1: 102,
A1;
end;
theorem ::
ROUGHIF2:2
for x1,x2 be
finite
set holds (
card (x1
\+\ x2))
= ((
card (x1
\ x2))
+ (
card (x2
\ x1))) by
CARD_2: 40,
XBOOLE_1: 82;
theorem ::
ROUGHIF2:3
HoHo: for x1,x2 be
finite
set holds ((2
* (
card (x1
\+\ x2)))
/ (((
card x1)
+ (
card x2))
+ (
card (x1
\+\ x2))))
= ((
card (x1
\+\ x2))
/ (
card (x1
\/ x2)))
proof
let x1,x2 be
finite
set;
set p = (
card (x1
\/ x2));
set q = (((
card x1)
+ (
card x2))
+ (
card (x1
\+\ x2)));
set r = (
card (x1
\+\ x2));
(x1
\/ x2)
= (x1
\/ (x2
\ x1)) by
XBOOLE_1: 39;
then
HH: p
= ((
card x1)
+ (
card (x2
\ x1))) by
XBOOLE_1: 79,
CARD_2: 40;
x1
= ((x1
\ x2)
\/ (x1
/\ x2)) by
XBOOLE_1: 51;
then
g1: (
card x1)
= ((
card (x1
\ x2))
+ (
card (x1
/\ x2))) by
CARD_2: 40,
XBOOLE_1: 89;
x2
= ((x2
\ x1)
\/ (x1
/\ x2)) by
XBOOLE_1: 51;
then
g2: (
card x2)
= ((
card (x2
\ x1))
+ (
card (x1
/\ x2))) by
CARD_2: 40,
XBOOLE_1: 89;
q
= ((((
card (x1
\ x2))
+ (
card (x1
/\ x2)))
+ ((
card (x2
\ x1))
+ (
card (x1
/\ x2))))
+ ((
card (x1
\ x2))
+ (
card (x2
\ x1)))) by
CARD_2: 40,
XBOOLE_1: 82,
g1,
g2
.= (2
* p) by
g1,
HH;
hence thesis by
XCMPLX_1: 91;
end;
theorem ::
ROUGHIF2:4
Jajo: for A,B,C be
set holds (A
\+\ C)
= ((A
\+\ B)
\+\ (B
\+\ C))
proof
let A,B,C be
set;
((A
\+\ B)
\+\ B)
= (A
\+\ (B
\+\ B)) by
XBOOLE_1: 91
.= (A
\+\
{} ) by
XBOOLE_1: 92
.= A;
hence thesis by
XBOOLE_1: 91;
end;
theorem ::
ROUGHIF2:5
Lemacik: for A,B be
finite
set st (A
\/ B)
<>
{} holds (1
- ((
card (A
/\ B))
/ (
card (A
\/ B))))
= ((
card (A
\+\ B))
/ (
card (A
\/ B)))
proof
let A,B be
finite
set;
assume
A1: (A
\/ B)
<>
{} ;
B1: (A
/\ B)
c= A by
XBOOLE_1: 17;
A
c= (A
\/ B) by
XBOOLE_1: 7;
then
B2: (A
/\ B)
c= (A
\/ B) by
B1;
(A
\+\ B)
= ((A
\/ B)
\ (A
/\ B)) by
XBOOLE_1: 101;
then
B3: (
card (A
\+\ B))
= ((
card (A
\/ B))
- (
card (A
/\ B))) by
CARD_2: 44,
B2;
(1
- ((
card (A
/\ B))
/ (
card (A
\/ B))))
= (((
card (A
\/ B))
/ (
card (A
\/ B)))
- ((
card (A
/\ B))
/ (
card (A
\/ B)))) by
A1,
XCMPLX_1: 60
.= ((
card (A
\+\ B))
/ (
card (A
\/ B))) by
B3,
XCMPLX_1: 120;
hence thesis;
end;
theorem ::
ROUGHIF2:6
LemmaCard: for R be
finite
set holds for X,Y be
Subset of R holds (
card (X
\/ Y))
= (
card (X
/\ Y)) iff X
= Y
proof
let R be
finite
set;
let X,Y be
Subset of R;
hereby
assume (
card (X
\/ Y))
= (
card (X
/\ Y));
then
A2: (X
/\ Y)
= (X
\/ Y) by
CARD_2: 102,
XBOOLE_1: 29;
then X
= (X
\/ (X
\/ Y)) by
XBOOLE_1: 22;
then X
= (X
\/ Y) by
XBOOLE_1: 6;
hence X
= Y by
XBOOLE_1: 21,
A2;
end;
assume X
= Y;
hence thesis;
end;
registration
cluster
finite non
empty for
MetrSpace;
existence
proof
set A =
{1};
take S = (
DiscreteSpace A);
S
=
MetrStruct (# A, (
discrete_dist A) #) by
METRIC_1:def 11;
hence thesis;
end;
end
begin
reserve R for
finite
Approximation_Space;
reserve X,Y,Z for
Subset of R;
definition
let R be
finite
Approximation_Space;
let f be
preRIF of R;
::
ROUGHIF2:def1
func
CMap f ->
preRIF of R means
:
CDef: for x,y be
Subset of R holds (it
. (x,y))
= (1
- (f
. (x,y)));
existence
proof
deffunc
F(
Subset of R,
Subset of R) = (
In ((1
- (f
. ($1,$2))),
[.
0 , 1.]));
ex f be
preRIF of R st for x,y be
Element of (
bool the
carrier of R) holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider ff be
Function of
[:(
bool the
carrier of R), (
bool the
carrier of R):],
[.
0 , 1.] such that
A1: for x,y be
Element of (
bool the
carrier of R) holds (ff
. (x,y))
=
F(x,y);
take ff;
let x,y be
Subset of R;
(ff
. (x,y))
= (
In ((1
- (f
. (x,y))),
[.
0 , 1.])) by
A1
.= (1
- (f
. (x,y))) by
FUZNORM1: 7,
SUBSET_1:def 8;
hence thesis;
end;
uniqueness
proof
deffunc
G(
Subset of R,
Subset of R) = (1
- (f
. ($1,$2)));
let f1,f2 be
preRIF of R such that
A1: (for x,y be
Subset of R holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Subset of R holds (f2
. (x,y))
=
G(x,y));
for x,y be
Subset of R holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Subset of R;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
end
theorem ::
ROUGHIF2:7
CMapMap: for f be
preRIF of R holds (
CMap (
CMap f))
= f
proof
let f be
preRIF of R;
set g = (
CMap f);
for x be
Element of
[:(
bool the
carrier of R), (
bool the
carrier of R):] holds ((
CMap g)
. x)
= (f
. x)
proof
let x be
Element of
[:(
bool the
carrier of R), (
bool the
carrier of R):];
reconsider x1 = (x
`1 ), x2 = (x
`2 ) as
Subset of R;
((
CMap g)
. x)
= ((
CMap g)
. (x1,x2)) by
MCART_1: 21
.= (1
- (g
. (x1,x2))) by
CDef
.= (1
- (1
- (f
. (x1,x2)))) by
CDef
.= (f
. x) by
MCART_1: 21;
hence thesis;
end;
hence thesis;
end;
theorem ::
ROUGHIF2:8
PropEx3k: X
<>
{} implies ((
CMap (
kappa R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card X))
proof
assume
A1: X
<>
{} ;
(X
\ Y)
= (X
\ (X
/\ Y)) by
XBOOLE_1: 47;
then
T1: (
card (X
\ Y))
= ((
card X)
- (
card (X
/\ Y))) by
XBOOLE_1: 17,
CARD_2: 44;
((
CMap (
kappa R))
. (X,Y))
= (1
- ((
kappa R)
. (X,Y))) by
CDef
.= (1
- (
kappa (X,Y))) by
ROUGHIF1:def 2
.= (1
- ((
card (X
/\ Y))
/ (
card X))) by
A1,
ROUGHIF1:def 1
.= (((
card X)
/ (
card X))
- ((
card (X
/\ Y))
/ (
card X))) by
A1,
XCMPLX_1: 60
.= ((
card (X
\ Y))
/ (
card X)) by
T1,
XCMPLX_1: 120;
hence thesis;
end;
theorem ::
ROUGHIF2:9
PropEx3k0: X
=
{} implies ((
CMap (
kappa R))
. (X,Y))
=
0
proof
assume
A1: X
=
{} ;
G1: (
kappa (X,Y))
= 1 by
ROUGHIF1: 6,
A1,
XBOOLE_1: 2;
((
CMap (
kappa R))
. (X,Y))
= (1
- ((
kappa R)
. (X,Y))) by
CDef
.= (1
- (
kappa (X,Y))) by
ROUGHIF1:def 2
.=
0 by
G1;
hence thesis;
end;
theorem ::
ROUGHIF2:10
X
<>
{} implies ((
CMap (
kappa R))
. (X,Y))
= (
kappa (X,(Y
` )))
proof
assume
A0: X
<>
{} ;
((
CMap (
kappa R))
. (X,Y))
= (1
- ((
kappa R)
. (X,Y))) by
CDef
.= (1
- (
kappa (X,Y))) by
ROUGHIF1:def 2;
hence thesis by
A0,
ROUGHIF1: 35;
end;
theorem ::
ROUGHIF2:11
PropEx3: (X
\/ Y)
<>
{} implies ((
CMap (
kappa_1 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (X
\/ Y)))
proof
assume
A0: (X
\/ Y)
<>
{} ;
A1: ((
CMap (
kappa_1 R))
. (X,Y))
= (1
- ((
kappa_1 R)
. (X,Y))) by
CDef
.= (1
- (
kappa_1 (X,Y))) by
ROUGHIF1:def 5;
(X
\ Y)
= ((X
\/ Y)
\ Y) by
XBOOLE_1: 40;
then
X1: (
card (X
\ Y))
= ((
card (X
\/ Y))
- (
card Y)) by
CARD_2: 44,
XBOOLE_1: 7;
(1
- ((
card Y)
/ (
card (X
\/ Y))))
= (((
card (X
\/ Y))
/ (
card (X
\/ Y)))
- ((
card Y)
/ (
card (X
\/ Y)))) by
A0,
XCMPLX_1: 60
.= ((
card (X
\ Y))
/ (
card (X
\/ Y))) by
X1,
XCMPLX_1: 120;
hence thesis by
A1,
A0,
ROUGHIF1:def 3;
end;
theorem ::
ROUGHIF2:12
PropEx30: (X
\/ Y)
=
{} implies ((
CMap (
kappa_1 R))
. (X,Y))
=
0
proof
assume
AA: (X
\/ Y)
=
{} ;
A1: ((
kappa_1 R)
. (X,Y))
= (
kappa_1 (X,Y)) by
ROUGHIF1:def 5
.= 1 by
AA,
ROUGHIF1:def 3;
((
CMap (
kappa_1 R))
. (X,Y))
= (1
- ((
kappa_1 R)
. (X,Y))) by
CDef
.=
0 by
A1;
hence thesis;
end;
theorem ::
ROUGHIF2:13
PropEx31: ((
CMap (
kappa_2 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (
[#] R)))
proof
(((X
` )
\/ Y)
` )
= (((X
\ Y)
` )
` ) by
SUBSET_1: 14;
then
A3: ((
card (
[#] R))
- (
card ((X
` )
\/ Y)))
= (
card (X
\ Y)) by
CARD_2: 44;
((
CMap (
kappa_2 R))
. (X,Y))
= (1
- ((
kappa_2 R)
. (X,Y))) by
CDef
.= (1
- (
kappa_2 (X,Y))) by
ROUGHIF1:def 6
.= (((
card (
[#] R))
/ (
card (
[#] R)))
- ((
card ((X
` )
\/ Y))
/ (
card (
[#] R)))) by
XCMPLX_1: 60
.= ((
card (X
\ Y))
/ (
card (
[#] R))) by
A3,
XCMPLX_1: 120;
hence thesis;
end;
Lemma1: X
<>
{} implies (
kappa (X,Y))
= (((
CMap (
kappa_1 R))
. (X,(Y
` )))
/ (
kappa_1 ((Y
` ),X)))
proof
assume
A0: X
<>
{} ;
c1: (X
\ (Y
` ))
= (X
/\ ((Y
` )
` )) by
SUBSET_1: 13;
A2: ((
CMap (
kappa_1 R))
. (X,(Y
` )))
= ((
card (X
\ (Y
` )))
/ (
card (X
\/ (Y
` )))) by
A0,
PropEx3;
(
kappa_1 ((Y
` ),X))
= ((
card X)
/ (
card ((Y
` )
\/ X))) by
A0,
ROUGHIF1:def 3;
then (((
CMap (
kappa_1 R))
. (X,(Y
` )))
/ (
kappa_1 ((Y
` ),X)))
= ((
card (X
\ (Y
` )))
/ (
card X)) by
A0,
XCMPLX_1: 55,
A2
.= (
kappa (X,Y)) by
A0,
ROUGHIF1:def 1,
c1;
hence thesis;
end;
Lemma2: X
<>
{} implies (
kappa (X,Y))
= (((
CMap (
kappa_2 R))
. (X,(Y
` )))
/ (
kappa_2 ((
[#] R),X)))
proof
assume
a1: X
<>
{} ;
VV: (X
/\ ((Y
` )
` ))
= (X
\ (Y
` )) by
SUBSET_1: 13;
(((
CMap (
kappa_2 R))
. (X,(Y
` )))
/ (
kappa_2 ((
[#] R),X)))
= (((
card (X
\ (Y
` )))
/ (
card (
[#] R)))
/ ((
card (((
[#] R)
` )
\/ X))
/ (
card (
[#] R)))) by
PropEx31
.= ((
card (X
\ (Y
` )))
/ (
card ((((
{} R)
` )
` )
\/ X))) by
XCMPLX_1: 55
.= (
kappa (X,Y)) by
ROUGHIF1:def 1,
a1,
VV;
hence thesis;
end;
theorem ::
ROUGHIF2:14
X
<>
{} implies (
kappa (X,Y))
= (((
CMap (
kappa_1 R))
. (X,(Y
` )))
/ (
kappa_1 ((Y
` ),X)))
= (((
CMap (
kappa_2 R))
. (X,(Y
` )))
/ (
kappa_2 ((
[#] R),X)))
proof
assume
A0: X
<>
{} ;
then (
kappa (X,Y))
= (((
CMap (
kappa_1 R))
. (X,(Y
` )))
/ (
kappa_1 ((Y
` ),X))) by
Lemma1;
hence thesis by
A0,
Lemma2;
end;
begin
definition
let R;
let f be
preRIF of R;
::
ROUGHIF2:def2
attr f is
co-RIF-like means (
CMap f) is
RIF of R;
end
registration
let R;
let f be
RIF of R;
cluster (
CMap f) ->
co-RIF-like;
coherence by
CMapMap;
end
registration
let R;
cluster
co-RIF-like for
preRIF of R;
existence
proof
take (
CMap (
kappa R));
thus thesis;
end;
end
definition
let R;
mode
co-RIF of R is
co-RIF-like
preRIF of R;
end
begin
reserve kap for
RIF of R;
theorem ::
ROUGHIF2:15
Prop6a: ((
CMap kap)
. (X,Y))
=
0 iff X
c= Y
proof
thus ((
CMap kap)
. (X,Y))
=
0 implies X
c= Y
proof
assume ((
CMap kap)
. (X,Y))
=
0 ;
then (1
- (kap
. (X,Y)))
=
0 by
CDef;
hence thesis by
ROUGHIF1:def 7;
end;
assume X
c= Y;
then
A1: (kap
. (X,Y))
= 1 by
ROUGHIF1:def 7;
((
CMap kap)
. (X,Y))
= (1
- 1) by
A1,
CDef;
hence thesis;
end;
theorem ::
ROUGHIF2:16
((
CMap (
kappa R))
. (X,Y))
=
0 iff X
c= Y
proof
thus ((
CMap (
kappa R))
. (X,Y))
=
0 implies X
c= Y
proof
assume ((
CMap (
kappa R))
. (X,Y))
=
0 ;
then (1
- ((
kappa R)
. (X,Y)))
=
0 by
CDef;
then (
kappa (X,Y))
= 1 by
ROUGHIF1:def 2;
hence thesis by
ROUGHIF1: 6;
end;
assume X
c= Y;
then
A1: (
kappa (X,Y))
= 1 by
ROUGHIF1: 6;
((
CMap (
kappa R))
. (X,Y))
= (1
- ((
kappa R)
. (X,Y))) by
CDef
.= (1
- 1) by
A1,
ROUGHIF1:def 2;
hence thesis;
end;
theorem ::
ROUGHIF2:17
Y
c= Z implies ((
CMap kap)
. (X,Z))
<= ((
CMap kap)
. (X,Y))
proof
assume Y
c= Z;
then (1
- (kap
. (X,Y)))
>= (1
- (kap
. (X,Z))) by
XREAL_1: 10,
ROUGHIF1:def 8;
then ((
CMap kap)
. (X,Y))
>= (1
- (kap
. (X,Z))) by
CDef;
hence thesis by
CDef;
end;
theorem ::
ROUGHIF2:18
Y
c= Z implies ((
CMap (
kappa R))
. (X,Z))
<= ((
CMap (
kappa R))
. (X,Y))
proof
assume Y
c= Z;
then (1
- (
kappa (X,Y)))
>= (1
- (
kappa (X,Z))) by
XREAL_1: 10,
ROUGHIF1: 7;
then (1
- ((
kappa R)
. (X,Y)))
>= (1
- (
kappa (X,Z))) by
ROUGHIF1:def 2;
then (1
- ((
kappa R)
. (X,Y)))
>= (1
- ((
kappa R)
. (X,Z))) by
ROUGHIF1:def 2;
then ((
CMap (
kappa R))
. (X,Y))
>= (1
- ((
kappa R)
. (X,Z))) by
CDef;
hence thesis by
CDef;
end;
Lemma6c1: ((
CMap (
kappa_2 R))
. (X,Y))
<= ((
CMap (
kappa_1 R))
. (X,Y))
proof
(
kappa_1 (X,Y))
<= (
kappa_2 (X,Y)) by
ROUGHIF1: 30;
then ((
kappa_1 R)
. (X,Y))
<= (
kappa_2 (X,Y)) by
ROUGHIF1:def 5;
then ((
kappa_1 R)
. (X,Y))
<= ((
kappa_2 R)
. (X,Y)) by
ROUGHIF1:def 6;
then (1
- ((
kappa_1 R)
. (X,Y)))
>= (1
- ((
kappa_2 R)
. (X,Y))) by
XREAL_1: 10;
then ((
CMap (
kappa_1 R))
. (X,Y))
>= (1
- ((
kappa_2 R)
. (X,Y))) by
CDef;
hence thesis by
CDef;
end;
Lemma6c2: ((
CMap (
kappa_1 R))
. (X,Y))
<= ((
CMap (
kappa R))
. (X,Y))
proof
(
kappa (X,Y))
<= (
kappa_1 (X,Y)) by
ROUGHIF1: 30;
then ((
kappa R)
. (X,Y))
<= (
kappa_1 (X,Y)) by
ROUGHIF1:def 2;
then ((
kappa R)
. (X,Y))
<= ((
kappa_1 R)
. (X,Y)) by
ROUGHIF1:def 5;
then (1
- ((
kappa R)
. (X,Y)))
>= (1
- ((
kappa_1 R)
. (X,Y))) by
XREAL_1: 10;
then ((
CMap (
kappa R))
. (X,Y))
>= (1
- ((
kappa_1 R)
. (X,Y))) by
CDef;
hence thesis by
CDef;
end;
theorem ::
ROUGHIF2:19
((
CMap (
kappa_2 R))
. (X,Y))
<= ((
CMap (
kappa_1 R))
. (X,Y))
<= ((
CMap (
kappa R))
. (X,Y)) by
Lemma6c1,
Lemma6c2;
theorem ::
ROUGHIF2:20
LemacikX: for a,b,c be
Real st a
<= b & b
>
0 & c
>=
0 & b
> c holds (a
/ b)
>= ((a
- c)
/ (b
- c))
proof
let a,b,c be
Real;
assume
A1: a
<= b & b
>
0 & c
>=
0 & b
> c;
then (b
-
0 )
> c;
then
SS: (b
- c)
>
0 by
XREAL_1: 12;
(a
* c)
<= (b
* c) by
A1,
XREAL_1: 64;
then ((a
* b)
- (a
* c))
>= ((a
* b)
- (b
* c)) by
XREAL_1: 10;
then (a
* (b
- c))
>= (b
* (a
- c));
hence thesis by
XREAL_1: 102,
A1,
SS;
end;
Jaga1: X
<>
{} & Y
<>
{} & Z
<>
{} implies (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,Z)))
>= ((
CMap (
kappa_1 R))
. (X,Z))
proof
assume
ZZ: X
<>
{} & Y
<>
{} & Z
<>
{} ;
set m = (
card ((X
\/ Y)
\/ Z));
set m0 = (
card (X
\ (Y
\/ Z)));
set m1 = (
card (Y
\ (X
\/ Z)));
set m2 = (
card ((X
/\ Y)
\ Z));
set m3 = (
card ((X
/\ Z)
\ Y));
set m4 = (
card (Z
\ (X
\/ Y)));
D1: (X
\ (Y
\/ Z))
= ((X
\ Y)
/\ (X
\ Z)) by
XBOOLE_1: 53;
(X
/\ Z)
misses (X
\ Z) by
XBOOLE_1: 89;
then ((X
/\ Z)
\ Y)
misses (X
\ Z) by
XBOOLE_1: 80;
then
D3b: (m0
+ m3)
= (
card ((X
\ (Y
\/ Z))
\/ ((X
/\ Z)
\ Y))) by
CARD_2: 40,
D1,
XBOOLE_1: 74;
Y
= ((Y
\ Z)
\/ Y) by
XBOOLE_1: 12,
XBOOLE_1: 36
.= (((Y
\/ Z)
\ Z)
\/ Y) by
XBOOLE_1: 40
.= (((Y
\/ Z)
\ Z)
\/ ((Y
\/ Z)
/\ Y)) by
XBOOLE_1: 21
.= ((Y
\/ Z)
\ (Z
\ Y)) by
XBOOLE_1: 52;
then
u1: ((X
\ (Y
\/ Z))
\/ (X
/\ (Z
\ Y)))
= (X
\ Y) by
XBOOLE_1: 52;
(X
\ (Y
\/ Z))
misses (X
/\ Y) by
D1,
XBOOLE_1: 74,
XBOOLE_1: 89;
then
D2: (X
\ (Y
\/ Z))
misses ((X
/\ Y)
\ Z) by
XBOOLE_1: 63,
XBOOLE_1: 36;
D3: (m0
+ m2)
= (
card ((X
\ (Y
\/ Z))
\/ ((X
/\ Y)
\ Z))) by
D2,
CARD_2: 40;
Z
= ((Z
\ Y)
\/ Z) by
XBOOLE_1: 12,
XBOOLE_1: 36
.= (((Y
\/ Z)
\ Y)
\/ Z) by
XBOOLE_1: 40
.= (((Y
\/ Z)
\ Y)
\/ ((Y
\/ Z)
/\ Z)) by
XBOOLE_1: 21
.= ((Y
\/ Z)
\ (Y
\ Z)) by
XBOOLE_1: 52;
then ((X
\ (Y
\/ Z))
\/ (X
/\ (Y
\ Z)))
= (X
\ Z) by
XBOOLE_1: 52;
then
Z2: (
card (X
\ Z))
= (m0
+ m2) by
D3,
XBOOLE_1: 49;
d1: (Y
\ (X
\/ Z))
c= (Y
\ X) by
XBOOLE_1: 34,
XBOOLE_1: 7;
(X
/\ Y)
misses (Y
\ X) by
XBOOLE_1: 89;
then (Y
\ (X
\/ Z))
misses (X
/\ Y) by
d1,
XBOOLE_1: 63;
then
D2: (Y
\ (X
\/ Z))
misses ((X
/\ Y)
\ Z) by
XBOOLE_1: 63,
XBOOLE_1: 36;
D3a: (m1
+ m2)
= (
card ((Y
\ (X
\/ Z))
\/ ((X
/\ Y)
\ Z))) by
D2,
CARD_2: 40;
Z
= ((Z
\ X)
\/ Z) by
XBOOLE_1: 12,
XBOOLE_1: 36
.= (((X
\/ Z)
\ X)
\/ Z) by
XBOOLE_1: 40
.= (((X
\/ Z)
\ X)
\/ ((X
\/ Z)
/\ Z)) by
XBOOLE_1: 21
.= ((X
\/ Z)
\ (X
\ Z)) by
XBOOLE_1: 52;
then
aa: ((Y
\ (X
\/ Z))
\/ (Y
/\ (X
\ Z)))
= (Y
\ Z) by
XBOOLE_1: 52;
then
Z3: (
card (Y
\ Z))
= (m1
+ m2) by
D3a,
XBOOLE_1: 49;
((Z
\ (X
\/ Y))
\/ (X
\/ Y))
= ((X
\/ Y)
\/ Z) by
XBOOLE_1: 39;
then
x4: ((
card (Z
\ (X
\/ Y)))
+ (
card (X
\/ Y)))
= m by
XBOOLE_1: 79,
CARD_2: 40;
((Y
\ (X
\/ Z))
\/ (X
\/ Z))
= (Y
\/ (X
\/ Z)) by
XBOOLE_1: 39
.= ((X
\/ Y)
\/ Z) by
XBOOLE_1: 4;
then
z5: ((
card (Y
\ (X
\/ Z)))
+ (
card (X
\/ Z)))
= m by
XBOOLE_1: 79,
CARD_2: 40;
then (
card (X
\/ Z))
= (m
- m1);
then
U3: m
> (
0
+ m1) by
XREAL_1: 20,
ZZ;
((X
\ (Y
\/ Z))
\/ (Y
\/ Z))
= (X
\/ (Y
\/ Z)) by
XBOOLE_1: 39
.= ((X
\/ Y)
\/ Z) by
XBOOLE_1: 4;
then
Z6: ((
card (X
\ (Y
\/ Z)))
+ (
card (Y
\/ Z)))
= m by
XBOOLE_1: 79,
CARD_2: 40;
T1: ((
CMap (
kappa_1 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (X
\/ Y))) by
ZZ,
PropEx3
.= ((m0
+ m3)
/ (m
- m4)) by
u1,
x4,
XBOOLE_1: 49,
D3b;
T2: ((
CMap (
kappa_1 R))
. (Y,Z))
= ((
card (Y
\ Z))
/ (
card (Y
\/ Z))) by
ZZ,
PropEx3
.= ((m1
+ m2)
/ (m
- m0)) by
aa,
Z6,
XBOOLE_1: 49,
D3a;
T3: ((
CMap (
kappa_1 R))
. (X,Z))
= ((m0
+ m2)
/ (m
- m1)) by
Z2,
z5,
ZZ,
PropEx3;
0
<= m4;
then (m
- m)
<= m4;
then (m
- m4)
<= m by
XREAL_1: 12;
then
V1: ((m0
+ m3)
/ (m
- m4))
>= ((m0
+ m3)
/ m) by
XREAL_1: 118,
x4,
ZZ;
0
<= m0;
then (m
- m)
<= m0;
then (m
- m0)
<= m by
XREAL_1: 12;
then
V2: ((m1
+ m2)
/ (m
- m0))
>= ((m1
+ m2)
/ m) by
XREAL_1: 118,
Z6,
ZZ;
(m0
+ m3)
>= (m0
+
0 ) by
XREAL_1: 6;
then
V3: ((m0
+ m3)
+ (m1
+ m2))
>= ((m0
+
0 )
+ (m1
+ m2)) by
XREAL_1: 6;
B2: (((m0
+ m3)
/ (m
- m4))
+ ((m1
+ m2)
/ (m
- m0)))
>= (((m0
+ m3)
/ m)
+ ((m1
+ m2)
/ m)) by
V1,
V2,
XREAL_1: 7;
(((m0
+ m3)
/ m)
+ ((m1
+ m2)
/ m))
= (((m0
+ m3)
+ (m1
+ m2))
/ m) by
XCMPLX_1: 62;
then
B3: (((m0
+ m3)
/ m)
+ ((m1
+ m2)
/ m))
>= (((m0
+ m1)
+ m2)
/ m) by
V3,
XREAL_1: 72;
set a = ((m0
+ m1)
+ m2);
set b = m;
F2: a
= ((
card (X
\ (Y
\/ Z)))
+ (
card (Y
\ Z))) by
Z3;
(X
\ Y)
misses Y by
XBOOLE_1: 79;
then (X
\ Y)
misses (Y
\ Z) by
XBOOLE_1: 63,
XBOOLE_1: 36;
then ((X
\ Y)
/\ (X
\ Z))
misses (Y
\ Z) by
XBOOLE_1: 74;
then
F5: (X
\ (Y
\/ Z))
misses (Y
\ Z) by
XBOOLE_1: 53;
(X
\ (Y
\/ Z))
c= X & (Y
\ Z)
c= Y by
XBOOLE_1: 36;
then
F4: ((X
\ (Y
\/ Z))
\/ (Y
\ Z))
c= (X
\/ Y) by
XBOOLE_1: 13;
(X
\/ Y)
c= ((X
\/ Y)
\/ Z) by
XBOOLE_1: 7;
then
f6: ((X
\ (Y
\/ Z))
\/ (Y
\ Z))
c= ((X
\/ Y)
\/ Z) by
F4;
(
card ((X
\ (Y
\/ Z))
\/ (Y
\ Z)))
= a by
F2,
F5,
CARD_2: 40;
then (a
/ b)
>= ((a
- m1)
/ (b
- m1)) by
f6,
U3,
LemacikX,
NAT_1: 43;
then (((m0
+ m3)
/ m)
+ ((m1
+ m2)
/ m))
>= ((m0
+ m2)
/ (m
- m1)) by
B3,
XXREAL_0: 2;
hence thesis by
T1,
T2,
T3,
B2,
XXREAL_0: 2;
end;
Lack: for X,Y be
set holds (X
\+\ Y)
c= (X
\/ Y)
proof
let X,Y be
set;
(X
\+\ Y)
= ((X
\/ Y)
\ (X
/\ Y)) by
XBOOLE_1: 101;
hence thesis;
end;
Lemma6f1: (X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} ) implies (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
= 1
proof
assume (X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} );
per cases ;
suppose
A0: X
=
{} & Y
<>
{} ;
then (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
PropEx3
.= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
card (Y
\ X))
/ (
card (X
\/ Y)))) by
PropEx3,
A0
.= ((
card Y)
/ (
card Y)) by
A0;
hence thesis by
A0,
XCMPLX_1: 60;
end;
suppose
A0: Y
=
{} & X
<>
{} ;
then (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
PropEx3
.= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
card (Y
\ X))
/ (
card (X
\/ Y)))) by
PropEx3,
A0
.= ((
card X)
/ (
card X)) by
A0;
hence thesis by
A0,
XCMPLX_1: 60;
end;
end;
theorem ::
ROUGHIF2:21
Ble1: X
<>
{} & Y
=
{} implies ((
CMap (
kappa_1 R))
. (X,Y))
= 1
proof
assume
A1: X
<>
{} & Y
=
{} ;
then ((
CMap (
kappa_1 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (X
\/ Y))) by
PropEx3
.= 1 by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
ROUGHIF2:22
X
=
{} & Y
<>
{} implies ((
CMap (
kappa_1 R))
. (X,Y))
=
0
proof
assume
A1: X
=
{} & Y
<>
{} ;
then ((
CMap (
kappa_1 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (X
\/ Y))) by
PropEx3
.=
0 by
A1;
hence thesis;
end;
theorem ::
ROUGHIF2:23
Prop6d1: (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,Z)))
>= ((
CMap (
kappa_1 R))
. (X,Z))
proof
per cases ;
suppose
F1: X
=
{} ;
then X
c= Y;
then
F2: ((
CMap (
kappa_1 R))
. (X,Y))
=
0 by
Prop6a;
((
CMap (
kappa_1 R))
. (X,Z))
=
0 by
Prop6a,
F1,
XBOOLE_1: 2;
hence thesis by
F2,
XXREAL_1: 1;
end;
suppose
F1: X
<>
{} & Y
=
{} & Z
<>
{} ;
then Y
c= Z;
then
F2: ((
CMap (
kappa_1 R))
. (Y,Z))
=
0 by
Prop6a;
((
CMap (
kappa_1 R))
. (X,Y))
= 1 by
F1,
Ble1;
hence thesis by
F2,
XXREAL_1: 1;
end;
suppose
F1: X
<>
{} & Y
<>
{} & Z
=
{} ;
then
F3: ((
CMap (
kappa_1 R))
. (X,Z))
= 1 by
Ble1;
((
CMap (
kappa_1 R))
. (X,Y))
>=
0 by
XXREAL_1: 1;
then (((
CMap (
kappa_1 R))
. (X,Y))
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
hence thesis by
F1,
F3,
Ble1;
end;
suppose
F1: X
<>
{} & Y
=
{} & Z
=
{} ;
then
F3: ((
CMap (
kappa_1 R))
. (X,Y))
= 1 by
Ble1;
((
CMap (
kappa_1 R))
. (Y,Z))
>=
0 by
XXREAL_1: 1;
then (1
+ ((
CMap (
kappa_1 R))
. (Y,Z)))
>= (1
+
0 ) by
XREAL_1: 6;
hence thesis by
F1,
F3;
end;
suppose X
<>
{} & Y
<>
{} & Z
<>
{} ;
hence thesis by
Jaga1;
end;
end;
theorem ::
ROUGHIF2:24
0
<= ((
CMap (
kappa R))
. (X,Y))
<= 1 by
XXREAL_1: 1;
theorem ::
ROUGHIF2:25
Prop6e1:
0
<= (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
<= 1
proof
per cases ;
suppose (X
\/ Y)
=
{} ;
then ((
CMap (
kappa_1 R))
. (X,Y))
=
0 & ((
CMap (
kappa_1 R))
. (Y,X))
=
0 by
PropEx30;
hence thesis;
end;
suppose
B1: (X
\/ Y)
<>
{} ;
then
A1: (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
PropEx3
.= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
card (Y
\ X))
/ (
card (X
\/ Y)))) by
PropEx3,
B1
.= (((
card (X
\ Y))
+ (
card (Y
\ X)))
/ (
card (X
\/ Y))) by
XCMPLX_1: 62
.= ((
card (X
\+\ Y))
/ (
card (X
\/ Y))) by
CARD_2: 40,
XBOOLE_1: 82;
(
card (X
\+\ Y))
<= (
card (X
\/ Y)) by
Lack,
NAT_1: 43;
hence thesis by
A1,
XREAL_1: 183;
end;
end;
theorem ::
ROUGHIF2:26
Prop6e2:
0
<= (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X)))
<= 1
proof
(((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X)))
= (((
card (X
\ Y))
/ (
card (
[#] R)))
+ ((
CMap (
kappa_2 R))
. (Y,X))) by
PropEx31
.= (((
card (X
\ Y))
/ (
card (
[#] R)))
+ ((
card (Y
\ X))
/ (
card (
[#] R)))) by
PropEx31
.= (((
card (X
\ Y))
+ (
card (Y
\ X)))
/ (
card (
[#] R))) by
XCMPLX_1: 62
.= ((
card (X
\+\ Y))
/ (
card (
[#] R))) by
CARD_2: 40,
XBOOLE_1: 82;
hence thesis by
NAT_1: 43,
XREAL_1: 183;
end;
Lemma6f: (X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} ) implies (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= 1
proof
assume (X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} );
per cases ;
suppose
A0: X
=
{} & Y
<>
{} ;
then (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= (
0
+ ((
CMap (
kappa R))
. (Y,X))) by
PropEx3k0
.= ((
card (Y
\ X))
/ (
card Y)) by
A0,
PropEx3k
.= ((
card Y)
/ (
card Y)) by
A0;
hence thesis by
A0,
XCMPLX_1: 60;
end;
suppose
A0: Y
=
{} & X
<>
{} ;
then (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
CMap (
kappa R))
. (Y,X))) by
PropEx3k
.= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+
0 ) by
PropEx3k0,
A0
.= ((
card X)
/ (
card X)) by
A0;
hence thesis by
A0,
XCMPLX_1: 60;
end;
end;
theorem ::
ROUGHIF2:27
(X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} ) implies (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
= 1
proof
assume
A1: (X
=
{} & Y
<>
{} ) or (X
<>
{} & Y
=
{} );
then (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= 1 by
Lemma6f;
hence thesis by
A1,
Lemma6f1;
end;
definition
let R;
::
ROUGHIF2:def3
func
delta_L R ->
preRIF of R means
:
DeltaL: for x,y be
Subset of R holds (it
. (x,y))
= ((((
CMap (
kappa R))
. (x,y))
+ ((
CMap (
kappa R))
. (y,x)))
/ 2);
existence
proof
deffunc
F(
Subset of R,
Subset of R) = (
In (((((
CMap (
kappa R))
. ($1,$2))
+ ((
CMap (
kappa R))
. ($2,$1)))
/ 2),
[.
0 , 1.]));
ex f be
preRIF of R st for x,y be
Element of (
bool the
carrier of R) holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider ff be
Function of
[:(
bool the
carrier of R), (
bool the
carrier of R):],
[.
0 , 1.] such that
A1: for x,y be
Element of (
bool the
carrier of R) holds (ff
. (x,y))
=
F(x,y);
take ff;
let x,y be
Subset of R;
b1:
0
<= ((
CMap (
kappa R))
. (x,y)) &
0
<= ((
CMap (
kappa R))
. (y,x)) by
XXREAL_1: 1;
((
CMap (
kappa R))
. (x,y))
<= 1 & ((
CMap (
kappa R))
. (y,x))
<= 1 by
XXREAL_1: 1;
then (((
CMap (
kappa R))
. (x,y))
+ ((
CMap (
kappa R))
. (y,x)))
<= (1
+ 1) by
XREAL_1: 7;
then
bb: ((((
CMap (
kappa R))
. (x,y))
+ ((
CMap (
kappa R))
. (y,x)))
/ 2)
<= (2
/ 2) by
XREAL_1: 72;
(ff
. (x,y))
= (
In (((((
CMap (
kappa R))
. (x,y))
+ ((
CMap (
kappa R))
. (y,x)))
/ 2),
[.
0 , 1.])) by
A1
.= ((((
CMap (
kappa R))
. (x,y))
+ ((
CMap (
kappa R))
. (y,x)))
/ 2) by
bb,
SUBSET_1:def 8,
b1,
XXREAL_1: 1;
hence thesis;
end;
uniqueness
proof
deffunc
G(
Subset of R,
Subset of R) = ((((
CMap (
kappa R))
. ($1,$2))
+ ((
CMap (
kappa R))
. ($2,$1)))
/ 2);
let f1,f2 be
preRIF of R such that
A1: (for x,y be
Subset of R holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Subset of R holds (f2
. (x,y))
=
G(x,y));
for x,y be
Subset of R holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Subset of R;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
::
ROUGHIF2:def4
func
delta_1 R ->
preRIF of R means
:
Delta1: for x,y be
Subset of R holds (it
. (x,y))
= (((
CMap (
kappa_1 R))
. (x,y))
+ ((
CMap (
kappa_1 R))
. (y,x)));
existence
proof
deffunc
F(
Subset of R,
Subset of R) = (
In ((((
CMap (
kappa_1 R))
. ($1,$2))
+ ((
CMap (
kappa_1 R))
. ($2,$1))),
[.
0 , 1.]));
ex f be
preRIF of R st for x,y be
Element of (
bool the
carrier of R) holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider ff be
Function of
[:(
bool the
carrier of R), (
bool the
carrier of R):],
[.
0 , 1.] such that
A1: for x,y be
Element of (
bool the
carrier of R) holds (ff
. (x,y))
=
F(x,y);
take ff;
let x,y be
Subset of R;
B1:
0
<= (((
CMap (
kappa_1 R))
. (x,y))
+ ((
CMap (
kappa_1 R))
. (y,x)))
<= 1 by
Prop6e1;
(ff
. (x,y))
= (
In ((((
CMap (
kappa_1 R))
. (x,y))
+ ((
CMap (
kappa_1 R))
. (y,x))),
[.
0 , 1.])) by
A1
.= (((
CMap (
kappa_1 R))
. (x,y))
+ ((
CMap (
kappa_1 R))
. (y,x))) by
B1,
XXREAL_1: 1,
SUBSET_1:def 8;
hence thesis;
end;
uniqueness
proof
deffunc
G(
Subset of R,
Subset of R) = (((
CMap (
kappa_1 R))
. ($1,$2))
+ ((
CMap (
kappa_1 R))
. ($2,$1)));
let f1,f2 be
preRIF of R such that
A1: (for x,y be
Subset of R holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Subset of R holds (f2
. (x,y))
=
G(x,y));
for x,y be
Subset of R holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Subset of R;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
::
ROUGHIF2:def5
func
delta_2 R ->
preRIF of R means
:
Delta2: for x,y be
Subset of R holds (it
. (x,y))
= (((
CMap (
kappa_2 R))
. (x,y))
+ ((
CMap (
kappa_2 R))
. (y,x)));
existence
proof
deffunc
F(
Subset of R,
Subset of R) = (
In ((((
CMap (
kappa_2 R))
. ($1,$2))
+ ((
CMap (
kappa_2 R))
. ($2,$1))),
[.
0 , 1.]));
ex f be
preRIF of R st for x,y be
Element of (
bool the
carrier of R) holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider ff be
Function of
[:(
bool the
carrier of R), (
bool the
carrier of R):],
[.
0 , 1.] such that
A1: for x,y be
Element of (
bool the
carrier of R) holds (ff
. (x,y))
=
F(x,y);
take ff;
let x,y be
Subset of R;
B1:
0
<= (((
CMap (
kappa_2 R))
. (x,y))
+ ((
CMap (
kappa_2 R))
. (y,x)))
<= 1 by
Prop6e2;
(ff
. (x,y))
= (
In ((((
CMap (
kappa_2 R))
. (x,y))
+ ((
CMap (
kappa_2 R))
. (y,x))),
[.
0 , 1.])) by
A1
.= (((
CMap (
kappa_2 R))
. (x,y))
+ ((
CMap (
kappa_2 R))
. (y,x))) by
B1,
XXREAL_1: 1,
SUBSET_1:def 8;
hence thesis;
end;
uniqueness
proof
deffunc
G(
Subset of R,
Subset of R) = (((
CMap (
kappa_2 R))
. ($1,$2))
+ ((
CMap (
kappa_2 R))
. ($2,$1)));
let f1,f2 be
preRIF of R such that
A1: (for x,y be
Subset of R holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Subset of R holds (f2
. (x,y))
=
G(x,y));
for x,y be
Subset of R holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Subset of R;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
end
theorem ::
ROUGHIF2:28
((
delta_L R)
. (X,Y))
=
0 iff X
= Y
proof
B1: ((
CMap (
kappa R))
. (X,Y))
>=
0 & ((
CMap (
kappa R))
. (Y,X))
>=
0 by
XXREAL_1: 1;
hereby
assume ((
delta_L R)
. (X,Y))
=
0 ;
then ((((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
/ 2)
=
0 by
DeltaL;
then ((
CMap (
kappa R))
. (X,Y))
=
0 & ((
CMap (
kappa R))
. (Y,X))
=
0 by
B1;
hence X
= Y by
Prop6a;
end;
assume
A1: X
= Y;
((
delta_L R)
. (X,Y))
= ((((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
/ 2) by
DeltaL
.= ((
0
+
0 )
/ 2) by
Prop6a,
A1;
hence thesis;
end;
theorem ::
ROUGHIF2:29
((
delta_L R)
. (X,Y))
= ((
delta_L R)
. (Y,X))
proof
((
delta_L R)
. (X,Y))
= ((((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
/ 2) by
DeltaL;
hence thesis by
DeltaL;
end;
theorem ::
ROUGHIF2:30
(X
<>
{} & Y
=
{} ) or (X
=
{} & Y
<>
{} ) implies ((
delta_L R)
. (X,Y))
= (1
/ 2)
proof
assume (X
<>
{} & Y
=
{} ) or (X
=
{} & Y
<>
{} );
then (((
CMap (
kappa R))
. (X,Y))
+ ((
CMap (
kappa R))
. (Y,X)))
= 1 by
Lemma6f;
hence thesis by
DeltaL;
end;
theorem ::
ROUGHIF2:31
X
<>
{} & Y
<>
{} implies ((
delta_L R)
. (X,Y))
= ((((
card (X
\ Y))
/ (
card X))
+ ((
card (Y
\ X))
/ (
card Y)))
/ 2)
proof
assume
A1: X
<>
{} & Y
<>
{} ;
then
A2: ((
CMap (
kappa R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card X)) by
PropEx3k;
((
CMap (
kappa R))
. (Y,X))
= ((
card (Y
\ X))
/ (
card Y)) by
A1,
PropEx3k;
hence thesis by
DeltaL,
A2;
end;
theorem ::
ROUGHIF2:32
For191: ((
delta_1 R)
. (X,Y))
= ((
card (X
\+\ Y))
/ (
card (X
\/ Y)))
proof
per cases ;
suppose
A0: (X
\/ Y)
<>
{} ;
then
A2: ((
CMap (
kappa_1 R))
. (Y,X))
= ((
card (Y
\ X))
/ (
card (X
\/ Y))) by
PropEx3;
((
delta_1 R)
. (X,Y))
= (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
Delta1
.= (((
card (X
\ Y))
/ (
card (X
\/ Y)))
+ ((
card (Y
\ X))
/ (
card (X
\/ Y)))) by
A0,
PropEx3,
A2
.= (((
card (X
\ Y))
+ (
card (Y
\ X)))
/ (
card (X
\/ Y))) by
XCMPLX_1: 62
.= ((
card (X
\+\ Y))
/ (
card (X
\/ Y))) by
XBOOLE_1: 82,
CARD_2: 40;
hence thesis;
end;
suppose
A0: (X
\/ Y)
=
{} ;
then X
=
{} & Y
=
{} ;
then ((
CMap (
kappa_1 R))
. (X,Y))
=
0 & ((
CMap (
kappa_1 R))
. (Y,X))
=
0 by
Prop6a;
then ((
delta_1 R)
. (X,Y))
= (
0
+
0 ) by
Delta1;
hence thesis by
A0;
end;
end;
theorem ::
ROUGHIF2:33
((
delta_2 R)
. (X,Y))
= ((
card (X
\+\ Y))
/ (
card (
[#] R)))
proof
A1: ((
CMap (
kappa_2 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (
[#] R))) by
PropEx31;
A2: ((
CMap (
kappa_2 R))
. (Y,X))
= ((
card (Y
\ X))
/ (
card (
[#] R))) by
PropEx31;
((
delta_2 R)
. (X,Y))
= (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X))) by
Delta2
.= (((
card (X
\ Y))
+ (
card (Y
\ X)))
/ (
card (
[#] R))) by
XCMPLX_1: 62,
A1,
A2
.= ((
card (X
\+\ Y))
/ (
card (
[#] R))) by
XBOOLE_1: 82,
CARD_2: 40;
hence thesis;
end;
theorem ::
ROUGHIF2:34
(((
delta_1 R)
. (X,Y))
+ ((
delta_1 R)
. (Y,Z)))
>= ((
delta_1 R)
. (X,Z))
proof
set m1 = ((
CMap (
kappa_1 R))
. (X,Y)), m2 = ((
CMap (
kappa_1 R))
. (Y,Z));
set m3 = ((
CMap (
kappa_1 R))
. (X,Z)), m4 = ((
CMap (
kappa_1 R))
. (Z,Y)), m5 = ((
CMap (
kappa_1 R))
. (Y,X)), m6 = ((
CMap (
kappa_1 R))
. (Z,X));
A1: (m1
+ m2)
>= m3 by
Prop6d1;
(m4
+ m5)
>= m6 by
Prop6d1;
then ((m1
+ m2)
+ (m4
+ m5))
>= (m3
+ m6) by
A1,
XREAL_1: 7;
then ((m1
+ m5)
+ (m2
+ m4))
>= (m3
+ m6);
then (((
delta_1 R)
. (X,Y))
+ (m2
+ m4))
>= (m3
+ m6) by
Delta1;
then (((
delta_1 R)
. (X,Y))
+ ((
delta_1 R)
. (Y,Z)))
>= (m3
+ m6) by
Delta1;
hence thesis by
Delta1;
end;
theorem ::
ROUGHIF2:35
((
delta_1 R)
. (X,Y))
=
0 iff X
= Y
proof
B1: ((
CMap (
kappa_1 R))
. (X,Y))
>=
0 & ((
CMap (
kappa_1 R))
. (Y,X))
>=
0 by
XXREAL_1: 1;
hereby
assume ((
delta_1 R)
. (X,Y))
=
0 ;
then (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X)))
=
0 by
Delta1;
then ((
CMap (
kappa_1 R))
. (X,Y))
=
0 & ((
CMap (
kappa_1 R))
. (Y,X))
=
0 by
B1;
hence X
= Y by
Prop6a;
end;
assume
A1: X
= Y;
((
delta_1 R)
. (X,Y))
= (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
Delta1
.= (((
CMap (
kappa_1 R))
. (X,X))
+
0 ) by
Prop6a,
A1
.= (
0
+
0 ) by
Prop6a;
hence thesis;
end;
theorem ::
ROUGHIF2:36
((
delta_1 R)
. (X,Y))
= ((
delta_1 R)
. (Y,X))
proof
((
delta_1 R)
. (X,Y))
= (((
CMap (
kappa_1 R))
. (X,Y))
+ ((
CMap (
kappa_1 R))
. (Y,X))) by
Delta1;
hence thesis by
Delta1;
end;
theorem ::
ROUGHIF2:37
((
delta_2 R)
. (X,Y))
=
0 iff X
= Y
proof
B1: ((
CMap (
kappa_2 R))
. (X,Y))
>=
0 & ((
CMap (
kappa_2 R))
. (Y,X))
>=
0 by
XXREAL_1: 1;
hereby
assume ((
delta_2 R)
. (X,Y))
=
0 ;
then (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X)))
=
0 by
Delta2;
then ((
CMap (
kappa_2 R))
. (X,Y))
=
0 & ((
CMap (
kappa_2 R))
. (Y,X))
=
0 by
B1;
hence X
= Y by
Prop6a;
end;
assume
A1: X
= Y;
((
delta_2 R)
. (X,Y))
= (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X))) by
Delta2
.= (((
CMap (
kappa_2 R))
. (X,X))
+
0 ) by
Prop6a,
A1
.= (
0
+
0 ) by
Prop6a;
hence thesis;
end;
theorem ::
ROUGHIF2:38
((
delta_2 R)
. (X,Y))
= ((
delta_2 R)
. (Y,X))
proof
((
delta_2 R)
. (X,Y))
= (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,X))) by
Delta2;
hence thesis by
Delta2;
end;
theorem ::
ROUGHIF2:39
Prop6d2: (((
CMap (
kappa_2 R))
. (X,Y))
+ ((
CMap (
kappa_2 R))
. (Y,Z)))
>= ((
CMap (
kappa_2 R))
. (X,Z))
proof
B1: ((
CMap (
kappa_2 R))
. (X,Y))
= ((
card (X
\ Y))
/ (
card (
[#] R))) by
PropEx31;
B2: ((
CMap (
kappa_2 R))
. (Y,Z))
= ((
card (Y
\ Z))
/ (
card (
[#] R))) by
PropEx31;
B3: ((
CMap (
kappa_2 R))
. (X,Z))
= ((
card (X
\ Z))
/ (
card (
[#] R))) by
PropEx31;
A1: (Y
\ Z)
c= Y by
XBOOLE_1: 36;
(X
\ Y)
misses Y by
XBOOLE_1: 79;
then
A2: (
card ((X
\ Y)
\/ (Y
\ Z)))
= ((
card (X
\ Y))
+ (
card (Y
\ Z))) by
CARD_2: 40,
A1,
XBOOLE_1: 63;
(X
\ Z)
c= ((X
\ Y)
\/ (Y
\ Z))
proof
let x be
object;
assume x
in (X
\ Z);
then
A3: x
in X & not x
in Z by
XBOOLE_0:def 5;
per cases ;
suppose x
in Y;
then x
in (Y
\ Z) by
A3,
XBOOLE_0:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose not x
in Y;
then x
in (X
\ Y) by
A3,
XBOOLE_0:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
end;
then (((
card (X
\ Y))
+ (
card (Y
\ Z)))
/ (
card (
[#] R)))
>= ((
card (X
\ Z))
/ (
card (
[#] R))) by
A2,
XREAL_1: 72,
NAT_1: 43;
hence thesis by
B1,
B2,
B3,
XCMPLX_1: 62;
end;
theorem ::
ROUGHIF2:40
(((
delta_2 R)
. (X,Y))
+ ((
delta_2 R)
. (Y,Z)))
>= ((
delta_2 R)
. (X,Z))
proof
set m1 = ((
CMap (
kappa_2 R))
. (X,Y)), m2 = ((
CMap (
kappa_2 R))
. (Y,Z));
set m3 = ((
CMap (
kappa_2 R))
. (X,Z)), m4 = ((
CMap (
kappa_2 R))
. (Z,Y)), m5 = ((
CMap (
kappa_2 R))
. (Y,X)), m6 = ((
CMap (
kappa_2 R))
. (Z,X));
A1: (m1
+ m2)
>= m3 by
Prop6d2;
(m4
+ m5)
>= m6 by
Prop6d2;
then ((m1
+ m2)
+ (m4
+ m5))
>= (m3
+ m6) by
A1,
XREAL_1: 7;
then ((m1
+ m5)
+ (m2
+ m4))
>= (m3
+ m6);
then (((
delta_2 R)
. (X,Y))
+ (m2
+ m4))
>= (m3
+ m6) by
Delta2;
then (((
delta_2 R)
. (X,Y))
+ ((
delta_2 R)
. (Y,Z)))
>= (m3
+ m6) by
Delta2;
hence thesis by
Delta2;
end;
begin
definition
let R be
finite
set;
let A,B be
Subset of R;
::
ROUGHIF2:def6
func
JaccardIndex (A,B) ->
Element of
[.
0 , 1.] equals
:
JacInd: ((
card (A
/\ B))
/ (
card (A
\/ B))) if (A
\/ B)
<>
{}
otherwise 1;
coherence
proof
((
card (A
/\ B))
/ (
card (A
\/ B)))
in
[.
0 , 1.]
proof
B1: (A
/\ B)
c= A by
XBOOLE_1: 17;
A
c= (A
\/ B) by
XBOOLE_1: 7;
then (A
/\ B)
c= (A
\/ B) by
B1;
then ((
card (A
/\ B))
/ (
card (A
\/ B)))
<= 1 by
XREAL_1: 185,
NAT_1: 43;
hence thesis by
XXREAL_1: 1;
end;
hence thesis by
XXREAL_1: 1;
end;
correctness ;
end
theorem ::
ROUGHIF2:41
JacRefl: for R be
finite
set holds for A,B be
Subset of R holds (
JaccardIndex (A,B))
= 1 iff A
= B
proof
let R be
finite
set;
let A,B be
Subset of R;
hereby
assume
T1: (
JaccardIndex (A,B))
= 1;
per cases ;
suppose (A
\/ B)
=
{} ;
then A
=
{} & B
=
{} ;
hence A
= B;
end;
suppose (A
\/ B)
<>
{} ;
then (
JaccardIndex (A,B))
= ((
card (A
/\ B))
/ (
card (A
\/ B))) by
JacInd;
then (
card (A
/\ B))
= (
card (A
\/ B)) by
XCMPLX_1: 58,
T1;
hence A
= B by
LemmaCard;
end;
end;
assume
A0: A
= B;
per cases ;
suppose A
=
{} ;
then (A
\/ B)
=
{} by
A0;
hence thesis by
JacInd;
end;
suppose
B1: A
<>
{} ;
then (
JaccardIndex (A,B))
= ((
card (A
/\ A))
/ (
card (A
\/ A))) by
JacInd,
A0
.= ((
card A)
/ (
card A));
hence thesis by
B1,
XCMPLX_1: 60;
end;
end;
theorem ::
ROUGHIF2:42
JacSym: for R be
finite
set holds for A,B be
Subset of R holds (
JaccardIndex (A,B))
= (
JaccardIndex (B,A))
proof
let R be
finite
set;
let A,B be
Subset of R;
per cases ;
suppose
A1: (A
\/ B)
=
{} ;
hence (
JaccardIndex (A,B))
= 1 by
JacInd
.= (
JaccardIndex (B,A)) by
A1,
JacInd;
end;
suppose
A1: (A
\/ B)
<>
{} ;
hence (
JaccardIndex (A,B))
= ((
card (A
/\ B))
/ (
card (A
\/ B))) by
JacInd
.= (
JaccardIndex (B,A)) by
A1,
JacInd;
end;
end;
begin
definition
let R be
finite
set;
::
ROUGHIF2:def7
func
JaccardDist R ->
Function of
[:(
bool R), (
bool R):],
REAL means
:
JacDef2: for A,B be
Subset of R holds (it
. (A,B))
= (1
- (
JaccardIndex (A,B)));
existence
proof
deffunc
F(
Subset of R,
Subset of R) = (
In ((1
- (
JaccardIndex ($1,$2))),
REAL ));
ex f be
Function of
[:(
bool R), (
bool R):],
REAL st for x,y be
Element of (
bool R) holds (f
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider ff be
Function of
[:(
bool R), (
bool R):],
REAL such that
A1: for x,y be
Element of (
bool R) holds (ff
. (x,y))
=
F(x,y);
take ff;
let x,y be
Subset of R;
(ff
. (x,y))
= (
In ((1
- (
JaccardIndex (x,y))),
REAL )) by
A1
.= (1
- (
JaccardIndex (x,y)));
hence thesis;
end;
uniqueness
proof
deffunc
G(
Subset of R,
Subset of R) = (1
- (
JaccardIndex ($1,$2)));
let f1,f2 be
Function of
[:(
bool R), (
bool R):],
REAL such that
A1: (for x,y be
Subset of R holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Subset of R holds (f2
. (x,y))
=
G(x,y));
for x,y be
Subset of R holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Subset of R;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
correctness ;
end
definition
let R be
finite
1-sorted;
::
ROUGHIF2:def8
func
MarczewskiDistance R ->
Function of
[:(
bool the
carrier of R), (
bool the
carrier of R):],
REAL equals (
JaccardDist (
[#] R));
coherence ;
end
begin
definition
let X be non
empty
set, f be
Function of
[:X, X:],
REAL ;
:: original:
nonnegative-yielding
redefine
::
ROUGHIF2:def9
attr f is
nonnegative-yielding means
:
Non: for x,y be
Element of X holds (f
. (x,y))
>=
0 ;
compatibility
proof
hereby
assume
A1: f is
nonnegative-yielding;
let x,y be
Element of X;
(
dom f)
=
[:X, X:] by
FUNCT_2:def 1;
then
[x, y]
in (
dom f);
then (f
. (x,y))
in (
rng f) by
FUNCT_1: 3;
hence (f
. (x,y))
>=
0 by
A1,
PARTFUN3:def 4;
end;
assume
A1: for x,y be
Element of X holds (f
. (x,y))
>=
0 ;
let r be
Real;
assume r
in (
rng f);
then
consider x be
Element of
[:X, X:] such that
A2: r
= (f
. x) by
FUNCT_2: 113;
consider x1,x2 be
object such that
A3: x1
in X & x2
in X & x
=
[x1, x2] by
ZFMISC_1:def 2;
reconsider x1, x2 as
Element of X by
A3;
r
= (f
. (x1,x2)) by
A3,
A2;
hence thesis by
A1;
end;
end
registration
let X be non
empty
set;
cluster
discerning
symmetric
Reflexive
triangle for
Function of
[:X, X:],
REAL ;
existence
proof
take (
discrete_dist X);
(
DiscreteSpace X)
=
MetrStruct (# X, (
discrete_dist X) #) by
METRIC_1:def 11;
hence thesis by
METRIC_1:def 6,
METRIC_1:def 7,
METRIC_1:def 8,
METRIC_1:def 9;
end;
end
registration
let X be non
empty
set;
cluster
Reflexive
symmetric
triangle ->
nonnegative-yielding for
Function of
[:X, X:],
REAL ;
coherence
proof
let f be
Function of
[:X, X:],
REAL ;
assume
AA: f is
Reflexive
symmetric
triangle;
now
let a,b be
Element of X;
(f
. (a,a))
<= ((f
. (a,b))
+ (f
. (b,a))) by
AA,
METRIC_1:def 5;
then
0
<= ((f
. (a,b))
+ (f
. (b,a))) by
AA,
METRIC_1:def 2;
then
0
<= ((f
. (a,b))
+ (f
. (a,b))) by
AA,
METRIC_1:def 4;
hence (f
. (a,b))
>=
0 ;
end;
hence thesis;
end;
end
theorem ::
ROUGHIF2:43
ME7: for X be non
empty
set holds for f be
nonnegative-yielding
discerning
triangle
Reflexive
Function of
[:X, X:],
REAL , x,y be
Element of X st x
<> y holds (f
. (x,y))
>
0
proof
let X be non
empty
set;
let f be
nonnegative-yielding
discerning
triangle
Reflexive
Function of
[:X, X:],
REAL , x,y be
Element of X;
assume x
<> y;
then (f
. (x,y))
<>
0 by
METRIC_1:def 3;
hence thesis by
Non;
end;
begin
definition
let X be non
empty
set, p be
Element of X;
let f be
Function of
[:X, X:],
REAL ;
::
ROUGHIF2:def10
func
SteinhausGen (f,p) ->
Function of
[:X, X:],
REAL means
:
SteinGen: for x,y be
Element of X holds (it
. (x,y))
= ((2
* (f
. (x,y)))
/ (((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,y))));
existence
proof
deffunc
F(
Element of X,
Element of X) = (
In (((2
* (f
. ($1,$2)))
/ (((f
. ($1,p))
+ (f
. ($2,p)))
+ (f
. ($1,$2)))),
REAL ));
ex ff be
Function of
[:X, X:],
REAL st for x,y be
Element of X holds (ff
. (x,y))
=
F(x,y) from
BINOP_1:sch 4;
then
consider fg be
Function of
[:X, X:],
REAL such that
A1: for x,y be
Element of X holds (fg
. (x,y))
=
F(x,y);
take fg;
let x,y be
Element of X;
(fg
. (x,y))
= (
In (((2
* (f
. (x,y)))
/ (((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,y)))),
REAL )) by
A1
.= ((2
* (f
. (x,y)))
/ (((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,y))));
hence thesis;
end;
uniqueness
proof
deffunc
G(
Element of X,
Element of X) = ((2
* (f
. ($1,$2)))
/ (((f
. ($1,p))
+ (f
. ($2,p)))
+ (f
. ($1,$2))));
let f1,f2 be
Function of
[:X, X:],
REAL such that
A1: (for x,y be
Element of X holds (f1
. (x,y))
=
G(x,y)) and
A2: (for x,y be
Element of X holds (f2
. (x,y))
=
G(x,y));
for x,y be
Element of X holds (f1
. (x,y))
= (f2
. (x,y))
proof
let x,y be
Element of X;
(f1
. (x,y))
=
G(x,y) by
A1
.= (f2
. (x,y)) by
A2;
hence thesis;
end;
hence thesis by
BINOP_1: 2;
end;
end
ZeZo: for X be non
empty
set, f be
nonnegative-yielding
Function of
[:X, X:],
REAL , p,x,y be
Element of X holds ((
SteinhausGen (f,p))
. (x,y))
>=
0
proof
let X be non
empty
set, f be
nonnegative-yielding
Function of
[:X, X:],
REAL , p,x,y be
Element of X;
set ff = (
SteinhausGen (f,p));
A1: (ff
. (x,y))
= ((2
* (f
. (x,y)))
/ (((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,y)))) by
SteinGen;
A3: (f
. (x,y))
>=
0 by
Non;
(f
. (x,p))
>=
0 & (f
. (y,p))
>=
0 by
Non;
hence thesis by
A1,
A3;
end;
registration
let X be non
empty
set, f be
nonnegative-yielding
Function of
[:X, X:],
REAL , p be
Element of X;
cluster (
SteinhausGen (f,p)) ->
nonnegative-yielding;
coherence by
ZeZo;
end
registration
let X be non
empty
set, f be
nonnegative-yielding
Reflexive
Function of
[:X, X:],
REAL , p be
Element of X;
cluster (
SteinhausGen (f,p)) ->
Reflexive;
coherence
proof
set ff = (
SteinhausGen (f,p));
for a be
Element of X holds (ff
. (a,a))
=
0
proof
let a be
Element of X;
(ff
. (a,a))
= ((2
* (f
. (a,a)))
/ (((f
. (a,p))
+ (f
. (a,p)))
+ (f
. (a,a)))) by
SteinGen
.= ((2
*
0 )
/ (((f
. (a,p))
+ (f
. (a,p)))
+ (f
. (a,a)))) by
METRIC_1:def 2
.=
0 ;
hence thesis;
end;
hence thesis by
METRIC_1:def 2;
end;
end
registration
let X be non
empty
set, f be
nonnegative-yielding
discerning
Function of
[:X, X:],
REAL , p be
Element of X;
cluster (
SteinhausGen (f,p)) ->
discerning;
coherence
proof
set ff = (
SteinhausGen (f,p));
for a,b be
Element of X st (ff
. (a,b))
=
0 holds a
= b
proof
let a,b be
Element of X;
(f
. (a,p))
>=
0 & (f
. (b,p))
>=
0 by
Non;
then
A0: ((f
. (a,p))
+ (f
. (b,p)))
>=
0 & (f
. (a,b))
>=
0 by
Non;
assume
A1: (ff
. (a,b))
=
0 ;
(ff
. (a,b))
= ((2
* (f
. (a,b)))
/ (((f
. (a,p))
+ (f
. (b,p)))
+ (f
. (a,b)))) by
SteinGen;
then (f
. (a,b))
=
0 or (((f
. (a,p))
+ (f
. (b,p)))
=
0 & (f
. (a,b))
=
0 ) by
A0,
A1;
hence thesis by
METRIC_1:def 3;
end;
hence thesis by
METRIC_1:def 3;
end;
end
registration
let X be non
empty
set, f be
nonnegative-yielding
symmetric
Function of
[:X, X:],
REAL , p be
Element of X;
cluster (
SteinhausGen (f,p)) ->
symmetric;
coherence
proof
set ff = (
SteinhausGen (f,p));
for a,b be
Element of X holds (ff
. (a,b))
= (ff
. (b,a))
proof
let a,b be
Element of X;
(ff
. (a,b))
= ((2
* (f
. (a,b)))
/ (((f
. (a,p))
+ (f
. (b,p)))
+ (f
. (a,b)))) by
SteinGen
.= ((2
* (f
. (b,a)))
/ (((f
. (a,p))
+ (f
. (b,p)))
+ (f
. (a,b)))) by
METRIC_1:def 4
.= ((2
* (f
. (b,a)))
/ (((f
. (b,p))
+ (f
. (a,p)))
+ (f
. (b,a)))) by
METRIC_1:def 4
.= (ff
. (b,a)) by
SteinGen;
hence thesis;
end;
hence thesis by
METRIC_1:def 4;
end;
end
registration
let X be non
empty
set, f be
discerning
symmetric
triangle
Reflexive
Function of
[:X, X:],
REAL , p be
Element of X;
cluster (
SteinhausGen (f,p)) ->
triangle;
coherence
proof
set ff = (
SteinhausGen (f,p));
for x,z,y be
Element of X holds ((ff
. (x,z))
+ (ff
. (z,y)))
>= (ff
. (x,y))
proof
let x,z,y be
Element of X;
set b = (2
* (f
. (x,y)));
set cc = (((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,y)));
set dxz = (2
* (f
. (x,z)));
set dyz = (2
* (f
. (y,z)));
set pp = (f
. (x,y));
set q = ((f
. (x,y))
+ ((f
. (x,p))
+ (f
. (y,p))));
set r = (((f
. (x,z))
+ (f
. (y,z)))
- (f
. (x,y)));
per cases ;
suppose x
= y;
then
F1: (ff
. (x,y))
=
0 by
METRIC_1:def 2;
(ff
. (x,z))
>=
0 & (ff
. (z,y))
>=
0 by
ZeZo;
hence thesis by
F1;
end;
suppose
F0: x
= z;
then (ff
. (x,z))
=
0 by
METRIC_1:def 2;
hence thesis by
F0;
end;
suppose
F0: y
= z;
then (ff
. (y,z))
=
0 by
METRIC_1:def 2;
hence thesis by
F0;
end;
suppose
TT: x
<> y & x
<> z & y
<> z;
then
TX: (f
. (x,y))
>
0 by
ME7;
(f
. (y,p))
= (f
. (p,y)) by
METRIC_1:def 4;
then ((f
. (x,p))
+ (f
. (y,p)))
>
0 by
TX,
METRIC_1:def 5;
then
Y1: pp
< q by
XREAL_1: 29;
E1: (f
. (x,y))
>
0 by
TT,
ME7;
(f
. (y,z))
= (f
. (z,y)) by
METRIC_1:def 4;
then (((f
. (x,z))
+ (f
. (y,z)))
- (f
. (x,y)))
>= ((f
. (x,y))
- (f
. (x,y))) by
XREAL_1: 9,
METRIC_1:def 5;
then
XX: (pp
/ cc)
<= ((pp
+ r)
/ (cc
+ r)) by
LemacikX1,
Y1,
E1;
S3: (ff
. (x,y))
= (b
/ cc) by
SteinGen;
(2
* (pp
/ cc))
<= (2
* (((f
. (x,z))
+ (f
. (y,z)))
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))) by
XX,
XREAL_1: 64;
then (b
/ cc)
<= (2
* (((f
. (x,z))
+ (f
. (y,z)))
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))) by
XCMPLX_1: 74;
then
ds: (b
/ cc)
<= ((2
* ((f
. (x,z))
+ (f
. (y,z))))
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z)))) by
XCMPLX_1: 74;
Sc: (f
. (x,z))
>
0 by
ME7,
TT;
SC: (f
. (y,z))
>
0 by
TT,
ME7;
S0: ((dxz
+ dyz)
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))
= ((dxz
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))
+ (dyz
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))) by
XCMPLX_1: 62;
R1: (ff
. (x,z))
= ((2
* (f
. (x,z)))
/ (((f
. (x,p))
+ (f
. (z,p)))
+ (f
. (x,z)))) by
SteinGen;
(f
. (z,y))
= (f
. (y,z)) by
METRIC_1:def 4;
then (((f
. (y,z))
+ (f
. (y,p)))
- (f
. (z,p)))
>= ((f
. (z,p))
- (f
. (z,p))) by
XREAL_1: 9,
METRIC_1:def 5;
then ((f
. (x,z))
+ (((f
. (y,z))
+ (f
. (y,p)))
- (f
. (z,p))))
>= ((f
. (x,z))
+
0 ) by
XREAL_1: 6;
then
D1: (((f
. (x,p))
+ (f
. (z,p)))
+ ((((f
. (x,z))
+ (f
. (y,z)))
+ (f
. (y,p)))
- (f
. (z,p))))
>= (((f
. (x,p))
+ (f
. (z,p)))
+ (f
. (x,z))) by
XREAL_1: 6;
ss: (f
. (z,p))
= (f
. (p,z)) by
METRIC_1:def 4;
then ((f
. (x,p))
+ (f
. (z,p)))
>
0 by
Sc,
METRIC_1:def 5;
then
W3: (dxz
/ ((((((f
. (x,p))
+ (f
. (z,p)))
+ (f
. (x,z)))
+ (f
. (y,z)))
+ (f
. (y,p)))
- (f
. (z,p))))
<= (dxz
/ (((f
. (x,p))
+ (f
. (z,p)))
+ (f
. (x,z)))) by
D1,
XREAL_1: 118,
Sc;
f2: ((f
. (y,p))
+ (f
. (z,p)))
>
0 by
SC,
METRIC_1:def 5,
ss;
(f
. (x,z))
= (f
. (z,x)) by
METRIC_1:def 4;
then (((f
. (x,z))
+ (f
. (x,p)))
- (f
. (z,p)))
>= ((f
. (z,p))
- (f
. (z,p))) by
XREAL_1: 9,
METRIC_1:def 5;
then ((((f
. (x,z))
+ (f
. (x,p)))
- (f
. (z,p)))
+ (f
. (y,z)))
>= (
0
+ (f
. (y,z))) by
XREAL_1: 6;
then (((f
. (y,p))
+ (f
. (z,p)))
+ ((((f
. (y,z))
+ (f
. (x,z)))
+ (f
. (x,p)))
- (f
. (z,p))))
>= (((f
. (y,p))
+ (f
. (z,p)))
+ (f
. (y,z))) by
XREAL_1: 6;
then
w3: (dyz
/ ((((((f
. (y,p))
+ (f
. (z,p)))
+ (f
. (y,z)))
+ (f
. (x,z)))
+ (f
. (x,p)))
- (f
. (z,p))))
<= (dyz
/ (((f
. (y,p))
+ (f
. (z,p)))
+ (f
. (y,z)))) by
XREAL_1: 118,
f2,
SC;
R2: (ff
. (z,y))
= ((2
* (f
. (z,y)))
/ (((f
. (z,p))
+ (f
. (y,p)))
+ (f
. (z,y)))) by
SteinGen;
(f
. (y,p))
= (f
. (p,y)) & (f
. (z,p))
= (f
. (p,z)) & (f
. (y,z))
= (f
. (z,y)) by
METRIC_1:def 4;
then ((dxz
+ dyz)
/ ((((f
. (x,p))
+ (f
. (y,p)))
+ (f
. (x,z)))
+ (f
. (y,z))))
<= ((ff
. (x,z))
+ (ff
. (z,y))) by
R1,
W3,
S0,
XREAL_1: 7,
w3,
R2;
hence thesis by
S3,
ds,
XXREAL_0: 2;
end;
end;
hence thesis by
METRIC_1:def 5;
end;
end
begin
definition
let X be
finite
set;
::
ROUGHIF2:def11
func
SymmetricDiffDist X ->
Function of
[:(
bool X), (
bool X):],
REAL means
:
SymDist: for x,y be
Subset of X holds (it
. (x,y))
= (
card (x
\+\ y));
existence
proof
deffunc
F(
Subset of X,
Subset of X) = (
In ((
card ($1
\+\ $2)),
REAL ));
ex f be
Function of
[:(
bool X), (
bool X):],
REAL st for x,y be
Element of (
bool X) holds (f
. (x,y))
=
F(x,y) from
STACKS_1:sch 2;
then
consider f be
Function of
[:(
bool X), (
bool X):],
REAL such that
A1: for x,y be
Subset of X holds (f
. (x,y))
=
F(x,y);
take f;
let x,y be
Subset of X;
(f
. (x,y))
= (
In ((
card (x
\+\ y)),
REAL )) by
A1
.= (
card (x
\+\ y));
hence thesis;
end;
uniqueness
proof
deffunc
F(
Subset of X,
Subset of X) = (
card ($1
\+\ $2));
let f1,f2 be
Function of
[:(
bool X), (
bool X):],
REAL such that
A1: for x,y be
Subset of X holds (f1
. (x,y))
=
F(x,y) and
A2: for x,y be
Subset of X holds (f2
. (x,y))
=
F(x,y);
for x be
Element of
[:(
bool X), (
bool X):] holds (f1
. x)
= (f2
. x)
proof
let x be
Element of
[:(
bool X), (
bool X):];
consider x1,x2 be
object such that
A3:
[x1, x2]
= x by
XTUPLE_0:def 1,
CARDFIL4: 4;
reconsider x1, x2 as
Subset of X by
ZFMISC_1: 87,
A3;
A5: (
card (x1
\+\ x2))
= (f1
. (x1,x2)) by
A1
.= (f1
. x) by
A3;
(
card (x1
\+\ x2))
= (f2
. (x1,x2)) by
A2
.= (f2
. x) by
A3;
hence thesis by
A5;
end;
hence thesis;
end;
end
registration
let X be
finite
set;
cluster (
SymmetricDiffDist X) ->
Reflexive
discerning
symmetric
triangle;
coherence
proof
set f = (
SymmetricDiffDist X);
for x be
Element of (
bool X) holds (f
. (x,x))
=
0
proof
let x be
Element of (
bool X);
(f
. (x,x))
= (
card (x
\+\ x)) by
SymDist
.= (
card (
{} X)) by
XBOOLE_1: 92
.=
0 ;
hence thesis;
end;
hence f is
Reflexive by
METRIC_1:def 2;
for a,b be
Element of (
bool X) st (f
. (a,b))
=
0 holds a
= b
proof
let a,b be
Subset of X;
assume (f
. (a,b))
=
0 ;
then (
card (a
\+\ b))
=
0 by
SymDist;
then (a
\ b)
=
{} & (b
\ a)
=
{} ;
hence thesis by
XBOOLE_1: 37;
end;
hence f is
discerning by
METRIC_1:def 3;
for a,b be
Element of (
bool X) holds (f
. (a,b))
= (f
. (b,a))
proof
let a,b be
Subset of X;
(f
. (a,b))
= (
card (a
\+\ b)) by
SymDist
.= (f
. (b,a)) by
SymDist;
hence thesis;
end;
hence f is
symmetric by
METRIC_1:def 4;
for a,b,c be
Element of (
bool X) holds (f
. (a,c))
<= ((f
. (a,b))
+ (f
. (b,c)))
proof
let a,b,c be
Element of (
bool X);
B1: (f
. (a,c))
= (
card (a
\+\ c)) by
SymDist;
B2: (f
. (a,b))
= (
card (a
\+\ b)) by
SymDist;
B3: (f
. (b,c))
= (
card (b
\+\ c)) by
SymDist;
(a
\+\ c)
= ((a
\+\ b)
\+\ (b
\+\ c)) by
Jajo;
then
A1: (
card (a
\+\ c))
<= (
card ((a
\+\ b)
\/ (b
\+\ c))) by
NAT_1: 43,
Lack;
(
card ((a
\+\ b)
\/ (b
\+\ c)))
<= ((
card (a
\+\ b))
+ (
card (b
\+\ c))) by
CARD_2: 43;
hence thesis by
B1,
B2,
B3,
A1,
XXREAL_0: 2;
end;
hence thesis by
METRIC_1:def 5;
end;
end
definition
let X be
finite
set;
::
ROUGHIF2:def12
func
SymDifMetrSpace X ->
MetrStruct equals
MetrStruct (# (
bool X), (
SymmetricDiffDist X) #);
coherence ;
end
registration
let X be
finite
set;
cluster (
SymDifMetrSpace X) -> non
empty;
coherence ;
end
registration
let X be
finite
set;
cluster (
SymDifMetrSpace X) ->
Reflexive
discerning
symmetric
triangle;
coherence by
METRIC_1:def 6,
METRIC_1:def 7,
METRIC_1:def 8,
METRIC_1:def 9;
end
begin
theorem ::
ROUGHIF2:44
Similar2: for R be
finite
set holds for A,B be
Subset of R holds ((
JaccardDist R)
. (A,B))
= ((
card (A
\+\ B))
/ (
card (A
\/ B)))
proof
let R be
finite
set;
let A,B be
Subset of R;
per cases ;
suppose
A1: (A
\/ B)
<>
{} ;
((
JaccardDist R)
. (A,B))
= (1
- (
JaccardIndex (A,B))) by
JacDef2
.= (1
- ((
card (A
/\ B))
/ (
card (A
\/ B)))) by
JacInd,
A1
.= ((
card (A
\+\ B))
/ (
card (A
\/ B))) by
A1,
Lemacik;
hence thesis;
end;
suppose
A1: (A
\/ B)
=
{} ;
((
JaccardDist R)
. (A,B))
= (1
- (
JaccardIndex (A,B))) by
JacDef2
.= (1
- 1) by
JacInd,
A1
.= ((
card (A
\+\ B))
/ (
card (A
\/ B))) by
A1;
hence thesis;
end;
end;
theorem ::
ROUGHIF2:45
LastLemma: for X be
finite
set holds (
JaccardDist X)
= (
SteinhausGen ((
SymmetricDiffDist X),(
{} X)))
proof
let X be
finite
set;
set f = (
JaccardDist X);
set g = (
SteinhausGen ((
SymmetricDiffDist X),(
{} X)));
for x be
Element of
[:(
bool X), (
bool X):] holds (f
. x)
= (g
. x)
proof
let x be
Element of
[:(
bool X), (
bool X):];
consider x1,x2 be
object such that
T1: x1
in (
bool X) & x2
in (
bool X) & x
=
[x1, x2] by
ZFMISC_1:def 2;
reconsider x1, x2 as
Subset of X by
T1;
set h = (
SymmetricDiffDist X);
set p = (
{} X);
V1: (h
. (x1,p))
= (
card (x1
\+\ p)) by
SymDist
.= (
card x1);
V2: (h
. (x2,p))
= (
card (x2
\+\ p)) by
SymDist
.= (
card x2);
V3: (h
. (x1,x2))
= (
card (x1
\+\ x2)) by
SymDist;
nn: (g
. (x1,x2))
= ((2
* (
card (x1
\+\ x2)))
/ (((
card x1)
+ (
card x2))
+ (
card (x1
\+\ x2)))) by
V3,
V2,
V1,
SteinGen;
(f
. (x1,x2))
= ((
card (x1
\+\ x2))
/ (
card (x1
\/ x2))) by
Similar2
.= (g
. (x1,x2)) by
HoHo,
nn;
hence thesis by
T1;
end;
hence thesis;
end;
begin
registration
let M be
finite non
empty
MetrSpace;
cluster the
distance of M ->
symmetric
Reflexive
discerning
triangle;
coherence by
METRIC_1:def 9,
METRIC_1:def 6,
METRIC_1:def 7,
METRIC_1:def 8;
end
definition
let M be
finite non
empty
MetrStruct, p be
Element of M;
::
ROUGHIF2:def13
func
SteinhausMetrSpace (M,p) ->
MetrStruct equals
MetrStruct (# the
carrier of M, (
SteinhausGen (the
distance of M,p)) #);
coherence ;
end
definition
let M be
MetrStruct;
::
ROUGHIF2:def14
attr M is
with_nonnegative_distance means
:
NonDist: the
distance of M is
nonnegative-yielding;
end
registration
let A be
finite non
empty
set;
cluster (
discrete_dist A) ->
finite non
empty
nonnegative-yielding;
coherence
proof
set S = (
DiscreteSpace A);
for x,y be
Element of A holds ((
discrete_dist A)
. (x,y))
>=
0
proof
let x,y be
Element of A;
per cases ;
suppose x
= y;
hence thesis by
METRIC_1:def 10;
end;
suppose x
<> y;
hence thesis by
METRIC_1:def 10;
end;
end;
hence thesis;
end;
end
registration
cluster
finite non
empty
with_nonnegative_distance for
MetrSpace;
existence
proof
set A = the
finite non
empty
set;
take S = (
DiscreteSpace A);
S
=
MetrStruct (# A, (
discrete_dist A) #) by
METRIC_1:def 11;
hence thesis;
end;
end
registration
let M be
finite non
empty
with_nonnegative_distance
MetrStruct, p be
Element of M;
cluster (
SteinhausMetrSpace (M,p)) ->
with_nonnegative_distance;
coherence
proof
the
distance of M is
nonnegative-yielding by
NonDist;
hence thesis;
end;
end
registration
let M be
finite non
empty
with_nonnegative_distance
discerning
MetrStruct, p be
Element of M;
cluster (
SteinhausMetrSpace (M,p)) ->
discerning;
coherence
proof
the
distance of M is
nonnegative-yielding
discerning by
NonDist,
METRIC_1:def 7;
hence thesis by
METRIC_1:def 7;
end;
end
registration
let M be
finite non
empty
with_nonnegative_distance
Reflexive
MetrStruct, p be
Element of M;
cluster (
SteinhausMetrSpace (M,p)) ->
Reflexive;
coherence
proof
the
distance of M is
nonnegative-yielding
Reflexive by
NonDist,
METRIC_1:def 6;
hence thesis by
METRIC_1:def 6;
end;
end
registration
let M be
finite non
empty
with_nonnegative_distance
symmetric
MetrStruct, p be
Element of M;
cluster (
SteinhausMetrSpace (M,p)) ->
symmetric;
coherence
proof
the
distance of M is
nonnegative-yielding
symmetric by
NonDist,
METRIC_1:def 8;
hence thesis by
METRIC_1:def 8;
end;
end
registration
let M be
finite non
empty
discerning
symmetric
Reflexive
triangle
MetrStruct, p be
Element of M;
cluster (
SteinhausMetrSpace (M,p)) ->
triangle;
coherence by
METRIC_1:def 9;
end
registration
let R be
finite
1-sorted;
cluster (
MarczewskiDistance R) ->
Reflexive
discerning
symmetric;
coherence
proof
set f = (
MarczewskiDistance R);
for a be
Subset of R holds (f
. (a,a))
=
0
proof
let a be
Subset of R;
(f
. (a,a))
= (1
- (
JaccardIndex (a,a))) by
JacDef2
.= (1
- 1) by
JacRefl;
hence thesis;
end;
hence f is
Reflexive by
METRIC_1:def 2;
a1: for a,b be
Subset of R st (f
. (a,b))
=
0 holds a
= b
proof
let a,b be
Subset of R;
assume (f
. (a,b))
=
0 ;
then (1
- (
JaccardIndex (a,b)))
=
0 by
JacDef2;
hence thesis by
JacRefl;
end;
set A = (
bool the
carrier of R);
for a,b be
Element of A holds (f
. (a,b))
= (f
. (b,a))
proof
let a,b be
Element of A;
(f
. (a,b))
= (1
- (
JaccardIndex (a,b))) by
JacDef2
.= (1
- (
JaccardIndex (b,a))) by
JacSym
.= (f
. (b,a)) by
JacDef2;
hence thesis;
end;
hence thesis by
a1,
METRIC_1:def 4,
METRIC_1:def 3;
end;
end
theorem ::
ROUGHIF2:46
for R be
finite
Approximation_Space holds for A,B be
Subset of R holds ((
MarczewskiDistance R)
. (A,B))
= ((
delta_1 R)
. (A,B))
proof
let R be
finite
Approximation_Space;
let A,B be
Subset of R;
((
MarczewskiDistance R)
. (A,B))
= ((
card (A
\+\ B))
/ (
card (A
\/ B))) by
Similar2;
hence thesis by
For191;
end;
registration
let R be
finite
1-sorted;
cluster (
MarczewskiDistance R) ->
triangle;
coherence
proof
set A = (
bool the
carrier of R);
set B = (
[#] R);
set ff = (
SymmetricDiffDist (
[#] R));
set p = (
{} B);
(
JaccardDist B)
= (
SteinhausGen (ff,p)) by
LastLemma;
hence thesis;
end;
end