seqfunc.miz
begin
reserve D for non
empty
set,
D1,D2,x,y for
set,
n,k for
Nat,
p,x1,r for
Real,
f for
Function;
definition
let D1, D2;
mode
Functional_Sequence of D1,D2 is
sequence of (
PFuncs (D1,D2));
end
reserve F for
Functional_Sequence of D1, D2;
definition
let D1, D2, F;
let n be
natural
Number;
:: original:
.
redefine
func F
. n ->
PartFunc of D1, D2 ;
coherence
proof
n
in
NAT by
ORDINAL1:def 12;
then n
in (
dom F) by
FUNCT_2:def 1;
then (F
. n)
in (
rng F) by
FUNCT_1:def 3;
hence thesis by
PARTFUN1: 46;
end;
end
reserve G,H,H1,H2,J for
Functional_Sequence of D,
REAL ;
Lm1: f is
Functional_Sequence of D1, D2 iff ((
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
PartFunc of D1, D2)
proof
thus f is
Functional_Sequence of D1, D2 implies ((
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
PartFunc of D1, D2)
proof
assume
A1: f is
Functional_Sequence of D1, D2;
hence (
dom f)
=
NAT by
FUNCT_2:def 1;
let x;
assume x
in
NAT ;
then x
in (
dom f) by
A1,
FUNCT_2:def 1;
then
A2: (f
. x)
in (
rng f) by
FUNCT_1:def 3;
(
rng f)
c= (
PFuncs (D1,D2)) by
A1,
RELAT_1:def 19;
hence thesis by
A2,
PARTFUN1: 46;
end;
assume that
A3: (
dom f)
=
NAT and
A4: for x st x
in
NAT holds (f
. x) is
PartFunc of D1, D2;
now
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A5: x
in (
dom f) and
A6: y
= (f
. x) by
FUNCT_1:def 3;
(f
. x) is
PartFunc of D1, D2 by
A3,
A4,
A5;
hence y
in (
PFuncs (D1,D2)) by
A6,
PARTFUN1: 45;
end;
then (
rng f)
c= (
PFuncs (D1,D2));
hence thesis by
A3,
FUNCT_2:def 1,
RELSET_1: 4;
end;
theorem ::
SEQFUNC:1
f is
Functional_Sequence of D1, D2 iff (
dom f)
=
NAT & for n holds (f
. n) is
PartFunc of D1, D2
proof
thus f is
Functional_Sequence of D1, D2 implies (
dom f)
=
NAT & for n holds (f
. n) is
PartFunc of D1, D2 by
Lm1,
ORDINAL1:def 12;
assume that
A1: (
dom f)
=
NAT and
A2: for n holds (f
. n) is
PartFunc of D1, D2;
for x holds x
in
NAT implies (f
. x) is
PartFunc of D1, D2 by
A2;
hence thesis by
A1,
Lm1;
end;
scheme ::
SEQFUNC:sch1
ExFuncSeq { D1() ->
set , D2() ->
set , F(
object) ->
PartFunc of D1(), D2() } :
ex G be
Functional_Sequence of D1(), D2() st for n be
Nat holds (G
. n)
= F(n);
defpred
P[
object,
object] means $2
= F($1);
A1: for x be
object st x
in
NAT holds ex y be
object st
P[x, y];
consider f such that
A2: (
dom f)
=
NAT and
A3: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
now
let x;
assume x
in
NAT ;
then (f
. x)
= F(x) by
A3;
hence (f
. x) is
PartFunc of D1(), D2();
end;
then
reconsider f as
Functional_Sequence of D1(), D2() by
A2,
Lm1;
take f;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A3;
end;
definition
let D, H;
let r be
Real;
::
SEQFUNC:def1
func r
(#) H ->
Functional_Sequence of D,
REAL means
:
Def1: for n be
Nat holds (it
. n)
= (r
(#) (H
. n));
existence
proof
deffunc
U(
Nat) = (r
(#) (H
. $1));
thus ex f be
Functional_Sequence of D,
REAL st for n be
Nat holds (f
. n)
=
U(n) from
ExFuncSeq;
end;
uniqueness
proof
let H1, H2 such that
A1: for n be
Nat holds (H1
. n)
= (r
(#) (H
. n)) and
A2: for n be
Nat holds (H2
. n)
= (r
(#) (H
. n));
now
let n be
Element of
NAT ;
(H1
. n)
= (r
(#) (H
. n)) by
A1;
hence (H1
. n)
= (H2
. n) by
A2;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
end
definition
let D, H;
::
SEQFUNC:def2
func H
" ->
Functional_Sequence of D,
REAL means
:
Def2: for n be
Nat holds (it
. n)
= ((H
. n)
^ );
existence
proof
deffunc
U(
Nat) = ((H
. $1)
^ );
thus ex f be
Functional_Sequence of D,
REAL st for n be
Nat holds (f
. n)
=
U(n) from
ExFuncSeq;
end;
uniqueness
proof
let H1, H2 such that
A1: for n be
Nat holds (H1
. n)
= ((H
. n)
^ ) and
A2: for n be
Nat holds (H2
. n)
= ((H
. n)
^ );
now
let n be
Element of
NAT ;
(H1
. n)
= ((H
. n)
^ ) by
A1;
hence (H1
. n)
= (H2
. n) by
A2;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
::
SEQFUNC:def3
func
- H ->
Functional_Sequence of D,
REAL means
:
Def3: for n be
Nat holds (it
. n)
= (
- (H
. n));
existence
proof
take ((
- 1)
(#) H);
let n be
Nat;
thus thesis by
Def1;
end;
uniqueness
proof
let H1, H2 such that
A3: for n be
Nat holds (H1
. n)
= (
- (H
. n)) and
A4: for n be
Nat holds (H2
. n)
= (
- (H
. n));
now
let n be
Element of
NAT ;
(H1
. n)
= (
- (H
. n)) by
A3;
hence (H1
. n)
= (H2
. n) by
A4;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
involutiveness
proof
let G,H be
Functional_Sequence of D,
REAL such that
A5: for n be
Nat holds (G
. n)
= (
- (H
. n));
let n be
Nat;
thus (H
. n)
= (
- (
- (H
. n)))
.= (
- (G
. n)) by
A5;
end;
::
SEQFUNC:def4
func
abs (H) ->
Functional_Sequence of D,
REAL means
:
Def4: for n be
Nat holds (it
. n)
= (
abs (H
. n));
existence
proof
deffunc
U(
Nat) = (
abs (H
. $1));
thus ex f be
Functional_Sequence of D,
REAL st for n be
Nat holds (f
. n)
=
U(n) from
ExFuncSeq;
end;
uniqueness
proof
let H1, H2 such that
A6: for n be
Nat holds (H1
. n)
= (
abs (H
. n)) and
A7: for n be
Nat holds (H2
. n)
= (
abs (H
. n));
now
let n be
Element of
NAT ;
(H2
. n)
= (
abs (H
. n)) by
A7;
hence (H1
. n)
= (H2
. n) by
A6;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
projectivity
proof
let G,H be
Functional_Sequence of D,
REAL such that
A8: for n be
Nat holds (G
. n)
= (
abs (H
. n));
let n be
Nat;
thus (G
. n)
= (
abs (
abs (H
. n))) by
A8
.= (
abs (G
. n)) by
A8;
end;
end
definition
let D, G, H;
::
SEQFUNC:def5
func G
+ H ->
Functional_Sequence of D,
REAL means
:
Def5: for n be
Nat holds (it
. n)
= ((G
. n)
+ (H
. n));
existence
proof
deffunc
U(
Nat) = ((G
. $1)
+ (H
. $1));
thus ex f be
Functional_Sequence of D,
REAL st for n be
Nat holds (f
. n)
=
U(n) from
ExFuncSeq;
end;
uniqueness
proof
let H1, H2 such that
A1: for n be
Nat holds (H1
. n)
= ((G
. n)
+ (H
. n)) and
A2: for n be
Nat holds (H2
. n)
= ((G
. n)
+ (H
. n));
now
let n be
Element of
NAT ;
(H1
. n)
= ((G
. n)
+ (H
. n)) by
A1;
hence (H1
. n)
= (H2
. n) by
A2;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
end
definition
let D, G, H;
::
SEQFUNC:def6
func G
- H ->
Functional_Sequence of D,
REAL equals (G
+ (
- H));
correctness ;
end
definition
let D, G, H;
::
SEQFUNC:def7
func G
(#) H ->
Functional_Sequence of D,
REAL means
:
Def7: for n be
Nat holds (it
. n)
= ((G
. n)
(#) (H
. n));
existence
proof
deffunc
U(
Nat) = ((G
. $1)
(#) (H
. $1));
thus ex f be
Functional_Sequence of D,
REAL st for n be
Nat holds (f
. n)
=
U(n) from
ExFuncSeq;
end;
uniqueness
proof
let H1, H2 such that
A1: for n be
Nat holds (H1
. n)
= ((G
. n)
(#) (H
. n)) and
A2: for n be
Nat holds (H2
. n)
= ((G
. n)
(#) (H
. n));
now
let n be
Element of
NAT ;
(H1
. n)
= ((G
. n)
(#) (H
. n)) by
A1;
hence (H1
. n)
= (H2
. n) by
A2;
end;
hence H1
= H2 by
FUNCT_2: 63;
end;
end
definition
let D, H, G;
::
SEQFUNC:def8
func G
/ H ->
Functional_Sequence of D,
REAL equals (G
(#) (H
" ));
correctness ;
end
theorem ::
SEQFUNC:2
H1
= (G
/ H) iff for n holds (H1
. n)
= ((G
. n)
/ (H
. n))
proof
thus H1
= (G
/ H) implies for n holds (H1
. n)
= ((G
. n)
/ (H
. n))
proof
assume
A1: H1
= (G
/ H);
let n;
thus (H1
. n)
= ((G
. n)
(#) ((H
" )
. n)) by
A1,
Def7
.= ((G
. n)
(#) ((H
. n)
^ )) by
Def2
.= ((G
. n)
/ (H
. n)) by
RFUNCT_1: 31;
end;
assume
A2: for n holds (H1
. n)
= ((G
. n)
/ (H
. n));
now
let n be
Element of
NAT ;
thus (H1
. n)
= ((G
. n)
/ (H
. n)) by
A2
.= ((G
. n)
(#) ((H
. n)
^ )) by
RFUNCT_1: 31
.= ((G
. n)
(#) ((H
" )
. n)) by
Def2
.= ((G
/ H)
. n) by
Def7;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:3
Th3: H1
= (G
- H) iff for n holds (H1
. n)
= ((G
. n)
- (H
. n))
proof
thus H1
= (G
- H) implies for n holds (H1
. n)
= ((G
. n)
- (H
. n))
proof
assume
A1: H1
= (G
- H);
let n;
thus (H1
. n)
= ((G
. n)
+ ((
- H)
. n)) by
A1,
Def5
.= ((G
. n)
- (H
. n)) by
Def3;
end;
assume
A2: for n holds (H1
. n)
= ((G
. n)
- (H
. n));
now
let n be
Element of
NAT ;
thus (H1
. n)
= ((G
. n)
- (H
. n)) by
A2
.= ((G
. n)
+ ((
- H)
. n)) by
Def3
.= ((G
- H)
. n) by
Def5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:4
(G
+ H)
= (H
+ G) & ((G
+ H)
+ J)
= (G
+ (H
+ J))
proof
now
let n be
Element of
NAT ;
thus ((G
+ H)
. n)
= ((H
. n)
+ (G
. n)) by
Def5
.= ((H
+ G)
. n) by
Def5;
end;
hence (G
+ H)
= (H
+ G) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
thus (((G
+ H)
+ J)
. n)
= (((G
+ H)
. n)
+ (J
. n)) by
Def5
.= (((G
. n)
+ (H
. n))
+ (J
. n)) by
Def5
.= ((G
. n)
+ ((H
. n)
+ (J
. n))) by
RFUNCT_1: 8
.= ((G
. n)
+ ((H
+ J)
. n)) by
Def5
.= ((G
+ (H
+ J))
. n) by
Def5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:5
Th5: (G
(#) H)
= (H
(#) G) & ((G
(#) H)
(#) J)
= (G
(#) (H
(#) J))
proof
now
let n be
Element of
NAT ;
thus ((G
(#) H)
. n)
= ((H
. n)
(#) (G
. n)) by
Def7
.= ((H
(#) G)
. n) by
Def7;
end;
hence (G
(#) H)
= (H
(#) G) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
thus (((G
(#) H)
(#) J)
. n)
= (((G
(#) H)
. n)
(#) (J
. n)) by
Def7
.= (((G
. n)
(#) (H
. n))
(#) (J
. n)) by
Def7
.= ((G
. n)
(#) ((H
. n)
(#) (J
. n))) by
RFUNCT_1: 9
.= ((G
. n)
(#) ((H
(#) J)
. n)) by
Def7
.= ((G
(#) (H
(#) J))
. n) by
Def7;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:6
((G
+ H)
(#) J)
= ((G
(#) J)
+ (H
(#) J)) & (J
(#) (G
+ H))
= ((J
(#) G)
+ (J
(#) H))
proof
now
let n be
Element of
NAT ;
thus (((G
+ H)
(#) J)
. n)
= (((G
+ H)
. n)
(#) (J
. n)) by
Def7
.= (((G
. n)
+ (H
. n))
(#) (J
. n)) by
Def5
.= (((G
. n)
(#) (J
. n))
+ ((H
. n)
(#) (J
. n))) by
RFUNCT_1: 10
.= (((G
(#) J)
. n)
+ ((H
. n)
(#) (J
. n))) by
Def7
.= (((G
(#) J)
. n)
+ ((H
(#) J)
. n)) by
Def7
.= (((G
(#) J)
+ (H
(#) J))
. n) by
Def5;
end;
hence ((G
+ H)
(#) J)
= ((G
(#) J)
+ (H
(#) J)) by
FUNCT_2: 63;
hence (J
(#) (G
+ H))
= ((G
(#) J)
+ (H
(#) J)) by
Th5
.= ((J
(#) G)
+ (H
(#) J)) by
Th5
.= ((J
(#) G)
+ (J
(#) H)) by
Th5;
end;
theorem ::
SEQFUNC:7
(
- H)
= ((
- 1)
(#) H)
proof
now
let n be
Element of
NAT ;
thus ((
- H)
. n)
= (
- (H
. n)) by
Def3
.= (((
- 1)
(#) H)
. n) by
Def1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:8
((G
- H)
(#) J)
= ((G
(#) J)
- (H
(#) J)) & ((J
(#) G)
- (J
(#) H))
= (J
(#) (G
- H))
proof
now
let n be
Element of
NAT ;
thus (((G
- H)
(#) J)
. n)
= (((G
- H)
. n)
(#) (J
. n)) by
Def7
.= (((G
. n)
- (H
. n))
(#) (J
. n)) by
Th3
.= (((G
. n)
(#) (J
. n))
- ((H
. n)
(#) (J
. n))) by
RFUNCT_1: 14
.= (((G
(#) J)
. n)
- ((H
. n)
(#) (J
. n))) by
Def7
.= (((G
(#) J)
. n)
- ((H
(#) J)
. n)) by
Def7
.= (((G
(#) J)
- (H
(#) J))
. n) by
Th3;
end;
hence
A1: ((G
- H)
(#) J)
= ((G
(#) J)
- (H
(#) J)) by
FUNCT_2: 63;
thus ((J
(#) G)
- (J
(#) H))
= ((J
(#) G)
- (H
(#) J)) by
Th5
.= ((G
- H)
(#) J) by
A1,
Th5
.= (J
(#) (G
- H)) by
Th5;
end;
theorem ::
SEQFUNC:9
(r
(#) (G
+ H))
= ((r
(#) G)
+ (r
(#) H)) & (r
(#) (G
- H))
= ((r
(#) G)
- (r
(#) H))
proof
now
let n be
Element of
NAT ;
thus ((r
(#) (G
+ H))
. n)
= (r
(#) ((G
+ H)
. n)) by
Def1
.= (r
(#) ((G
. n)
+ (H
. n))) by
Def5
.= ((r
(#) (G
. n))
+ (r
(#) (H
. n))) by
RFUNCT_1: 16
.= (((r
(#) G)
. n)
+ (r
(#) (H
. n))) by
Def1
.= (((r
(#) G)
. n)
+ ((r
(#) H)
. n)) by
Def1
.= (((r
(#) G)
+ (r
(#) H))
. n) by
Def5;
end;
hence (r
(#) (G
+ H))
= ((r
(#) G)
+ (r
(#) H)) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
thus ((r
(#) (G
- H))
. n)
= (r
(#) ((G
- H)
. n)) by
Def1
.= (r
(#) ((G
. n)
- (H
. n))) by
Th3
.= ((r
(#) (G
. n))
- (r
(#) (H
. n))) by
RFUNCT_1: 18
.= (((r
(#) G)
. n)
- (r
(#) (H
. n))) by
Def1
.= (((r
(#) G)
. n)
- ((r
(#) H)
. n)) by
Def1
.= (((r
(#) G)
- (r
(#) H))
. n) by
Th3;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:10
((r
* p)
(#) H)
= (r
(#) (p
(#) H))
proof
now
let n be
Element of
NAT ;
thus (((r
* p)
(#) H)
. n)
= ((r
* p)
(#) (H
. n)) by
Def1
.= (r
(#) (p
(#) (H
. n))) by
RFUNCT_1: 17
.= (r
(#) ((p
(#) H)
. n)) by
Def1
.= ((r
(#) (p
(#) H))
. n) by
Def1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:11
(1
(#) H)
= H
proof
now
let n be
Element of
NAT ;
thus ((1
(#) H)
. n)
= (1
(#) (H
. n)) by
Def1
.= (H
. n) by
RFUNCT_1: 21;
end;
hence thesis by
FUNCT_2: 63;
end;
::$Canceled
theorem ::
SEQFUNC:13
((G
" )
(#) (H
" ))
= ((G
(#) H)
" )
proof
now
let n be
Element of
NAT ;
thus (((G
" )
(#) (H
" ))
. n)
= (((G
" )
. n)
(#) ((H
" )
. n)) by
Def7
.= (((G
. n)
^ )
(#) ((H
" )
. n)) by
Def2
.= (((G
. n)
^ )
(#) ((H
. n)
^ )) by
Def2
.= (((G
. n)
(#) (H
. n))
^ ) by
RFUNCT_1: 27
.= (((G
(#) H)
. n)
^ ) by
Def7
.= (((G
(#) H)
" )
. n) by
Def2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:14
r
<>
0 implies ((r
(#) H)
" )
= ((r
" )
(#) (H
" ))
proof
assume
A1: r
<>
0 ;
now
let n be
Element of
NAT ;
thus (((r
(#) H)
" )
. n)
= (((r
(#) H)
. n)
^ ) by
Def2
.= ((r
(#) (H
. n))
^ ) by
Def1
.= ((r
" )
(#) ((H
. n)
^ )) by
A1,
RFUNCT_1: 28
.= ((r
" )
(#) ((H
" )
. n)) by
Def2
.= (((r
" )
(#) (H
" ))
. n) by
Def1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:15
Th14: ((
abs H)
" )
= (
abs (H
" ))
proof
now
let n be
Element of
NAT ;
thus ((
abs (H
" ))
. n)
= (
abs ((H
" )
. n)) by
Def4
.= (
abs ((H
. n)
^ )) by
Def2
.= ((
abs (H
. n))
^ ) by
RFUNCT_1: 30
.= (((
abs H)
. n)
^ ) by
Def4
.= (((
abs H)
" )
. n) by
Def2;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:16
Th15: (
abs (G
(#) H))
= ((
abs G)
(#) (
abs H))
proof
now
let n be
Element of
NAT ;
thus ((
abs (G
(#) H))
. n)
= (
abs ((G
(#) H)
. n)) by
Def4
.= (
abs ((G
. n)
(#) (H
. n))) by
Def7
.= ((
abs (G
. n))
(#) (
abs (H
. n))) by
RFUNCT_1: 24
.= (((
abs G)
. n)
(#) (
abs (H
. n))) by
Def4
.= (((
abs G)
. n)
(#) ((
abs H)
. n)) by
Def4
.= (((
abs G)
(#) (
abs H))
. n) by
Def7;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:17
(
abs (G
/ H))
= ((
abs G)
/ (
abs H))
proof
thus (
abs (G
/ H))
= ((
abs G)
(#) (
abs (H
" ))) by
Th15
.= ((
abs G)
/ (
abs H)) by
Th14;
end;
theorem ::
SEQFUNC:18
(
abs (r
(#) H))
= (
|.r.|
(#) (
abs H))
proof
now
let n be
Element of
NAT ;
thus ((
abs (r
(#) H))
. n)
= (
abs ((r
(#) H)
. n)) by
Def4
.= (
abs (r
(#) (H
. n))) by
Def1
.= (
|.r.|
(#) (
abs (H
. n))) by
RFUNCT_1: 25
.= (
|.r.|
(#) ((
abs H)
. n)) by
Def4
.= ((
|.r.|
(#) (
abs H))
. n) by
Def1;
end;
hence thesis by
FUNCT_2: 63;
end;
reserve x for
Element of D,
X,Y for
set,
S1,S2 for
Real_Sequence,
f for
PartFunc of D,
REAL ;
definition
let D1, D2, F, X;
::
SEQFUNC:def9
pred X
common_on_dom F means X
<>
{} & for n holds X
c= (
dom (F
. n));
end
definition
let D, H, x;
::
SEQFUNC:def10
func H
# x ->
Real_Sequence means
:
Def10: for n holds (it
. n)
= ((H
. n)
. x);
existence
proof
deffunc
U(
Nat) = ((H
. $1)
. x);
consider f be
Real_Sequence such that
A1: for n be
Nat holds (f
. n)
=
U(n) from
SEQ_1:sch 1;
take f;
thus thesis by
A1;
end;
uniqueness
proof
let S1, S2 such that
A2: for n holds (S1
. n)
= ((H
. n)
. x) and
A3: for n holds (S2
. n)
= ((H
. n)
. x);
now
let n be
Element of
NAT ;
(S1
. n)
= ((H
. n)
. x) by
A2;
hence (S1
. n)
= (S2
. n) by
A3;
end;
hence thesis by
FUNCT_2: 63;
end;
end
definition
let D, H, X;
::
SEQFUNC:def11
pred H
is_point_conv_on X means X
common_on_dom H & ex f st X
= (
dom f) & for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p;
end
theorem ::
SEQFUNC:19
Th18: H
is_point_conv_on X iff X
common_on_dom H & ex f st X
= (
dom f) & for x st x
in X holds (H
# x) is
convergent & (
lim (H
# x))
= (f
. x)
proof
thus H
is_point_conv_on X implies X
common_on_dom H & ex f st X
= (
dom f) & for x st x
in X holds (H
# x) is
convergent & (
lim (H
# x))
= (f
. x)
proof
assume
A1: H
is_point_conv_on X;
hence X
common_on_dom H;
consider f such that
A2: X
= (
dom f) and
A3: for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A1;
take f;
thus X
= (
dom f) by
A2;
let x;
assume
A4: x
in X;
A5:
now
let p be
Real;
assume
A6: p
>
0 ;
consider k such that
A7: for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A3,
A4,
A6;
reconsider k as
Nat;
take k;
let n be
Nat;
assume n
>= k;
then
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A7;
hence
|.(((H
# x)
. n)
- (f
. x)).|
< p by
Def10;
end;
hence (H
# x) is
convergent by
SEQ_2:def 6;
hence thesis by
A5,
SEQ_2:def 7;
end;
assume
A8: X
common_on_dom H;
given f such that
A9: X
= (
dom f) and
A10: for x st x
in X holds (H
# x) is
convergent & (
lim (H
# x))
= (f
. x);
ex f st X
= (
dom f) & for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p
proof
take f;
thus X
= (
dom f) by
A9;
let x;
assume x
in X;
then
A11: (H
# x) is
convergent & (
lim (H
# x))
= (f
. x) by
A10;
let p;
assume p
>
0 ;
then
consider k be
Nat such that
A12: for n be
Nat st n
>= k holds
|.(((H
# x)
. n)
- (f
. x)).|
< p by
A11,
SEQ_2:def 7;
reconsider k as
Nat;
take k;
let n;
assume n
>= k;
then
|.(((H
# x)
. n)
- (f
. x)).|
< p by
A12;
hence thesis by
Def10;
end;
hence thesis by
A8;
end;
theorem ::
SEQFUNC:20
Th19: H
is_point_conv_on X iff X
common_on_dom H & for x st x
in X holds (H
# x) is
convergent
proof
defpred
X[
set] means $1
in X;
deffunc
U(
Element of D) = (
In ((
lim (H
# $1)),
REAL ));
consider f such that
A1: for x holds x
in (
dom f) iff
X[x] and
A2: for x st x
in (
dom f) holds (f
. x)
=
U(x) from
SEQ_1:sch 3;
thus H
is_point_conv_on X implies X
common_on_dom H & for x st x
in X holds (H
# x) is
convergent
proof
assume
A3: H
is_point_conv_on X;
hence X
common_on_dom H;
let x;
assume
A4: x
in X;
ex f st X
= (
dom f) & for x st x
in X holds (H
# x) is
convergent & (
lim (H
# x))
= (f
. x) by
A3,
Th18;
hence thesis by
A4;
end;
assume that
A5: X
common_on_dom H and
A6: for x st x
in X holds (H
# x) is
convergent;
now
take f;
thus
A7: X
= (
dom f)
proof
thus X
c= (
dom f)
proof
let x be
object such that
A8: x
in X;
X
c= (
dom (H
.
0 )) by
A5;
then X
c= D by
XBOOLE_1: 1;
then
reconsider x9 = x as
Element of D by
A8;
x9
in (
dom f) by
A1,
A8;
hence thesis;
end;
let x be
object;
assume x
in (
dom f);
hence thesis by
A1;
end;
let x;
assume
A9: x
in X;
hence (H
# x) is
convergent by
A6;
thus (f
. x)
=
U(x) by
A2,
A7,
A9
.= (
lim (H
# x));
end;
hence thesis by
A5,
Th18;
end;
definition
let D, H, X;
::
SEQFUNC:def12
pred H
is_unif_conv_on X means X
common_on_dom H & ex f st X
= (
dom f) & for p st p
>
0 holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p;
end
definition
let D, H, X;
assume
A1: H
is_point_conv_on X;
::
SEQFUNC:def13
func
lim (H,X) ->
PartFunc of D,
REAL means
:
Def13: (
dom it )
= X & for x st x
in (
dom it ) holds (it
. x)
= (
lim (H
# x));
existence
proof
consider f such that
A2: X
= (
dom f) and
A3: for x st x
in X holds (H
# x) is
convergent & (
lim (H
# x))
= (f
. x) by
A1,
Th18;
take f;
thus (
dom f)
= X by
A2;
let x;
assume x
in (
dom f);
hence thesis by
A2,
A3;
end;
uniqueness
proof
deffunc
U(
Element of D) = (
lim (H
# $1));
thus for f1,f2 be
PartFunc of D,
REAL st (
dom f1)
= X & (for x st x
in (
dom f1) holds (f1
. x)
=
U(x)) & (
dom f2)
= X & for x st x
in (
dom f2) holds (f2
. x)
=
U(x) holds f1
= f2 from
SEQ_1:sch 4;
end;
end
theorem ::
SEQFUNC:21
Th20: H
is_point_conv_on X implies (f
= (
lim (H,X)) iff (
dom f)
= X & for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p)
proof
assume
A1: H
is_point_conv_on X;
thus f
= (
lim (H,X)) implies (
dom f)
= X & for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p
proof
assume
A2: f
= (
lim (H,X));
hence
A3: (
dom f)
= X by
A1,
Def13;
let x;
assume
A4: x
in X;
then
A5: (H
# x) is
convergent by
A1,
Th19;
let p;
assume
A6: p
>
0 ;
(f
. x)
= (
lim (H
# x)) by
A1,
A2,
A3,
A4,
Def13;
then
consider k be
Nat such that
A7: for n be
Nat st n
>= k holds
|.(((H
# x)
. n)
- (f
. x)).|
< p by
A5,
A6,
SEQ_2:def 7;
reconsider k as
Nat;
take k;
let n;
assume n
>= k;
then
|.(((H
# x)
. n)
- (f
. x)).|
< p by
A7;
hence thesis by
Def10;
end;
assume that
A8: (
dom f)
= X and
A9: for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p;
now
let x such that
A10: x
in (
dom f);
A11:
now
let p be
Real;
assume
A12: p
>
0 ;
consider k such that
A13: for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A8,
A9,
A10,
A12;
reconsider k as
Nat;
take k;
let n be
Nat;
assume n
>= k;
then
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A13;
hence
|.(((H
# x)
. n)
- (f
. x)).|
< p by
Def10;
end;
then (H
# x) is
convergent by
SEQ_2:def 6;
hence (f
. x)
= (
lim (H
# x)) by
A11,
SEQ_2:def 7;
end;
hence thesis by
A1,
A8,
Def13;
end;
theorem ::
SEQFUNC:22
Th21: H
is_unif_conv_on X implies H
is_point_conv_on X
proof
assume
A1: H
is_unif_conv_on X;
A2:
now
consider f such that
A3: X
= (
dom f) and
A4: for p st p
>
0 holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A1;
take f;
thus X
= (
dom f) by
A3;
let x;
assume
A5: x
in X;
let p;
assume p
>
0 ;
then
consider k such that
A6: for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A4;
take k;
let n;
assume n
>= k;
hence
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A5,
A6;
end;
X
common_on_dom H by
A1;
hence thesis by
A2;
end;
theorem ::
SEQFUNC:23
Th22: Y
c= X & Y
<>
{} & X
common_on_dom H implies Y
common_on_dom H
proof
assume that
A1: Y
c= X and
A2: Y
<>
{} and
A3: X
common_on_dom H;
now
let n;
X
c= (
dom (H
. n)) by
A3;
hence Y
c= (
dom (H
. n)) by
A1;
end;
hence thesis by
A2;
end;
theorem ::
SEQFUNC:24
Y
c= X & Y
<>
{} & H
is_point_conv_on X implies H
is_point_conv_on Y & ((
lim (H,X))
| Y)
= (
lim (H,Y))
proof
assume that
A1: Y
c= X and
A2: Y
<>
{} and
A3: H
is_point_conv_on X;
consider f such that
A4: X
= (
dom f) and
A5: for x st x
in X holds for p st p
>
0 holds ex k st for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A3;
A6:
now
take g = (f
| Y);
thus
A7: Y
= (
dom g) by
A1,
A4,
RELAT_1: 62;
let x;
assume
A8: x
in Y;
let p;
assume p
>
0 ;
then
consider k such that
A9: for n st n
>= k holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A1,
A5,
A8;
take k;
let n;
assume n
>= k;
then
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A9;
hence
|.(((H
. n)
. x)
- (g
. x)).|
< p by
A7,
A8,
FUNCT_1: 47;
end;
X
common_on_dom H by
A3;
then Y
common_on_dom H by
A1,
A2,
Th22;
hence
A10: H
is_point_conv_on Y by
A6;
A11:
now
let x;
assume
A12: x
in (
dom ((
lim (H,X))
| Y));
then
A13: x
in ((
dom (
lim (H,X)))
/\ Y) by
RELAT_1: 61;
then
A14: x
in (
dom (
lim (H,X))) by
XBOOLE_0:def 4;
x
in Y by
A13,
XBOOLE_0:def 4;
then
A15: x
in (
dom (
lim (H,Y))) by
A10,
Def13;
thus (((
lim (H,X))
| Y)
. x)
= ((
lim (H,X))
. x) by
A12,
FUNCT_1: 47
.= (
lim (H
# x)) by
A3,
A14,
Def13
.= ((
lim (H,Y))
. x) by
A10,
A15,
Def13;
end;
(
dom (
lim (H,X)))
= X by
A3,
Def13;
then ((
dom (
lim (H,X)))
/\ Y)
= Y by
A1,
XBOOLE_1: 28;
then (
dom ((
lim (H,X))
| Y))
= Y by
RELAT_1: 61;
then (
dom ((
lim (H,X))
| Y))
= (
dom (
lim (H,Y))) by
A10,
Def13;
hence thesis by
A11,
PARTFUN1: 5;
end;
theorem ::
SEQFUNC:25
Y
c= X & Y
<>
{} & H
is_unif_conv_on X implies H
is_unif_conv_on Y
proof
assume that
A1: Y
c= X and
A2: Y
<>
{} and
A3: H
is_unif_conv_on X;
consider f such that
A4: (
dom f)
= X and
A5: for p st p
>
0 holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A3;
A6:
now
take g = (f
| Y);
thus
A7: (
dom g)
= ((
dom f)
/\ Y) by
RELAT_1: 61
.= Y by
A1,
A4,
XBOOLE_1: 28;
let p;
assume p
>
0 ;
then
consider k such that
A8: for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A5;
take k;
let n, x;
assume that
A9: n
>= k and
A10: x
in Y;
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A1,
A8,
A9,
A10;
hence
|.(((H
. n)
. x)
- (g
. x)).|
< p by
A7,
A10,
FUNCT_1: 47;
end;
X
common_on_dom H by
A3;
then Y
common_on_dom H by
A1,
A2,
Th22;
hence thesis by
A6;
end;
theorem ::
SEQFUNC:26
Th25: X
common_on_dom H implies for x st x
in X holds
{x}
common_on_dom H
proof
assume
A1: X
common_on_dom H;
let x;
assume
A2: x
in X;
thus
{x}
<>
{} ;
now
let n;
X
c= (
dom (H
. n)) by
A1;
hence
{x}
c= (
dom (H
. n)) by
A2,
ZFMISC_1: 31;
end;
hence thesis;
end;
theorem ::
SEQFUNC:27
H
is_point_conv_on X implies for x st x
in X holds
{x}
common_on_dom H by
Th25;
theorem ::
SEQFUNC:28
Th27:
{x}
common_on_dom H1 &
{x}
common_on_dom H2 implies ((H1
# x)
+ (H2
# x))
= ((H1
+ H2)
# x) & ((H1
# x)
- (H2
# x))
= ((H1
- H2)
# x) & ((H1
# x)
(#) (H2
# x))
= ((H1
(#) H2)
# x)
proof
assume that
A1:
{x}
common_on_dom H1 and
A2:
{x}
common_on_dom H2;
now
let n be
Element of
NAT ;
A3:
{x}
c= (
dom (H2
. n)) by
A2;
x
in
{x} &
{x}
c= (
dom (H1
. n)) by
A1,
TARSKI:def 1;
then x
in ((
dom (H1
. n))
/\ (
dom (H2
. n))) by
A3,
XBOOLE_0:def 4;
then
A4: x
in (
dom ((H1
. n)
+ (H2
. n))) by
VALUED_1:def 1;
thus (((H1
# x)
+ (H2
# x))
. n)
= (((H1
# x)
. n)
+ ((H2
# x)
. n)) by
SEQ_1: 7
.= (((H1
. n)
. x)
+ ((H2
# x)
. n)) by
Def10
.= (((H1
. n)
. x)
+ ((H2
. n)
. x)) by
Def10
.= (((H1
. n)
+ (H2
. n))
. x) by
A4,
VALUED_1:def 1
.= (((H1
+ H2)
. n)
. x) by
Def5
.= (((H1
+ H2)
# x)
. n) by
Def10;
end;
hence ((H1
# x)
+ (H2
# x))
= ((H1
+ H2)
# x) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
A5:
{x}
c= (
dom (H2
. n)) by
A2;
x
in
{x} &
{x}
c= (
dom (H1
. n)) by
A1,
TARSKI:def 1;
then x
in ((
dom (H1
. n))
/\ (
dom (H2
. n))) by
A5,
XBOOLE_0:def 4;
then
A6: x
in (
dom ((H1
. n)
- (H2
. n))) by
VALUED_1: 12;
thus (((H1
# x)
- (H2
# x))
. n)
= (((H1
# x)
. n)
- ((H2
# x)
. n)) by
RFUNCT_2: 1
.= (((H1
. n)
. x)
- ((H2
# x)
. n)) by
Def10
.= (((H1
. n)
. x)
- ((H2
. n)
. x)) by
Def10
.= (((H1
. n)
- (H2
. n))
. x) by
A6,
VALUED_1: 13
.= (((H1
- H2)
. n)
. x) by
Th3
.= (((H1
- H2)
# x)
. n) by
Def10;
end;
hence ((H1
# x)
- (H2
# x))
= ((H1
- H2)
# x) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
thus (((H1
# x)
(#) (H2
# x))
. n)
= (((H1
# x)
. n)
* ((H2
# x)
. n)) by
SEQ_1: 8
.= (((H1
. n)
. x)
* ((H2
# x)
. n)) by
Def10
.= (((H1
. n)
. x)
* ((H2
. n)
. x)) by
Def10
.= (((H1
. n)
(#) (H2
. n))
. x) by
VALUED_1: 5
.= (((H1
(#) H2)
. n)
. x) by
Def7
.= (((H1
(#) H2)
# x)
. n) by
Def10;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:29
Th28: ((
abs H)
# x)
= (
abs (H
# x)) & ((
- H)
# x)
= (
- (H
# x))
proof
now
let n be
Element of
NAT ;
thus (((
abs H)
# x)
. n)
= (((
abs H)
. n)
. x) by
Def10
.= (
|.(H
. n).|
. x) by
Def4
.=
|.((H
. n)
. x).| by
VALUED_1: 18
.=
|.((H
# x)
. n).| by
Def10
.= ((
abs (H
# x))
. n) by
SEQ_1: 12;
end;
hence ((
abs H)
# x)
= (
abs (H
# x)) by
FUNCT_2: 63;
now
let n be
Element of
NAT ;
thus (((
- H)
# x)
. n)
= (((
- H)
. n)
. x) by
Def10
.= ((
- (H
. n))
. x) by
Def3
.= (
- ((H
. n)
. x)) by
VALUED_1: 8
.= (
- ((H
# x)
. n)) by
Def10
.= ((
- (H
# x))
. n) by
SEQ_1: 10;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:30
Th29:
{x}
common_on_dom H implies ((r
(#) H)
# x)
= (r
(#) (H
# x))
proof
assume
A1:
{x}
common_on_dom H;
now
let n be
Element of
NAT ;
x
in
{x} &
{x}
c= (
dom (H
. n)) by
A1,
TARSKI:def 1;
then x
in (
dom (H
. n));
then
A2: x
in (
dom (r
(#) (H
. n))) by
VALUED_1:def 5;
thus (((r
(#) H)
# x)
. n)
= (((r
(#) H)
. n)
. x) by
Def10
.= ((r
(#) (H
. n))
. x) by
Def1
.= (r
* ((H
. n)
. x)) by
A2,
VALUED_1:def 5
.= (r
* ((H
# x)
. n)) by
Def10
.= ((r
(#) (H
# x))
. n) by
SEQ_1: 9;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
SEQFUNC:31
Th30: X
common_on_dom H1 & X
common_on_dom H2 implies for x st x
in X holds ((H1
# x)
+ (H2
# x))
= ((H1
+ H2)
# x) & ((H1
# x)
- (H2
# x))
= ((H1
- H2)
# x) & ((H1
# x)
(#) (H2
# x))
= ((H1
(#) H2)
# x)
proof
assume
A1: X
common_on_dom H1 & X
common_on_dom H2;
let x;
assume x
in X;
then
{x}
common_on_dom H1 &
{x}
common_on_dom H2 by
A1,
Th25;
hence thesis by
Th27;
end;
theorem ::
SEQFUNC:32
Th31: ((
abs H)
# x)
= (
abs (H
# x)) & ((
- H)
# x)
= (
- (H
# x)) by
Th28;
theorem ::
SEQFUNC:33
Th32: X
common_on_dom H implies for x st x
in X holds ((r
(#) H)
# x)
= (r
(#) (H
# x))
proof
assume
A1: X
common_on_dom H;
let x;
assume x
in X;
then
{x}
common_on_dom H by
A1,
Th25;
hence thesis by
Th29;
end;
theorem ::
SEQFUNC:34
Th33: H1
is_point_conv_on X & H2
is_point_conv_on X implies for x st x
in X holds ((H1
# x)
+ (H2
# x))
= ((H1
+ H2)
# x) & ((H1
# x)
- (H2
# x))
= ((H1
- H2)
# x) & ((H1
# x)
(#) (H2
# x))
= ((H1
(#) H2)
# x) by
Th30;
theorem ::
SEQFUNC:35
((
abs H)
# x)
= (
abs (H
# x)) & ((
- H)
# x)
= (
- (H
# x)) by
Th31;
theorem ::
SEQFUNC:36
H
is_point_conv_on X implies for x st x
in X holds ((r
(#) H)
# x)
= (r
(#) (H
# x)) by
Th32;
theorem ::
SEQFUNC:37
Th36: X
common_on_dom H1 & X
common_on_dom H2 implies X
common_on_dom (H1
+ H2) & X
common_on_dom (H1
- H2) & X
common_on_dom (H1
(#) H2)
proof
assume that
A1: X
common_on_dom H1 and
A2: X
common_on_dom H2;
A3: X
<>
{} by
A1;
now
let n;
X
c= (
dom (H1
. n)) & X
c= (
dom (H2
. n)) by
A1,
A2;
then X
c= ((
dom (H1
. n))
/\ (
dom (H2
. n))) by
XBOOLE_1: 19;
then X
c= (
dom ((H1
. n)
+ (H2
. n))) by
VALUED_1:def 1;
hence X
c= (
dom ((H1
+ H2)
. n)) by
Def5;
end;
hence X
common_on_dom (H1
+ H2) by
A3;
now
let n;
X
c= (
dom (H1
. n)) & X
c= (
dom (H2
. n)) by
A1,
A2;
then X
c= ((
dom (H1
. n))
/\ (
dom (H2
. n))) by
XBOOLE_1: 19;
then X
c= (
dom ((H1
. n)
- (H2
. n))) by
VALUED_1: 12;
hence X
c= (
dom ((H1
- H2)
. n)) by
Th3;
end;
hence X
common_on_dom (H1
- H2) by
A3;
now
let n;
X
c= (
dom (H1
. n)) & X
c= (
dom (H2
. n)) by
A1,
A2;
then X
c= ((
dom (H1
. n))
/\ (
dom (H2
. n))) by
XBOOLE_1: 19;
then X
c= (
dom ((H1
. n)
(#) (H2
. n))) by
VALUED_1:def 4;
hence X
c= (
dom ((H1
(#) H2)
. n)) by
Def7;
end;
hence thesis by
A3;
end;
theorem ::
SEQFUNC:38
Th37: X
common_on_dom H implies X
common_on_dom (
abs H) & X
common_on_dom (
- H)
proof
assume
A1: X
common_on_dom H;
then
A2: X
<>
{} ;
now
let n;
(
dom (H
. n))
= (
dom
|.(H
. n).|) by
VALUED_1:def 11
.= (
dom ((
abs H)
. n)) by
Def4;
hence X
c= (
dom ((
abs H)
. n)) by
A1;
end;
hence X
common_on_dom (
abs H) by
A2;
now
let n;
(
dom (H
. n))
= (
dom (
- (H
. n))) by
VALUED_1: 8
.= (
dom ((
- H)
. n)) by
Def3;
hence X
c= (
dom ((
- H)
. n)) by
A1;
end;
hence thesis by
A2;
end;
theorem ::
SEQFUNC:39
Th38: X
common_on_dom H implies X
common_on_dom (r
(#) H)
proof
assume
A1: X
common_on_dom H;
A2:
now
let n;
(
dom (H
. n))
= (
dom (r
(#) (H
. n))) by
VALUED_1:def 5
.= (
dom ((r
(#) H)
. n)) by
Def1;
hence X
c= (
dom ((r
(#) H)
. n)) by
A1;
end;
X
<>
{} by
A1;
hence thesis by
A2;
end;
theorem ::
SEQFUNC:40
H1
is_point_conv_on X & H2
is_point_conv_on X implies (H1
+ H2)
is_point_conv_on X & (
lim ((H1
+ H2),X))
= ((
lim (H1,X))
+ (
lim (H2,X))) & (H1
- H2)
is_point_conv_on X & (
lim ((H1
- H2),X))
= ((
lim (H1,X))
- (
lim (H2,X))) & (H1
(#) H2)
is_point_conv_on X & (
lim ((H1
(#) H2),X))
= ((
lim (H1,X))
(#) (
lim (H2,X)))
proof
assume that
A1: H1
is_point_conv_on X and
A2: H2
is_point_conv_on X;
A3:
now
let x;
assume
A4: x
in X;
then (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
then ((H1
# x)
+ (H2
# x)) is
convergent by
SEQ_2: 5;
hence ((H1
+ H2)
# x) is
convergent by
A1,
A2,
A4,
Th33;
end;
A5:
now
let x;
assume
A6: x
in X;
then (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
then ((H1
# x)
- (H2
# x)) is
convergent by
SEQ_2: 11;
hence ((H1
- H2)
# x) is
convergent by
A1,
A2,
A6,
Th33;
end;
A7: X
common_on_dom H1 & X
common_on_dom H2 by
A1,
A2;
then X
common_on_dom (H1
+ H2) by
Th36;
hence
A8: (H1
+ H2)
is_point_conv_on X by
A3,
Th19;
A9:
now
let x;
assume
A10: x
in (
dom ((
lim (H1,X))
+ (
lim (H2,X))));
then
A11: x
in ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1:def 1;
then
A12: x
in (
dom (
lim (H2,X))) by
XBOOLE_0:def 4;
A13: x
in (
dom (
lim (H1,X))) by
A11,
XBOOLE_0:def 4;
then
A14: x
in X by
A1,
Def13;
then
A15: (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
thus (((
lim (H1,X))
+ (
lim (H2,X)))
. x)
= (((
lim (H1,X))
. x)
+ ((
lim (H2,X))
. x)) by
A10,
VALUED_1:def 1
.= ((
lim (H1
# x))
+ ((
lim (H2,X))
. x)) by
A1,
A13,
Def13
.= ((
lim (H1
# x))
+ (
lim (H2
# x))) by
A2,
A12,
Def13
.= (
lim ((H1
# x)
+ (H2
# x))) by
A15,
SEQ_2: 6
.= (
lim ((H1
+ H2)
# x)) by
A1,
A2,
A14,
Th33;
end;
A16:
now
let x;
assume
A17: x
in X;
then (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
then ((H1
# x)
(#) (H2
# x)) is
convergent by
SEQ_2: 14;
hence ((H1
(#) H2)
# x) is
convergent by
A1,
A2,
A17,
Th33;
end;
A18:
now
let x;
assume x
in (
dom ((
lim (H1,X))
(#) (
lim (H2,X))));
then
A19: x
in ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1:def 4;
then
A20: x
in (
dom (
lim (H2,X))) by
XBOOLE_0:def 4;
A21: x
in (
dom (
lim (H1,X))) by
A19,
XBOOLE_0:def 4;
then
A22: x
in X by
A1,
Def13;
then
A23: (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
thus (((
lim (H1,X))
(#) (
lim (H2,X)))
. x)
= (((
lim (H1,X))
. x)
* ((
lim (H2,X))
. x)) by
VALUED_1: 5
.= ((
lim (H1
# x))
* ((
lim (H2,X))
. x)) by
A1,
A21,
Def13
.= ((
lim (H1
# x))
* (
lim (H2
# x))) by
A2,
A20,
Def13
.= (
lim ((H1
# x)
(#) (H2
# x))) by
A23,
SEQ_2: 15
.= (
lim ((H1
(#) H2)
# x)) by
A1,
A2,
A22,
Th33;
end;
A24:
now
let x;
assume
A25: x
in (
dom ((
lim (H1,X))
- (
lim (H2,X))));
then
A26: x
in ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1: 12;
then
A27: x
in (
dom (
lim (H2,X))) by
XBOOLE_0:def 4;
A28: x
in (
dom (
lim (H1,X))) by
A26,
XBOOLE_0:def 4;
then
A29: x
in X by
A1,
Def13;
then
A30: (H1
# x) is
convergent & (H2
# x) is
convergent by
A1,
A2,
Th19;
thus (((
lim (H1,X))
- (
lim (H2,X)))
. x)
= (((
lim (H1,X))
. x)
- ((
lim (H2,X))
. x)) by
A25,
VALUED_1: 13
.= ((
lim (H1
# x))
- ((
lim (H2,X))
. x)) by
A1,
A28,
Def13
.= ((
lim (H1
# x))
- (
lim (H2
# x))) by
A2,
A27,
Def13
.= (
lim ((H1
# x)
- (H2
# x))) by
A30,
SEQ_2: 12
.= (
lim ((H1
- H2)
# x)) by
A1,
A2,
A29,
Th33;
end;
(
dom ((
lim (H1,X))
+ (
lim (H2,X))))
= ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1:def 1
.= (X
/\ (
dom (
lim (H2,X)))) by
A1,
Def13
.= (X
/\ X) by
A2,
Def13
.= X;
hence (
lim ((H1
+ H2),X))
= ((
lim (H1,X))
+ (
lim (H2,X))) by
A8,
A9,
Def13;
X
common_on_dom (H1
- H2) by
A7,
Th36;
hence
A31: (H1
- H2)
is_point_conv_on X by
A5,
Th19;
(
dom ((
lim (H1,X))
- (
lim (H2,X))))
= ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1: 12
.= (X
/\ (
dom (
lim (H2,X)))) by
A1,
Def13
.= (X
/\ X) by
A2,
Def13
.= X;
hence (
lim ((H1
- H2),X))
= ((
lim (H1,X))
- (
lim (H2,X))) by
A31,
A24,
Def13;
X
common_on_dom (H1
(#) H2) by
A7,
Th36;
hence
A32: (H1
(#) H2)
is_point_conv_on X by
A16,
Th19;
(
dom ((
lim (H1,X))
(#) (
lim (H2,X))))
= ((
dom (
lim (H1,X)))
/\ (
dom (
lim (H2,X)))) by
VALUED_1:def 4
.= (X
/\ (
dom (
lim (H2,X)))) by
A1,
Def13
.= (X
/\ X) by
A2,
Def13
.= X;
hence thesis by
A32,
A18,
Def13;
end;
theorem ::
SEQFUNC:41
H
is_point_conv_on X implies (
abs H)
is_point_conv_on X & (
lim ((
abs H),X))
=
|.(
lim (H,X)).| & (
- H)
is_point_conv_on X & (
lim ((
- H),X))
= (
- (
lim (H,X)))
proof
assume
A1: H
is_point_conv_on X;
A2:
now
let x;
assume x
in X;
then (H
# x) is
convergent by
A1,
Th19;
then (
abs (H
# x)) is
convergent by
SEQ_4: 13;
hence ((
abs H)
# x) is
convergent by
Th31;
end;
A3:
now
let x;
assume x
in (
dom (
- (
lim (H,X))));
then
A4: x
in (
dom (
lim (H,X))) by
VALUED_1: 8;
then x
in X by
A1,
Def13;
then
A5: (H
# x) is
convergent by
A1,
Th19;
thus ((
- (
lim (H,X)))
. x)
= (
- ((
lim (H,X))
. x)) by
VALUED_1: 8
.= (
- (
lim (H
# x))) by
A1,
A4,
Def13
.= (
lim (
- (H
# x))) by
A5,
SEQ_2: 10
.= (
lim ((
- H)
# x)) by
Th31;
end;
A6: X
common_on_dom H by
A1;
then X
common_on_dom (
abs H) by
Th37;
hence
A7: (
abs H)
is_point_conv_on X by
A2,
Th19;
A8:
now
let x;
assume x
in (
dom
|.(
lim (H,X)).|);
then
A9: x
in (
dom (
lim (H,X))) by
VALUED_1:def 11;
then x
in X by
A1,
Def13;
then
A10: (H
# x) is
convergent by
A1,
Th19;
thus (
|.(
lim (H,X)).|
. x)
=
|.((
lim (H,X))
. x).| by
VALUED_1: 18
.=
|.(
lim (H
# x)).| by
A1,
A9,
Def13
.= (
lim
|.(H
# x).|) by
A10,
SEQ_4: 14
.= (
lim ((
abs H)
# x)) by
Th31;
end;
A11:
now
let x;
assume x
in X;
then (H
# x) is
convergent by
A1,
Th19;
then (
- (H
# x)) is
convergent by
SEQ_2: 9;
hence ((
- H)
# x) is
convergent by
Th31;
end;
(
dom
|.(
lim (H,X)).|)
= (
dom (
lim (H,X))) by
VALUED_1:def 11
.= X by
A1,
Def13;
hence (
lim ((
abs H),X))
=
|.(
lim (H,X)).| by
A7,
A8,
Def13;
X
common_on_dom (
- H) by
A6,
Th37;
hence
A12: (
- H)
is_point_conv_on X by
A11,
Th19;
(
dom (
- (
lim (H,X))))
= (
dom (
lim (H,X))) by
VALUED_1: 8
.= X by
A1,
Def13;
hence thesis by
A12,
A3,
Def13;
end;
theorem ::
SEQFUNC:42
H
is_point_conv_on X implies (r
(#) H)
is_point_conv_on X & (
lim ((r
(#) H),X))
= (r
(#) (
lim (H,X)))
proof
assume
A1: H
is_point_conv_on X;
then
A2: X
common_on_dom H;
A3:
now
let x;
assume
A4: x
in (
dom (r
(#) (
lim (H,X))));
then
A5: x
in (
dom (
lim (H,X))) by
VALUED_1:def 5;
then
A6: x
in X by
A1,
Def13;
then
A7: (H
# x) is
convergent by
A1,
Th19;
thus ((r
(#) (
lim (H,X)))
. x)
= (r
* ((
lim (H,X))
. x)) by
A4,
VALUED_1:def 5
.= (r
* (
lim (H
# x))) by
A1,
A5,
Def13
.= (
lim (r
(#) (H
# x))) by
A7,
SEQ_2: 8
.= (
lim ((r
(#) H)
# x)) by
A2,
A6,
Th32;
end;
A8:
now
let x;
assume
A9: x
in X;
then (H
# x) is
convergent by
A1,
Th19;
then (r
(#) (H
# x)) is
convergent by
SEQ_2: 7;
hence ((r
(#) H)
# x) is
convergent by
A2,
A9,
Th32;
end;
X
common_on_dom (r
(#) H) by
A2,
Th38;
hence
A10: (r
(#) H)
is_point_conv_on X by
A8,
Th19;
(
dom (r
(#) (
lim (H,X))))
= (
dom (
lim (H,X))) by
VALUED_1:def 5
.= X by
A1,
Def13;
hence thesis by
A10,
A3,
Def13;
end;
theorem ::
SEQFUNC:43
Th42: H
is_unif_conv_on X iff X
common_on_dom H & H
is_point_conv_on X & for r st
0
< r holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- ((
lim (H,X))
. x)).|
< r
proof
thus H
is_unif_conv_on X implies X
common_on_dom H & H
is_point_conv_on X & for r st
0
< r holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- ((
lim (H,X))
. x)).|
< r
proof
assume
A1: H
is_unif_conv_on X;
then
consider f such that
A2: X
= (
dom f) and
A3: for p st p
>
0 holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p;
thus X
common_on_dom H by
A1;
A4:
now
let x such that
A5: x
in X;
let p;
assume p
>
0 ;
then
consider k such that
A6: for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A3;
take k;
let n;
assume n
>= k;
hence
|.(((H
. n)
. x)
- (f
. x)).|
< p by
A5,
A6;
end;
thus H
is_point_conv_on X by
A1,
Th21;
then
A7: f
= (
lim (H,X)) by
A2,
A4,
Th20;
let r;
assume r
>
0 ;
then
consider k such that
A8: for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- (f
. x)).|
< r by
A3;
take k;
let n, x;
assume n
>= k & x
in X;
hence thesis by
A7,
A8;
end;
assume that
A9: X
common_on_dom H and
A10: H
is_point_conv_on X and
A11: for r st
0
< r holds ex k st for n, x st n
>= k & x
in X holds
|.(((H
. n)
. x)
- ((
lim (H,X))
. x)).|
< r;
(
dom (
lim (H,X)))
= X by
A10,
Def13;
hence thesis by
A9,
A11;
end;
reserve H for
Functional_Sequence of
REAL ,
REAL ;
theorem ::
SEQFUNC:44
H
is_unif_conv_on X & (for n holds ((H
. n)
| X) is
continuous) implies ((
lim (H,X))
| X) is
continuous
proof
set l = (
lim (H,X));
assume that
A1: H
is_unif_conv_on X and
A2: for n holds ((H
. n)
| X) is
continuous;
A3: H
is_point_conv_on X by
A1,
Th21;
then
A4: (
dom l)
= X by
Def13;
A5: X
common_on_dom H by
A1;
for x0 be
Real st x0
in (
dom (l
| X)) holds (l
| X)
is_continuous_in x0
proof
let x0 be
Real;
assume x0
in (
dom (l
| X));
then
A6: x0
in X by
RELAT_1: 57;
reconsider x0 as
Element of
REAL by
XREAL_0:def 1;
for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1 be
Real st x1
in (
dom (l
| X)) &
|.(x1
- x0).|
< s holds
|.(((l
| X)
. x1)
- ((l
| X)
. x0)).|
< r
proof
let r be
Real;
assume
0
< r;
then
A7:
0
< (r
/ 3) by
XREAL_1: 222;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
consider k such that
A8: for n holds for x1 be
Element of
REAL st n
>= k & x1
in X holds
|.(((H
. n)
. x1)
- (l
. x1)).|
< (r
/ 3) by
A1,
A7,
Th42;
consider k1 be
Nat such that
A9: for n st n
>= k1 holds
|.(((H
. n)
. x0)
- (l
. x0)).|
< (r
/ 3) by
A3,
A6,
A7,
Th20;
reconsider m = (
max (k,k1)) as
Nat by
TARSKI: 1;
set h = (H
. m);
A10: X
c= (
dom h) by
A5;
A11: (
dom (h
| X))
= ((
dom h)
/\ X) by
RELAT_1: 61
.= X by
A10,
XBOOLE_1: 28;
(h
| X) is
continuous by
A2;
then (h
| X)
is_continuous_in x0 by
A6,
A11,
FCONT_1:def 2;
then
consider s be
Real such that
A12:
0
< s and
A13: for x1 be
Real st x1
in (
dom (h
| X)) &
|.(x1
- x0).|
< s holds
|.(((h
| X)
. x1)
- ((h
| X)
. x0)).|
< (r
/ 3) by
A7,
FCONT_1: 3;
reconsider s as
Real;
take s;
thus
0
< s by
A12;
let x1 be
Real;
assume that
A14: x1
in (
dom (l
| X)) and
A15:
|.(x1
- x0).|
< s;
A16: (
dom (l
| X))
= ((
dom l)
/\ X) by
RELAT_1: 61
.= X by
A4;
then
|.(((h
| X)
. x1)
- ((h
| X)
. x0)).|
< (r
/ 3) by
A11,
A13,
A14,
A15;
then
|.((h
. x1)
- ((h
| X)
. x0)).|
< (r
/ 3) by
A16,
A11,
A14,
FUNCT_1: 47;
then
A17:
|.((h
. x1)
- (h
. x0)).|
< (r
/ 3) by
A6,
FUNCT_1: 49;
|.((h
. x0)
- (l
. x0)).|
< (r
/ 3) by
A9,
XXREAL_0: 25;
then
|.(((h
. x1)
- (h
. x0))
+ ((h
. x0)
- (l
. x0))).|
<= (
|.((h
. x1)
- (h
. x0)).|
+
|.((h
. x0)
- (l
. x0)).|) & (
|.((h
. x1)
- (h
. x0)).|
+
|.((h
. x0)
- (l
. x0)).|)
< ((r
/ 3)
+ (r
/ 3)) by
A17,
COMPLEX1: 56,
XREAL_1: 8;
then
A18:
|.(((h
. x1)
- (h
. x0))
+ ((h
. x0)
- (l
. x0))).|
< ((r
/ 3)
+ (r
/ 3)) by
XXREAL_0: 2;
|.((l
. x1)
- (l
. x0)).|
=
|.(((l
. x1)
- (h
. x1))
+ (((h
. x1)
- (h
. x0))
+ ((h
. x0)
- (l
. x0)))).|;
then
A19:
|.((l
. x1)
- (l
. x0)).|
<= (
|.((l
. x1)
- (h
. x1)).|
+
|.(((h
. x1)
- (h
. x0))
+ ((h
. x0)
- (l
. x0))).|) by
COMPLEX1: 56;
|.((h
. x1)
- (l
. x1)).|
< (r
/ 3) by
A8,
A16,
A14,
XXREAL_0: 25;
then
|.(
- ((l
. x1)
- (h
. x1))).|
< (r
/ 3);
then
|.((l
. x1)
- (h
. x1)).|
< (r
/ 3) by
COMPLEX1: 52;
then (
|.((l
. x1)
- (h
. x1)).|
+
|.(((h
. x1)
- (h
. x0))
+ ((h
. x0)
- (l
. x0))).|)
< ((r
/ 3)
+ ((r
/ 3)
+ (r
/ 3))) by
A18,
XREAL_1: 8;
then
|.((l
. x1)
- (l
. x0)).|
< (((r
/ 3)
+ (r
/ 3))
+ (r
/ 3)) by
A19,
XXREAL_0: 2;
then
|.(((l
| X)
. x1)
- (l
. x0)).|
< r by
A14,
FUNCT_1: 47;
hence thesis by
A4,
RELAT_1: 68;
end;
hence thesis by
FCONT_1: 3;
end;
hence thesis by
FCONT_1:def 2;
end;