vsdiff_1.miz
begin
reserve C for non
empty
set;
reserve GF for
Field,
V for
VectSp of GF,
v,u for
Element of V,
W for
Subset of V;
reserve f,f1,f2,f3 for
PartFunc of C, V;
definition
let C;
let GF, V;
let f be
PartFunc of C, V;
let r be
Element of GF;
deffunc
F(
Element of C) = (r
* (f
/. $1));
defpred
P[
set] means $1
in (
dom f);
::
VSDIFF_1:def1
func r
(#) f ->
PartFunc of C, V means
:
Def4X: (
dom it )
= (
dom f) & for c be
Element of C st c
in (
dom it ) holds (it
/. c)
= (r
* (f
/. c));
existence
proof
consider F be
PartFunc of C, V such that
A1: for c be
Element of C holds c
in (
dom F) iff
P[c] and
A2: for c be
Element of C st c
in (
dom F) holds (F
/. c)
=
F(c) from
PARTFUN2:sch 2;
take F;
thus thesis by
A1,
A2,
SUBSET_1: 3;
end;
uniqueness
proof
set X = (
dom f);
thus for f,g be
PartFunc of C, V st ((
dom f)
= X & for c be
Element of C st c
in (
dom f) holds (f
/. c)
=
F(c)) & ((
dom g)
= X & for c be
Element of C st c
in (
dom g) holds (g
/. c)
=
F(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
registration
let C, GF, V;
let f be
Function of C, V;
let r be
Element of GF;
cluster (r
(#) f) ->
total;
coherence
proof
(
dom (r
(#) f))
= (
dom f) by
Def4X
.= C by
FUNCT_2:def 1;
hence thesis by
PARTFUN1:def 2;
end;
end
definition
let GF, V, v, W;
::
VSDIFF_1:def2
func v
++ W ->
Subset of V equals { (v
+ u) : u
in W };
coherence
proof
set Y = { (v
+ u) : u
in W };
defpred
Sep[
object] means ex u st $1
= (v
+ u) & u
in W;
consider X be
set such that
A1: for x be
object holds x
in X iff x
in the
carrier of V &
Sep[x] from
XBOOLE_0:sch 1;
for x be
object st x
in X holds x
in the
carrier of V by
A1;
then
reconsider X as
Subset of V by
TARSKI:def 3;
A2: Y
c= X
proof
let x be
object;
assume x
in Y;
then ex u st x
= (v
+ u) & u
in W;
hence thesis by
A1;
end;
X
c= Y
proof
let x be
object;
assume x
in X;
then ex u st x
= (v
+ u) & u
in W by
A1;
hence thesis;
end;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let W be
VectSp of G;
let f be
PartFunc of V, W;
let h be
Element of V;
::
VSDIFF_1:def3
func
Shift (f,h) ->
PartFunc of V, W means
:
Def1: (
dom it )
= ((
- h)
++ (
dom f)) & (for x be
Element of V st x
in ((
- h)
++ (
dom f)) holds (it
. x)
= (f
. (x
+ h)));
existence
proof
deffunc
F(
Element of V) = (
In ((f
. ($1
+ h)),the
carrier of W));
set X = ((
- h)
++ (
dom f));
defpred
P[
set] means $1
in X;
consider F be
PartFunc of V, W such that
A1: (for x be
Element of V holds x
in (
dom F) iff
P[x]) & for x be
Element of V st x
in (
dom F) holds (F
. x)
=
F(x) from
SEQ_1:sch 3;
take F;
for y be
object st y
in X holds y
in (
dom F) by
A1;
then
A2: X
c= (
dom F) by
TARSKI:def 3;
for y be
object st y
in (
dom F) holds y
in X by
A1;
then (
dom F)
c= X by
TARSKI:def 3;
hence (
dom F)
= X by
A2,
XBOOLE_0:def 10;
for x be
Element of V st x
in X holds (F
. x)
= (f
. (x
+ h))
proof
let x be
Element of V;
assume
A3: x
in X;
then
A4: (F
. x)
=
F(x) by
A1;
consider u be
Element of V such that
A5: x
= ((
- h)
+ u) & u
in (
dom f) by
A3;
(x
+ h)
= (u
+ ((
- h)
+ h)) by
RLVECT_1:def 3,
A5
.= (u
+ (
0. V)) by
VECTSP_1: 16
.= u by
RLVECT_1:def 4;
hence thesis by
A4,
SUBSET_1:def 8,
PARTFUN1: 4,
A5;
end;
hence thesis;
end;
uniqueness
proof
let f1,f2 be
PartFunc of V, W;
set X = ((
- h)
++ (
dom f));
assume that
A6: (
dom f1)
= X and
A7: for x be
Element of V st x
in X holds (f1
. x)
= (f
. (x
+ h)) and
A8: (
dom f2)
= X and
A9: for x be
Element of V st x
in X holds (f2
. x)
= (f
. (x
+ h));
for x be
Element of V st x
in (
dom f1) holds (f1
. x)
= (f2
. x)
proof
let x be
Element of V;
assume
A10: x
in (
dom f1);
then (f1
. x)
= (f
. (x
+ h)) by
A6,
A7;
hence thesis by
A6,
A9,
A10;
end;
hence f1
= f2 by
A6,
A8,
PARTFUN1: 5;
end;
end
theorem ::
VSDIFF_1:1
MEASURE624: for x be
Element of V, A be
Subset of V st A
= the
carrier of V holds (x
++ A)
= A
proof
let x be
Element of V, A be
Subset of V;
assume
P0: A
= the
carrier of V;
for y be
object holds y
in (x
++ A) iff y
in A
proof
let y be
object;
y
in A implies y
in (x
++ A)
proof
assume y
in A;
then
reconsider w = y as
Element of V;
((w
- x)
+ x)
= (w
- (x
- x)) by
RLVECT_1: 29
.= (w
- (
0. V)) by
RLVECT_1: 15
.= w by
RLVECT_1: 13;
hence y
in (x
++ A) by
P0;
end;
hence thesis by
P0;
end;
hence (x
++ A)
= A by
TARSKI: 2;
end;
definition
let F,G be
Field;
let V be
VectSp of F;
let W be
VectSp of G;
let f be
Function of V, W;
let h be
Element of V;
:: original:
Shift
redefine
::
VSDIFF_1:def4
func
Shift (f,h) ->
Function of V, W means
:
Def2: for x be
Element of V holds (it
. x)
= (f
. (x
+ h));
coherence
proof
(
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) & (
dom f)
= the
carrier of V by
Def1,
FUNCT_2:def 1;
then (
dom (
Shift (f,h)))
= the
carrier of V by
MEASURE624;
hence thesis by
FUNCT_2:def 1;
end;
compatibility
proof
for IT be
Function of V, W holds IT
= (
Shift (f,h)) iff for x be
Element of V holds (IT
. x)
= (f
. (x
+ h))
proof
let IT be
Function of V, W;
hereby
assume
A1: IT
= (
Shift (f,h));
let x be
Element of V;
(
dom (
Shift (f,h)))
= the
carrier of V by
A1,
FUNCT_2:def 1;
then x
in (
dom (
Shift (f,h)));
then x
in ((
- h)
++ (
dom f)) by
Def1;
hence (IT
. x)
= (f
. (x
+ h)) by
A1,
Def1;
end;
(
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) & (
dom f)
= the
carrier of V by
Def1,
FUNCT_2:def 1;
then (
dom (
Shift (f,h)))
= the
carrier of V by
MEASURE624;
then
A2: (
dom IT)
= (
dom (
Shift (f,h))) by
FUNCT_2:def 1;
assume
A3: for x be
Element of V holds (IT
. x)
= (f
. (x
+ h));
for x be
Element of V st x
in (
dom IT) holds (IT
. x)
= ((
Shift (f,h))
. x)
proof
let x be
Element of V;
assume x
in (
dom IT);
then
A4: x
in ((
- h)
++ (
dom f)) by
A2,
Def1;
(IT
. x)
= (f
. (x
+ h)) by
A3;
hence thesis by
A4,
Def1;
end;
hence thesis by
A2,
PARTFUN1: 5;
end;
hence thesis;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
PartFunc of V, W;
::
VSDIFF_1:def5
func
fD (f,h) ->
PartFunc of V, W equals ((
Shift (f,h))
- f);
coherence ;
end
registration
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
cluster (
fD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
fD (f,h)))
= ((
dom (
Shift (f,h)))
/\ (
dom f)) by
VFUNCT_1:def 2
.= (the
carrier of V
/\ (
dom f)) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
PartFunc of V, W;
::
VSDIFF_1:def6
func
bD (f,h) ->
PartFunc of V, W equals (f
- (
Shift (f,(
- h))));
coherence ;
end
registration
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
cluster (
bD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
bD (f,h)))
= ((
dom (
Shift (f,(
- h))))
/\ (
dom f)) by
VFUNCT_1:def 2
.= (the
carrier of V
/\ (
dom f)) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
PartFunc of V, W;
::
VSDIFF_1:def7
func
cD (f,h) ->
PartFunc of V, W equals ((
Shift (f,(((2
* (
1. F))
" )
* h)))
- (
Shift (f,(
- (((2
* (
1. F))
" )
* h)))));
coherence ;
end
registration
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
cluster (
cD (f,h)) ->
quasi_total;
coherence
proof
(
dom (
cD (f,h)))
= ((
dom (
Shift (f,(((2
* (
1. F))
" )
* h))))
/\ (
dom (
Shift (f,(
- (((2
* (
1. F))
" )
* h)))))) by
VFUNCT_1:def 2
.= (the
carrier of V
/\ (
dom (
Shift (f,(
- (((2
* (
1. F))
" )
* h)))))) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
hence thesis by
FUNCT_2:def 1;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
::
VSDIFF_1:def8
func
forward_difference (f,h) ->
Functional_Sequence of the
carrier of V, the
carrier of W means
:
Def6: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
fD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of V, W st $2
= g & $3
= (
fD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) holds ex y be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (the
carrier of V,the
carrier of W));
reconsider x9 = x as
PartFunc of the
carrier of V, the
carrier of W by
PARTFUN1: 46;
reconsider y = (
fD (x9,h)) as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
ex w be
PartFunc of the
carrier of V, the
carrier of W st x
= w & y
= (
fD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (the
carrier of V,the
carrier of W)) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of the
carrier of V, the
carrier of W;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of the
carrier of V, the
carrier of W;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
fD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
fD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
fD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
synonym
fdif (f,h) for
forward_difference (f,h);
end
reserve F,G for
Field,
V for
VectSp of F,
W for
VectSp of G;
reserve f,f1,f2 for
Function of V, W;
reserve x,h for
Element of V;
reserve r,r1,r2 for
Element of G;
theorem ::
VSDIFF_1:2
Th01: for f be
PartFunc of V, W st x
in (
dom f) & (x
+ h)
in (
dom f) holds ((
fD (f,h))
/. x)
= ((f
/. (x
+ h))
- (f
/. x))
proof
let f be
PartFunc of V, W;
assume
A1: x
in (
dom f) & (x
+ h)
in (
dom f);
A2: (
dom (
Shift (f,h)))
= ((
- h)
++ (
dom f)) by
Def1;
((
- h)
+ (x
+ h))
= (x
+ (h
+ (
- h))) by
RLVECT_1:def 3
.= (x
+ (
0. V)) by
VECTSP_1: 16
.= x by
RLVECT_1:def 4;
then
A4: x
in ((
- h)
++ (
dom f)) by
A1;
A5: ((
Shift (f,h))
/. x)
= ((
Shift (f,h))
. x) by
A2,
A4,
PARTFUN1:def 6
.= (f
. (x
+ h)) by
Def1,
A4
.= (f
/. (x
+ h)) by
A1,
PARTFUN1:def 6;
x
in ((
dom (
Shift (f,h)))
/\ (
dom f)) by
A4,
A2,
A1,
XBOOLE_0:def 4;
then x
in (
dom (
fD (f,h))) by
VFUNCT_1:def 2;
hence ((
fD (f,h))
/. x)
= ((f
/. (x
+ h))
- (f
/. x)) by
A5,
VFUNCT_1:def 2;
end;
theorem ::
VSDIFF_1:3
Th2: for n be
Nat holds ((
fdif (f,h))
. n) is
Function of V, W
proof
defpred
X[
Nat] means ((
fdif (f,h))
. $1) is
Function of V, W;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
fdif (f,h))
. k) is
Function of V, W;
then (
fD (((
fdif (f,h))
. k),h)) is
Function of V, W;
hence thesis by
Def6;
end;
A2:
X[
0 ] by
Def6;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:4
Th3: ((
fD (f,h))
/. x)
= ((f
/. (x
+ h))
- (f
/. x))
proof
(
dom f)
= the
carrier of V by
FUNCT_2:def 1;
hence ((
fD (f,h))
/. x)
= ((f
/. (x
+ h))
- (f
/. x)) by
Th01;
end;
theorem ::
VSDIFF_1:5
Th4: ((
bD (f,h))
/. x)
= ((f
/. x)
- (f
/. (x
- h)))
proof
P1: (
dom f)
= the
carrier of V by
FUNCT_2:def 1;
(
dom (
Shift (f,(
- h))))
= the
carrier of V by
FUNCT_2:def 1;
then x
in ((
dom f)
/\ (
dom (
Shift (f,(
- h))))) by
P1;
then
P2: x
in (
dom (f
- (
Shift (f,(
- h))))) by
VFUNCT_1:def 2;
thus ((
bD (f,h))
/. x)
= ((f
/. x)
- ((
Shift (f,(
- h)))
/. x)) by
P2,
VFUNCT_1:def 2
.= ((f
/. x)
- (f
/. (x
- h))) by
Def2;
end;
theorem ::
VSDIFF_1:6
Th5: ((
cD (f,h))
/. x)
= ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h))))
proof
(
dom ((
Shift (f,(((2
* (
1. F))
" )
* h)))
- (
Shift (f,(
- (((2
* (
1. F))
" )
* h))))))
= the
carrier of V by
FUNCT_2:def 1;
hence ((
cD (f,h))
/. x)
= (((
Shift (f,(((2
* (
1. F))
" )
* h)))
/. x)
- ((
Shift (f,(
- (((2
* (
1. F))
" )
* h))))
/. x)) by
VFUNCT_1:def 2
.= ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((
Shift (f,(
- (((2
* (
1. F))
" )
* h))))
/. x)) by
Def2
.= ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Def2;
end;
reserve n,m,k for
Nat;
theorem ::
VSDIFF_1:7
f is
constant implies for x holds (((
fdif (f,h))
. (n
+ 1))
/. x)
= (
0. W)
proof
assume
A1: f is
constant;
A2: for x holds ((f
/. (x
+ h))
- (f
/. x))
= (
0. W)
proof
let x;
(x
+ h)
in the
carrier of V;
then
A3: (x
+ h)
in (
dom f) by
FUNCT_2:def 1;
x
in the
carrier of V;
then x
in (
dom f) by
FUNCT_2:def 1;
then (f
/. x)
= (f
/. (x
+ h)) by
A1,
A3,
FUNCT_1:def 10;
hence thesis by
RLVECT_1: 15;
end;
for x holds (((
fdif (f,h))
. (n
+ 1))
/. x)
= (
0. W)
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. ($1
+ 1))
/. x)
= (
0. W);
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
fdif (f,h))
. (k
+ 1))
/. x)
= (
0. W);
let x;
A6: (((
fdif (f,h))
. (k
+ 1))
/. (x
+ h))
= (
0. W) by
A5;
reconsider fdk = ((
fdif (f,h))
. (k
+ 1)) as
Function of V, W by
Th2;
(((
fdif (f,h))
. (k
+ 2))
/. x)
= (((
fdif (f,h))
. ((k
+ 1)
+ 1))
/. x)
.= ((
fD (((
fdif (f,h))
. (k
+ 1)),h))
/. x) by
Def6
.= ((fdk
/. (x
+ h))
- (fdk
/. x)) by
Th3
.= ((
0. W)
- (
0. W)) by
A5,
A6
.= (
0. W) by
RLVECT_1: 15;
hence thesis;
end;
A8:
X[
0 ]
proof
let x;
thus (((
fdif (f,h))
. (
0
+ 1))
/. x)
= ((
fD (((
fdif (f,h))
.
0 ),h))
/. x) by
Def6
.= ((
fD (f,h))
/. x) by
Def6
.= ((f
/. (x
+ h))
- (f
/. x)) by
Th3
.= (
0. W) by
A2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A4);
hence thesis;
end;
hence thesis;
end;
theorem ::
VSDIFF_1:8
Th7: (((
fdif ((r
(#) f),h))
. (n
+ 1))
/. x)
= (r
* (((
fdif (f,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((r
(#) f),h))
. ($1
+ 1))
/. x)
= (r
* (((
fdif (f,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif ((r
(#) f),h))
. (k
+ 1))
/. x)
= (r
* (((
fdif (f,h))
. (k
+ 1))
/. x));
let x;
A3: (((
fdif ((r
(#) f),h))
. (k
+ 1))
/. x)
= (r
* (((
fdif (f,h))
. (k
+ 1))
/. x)) & (((
fdif ((r
(#) f),h))
. (k
+ 1))
/. (x
+ h))
= (r
* (((
fdif (f,h))
. (k
+ 1))
/. (x
+ h))) by
A2;
reconsider rfdk = ((
fdif ((r
(#) f),h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdk = ((
fdif (f,h))
. (k
+ 1)) as
Function of V, W by
Th2;
(((
fdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
fD (((
fdif ((r
(#) f),h))
. (k
+ 1)),h))
/. x) by
Def6
.= ((rfdk
/. (x
+ h))
- (rfdk
/. x)) by
Th3
.= (r
* ((fdk
/. (x
+ h))
- (fdk
/. x))) by
VECTSP_1: 23,
A3
.= (r
* ((
fD (fdk,h))
/. x)) by
Th3
.= (r
* (((
fdif (f,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def6;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
x
in the
carrier of V;
then
A7: x
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
+ h)
in the
carrier of V;
then
A8: (x
+ h)
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
fdif ((r
(#) f),h))
. (
0
+ 1))
/. x)
= ((
fD (((
fdif ((r
(#) f),h))
.
0 ),h))
/. x) by
Def6
.= ((
fD ((r
(#) f),h))
/. x) by
Def6
.= (((r
(#) f)
/. (x
+ h))
- ((r
(#) f)
/. x)) by
Th3
.= ((r
* (f
/. (x
+ h)))
- ((r
(#) f)
/. x)) by
A8,
Def4X
.= ((r
* (f
/. (x
+ h)))
- (r
* (f
/. x))) by
A7,
Def4X
.= (r
* ((f
/. (x
+ h))
- (f
/. x))) by
VECTSP_1: 23
.= (r
* ((
fD (f,h))
/. x)) by
Th3
.= (r
* ((
fD (((
fdif (f,h))
.
0 ),h))
/. x)) by
Def6
.= (r
* (((
fdif (f,h))
. (
0
+ 1))
/. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:9
Th8: (((
fdif ((f1
+ f2),h))
. (n
+ 1))
/. x)
= ((((
fdif (f1,h))
. (n
+ 1))
/. x)
+ (((
fdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((f1
+ f2),h))
. ($1
+ 1))
/. x)
= ((((
fdif (f1,h))
. ($1
+ 1))
/. x)
+ (((
fdif (f2,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
= ((((
fdif (f1,h))
. (k
+ 1))
/. x)
+ (((
fdif (f2,h))
. (k
+ 1))
/. x));
let x;
A3: (((
fdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
= ((((
fdif (f1,h))
. (k
+ 1))
/. x)
+ (((
fdif (f2,h))
. (k
+ 1))
/. x)) & (((
fdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
+ h))
= ((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))) by
A2;
reconsider fdiff12 = ((
fdif ((f1
+ f2),h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdiff2 = ((
fdif (f2,h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdiff1 = ((
fdif (f1,h))
. (k
+ 1)) as
Function of V, W by
Th2;
A6: ((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
/. x)
= ((
fD (fdiff1,h))
/. x)
.= ((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f1,h))
. (k
+ 1))
/. x)) by
Th3;
A7: ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
/. x)
= ((
fD (fdiff2,h))
/. x)
.= ((((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. x)) by
Th3;
(((
fdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
fD (((
fdif ((f1
+ f2),h))
. (k
+ 1)),h))
/. x) by
Def6
.= ((fdiff12
/. (x
+ h))
- (fdiff12
/. x)) by
Th3
.= ((((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h)))
- (((
fdif (f2,h))
. (k
+ 1))
/. x))
- (((
fdif (f1,h))
. (k
+ 1))
/. x)) by
RLVECT_1: 27,
A3
.= (((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ ((((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. x)))
- (((
fdif (f1,h))
. (k
+ 1))
/. x)) by
RLVECT_1: 28
.= (((((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. x))
+ ((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f1,h))
. (k
+ 1))
/. x))) by
RLVECT_1: 28
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def6,
A6,
A7
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ (((
fdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def6;
hence thesis;
end;
B1: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1
.= (the
carrier of V
/\ (
dom f2)) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
A7:
X[
0 ]
proof
let x;
(((
fdif ((f1
+ f2),h))
. (
0
+ 1))
/. x)
= ((
fD (((
fdif ((f1
+ f2),h))
.
0 ),h))
/. x) by
Def6
.= ((
fD ((f1
+ f2),h))
/. x) by
Def6
.= (((f1
+ f2)
/. (x
+ h))
- ((f1
+ f2)
/. x)) by
Th3
.= (((f1
/. (x
+ h))
+ (f2
/. (x
+ h)))
- ((f1
+ f2)
/. x)) by
B1,
VFUNCT_1:def 1
.= (((f1
/. (x
+ h))
+ (f2
/. (x
+ h)))
- ((f1
/. x)
+ (f2
/. x))) by
B1,
VFUNCT_1:def 1
.= ((((f1
/. (x
+ h))
+ (f2
/. (x
+ h)))
- (f2
/. x))
- (f1
/. x)) by
RLVECT_1: 27
.= (((f1
/. (x
+ h))
+ ((f2
/. (x
+ h))
- (f2
/. x)))
- (f1
/. x)) by
RLVECT_1: 28
.= (((f2
/. (x
+ h))
- (f2
/. x))
+ ((f1
/. (x
+ h))
- (f1
/. x))) by
RLVECT_1: 28
.= (((
fD (f1,h))
/. x)
+ ((f2
/. (x
+ h))
- (f2
/. x))) by
Th3
.= (((
fD (f1,h))
/. x)
+ ((
fD (f2,h))
/. x)) by
Th3
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
/. x)
+ ((
fD (f2,h))
/. x)) by
Def6
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
/. x)
+ ((
fD (((
fdif (f2,h))
.
0 ),h))
/. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
/. x)
+ ((
fD (((
fdif (f2,h))
.
0 ),h))
/. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
/. x)
+ (((
fdif (f2,h))
. (
0
+ 1))
/. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:10
(((
fdif ((f1
- f2),h))
. (n
+ 1))
/. x)
= ((((
fdif (f1,h))
. (n
+ 1))
/. x)
- (((
fdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
fdif ((f1
- f2),h))
. ($1
+ 1))
/. x)
= ((((
fdif (f1,h))
. ($1
+ 1))
/. x)
- (((
fdif (f2,h))
. ($1
+ 1))
/. x));
A1:
X[
0 ]
proof
let x;
x
in the
carrier of V;
then x
in (
dom f1) & x
in (
dom f2) by
FUNCT_2:def 1;
then x
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: x
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(x
+ h)
in the
carrier of V;
then (x
+ h)
in (
dom f1) & (x
+ h)
in (
dom f2) by
FUNCT_2:def 1;
then (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
+ h)
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(((
fdif ((f1
- f2),h))
. (
0
+ 1))
/. x)
= ((
fD (((
fdif ((f1
- f2),h))
.
0 ),h))
/. x) by
Def6
.= ((
fD ((f1
- f2),h))
/. x) by
Def6
.= (((f1
- f2)
/. (x
+ h))
- ((f1
- f2)
/. x)) by
Th3
.= (((f1
/. (x
+ h))
- (f2
/. (x
+ h)))
- ((f1
- f2)
/. x)) by
A3,
VFUNCT_1:def 2
.= (((f1
/. (x
+ h))
- (f2
/. (x
+ h)))
- ((f1
/. x)
- (f2
/. x))) by
A2,
VFUNCT_1:def 2
.= ((((f1
/. (x
+ h))
- (f2
/. (x
+ h)))
- (f1
/. x))
+ (f2
/. x)) by
RLVECT_1: 29
.= (((f1
/. (x
+ h))
- ((f1
/. x)
+ (f2
/. (x
+ h))))
+ (f2
/. x)) by
RLVECT_1: 27
.= ((((f1
/. (x
+ h))
- (f1
/. x))
- (f2
/. (x
+ h)))
+ (f2
/. x)) by
RLVECT_1: 27
.= ((((
fD (f1,h))
/. x)
- (f2
/. (x
+ h)))
+ (f2
/. x)) by
Th3
.= (((
fD (f1,h))
. x)
- ((f2
/. (x
+ h))
- (f2
/. x))) by
RLVECT_1: 29
.= (((
fD (f1,h))
/. x)
- ((
fD (f2,h))
/. x)) by
Th3
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
/. x)
- ((
fD (f2,h))
/. x)) by
Def6
.= (((
fD (((
fdif (f1,h))
.
0 ),h))
/. x)
- ((
fD (((
fdif (f2,h))
.
0 ),h))
/. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
/. x)
- ((
fD (((
fdif (f2,h))
.
0 ),h))
/. x)) by
Def6
.= ((((
fdif (f1,h))
. (
0
+ 1))
/. x)
- (((
fdif (f2,h))
. (
0
+ 1))
/. x)) by
Def6;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
fdif ((f1
- f2),h))
. (k
+ 1))
/. x)
= ((((
fdif (f1,h))
. (k
+ 1))
/. x)
- (((
fdif (f2,h))
. (k
+ 1))
/. x));
let x;
A6: (((
fdif ((f1
- f2),h))
. (k
+ 1))
/. x)
= ((((
fdif (f1,h))
. (k
+ 1))
/. x)
- (((
fdif (f2,h))
. (k
+ 1))
/. x)) & (((
fdif ((f1
- f2),h))
. (k
+ 1))
/. (x
+ h))
= ((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))) by
A5;
reconsider fd12k1 = ((
fdif ((f1
- f2),h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fd2k = ((
fdif (f2,h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fd1k = ((
fdif (f1,h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdiff12 = ((
fdif ((f1
- f2),h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdiff2 = ((
fdif (f2,h))
. (k
+ 1)) as
Function of V, W by
Th2;
reconsider fdiff1 = ((
fdif (f1,h))
. (k
+ 1)) as
Function of V, W by
Th2;
A12: ((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
/. x)
= ((
fD (fdiff1,h))
/. x)
.= ((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f1,h))
. (k
+ 1))
/. x)) by
Th3;
A13: ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
/. x)
= ((
fD (fdiff2,h))
/. x)
.= ((((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. x)) by
Th3;
(((
fdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
fD (((
fdif ((f1
- f2),h))
. (k
+ 1)),h))
/. x) by
Def6
.= ((fd12k1
/. (x
+ h))
- (fd12k1
/. x)) by
Th3
.= ((((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ (
- (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))))
- (((
fdif (f1,h))
. (k
+ 1))
/. x))
+ (((
fdif (f2,h))
. (k
+ 1))
/. x)) by
RLVECT_1: 29,
A6
.= (((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ ((
- (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h)))
+ (
- (((
fdif (f1,h))
. (k
+ 1))
/. x))))
+ (((
fdif (f2,h))
. (k
+ 1))
/. x)) by
RLVECT_1:def 3
.= ((((((
fdif (f1,h))
. (k
+ 1))
/. (x
+ h))
+ (
- (((
fdif (f1,h))
. (k
+ 1))
/. x)))
- (((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h)))
+ (((
fdif (f2,h))
. (k
+ 1))
/. x)) by
RLVECT_1:def 3
.= (((
fD (((
fdif (f1,h))
. (k
+ 1)),h))
/. x)
- ((((
fdif (f2,h))
. (k
+ 1))
/. (x
+ h))
- (((
fdif (f2,h))
. (k
+ 1))
/. x))) by
A12,
RLVECT_1: 29
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- ((
fD (((
fdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def6,
A13
.= ((((
fdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- (((
fdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
VSDIFF_1:11
(((
fdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
fdif (f2,h))
. (n
+ 1))
/. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
reconsider g1n1 = ((
fdif (g1,h))
. (n
+ 1)) as
Function of V, W by
Th2;
reconsider g2n1 = ((
fdif (g2,h))
. (n
+ 1)) as
Function of V, W by
Th2;
(((
fdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((((
fdif (g1,h))
. (n
+ 1))
/. x)
+ (((
fdif (g2,h))
. (n
+ 1))
/. x)) by
Th8
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
/. x))
+ (((
fdif (g2,h))
. (n
+ 1))
/. x)) by
Th7
.= ((r1
* (((
fdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
fdif (f2,h))
. (n
+ 1))
/. x))) by
Th7;
hence thesis;
end;
theorem ::
VSDIFF_1:12
(((
fdif (f,h))
. 1)
/. x)
= (((
Shift (f,h))
/. x)
- (f
/. x))
proof
set f1 = (
Shift (f,h));
(((
fdif (f,h))
. 1)
/. x)
= (((
fdif (f,h))
. (
0
+ 1))
/. x)
.= ((
fD (((
fdif (f,h))
.
0 ),h))
/. x) by
Def6
.= ((
fD (f,h))
/. x) by
Def6
.= ((f
/. (x
+ h))
- (f
/. x)) by
Th3
.= ((f1
/. x)
- (f
/. x)) by
Def2;
hence thesis;
end;
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
::
VSDIFF_1:def9
func
backward_difference (f,h) ->
Functional_Sequence of the
carrier of V, the
carrier of W means (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
bD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of V, W st $2
= g & $3
= (
bD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) holds ex y be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (the
carrier of V,the
carrier of W));
reconsider x9 = x as
PartFunc of V, W by
PARTFUN1: 46;
reconsider y = (
bD (x9,h)) as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
ex w be
PartFunc of V, W st x
= w & y
= (
bD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (the
carrier of V,the
carrier of W)) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of the
carrier of V, the
carrier of W;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of the
carrier of V, the
carrier of W;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
bD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
bD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
bD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
::
VSDIFF_1:def10
func
backward_difference (f,h) ->
Functional_Sequence of the
carrier of V, the
carrier of W means
:
Def7: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
bD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of V, W st $2
= g & $3
= (
bD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) holds ex y be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (the
carrier of V,the
carrier of W));
reconsider x9 = x as
PartFunc of V, W by
PARTFUN1: 46;
reconsider y = (
bD (x9,h)) as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
ex w be
PartFunc of V, W st x
= w & y
= (
bD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (the
carrier of V,the
carrier of W)) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of the
carrier of V, the
carrier of W;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of the
carrier of V, the
carrier of W;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
bD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
bD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
bD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
Function of V, W;
synonym
bdif (f,h) for
backward_difference (f,h);
end
theorem ::
VSDIFF_1:13
Th12: for n be
Nat holds ((
bdif (f,h))
. n) is
Function of V, W
proof
defpred
X[
Nat] means ((
bdif (f,h))
. $1) is
Function of V, W;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
bdif (f,h))
. k) is
Function of V, W;
then (
bD (((
bdif (f,h))
. k),h)) is
Function of V, W;
hence thesis by
Def7;
end;
A2:
X[
0 ] by
Def7;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:14
f is
constant implies for x holds (((
bdif (f,h))
. (n
+ 1))
/. x)
= (
0. W)
proof
assume
A1: f is
constant;
A2: for x holds ((f
/. x)
- (f
/. (x
- h)))
= (
0. W)
proof
let x;
(x
- h)
in the
carrier of V;
then
A3: (x
- h)
in (
dom f) by
FUNCT_2:def 1;
x
in the
carrier of V;
then x
in (
dom f) by
FUNCT_2:def 1;
then (f
/. x)
= (f
/. (x
- h)) by
A1,
A3,
FUNCT_1:def 10;
hence thesis by
RLVECT_1: 15;
end;
for x holds (((
bdif (f,h))
. (n
+ 1))
/. x)
= (
0. W)
proof
defpred
X[
Nat] means for x holds (((
bdif (f,h))
. ($1
+ 1))
/. x)
= (
0. W);
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
bdif (f,h))
. (k
+ 1))
/. x)
= (
0. W);
let x;
A6: (((
bdif (f,h))
. (k
+ 1))
/. (x
- h))
= (
0. W) by
A5;
A7: ((
bdif (f,h))
. (k
+ 1)) is
Function of V, W by
Th12;
(((
bdif (f,h))
. (k
+ 2))
/. x)
= (((
bdif (f,h))
. ((k
+ 1)
+ 1))
/. x)
.= ((
bD (((
bdif (f,h))
. (k
+ 1)),h))
/. x) by
Def7
.= ((((
bdif (f,h))
. (k
+ 1))
/. x)
- (((
bdif (f,h))
. (k
+ 1))
/. (x
- h))) by
A7,
Th4
.= ((
0. W)
- (
0. W)) by
A5,
A6
.= (
0. W) by
RLVECT_1: 15;
hence thesis;
end;
A8:
X[
0 ]
proof
let x;
thus (((
bdif (f,h))
. (
0
+ 1))
/. x)
= ((
bD (((
bdif (f,h))
.
0 ),h))
/. x) by
Def7
.= ((
bD (f,h))
/. x) by
Def7
.= ((f
/. x)
- (f
/. (x
- h))) by
Th4
.= (
0. W) by
A2;
end;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A4);
hence thesis;
end;
hence thesis;
end;
theorem ::
VSDIFF_1:15
Th14: (((
bdif ((r
(#) f),h))
. (n
+ 1))
/. x)
= (r
* (((
bdif (f,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((r
(#) f),h))
. ($1
+ 1))
/. x)
= (r
* (((
bdif (f,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
bdif ((r
(#) f),h))
. (k
+ 1))
/. x)
= (r
* (((
bdif (f,h))
. (k
+ 1))
/. x));
let x;
A3: (((
bdif ((r
(#) f),h))
. (k
+ 1))
/. x)
= (r
* (((
bdif (f,h))
. (k
+ 1))
/. x)) & (((
bdif ((r
(#) f),h))
. (k
+ 1))
/. (x
- h))
= (r
* (((
bdif (f,h))
. (k
+ 1))
/. (x
- h))) by
A2;
A4: ((
bdif ((r
(#) f),h))
. (k
+ 1)) is
Function of V, W by
Th12;
A5: ((
bdif (f,h))
. (k
+ 1)) is
Function of V, W by
Th12;
(((
bdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
bD (((
bdif ((r
(#) f),h))
. (k
+ 1)),h))
/. x) by
Def7
.= ((((
bdif ((r
(#) f),h))
. (k
+ 1))
/. x)
- (((
bdif ((r
(#) f),h))
. (k
+ 1))
/. (x
- h))) by
A4,
Th4
.= (r
* ((((
bdif (f,h))
. (k
+ 1))
/. x)
- (((
bdif (f,h))
. (k
+ 1))
/. (x
- h)))) by
VECTSP_1: 23,
A3
.= (r
* ((
bD (((
bdif (f,h))
. (k
+ 1)),h))
/. x)) by
A5,
Th4
.= (r
* (((
bdif (f,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def7;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
x
in the
carrier of V;
then
A7: x
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
- h)
in the
carrier of V;
then
A8: (x
- h)
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
bdif ((r
(#) f),h))
. (
0
+ 1))
/. x)
= ((
bD (((
bdif ((r
(#) f),h))
.
0 ),h))
/. x) by
Def7
.= ((
bD ((r
(#) f),h))
/. x) by
Def7
.= (((r
(#) f)
/. x)
- ((r
(#) f)
/. (x
- h))) by
Th4
.= (((r
(#) f)
/. x)
- (r
* (f
/. (x
- h)))) by
A8,
Def4X
.= ((r
* (f
/. x))
- (r
* (f
/. (x
- h)))) by
A7,
Def4X
.= (r
* ((f
/. x)
- (f
/. (x
- h)))) by
VECTSP_1: 23
.= (r
* ((
bD (f,h))
/. x)) by
Th4
.= (r
* ((
bD (((
bdif (f,h))
.
0 ),h))
/. x)) by
Def7
.= (r
* (((
bdif (f,h))
. (
0
+ 1))
/. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:16
Th15: (((
bdif ((f1
+ f2),h))
. (n
+ 1))
/. x)
= ((((
bdif (f1,h))
. (n
+ 1))
/. x)
+ (((
bdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((f1
+ f2),h))
. ($1
+ 1))
/. x)
= ((((
bdif (f1,h))
. ($1
+ 1))
/. x)
+ (((
bdif (f2,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
bdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
= ((((
bdif (f1,h))
. (k
+ 1))
/. x)
+ (((
bdif (f2,h))
. (k
+ 1))
/. x));
let x;
A3: (((
bdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
= ((((
bdif (f1,h))
. (k
+ 1))
/. x)
+ (((
bdif (f2,h))
. (k
+ 1))
/. x)) & (((
bdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
- h))
= ((((
bdif (f1,h))
. (k
+ 1))
/. (x
- h))
+ (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
A2;
A4: ((
bdif ((f1
+ f2),h))
. (k
+ 1)) is
Function of V, W by
Th12;
A5: ((
bdif (f2,h))
. (k
+ 1)) is
Function of V, W by
Th12;
A6: ((
bdif (f1,h))
. (k
+ 1)) is
Function of V, W by
Th12;
(((
bdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
bD (((
bdif ((f1
+ f2),h))
. (k
+ 1)),h))
/. x) by
Def7
.= ((((
bdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
- (((
bdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
- h))) by
A4,
Th4
.= ((((((
bdif (f2,h))
. (k
+ 1))
/. x)
+ (((
bdif (f1,h))
. (k
+ 1))
/. x))
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h)))
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
RLVECT_1: 27,
A3
.= (((((
bdif (f2,h))
. (k
+ 1))
/. x)
+ ((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h))))
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
RLVECT_1: 28
.= (((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h)))
+ ((((
bdif (f2,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h)))) by
RLVECT_1: 28
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
/. x)
+ ((((
bdif (f2,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h)))) by
A6,
Th4
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
/. x)
+ ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
/. x)) by
A5,
Th4
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ (((
bdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def7;
hence thesis;
end;
A7:
X[
0 ]
proof
let x;
reconsider xx = x, h as
Element of V;
B0: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1
.= (the
carrier of V
/\ (
dom f2)) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
(((
bdif ((f1
+ f2),h))
. (
0
+ 1))
/. x)
= ((
bD (((
bdif ((f1
+ f2),h))
.
0 ),h))
/. x) by
Def7
.= ((
bD ((f1
+ f2),h))
/. x) by
Def7
.= (((f1
+ f2)
/. x)
- ((f1
+ f2)
/. (x
- h))) by
Th4
.= (((f1
/. xx)
+ (f2
/. xx))
- ((f1
+ f2)
/. (xx
- h))) by
B0,
VFUNCT_1:def 1
.= (((f1
/. x)
+ (f2
/. x))
- ((f1
/. (x
- h))
+ (f2
/. (x
- h)))) by
B0,
VFUNCT_1:def 1
.= ((((f1
/. x)
+ (f2
/. x))
- (f1
/. (x
- h)))
- (f2
/. (x
- h))) by
RLVECT_1: 27
.= (((f2
/. x)
+ ((f1
/. x)
- (f1
/. (x
- h))))
- (f2
/. (x
- h))) by
RLVECT_1: 28
.= (((f1
/. x)
- (f1
/. (x
- h)))
+ ((f2
/. x)
- (f2
/. (x
- h)))) by
RLVECT_1: 28
.= (((
bD (f1,h))
/. x)
+ ((f2
/. x)
- (f2
/. (x
- h)))) by
Th4
.= (((
bD (f1,h))
/. x)
+ ((
bD (f2,h))
/. x)) by
Th4
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
/. x)
+ ((
bD (f2,h))
/. x)) by
Def7
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
/. x)
+ ((
bD (((
bdif (f2,h))
.
0 ),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
/. x)
+ ((
bD (((
bdif (f2,h))
.
0 ),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
/. x)
+ (((
bdif (f2,h))
. (
0
+ 1))
/. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:17
(((
bdif ((f1
- f2),h))
. (n
+ 1))
/. x)
= ((((
bdif (f1,h))
. (n
+ 1))
/. x)
- (((
bdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
bdif ((f1
- f2),h))
. ($1
+ 1))
/. x)
= ((((
bdif (f1,h))
. ($1
+ 1))
/. x)
- (((
bdif (f2,h))
. ($1
+ 1))
/. x));
A1:
X[
0 ]
proof
let x;
x
in the
carrier of V;
then x
in (
dom f1) & x
in (
dom f2) by
FUNCT_2:def 1;
then x
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: x
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(x
- h)
in the
carrier of V;
then (x
- h)
in (
dom f1) & (x
- h)
in (
dom f2) by
FUNCT_2:def 1;
then (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
- h)
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(((
bdif ((f1
- f2),h))
. (
0
+ 1))
/. x)
= ((
bD (((
bdif ((f1
- f2),h))
.
0 ),h))
/. x) by
Def7
.= ((
bD ((f1
- f2),h))
/. x) by
Def7
.= (((f1
- f2)
/. x)
- ((f1
- f2)
/. (x
- h))) by
Th4
.= (((f1
/. x)
- (f2
/. x))
- ((f1
- f2)
/. (x
- h))) by
A2,
VFUNCT_1:def 2
.= (((f1
/. x)
- (f2
/. x))
- ((f1
/. (x
- h))
- (f2
/. (x
- h)))) by
A3,
VFUNCT_1:def 2
.= ((((f1
/. x)
- (f2
/. x))
- (f1
/. (x
- h)))
+ (f2
/. (x
- h))) by
RLVECT_1: 29
.= (((f1
/. x)
- ((f1
/. (x
- h))
+ (f2
/. x)))
+ (f2
/. (x
- h))) by
RLVECT_1: 27
.= ((((f1
/. x)
- (f1
/. (x
- h)))
- (f2
/. x))
+ (f2
/. (x
- h))) by
RLVECT_1: 27
.= (((f1
/. x)
- (f1
/. (x
- h)))
- ((f2
/. x)
- (f2
/. (x
- h)))) by
RLVECT_1: 29
.= (((
bD (f1,h))
/. x)
- ((f2
/. x)
- (f2
/. (x
- h)))) by
Th4
.= (((
bD (f1,h))
/. x)
- ((
bD (f2,h))
/. x)) by
Th4
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
/. x)
- ((
bD (f2,h))
/. x)) by
Def7
.= (((
bD (((
bdif (f1,h))
.
0 ),h))
/. x)
- ((
bD (((
bdif (f2,h))
.
0 ),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
/. x)
- ((
bD (((
bdif (f2,h))
.
0 ),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. (
0
+ 1))
/. x)
- (((
bdif (f2,h))
. (
0
+ 1))
/. x)) by
Def7;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
bdif ((f1
- f2),h))
. (k
+ 1))
/. x)
= ((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. x));
let x;
A6: (((
bdif ((f1
- f2),h))
. (k
+ 1))
/. x)
= ((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. x)) & (((
bdif ((f1
- f2),h))
. (k
+ 1))
/. (x
- h))
= ((((
bdif (f1,h))
. (k
+ 1))
/. (x
- h))
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
A5;
A7: ((
bdif ((f1
- f2),h))
. (k
+ 1)) is
Function of V, W by
Th12;
A8: ((
bdif (f2,h))
. (k
+ 1)) is
Function of V, W by
Th12;
A9: ((
bdif (f1,h))
. (k
+ 1)) is
Function of V, W by
Th12;
(((
bdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
bD (((
bdif ((f1
- f2),h))
. (k
+ 1)),h))
/. x) by
Def7
.= ((((
bdif ((f1
- f2),h))
. (k
+ 1))
/. x)
- (((
bdif ((f1
- f2),h))
. (k
+ 1))
/. (x
- h))) by
A7,
Th4
.= ((((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. x))
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h)))
+ (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
RLVECT_1: 29,
A6
.= (((((
bdif (f1,h))
. (k
+ 1))
/. x)
- ((((
bdif (f1,h))
. (k
+ 1))
/. (x
- h))
+ (((
bdif (f2,h))
. (k
+ 1))
/. x)))
+ (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
RLVECT_1: 27
.= ((((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h)))
- (((
bdif (f2,h))
. (k
+ 1))
/. x))
+ (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h))) by
RLVECT_1: 27
.= (((((
bdif (f1,h))
. (k
+ 1))
/. x)
- (((
bdif (f1,h))
. (k
+ 1))
/. (x
- h)))
- ((((
bdif (f2,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h)))) by
RLVECT_1: 29
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
/. x)
- ((((
bdif (f2,h))
. (k
+ 1))
/. x)
- (((
bdif (f2,h))
. (k
+ 1))
/. (x
- h)))) by
A9,
Th4
.= (((
bD (((
bdif (f1,h))
. (k
+ 1)),h))
/. x)
- ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
/. x)) by
A8,
Th4
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- ((
bD (((
bdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def7
.= ((((
bdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- (((
bdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def7;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
VSDIFF_1:18
(((
bdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
bdif (f2,h))
. (n
+ 1))
/. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
bdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((((
bdif (g1,h))
. (n
+ 1))
/. x)
+ (((
bdif (g2,h))
. (n
+ 1))
/. x)) by
Th15
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
/. x))
+ (((
bdif (g2,h))
. (n
+ 1))
/. x)) by
Th14
.= ((r1
* (((
bdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
bdif (f2,h))
. (n
+ 1))
/. x))) by
Th14;
hence thesis;
end;
theorem ::
VSDIFF_1:19
(((
bdif (f,h))
. 1)
/. x)
= ((f
/. x)
- ((
Shift (f,(
- h)))
/. x))
proof
set f2 = (
Shift (f,(
- h)));
(((
bdif (f,h))
. 1)
/. x)
= (((
bdif (f,h))
. (
0
+ 1))
/. x)
.= ((
bD (((
bdif (f,h))
.
0 ),h))
/. x) by
Def7
.= ((
bD (f,h))
/. x) by
Def7
.= ((f
/. x)
- (f
/. (x
- h))) by
Th4
.= ((f
/. x)
- (f2
/. x)) by
Def2;
hence thesis;
end;
definition
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
PartFunc of V, W;
::
VSDIFF_1:def11
func
central_difference (f,h) ->
Functional_Sequence of the
carrier of V, the
carrier of W means
:
Def8: (it
.
0 )
= f & for n be
Nat holds (it
. (n
+ 1))
= (
cD ((it
. n),h));
existence
proof
reconsider fZ = f as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex g be
PartFunc of V, W st $2
= g & $3
= (
cD (g,h));
A1: for n be
Nat holds for x be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) holds ex y be
Element of (
PFuncs (the
carrier of V,the
carrier of W)) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs (the
carrier of V,the
carrier of W));
reconsider x9 = x as
PartFunc of V, W by
PARTFUN1: 46;
reconsider y = (
cD (x9,h)) as
Element of (
PFuncs (the
carrier of V,the
carrier of W)) by
PARTFUN1: 45;
ex w be
PartFunc of V, W st x
= w & y
= (
cD (w,h));
hence thesis;
end;
consider g be
sequence of (
PFuncs (the
carrier of V,the
carrier of W)) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of the
carrier of V, the
carrier of W;
take g;
thus (g
.
0 )
= f by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of the
carrier of V, the
carrier of W;
assume that
A3: (seq1
.
0 )
= f and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= (
cD ((seq1
. n),h)) and
A5: (seq2
.
0 )
= f and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= (
cD ((seq2
. n),h));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A8:
P[k];
thus (seq1
. (k
+ 1))
= (
cD ((seq1
. k),h)) by
A4
.= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n holds
P[n] from
NAT_1:sch 2(
A9,
A7);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
notation
let F,G be
Field;
let V be
VectSp of F;
let h be
Element of V;
let W be
VectSp of G;
let f be
PartFunc of V, W;
synonym
cdif (f,h) for
central_difference (f,h);
end
theorem ::
VSDIFF_1:20
Th19: for n be
Nat holds ((
cdif (f,h))
. n) is
Function of V, W
proof
defpred
X[
Nat] means ((
cdif (f,h))
. $1) is
Function of V, W;
A1: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume ((
cdif (f,h))
. k) is
Function of V, W;
then (
cD (((
cdif (f,h))
. k),h)) is
Function of V, W;
hence thesis by
Def8;
end;
A2:
X[
0 ] by
Def8;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:21
f is
constant implies for x holds (((
cdif (f,h))
. (n
+ 1))
/. x)
= (
0. W)
proof
defpred
X[
Nat] means for x holds (((
cdif (f,h))
. ($1
+ 1))
/. x)
= (
0. W);
assume
A1: f is
constant;
A2: for x holds ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h))))
= (
0. W)
proof
let x;
(x
- (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then
A3: (x
- (((2
* (
1. F))
" )
* h))
in (
dom f) by
FUNCT_2:def 1;
(x
+ (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then (x
+ (((2
* (
1. F))
" )
* h))
in (
dom f) by
FUNCT_2:def 1;
then (f
/. (x
+ (((2
* (
1. F))
" )
* h)))
= (f
/. (x
- (((2
* (
1. F))
" )
* h))) by
A1,
A3,
FUNCT_1:def 10;
hence thesis by
RLVECT_1: 15;
end;
A4:
X[
0 ]
proof
let x;
thus (((
cdif (f,h))
. (
0
+ 1))
/. x)
= ((
cD (((
cdif (f,h))
.
0 ),h))
/. x) by
Def8
.= ((
cD (f,h))
/. x) by
Def8
.= ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Th5
.= (
0. W) by
A2;
end;
A5: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A6: for x holds (((
cdif (f,h))
. (k
+ 1))
/. x)
= (
0. W);
let x;
A8: ((
cdif (f,h))
. (k
+ 1)) is
Function of V, W by
Th19;
(((
cdif (f,h))
. (k
+ 2))
/. x)
= (((
cdif (f,h))
. ((k
+ 1)
+ 1))
/. x)
.= ((
cD (((
cdif (f,h))
. (k
+ 1)),h))
/. x) by
Def8
.= ((((
cdif (f,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A8,
Th5
.= ((((
cdif (f,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (
0. W)) by
A6
.= (((
cdif (f,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))) by
RLVECT_1: 13
.= (
0. W) by
A6;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A5);
hence thesis;
end;
theorem ::
VSDIFF_1:22
Th21: (((
cdif ((r
(#) f),h))
. (n
+ 1))
/. x)
= (r
* (((
cdif (f,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((r
(#) f),h))
. ($1
+ 1))
/. x)
= (r
* (((
cdif (f,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
cdif ((r
(#) f),h))
. (k
+ 1))
/. x)
= (r
* (((
cdif (f,h))
. (k
+ 1))
/. x));
let x;
A3: (((
cdif ((r
(#) f),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
= (r
* (((
cdif (f,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) & (((
cdif ((r
(#) f),h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
= (r
* (((
cdif (f,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))) by
A2;
A4: ((
cdif ((r
(#) f),h))
. (k
+ 1)) is
Function of V, W by
Th19;
A5: ((
cdif (f,h))
. (k
+ 1)) is
Function of V, W by
Th19;
(((
cdif ((r
(#) f),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
cD (((
cdif ((r
(#) f),h))
. (k
+ 1)),h))
/. x) by
Def8
.= ((((
cdif ((r
(#) f),h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif ((r
(#) f),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A4,
Th5
.= (r
* ((((
cdif (f,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
VECTSP_1: 23,
A3
.= (r
* ((
cD (((
cdif (f,h))
. (k
+ 1)),h))
/. x)) by
A5,
Th5
.= (r
* (((
cdif (f,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def8;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
(x
+ (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then
A7: (x
+ (((2
* (
1. F))
" )
* h))
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(x
- (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then
A8: (x
- (((2
* (
1. F))
" )
* h))
in (
dom (r
(#) f)) by
FUNCT_2:def 1;
(((
cdif ((r
(#) f),h))
. (
0
+ 1))
/. x)
= ((
cD (((
cdif ((r
(#) f),h))
.
0 ),h))
/. x) by
Def8
.= ((
cD ((r
(#) f),h))
/. x) by
Def8
.= (((r
(#) f)
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((r
(#) f)
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Th5
.= ((r
* (f
/. (x
+ (((2
* (
1. F))
" )
* h))))
- ((r
(#) f)
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A7,
Def4X
.= ((r
* (f
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (r
* (f
/. (x
- (((2
* (
1. F))
" )
* h))))) by
A8,
Def4X
.= (r
* ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h))))) by
VECTSP_1: 23
.= (r
* ((
cD (f,h))
/. x)) by
Th5
.= (r
* ((
cD (((
cdif (f,h))
.
0 ),h))
/. x)) by
Def8
.= (r
* (((
cdif (f,h))
. (
0
+ 1))
/. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:23
Th22: (((
cdif ((f1
+ f2),h))
. (n
+ 1))
/. x)
= ((((
cdif (f1,h))
. (n
+ 1))
/. x)
+ (((
cdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((f1
+ f2),h))
. ($1
+ 1))
/. x)
= ((((
cdif (f1,h))
. ($1
+ 1))
/. x)
+ (((
cdif (f2,h))
. ($1
+ 1))
/. x));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
cdif ((f1
+ f2),h))
. (k
+ 1))
/. x)
= ((((
cdif (f1,h))
. (k
+ 1))
/. x)
+ (((
cdif (f2,h))
. (k
+ 1))
/. x));
let x;
A4: ((
cdif ((f1
+ f2),h))
. (k
+ 1)) is
Function of V, W by
Th19;
A5: ((
cdif (f2,h))
. (k
+ 1)) is
Function of V, W by
Th19;
A6: ((
cdif (f1,h))
. (k
+ 1)) is
Function of V, W by
Th19;
(((
cdif ((f1
+ f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
cD (((
cdif ((f1
+ f2),h))
. (k
+ 1)),h))
/. x) by
Def8
.= ((((
cdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A4,
Th5
.= (((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (((
cdif ((f1
+ f2),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A2
.= (((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))))
- ((((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
A2
.= ((((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))
- (((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 27
.= (((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ ((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))))
- (((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 28
.= (((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))
+ ((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 28
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
/. x)
+ ((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
A6,
Th5
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
/. x)
+ ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
/. x)) by
A5,
Th5
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
+ (((
cdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def8;
hence thesis;
end;
B1: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1
.= (the
carrier of V
/\ (
dom f2)) by
FUNCT_2:def 1
.= (the
carrier of V
/\ the
carrier of V) by
FUNCT_2:def 1
.= the
carrier of V;
A7:
X[
0 ]
proof
let x;
reconsider xx = x, hp = (((2
* (
1. F))
" )
* h) as
Element of V;
(((
cdif ((f1
+ f2),h))
. (
0
+ 1))
/. x)
= ((
cD (((
cdif ((f1
+ f2),h))
.
0 ),h))
/. x) by
Def8
.= ((
cD ((f1
+ f2),h))
/. x) by
Def8
.= (((f1
+ f2)
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((f1
+ f2)
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Th5
.= (((f1
/. (xx
+ (((2
* (
1. F))
" )
* h)))
+ (f2
/. (xx
+ hp)))
- ((f1
+ f2)
/. (xx
- hp))) by
B1,
VFUNCT_1:def 1
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ (f2
/. (x
+ hp)))
- ((f1
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (f2
/. (x
- hp)))) by
B1,
VFUNCT_1:def 1
.= ((((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
+ (f2
/. (x
+ hp)))
- (f1
/. (x
- (((2
* (
1. F))
" )
* h))))
- (f2
/. (x
- hp))) by
RLVECT_1: 27
.= (((f2
/. (x
+ hp))
+ ((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f1
/. (x
- (((2
* (
1. F))
" )
* h)))))
- (f2
/. (x
- hp))) by
RLVECT_1: 28
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f1
/. (x
- (((2
* (
1. F))
" )
* h))))
+ ((f2
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 28
.= (((
cD (f1,h))
/. x)
+ ((f2
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
Th5
.= (((
cD (f1,h))
/. x)
+ ((
cD (f2,h))
/. x)) by
Th5
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
/. x)
+ ((
cD (f2,h))
/. x)) by
Def8
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
/. x)
+ ((
cD (((
cdif (f2,h))
.
0 ),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
/. x)
+ ((
cD (((
cdif (f2,h))
.
0 ),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
/. x)
+ (((
cdif (f2,h))
. (
0
+ 1))
/. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:24
(((
cdif ((f1
- f2),h))
. (n
+ 1))
/. x)
= ((((
cdif (f1,h))
. (n
+ 1))
/. x)
- (((
cdif (f2,h))
. (n
+ 1))
/. x))
proof
defpred
X[
Nat] means for x holds (((
cdif ((f1
- f2),h))
. ($1
+ 1))
/. x)
= ((((
cdif (f1,h))
. ($1
+ 1))
/. x)
- (((
cdif (f2,h))
. ($1
+ 1))
/. x));
A1:
X[
0 ]
proof
let x;
(x
- (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then (x
- (((2
* (
1. F))
" )
* h))
in (
dom f1) & (x
- (((2
* (
1. F))
" )
* h))
in (
dom f2) by
FUNCT_2:def 1;
then (x
- (((2
* (
1. F))
" )
* h))
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A2: (x
- (((2
* (
1. F))
" )
* h))
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(x
+ (((2
* (
1. F))
" )
* h))
in the
carrier of V;
then (x
+ (((2
* (
1. F))
" )
* h))
in (
dom f1) & (x
+ (((2
* (
1. F))
" )
* h))
in (
dom f2) by
FUNCT_2:def 1;
then (x
+ (((2
* (
1. F))
" )
* h))
in ((
dom f1)
/\ (
dom f2)) by
XBOOLE_0:def 4;
then
A3: (x
+ (((2
* (
1. F))
" )
* h))
in (
dom (f1
- f2)) by
VFUNCT_1:def 2;
(((
cdif ((f1
- f2),h))
. (
0
+ 1))
/. x)
= ((
cD (((
cdif ((f1
- f2),h))
.
0 ),h))
/. x) by
Def8
.= ((
cD ((f1
- f2),h))
/. x) by
Def8
.= (((f1
- f2)
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((f1
- f2)
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Th5
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
+ (((2
* (
1. F))
" )
* h))))
- ((f1
- f2)
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A3,
VFUNCT_1:def 2
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
+ (((2
* (
1. F))
" )
* h))))
- ((f1
/. (x
- (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
A2,
VFUNCT_1:def 2
.= ((((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (f1
/. (x
- (((2
* (
1. F))
" )
* h))))
+ (f2
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 29
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((f1
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (f2
/. (x
+ (((2
* (
1. F))
" )
* h)))))
+ (f2
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 27
.= ((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((f1
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (f2
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 29
.= ((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((f1
/. (x
- (((2
* (
1. F))
" )
* h)))
+ ((f2
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h)))))) by
RLVECT_1: 28
.= (((f1
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f1
/. (x
- (((2
* (
1. F))
" )
* h))))
- ((f2
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 27
.= (((
cD (f1,h))
/. x)
- ((f2
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f2
/. (x
- (((2
* (
1. F))
" )
* h))))) by
Th5
.= (((
cD (f1,h))
/. x)
- ((
cD (f2,h))
/. x)) by
Th5
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
/. x)
- ((
cD (f2,h))
/. x)) by
Def8
.= (((
cD (((
cdif (f1,h))
.
0 ),h))
/. x)
- ((
cD (((
cdif (f2,h))
.
0 ),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
/. x)
- ((
cD (((
cdif (f2,h))
.
0 ),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. (
0
+ 1))
/. x)
- (((
cdif (f2,h))
. (
0
+ 1))
/. x)) by
Def8;
hence thesis;
end;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A5: for x holds (((
cdif ((f1
- f2),h))
. (k
+ 1))
/. x)
= ((((
cdif (f1,h))
. (k
+ 1))
/. x)
- (((
cdif (f2,h))
. (k
+ 1))
/. x));
let x;
A6: (((
cdif ((f1
- f2),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
= ((((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) & (((
cdif ((f1
- f2),h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
= ((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))) by
A5;
A7: ((
cdif ((f1
- f2),h))
. (k
+ 1)) is
Function of the
carrier of V, the
carrier of W by
Th19;
A8: ((
cdif (f2,h))
. (k
+ 1)) is
Function of the
carrier of V, the
carrier of W by
Th19;
A9: ((
cdif (f1,h))
. (k
+ 1)) is
Function of the
carrier of V, the
carrier of W by
Th19;
(((
cdif ((f1
- f2),h))
. ((k
+ 1)
+ 1))
/. x)
= ((
cD (((
cdif ((f1
- f2),h))
. (k
+ 1)),h))
/. x) by
Def8
.= ((((
cdif ((f1
- f2),h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif ((f1
- f2),h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
A7,
Th5
.= ((((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 29,
A6
.= (((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 27
.= ((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
+ (((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h))))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 29
.= ((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- ((((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))
+ ((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h)))))) by
RLVECT_1: 28
.= (((((
cdif (f1,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f1,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))
- ((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 27
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
/. x)
- ((((
cdif (f2,h))
. (k
+ 1))
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f2,h))
. (k
+ 1))
/. (x
- (((2
* (
1. F))
" )
* h))))) by
A9,
Th5
.= (((
cD (((
cdif (f1,h))
. (k
+ 1)),h))
/. x)
- ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
/. x)) by
A8,
Th5
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- ((
cD (((
cdif (f2,h))
. (k
+ 1)),h))
/. x)) by
Def8
.= ((((
cdif (f1,h))
. ((k
+ 1)
+ 1))
/. x)
- (((
cdif (f2,h))
. ((k
+ 1)
+ 1))
/. x)) by
Def8;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A1,
A4);
hence thesis;
end;
theorem ::
VSDIFF_1:25
(((
cdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
cdif (f2,h))
. (n
+ 1))
/. x)))
proof
set g1 = (r1
(#) f1);
set g2 = (r2
(#) f2);
(((
cdif (((r1
(#) f1)
+ (r2
(#) f2)),h))
. (n
+ 1))
/. x)
= ((((
cdif (g1,h))
. (n
+ 1))
/. x)
+ (((
cdif (g2,h))
. (n
+ 1))
/. x)) by
Th22
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
/. x))
+ (((
cdif (g2,h))
. (n
+ 1))
/. x)) by
Th21
.= ((r1
* (((
cdif (f1,h))
. (n
+ 1))
/. x))
+ (r2
* (((
cdif (f2,h))
. (n
+ 1))
/. x))) by
Th21;
hence thesis;
end;
theorem ::
VSDIFF_1:26
(((
cdif (f,h))
. 1)
/. x)
= (((
Shift (f,(((2
* (
1. F))
" )
* h)))
/. x)
- ((
Shift (f,(
- (((2
* (
1. F))
" )
* h))))
/. x))
proof
set f2 = (
Shift (f,(
- (((2
* (
1. F))
" )
* h))));
set f1 = (
Shift (f,(((2
* (
1. F))
" )
* h)));
(((
cdif (f,h))
. 1)
/. x)
= (((
cdif (f,h))
. (
0
+ 1))
/. x)
.= ((
cD (((
cdif (f,h))
.
0 ),h))
/. x) by
Def8
.= ((
cD (f,h))
/. x) by
Def8
.= ((f
/. (x
+ (((2
* (
1. F))
" )
* h)))
- (f
/. (x
- (((2
* (
1. F))
" )
* h)))) by
Th5
.= ((f1
/. x)
- (f
/. (x
+ (
- (((2
* (
1. F))
" )
* h))))) by
Def2
.= ((f1
/. x)
- (f2
/. x)) by
Def2;
hence thesis;
end;
theorem ::
VSDIFF_1:27
(((
fdif (f,h))
. n)
/. x)
= (((
bdif (f,h))
. n)
/. (x
+ (n
* h)))
proof
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. $1)
/. x)
= (((
bdif (f,h))
. $1)
/. (x
+ ($1
* h)));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (f,h))
. k)
/. x)
= (((
bdif (f,h))
. k)
/. (x
+ (k
* h)));
let x;
A3: (((
fdif (f,h))
. k)
/. (x
+ h))
= (((
bdif (f,h))
. k)
/. ((x
+ h)
+ (k
* h))) by
A2;
reconsider fdk = ((
fdif (f,h))
. k) as
Function of the
carrier of V, the
carrier of W by
Th2;
N2: ((k
* h)
+ h)
= ((k
* h)
+ (1
* h)) by
BINOM: 13
.= ((k
+ 1)
* h) by
BINOM: 15;
N3: (k
* h)
= ((k
* h)
+ (
0. V)) by
RLVECT_1: 4
.= ((k
* h)
+ (h
- h)) by
RLVECT_1: 15
.= (((k
+ 1)
* h)
- h) by
N2,
RLVECT_1: 28;
A5: ((
bdif (f,h))
. k) is
Function of the
carrier of V, the
carrier of W by
Th12;
(((
fdif (f,h))
. (k
+ 1))
/. x)
= ((
fD (fdk,h))
/. x) by
Def6
.= ((fdk
/. (x
+ h))
- (fdk
/. x)) by
Th3
.= ((((
bdif (f,h))
. k)
/. ((x
+ h)
+ (k
* h)))
- (((
bdif (f,h))
. k)
/. (x
+ (k
* h)))) by
A2,
A3
.= ((((
bdif (f,h))
. k)
/. (x
+ (h
+ (k
* h))))
- (((
bdif (f,h))
. k)
/. (x
+ (k
* h)))) by
RLVECT_1:def 3
.= ((((
bdif (f,h))
. k)
/. (x
+ ((k
+ 1)
* h)))
- (((
bdif (f,h))
. k)
/. ((x
+ ((k
+ 1)
* h))
- h))) by
RLVECT_1: 28,
N3,
N2
.= ((
bD (((
bdif (f,h))
. k),h))
/. (x
+ ((k
+ 1)
* h))) by
A5,
Th4
.= (((
bdif (f,h))
. (k
+ 1))
/. (x
+ ((k
+ 1)
* h))) by
Def7;
hence thesis;
end;
A6:
X[
0 ]
proof
let x;
(((
fdif (f,h))
.
0 )
/. x)
= (f
/. x) by
Def6
.= (((
bdif (f,h))
.
0 )
/. x) by
Def7
.= (((
bdif (f,h))
.
0 )
/. (x
+ (
0. V))) by
RLVECT_1: 4
.= (((
bdif (f,h))
.
0 )
/. (x
+ (
0
* h))) by
BINOM: 12;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A6,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:28
LAST0: (
1. F)
<> (
- (
1. F)) implies (((
fdif (f,h))
. (2
* n))
/. x)
= (((
cdif (f,h))
. (2
* n))
/. (x
+ (n
* h)))
proof
assume
AS: (
1. F)
<> (
- (
1. F));
defpred
X[
Nat] means for x holds (((
fdif (f,h))
. (2
* $1))
/. x)
= (((
cdif (f,h))
. (2
* $1))
/. (x
+ ($1
* h)));
A1: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A2: for x holds (((
fdif (f,h))
. (2
* k))
/. x)
= (((
cdif (f,h))
. (2
* k))
/. (x
+ (k
* h)));
let x;
A31: (h
+ h)
= ((1
* h)
+ h) by
BINOM: 13
.= ((1
* h)
+ (1
* h)) by
BINOM: 13
.= ((1
+ 1)
* h) by
BINOM: 15;
A32: ((
1. F)
+ (
1. F))
= ((1
* (
1. F))
+ (
1. F)) by
BINOM: 13
.= ((1
* (
1. F))
+ (1
* (
1. F))) by
BINOM: 13
.= ((1
+ 1)
* (
1. F)) by
BINOM: 15
.= (2
* (
1. F));
A33: (h
+ h)
= (((
1. F)
* h)
+ h) by
VECTSP_1:def 17
.= (((
1. F)
* h)
+ ((
1. F)
* h)) by
VECTSP_1:def 17
.= ((2
* (
1. F))
* h) by
A32,
VECTSP_1:def 15;
A30: (2
* (
1. F))
<> (
0. F)
proof
assume
A301: (2
* (
1. F))
= (
0. F);
((
1. F)
+ (
1. F))
= ((1
* (
1. F))
+ (
1. F)) by
BINOM: 13
.= ((1
* (
1. F))
+ (1
* (
1. F))) by
BINOM: 13
.= ((1
+ 1)
* (
1. F)) by
BINOM: 15
.= (
0. F) by
A301;
hence contradiction by
AS,
RLVECT_1:def 10;
end;
A34: ((((2
* (
1. F))
" )
* h)
+ (((2
* (
1. F))
" )
* h))
= (((2
* (
1. F))
" )
* (h
+ h)) by
VECTSP_1:def 14
.= ((((2
* (
1. F))
" )
* (2
* (
1. F)))
* h) by
VECTSP_1:def 16,
A33
.= ((
1. F)
* h) by
A30,
VECTSP_1:def 10
.= h by
VECTSP_1:def 17;
A35: (((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h))
= (((x
+ ((k
* h)
+ (1
* h)))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)) by
BINOM: 15
.= ((((x
+ (k
* h))
+ (1
* h))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)) by
RLVECT_1:def 3
.= ((((x
+ (k
* h))
+ h)
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)) by
BINOM: 13
.= (((x
+ (k
* h))
+ h)
- ((((2
* (
1. F))
" )
* h)
+ (((2
* (
1. F))
" )
* h))) by
RLVECT_1: 27
.= ((x
+ (k
* h))
+ (h
- h)) by
RLVECT_1: 28,
A34
.= ((x
+ (k
* h))
+ (
0. V)) by
RLVECT_1: 15
.= (x
+ (k
* h)) by
RLVECT_1: 4;
A36: (((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h))
= ((x
+ ((k
+ 1)
* h))
+ ((((2
* (
1. F))
" )
* h)
+ (((2
* (
1. F))
" )
* h))) by
RLVECT_1:def 3
.= (x
+ (((k
+ 1)
* h)
+ h)) by
RLVECT_1:def 3,
A34
.= (x
+ (((k
+ 1)
* h)
+ (1
* h))) by
BINOM: 13
.= (x
+ (((k
+ 1)
+ 1)
* h)) by
BINOM: 15
.= (x
+ ((k
+ 2)
* h));
A3: (((
fdif (f,h))
. (2
* k))
/. ((x
+ h)
+ h))
= (((
cdif (f,h))
. (2
* k))
/. (((x
+ h)
+ h)
+ (k
* h))) by
A2
.= (((
cdif (f,h))
. (2
* k))
/. ((x
+ h)
+ (h
+ (k
* h)))) by
RLVECT_1:def 3
.= (((
cdif (f,h))
. (2
* k))
/. (x
+ (h
+ (h
+ (k
* h))))) by
RLVECT_1:def 3
.= (((
cdif (f,h))
. (2
* k))
/. (x
+ ((h
+ h)
+ (k
* h)))) by
RLVECT_1:def 3
.= (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 2)
* h))) by
BINOM: 15,
A31;
A4: (((
fdif (f,h))
. (2
* k))
/. (x
+ h))
= (((
cdif (f,h))
. (2
* k))
/. ((x
+ h)
+ (k
* h))) by
A2
.= (((
cdif (f,h))
. (2
* k))
/. ((x
+ (1
* h))
+ (k
* h))) by
BINOM: 13
.= (((
cdif (f,h))
. (2
* k))
/. (x
+ ((1
* h)
+ (k
* h)))) by
RLVECT_1:def 3
.= (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h))) by
BINOM: 15;
set r3 = (((
cdif (f,h))
. (2
* k))
/. (x
+ (k
* h)));
set r2 = (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h)));
set r1 = (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 2)
* h)));
A5: ((
fdif (f,h))
. ((2
* k)
+ 1)) is
Function of V, W by
Th2;
A6: ((
cdif (f,h))
. (2
* k)) is
Function of V, W by
Th19;
A7: ((
cdif (f,h))
. ((2
* k)
+ 1)) is
Function of V, W by
Th19;
A8: ((
fdif (f,h))
. (2
* k)) is
Function of V, W by
Th2;
A9: (((
cdif (f,h))
. ((2
* k)
+ 1))
/. ((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h)))
= ((
cD (((
cdif (f,h))
. (2
* k)),h))
/. ((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))) by
Def8
.= ((((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)))) by
A6,
Th5
.= ((((
cdif (f,h))
. (2
* k))
/. ((x
+ ((k
+ 1)
* h))
- ((((2
* (
1. F))
" )
* h)
- (((2
* (
1. F))
" )
* h))))
- (((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 29
.= ((((
cdif (f,h))
. (2
* k))
/. ((x
+ ((k
+ 1)
* h))
- (
0. V)))
- (((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
- (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)))) by
RLVECT_1: 15
.= ((((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (x
+ (k
* h)))) by
A35,
RLVECT_1: 13;
A10: (((
cdif (f,h))
. ((2
* k)
+ 1))
/. ((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h)))
= ((
cD (((
cdif (f,h))
. (2
* k)),h))
/. ((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))) by
Def8
.= ((((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)))) by
A6,
Th5
.= ((((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (2
* k))
/. ((x
+ ((k
+ 1)
* h))
+ ((((2
* (
1. F))
" )
* h)
- (((2
* (
1. F))
" )
* h))))) by
RLVECT_1: 28
.= ((((
cdif (f,h))
. (2
* k))
/. (((x
+ ((k
+ 1)
* h))
+ (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h)))
- (((
cdif (f,h))
. (2
* k))
/. ((x
+ ((k
+ 1)
* h))
+ (
0. V)))) by
RLVECT_1: 15
.= ((((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 2)
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h)))) by
A36,
RLVECT_1: 4;
A11: (((
cdif (f,h))
. (2
* (k
+ 1)))
/. (x
+ ((k
+ 1)
* h)))
= (((
cdif (f,h))
. (((2
* k)
+ 1)
+ 1))
/. (x
+ ((k
+ 1)
* h)))
.= ((
cD (((
cdif (f,h))
. ((2
* k)
+ 1)),h))
/. (x
+ ((k
+ 1)
* h))) by
Def8
.= ((r1
- r2)
- (r2
- r3)) by
A7,
A10,
A9,
Th5;
(((
fdif (f,h))
. (2
* (k
+ 1)))
/. x)
= (((
fdif (f,h))
. (((2
* k)
+ 1)
+ 1))
/. x)
.= ((
fD (((
fdif (f,h))
. ((2
* k)
+ 1)),h))
/. x) by
Def6
.= ((((
fdif (f,h))
. ((2
* k)
+ 1))
/. (x
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
/. x)) by
A5,
Th3
.= (((
fD (((
fdif (f,h))
. (2
* k)),h))
/. (x
+ h))
- (((
fdif (f,h))
. ((2
* k)
+ 1))
/. x)) by
Def6
.= (((
fD (((
fdif (f,h))
. (2
* k)),h))
/. (x
+ h))
- ((
fD (((
fdif (f,h))
. (2
* k)),h))
/. x)) by
Def6
.= (((((
fdif (f,h))
. (2
* k))
/. ((x
+ h)
+ h))
- (((
fdif (f,h))
. (2
* k))
/. (x
+ h)))
- ((
fD (((
fdif (f,h))
. (2
* k)),h))
/. x)) by
A8,
Th3
.= (((((
fdif (f,h))
. (2
* k))
/. ((x
+ h)
+ h))
- (((
fdif (f,h))
. (2
* k))
/. (x
+ h)))
- ((((
fdif (f,h))
. (2
* k))
/. (x
+ h))
- (((
fdif (f,h))
. (2
* k))
/. x))) by
A8,
Th3
.= (((((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 2)
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h))))
- ((((
cdif (f,h))
. (2
* k))
/. (x
+ ((k
+ 1)
* h)))
- (((
cdif (f,h))
. (2
* k))
/. (x
+ (k
* h))))) by
A2,
A3,
A4;
hence thesis by
A11;
end;
A12:
X[
0 ]
proof
let x;
(((
fdif (f,h))
. (2
*
0 ))
/. x)
= (f
/. x) by
Def6
.= (((
cdif (f,h))
. (2
*
0 ))
/. x) by
Def8
.= (((
cdif (f,h))
. (2
*
0 ))
/. (x
+ (
0. V))) by
RLVECT_1: 4
.= (((
cdif (f,h))
. (2
*
0 ))
/. (x
+ (
0
* h))) by
BINOM: 12;
hence thesis;
end;
for n holds
X[n] from
NAT_1:sch 2(
A12,
A1);
hence thesis;
end;
theorem ::
VSDIFF_1:29
(
1. F)
<> (
- (
1. F)) implies (((
fdif (f,h))
. ((2
* n)
+ 1))
/. x)
= (((
cdif (f,h))
. ((2
* n)
+ 1))
/. ((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h)))
proof
assume
AS: (
1. F)
<> (
- (
1. F));
A32: ((
1. F)
+ (
1. F))
= ((1
* (
1. F))
+ (
1. F)) by
BINOM: 13
.= ((1
* (
1. F))
+ (1
* (
1. F))) by
BINOM: 13
.= ((1
+ 1)
* (
1. F)) by
BINOM: 15
.= (2
* (
1. F));
A33: (h
+ h)
= (((
1. F)
* h)
+ h) by
VECTSP_1:def 17
.= (((
1. F)
* h)
+ ((
1. F)
* h)) by
VECTSP_1:def 17
.= ((2
* (
1. F))
* h) by
A32,
VECTSP_1:def 15;
A30: (2
* (
1. F))
<> (
0. F)
proof
assume
A301: (2
* (
1. F))
= (
0. F);
((
1. F)
+ (
1. F))
= ((1
* (
1. F))
+ (
1. F)) by
BINOM: 13
.= ((1
* (
1. F))
+ (1
* (
1. F))) by
BINOM: 13
.= ((1
+ 1)
* (
1. F)) by
BINOM: 15
.= (
0. F) by
A301;
hence contradiction by
AS,
RLVECT_1:def 10;
end;
A34: ((((2
* (
1. F))
" )
* h)
+ (((2
* (
1. F))
" )
* h))
= (((2
* (
1. F))
" )
* (h
+ h)) by
VECTSP_1:def 14
.= ((((2
* (
1. F))
" )
* (2
* (
1. F)))
* h) by
VECTSP_1:def 16,
A33
.= ((
1. F)
* h) by
A30,
VECTSP_1:def 10
.= h by
VECTSP_1:def 17;
A52: ((
cdif (f,h))
. (2
* n)) is
Function of V, W by
Th19;
A35: (((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h))
= ((x
+ (n
* h))
+ ((((2
* (
1. F))
" )
* h)
- (((2
* (
1. F))
" )
* h))) by
RLVECT_1: 28
.= ((x
+ (n
* h))
+ (
0. V)) by
RLVECT_1: 15
.= (x
+ (n
* h)) by
RLVECT_1: 4;
A36: (((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h))
+ (((2
* (
1. F))
" )
* h))
= ((x
+ (n
* h))
+ ((((2
* (
1. F))
" )
* h)
+ (((2
* (
1. F))
" )
* h))) by
RLVECT_1:def 3
.= (x
+ ((n
* h)
+ h)) by
RLVECT_1:def 3,
A34
.= (x
+ ((n
* h)
+ (1
* h))) by
BINOM: 13
.= (x
+ ((n
+ 1)
* h)) by
BINOM: 15;
A51: ((
fdif (f,h))
. (2
* n)) is
Function of V, W by
Th2;
A11: (((
cdif (f,h))
. ((2
* n)
+ 1))
/. ((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h)))
= ((
cD (((
cdif (f,h))
. (2
* n)),h))
/. ((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h))) by
Def8
.= ((((
cdif (f,h))
. (2
* n))
/. (x
+ ((n
+ 1)
* h)))
- (((
cdif (f,h))
. (2
* n))
/. (((x
+ (n
* h))
+ (((2
* (
1. F))
" )
* h))
- (((2
* (
1. F))
" )
* h)))) by
A36,
Th5,
A52
.= ((((
cdif (f,h))
. (2
* n))
/. (x
+ ((n
* h)
+ (1
* h))))
- (((
cdif (f,h))
. (2
* n))
/. (x
+ (n
* h)))) by
BINOM: 15,
A35
.= ((((
cdif (f,h))
. (2
* n))
/. (x
+ ((n
* h)
+ h)))
- (((
cdif (f,h))
. (2
* n))
/. (x
+ (n
* h)))) by
BINOM: 13
.= ((((
cdif (f,h))
. (2
* n))
/. ((x
+ h)
+ (n
* h)))
- (((
cdif (f,h))
. (2
* n))
/. (x
+ (n
* h)))) by
RLVECT_1:def 3
.= ((((
fdif (f,h))
. (2
* n))
/. (x
+ h))
- (((
cdif (f,h))
. (2
* n))
/. (x
+ (n
* h)))) by
LAST0,
AS
.= ((((
fdif (f,h))
. (2
* n))
/. (x
+ h))
- (((
fdif (f,h))
. (2
* n))
/. x)) by
LAST0,
AS;
(((
fdif (f,h))
. ((2
* n)
+ 1))
/. x)
= ((
fD (((
fdif (f,h))
. (2
* n)),h))
/. x) by
Def6
.= ((((
fdif (f,h))
. (2
* n))
/. (x
+ h))
- (((
fdif (f,h))
. (2
* n))
/. x)) by
Th3,
A51;
hence thesis by
A11;
end;