calcul_1.miz
begin
reserve Al for
QC-alphabet;
reserve a,b,c,d for
object,
i,j,k,m,n for
Nat,
p,q,r for
Element of (
CQC-WFF Al),
x,y,y0 for
bound_QC-variable of Al,
X for
Subset of (
CQC-WFF Al),
A for non
empty
set,
J for
interpretation of Al, A,
v,w for
Element of (
Valuations_in (Al,A)),
Sub for
CQC_Substitution of Al,
f,f1,g,h,h1 for
FinSequence of (
CQC-WFF Al);
definition
let D be non
empty
set, f be
FinSequence of D;
::
CALCUL_1:def1
func
Ant (f) ->
FinSequence of D means
:
Def1: for i st (
len f)
= (i
+ 1) holds it
= (f
| (
Seg i)) if (
len f)
>
0
otherwise it
=
{} ;
existence
proof
A1: (
len f)
>
0 implies ex g be
FinSequence of D st for i st (
len f)
= (i
+ 1) holds g
= (f
| (
Seg i))
proof
assume (
len f)
>
0 ;
then
consider j be
Nat such that
A2: (
len f)
= (j
+ 1) by
NAT_1: 6;
reconsider j as
Element of
NAT by
ORDINAL1:def 12;
take g = (f
| (
Seg j));
reconsider g as
FinSequence by
FINSEQ_1: 15;
now
A3: (
rng g)
c= (
rng f) by
RELAT_1: 70;
let a be
object;
assume a
in (
rng g);
then a
in (
rng f) by
A3;
hence a
in D;
end;
then (
rng g)
c= D;
then
reconsider g as
FinSequence of D by
FINSEQ_1:def 4;
for i st (
len f)
= (i
+ 1) holds g
= (f
| (
Seg i)) by
A2;
hence thesis;
end;
(
<*> D)
=
{} ;
hence thesis by
A1;
end;
uniqueness
proof
let g,h be
FinSequence of D;
(
len f)
>
0 & (for i st (
len f)
= (i
+ 1) holds g
= (f
| (
Seg i))) & (for i st (
len f)
= (i
+ 1) holds h
= (f
| (
Seg i))) implies g
= h
proof
assume that
A4: (
len f)
>
0 and
A5: for i st (
len f)
= (i
+ 1) holds g
= (f
| (
Seg i)) and
A6: for i st (
len f)
= (i
+ 1) holds h
= (f
| (
Seg i));
consider j be
Nat such that
A7: (
len f)
= (j
+ 1) by
A4,
NAT_1: 6;
reconsider j as
Element of
NAT by
ORDINAL1:def 12;
g
= (f
| (
Seg j)) by
A5,
A7;
hence thesis by
A6,
A7;
end;
hence thesis;
end;
consistency ;
end
definition
let Al;
let f be
FinSequence of (
CQC-WFF Al);
::
CALCUL_1:def2
func
Suc (f) ->
Element of (
CQC-WFF Al) equals
:
Def2: (f
. (
len f)) if (
len f)
>
0
otherwise (
VERUM Al);
coherence
proof
per cases ;
suppose (
len f)
>
0 ;
then (
0
+ 1)
<= (
len f) by
NAT_1: 13;
then (
len f)
in (
dom f) by
FINSEQ_3: 25;
then (f
. (
len f))
in (
rng f) by
FUNCT_1: 3;
hence thesis;
end;
suppose
A1: not (
len f)
>
0 ;
thus thesis by
A1;
end;
end;
consistency ;
end
definition
let f be
Relation, p be
set;
::
CALCUL_1:def3
pred p
is_tail_of f means p
in (
rng f);
end
Lm1:
now
let f be
FinSequence, p be
set;
assume p
is_tail_of f;
then p
in (
rng f);
then
consider i be
object such that
A1: i
in (
dom f) and
A2: (f
. i)
= p by
FUNCT_1:def 3;
reconsider i as
Nat by
A1;
take i;
thus i
in (
dom f) & (f
. i)
= p by
A1,
A2;
end;
Lm2: for f be
FinSequence, p be
set st ex i be
Element of
NAT st i
in (
dom f) & (f
. i)
= p holds p
is_tail_of f by
FUNCT_1:def 3;
definition
let Al, f, g;
::
CALCUL_1:def4
pred f
is_Subsequence_of g means ex N be
Subset of
NAT st f
c= (
Seq (g
| N));
end
theorem ::
CALCUL_1:1
Th1: f
is_Subsequence_of g implies (
rng f)
c= (
rng g) & ex N be
Subset of
NAT st (
rng f)
c= (
rng (g
| N))
proof
assume f
is_Subsequence_of g;
then
consider N be
Subset of
NAT such that
A1: f
c= (
Seq (g
| N));
A2: (
rng (g
| N))
c= (
rng g) by
RELAT_1: 70;
A3:
now
(
rng (
Seq (g
| N)))
= (
rng ((g
| N)
* (
Sgm (
dom (g
| N))))) by
FINSEQ_1:def 14;
then
A4: (
rng (
Seq (g
| N)))
c= (
rng (g
| N)) by
RELAT_1: 26;
let a be
object;
assume a
in (
rng f);
then
consider n be
Nat such that
A5: n
in (
dom f) and
A6: (f
. n)
= a by
FINSEQ_2: 10;
[n, (f
. n)]
in f by
A5,
FUNCT_1: 1;
then
A7: ((
Seq (g
| N))
. n)
= a by
A1,
A6,
FUNCT_1: 1;
(
dom f)
c= (
dom (
Seq (g
| N))) by
A1,
RELAT_1: 11;
then a
in (
rng (
Seq (g
| N))) by
A5,
A7,
FUNCT_1: 3;
hence a
in (
rng (g
| N)) by
A4;
end;
then (
rng f)
c= (
rng (g
| N));
hence (
rng f)
c= (
rng g) by
A2;
take N;
thus thesis by
A3;
end;
theorem ::
CALCUL_1:2
Th2: (
len f)
>
0 implies ((
len (
Ant f))
+ 1)
= (
len f) & (
len (
Ant f))
< (
len f)
proof
assume (
len f)
>
0 ;
then
consider i be
Nat such that
A1: (
len f)
= (i
+ 1) by
NAT_1: 6;
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
(
Ant f)
= (f
| (
Seg i)) by
A1,
Def1;
then (
dom (
Ant f))
= ((
dom f)
/\ (
Seg i)) by
RELAT_1: 61;
then (
Seg (
len (
Ant f)))
= ((
dom f)
/\ (
Seg i)) by
FINSEQ_1:def 3;
then
A2: (
Seg (
len (
Ant f)))
= ((
Seg (
len f))
/\ (
Seg i)) by
FINSEQ_1:def 3;
i
<= (
len f) by
A1,
NAT_1: 11;
then
A3: (
Seg i)
c= (
Seg (
len f)) by
FINSEQ_1: 5;
hence ((
len (
Ant f))
+ 1)
= (
len f) by
A1,
A2,
FINSEQ_1: 6,
XBOOLE_1: 28;
(
len (
Ant f))
= i by
A2,
A3,
FINSEQ_1: 6,
XBOOLE_1: 28;
hence thesis by
A1,
NAT_1: 13;
end;
theorem ::
CALCUL_1:3
Th3: (
len f)
>
0 implies f
= ((
Ant f)
^
<*(
Suc f)*>) & (
rng f)
= ((
rng (
Ant f))
\/
{(
Suc f)})
proof
assume
A1: (
len f)
>
0 ;
then
A2: (
len f)
= ((
len (
Ant f))
+ 1) by
Th2;
A3: (
dom f)
= (
Seg (
len f)) by
FINSEQ_1:def 3;
A4:
now
let j be
Nat such that
A5: j
in (
dom f);
A6: 1
<= j by
A3,
A5,
FINSEQ_1: 1;
A7:
now
assume j
<= (
len (
Ant f));
then
A8: j
in (
dom (
Ant f)) by
A6,
FINSEQ_3: 25;
(
Ant f)
= (f
| (
Seg (
len (
Ant f)))) by
A2,
Def1;
then (
Ant f)
= (f
| (
dom (
Ant f))) by
FINSEQ_1:def 3;
then (f
. j)
= ((
Ant f)
. j) by
A8,
FUNCT_1: 49;
hence (f
. j)
= (((
Ant f)
^
<*(
Suc f)*>)
. j) by
A8,
FINSEQ_1:def 7;
end;
A9:
now
1
in (
Seg 1) by
FINSEQ_1: 1;
then
A10: 1
in (
dom
<*(
Suc f)*>) by
FINSEQ_1: 38;
assume
A11: j
= ((
len (
Ant f))
+ 1);
then j
= (
len f) by
A1,
Th2;
then (f
. j)
= (
Suc f) by
A1,
Def2;
then (f
. j)
= (
<*(
Suc f)*>
. 1) by
FINSEQ_1: 40;
hence (f
. j)
= (((
Ant f)
^
<*(
Suc f)*>)
. j) by
A11,
A10,
FINSEQ_1:def 7;
end;
j
<= ((
len (
Ant f))
+ 1) by
A2,
A3,
A5,
FINSEQ_1: 1;
hence (f
. j)
= (((
Ant f)
^
<*(
Suc f)*>)
. j) by
A7,
A9,
NAT_1: 8;
end;
(
len f)
= ((
len (
Ant f))
+ (
len
<*(
Suc f)*>)) by
A2,
FINSEQ_1: 39;
then
A12: (
len f)
= (
len ((
Ant f)
^
<*(
Suc f)*>)) by
FINSEQ_1: 22;
then f
= ((
Ant f)
^
<*(
Suc f)*>) by
A4,
FINSEQ_2: 9;
then (
rng f)
= ((
rng (
Ant f))
\/ (
rng
<*(
Suc f)*>)) by
FINSEQ_1: 31;
hence thesis by
A12,
A4,
FINSEQ_1: 38,
FINSEQ_2: 9;
end;
theorem ::
CALCUL_1:4
Th4: (
len f)
> 1 implies (
len (
Ant f))
>
0
proof
assume (
len f)
> 1;
then ((
len (
Ant f))
+ 1)
> 1 by
Th2;
hence thesis by
NAT_1: 13;
end;
theorem ::
CALCUL_1:5
Th5: (
Suc (f
^
<*p*>))
= p & (
Ant (f
^
<*p*>))
= f
proof
set fin = (f
^
<*p*>);
A1: (
len fin)
= ((
len f)
+ 1) by
FINSEQ_2: 16;
then (fin
. (
len fin))
= p by
FINSEQ_1: 42;
hence (
Suc (f
^
<*p*>))
= p by
Def2;
thus (
Ant (f
^
<*p*>))
= f
proof
set fin = (f
^
<*p*>);
now
let a be
object;
assume a
in f;
then
consider k be
Nat such that
A2: k
in (
dom f) and
A3: a
=
[k, (f
. k)] by
FINSEQ_1: 12;
k
in (
dom fin) & (f
. k)
= (fin
. k) by
A2,
FINSEQ_1:def 7,
FINSEQ_2: 15;
hence a
in fin by
A3,
FUNCT_1: 1;
end;
then f
c= fin;
then f
= (fin
| (
dom f)) by
GRFUNC_1: 23;
then f
= (fin
| (
Seg (
len f))) by
FINSEQ_1:def 3;
hence thesis by
A1,
Def1;
end;
end;
reserve fin,fin1 for
FinSequence;
theorem ::
CALCUL_1:6
Th6: (
len fin)
<= (
len (fin
^ fin1)) & (
len fin1)
<= (
len (fin
^ fin1)) & (fin
<>
{} implies 1
<= (
len fin) & (
len fin1)
< (
len (fin1
^ fin)))
proof
(
len (fin
^ fin1))
= ((
len fin)
+ (
len fin1)) by
FINSEQ_1: 22;
hence (
len fin)
<= (
len (fin
^ fin1)) & (
len fin1)
<= (
len (fin
^ fin1)) by
NAT_1: 12;
assume fin
<>
{} ;
then
A1: (
0
+ 1)
<= (
len fin) by
NAT_1: 13;
then ((
len fin1)
+ 1)
<= ((
len fin)
+ (
len fin1)) by
XREAL_1: 6;
then ((
len fin1)
+ 1)
<= (
len (fin1
^ fin)) by
FINSEQ_1: 22;
hence thesis by
A1,
NAT_1: 13;
end;
theorem ::
CALCUL_1:7
Th7: (
Seq ((f
^ g)
| (
dom f)))
= ((f
^ g)
| (
dom f))
proof
((f
^ g)
| (
dom f))
= f by
FINSEQ_1: 21;
hence thesis by
FINSEQ_3: 116;
end;
theorem ::
CALCUL_1:8
Th8: f
is_Subsequence_of (f
^ g)
proof
set a = (
len f);
take N = (
Seg a);
reconsider f1 = ((f
^ g)
| N) as
FinSequence by
FINSEQ_1: 15;
A1: N
= (
dom f) by
FINSEQ_1:def 3;
then f
c= f1 by
FINSEQ_1: 21;
hence thesis by
A1,
Th7;
end;
theorem ::
CALCUL_1:9
Th9: 1
< (
len ((fin
^
<*b*>)
^
<*c*>))
proof
(
len ((fin
^
<*b*>)
^
<*c*>))
= ((
len (fin
^
<*b*>))
+ (
len
<*c*>)) by
FINSEQ_1: 22;
then (
len ((fin
^
<*b*>)
^
<*c*>))
= ((
len (fin
^
<*b*>))
+ 1) by
FINSEQ_1: 39;
then (
len ((fin
^
<*b*>)
^
<*c*>))
= (((
len fin)
+ (
len
<*b*>))
+ 1) by
FINSEQ_1: 22;
then (
len ((fin
^
<*b*>)
^
<*c*>))
= (((
len fin)
+ 1)
+ 1) by
FINSEQ_1: 39;
then (
len ((fin
^
<*b*>)
^
<*c*>))
= ((
len fin)
+ (1
+ 1));
then (1
+ 1)
<= (
len ((fin
^
<*b*>)
^
<*c*>)) by
NAT_1: 11;
hence thesis by
NAT_1: 13;
end;
theorem ::
CALCUL_1:10
Th10: 1
<= (
len (fin
^
<*b*>)) & (
len (fin
^
<*b*>))
in (
dom (fin
^
<*b*>))
proof
(
len (fin
^
<*b*>))
= ((
len fin)
+ 1) by
FINSEQ_2: 16;
then 1
<= (
len (fin
^
<*b*>)) by
NAT_1: 11;
hence thesis by
FINSEQ_3: 25;
end;
theorem ::
CALCUL_1:11
Th11:
0
< m implies (
len (
Sgm ((
Seg n)
\/
{(n
+ m)})))
= (n
+ 1)
proof
A1: m
<= (n
+ m) by
NAT_1: 11;
assume
A2:
0
< m;
then (
card ((
Seg n)
\/
{(n
+ m)}))
= ((
card (
Seg n))
+ 1) by
CARD_2: 41,
FINSEQ_3: 10;
then
A3: (
card ((
Seg n)
\/
{(n
+ m)}))
= (n
+ 1) by
FINSEQ_1: 57;
(
0
+ 1)
<= m by
A2,
NAT_1: 13;
then 1
<= (m
+ n) by
A1,
XXREAL_0: 2;
then (n
+ m)
in (
Seg (n
+ m)) by
FINSEQ_1: 1;
then
A4:
{(n
+ m)}
c= (
Seg (n
+ m)) by
ZFMISC_1: 31;
(
Seg n)
c= (
Seg (n
+ m)) by
FINSEQ_3: 18;
hence thesis by
A3,
A4,
FINSEQ_3: 39,
XBOOLE_1: 8;
end;
theorem ::
CALCUL_1:12
Th12:
0
< m implies (
dom (
Sgm ((
Seg n)
\/
{(n
+ m)})))
= (
Seg (n
+ 1))
proof
assume
0
< m;
then (
len (
Sgm ((
Seg n)
\/
{(n
+ m)})))
= (n
+ 1) by
Th11;
hence thesis by
FINSEQ_1:def 3;
end;
theorem ::
CALCUL_1:13
Th13:
0
< (
len f) implies f
is_Subsequence_of (((
Ant f)
^ g)
^
<*(
Suc f)*>)
proof
set n = (
len (
Ant f));
set m = (
len g);
set N = ((
Seg n)
\/
{(n
+ (m
+ 1))});
set f1 = (((
Ant f)
^ g)
^
<*(
Suc f)*>);
reconsider f2 = (f1
| N) as
FinSubsequence;
assume
A1:
0
< (
len f);
take N;
now
now
let b be
object such that
A2: b
in N;
reconsider i = b as
Element of
NAT by
A2;
A3:
now
assume i
in
{(n
+ (m
+ 1))};
then
A4: i
= ((n
+ m)
+ 1) by
TARSKI:def 1;
then
A5: 1
<= i by
NAT_1: 11;
(
len f1)
= ((
len ((
Ant f)
^ g))
+ (
len
<*(
Suc f)*>)) by
FINSEQ_1: 22;
then (
len f1)
= ((n
+ m)
+ (
len
<*(
Suc f)*>)) by
FINSEQ_1: 22;
then i
<= (
len f1) by
A4,
FINSEQ_1: 39;
hence i
in (
dom f1) by
A5,
FINSEQ_3: 25;
end;
now
f1
= ((
Ant f)
^ (g
^
<*(
Suc f)*>)) by
FINSEQ_1: 32;
then
A6: n
<= (
len f1) by
Th6;
assume
A7: i
in (
Seg n);
then
A8: 1
<= i by
FINSEQ_1: 1;
i
<= n by
A7,
FINSEQ_1: 1;
then i
<= (
len f1) by
A6,
XXREAL_0: 2;
hence i
in (
dom f1) by
A8,
FINSEQ_3: 25;
end;
hence b
in (
dom f1) by
A2,
A3,
XBOOLE_0:def 3;
end;
then
A9: N
c= (
dom f1);
(
dom f2)
= ((
dom f1)
/\ N) by
RELAT_1: 61;
then
A10: (
dom f2)
= N by
A9,
XBOOLE_1: 28;
then
A11: (
dom (
Sgm (
dom f2)))
= (
Seg (n
+ 1)) by
Th12;
now
let i;
i
in (
dom f) iff 1
<= i & i
<= (
len f) by
FINSEQ_3: 25;
then i
in (
dom f) iff 1
<= i & i
<= (n
+ 1) by
A1,
Th2;
hence i
in (
dom f) iff i
in (
Seg (n
+ 1)) by
FINSEQ_1: 1;
end;
then for b be
object holds b
in (
dom f) iff b
in (
Seg (n
+ 1));
then
A12: (
dom (
Sgm (
dom f2)))
= (
dom f) by
A11,
TARSKI: 2;
A13:
now
let i, j such that
A14: i
in (
Seg n) and
A15: j
in
{(n
+ (m
+ 1))};
A16: i
<= n by
A14,
FINSEQ_1: 1;
(n
+ 1)
<= ((n
+ 1)
+ m) by
NAT_1: 11;
then n
< (n
+ (m
+ 1)) by
NAT_1: 13;
then n
< j by
A15,
TARSKI:def 1;
hence i
< j by
A16,
XXREAL_0: 2;
end;
let b be
object such that
A17: b
in f;
consider c,d be
object such that
A18: b
=
[c, d] by
A17,
RELAT_1:def 1;
A19: c
in (
dom f) by
A17,
A18,
FUNCT_1: 1;
then
reconsider i = c as
Element of
NAT ;
(
0
+ 1)
<= (m
+ 1) & (m
+ 1)
<= (n
+ (m
+ 1)) by
NAT_1: 11;
then 1
<= (n
+ (m
+ 1)) by
XXREAL_0: 2;
then (n
+ (m
+ 1))
in (
Seg (n
+ (m
+ 1))) by
FINSEQ_1: 1;
then
{(n
+ (m
+ 1))}
c= (
Seg (n
+ (m
+ 1))) by
ZFMISC_1: 31;
then (
Sgm (
dom f2))
= ((
Sgm (
Seg n))
^ (
Sgm
{(n
+ (m
+ 1))})) by
A10,
A13,
FINSEQ_3: 42;
then (
Sgm (
dom f2))
= ((
Sgm (
Seg n))
^
<*(n
+ (m
+ 1))*>) by
FINSEQ_3: 44;
then
A20: (
Sgm (
dom f2))
= ((
idseq n)
^
<*(n
+ (m
+ 1))*>) by
FINSEQ_3: 48;
A21:
now
assume
A22: i
in (
Seg n);
then
A23: i
in (
dom (
Ant f)) by
FINSEQ_1:def 3;
i
in (
dom (
idseq n)) by
A22;
then ((
Sgm (
dom f2))
. i)
= ((
idseq n)
. i) by
A20,
FINSEQ_1:def 7;
then
A24: ((
Sgm (
dom f2))
. i)
= i by
A22,
FUNCT_1: 18;
i
in (
dom (
Sgm (
dom f2))) & (
Seq f2)
= (f2
* (
Sgm (
dom f2))) by
A17,
A18,
A12,
FINSEQ_1:def 14,
FUNCT_1: 1;
then ((
Seq f2)
. i)
= (f2
. i) by
A24,
FUNCT_1: 13;
then ((
Seq f2)
. i)
= ((f2
| (
Seg n))
. i) by
A22,
FUNCT_1: 49;
then
A25: ((
Seq f2)
. i)
= ((f1
| (
Seg n))
. i) by
RELAT_1: 74,
XBOOLE_1: 7;
f1
= ((
Ant f)
^ (g
^
<*(
Suc f)*>)) & (
Seg (
len (
Ant f)))
= (
dom (
Ant f)) by
FINSEQ_1: 32,
FINSEQ_1:def 3;
then
A26: ((
Seq f2)
. i)
= ((
Ant f)
. i) by
A25,
FINSEQ_1: 21;
f
= ((
Ant f)
^
<*(
Suc f)*>) by
A1,
Th3;
hence ((
Seq f2)
. i)
= (f
. i) by
A26,
A23,
FINSEQ_1:def 7;
end;
(
rng (
Sgm (
dom (f1
| N))))
= (
dom (f1
| N)) by
FINSEQ_1: 50;
then (
dom f)
= (
dom ((f1
| N)
* (
Sgm (
dom (f1
| N))))) by
A12,
RELAT_1: 27;
then
A27: (
dom f)
= (
dom (
Seq f2)) by
FINSEQ_1:def 14;
A28:
now
1
in (
Seg 1) by
FINSEQ_1: 1;
then
A29: (
len ((
Ant f)
^ g))
= (n
+ m) & 1
in (
dom
<*(
Suc f)*>) by
FINSEQ_1: 22,
FINSEQ_1: 38;
A30: i
in (
dom (
Sgm (
dom f2))) & (
Seq f2)
= (f2
* (
Sgm (
dom f2))) by
A17,
A18,
A12,
FINSEQ_1:def 14,
FUNCT_1: 1;
assume
A31: i
= (n
+ 1);
(
len (
idseq n))
= n by
CARD_1:def 7;
then ((
Sgm (
dom f2))
. i)
= (n
+ (m
+ 1)) by
A20,
A31,
FINSEQ_1: 42;
then
A32: ((
Seq f2)
. i)
= (f2
. (n
+ (m
+ 1))) by
A30,
FUNCT_1: 13;
(n
+ (m
+ 1))
in
{(n
+ (m
+ 1))} &
{(n
+ (m
+ 1))}
c= N by
TARSKI:def 1,
XBOOLE_1: 7;
then ((
Seq f2)
. i)
= (f1
. ((n
+ m)
+ 1)) by
A32,
FUNCT_1: 49;
then
A33: ((
Seq f2)
. i)
= (
<*(
Suc f)*>
. 1) by
A29,
FINSEQ_1:def 7;
(f
. i)
= (f
. (
len f)) by
A1,
A31,
Th2;
then (f
. i)
= (
Suc f) by
A1,
Def2;
hence ((
Seq f2)
. i)
= (f
. i) by
A33,
FINSEQ_1: 40;
end;
d
= (f
. c) by
A17,
A18,
FUNCT_1: 1;
hence b
in (
Seq f2) by
A18,
A19,
A11,
A12,
A21,
A28,
A27,
FINSEQ_2: 7,
FUNCT_1: 1;
end;
hence thesis;
end;
theorem ::
CALCUL_1:14
Th14: 1
in (
dom
<*c, d*>) & 2
in (
dom
<*c, d*>) & ((f
^
<*c, d*>)
. ((
len f)
+ 1))
= c & ((f
^
<*c, d*>)
. ((
len f)
+ 2))
= d
proof
A1: 2
<= (
len
<*c, d*>) by
FINSEQ_1: 44;
then 2
in (
dom
<*c, d*>) by
FINSEQ_3: 25;
then
A2: ((f
^
<*c, d*>)
. ((
len f)
+ 2))
= (
<*c, d*>
. 2) by
FINSEQ_1:def 7;
1
<= 2;
then
A3: 1
<= (
len
<*c, d*>) by
FINSEQ_1: 44;
then 1
in (
dom
<*c, d*>) by
FINSEQ_3: 25;
then ((f
^
<*c, d*>)
. ((
len f)
+ 1))
= (
<*c, d*>
. 1) by
FINSEQ_1:def 7;
hence thesis by
A3,
A1,
A2,
FINSEQ_1: 44,
FINSEQ_3: 25;
end;
begin
definition
let Al, f;
::
CALCUL_1:def5
func
still_not-bound_in f ->
Subset of (
bound_QC-variables Al) means
:
Def5: a
in it iff ex i, p st i
in (
dom f) & p
= (f
. i) & a
in (
still_not-bound_in p);
existence
proof
defpred
P[
object] means ex i, p st i
in (
dom f) & p
= (f
. i) & $1
in (
still_not-bound_in p);
consider X be
set such that
A1: for a be
object holds a
in X iff a
in (
bound_QC-variables Al) &
P[a] from
XBOOLE_0:sch 1;
take X;
for a be
object st a
in X holds a
in (
bound_QC-variables Al) by
A1;
hence X is
Subset of (
bound_QC-variables Al) by
TARSKI:def 3;
thus thesis by
A1;
end;
uniqueness
proof
let X,Y be
Subset of (
bound_QC-variables Al);
assume that
A2: for a holds a
in X iff ex i, p st i
in (
dom f) & p
= (f
. i) & a
in (
still_not-bound_in p) and
A3: for a holds a
in Y iff ex i, p st i
in (
dom f) & p
= (f
. i) & a
in (
still_not-bound_in p);
now
let a be
object;
a
in X iff ex i, p st i
in (
dom f) & p
= (f
. i) & a
in (
still_not-bound_in p) by
A2;
hence a
in X iff a
in Y by
A3;
end;
hence thesis by
TARSKI: 2;
end;
end
definition
let Al;
::
CALCUL_1:def6
func
set_of_CQC-WFF-seq (Al) ->
set means
:
Def6: a
in it iff a is
FinSequence of (
CQC-WFF Al);
existence
proof
defpred
P[
object] means $1 is
FinSequence of (
CQC-WFF Al);
consider X be
set such that
A1: for a be
object holds a
in X iff a
in (
bool
[:
NAT , (
CQC-WFF Al):]) &
P[a] from
XBOOLE_0:sch 1;
take X;
thus thesis by
A1;
end;
uniqueness
proof
let X,Y be
set such that
A2: a
in X iff a is
FinSequence of (
CQC-WFF Al) and
A3: a
in Y iff a is
FinSequence of (
CQC-WFF Al);
now
let a be
object;
a
in X iff a is
FinSequence of (
CQC-WFF Al) by
A2;
hence a
in X iff a
in Y by
A3;
end;
hence thesis by
TARSKI: 2;
end;
end
reserve PR,PR1 for
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
definition
let Al, PR;
let n be
Nat;
::
CALCUL_1:def7
pred PR,n
is_a_correct_step means
:
Def7: ex f st (
Suc f)
is_tail_of (
Ant f) & ((PR
. n)
`1 )
= f if ((PR
. n)
`2 )
=
0 ,
ex f st ((PR
. n)
`1 )
= (f
^
<*(
VERUM Al)*>) if ((PR
. n)
`2 )
= 1,
ex i, f, g st 1
<= i & i
< n & (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) & ((PR
. i)
`1 )
= f & ((PR
. n)
`1 )
= g if ((PR
. n)
`2 )
= 2,
ex i, j, f, g st 1
<= i & i
< n & 1
<= j & j
< i & (
len f)
> 1 & (
len g)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant g)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) & (
Suc f)
= (
Suc g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant (
Ant f))
^
<*(
Suc f)*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 3,
ex i, j, f, g, p st 1
<= i & i
< n & 1
<= j & j
< i & (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant (
Ant f))
^
<*p*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 4,
ex i, j, f, g st 1
<= i & i
< n & 1
<= j & j
< i & (
Ant f)
= (
Ant g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 5,
ex i, f, p, q st 1
<= i & i
< n & (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*p*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 6,
ex i, f, p, q st 1
<= i & i
< n & (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*q*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 7,
ex i, f, p, x, y st 1
<= i & i
< n & (
Suc f)
= (
All (x,p)) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*(p
. (x,y))*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 8,
ex i, f, p, x, y st 1
<= i & i
< n & (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & not y
in (
still_not-bound_in (
All (x,p))) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*(
All (x,p))*>)
= ((PR
. n)
`1 ) if ((PR
. n)
`2 )
= 9;
consistency ;
end
definition
let Al, PR;
::
CALCUL_1:def8
attr PR is
a_proof means PR
<>
{} & for n be
Nat st 1
<= n & n
<= (
len PR) holds (PR,n)
is_a_correct_step ;
end
definition
let Al, f;
::
CALCUL_1:def9
pred
|- f means ex PR st PR is
a_proof & f
= ((PR
. (
len PR))
`1 );
end
definition
let Al, p, X;
::
CALCUL_1:def10
pred p
is_formal_provable_from X means ex f st (
rng (
Ant f))
c= X & (
Suc f)
= p &
|- f;
end
definition
let Al, X, A, J, v;
::
CALCUL_1:def11
pred J,v
|= X means p
in X implies (J,v)
|= p;
end
definition
let Al, X, p;
::
CALCUL_1:def12
pred X
|= p means (J,v)
|= X implies (J,v)
|= p;
end
definition
let Al, p;
::
CALCUL_1:def13
pred
|= p means (
{} (
CQC-WFF Al))
|= p;
end
definition
let Al, f, A, J, v;
::
CALCUL_1:def14
pred J,v
|= f means (J,v)
|= (
rng f);
end
definition
let Al, f, p;
::
CALCUL_1:def15
pred f
|= p means (J,v)
|= f implies (J,v)
|= p;
end
theorem ::
CALCUL_1:15
Th15: (
Suc f)
is_tail_of (
Ant f) implies (
Ant f)
|= (
Suc f)
proof
assume (
Suc f)
is_tail_of (
Ant f);
then ex i st i
in (
dom (
Ant f)) & ((
Ant f)
. i)
= (
Suc f) by
Lm1;
then
A1: (
Suc f)
in (
rng (
Ant f)) by
FUNCT_1: 3;
let A, J, v;
assume (J,v)
|= (
rng (
Ant f));
hence thesis by
A1;
end;
theorem ::
CALCUL_1:16
Th16: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) & (
Ant f)
|= (
Suc f) implies (
Ant g)
|= (
Suc g)
proof
assume that
A1: (
Ant f)
is_Subsequence_of (
Ant g) and
A2: (
Suc f)
= (
Suc g) & (
Ant f)
|= (
Suc f);
let A, J, v such that
A3: (J,v)
|= (
rng (
Ant g));
now
let p;
assume
A4: p
in (
rng (
Ant f));
(
rng (
Ant f))
c= (
rng (
Ant g)) by
A1,
Th1;
hence (J,v)
|= p by
A3,
A4;
end;
then (J,v)
|= (
rng (
Ant f));
then (J,v)
|= (
Ant f);
hence thesis by
A2;
end;
theorem ::
CALCUL_1:17
Th17: (
len f)
>
0 implies ((J,v)
|= (
Ant f) & (J,v)
|= (
Suc f) iff (J,v)
|= f)
proof
assume
A1: (
len f)
>
0 ;
thus (J,v)
|= (
Ant f) & (J,v)
|= (
Suc f) implies (J,v)
|= f
proof
assume that
A2: (J,v)
|= (
Ant f) and
A3: (J,v)
|= (
Suc f);
let p;
assume p
in (
rng f);
then p
in ((
rng (
Ant f))
\/
{(
Suc f)}) by
A1,
Th3;
then
A4: p
in (
rng (
Ant f)) or p
in
{(
Suc f)} by
XBOOLE_0:def 3;
(J,v)
|= (
rng (
Ant f)) by
A2;
hence thesis by
A3,
A4,
TARSKI:def 1;
end;
thus (J,v)
|= f implies (J,v)
|= (
Ant f) & (J,v)
|= (
Suc f)
proof
assume
A5: (J,v)
|= (
rng f);
thus (J,v)
|= (
rng (
Ant f))
proof
A6: (
rng (
Ant f))
c= ((
rng (
Ant f))
\/
{(
Suc f)}) by
XBOOLE_1: 7;
let p;
assume p
in (
rng (
Ant f));
then p
in ((
rng (
Ant f))
\/
{(
Suc f)}) by
A6;
then p
in (
rng f) by
A1,
Th3;
hence thesis by
A5;
end;
(
0
+ 1)
<= (
len f) by
A1,
NAT_1: 13;
then
A7: (
len f)
in (
dom f) by
FINSEQ_3: 25;
(
Suc f)
= (f
. (
len f)) by
A1,
Def2;
then (
Suc f)
in (
rng f) by
A7,
FUNCT_1: 3;
hence (J,v)
|= (
Suc f) by
A5;
end;
end;
theorem ::
CALCUL_1:18
Th18: (
len f)
> 1 & (
len g)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant g)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) & (
Suc f)
= (
Suc g) & (
Ant f)
|= (
Suc f) & (
Ant g)
|= (
Suc g) implies (
Ant (
Ant f))
|= (
Suc f)
proof
assume that
A1: (
len f)
> 1 and
A2: (
len g)
> 1 and
A3: (
Ant (
Ant f))
= (
Ant (
Ant g)) and
A4: (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) and
A5: (
Suc f)
= (
Suc g) and
A6: (
Ant f)
|= (
Suc f) and
A7: (
Ant g)
|= (
Suc g);
let A, J, v such that
A8: (J,v)
|= (
Ant (
Ant f));
A9: (
len (
Ant g))
>
0 by
A2,
Th4;
A10:
now
assume not (J,v)
|= (
Suc (
Ant f));
then (J,v)
|= (
Suc (
Ant g)) by
A4,
VALUAT_1: 17;
then (J,v)
|= (
Ant g) by
A3,
A9,
A8,
Th17;
hence thesis by
A5,
A7;
end;
A11: (
len (
Ant f))
>
0 by
A1,
Th4;
now
assume (J,v)
|= (
Suc (
Ant f));
then (J,v)
|= (
Ant f) by
A11,
A8,
Th17;
hence thesis by
A6;
end;
hence thesis by
A10;
end;
theorem ::
CALCUL_1:19
Th19: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
'not' p)
= (
Suc (
Ant f)) & (
'not' (
Suc f))
= (
Suc g) & (
Ant f)
|= (
Suc f) & (
Ant g)
|= (
Suc g) implies (
Ant (
Ant f))
|= p
proof
assume that
A1: (
len f)
> 1 and
A2: (
Ant f)
= (
Ant g) and
A3: (
'not' p)
= (
Suc (
Ant f)) and
A4: (
'not' (
Suc f))
= (
Suc g) & (
Ant f)
|= (
Suc f) & (
Ant g)
|= (
Suc g);
A5: (
len (
Ant f))
>
0 by
A1,
Th4;
A6:
now
given A, J, v such that
A7: (J,v)
|= (
Ant f);
(J,v)
|= (
Suc f) & (J,v)
|= (
'not' (
Suc f)) by
A2,
A4,
A7;
hence contradiction by
VALUAT_1: 17;
end;
let A, J, v such that
A8: (J,v)
|= (
Ant (
Ant f));
now
assume (J,v)
|= (
Suc (
Ant f));
then (J,v)
|= (
Ant f) by
A5,
A8,
Th17;
hence contradiction by
A6;
end;
hence thesis by
A3,
VALUAT_1: 17;
end;
theorem ::
CALCUL_1:20
Th20: (
Ant f)
= (
Ant g) & (
Ant f)
|= (
Suc f) & (
Ant g)
|= (
Suc g) implies (
Ant f)
|= ((
Suc f)
'&' (
Suc g))
proof
assume
A1: (
Ant f)
= (
Ant g) & (
Ant f)
|= (
Suc f) & (
Ant g)
|= (
Suc g);
let A, J, v;
assume (J,v)
|= (
Ant f);
then (J,v)
|= (
Suc f) & (J,v)
|= (
Suc g) by
A1;
hence thesis by
VALUAT_1: 18;
end;
theorem ::
CALCUL_1:21
Th21: (
Ant f)
|= (p
'&' q) implies (
Ant f)
|= p
proof
assume
A1: (
Ant f)
|= (p
'&' q);
let A, J, v;
assume (J,v)
|= (
Ant f);
then (J,v)
|= (p
'&' q) by
A1;
hence thesis by
VALUAT_1: 18;
end;
theorem ::
CALCUL_1:22
Th22: (
Ant f)
|= (p
'&' q) implies (
Ant f)
|= q
proof
assume
A1: (
Ant f)
|= (p
'&' q);
let A, J, v;
assume (J,v)
|= (
Ant f);
then (J,v)
|= (p
'&' q) by
A1;
hence thesis by
VALUAT_1: 18;
end;
theorem ::
CALCUL_1:23
Th23: (J,v)
|=
[p, Sub] iff (J,v)
|= p
proof
(J,v)
|=
[p, Sub] iff (J,v)
|= (
[p, Sub]
`1 ) by
SUBLEMMA:def 2;
hence thesis;
end;
reserve a for
Element of A;
theorem ::
CALCUL_1:24
Th24: (J,v)
|= (p
. (x,y)) iff ex a st (v
. y)
= a & (J,(v
. (x
| a)))
|= p
proof
A1: (J,v)
|= (
CQC_Sub
[p, (
Sbst (x,y))]) iff (J,(v
. (
Val_S (v,
[p, (
Sbst (x,y))]))))
|=
[p, (
Sbst (x,y))] by
SUBLEMMA: 89;
A2: (J,(v
. (
Val_S (v,
[p, (
Sbst (x,y))]))))
|=
[p, (
Sbst (x,y))] iff (J,(v
. (
Val_S (v,
[p, (
Sbst (x,y))]))))
|= p by
Th23;
(
Val_S (v,
[p, (
Sbst (x,y))]))
= (v
* (
@ (
[p, (
Sbst (x,y))]
`2 ))) by
SUBLEMMA:def 1;
then (
Val_S (v,
[p, (
Sbst (x,y))]))
= (v
* (
@ (
Sbst (x,y))));
then
A3: (
Val_S (v,
[p, (
Sbst (x,y))]))
= (v
* (x
.--> y)) by
SUBSTUT1:def 2;
y
in (
bound_QC-variables Al);
then y
in (
dom v) by
SUBLEMMA: 58;
then (
Val_S (v,
[p, (
Sbst (x,y))]))
= (x
.--> (v
. y)) by
A3,
FUNCOP_1: 17;
hence thesis by
A1,
A2,
SUBSTUT2:def 1;
end;
theorem ::
CALCUL_1:25
Th25: (
Suc f)
= (
All (x,p)) & (
Ant f)
|= (
Suc f) implies for y holds (
Ant f)
|= (p
. (x,y))
proof
assume
A1: (
Suc f)
= (
All (x,p)) & (
Ant f)
|= (
Suc f);
let y, A, J, v;
assume (J,v)
|= (
Ant f);
then
A2: (J,v)
|= (
All (x,p)) by
A1;
ex a st (v
. y)
= a & (J,(v
. (x
| a)))
|= p
proof
take (v
. y);
thus thesis by
A2,
SUBLEMMA: 50;
end;
hence thesis by
Th24;
end;
theorem ::
CALCUL_1:26
Th26: for X be
set st X
c= (
bound_QC-variables Al) holds not x
in X implies ((v
. (x
| a))
| X)
= (v
| X)
proof
let X be
set such that
A1: X
c= (
bound_QC-variables Al) and
A2: not x
in X;
set f2 = (v
| X);
set f1 = ((v
. (x
| a))
| X);
A3: (
dom f1)
= (
dom f2) by
A1,
SUBLEMMA: 63;
now
let b be
object such that
A4: b
in (
dom f1);
x
<> b by
A2,
A4;
then
A5: ((v
. (x
| a))
. b)
= (v
. b) by
SUBLEMMA: 48;
((v
. (x
| a))
. b)
= (f1
. b) by
A4,
FUNCT_1: 47;
hence (f1
. b)
= (f2
. b) by
A3,
A4,
A5,
FUNCT_1: 47;
end;
hence thesis by
A3,
FUNCT_1: 2;
end;
theorem ::
CALCUL_1:27
Th27: for v, w holds (v
| (
still_not-bound_in f))
= (w
| (
still_not-bound_in f)) implies ((J,v)
|= f implies (J,w)
|= f)
proof
let v, w such that
A1: (v
| (
still_not-bound_in f))
= (w
| (
still_not-bound_in f));
assume (J,v)
|= f;
then
A2: (J,v)
|= (
rng f);
let p such that
A3: p
in (
rng f);
ex i be
Nat st i
in (
dom f) & p
= (f
. i) by
A3,
FINSEQ_2: 10;
then for b be
object st b
in (
still_not-bound_in p) holds b
in (
still_not-bound_in f) by
Def5;
then (
still_not-bound_in p)
c= (
still_not-bound_in f);
then
A4: (v
| (
still_not-bound_in p))
= (w
| (
still_not-bound_in p)) by
A1,
RELAT_1: 153;
(J,v)
|= p by
A2,
A3;
hence thesis by
A4,
SUBLEMMA: 68;
end;
theorem ::
CALCUL_1:28
Th28: not y
in (
still_not-bound_in (
All (x,p))) implies (((v
. (y
| a))
. (x
| a))
| (
still_not-bound_in p))
= ((v
. (x
| a))
| (
still_not-bound_in p))
proof
A1: ((v
. (y
| a))
. (x
| a))
= (v
+* ((y
| a)
+* (x
| a))) by
FUNCT_4: 14;
assume
A2: not y
in (
still_not-bound_in (
All (x,p)));
now
assume
A3: x
<> y;
(
dom (x
| a))
=
{x} & (
dom (y
| a))
=
{y};
then ((v
. (y
| a))
. (x
| a))
= (v
+* ((x
| a)
+* (y
| a))) by
A1,
A3,
FUNCT_4: 35,
ZFMISC_1: 11;
then
A4: ((v
. (y
| a))
. (x
| a))
= ((v
+* (x
| a))
+* (y
| a)) by
FUNCT_4: 14;
not y
in ((
still_not-bound_in p)
\
{x}) by
A2,
QC_LANG3: 12;
then not y
in (
still_not-bound_in p) by
A3,
ZFMISC_1: 56;
hence thesis by
A4,
Th26;
end;
hence thesis by
A1;
end;
theorem ::
CALCUL_1:29
Th29: (
Suc f)
= (p
. (x,y)) & (
Ant f)
|= (
Suc f) & not y
in (
still_not-bound_in (
Ant f)) & not y
in (
still_not-bound_in (
All (x,p))) implies (
Ant f)
|= (
All (x,p))
proof
assume that
A1: (
Suc f)
= (p
. (x,y)) & (
Ant f)
|= (
Suc f) and
A2: not y
in (
still_not-bound_in (
Ant f)) and
A3: not y
in (
still_not-bound_in (
All (x,p)));
let A, J, v such that
A4: (J,v)
|= (
Ant f);
for a holds (J,(v
. (x
| a)))
|= p
proof
let a;
((v
. (y
| a))
| (
still_not-bound_in (
Ant f)))
= (v
| (
still_not-bound_in (
Ant f))) by
A2,
Th26;
then (J,(v
. (y
| a)))
|= (
Ant f) by
A4,
Th27;
then (J,(v
. (y
| a)))
|= (p
. (x,y)) by
A1;
then ex a1 be
Element of A st ((v
. (y
| a))
. y)
= a1 & (J,((v
. (y
| a))
. (x
| a1)))
|= p by
Th24;
then
A5: (J,((v
. (y
| a))
. (x
| a)))
|= p by
SUBLEMMA: 49;
(((v
. (y
| a))
. (x
| a))
| (
still_not-bound_in p))
= ((v
. (x
| a))
| (
still_not-bound_in p)) by
A3,
Th28;
hence thesis by
A5,
SUBLEMMA: 68;
end;
hence thesis by
SUBLEMMA: 50;
end;
theorem ::
CALCUL_1:30
Th30: (
Ant (f
^
<*(
VERUM Al)*>))
|= (
Suc (f
^
<*(
VERUM Al)*>))
proof
let A, J, v such that (J,v)
|= (
Ant (f
^
<*(
VERUM Al)*>));
(
Suc (f
^
<*(
VERUM Al)*>))
= (
VERUM Al) by
Th5;
hence thesis by
VALUAT_1: 32;
end;
theorem ::
CALCUL_1:31
Th31: for n be
Nat holds 1
<= n & n
<= (
len PR) implies ((PR
. n)
`2 )
=
0 or ... or ((PR
. n)
`2 )
= 9
proof
let n be
Nat;
assume 1
<= n & n
<= (
len PR);
then n
in (
dom PR) by
FINSEQ_3: 25;
then (PR
. n)
in (
rng PR) by
FUNCT_1:def 3;
then ((PR
. n)
`2 )
in { k where k be
Nat : k
<= 9 } by
CQC_THE1:def 3,
MCART_1: 10;
then ex k be
Nat st k
= ((PR
. n)
`2 ) & k
<= 9;
hence thesis;
end;
Lm3: 1
<= n & n
<= (
len PR) implies ((PR
. n)
`1 ) is
FinSequence of (
CQC-WFF Al)
proof
assume 1
<= n & n
<= (
len PR);
then n
in (
dom PR) by
FINSEQ_3: 25;
then (PR
. n)
in (
rng PR) by
FUNCT_1:def 3;
then ((PR
. n)
`1 )
in (
set_of_CQC-WFF-seq Al) by
MCART_1: 10;
hence thesis by
Def6;
end;
theorem ::
CALCUL_1:32
p
is_formal_provable_from X implies X
|= p
proof
assume p
is_formal_provable_from X;
then
consider f such that
A1: (
rng (
Ant f))
c= X and
A2: (
Suc f)
= p and
A3:
|- f;
consider PR such that
A4: PR is
a_proof and
A5: f
= ((PR
. (
len PR))
`1 ) by
A3;
PR
<>
{} by
A4;
then
A6: 1
<= (
len PR) by
FINSEQ_1: 20;
defpred
P[
Nat] means $1
<= (
len PR) implies for m st 1
<= m & m
<= $1 holds ex g st g
= ((PR
. m)
`1 ) & (
Ant g)
|= (
Suc g);
A7: for k be
Nat holds
P[k] implies
P[(k
+ 1)]
proof
let k be
Nat such that
A8:
P[k];
assume
A9: (k
+ 1)
<= (
len PR);
A10: k
<= (k
+ 1) by
NAT_1: 11;
let m such that
A11: 1
<= m and
A12: m
<= (k
+ 1);
A13: m
<= (
len PR) by
A9,
A12,
XXREAL_0: 2;
A14:
now
assume
A15: m
= (k
+ 1);
take g = ((PR
. m)
`1 );
thus g
= ((PR
. m)
`1 );
reconsider g = ((PR
. m)
`1 ) as
FinSequence of (
CQC-WFF Al) by
A11,
A13,
Lm3;
A16: (PR,m)
is_a_correct_step by
A4,
A11,
A13;
now
((PR
. m)
`2 )
=
0 or ... or ((PR
. m)
`2 )
= 9 by
A11,
A13,
Th31;
per cases ;
suppose ((PR
. m)
`2 )
=
0 ;
then ex f st (
Suc f)
is_tail_of (
Ant f) & ((PR
. m)
`1 )
= f by
A16,
Def7;
hence (
Ant g)
|= (
Suc g) by
Th15;
end;
suppose ((PR
. m)
`2 )
= 1;
then ex f st g
= (f
^
<*(
VERUM Al)*>) by
A16,
Def7;
hence (
Ant g)
|= (
Suc g) by
Th30;
end;
suppose ((PR
. m)
`2 )
= 2;
then
consider i, f, f1 such that
A17: 1
<= i and
A18: i
< m and
A19: (
Ant f)
is_Subsequence_of (
Ant f1) & (
Suc f)
= (
Suc f1) & ((PR
. i)
`1 )
= f & ((PR
. m)
`1 )
= f1 by
A16,
Def7;
i
<= k by
A15,
A18,
NAT_1: 13;
then ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A17,
XXREAL_0: 2;
hence (
Ant g)
|= (
Suc g) by
A19,
Th16;
end;
suppose ((PR
. m)
`2 )
= 3;
then
consider i, j, f, f1 such that
A20: 1
<= i and
A21: i
< m and
A22: 1
<= j and
A23: j
< i and
A24: (
len f)
> 1 & (
len f1)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant f1)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant f1)) & (
Suc f)
= (
Suc f1) & f
= ((PR
. j)
`1 ) & f1
= ((PR
. i)
`1 ) and
A25: ((
Ant (
Ant f))
^
<*(
Suc f)*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
A26: (
Ant g)
= (
Ant (
Ant f)) & (
Suc g)
= (
Suc f) by
A25,
Th5;
A27: i
<= k by
A15,
A21,
NAT_1: 13;
then j
<= k by
A23,
XXREAL_0: 2;
then
A28: ex h1 st h1
= ((PR
. j)
`1 ) & (
Ant h1)
|= (
Suc h1) by
A8,
A9,
A10,
A22,
XXREAL_0: 2;
ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A20,
A27,
XXREAL_0: 2;
hence (
Ant g)
|= (
Suc g) by
A24,
A28,
A26,
Th18;
end;
suppose ((PR
. m)
`2 )
= 4;
then
consider i, j, f, f1, p such that
A29: 1
<= i and
A30: i
< m and
A31: 1
<= j and
A32: j
< i and
A33: (
len f)
> 1 & (
Ant f)
= (
Ant f1) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc f1) & f
= ((PR
. j)
`1 ) & f1
= ((PR
. i)
`1 ) and
A34: ((
Ant (
Ant f))
^
<*p*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
A35: (
Ant g)
= (
Ant (
Ant f)) & (
Suc g)
= p by
A34,
Th5;
A36: i
<= k by
A15,
A30,
NAT_1: 13;
then j
<= k by
A32,
XXREAL_0: 2;
then
A37: ex h1 st h1
= ((PR
. j)
`1 ) & (
Ant h1)
|= (
Suc h1) by
A8,
A9,
A10,
A31,
XXREAL_0: 2;
ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A29,
A36,
XXREAL_0: 2;
hence (
Ant g)
|= (
Suc g) by
A33,
A37,
A35,
Th19;
end;
suppose ((PR
. m)
`2 )
= 5;
then
consider i, j, f, f1 such that
A38: 1
<= i and
A39: i
< m and
A40: 1
<= j and
A41: j
< i and
A42: (
Ant f)
= (
Ant f1) & f
= ((PR
. j)
`1 ) & f1
= ((PR
. i)
`1 ) and
A43: ((
Ant f)
^
<*((
Suc f)
'&' (
Suc f1))*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
A44: (
Ant g)
= (
Ant f) & (
Suc g)
= ((
Suc f)
'&' (
Suc f1)) by
A43,
Th5;
A45: i
<= k by
A15,
A39,
NAT_1: 13;
then j
<= k by
A41,
XXREAL_0: 2;
then
A46: ex h1 st h1
= ((PR
. j)
`1 ) & (
Ant h1)
|= (
Suc h1) by
A8,
A9,
A10,
A40,
XXREAL_0: 2;
ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A38,
A45,
XXREAL_0: 2;
hence (
Ant g)
|= (
Suc g) by
A42,
A46,
A44,
Th20;
end;
suppose ((PR
. m)
`2 )
= 6;
then
consider i, f, p, q such that
A47: 1
<= i and
A48: i
< m and
A49: (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) and
A50: ((
Ant f)
^
<*p*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
i
<= k by
A15,
A48,
NAT_1: 13;
then
A51: ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A47,
XXREAL_0: 2;
(
Ant g)
= (
Ant f) & (
Suc g)
= p by
A50,
Th5;
hence (
Ant g)
|= (
Suc g) by
A49,
A51,
Th21;
end;
suppose ((PR
. m)
`2 )
= 7;
then
consider i, f, p, q such that
A52: 1
<= i and
A53: i
< m and
A54: (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) and
A55: ((
Ant f)
^
<*q*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
i
<= k by
A15,
A53,
NAT_1: 13;
then
A56: ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A52,
XXREAL_0: 2;
(
Ant g)
= (
Ant f) & (
Suc g)
= q by
A55,
Th5;
hence (
Ant g)
|= (
Suc g) by
A54,
A56,
Th22;
end;
suppose ((PR
. m)
`2 )
= 8;
then
consider i, f, p, x, y such that
A57: 1
<= i and
A58: i
< m and
A59: (
Suc f)
= (
All (x,p)) & f
= ((PR
. i)
`1 ) and
A60: ((
Ant f)
^
<*(p
. (x,y))*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
i
<= k by
A15,
A58,
NAT_1: 13;
then
A61: ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A57,
XXREAL_0: 2;
(
Ant g)
= (
Ant f) & (
Suc g)
= (p
. (x,y)) by
A60,
Th5;
hence (
Ant g)
|= (
Suc g) by
A59,
A61,
Th25;
end;
suppose ((PR
. m)
`2 )
= 9;
then
consider i, f, p, x, y such that
A62: 1
<= i and
A63: i
< m and
A64: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & ( not y
in (
still_not-bound_in (
All (x,p)))) & f
= ((PR
. i)
`1 ) and
A65: ((
Ant f)
^
<*(
All (x,p))*>)
= ((PR
. m)
`1 ) by
A16,
Def7;
i
<= k by
A15,
A63,
NAT_1: 13;
then
A66: ex h st h
= ((PR
. i)
`1 ) & (
Ant h)
|= (
Suc h) by
A8,
A9,
A10,
A62,
XXREAL_0: 2;
(
Ant g)
= (
Ant f) & (
Suc g)
= (
All (x,p)) by
A65,
Th5;
hence (
Ant g)
|= (
Suc g) by
A64,
A66,
Th29;
end;
end;
hence thesis;
end;
m
<= k implies ex g st g
= ((PR
. m)
`1 ) & (
Ant g)
|= (
Suc g) by
A8,
A9,
A11,
A10,
XXREAL_0: 2;
hence thesis by
A12,
A14,
NAT_1: 8;
end;
A67:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A67,
A7);
then
consider g such that
A68: g
= ((PR
. (
len PR))
`1 ) and
A69: (
Ant g)
|= (
Suc g) by
A6;
let A, J, v;
assume (J,v)
|= X;
then for p st p
in (
rng (
Ant f)) holds (J,v)
|= p by
A1;
then (J,v)
|= (
rng (
Ant f));
then (J,v)
|= (
Ant g) by
A5,
A68;
hence thesis by
A2,
A5,
A68,
A69;
end;
begin
theorem ::
CALCUL_1:33
Th33: (
Suc f)
is_tail_of (
Ant f) implies
|- f
proof
set PR =
<*
[f,
0 ]*>;
A1: (
rng PR)
=
{
[f,
0 ]} by
FINSEQ_1: 38;
now
let a be
object;
assume a
in (
rng PR);
then
A2: a
=
[f,
0 ] by
A1,
TARSKI:def 1;
f
in (
set_of_CQC-WFF-seq Al) by
Def6;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A2,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng PR)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
assume
A3: (
Suc f)
is_tail_of (
Ant f);
now
let n be
Nat such that
A4: 1
<= n and
A5: n
<= (
len PR);
n
<= 1 by
A5,
FINSEQ_1: 39;
then n
= 1 by
A4,
XXREAL_0: 1;
then (PR
. n)
=
[f,
0 ] by
FINSEQ_1: 40;
then ((PR
. n)
`1 )
= f & ((PR
. n)
`2 )
=
0 ;
hence (PR,n)
is_a_correct_step by
A3,
Def7;
end;
then
A6: PR is
a_proof;
(PR
. 1)
=
[f,
0 ] by
FINSEQ_1: 40;
then (PR
. (
len PR))
=
[f,
0 ] by
FINSEQ_1: 40;
then ((PR
. (
len PR))
`1 )
= f;
hence thesis by
A6;
end;
theorem ::
CALCUL_1:34
Th34: for n be
Nat holds 1
<= n & n
<= (
len PR) implies ((PR,n)
is_a_correct_step iff ((PR
^ PR1),n)
is_a_correct_step )
proof
let n be
Nat;
assume that
A1: 1
<= n and
A2: n
<= (
len PR);
n
in (
dom PR) by
A1,
A2,
FINSEQ_3: 25;
then
A3: ((PR
^ PR1)
. n)
= (PR
. n) by
FINSEQ_1:def 7;
(
len (PR
^ PR1))
= ((
len PR)
+ (
len PR1)) by
FINSEQ_1: 22;
then (
len PR)
<= (
len (PR
^ PR1)) by
NAT_1: 11;
then
A4: n
<= (
len (PR
^ PR1)) by
A2,
XXREAL_0: 2;
thus (PR,n)
is_a_correct_step implies ((PR
^ PR1),n)
is_a_correct_step
proof
assume
A5: (PR,n)
is_a_correct_step ;
(((PR
^ PR1)
. n)
`2 )
=
0 or ... or (((PR
^ PR1)
. n)
`2 )
= 9 by
A1,
A4,
Th31;
per cases ;
case (((PR
^ PR1)
. n)
`2 )
=
0 ;
hence thesis by
A3,
A5,
Def7;
end;
case (((PR
^ PR1)
. n)
`2 )
= 1;
hence thesis by
A3,
A5,
Def7;
end;
case (((PR
^ PR1)
. n)
`2 )
= 2;
then
consider i, f, g such that
A6: 1
<= i and
A7: i
< n and
A8: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) & ((PR
. i)
`1 )
= f & ((PR
. n)
`1 )
= g by
A3,
A5,
Def7;
i
<= (
len PR) by
A2,
A7,
XXREAL_0: 2;
then i
in (
dom PR) by
A6,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A6,
A7,
A8;
end;
case (((PR
^ PR1)
. n)
`2 )
= 3;
then
consider i, j, f, g such that
A9: 1
<= i and
A10: i
< n and
A11: 1
<= j and
A12: j
< i and
A13: (
len f)
> 1 & (
len g)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant g)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) & (
Suc f)
= (
Suc g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant (
Ant f))
^
<*(
Suc f)*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
A14: i
<= (
len PR) by
A2,
A10,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A9,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A15: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A12,
A14,
XXREAL_0: 2;
then j
in (
dom PR) by
A11,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A9,
A10,
A11,
A12,
A13,
A15;
end;
case (((PR
^ PR1)
. n)
`2 )
= 4;
then
consider i, j, f, g, p such that
A16: 1
<= i and
A17: i
< n and
A18: 1
<= j and
A19: j
< i and
A20: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant (
Ant f))
^
<*p*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
A21: i
<= (
len PR) by
A2,
A17,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A16,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A22: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A19,
A21,
XXREAL_0: 2;
then j
in (
dom PR) by
A18,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A16,
A17,
A18,
A19,
A20,
A22;
end;
case (((PR
^ PR1)
. n)
`2 )
= 5;
then
consider i, j, f, g such that
A23: 1
<= i and
A24: i
< n and
A25: 1
<= j and
A26: j
< i and
A27: (
Ant f)
= (
Ant g) & f
= ((PR
. j)
`1 ) & g
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
A28: i
<= (
len PR) by
A2,
A24,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A23,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A29: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A26,
A28,
XXREAL_0: 2;
then j
in (
dom PR) by
A25,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A23,
A24,
A25,
A26,
A27,
A29;
end;
case (((PR
^ PR1)
. n)
`2 )
= 6;
then
consider i, f, p, q such that
A30: 1
<= i and
A31: i
< n and
A32: (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*p*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
i
<= (
len PR) by
A2,
A31,
XXREAL_0: 2;
then i
in (
dom PR) by
A30,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A30,
A31,
A32;
end;
case (((PR
^ PR1)
. n)
`2 )
= 7;
then
consider i, f, p, q such that
A33: 1
<= i and
A34: i
< n and
A35: (p
'&' q)
= (
Suc f) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*q*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
i
<= (
len PR) by
A2,
A34,
XXREAL_0: 2;
then i
in (
dom PR) by
A33,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A33,
A34,
A35;
end;
case (((PR
^ PR1)
. n)
`2 )
= 8;
then
consider i, f, p, x, y such that
A36: 1
<= i and
A37: i
< n and
A38: (
Suc f)
= (
All (x,p)) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*(p
. (x,y))*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
i
<= (
len PR) by
A2,
A37,
XXREAL_0: 2;
then i
in (
dom PR) by
A36,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A36,
A37,
A38;
end;
case (((PR
^ PR1)
. n)
`2 )
= 9;
then
consider i, f, p, x, y such that
A39: 1
<= i and
A40: i
< n and
A41: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & ( not y
in (
still_not-bound_in (
All (x,p)))) & f
= ((PR
. i)
`1 ) & ((
Ant f)
^
<*(
All (x,p))*>)
= ((PR
. n)
`1 ) by
A3,
A5,
Def7;
i
<= (
len PR) by
A2,
A40,
XXREAL_0: 2;
then i
in (
dom PR) by
A39,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A39,
A40,
A41;
end;
end;
assume
A42: ((PR
^ PR1),n)
is_a_correct_step ;
((PR
. n)
`2 )
=
0 or ... or ((PR
. n)
`2 )
= 9 by
A1,
A2,
Th31;
per cases ;
case ((PR
. n)
`2 )
=
0 ;
hence thesis by
A3,
A42,
Def7;
end;
case ((PR
. n)
`2 )
= 1;
hence thesis by
A3,
A42,
Def7;
end;
case ((PR
. n)
`2 )
= 2;
then
consider i, f, g such that
A43: 1
<= i and
A44: i
< n and
A45: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) & (((PR
^ PR1)
. i)
`1 )
= f & (((PR
^ PR1)
. n)
`1 )
= g by
A3,
A42,
Def7;
i
<= (
len PR) by
A2,
A44,
XXREAL_0: 2;
then i
in (
dom PR) by
A43,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A43,
A44,
A45;
end;
case ((PR
. n)
`2 )
= 3;
then
consider i, j, f, f1 such that
A46: 1
<= i and
A47: i
< n and
A48: 1
<= j and
A49: j
< i and
A50: (
len f)
> 1 & (
len f1)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant f1)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant f1)) & (
Suc f)
= (
Suc f1) & f
= (((PR
^ PR1)
. j)
`1 ) & f1
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant (
Ant f))
^
<*(
Suc f)*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
A51: i
<= (
len PR) by
A2,
A47,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A46,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A52: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A49,
A51,
XXREAL_0: 2;
then j
in (
dom PR) by
A48,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A46,
A47,
A48,
A49,
A50,
A52;
end;
case ((PR
. n)
`2 )
= 4;
then
consider i, j, f, g, p such that
A53: 1
<= i and
A54: i
< n and
A55: 1
<= j and
A56: j
< i and
A57: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) & f
= (((PR
^ PR1)
. j)
`1 ) & g
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant (
Ant f))
^
<*p*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
A58: i
<= (
len PR) by
A2,
A54,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A53,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A59: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A56,
A58,
XXREAL_0: 2;
then j
in (
dom PR) by
A55,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A53,
A54,
A55,
A56,
A57,
A59;
end;
case ((PR
. n)
`2 )
= 5;
then
consider i, j, f, g such that
A60: 1
<= i and
A61: i
< n and
A62: 1
<= j and
A63: j
< i and
A64: (
Ant f)
= (
Ant g) & f
= (((PR
^ PR1)
. j)
`1 ) & g
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
A65: i
<= (
len PR) by
A2,
A61,
XXREAL_0: 2;
then i
in (
Seg (
len PR)) by
A60,
FINSEQ_1: 1;
then i
in (
dom PR) by
FINSEQ_1:def 3;
then
A66: (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
j
<= (
len PR) by
A63,
A65,
XXREAL_0: 2;
then j
in (
dom PR) by
A62,
FINSEQ_3: 25;
then (PR
. j)
= ((PR
^ PR1)
. j) by
FINSEQ_1:def 7;
hence thesis by
A3,
A60,
A61,
A62,
A63,
A64,
A66;
end;
case ((PR
. n)
`2 )
= 6;
then
consider i, f, p, q such that
A67: 1
<= i and
A68: i
< n and
A69: (p
'&' q)
= (
Suc f) & f
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant f)
^
<*p*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
i
<= (
len PR) by
A2,
A68,
XXREAL_0: 2;
then i
in (
dom PR) by
A67,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A67,
A68,
A69;
end;
case ((PR
. n)
`2 )
= 7;
then
consider i, f, p, q such that
A70: 1
<= i and
A71: i
< n and
A72: (p
'&' q)
= (
Suc f) & f
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant f)
^
<*q*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
i
<= (
len PR) by
A2,
A71,
XXREAL_0: 2;
then i
in (
dom PR) by
A70,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A70,
A71,
A72;
end;
case ((PR
. n)
`2 )
= 8;
then
consider i, f, p, x, y such that
A73: 1
<= i and
A74: i
< n and
A75: (
Suc f)
= (
All (x,p)) & f
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant f)
^
<*(p
. (x,y))*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
i
<= (
len PR) by
A2,
A74,
XXREAL_0: 2;
then i
in (
dom PR) by
A73,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A73,
A74,
A75;
end;
case ((PR
. n)
`2 )
= 9;
then
consider i, f, p, x, y such that
A76: 1
<= i and
A77: i
< n and
A78: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & ( not y
in (
still_not-bound_in (
All (x,p)))) & f
= (((PR
^ PR1)
. i)
`1 ) & ((
Ant f)
^
<*(
All (x,p))*>)
= (((PR
^ PR1)
. n)
`1 ) by
A3,
A42,
Def7;
i
<= (
len PR) by
A2,
A77,
XXREAL_0: 2;
then i
in (
dom PR) by
A76,
FINSEQ_3: 25;
then (PR
. i)
= ((PR
^ PR1)
. i) by
FINSEQ_1:def 7;
hence thesis by
A3,
A76,
A77,
A78;
end;
end;
theorem ::
CALCUL_1:35
Th35: 1
<= n & n
<= (
len PR1) & (PR1,n)
is_a_correct_step implies ((PR
^ PR1),(n
+ (
len PR)))
is_a_correct_step
proof
assume that
A1: 1
<= n and
A2: n
<= (
len PR1) and
A3: (PR1,n)
is_a_correct_step ;
n
in (
dom PR1) by
A1,
A2,
FINSEQ_3: 25;
then
A4: (PR1
. n)
= ((PR
^ PR1)
. (n
+ (
len PR))) by
FINSEQ_1:def 7;
(n
+ (
len PR))
<= ((
len PR)
+ (
len PR1)) by
A2,
XREAL_1: 6;
then
A5: (n
+ (
len PR))
<= (
len (PR
^ PR1)) by
FINSEQ_1: 22;
(((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
=
0 or ... or (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 9 by
A1,
A5,
Th31,
NAT_1: 12;
per cases ;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
=
0 ;
hence thesis by
A3,
A4,
Def7;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 1;
hence thesis by
A3,
A4,
Def7;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 2;
then
consider i, f, g such that
A6: 1
<= i and
A7: i
< n and
A8: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) & ((PR1
. i)
`1 )
= f & ((PR1
. n)
`1 )
= g by
A3,
A4,
Def7;
i
<= (
len PR1) by
A2,
A7,
XXREAL_0: 2;
then i
in (
dom PR1) by
A6,
FINSEQ_3: 25;
then
A9: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A6,
A7,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A8,
A9;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 3;
then
consider i, j, f, f1 such that
A10: 1
<= i and
A11: i
< n and
A12: 1
<= j and
A13: j
< i and
A14: (
len f)
> 1 & (
len f1)
> 1 & (
Ant (
Ant f))
= (
Ant (
Ant f1)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant f1)) & (
Suc f)
= (
Suc f1) & f
= ((PR1
. j)
`1 ) & f1
= ((PR1
. i)
`1 ) & ((
Ant (
Ant f))
^
<*(
Suc f)*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
A15: 1
<= ((
len PR)
+ j) & ((
len PR)
+ j)
< (i
+ (
len PR)) by
A12,
A13,
NAT_1: 12,
XREAL_1: 6;
A16: i
<= (
len PR1) by
A2,
A11,
XXREAL_0: 2;
then i
in (
dom PR1) by
A10,
FINSEQ_3: 25;
then
A17: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
j
<= (
len PR1) by
A13,
A16,
XXREAL_0: 2;
then j
in (
dom PR1) by
A12,
FINSEQ_3: 25;
then
A18: (PR1
. j)
= ((PR
^ PR1)
. ((
len PR)
+ j)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A10,
A11,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A14,
A15,
A17,
A18;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 4;
then
consider i, j, f, g, p such that
A19: 1
<= i and
A20: i
< n and
A21: 1
<= j and
A22: j
< i and
A23: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) & f
= ((PR1
. j)
`1 ) & g
= ((PR1
. i)
`1 ) & ((
Ant (
Ant f))
^
<*p*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
A24: 1
<= ((
len PR)
+ j) & ((
len PR)
+ j)
< (i
+ (
len PR)) by
A21,
A22,
NAT_1: 12,
XREAL_1: 6;
A25: i
<= (
len PR1) by
A2,
A20,
XXREAL_0: 2;
then i
in (
dom PR1) by
A19,
FINSEQ_3: 25;
then
A26: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
j
<= (
len PR1) by
A22,
A25,
XXREAL_0: 2;
then j
in (
dom PR1) by
A21,
FINSEQ_3: 25;
then
A27: (PR1
. j)
= ((PR
^ PR1)
. ((
len PR)
+ j)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A19,
A20,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A23,
A24,
A26,
A27;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 5;
then
consider i, j, f, g such that
A28: 1
<= i and
A29: i
< n and
A30: 1
<= j and
A31: j
< i and
A32: (
Ant f)
= (
Ant g) & f
= ((PR1
. j)
`1 ) & g
= ((PR1
. i)
`1 ) & ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
A33: 1
<= ((
len PR)
+ j) & ((
len PR)
+ j)
< (i
+ (
len PR)) by
A30,
A31,
NAT_1: 12,
XREAL_1: 6;
A34: i
<= (
len PR1) by
A2,
A29,
XXREAL_0: 2;
then i
in (
dom PR1) by
A28,
FINSEQ_3: 25;
then
A35: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
j
<= (
len PR1) by
A31,
A34,
XXREAL_0: 2;
then j
in (
dom PR1) by
A30,
FINSEQ_3: 25;
then
A36: (PR1
. j)
= ((PR
^ PR1)
. ((
len PR)
+ j)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A28,
A29,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A32,
A33,
A35,
A36;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 6;
then
consider i, f, p, q such that
A37: 1
<= i and
A38: i
< n and
A39: (p
'&' q)
= (
Suc f) & f
= ((PR1
. i)
`1 ) & ((
Ant f)
^
<*p*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
i
<= (
len PR1) by
A2,
A38,
XXREAL_0: 2;
then i
in (
dom PR1) by
A37,
FINSEQ_3: 25;
then
A40: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A37,
A38,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A39,
A40;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 7;
then
consider i, f, p, q such that
A41: 1
<= i and
A42: i
< n and
A43: (p
'&' q)
= (
Suc f) & f
= ((PR1
. i)
`1 ) & ((
Ant f)
^
<*q*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
i
<= (
len PR1) by
A2,
A42,
XXREAL_0: 2;
then i
in (
dom PR1) by
A41,
FINSEQ_3: 25;
then
A44: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A41,
A42,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A43,
A44;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 8;
then
consider i, f, p, x, y such that
A45: 1
<= i and
A46: i
< n and
A47: (
Suc f)
= (
All (x,p)) & f
= ((PR1
. i)
`1 ) & ((
Ant f)
^
<*(p
. (x,y))*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
i
<= (
len PR1) by
A2,
A46,
XXREAL_0: 2;
then i
in (
dom PR1) by
A45,
FINSEQ_3: 25;
then
A48: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A45,
A46,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A47,
A48;
end;
case (((PR
^ PR1)
. (n
+ (
len PR)))
`2 )
= 9;
then
consider i, f, p, x, y such that
A49: 1
<= i and
A50: i
< n and
A51: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & ( not y
in (
still_not-bound_in (
All (x,p)))) & f
= ((PR1
. i)
`1 ) & ((
Ant f)
^
<*(
All (x,p))*>)
= ((PR1
. n)
`1 ) by
A3,
A4,
Def7;
i
<= (
len PR1) by
A2,
A50,
XXREAL_0: 2;
then i
in (
dom PR1) by
A49,
FINSEQ_3: 25;
then
A52: (PR1
. i)
= ((PR
^ PR1)
. ((
len PR)
+ i)) by
FINSEQ_1:def 7;
1
<= ((
len PR)
+ i) & ((
len PR)
+ i)
< (n
+ (
len PR)) by
A49,
A50,
NAT_1: 12,
XREAL_1: 6;
hence thesis by
A4,
A51,
A52;
end;
end;
theorem ::
CALCUL_1:36
Th36: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) &
|- f implies
|- g
proof
assume that
A1: (
Ant f)
is_Subsequence_of (
Ant g) & (
Suc f)
= (
Suc g) and
A2:
|- f;
consider PR such that
A3: PR is
a_proof and
A4: ((PR
. (
len PR))
`1 )
= f by
A2;
A5: g
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[g, 2]*>);
then a
in
{
[g, 2]} by
FINSEQ_1: 38;
then a
=
[g, 2] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A5,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[g, 2]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR1 =
<*
[g, 2]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A6: 1
in (
dom PR1) by
FINSEQ_1: 38;
set PR2 = (PR
^ PR1);
reconsider PR2 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A7: PR
<>
{} by
A3;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR2);
then
A8: n
in (
dom PR2) by
FINSEQ_3: 25;
A9:
now
A10: 1
<= (
len PR) by
A7,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A11: f
= ((PR2
. (
len PR))
`1 ) by
A4,
FINSEQ_1:def 7;
given k be
Nat such that
A12: k
in (
dom PR1) and
A13: n
= ((
len PR)
+ k);
k
in (
Seg 1) by
A12,
FINSEQ_1: 38;
then
A14: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A15: (PR1
. k)
=
[g, 2] by
FINSEQ_1: 40;
then ((PR1
. k)
`1 )
= g;
then
A16: ((PR2
. n)
`1 )
= g by
A12,
A13,
FINSEQ_1:def 7;
((PR1
. k)
`2 )
= 2 by
A15;
then
A17: ((PR2
. n)
`2 )
= 2 by
A12,
A13,
FINSEQ_1:def 7;
(
len PR)
< n by
A13,
A14,
NAT_1: 13;
hence (PR2,n)
is_a_correct_step by
A1,
A16,
A17,
A10,
A11,
Def7;
end;
now
assume n
in (
dom PR);
then
A18: 1
<= n & n
<= (
len PR) by
FINSEQ_3: 25;
then (PR,n)
is_a_correct_step by
A3;
hence (PR2,n)
is_a_correct_step by
A18,
Th34;
end;
hence (PR2,n)
is_a_correct_step by
A8,
A9,
FINSEQ_1: 25;
end;
then
A19: PR2 is
a_proof;
(PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ (
len PR1))) by
FINSEQ_1: 22;
then (PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ 1)) by
FINSEQ_1: 39;
then (PR2
. (
len PR2))
= (PR1
. 1) by
A6,
FINSEQ_1:def 7;
then (PR2
. (
len PR2))
=
[g, 2] by
FINSEQ_1: 40;
then ((PR2
. (
len PR2))
`1 )
= g;
hence thesis by
A19;
end;
theorem ::
CALCUL_1:37
Th37: 1
< (
len f) & 1
< (
len g) & (
Ant (
Ant f))
= (
Ant (
Ant g)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) & (
Suc f)
= (
Suc g) &
|- f &
|- g implies
|- ((
Ant (
Ant f))
^
<*(
Suc f)*>)
proof
assume that
A1: 1
< (
len f) & 1
< (
len g) & (
Ant (
Ant f))
= (
Ant (
Ant g)) & (
'not' (
Suc (
Ant f)))
= (
Suc (
Ant g)) & (
Suc f)
= (
Suc g) and
A2:
|- f and
A3:
|- g;
consider PR1 such that
A4: PR1 is
a_proof and
A5: g
= ((PR1
. (
len PR1))
`1 ) by
A3;
consider PR such that
A6: PR is
a_proof and
A7: f
= ((PR
. (
len PR))
`1 ) by
A2;
A8: ((
Ant (
Ant f))
^
<*(
Suc f)*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3]*>);
then a
in
{
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3]} by
FINSEQ_1: 38;
then a
=
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A8,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR2 =
<*
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A9: 1
in (
dom PR2) by
FINSEQ_1: 38;
set PR3 = ((PR
^ PR1)
^ PR2);
reconsider PR3 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A10: PR
<>
{} by
A6;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR3);
then
A11: n
in (
dom PR3) by
FINSEQ_3: 25;
A12:
now
given k be
Nat such that
A13: k
in (
dom PR2) and
A14: n
= ((
len (PR
^ PR1))
+ k);
k
in (
Seg 1) by
A13,
FINSEQ_1: 38;
then
A15: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A16: (PR2
. k)
=
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3] by
FINSEQ_1: 40;
then ((PR2
. k)
`1 )
= ((
Ant (
Ant f))
^
<*(
Suc f)*>);
then
A17: ((PR3
. n)
`1 )
= ((
Ant (
Ant f))
^
<*(
Suc f)*>) by
A13,
A14,
FINSEQ_1:def 7;
((PR2
. k)
`2 )
= 3 by
A16;
then
A18: ((PR3
. n)
`2 )
= 3 by
A13,
A14,
FINSEQ_1:def 7;
A19: (
len (PR
^ PR1))
< n by
A14,
A15,
NAT_1: 13;
A20: 1
<= (
len PR) by
A10,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A21: f
= (((PR
^ PR1)
. (
len PR))
`1 ) by
A7,
FINSEQ_1:def 7;
A22: PR1
<>
{} by
A4;
then
A23: (
len PR)
< (
len (PR
^ PR1)) by
Th6;
then (
len PR)
in (
dom (PR
^ PR1)) by
A20,
FINSEQ_3: 25;
then
A24: f
= ((PR3
. (
len PR))
`1 ) by
A21,
FINSEQ_1:def 7;
1
<= (
len PR1) by
A22,
Th6;
then (
len PR1)
in (
dom PR1) by
FINSEQ_3: 25;
then g
= (((PR
^ PR1)
. ((
len PR)
+ (
len PR1)))
`1 ) by
A5,
FINSEQ_1:def 7;
then
A25: g
= (((PR
^ PR1)
. (
len (PR
^ PR1)))
`1 ) by
FINSEQ_1: 22;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
then (
len (PR
^ PR1))
in (
dom (PR
^ PR1)) by
FINSEQ_3: 25;
then
A26: g
= ((PR3
. (
len (PR
^ PR1)))
`1 ) by
A25,
FINSEQ_1:def 7;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
hence (PR3,n)
is_a_correct_step by
A1,
A17,
A18,
A20,
A23,
A24,
A19,
A26,
Def7;
end;
now
A27:
now
given k be
Nat such that
A28: k
in (
dom PR1) and
A29: n
= ((
len PR)
+ k);
A30: 1
<= k by
A28,
FINSEQ_3: 25;
A31: k
<= (
len PR1) by
A28,
FINSEQ_3: 25;
then n
<= ((
len PR1)
+ (
len PR)) by
A29,
XREAL_1: 6;
then
A32: n
<= (
len (PR
^ PR1)) by
FINSEQ_1: 22;
k
<= n by
A29,
NAT_1: 11;
then
A33: 1
<= n by
A30,
XXREAL_0: 2;
(PR1,k)
is_a_correct_step by
A4,
A30,
A31;
then ((PR
^ PR1),n)
is_a_correct_step by
A29,
A30,
A31,
Th35;
hence (PR3,n)
is_a_correct_step by
A33,
A32,
Th34;
end;
A34:
now
assume
A35: n
in (
dom PR);
then
A36: 1
<= n by
FINSEQ_3: 25;
A37: n
<= (
len PR) by
A35,
FINSEQ_3: 25;
(
len PR)
<= (
len (PR
^ PR1)) by
Th6;
then
A38: n
<= (
len (PR
^ PR1)) by
A37,
XXREAL_0: 2;
(PR,n)
is_a_correct_step by
A6,
A36,
A37;
then ((PR
^ PR1),n)
is_a_correct_step by
A36,
A37,
Th34;
hence (PR3,n)
is_a_correct_step by
A36,
A38,
Th34;
end;
assume n
in (
dom (PR
^ PR1));
hence (PR3,n)
is_a_correct_step by
A34,
A27,
FINSEQ_1: 25;
end;
hence (PR3,n)
is_a_correct_step by
A11,
A12,
FINSEQ_1: 25;
end;
then
A39: PR3 is
a_proof;
(PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ (
len PR2))) by
FINSEQ_1: 22;
then (PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ 1)) by
FINSEQ_1: 39;
then (PR3
. (
len PR3))
= (PR2
. 1) by
A9,
FINSEQ_1:def 7;
then (PR3
. (
len PR3))
=
[((
Ant (
Ant f))
^
<*(
Suc f)*>), 3] by
FINSEQ_1: 40;
then ((PR3
. (
len PR3))
`1 )
= ((
Ant (
Ant f))
^
<*(
Suc f)*>);
hence thesis by
A39;
end;
theorem ::
CALCUL_1:38
Th38: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) &
|- f &
|- g implies
|- ((
Ant (
Ant f))
^
<*p*>)
proof
assume that
A1: (
len f)
> 1 & (
Ant f)
= (
Ant g) & (
Suc (
Ant f))
= (
'not' p) & (
'not' (
Suc f))
= (
Suc g) and
A2:
|- f and
A3:
|- g;
consider PR1 such that
A4: PR1 is
a_proof and
A5: g
= ((PR1
. (
len PR1))
`1 ) by
A3;
consider PR such that
A6: PR is
a_proof and
A7: f
= ((PR
. (
len PR))
`1 ) by
A2;
A8: ((
Ant (
Ant f))
^
<*p*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant (
Ant f))
^
<*p*>), 4]*>);
then a
in
{
[((
Ant (
Ant f))
^
<*p*>), 4]} by
FINSEQ_1: 38;
then a
=
[((
Ant (
Ant f))
^
<*p*>), 4] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A8,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant (
Ant f))
^
<*p*>), 4]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR2 =
<*
[((
Ant (
Ant f))
^
<*p*>), 4]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A9: 1
in (
dom PR2) by
FINSEQ_1: 38;
set PR3 = ((PR
^ PR1)
^ PR2);
reconsider PR3 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A10: PR
<>
{} by
A6;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR3);
then
A11: n
in (
dom PR3) by
FINSEQ_3: 25;
A12:
now
given k be
Nat such that
A13: k
in (
dom PR2) and
A14: n
= ((
len (PR
^ PR1))
+ k);
k
in (
Seg 1) by
A13,
FINSEQ_1: 38;
then
A15: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A16: (PR2
. k)
=
[((
Ant (
Ant f))
^
<*p*>), 4] by
FINSEQ_1: 40;
then ((PR2
. k)
`1 )
= ((
Ant (
Ant f))
^
<*p*>);
then
A17: ((PR3
. n)
`1 )
= ((
Ant (
Ant f))
^
<*p*>) by
A13,
A14,
FINSEQ_1:def 7;
((PR2
. k)
`2 )
= 4 by
A16;
then
A18: ((PR3
. n)
`2 )
= 4 by
A13,
A14,
FINSEQ_1:def 7;
A19: (
len (PR
^ PR1))
< n by
A14,
A15,
NAT_1: 13;
A20: 1
<= (
len PR) by
A10,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A21: f
= (((PR
^ PR1)
. (
len PR))
`1 ) by
A7,
FINSEQ_1:def 7;
A22: PR1
<>
{} by
A4;
then
A23: (
len PR)
< (
len (PR
^ PR1)) by
Th6;
then (
len PR)
in (
dom (PR
^ PR1)) by
A20,
FINSEQ_3: 25;
then
A24: f
= ((PR3
. (
len PR))
`1 ) by
A21,
FINSEQ_1:def 7;
1
<= (
len PR1) by
A22,
Th6;
then (
len PR1)
in (
dom PR1) by
FINSEQ_3: 25;
then g
= (((PR
^ PR1)
. ((
len PR)
+ (
len PR1)))
`1 ) by
A5,
FINSEQ_1:def 7;
then
A25: g
= (((PR
^ PR1)
. (
len (PR
^ PR1)))
`1 ) by
FINSEQ_1: 22;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
then (
len (PR
^ PR1))
in (
dom (PR
^ PR1)) by
FINSEQ_3: 25;
then
A26: g
= ((PR3
. (
len (PR
^ PR1)))
`1 ) by
A25,
FINSEQ_1:def 7;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
hence (PR3,n)
is_a_correct_step by
A1,
A17,
A18,
A20,
A23,
A24,
A19,
A26,
Def7;
end;
now
A27:
now
given k be
Nat such that
A28: k
in (
dom PR1) and
A29: n
= ((
len PR)
+ k);
A30: 1
<= k by
A28,
FINSEQ_3: 25;
A31: k
<= (
len PR1) by
A28,
FINSEQ_3: 25;
then n
<= ((
len PR1)
+ (
len PR)) by
A29,
XREAL_1: 6;
then
A32: n
<= (
len (PR
^ PR1)) by
FINSEQ_1: 22;
k
<= n by
A29,
NAT_1: 11;
then
A33: 1
<= n by
A30,
XXREAL_0: 2;
(PR1,k)
is_a_correct_step by
A4,
A30,
A31;
then ((PR
^ PR1),n)
is_a_correct_step by
A29,
A30,
A31,
Th35;
hence (PR3,n)
is_a_correct_step by
A33,
A32,
Th34;
end;
A34:
now
assume
A35: n
in (
dom PR);
then
A36: 1
<= n by
FINSEQ_3: 25;
A37: n
<= (
len PR) by
A35,
FINSEQ_3: 25;
(
len PR)
<= (
len (PR
^ PR1)) by
Th6;
then
A38: n
<= (
len (PR
^ PR1)) by
A37,
XXREAL_0: 2;
(PR,n)
is_a_correct_step by
A6,
A36,
A37;
then ((PR
^ PR1),n)
is_a_correct_step by
A36,
A37,
Th34;
hence (PR3,n)
is_a_correct_step by
A36,
A38,
Th34;
end;
assume n
in (
dom (PR
^ PR1));
hence (PR3,n)
is_a_correct_step by
A34,
A27,
FINSEQ_1: 25;
end;
hence (PR3,n)
is_a_correct_step by
A11,
A12,
FINSEQ_1: 25;
end;
then
A39: PR3 is
a_proof;
(PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ (
len PR2))) by
FINSEQ_1: 22;
then (PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ 1)) by
FINSEQ_1: 39;
then (PR3
. (
len PR3))
= (PR2
. 1) by
A9,
FINSEQ_1:def 7;
then (PR3
. (
len PR3))
=
[((
Ant (
Ant f))
^
<*p*>), 4] by
FINSEQ_1: 40;
then ((PR3
. (
len PR3))
`1 )
= ((
Ant (
Ant f))
^
<*p*>);
hence thesis by
A39;
end;
theorem ::
CALCUL_1:39
Th39: (
Ant f)
= (
Ant g) &
|- f &
|- g implies
|- ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
proof
assume that
A1: (
Ant f)
= (
Ant g) and
A2:
|- f and
A3:
|- g;
consider PR1 such that
A4: PR1 is
a_proof and
A5: g
= ((PR1
. (
len PR1))
`1 ) by
A3;
consider PR such that
A6: PR is
a_proof and
A7: f
= ((PR
. (
len PR))
`1 ) by
A2;
A8: ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5]*>);
then a
in
{
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5]} by
FINSEQ_1: 38;
then a
=
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A8,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR2 =
<*
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A9: 1
in (
dom PR2) by
FINSEQ_1: 38;
set PR3 = ((PR
^ PR1)
^ PR2);
reconsider PR3 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A10: PR
<>
{} by
A6;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR3);
then
A11: n
in (
dom PR3) by
FINSEQ_3: 25;
A12:
now
given k be
Nat such that
A13: k
in (
dom PR2) and
A14: n
= ((
len (PR
^ PR1))
+ k);
k
in (
Seg 1) by
A13,
FINSEQ_1: 38;
then
A15: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A16: (PR2
. k)
=
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5] by
FINSEQ_1: 40;
then ((PR2
. k)
`1 )
= ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>);
then
A17: ((PR3
. n)
`1 )
= ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>) by
A13,
A14,
FINSEQ_1:def 7;
((PR2
. k)
`2 )
= 5 by
A16;
then
A18: ((PR3
. n)
`2 )
= 5 by
A13,
A14,
FINSEQ_1:def 7;
A19: (
len (PR
^ PR1))
< n by
A14,
A15,
NAT_1: 13;
A20: 1
<= (
len PR) by
A10,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A21: f
= (((PR
^ PR1)
. (
len PR))
`1 ) by
A7,
FINSEQ_1:def 7;
A22: PR1
<>
{} by
A4;
then
A23: (
len PR)
< (
len (PR
^ PR1)) by
Th6;
then (
len PR)
in (
dom (PR
^ PR1)) by
A20,
FINSEQ_3: 25;
then
A24: f
= ((PR3
. (
len PR))
`1 ) by
A21,
FINSEQ_1:def 7;
1
<= (
len PR1) by
A22,
Th6;
then (
len PR1)
in (
dom PR1) by
FINSEQ_3: 25;
then g
= (((PR
^ PR1)
. ((
len PR)
+ (
len PR1)))
`1 ) by
A5,
FINSEQ_1:def 7;
then
A25: g
= (((PR
^ PR1)
. (
len (PR
^ PR1)))
`1 ) by
FINSEQ_1: 22;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
then (
len (PR
^ PR1))
in (
dom (PR
^ PR1)) by
FINSEQ_3: 25;
then
A26: g
= ((PR3
. (
len (PR
^ PR1)))
`1 ) by
A25,
FINSEQ_1:def 7;
1
<= (
len (PR
^ PR1)) by
A10,
Th6;
hence (PR3,n)
is_a_correct_step by
A1,
A17,
A18,
A20,
A23,
A24,
A19,
A26,
Def7;
end;
now
A27:
now
given k be
Nat such that
A28: k
in (
dom PR1) and
A29: n
= ((
len PR)
+ k);
A30: 1
<= k by
A28,
FINSEQ_3: 25;
A31: k
<= (
len PR1) by
A28,
FINSEQ_3: 25;
then n
<= ((
len PR1)
+ (
len PR)) by
A29,
XREAL_1: 6;
then
A32: n
<= (
len (PR
^ PR1)) by
FINSEQ_1: 22;
k
<= n by
A29,
NAT_1: 11;
then
A33: 1
<= n by
A30,
XXREAL_0: 2;
(PR1,k)
is_a_correct_step by
A4,
A30,
A31;
then ((PR
^ PR1),n)
is_a_correct_step by
A29,
A30,
A31,
Th35;
hence (PR3,n)
is_a_correct_step by
A33,
A32,
Th34;
end;
A34:
now
assume
A35: n
in (
dom PR);
then
A36: 1
<= n by
FINSEQ_3: 25;
A37: n
<= (
len PR) by
A35,
FINSEQ_3: 25;
(
len PR)
<= (
len (PR
^ PR1)) by
Th6;
then
A38: n
<= (
len (PR
^ PR1)) by
A37,
XXREAL_0: 2;
(PR,n)
is_a_correct_step by
A6,
A36,
A37;
then ((PR
^ PR1),n)
is_a_correct_step by
A36,
A37,
Th34;
hence (PR3,n)
is_a_correct_step by
A36,
A38,
Th34;
end;
assume n
in (
dom (PR
^ PR1));
hence (PR3,n)
is_a_correct_step by
A34,
A27,
FINSEQ_1: 25;
end;
hence (PR3,n)
is_a_correct_step by
A11,
A12,
FINSEQ_1: 25;
end;
then
A39: PR3 is
a_proof;
(PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ (
len PR2))) by
FINSEQ_1: 22;
then (PR3
. (
len PR3))
= (PR3
. ((
len (PR
^ PR1))
+ 1)) by
FINSEQ_1: 39;
then (PR3
. (
len PR3))
= (PR2
. 1) by
A9,
FINSEQ_1:def 7;
then (PR3
. (
len PR3))
=
[((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>), 5] by
FINSEQ_1: 40;
then ((PR3
. (
len PR3))
`1 )
= ((
Ant f)
^
<*((
Suc f)
'&' (
Suc g))*>);
hence thesis by
A39;
end;
theorem ::
CALCUL_1:40
Th40: (p
'&' q)
= (
Suc f) &
|- f implies
|- ((
Ant f)
^
<*p*>)
proof
assume that
A1: (p
'&' q)
= (
Suc f) and
A2:
|- f;
consider PR such that
A3: PR is
a_proof and
A4: ((PR
. (
len PR))
`1 )
= f by
A2;
A5: ((
Ant f)
^
<*p*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant f)
^
<*p*>), 6]*>);
then a
in
{
[((
Ant f)
^
<*p*>), 6]} by
FINSEQ_1: 38;
then a
=
[((
Ant f)
^
<*p*>), 6] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A5,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant f)
^
<*p*>), 6]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR1 =
<*
[((
Ant f)
^
<*p*>), 6]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A6: 1
in (
dom PR1) by
FINSEQ_1: 38;
set PR2 = (PR
^ PR1);
reconsider PR2 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A7: PR
<>
{} by
A3;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR2);
then
A8: n
in (
dom PR2) by
FINSEQ_3: 25;
A9:
now
A10: 1
<= (
len PR) by
A7,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A11: f
= ((PR2
. (
len PR))
`1 ) by
A4,
FINSEQ_1:def 7;
given k be
Nat such that
A12: k
in (
dom PR1) and
A13: n
= ((
len PR)
+ k);
k
in (
Seg 1) by
A12,
FINSEQ_1: 38;
then
A14: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A15: (PR1
. k)
=
[((
Ant f)
^
<*p*>), 6] by
FINSEQ_1: 40;
then ((PR1
. k)
`1 )
= ((
Ant f)
^
<*p*>);
then
A16: ((PR2
. n)
`1 )
= ((
Ant f)
^
<*p*>) by
A12,
A13,
FINSEQ_1:def 7;
((PR1
. k)
`2 )
= 6 by
A15;
then
A17: ((PR2
. n)
`2 )
= 6 by
A12,
A13,
FINSEQ_1:def 7;
(
len PR)
< n by
A13,
A14,
NAT_1: 13;
hence (PR2,n)
is_a_correct_step by
A1,
A16,
A17,
A10,
A11,
Def7;
end;
now
assume n
in (
dom PR);
then
A18: 1
<= n & n
<= (
len PR) by
FINSEQ_3: 25;
then (PR,n)
is_a_correct_step by
A3;
hence (PR2,n)
is_a_correct_step by
A18,
Th34;
end;
hence (PR2,n)
is_a_correct_step by
A8,
A9,
FINSEQ_1: 25;
end;
then
A19: PR2 is
a_proof;
(PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ (
len PR1))) by
FINSEQ_1: 22;
then (PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ 1)) by
FINSEQ_1: 39;
then (PR2
. (
len PR2))
= (PR1
. 1) by
A6,
FINSEQ_1:def 7;
then (PR2
. (
len PR2))
=
[((
Ant f)
^
<*p*>), 6] by
FINSEQ_1: 40;
then ((PR2
. (
len PR2))
`1 )
= ((
Ant f)
^
<*p*>);
hence thesis by
A19;
end;
theorem ::
CALCUL_1:41
Th41: (p
'&' q)
= (
Suc f) &
|- f implies
|- ((
Ant f)
^
<*q*>)
proof
assume that
A1: (p
'&' q)
= (
Suc f) and
A2:
|- f;
consider PR such that
A3: PR is
a_proof and
A4: ((PR
. (
len PR))
`1 )
= f by
A2;
A5: ((
Ant f)
^
<*q*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant f)
^
<*q*>), 7]*>);
then a
in
{
[((
Ant f)
^
<*q*>), 7]} by
FINSEQ_1: 38;
then a
=
[((
Ant f)
^
<*q*>), 7] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A5,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant f)
^
<*q*>), 7]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR1 =
<*
[((
Ant f)
^
<*q*>), 7]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A6: 1
in (
dom PR1) by
FINSEQ_1: 38;
set PR2 = (PR
^ PR1);
reconsider PR2 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A7: PR
<>
{} by
A3;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR2);
then
A8: n
in (
dom PR2) by
FINSEQ_3: 25;
A9:
now
A10: 1
<= (
len PR) by
A7,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A11: f
= ((PR2
. (
len PR))
`1 ) by
A4,
FINSEQ_1:def 7;
given k be
Nat such that
A12: k
in (
dom PR1) and
A13: n
= ((
len PR)
+ k);
k
in (
Seg 1) by
A12,
FINSEQ_1: 38;
then
A14: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A15: (PR1
. k)
=
[((
Ant f)
^
<*q*>), 7] by
FINSEQ_1: 40;
then ((PR1
. k)
`1 )
= ((
Ant f)
^
<*q*>);
then
A16: ((PR2
. n)
`1 )
= ((
Ant f)
^
<*q*>) by
A12,
A13,
FINSEQ_1:def 7;
((PR1
. k)
`2 )
= 7 by
A15;
then
A17: ((PR2
. n)
`2 )
= 7 by
A12,
A13,
FINSEQ_1:def 7;
(
len PR)
< n by
A13,
A14,
NAT_1: 13;
hence (PR2,n)
is_a_correct_step by
A1,
A16,
A17,
A10,
A11,
Def7;
end;
now
assume n
in (
dom PR);
then
A18: 1
<= n & n
<= (
len PR) by
FINSEQ_3: 25;
then (PR,n)
is_a_correct_step by
A3;
hence (PR2,n)
is_a_correct_step by
A18,
Th34;
end;
hence (PR2,n)
is_a_correct_step by
A8,
A9,
FINSEQ_1: 25;
end;
then
A19: PR2 is
a_proof;
(PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ (
len PR1))) by
FINSEQ_1: 22;
then (PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ 1)) by
FINSEQ_1: 39;
then (PR2
. (
len PR2))
= (PR1
. 1) by
A6,
FINSEQ_1:def 7;
then (PR2
. (
len PR2))
=
[((
Ant f)
^
<*q*>), 7] by
FINSEQ_1: 40;
then ((PR2
. (
len PR2))
`1 )
= ((
Ant f)
^
<*q*>);
hence thesis by
A19;
end;
theorem ::
CALCUL_1:42
Th42: (
Suc f)
= (
All (x,p)) &
|- f implies
|- ((
Ant f)
^
<*(p
. (x,y))*>)
proof
assume that
A1: (
Suc f)
= (
All (x,p)) and
A2:
|- f;
consider PR such that
A3: PR is
a_proof and
A4: ((PR
. (
len PR))
`1 )
= f by
A2;
A5: ((
Ant f)
^
<*(p
. (x,y))*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant f)
^
<*(p
. (x,y))*>), 8]*>);
then a
in
{
[((
Ant f)
^
<*(p
. (x,y))*>), 8]} by
FINSEQ_1: 38;
then a
=
[((
Ant f)
^
<*(p
. (x,y))*>), 8] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A5,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant f)
^
<*(p
. (x,y))*>), 8]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR1 =
<*
[((
Ant f)
^
<*(p
. (x,y))*>), 8]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A6: 1
in (
dom PR1) by
FINSEQ_1: 38;
set PR2 = (PR
^ PR1);
reconsider PR2 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A7: PR
<>
{} by
A3;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR2);
then
A8: n
in (
dom PR2) by
FINSEQ_3: 25;
A9:
now
A10: 1
<= (
len PR) by
A7,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A11: f
= ((PR2
. (
len PR))
`1 ) by
A4,
FINSEQ_1:def 7;
given k be
Nat such that
A12: k
in (
dom PR1) and
A13: n
= ((
len PR)
+ k);
k
in (
Seg 1) by
A12,
FINSEQ_1: 38;
then
A14: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A15: (PR1
. k)
=
[((
Ant f)
^
<*(p
. (x,y))*>), 8] by
FINSEQ_1: 40;
then ((PR1
. k)
`1 )
= ((
Ant f)
^
<*(p
. (x,y))*>);
then
A16: ((PR2
. n)
`1 )
= ((
Ant f)
^
<*(p
. (x,y))*>) by
A12,
A13,
FINSEQ_1:def 7;
((PR1
. k)
`2 )
= 8 by
A15;
then
A17: ((PR2
. n)
`2 )
= 8 by
A12,
A13,
FINSEQ_1:def 7;
(
len PR)
< n by
A13,
A14,
NAT_1: 13;
hence (PR2,n)
is_a_correct_step by
A1,
A16,
A17,
A10,
A11,
Def7;
end;
now
assume n
in (
dom PR);
then
A18: 1
<= n & n
<= (
len PR) by
FINSEQ_3: 25;
then (PR,n)
is_a_correct_step by
A3;
hence (PR2,n)
is_a_correct_step by
A18,
Th34;
end;
hence (PR2,n)
is_a_correct_step by
A8,
A9,
FINSEQ_1: 25;
end;
then
A19: PR2 is
a_proof;
(PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ (
len PR1))) by
FINSEQ_1: 22;
then (PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ 1)) by
FINSEQ_1: 39;
then (PR2
. (
len PR2))
= (PR1
. 1) by
A6,
FINSEQ_1:def 7;
then (PR2
. (
len PR2))
=
[((
Ant f)
^
<*(p
. (x,y))*>), 8] by
FINSEQ_1: 40;
then ((PR2
. (
len PR2))
`1 )
= ((
Ant f)
^
<*(p
. (x,y))*>);
hence thesis by
A19;
end;
theorem ::
CALCUL_1:43
Th43: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & not y
in (
still_not-bound_in (
All (x,p))) &
|- f implies
|- ((
Ant f)
^
<*(
All (x,p))*>)
proof
assume that
A1: (
Suc f)
= (p
. (x,y)) & not y
in (
still_not-bound_in (
Ant f)) & not y
in (
still_not-bound_in (
All (x,p))) and
A2:
|- f;
consider PR such that
A3: PR is
a_proof and
A4: ((PR
. (
len PR))
`1 )
= f by
A2;
A5: ((
Ant f)
^
<*(
All (x,p))*>)
in (
set_of_CQC-WFF-seq Al) by
Def6;
now
let a be
object;
assume a
in (
rng
<*
[((
Ant f)
^
<*(
All (x,p))*>), 9]*>);
then a
in
{
[((
Ant f)
^
<*(
All (x,p))*>), 9]} by
FINSEQ_1: 38;
then a
=
[((
Ant f)
^
<*(
All (x,p))*>), 9] by
TARSKI:def 1;
hence a
in
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
A5,
CQC_THE1: 21,
ZFMISC_1: 87;
end;
then (
rng
<*
[((
Ant f)
^
<*(
All (x,p))*>), 9]*>)
c=
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
then
reconsider PR1 =
<*
[((
Ant f)
^
<*(
All (x,p))*>), 9]*> as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :] by
FINSEQ_1:def 4;
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A6: 1
in (
dom PR1) by
FINSEQ_1: 38;
set PR2 = (PR
^ PR1);
reconsider PR2 as
FinSequence of
[:(
set_of_CQC-WFF-seq Al),
Proof_Step_Kinds :];
A7: PR
<>
{} by
A3;
now
let n be
Nat;
assume 1
<= n & n
<= (
len PR2);
then
A8: n
in (
dom PR2) by
FINSEQ_3: 25;
A9:
now
A10: 1
<= (
len PR) by
A7,
Th6;
then (
len PR)
in (
dom PR) by
FINSEQ_3: 25;
then
A11: f
= ((PR2
. (
len PR))
`1 ) by
A4,
FINSEQ_1:def 7;
given k be
Nat such that
A12: k
in (
dom PR1) and
A13: n
= ((
len PR)
+ k);
k
in (
Seg 1) by
A12,
FINSEQ_1: 38;
then
A14: k
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
then
A15: (PR1
. k)
=
[((
Ant f)
^
<*(
All (x,p))*>), 9] by
FINSEQ_1: 40;
then ((PR1
. k)
`1 )
= ((
Ant f)
^
<*(
All (x,p))*>);
then
A16: ((PR2
. n)
`1 )
= ((
Ant f)
^
<*(
All (x,p))*>) by
A12,
A13,
FINSEQ_1:def 7;
((PR1
. k)
`2 )
= 9 by
A15;
then
A17: ((PR2
. n)
`2 )
= 9 by
A12,
A13,
FINSEQ_1:def 7;
(
len PR)
< n by
A13,
A14,
NAT_1: 13;
hence (PR2,n)
is_a_correct_step by
A1,
A16,
A17,
A10,
A11,
Def7;
end;
now
assume n
in (
dom PR);
then
A18: 1
<= n & n
<= (
len PR) by
FINSEQ_3: 25;
then (PR,n)
is_a_correct_step by
A3;
hence (PR2,n)
is_a_correct_step by
A18,
Th34;
end;
hence (PR2,n)
is_a_correct_step by
A8,
A9,
FINSEQ_1: 25;
end;
then
A19: PR2 is
a_proof;
(PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ (
len PR1))) by
FINSEQ_1: 22;
then (PR2
. (
len PR2))
= (PR2
. ((
len PR)
+ 1)) by
FINSEQ_1: 39;
then (PR2
. (
len PR2))
= (PR1
. 1) by
A6,
FINSEQ_1:def 7;
then (PR2
. (
len PR2))
=
[((
Ant f)
^
<*(
All (x,p))*>), 9] by
FINSEQ_1: 40;
then ((PR2
. (
len PR2))
`1 )
= ((
Ant f)
^
<*(
All (x,p))*>);
hence thesis by
A19;
end;
theorem ::
CALCUL_1:44
Th44:
|- f &
|- ((
Ant f)
^
<*(
'not' (
Suc f))*>) implies
|- ((
Ant f)
^
<*p*>)
proof
assume that
A1:
|- f and
A2:
|- ((
Ant f)
^
<*(
'not' (
Suc f))*>);
set f1 = (((
Ant f)
^
<*(
'not' p)*>)
^
<*(
Suc f)*>);
(
Ant f1)
= ((
Ant f)
^
<*(
'not' p)*>) & (
Suc f)
= (
Suc f1) by
Th5;
then
A3:
|- f1 by
A1,
Th8,
Th36;
set f3 = (((
Ant f)
^
<*(
'not' p)*>)
^
<*(
'not' (
Suc f))*>);
set f2 = ((
Ant f)
^
<*(
'not' (
Suc f))*>);
(
Suc f2)
= (
'not' (
Suc f)) by
Th5;
then
A4: (
Suc f2)
= (
Suc f3) by
Th5;
(
Ant f3)
= ((
Ant f)
^
<*(
'not' p)*>) & (
Ant f2)
= (
Ant f) by
Th5;
then
A5:
|- f3 by
A2,
A4,
Th8,
Th36;
(
Suc f1)
= (
Suc f) by
Th5;
then
A6: (
'not' (
Suc f1))
= (
Suc f3) by
Th5;
A7: 1
< (
len f1) by
Th9;
A8: (
Ant f1)
= ((
Ant f)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f1)
= (
Ant f3) & (
Suc (
Ant f1))
= (
'not' p) by
Th5;
then
|- ((
Ant (
Ant f1))
^
<*p*>) by
A3,
A5,
A6,
A7,
Th38;
hence thesis by
A8,
Th5;
end;
theorem ::
CALCUL_1:45
Th45: 1
<= (
len f) &
|- f &
|- (f
^
<*p*>) implies
|- ((
Ant f)
^
<*p*>)
proof
assume that
A1: 1
<= (
len f) and
A2:
|- f and
A3:
|- (f
^
<*p*>);
set f2 = (((
Ant f)
^
<*(
'not' (
Suc f))*>)
^
<*(
'not' (
Suc f))*>);
set f1 = (((
Ant f)
^
<*(
'not' (
Suc f))*>)
^
<*(
Suc f)*>);
A4: (
Ant f2)
= ((
Ant f)
^
<*(
'not' (
Suc f))*>) by
Th5;
then
A5: (
len (
Ant f2))
in (
dom (
Ant f2)) by
Th10;
(((
Ant f)
^
<*(
'not' (
Suc f))*>)
. ((
len (
Ant f))
+ 1))
= (
'not' (
Suc f)) by
FINSEQ_1: 42;
then ((
Ant f2)
. ((
len (
Ant f))
+ 1))
= (
'not' (
Suc f)) by
Th5;
then ((
Ant f2)
. ((
len (
Ant f))
+ 1))
= (
Suc f2) by
Th5;
then ((
Ant f2)
. (
len (
Ant f2)))
= (
Suc f2) by
A4,
FINSEQ_2: 16;
then
A6:
|- f2 by
A5,
Lm2,
Th33;
set f4 = ((
Ant f1)
^
<*p*>);
f2
= ((
Ant f1)
^
<*(
'not' (
Suc f))*>) by
Th5;
then
A7: f2
= ((
Ant f1)
^
<*(
'not' (
Suc f1))*>) by
Th5;
(
Ant f1)
= ((
Ant f)
^
<*(
'not' (
Suc f))*>) & (
Suc f1)
= (
Suc f) by
Th5;
then
|- f1 by
A2,
Th8,
Th36;
then
A8:
|- ((
Ant f1)
^
<*p*>) by
A6,
A7,
Th44;
set f3 = (f
^
<*p*>);
(1
+ 1)
<= ((
len f)
+ 1) by
A1,
XREAL_1: 6;
then (1
+ 1)
<= ((
len f)
+ (
len
<*p*>)) by
FINSEQ_1: 39;
then (1
+ 1)
<= (
len f3) by
FINSEQ_1: 22;
then
A9: 1
< (
len f3) by
NAT_1: 13;
A10: (
Ant f1)
= ((
Ant f)
^
<*(
'not' (
Suc f))*>) by
Th5;
then (
Suc (
Ant f1))
= (
'not' (
Suc f)) by
Th5;
then (
Suc (
Ant f1))
= (
'not' (
Suc (
Ant f3))) by
Th5;
then
A11: (
Suc (
Ant f4))
= (
'not' (
Suc (
Ant f3))) by
Th5;
1
<= (
len (
Ant f1)) by
A10,
Th10;
then (1
+ 1)
<= ((
len (
Ant f1))
+ 1) by
XREAL_1: 6;
then (1
+ 1)
<= ((
len (
Ant f1))
+ (
len
<*p*>)) by
FINSEQ_1: 39;
then (1
+ 1)
<= (
len f4) by
FINSEQ_1: 22;
then
A12: 1
< (
len f4) by
NAT_1: 13;
(
Ant f4)
= (
Ant f1) by
Th5;
then (
Ant (
Ant f4))
= (
Ant f) by
A10,
Th5;
then
A13: (
Ant (
Ant f4))
= (
Ant (
Ant f3)) by
Th5;
(
Suc f4)
= p by
Th5;
then
|- ((
Ant (
Ant f3))
^
<*(
Suc f3)*>) by
A3,
A8,
A9,
A12,
A13,
A11,
Th5,
Th37;
then
|- ((
Ant f)
^
<*(
Suc f3)*>) by
Th5;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:46
Th46:
|- ((f
^
<*p*>)
^
<*q*>) implies
|- ((f
^
<*(
'not' q)*>)
^
<*(
'not' p)*>)
proof
set f1 = ((f
^
<*p*>)
^
<*q*>);
set f2 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>)
^
<*q*>);
assume
A1:
|- f1;
A2: (
Ant f1)
= (f
^
<*p*>) by
Th5;
then
A3: (
Ant (
Ant f1))
= f by
Th5;
set f4 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>)
^
<*(
'not' p)*>);
set f3 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>)
^
<*(
'not' q)*>);
A4: 1
< (
len f4) by
Th9;
A5: (
Suc ((
Ant f2)
^
<*(
'not' p)*>))
= (
'not' p) by
Th5;
then
A6: (
Suc ((
Ant f2)
^
<*(
'not' p)*>))
= (
Suc f4) by
Th5;
(
Ant f3)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>) by
Th5;
then (
Ant f3)
= ((
Ant (
Ant f1))
^ (
<*(
'not' q)*>
^
<*p*>)) by
FINSEQ_1: 32;
then
A7: (
Ant f3)
= ((
Ant (
Ant f1))
^
<*(
'not' q), p*>) by
FINSEQ_1:def 9;
then ((
Ant f3)
. ((
len f)
+ 1))
= (
'not' q) by
A3,
Th14;
then
A8: ((
Ant f3)
. ((
len f)
+ 1))
= (
Suc f3) by
Th5;
(
Suc f1)
= q by
Th5;
then
A9: (
Suc f1)
= (
Suc f2) by
Th5;
A10: (
Ant f2)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>) by
Th5;
then
A11: 1
< (
len ((
Ant f2)
^
<*(
'not' p)*>)) by
Th9;
(
Suc (
Ant f1))
= p & (
0
+ 1)
<= (
len (
Ant f1)) by
A2,
Th5,
Th10;
then
A12:
|- f2 by
A1,
A10,
A9,
Th13,
Th36;
1
in (
dom
<*(
'not' q), p*>) by
Th14;
then
A13: ((
len f)
+ 1)
in (
dom (
Ant f3)) by
A3,
A7,
FINSEQ_1: 28;
(
Suc f2)
= q & (
Ant f2)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>) by
Th5;
then
|- ((
Ant f2)
^
<*(
'not' (
Suc f2))*>) by
A8,
A13,
Lm2,
Th33;
then
A14:
|- ((
Ant f2)
^
<*(
'not' p)*>) by
A12,
Th44;
A15: (
Ant f4)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f4)
= ((
Ant (
Ant f1))
^ (
<*(
'not' q)*>
^
<*(
'not' p)*>)) by
FINSEQ_1: 32;
then
A16: (
Ant f4)
= ((
Ant (
Ant f1))
^
<*(
'not' q), (
'not' p)*>) by
FINSEQ_1:def 9;
then ((
Ant f4)
. ((
len f)
+ 2))
= (
'not' p) by
A3,
Th14;
then
A17: ((
Ant f4)
. ((
len f)
+ 2))
= (
Suc f4) by
Th5;
2
in (
dom
<*(
'not' q), (
'not' p)*>) by
Th14;
then ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A3,
A16,
FINSEQ_1: 28;
then
A18:
|- f4 by
A17,
Lm2,
Th33;
A19: (
Ant ((
Ant f2)
^
<*(
'not' p)*>))
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>) by
A10,
Th5;
then (
Suc (
Ant ((
Ant f2)
^
<*(
'not' p)*>)))
= p by
Th5;
then
A20: (
'not' (
Suc (
Ant ((
Ant f2)
^
<*(
'not' p)*>))))
= (
Suc (
Ant f4)) by
A15,
Th5;
A21: (
Ant (
Ant ((
Ant f2)
^
<*(
'not' p)*>)))
= ((
Ant (
Ant f1))
^
<*(
'not' q)*>) by
A19,
Th5;
then (
Ant (
Ant f4))
= (
Ant (
Ant ((
Ant f2)
^
<*(
'not' p)*>))) by
A15,
Th5;
hence thesis by
A3,
A14,
A18,
A11,
A4,
A21,
A20,
A5,
A6,
Th37;
end;
theorem ::
CALCUL_1:47
|- ((f
^
<*(
'not' p)*>)
^
<*(
'not' q)*>) implies
|- ((f
^
<*q*>)
^
<*p*>)
proof
set f1 = ((f
^
<*(
'not' p)*>)
^
<*(
'not' q)*>);
set f2 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>)
^
<*(
'not' q)*>);
assume
A1:
|- f1;
A2: (
Ant f2)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>) by
Th5;
(
Suc f1)
= (
'not' q) by
Th5;
then
A3: (
Suc f1)
= (
Suc f2) by
Th5;
A4: (
Ant f1)
= (f
^
<*(
'not' p)*>) by
Th5;
then
A5: (
Ant (
Ant f1))
= f by
Th5;
(
Suc (
Ant f1))
= (
'not' p) & (
0
+ 1)
<= (
len (
Ant f1)) by
A4,
Th5,
Th10;
then
A6:
|- f2 by
A1,
A2,
A3,
Th13,
Th36;
set f4 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>)
^
<*p*>);
set f3 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>)
^
<*q*>);
A7: 1
< (
len f4) by
Th9;
A8: (
Ant f3)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>) by
Th5;
then
A9: 1
< (
len ((
Ant f3)
^
<*p*>)) by
Th9;
(
Ant f3)
= ((
Ant (
Ant f1))
^ (
<*q*>
^
<*(
'not' p)*>)) by
A8,
FINSEQ_1: 32;
then
A10: (
Ant f3)
= ((
Ant (
Ant f1))
^
<*q, (
'not' p)*>) by
FINSEQ_1:def 9;
then ((
Ant f3)
. ((
len f)
+ 1))
= q by
A5,
Th14;
then
A11: ((
Ant f3)
. ((
len f)
+ 1))
= (
Suc f3) by
Th5;
1
in (
dom
<*q, (
'not' p)*>) by
Th14;
then ((
len f)
+ 1)
in (
dom (
Ant f3)) by
A5,
A10,
FINSEQ_1: 28;
then
A12:
|- f3 by
A11,
Lm2,
Th33;
A13: (
Suc ((
Ant f3)
^
<*p*>))
= p by
Th5;
then
A14: (
Suc ((
Ant f3)
^
<*p*>))
= (
Suc f4) by
Th5;
(
Ant f2)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>) by
Th5;
then
A15: (
Ant f2)
= (
Ant f3) by
Th5;
(
Suc f2)
= (
'not' q) by
Th5;
then
A16: (
Suc f2)
= (
'not' (
Suc f3)) by
Th5;
A17: (
Ant f4)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>) by
Th5;
then (
Ant f4)
= ((
Ant (
Ant f1))
^ (
<*q*>
^
<*p*>)) by
FINSEQ_1: 32;
then
A18: (
Ant f4)
= ((
Ant (
Ant f1))
^
<*q, p*>) by
FINSEQ_1:def 9;
then ((
Ant f4)
. ((
len f)
+ 2))
= p by
A5,
Th14;
then
A19: ((
Ant f4)
. ((
len f)
+ 2))
= (
Suc f4) by
Th5;
2
in (
dom
<*q, p*>) by
Th14;
then ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A5,
A18,
FINSEQ_1: 28;
then
A20:
|- f4 by
A19,
Lm2,
Th33;
A21: (
Ant ((
Ant f3)
^
<*p*>))
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>) by
A8,
Th5;
then (
Suc (
Ant ((
Ant f3)
^
<*p*>)))
= (
'not' p) by
Th5;
then
A22: (
Suc (
Ant ((
Ant f3)
^
<*p*>)))
= (
'not' (
Suc (
Ant f4))) by
A17,
Th5;
(
0
+ 1)
<= (
len f2) by
Th10;
then
|- ((
Ant f3)
^
<*(
'not' (
Suc f3))*>) by
A6,
A16,
A15,
Th3;
then
A23:
|- ((
Ant f3)
^
<*p*>) by
A12,
Th44;
A24: (
Ant (
Ant ((
Ant f3)
^
<*p*>)))
= ((
Ant (
Ant f1))
^
<*q*>) by
A21,
Th5;
then (
Ant (
Ant f4))
= (
Ant (
Ant ((
Ant f3)
^
<*p*>))) by
A17,
Th5;
hence thesis by
A5,
A23,
A20,
A9,
A7,
A24,
A22,
A13,
A14,
Th37;
end;
theorem ::
CALCUL_1:48
Th48:
|- ((f
^
<*(
'not' p)*>)
^
<*q*>) implies
|- ((f
^
<*(
'not' q)*>)
^
<*p*>)
proof
set f1 = ((f
^
<*(
'not' p)*>)
^
<*q*>);
set f2 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>)
^
<*q*>);
assume
A1:
|- f1;
A2: (
Ant f1)
= (f
^
<*(
'not' p)*>) by
Th5;
then
A3: (
Ant (
Ant f1))
= f by
Th5;
set f4 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>)
^
<*p*>);
set f3 = ((((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>)
^
<*(
'not' q)*>);
A4: 1
< (
len f4) by
Th9;
(
Ant f3)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f3)
= ((
Ant (
Ant f1))
^ (
<*(
'not' q)*>
^
<*(
'not' p)*>)) by
FINSEQ_1: 32;
then
A5: (
Ant f3)
= ((
Ant (
Ant f1))
^
<*(
'not' q), (
'not' p)*>) by
FINSEQ_1:def 9;
then ((
Ant f3)
. ((
len f)
+ 1))
= (
'not' q) by
A3,
Th14;
then
A6: ((
Ant f3)
. ((
len f)
+ 1))
= (
Suc f3) by
Th5;
1
in (
dom
<*(
'not' q), (
'not' p)*>) by
Th14;
then
A7: ((
len f)
+ 1)
in (
dom (
Ant f3)) by
A3,
A5,
FINSEQ_1: 28;
(
Suc f1)
= q by
Th5;
then
A8: (
Suc f1)
= (
Suc f2) by
Th5;
A9: (
Ant f2)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>) by
Th5;
then
A10: 1
< (
len ((
Ant f2)
^
<*p*>)) by
Th9;
(
Suc (
Ant f1))
= (
'not' p) & (
0
+ 1)
<= (
len (
Ant f1)) by
A2,
Th5,
Th10;
then
A11:
|- f2 by
A1,
A9,
A8,
Th13,
Th36;
(
Suc f2)
= q & (
Ant f2)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>) by
Th5;
then
|- ((
Ant f2)
^
<*(
'not' (
Suc f2))*>) by
A6,
A7,
Lm2,
Th33;
then
A12:
|- ((
Ant f2)
^
<*p*>) by
A11,
Th44;
A13: (
Ant f4)
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*p*>) by
Th5;
then (
Ant f4)
= ((
Ant (
Ant f1))
^ (
<*(
'not' q)*>
^
<*p*>)) by
FINSEQ_1: 32;
then
A14: (
Ant f4)
= ((
Ant (
Ant f1))
^
<*(
'not' q), p*>) by
FINSEQ_1:def 9;
then ((
Ant f4)
. ((
len f)
+ 2))
= p by
A3,
Th14;
then
A15: ((
Ant f4)
. ((
len f)
+ 2))
= (
Suc f4) by
Th5;
2
in (
dom
<*(
'not' q), p*>) by
Th14;
then ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A3,
A14,
FINSEQ_1: 28;
then
A16:
|- f4 by
A15,
Lm2,
Th33;
A17: (
Ant ((
Ant f2)
^
<*p*>))
= (((
Ant (
Ant f1))
^
<*(
'not' q)*>)
^
<*(
'not' p)*>) by
A9,
Th5;
then (
Ant (
Ant ((
Ant f2)
^
<*p*>)))
= ((
Ant (
Ant f1))
^
<*(
'not' q)*>) by
Th5;
then
A18: (
Ant (
Ant f4))
= (
Ant (
Ant ((
Ant f2)
^
<*p*>))) by
A13,
Th5;
(
Suc (
Ant ((
Ant f2)
^
<*p*>)))
= (
'not' p) by
A17,
Th5;
then
A19: (
Suc (
Ant ((
Ant f2)
^
<*p*>)))
= (
'not' (
Suc (
Ant f4))) by
A13,
Th5;
A20: (
Suc f4)
= p by
Th5;
then (
Suc ((
Ant f2)
^
<*p*>))
= (
Suc f4) by
Th5;
then
|- ((
Ant (
Ant f4))
^
<*p*>) by
A12,
A16,
A10,
A4,
A18,
A19,
A20,
Th37;
hence thesis by
A3,
A13,
Th5;
end;
theorem ::
CALCUL_1:49
Th49:
|- ((f
^
<*p*>)
^
<*(
'not' q)*>) implies
|- ((f
^
<*q*>)
^
<*(
'not' p)*>)
proof
set f1 = ((f
^
<*p*>)
^
<*(
'not' q)*>);
set f2 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>)
^
<*(
'not' q)*>);
assume
A1:
|- f1;
A2: (
Ant f2)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>) by
Th5;
(
Suc f1)
= (
'not' q) by
Th5;
then
A3: (
Suc f1)
= (
Suc f2) by
Th5;
A4: (
Ant f1)
= (f
^
<*p*>) by
Th5;
then
A5: (
Ant (
Ant f1))
= f by
Th5;
(
Suc (
Ant f1))
= p & (
0
+ 1)
<= (
len (
Ant f1)) by
A4,
Th5,
Th10;
then
A6:
|- f2 by
A1,
A2,
A3,
Th13,
Th36;
set f4 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>)
^
<*(
'not' p)*>);
set f3 = ((((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>)
^
<*q*>);
A7: 1
< (
len f4) by
Th9;
A8: (
Ant f3)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>) by
Th5;
then
A9: 1
< (
len ((
Ant f3)
^
<*(
'not' p)*>)) by
Th9;
(
Ant f3)
= ((
Ant (
Ant f1))
^ (
<*q*>
^
<*p*>)) by
A8,
FINSEQ_1: 32;
then
A10: (
Ant f3)
= ((
Ant (
Ant f1))
^
<*q, p*>) by
FINSEQ_1:def 9;
then ((
Ant f3)
. ((
len f)
+ 1))
= q by
A5,
Th14;
then
A11: ((
Ant f3)
. ((
len f)
+ 1))
= (
Suc f3) by
Th5;
1
in (
dom
<*q, p*>) by
Th14;
then ((
len f)
+ 1)
in (
dom (
Ant f3)) by
A5,
A10,
FINSEQ_1: 28;
then
A12:
|- f3 by
A11,
Lm2,
Th33;
A13: (
Suc ((
Ant f3)
^
<*(
'not' p)*>))
= (
'not' p) by
Th5;
then
A14: (
Suc ((
Ant f3)
^
<*(
'not' p)*>))
= (
Suc f4) by
Th5;
(
Ant f2)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>) by
Th5;
then
A15: (
Ant f2)
= (
Ant f3) by
Th5;
(
Suc f2)
= (
'not' q) by
Th5;
then
A16: (
Suc f2)
= (
'not' (
Suc f3)) by
Th5;
A17: (
Ant f4)
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f4)
= ((
Ant (
Ant f1))
^ (
<*q*>
^
<*(
'not' p)*>)) by
FINSEQ_1: 32;
then
A18: (
Ant f4)
= ((
Ant (
Ant f1))
^
<*q, (
'not' p)*>) by
FINSEQ_1:def 9;
then ((
Ant f4)
. ((
len f)
+ 2))
= (
'not' p) by
A5,
Th14;
then
A19: ((
Ant f4)
. ((
len f)
+ 2))
= (
Suc f4) by
Th5;
2
in (
dom
<*q, (
'not' p)*>) by
Th14;
then ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A5,
A18,
FINSEQ_1: 28;
then
A20:
|- f4 by
A19,
Lm2,
Th33;
A21: (
Ant ((
Ant f3)
^
<*(
'not' p)*>))
= (((
Ant (
Ant f1))
^
<*q*>)
^
<*p*>) by
A8,
Th5;
then (
Suc (
Ant ((
Ant f3)
^
<*(
'not' p)*>)))
= p by
Th5;
then
A22: (
'not' (
Suc (
Ant ((
Ant f3)
^
<*(
'not' p)*>))))
= (
Suc (
Ant f4)) by
A17,
Th5;
(
0
+ 1)
<= (
len f2) by
Th10;
then
|- ((
Ant f3)
^
<*(
'not' (
Suc f3))*>) by
A6,
A16,
A15,
Th3;
then
A23:
|- ((
Ant f3)
^
<*(
'not' p)*>) by
A12,
Th44;
A24: (
Ant (
Ant ((
Ant f3)
^
<*(
'not' p)*>)))
= ((
Ant (
Ant f1))
^
<*q*>) by
A21,
Th5;
then (
Ant (
Ant f4))
= (
Ant (
Ant ((
Ant f3)
^
<*(
'not' p)*>))) by
A17,
Th5;
hence thesis by
A5,
A23,
A20,
A9,
A7,
A24,
A22,
A13,
A14,
Th37;
end;
::$Canceled
theorem ::
CALCUL_1:51
|- (f
^
<*p*>) implies
|- (f
^
<*(p
'or' q)*>)
proof
set f1 = ((f
^
<*((
'not' p)
'&' (
'not' q))*>)
^
<*((
'not' p)
'&' (
'not' q))*>);
assume
A1:
|- (f
^
<*p*>);
A2: (
Ant f1)
= (f
^
<*((
'not' p)
'&' (
'not' q))*>) by
Th5;
((
len f)
+ 1)
= ((
len f)
+ (
len
<*((
'not' p)
'&' (
'not' q))*>)) by
FINSEQ_1: 39;
then ((
len f)
+ 1)
= (
len (
Ant f1)) by
A2,
FINSEQ_1: 22;
then
A3: ((
len f)
+ 1)
in (
dom (
Ant f1)) by
A2,
Th10;
A4: (
Suc f1)
= ((
'not' p)
'&' (
'not' q)) by
Th5;
((
Ant f1)
. ((
len f)
+ 1))
= ((
'not' p)
'&' (
'not' q)) by
A2,
FINSEQ_1: 42;
then (
Suc f1)
is_tail_of (
Ant f1) by
A4,
A3,
Lm2;
then
|- ((f
^
<*((
'not' p)
'&' (
'not' q))*>)
^
<*(
'not' p)*>) by
A2,
A4,
Th33,
Th40;
then
|- ((f
^
<*p*>)
^
<*(
'not' ((
'not' p)
'&' (
'not' q)))*>) by
Th49;
then
A5:
|- ((f
^
<*p*>)
^
<*(p
'or' q)*>) by
QC_LANG2:def 3;
1
<= (
len (f
^
<*p*>)) by
Th10;
then
|- ((
Ant (f
^
<*p*>))
^
<*(p
'or' q)*>) by
A1,
A5,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:52
|- (f
^
<*q*>) implies
|- (f
^
<*(p
'or' q)*>)
proof
set f1 = ((f
^
<*((
'not' p)
'&' (
'not' q))*>)
^
<*((
'not' p)
'&' (
'not' q))*>);
assume
A1:
|- (f
^
<*q*>);
A2: (
Ant f1)
= (f
^
<*((
'not' p)
'&' (
'not' q))*>) by
Th5;
((
len f)
+ 1)
= ((
len f)
+ (
len
<*((
'not' p)
'&' (
'not' q))*>)) by
FINSEQ_1: 39;
then ((
len f)
+ 1)
= (
len (
Ant f1)) by
A2,
FINSEQ_1: 22;
then
A3: ((
len f)
+ 1)
in (
dom (
Ant f1)) by
A2,
Th10;
A4: (
Suc f1)
= ((
'not' p)
'&' (
'not' q)) by
Th5;
((
Ant f1)
. ((
len f)
+ 1))
= ((
'not' p)
'&' (
'not' q)) by
A2,
FINSEQ_1: 42;
then (
Suc f1)
is_tail_of (
Ant f1) by
A4,
A3,
Lm2;
then
|- ((f
^
<*((
'not' p)
'&' (
'not' q))*>)
^
<*(
'not' q)*>) by
A2,
A4,
Th33,
Th41;
then
|- ((f
^
<*q*>)
^
<*(
'not' ((
'not' p)
'&' (
'not' q)))*>) by
Th49;
then
A5:
|- ((f
^
<*q*>)
^
<*(p
'or' q)*>) by
QC_LANG2:def 3;
1
<= (
len (f
^
<*q*>)) by
Th10;
then
|- ((
Ant (f
^
<*q*>))
^
<*(p
'or' q)*>) by
A1,
A5,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:53
Th52:
|- ((f
^
<*p*>)
^
<*r*>) &
|- ((f
^
<*q*>)
^
<*r*>) implies
|- ((f
^
<*(p
'or' q)*>)
^
<*r*>)
proof
set f1 = ((f
^
<*(
'not' r)*>)
^
<*(
'not' p)*>);
set f2 = ((f
^
<*(
'not' r)*>)
^
<*(
'not' q)*>);
A1: (
Ant f1)
= (f
^
<*(
'not' r)*>) by
Th5;
A2: (
Suc f2)
= (
'not' q) by
Th5;
assume
|- ((f
^
<*p*>)
^
<*r*>) &
|- ((f
^
<*q*>)
^
<*r*>);
then
A3:
|- ((f
^
<*(
'not' r)*>)
^
<*(
'not' p)*>) &
|- ((f
^
<*(
'not' r)*>)
^
<*(
'not' q)*>) by
Th46;
(
Suc f1)
= (
'not' p) & (
Ant f2)
= (f
^
<*(
'not' r)*>) by
Th5;
then
|- ((
Ant f1)
^
<*((
'not' p)
'&' (
'not' q))*>) by
A3,
A2,
Th5,
Th39;
then
|- ((f
^
<*(
'not' ((
'not' p)
'&' (
'not' q)))*>)
^
<*r*>) by
A1,
Th48;
hence thesis by
QC_LANG2:def 3;
end;
theorem ::
CALCUL_1:54
Th53:
|- (f
^
<*p*>) implies
|- (f
^
<*(
'not' (
'not' p))*>)
proof
assume
A1:
|- (f
^
<*p*>);
set f5 = (f
^
<*p*>);
set f4 = (((f
^
<*p*>)
^
<*(
'not' (
'not' p))*>)
^
<*(
'not' (
'not' p))*>);
set f2 = (((f
^
<*p*>)
^
<*(
'not' p)*>)
^
<*(
'not' p)*>);
set f1 = (((f
^
<*p*>)
^
<*(
'not' p)*>)
^
<*p*>);
set f3 = ((
Ant f1)
^
<*(
'not' (
'not' p))*>);
A2: (
Suc f1)
= p by
Th5;
A3: (
Ant f1)
= ((f
^
<*p*>)
^
<*(
'not' p)*>) by
Th5;
then
A4: 1
< (
len f3) by
Th9;
A5: (
Ant f4)
= ((f
^
<*p*>)
^
<*(
'not' (
'not' p))*>) by
Th5;
then (
Ant f4)
= (f
^ (
<*p*>
^
<*(
'not' (
'not' p))*>)) by
FINSEQ_1: 32;
then
A6: (
Ant f4)
= (f
^
<*p, (
'not' (
'not' p))*>) by
FINSEQ_1:def 9;
A7: (
Ant f3)
= (
Ant f1) by
Th5;
then (
Suc (
Ant f3))
= (
'not' p) by
A3,
Th5;
then
A8: (
'not' (
Suc (
Ant f3)))
= (
Suc (
Ant f4)) by
A5,
Th5;
(
Ant f1)
= (f
^ (
<*p*>
^
<*(
'not' p)*>)) by
A3,
FINSEQ_1: 32;
then
A9: (
Ant f1)
= (f
^
<*p, (
'not' p)*>) by
FINSEQ_1:def 9;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*p, (
'not' p)*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f1)) by
A9,
FINSEQ_1: 22;
then 1
<= ((
len f)
+ 1) & ((
len f)
+ 1)
<= (
len (
Ant f1)) by
NAT_1: 11,
XREAL_1: 6;
then
A10: ((
len f)
+ 1)
in (
dom (
Ant f1)) by
FINSEQ_3: 25;
((
Ant f1)
. ((
len f)
+ 1))
= p by
A9,
Th14;
then
A11:
|- f1 by
A2,
A10,
Lm2,
Th33;
A12: 1
< (
len f4) by
Th9;
(
0
+ 1)
<= (
len f2) by
Th10;
then
A13: f2
= ((
Ant f2)
^
<*(
Suc f2)*>) by
Th3;
A14: 1
<= (
len f5) by
Th10;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*p, (
'not' (
'not' p))*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f4)) by
A6,
FINSEQ_1: 22;
then
A15: ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A5,
Th10;
A16: (
Ant f2)
= ((f
^
<*p*>)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f2)
= (f
^ (
<*p*>
^
<*(
'not' p)*>)) by
FINSEQ_1: 32;
then
A17: (
Ant f2)
= (f
^
<*p, (
'not' p)*>) by
FINSEQ_1:def 9;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*p, (
'not' p)*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f2)) by
A17,
FINSEQ_1: 22;
then
A18: ((
len f)
+ 2)
in (
dom (
Ant f2)) by
A16,
Th10;
A19: (
Suc f2)
= (
'not' p) by
Th5;
then
A20: (
'not' (
Suc f1))
= (
Suc f2) by
Th5;
((
Ant f2)
. ((
len f)
+ 2))
= (
'not' p) by
A17,
Th14;
then
A21:
|- f2 by
A18,
A19,
Lm2,
Th33;
A22: (
Suc f4)
= (
'not' (
'not' p)) by
Th5;
then
A23: (
Suc f3)
= (
Suc f4) by
Th5;
((
Ant f4)
. ((
len f)
+ 2))
= (
'not' (
'not' p)) by
A6,
Th14;
then
A24:
|- f4 by
A15,
A22,
Lm2,
Th33;
(
Ant f1)
= (
Ant f2) by
A16,
Th5;
then
A25:
|- ((
Ant f1)
^
<*(
'not' (
'not' p))*>) by
A11,
A21,
A13,
A20,
Th44;
A26: (
Ant (
Ant f3))
= (f
^
<*p*>) by
A3,
A7,
Th5;
then (
Ant (
Ant f3))
= (
Ant (
Ant f4)) by
A5,
Th5;
then
|- ((f
^
<*p*>)
^
<*(
'not' (
'not' p))*>) by
A25,
A22,
A24,
A23,
A26,
A8,
A4,
A12,
Th37;
then
|- ((
Ant f5)
^
<*(
'not' (
'not' p))*>) by
A1,
A14,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:55
Th54:
|- (f
^
<*(
'not' (
'not' p))*>) implies
|- (f
^
<*p*>)
proof
assume
A1:
|- (f
^
<*(
'not' (
'not' p))*>);
set f5 = (f
^
<*(
'not' (
'not' p))*>);
set f4 = (((f
^
<*(
'not' (
'not' p))*>)
^
<*p*>)
^
<*p*>);
set f2 = (((f
^
<*(
'not' (
'not' p))*>)
^
<*(
'not' p)*>)
^
<*(
'not' (
'not' p))*>);
set f1 = (((f
^
<*(
'not' (
'not' p))*>)
^
<*(
'not' p)*>)
^
<*(
'not' p)*>);
set f3 = ((
Ant f1)
^
<*p*>);
A2: (
Suc f1)
= (
'not' p) by
Th5;
A3: (
Ant f1)
= ((f
^
<*(
'not' (
'not' p))*>)
^
<*(
'not' p)*>) by
Th5;
then
A4: 1
< (
len f3) by
Th9;
(
Ant f1)
= (f
^ (
<*(
'not' (
'not' p))*>
^
<*(
'not' p)*>)) by
A3,
FINSEQ_1: 32;
then
A5: (
Ant f1)
= (f
^
<*(
'not' (
'not' p)), (
'not' p)*>) by
FINSEQ_1:def 9;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*(
'not' (
'not' p)), (
'not' p)*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f1)) by
A5,
FINSEQ_1: 22;
then
A6: ((
len f)
+ 2)
in (
dom (
Ant f1)) by
A3,
Th10;
((
Ant f1)
. ((
len f)
+ 2))
= (
'not' p) by
A5,
Th14;
then
A7:
|- f1 by
A2,
A6,
Lm2,
Th33;
A8: 1
< (
len f4) by
Th9;
A9: (
Ant f2)
= ((f
^
<*(
'not' (
'not' p))*>)
^
<*(
'not' p)*>) by
Th5;
then (
Ant f2)
= (f
^ (
<*(
'not' (
'not' p))*>
^
<*(
'not' p)*>)) by
FINSEQ_1: 32;
then
A10: (
Ant f2)
= (f
^
<*(
'not' (
'not' p)), (
'not' p)*>) by
FINSEQ_1:def 9;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*(
'not' (
'not' p)), (
'not' p)*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f2)) by
A10,
FINSEQ_1: 22;
then 1
<= ((
len f)
+ 1) & ((
len f)
+ 1)
<= (
len (
Ant f2)) by
NAT_1: 11,
XREAL_1: 6;
then
A11: ((
len f)
+ 1)
in (
dom (
Ant f2)) by
FINSEQ_3: 25;
(
0
+ 1)
<= (
len f2) by
Th10;
then
A12: f2
= ((
Ant f2)
^
<*(
Suc f2)*>) by
Th3;
A13: 1
<= (
len f5) by
Th10;
A14: (
Ant f4)
= ((f
^
<*(
'not' (
'not' p))*>)
^
<*p*>) by
Th5;
then (
Ant f4)
= (f
^ (
<*(
'not' (
'not' p))*>
^
<*p*>)) by
FINSEQ_1: 32;
then
A15: (
Ant f4)
= (f
^
<*(
'not' (
'not' p)), p*>) by
FINSEQ_1:def 9;
A16: (
Ant f3)
= (
Ant f1) by
Th5;
then (
Suc (
Ant f3))
= (
'not' p) by
A3,
Th5;
then
A17: (
Suc (
Ant f3))
= (
'not' (
Suc (
Ant f4))) by
A14,
Th5;
((
len f)
+ 2)
= ((
len f)
+ (
len
<*(
'not' (
'not' p)), p*>)) by
FINSEQ_1: 44;
then ((
len f)
+ 2)
= (
len (
Ant f4)) by
A15,
FINSEQ_1: 22;
then
A18: ((
len f)
+ 2)
in (
dom (
Ant f4)) by
A14,
Th10;
A19: (
Suc f2)
= (
'not' (
'not' p)) by
Th5;
then
A20: (
'not' (
Suc f1))
= (
Suc f2) by
Th5;
((
Ant f2)
. ((
len f)
+ 1))
= (
'not' (
'not' p)) by
A10,
Th14;
then
A21:
|- f2 by
A11,
A19,
Lm2,
Th33;
A22: (
Suc f4)
= p by
Th5;
then
A23: (
Suc f3)
= (
Suc f4) by
Th5;
((
Ant f4)
. ((
len f)
+ 2))
= p by
A15,
Th14;
then
A24:
|- f4 by
A18,
A22,
Lm2,
Th33;
(
Ant f1)
= (
Ant f2) by
A9,
Th5;
then
A25:
|- ((
Ant f1)
^
<*p*>) by
A7,
A21,
A12,
A20,
Th44;
A26: (
Ant (
Ant f3))
= (f
^
<*(
'not' (
'not' p))*>) by
A3,
A16,
Th5;
then (
Ant (
Ant f3))
= (
Ant (
Ant f4)) by
A14,
Th5;
then
|- ((f
^
<*(
'not' (
'not' p))*>)
^
<*p*>) by
A25,
A22,
A24,
A23,
A26,
A17,
A4,
A8,
Th37;
then
|- ((
Ant f5)
^
<*p*>) by
A1,
A13,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:56
|- (f
^
<*(p
=> q)*>) &
|- (f
^
<*p*>) implies
|- (f
^
<*q*>)
proof
assume that
A1:
|- (f
^
<*(p
=> q)*>) and
A2:
|- (f
^
<*p*>);
set f3 = ((f
^
<*q*>)
^
<*q*>);
set f2 = ((f
^
<*(
'not' p)*>)
^
<*(
'not' p)*>);
set f1 = ((f
^
<*(
'not' p)*>)
^
<*p*>);
A3: (
Ant f1)
= (f
^
<*(
'not' p)*>) by
Th5;
(
Suc (f
^
<*p*>))
= p by
Th5;
then
A4: (
Suc (f
^
<*p*>))
= (
Suc f1) by
Th5;
A5: (
0
+ 1)
<= (
len f2) by
Th10;
A6: (
Ant f3)
= (f
^
<*q*>) by
Th5;
then
A7: ((
Ant f3)
. ((
len f)
+ 1))
= q by
FINSEQ_1: 42;
((
len f)
+ 1)
= ((
len f)
+ (
len
<*q*>)) by
FINSEQ_1: 39;
then ((
len f)
+ 1)
= (
len (
Ant f3)) by
A6,
FINSEQ_1: 22;
then
A8: ((
len f)
+ 1)
in (
dom (
Ant f3)) by
A6,
Th10;
(
Suc f3)
= q by
Th5;
then
A9:
|- f3 by
A7,
A8,
Lm2,
Th33;
A10: (
Ant f2)
= (f
^
<*(
'not' p)*>) by
Th5;
((
len f)
+ 1)
= ((
len f)
+ (
len
<*(
'not' p)*>)) by
FINSEQ_1: 39;
then ((
len f)
+ 1)
= (
len (
Ant f2)) by
A10,
FINSEQ_1: 22;
then
A11: ((
len f)
+ 1)
in (
dom (
Ant f2)) by
A10,
Th10;
A12: (
Suc f2)
= (
'not' p) by
Th5;
then
A13: (
'not' (
Suc f1))
= (
Suc f2) by
Th5;
((
Ant f2)
. ((
len f)
+ 1))
= (
'not' p) by
A10,
FINSEQ_1: 42;
then
A14:
|- f2 by
A11,
A12,
Lm2,
Th33;
(
Ant f1)
= (
Ant f2) by
A10,
Th5;
then
A15:
|- ((
Ant f1)
^
<*(
'not' (
Suc f1))*>) by
A14,
A5,
A13,
Th3;
(
Ant (f
^
<*p*>))
= f by
Th5;
then
|- f1 by
A2,
A3,
A4,
Th8,
Th36;
then
|- ((
Ant f1)
^
<*q*>) by
A15,
Th44;
then
|- ((f
^
<*((
'not' p)
'or' q)*>)
^
<*q*>) by
A3,
A9,
Th52;
then
A16:
|- ((f
^
<*(
'not' ((
'not' (
'not' p))
'&' (
'not' q)))*>)
^
<*q*>) by
QC_LANG2:def 3;
set f4 = ((f
^
<*(
'not' q)*>)
^
<*((
'not' (
'not' p))
'&' (
'not' q))*>);
set f5 = ((
Ant f4)
^
<*p*>);
set f6 = ((
Ant f4)
^
<*(
'not' q)*>);
A17: (
Ant f5)
= (
Ant f4) & (
Suc f5)
= p by
Th5;
A18: (
Ant f6)
= (
Ant f4) & (
Suc f6)
= (
'not' q) by
Th5;
A19: (
Suc f4)
= ((
'not' (
'not' p))
'&' (
'not' q)) by
Th5;
then
|- ((
Ant f4)
^
<*(
'not' (
'not' p))*>) by
A16,
Th40,
Th48;
then
A20:
|- ((
Ant f4)
^
<*p*>) by
Th54;
|- ((
Ant f4)
^
<*(
'not' q)*>) by
A16,
A19,
Th41,
Th48;
then
|- ((
Ant f4)
^
<*(p
'&' (
'not' q))*>) by
A20,
A17,
A18,
Th39;
then
|- ((f
^
<*(
'not' q)*>)
^
<*(p
'&' (
'not' q))*>) by
Th5;
then
|- ((f
^
<*(
'not' (p
'&' (
'not' q)))*>)
^
<*q*>) by
Th48;
then
A21:
|- ((f
^
<*(p
=> q)*>)
^
<*q*>) by
QC_LANG2:def 2;
1
<= (
len (f
^
<*(p
=> q)*>)) by
Th10;
then
|- ((
Ant (f
^
<*(p
=> q)*>))
^
<*q*>) by
A1,
A21,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:57
Th56: ((
'not' p)
. (x,y))
= (
'not' (p
. (x,y)))
proof
set S =
[p, (
Sbst (x,y))];
(S
`1 )
= p & (S
`2 )
= (
Sbst (x,y));
then ((
'not' p)
. (x,y))
= (
CQC_Sub
[(
'not' p), (
Sbst (x,y))]) & (
Sub_not S)
=
[(
'not' p), (
Sbst (x,y))] by
SUBSTUT1:def 20,
SUBSTUT2:def 1;
then ((
'not' p)
. (x,y))
= (
'not' (
CQC_Sub S)) by
SUBSTUT1: 29;
hence thesis by
SUBSTUT2:def 1;
end;
theorem ::
CALCUL_1:58
(ex y st
|- (f
^
<*(p
. (x,y))*>)) implies
|- (f
^
<*(
Ex (x,p))*>)
proof
given y such that
A1:
|- (f
^
<*(p
. (x,y))*>);
set f1 = ((f
^
<*(
All (x,(
'not' p)))*>)
^
<*(
All (x,(
'not' p)))*>);
A2: (
Ant f1)
= (f
^
<*(
All (x,(
'not' p)))*>) by
Th5;
((
len f)
+ 1)
= ((
len f)
+ (
len
<*(
All (x,(
'not' p)))*>)) by
FINSEQ_1: 39;
then ((
len f)
+ 1)
= (
len (
Ant f1)) by
A2,
FINSEQ_1: 22;
then
A3: ((
len f)
+ 1)
in (
dom (
Ant f1)) by
A2,
Th10;
A4: (
Suc f1)
= (
All (x,(
'not' p))) by
Th5;
((
Ant f1)
. ((
len f)
+ 1))
= (
All (x,(
'not' p))) by
A2,
FINSEQ_1: 42;
then (
Suc f1)
is_tail_of (
Ant f1) by
A4,
A3,
Lm2;
then
|- ((f
^
<*(
All (x,(
'not' p)))*>)
^
<*((
'not' p)
. (x,y))*>) by
A2,
A4,
Th33,
Th42;
then
|- ((f
^
<*(
All (x,(
'not' p)))*>)
^
<*(
'not' (p
. (x,y)))*>) by
Th56;
then
|- ((f
^
<*(p
. (x,y))*>)
^
<*(
'not' (
All (x,(
'not' p))))*>) by
Th49;
then
A5:
|- ((f
^
<*(p
. (x,y))*>)
^
<*(
Ex (x,p))*>) by
QC_LANG2:def 5;
1
<= (
len (f
^
<*(p
. (x,y))*>)) by
Th10;
then
|- ((
Ant (f
^
<*(p
. (x,y))*>))
^
<*(
Ex (x,p))*>) by
A1,
A5,
Th45;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:59
Th58: (
still_not-bound_in (f
^ g))
= ((
still_not-bound_in f)
\/ (
still_not-bound_in g))
proof
thus (
still_not-bound_in (f
^ g))
c= ((
still_not-bound_in f)
\/ (
still_not-bound_in g))
proof
let b be
object;
assume b
in (
still_not-bound_in (f
^ g));
then
consider i, p such that
A1: i
in (
dom (f
^ g)) and
A2: p
= ((f
^ g)
. i) & b
in (
still_not-bound_in p) by
Def5;
A3:
now
given n be
Nat such that
A4: n
in (
dom g) and
A5: i
= ((
len f)
+ n);
((f
^ g)
. i)
= (g
. n) by
A4,
A5,
FINSEQ_1:def 7;
then
A6: b
in (
still_not-bound_in g) by
A2,
A4,
Def5;
(
still_not-bound_in g)
c= ((
still_not-bound_in f)
\/ (
still_not-bound_in g)) by
XBOOLE_1: 7;
hence thesis by
A6;
end;
now
assume
A7: i
in (
dom f);
then ((f
^ g)
. i)
= (f
. i) by
FINSEQ_1:def 7;
then
A8: b
in (
still_not-bound_in f) by
A2,
A7,
Def5;
(
still_not-bound_in f)
c= ((
still_not-bound_in f)
\/ (
still_not-bound_in g)) by
XBOOLE_1: 7;
hence thesis by
A8;
end;
hence thesis by
A1,
A3,
FINSEQ_1: 25;
end;
thus ((
still_not-bound_in f)
\/ (
still_not-bound_in g))
c= (
still_not-bound_in (f
^ g))
proof
let b be
object such that
A9: b
in ((
still_not-bound_in f)
\/ (
still_not-bound_in g));
A10:
now
assume b
in (
still_not-bound_in g);
then
consider i, p such that
A11: i
in (
dom g) & p
= (g
. i) and
A12: b
in (
still_not-bound_in p) by
Def5;
((
len f)
+ i)
in (
dom (f
^ g)) & p
= ((f
^ g)
. ((
len f)
+ i)) by
A11,
FINSEQ_1: 28,
FINSEQ_1:def 7;
hence thesis by
A12,
Def5;
end;
now
assume b
in (
still_not-bound_in f);
then
consider i, p such that
A13: i
in (
dom f) and
A14: p
= (f
. i) and
A15: b
in (
still_not-bound_in p) by
Def5;
(
dom f)
c= (
dom (f
^ g)) & p
= ((f
^ g)
. i) by
A13,
A14,
FINSEQ_1: 26,
FINSEQ_1:def 7;
hence thesis by
A13,
A15,
Def5;
end;
hence thesis by
A9,
A10,
XBOOLE_0:def 3;
end;
end;
theorem ::
CALCUL_1:60
Th59: (
still_not-bound_in
<*p*>)
= (
still_not-bound_in p)
proof
A1:
now
1
in (
Seg 1) by
FINSEQ_1: 2,
TARSKI:def 1;
then
A2: 1
in (
dom
<*p*>) by
FINSEQ_1: 38;
A3: p
= (
<*p*>
. 1) by
FINSEQ_1: 40;
let b be
object;
assume b
in (
still_not-bound_in p);
hence b
in (
still_not-bound_in
<*p*>) by
A2,
A3,
Def5;
end;
now
let b be
object;
assume b
in (
still_not-bound_in
<*p*>);
then
consider i, q such that
A4: i
in (
dom
<*p*>) and
A5: q
= (
<*p*>
. i) & b
in (
still_not-bound_in q) by
Def5;
i
in (
Seg 1) by
A4,
FINSEQ_1: 38;
then i
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
hence b
in (
still_not-bound_in p) by
A5,
FINSEQ_1: 40;
end;
hence thesis by
A1,
TARSKI: 2;
end;
theorem ::
CALCUL_1:61
|- ((f
^
<*(p
. (x,y))*>)
^
<*q*>) & not y
in (
still_not-bound_in ((f
^
<*(
Ex (x,p))*>)
^
<*q*>)) implies
|- ((f
^
<*(
Ex (x,p))*>)
^
<*q*>)
proof
assume that
A1:
|- ((f
^
<*(p
. (x,y))*>)
^
<*q*>) and
A2: not y
in (
still_not-bound_in ((f
^
<*(
Ex (x,p))*>)
^
<*q*>));
set f1 = ((f
^
<*(
'not' q)*>)
^
<*((
'not' p)
. (x,y))*>);
|- ((f
^
<*(
'not' q)*>)
^
<*(
'not' (p
. (x,y)))*>) by
A1,
Th46;
then
A3:
|- ((f
^
<*(
'not' q)*>)
^
<*((
'not' p)
. (x,y))*>) by
Th56;
A4: not y
in ((
still_not-bound_in (f
^
<*(
Ex (x,p))*>))
\/ (
still_not-bound_in
<*q*>)) by
A2,
Th58;
then not y
in (
still_not-bound_in (f
^
<*(
Ex (x,p))*>)) by
XBOOLE_0:def 3;
then
A5: not y
in ((
still_not-bound_in f)
\/ (
still_not-bound_in
<*(
Ex (x,p))*>)) by
Th58;
then not y
in (
still_not-bound_in
<*(
Ex (x,p))*>) by
XBOOLE_0:def 3;
then not y
in (
still_not-bound_in (
Ex (x,p))) by
Th59;
then not y
in ((
still_not-bound_in p)
\
{x}) by
QC_LANG3: 19;
then not y
in ((
still_not-bound_in (
'not' p))
\
{x}) by
QC_LANG3: 7;
then
A6: not y
in (
still_not-bound_in (
All (x,(
'not' p)))) by
QC_LANG3: 12;
not y
in (
still_not-bound_in
<*q*>) by
A4,
XBOOLE_0:def 3;
then not y
in (
still_not-bound_in q) by
Th59;
then not y
in (
still_not-bound_in (
'not' q)) by
QC_LANG3: 7;
then
A7: not y
in (
still_not-bound_in
<*(
'not' q)*>) by
Th59;
not y
in (
still_not-bound_in f) by
A5,
XBOOLE_0:def 3;
then not y
in ((
still_not-bound_in f)
\/ (
still_not-bound_in
<*(
'not' q)*>)) by
A7,
XBOOLE_0:def 3;
then not y
in (
still_not-bound_in (f
^
<*(
'not' q)*>)) by
Th58;
then
A8: not y
in (
still_not-bound_in (
Ant f1)) by
Th5;
(
Suc f1)
= ((
'not' p)
. (x,y)) by
Th5;
then
|- ((
Ant f1)
^
<*(
All (x,(
'not' p)))*>) by
A3,
A8,
A6,
Th43;
then
|- ((f
^
<*(
'not' q)*>)
^
<*(
All (x,(
'not' p)))*>) by
Th5;
then
|- ((f
^
<*(
'not' (
All (x,(
'not' p))))*>)
^
<*q*>) by
Th48;
hence thesis by
QC_LANG2:def 5;
end;
theorem ::
CALCUL_1:62
Th61: (
still_not-bound_in f)
= (
union { (
still_not-bound_in p) : ex i st i
in (
dom f) & p
= (f
. i) })
proof
defpred
P[
set] means ex p st $1
= (
still_not-bound_in p) & ex i st i
in (
dom f) & p
= (f
. i);
set X = { (
still_not-bound_in p) : ex i st i
in (
dom f) & p
= (f
. i) };
A1:
now
let b be
object;
assume b
in (
union X);
then
consider Y be
set such that
A2: b
in Y and
A3: Y
in X by
TARSKI:def 4;
P[Y] by
A3;
hence b
in (
still_not-bound_in f) by
A2,
Def5;
end;
now
let b be
object;
assume b
in (
still_not-bound_in f);
then
consider i, p such that
A4: i
in (
dom f) & p
= (f
. i) and
A5: b
in (
still_not-bound_in p) by
Def5;
(
still_not-bound_in p)
in X by
A4;
hence b
in (
union X) by
A5,
TARSKI:def 4;
end;
hence thesis by
A1,
TARSKI: 2;
end;
theorem ::
CALCUL_1:63
Th62: (
still_not-bound_in f) is
finite
proof
defpred
P[
object,
object] means ex p st $2
= (
still_not-bound_in p) & p
= (f
. $1);
consider n be
Nat such that
A1: (
dom f)
= (
Seg n) by
FINSEQ_1:def 2;
set X = { (
still_not-bound_in p) : ex i st i
in (
dom f) & p
= (f
. i) };
consider F1 be
Function such that
A2: (
rng F1)
= (
Seg n) and
A3: (
dom F1)
in
omega by
FINSET_1:def 1;
A4:
now
let b be
set;
assume b
in X;
then ex p st b
= (
still_not-bound_in p) & ex i st i
in (
dom f) & p
= (f
. i);
hence b is
finite by
CQC_SIM1: 19;
end;
A5: for a be
object st a
in (
dom f) holds ex b be
object st
P[a, b]
proof
let a be
object;
assume a
in (
dom f);
then (f
. a)
in (
rng f) by
FUNCT_1: 3;
then
reconsider p = (f
. a) as
Element of (
CQC-WFF Al);
take (
still_not-bound_in p);
thus thesis;
end;
consider F2 be
Function such that
A6: (
dom F2)
= (
dom f) & for b be
object st b
in (
dom f) holds
P[b, (F2
. b)] from
CLASSES1:sch 1(
A5);
set F = (F2
* F1);
A7:
now
let b be
object;
assume b
in X;
then
consider p such that
A8: b
= (
still_not-bound_in p) and
A9: ex i st i
in (
dom f) & p
= (f
. i);
consider i such that
A10: i
in (
dom f) and
A11: p
= (f
. i) by
A9;
P[i, (F2
. i)] by
A6,
A10;
then b
in (
rng F2) by
A6,
A8,
A10,
A11,
FUNCT_1: 3;
hence b
in (
rng F) by
A6,
A1,
A2,
RELAT_1: 28;
end;
now
let b be
object;
assume b
in (
rng F);
then b
in (
rng F2) by
A6,
A1,
A2,
RELAT_1: 28;
then
consider a be
object such that
A12: a
in (
dom F2) and
A13: b
= (F2
. a) by
FUNCT_1:def 3;
reconsider a as
Element of
NAT by
A6,
A12;
P[a, (F2
. a)] by
A6,
A12;
hence b
in X by
A6,
A12,
A13;
end;
then
A14: (
rng F)
= X by
A7,
TARSKI: 2;
(
dom F)
in
omega by
A6,
A1,
A2,
A3,
RELAT_1: 27;
then X is
finite by
A14,
FINSET_1:def 1;
then (
union X) is
finite by
A4,
FINSET_1: 7;
hence thesis by
Th61;
end;
theorem ::
CALCUL_1:64
Th63: (
card (
bound_QC-variables Al))
= (
card (
QC-symbols Al)) & not (
bound_QC-variables Al) is
finite
proof
NAT
c= (
QC-symbols Al) by
QC_LANG1: 3;
then
A1: not (
QC-symbols Al) is
finite;
(
bound_QC-variables Al)
=
[:
{4}, (
QC-symbols Al):] by
QC_LANG1:def 4;
then (
card (
bound_QC-variables Al))
= (
card
[:(
QC-symbols Al),
{4}:]) by
CARD_2: 4;
hence thesis by
A1,
CARD_4: 19;
end;
theorem ::
CALCUL_1:65
Th64: ex x st not x
in (
still_not-bound_in f)
proof
(
still_not-bound_in f) is
finite by
Th62;
then (
still_not-bound_in f)
<> (
bound_QC-variables Al) by
Th63;
then not (for b be
object holds b
in (
still_not-bound_in f) iff b
in (
bound_QC-variables Al)) by
TARSKI: 2;
then
consider b such that
A1: not b
in (
still_not-bound_in f) and
A2: b
in (
bound_QC-variables Al);
reconsider x = b as
bound_QC-variable of Al by
A2;
take x;
thus thesis by
A1;
end;
theorem ::
CALCUL_1:66
Th65:
|- (f
^
<*(
All (x,p))*>) implies
|- (f
^
<*(
All (x,(
'not' (
'not' p))))*>)
proof
assume
A1:
|- (f
^
<*(
All (x,p))*>);
consider y0 such that
A2: not y0
in (
still_not-bound_in (f
^
<*(
All (x,p))*>)) by
Th64;
(
Ant (f
^
<*(
All (x,p))*>))
= f & (
Suc (f
^
<*(
All (x,p))*>))
= (
All (x,p)) by
Th5;
then
|- (f
^
<*(p
. (x,y0))*>) by
A1,
Th42;
then
|- (f
^
<*(
'not' (
'not' (p
. (x,y0))))*>) by
Th53;
then
|- (f
^
<*(
'not' ((
'not' p)
. (x,y0)))*>) by
Th56;
then
A3:
|- (f
^
<*((
'not' (
'not' p))
. (x,y0))*>) by
Th56;
set f1 = (f
^
<*((
'not' (
'not' p))
. (x,y0))*>);
A4: not y0
in ((
still_not-bound_in f)
\/ (
still_not-bound_in
<*(
All (x,p))*>)) by
A2,
Th58;
then not y0
in (
still_not-bound_in f) by
XBOOLE_0:def 3;
then
A5: not y0
in (
still_not-bound_in (
Ant f1)) by
Th5;
not y0
in (
still_not-bound_in
<*(
All (x,p))*>) by
A4,
XBOOLE_0:def 3;
then not y0
in (
still_not-bound_in (
All (x,p))) by
Th59;
then not y0
in ((
still_not-bound_in p)
\
{x}) by
QC_LANG3: 12;
then not y0
in ((
still_not-bound_in (
'not' p))
\
{x}) by
QC_LANG3: 7;
then not y0
in ((
still_not-bound_in (
'not' (
'not' p)))
\
{x}) by
QC_LANG3: 7;
then
A6: not y0
in (
still_not-bound_in (
All (x,(
'not' (
'not' p))))) by
QC_LANG3: 12;
(
Suc f1)
= ((
'not' (
'not' p))
. (x,y0)) by
Th5;
then
|- ((
Ant f1)
^
<*(
All (x,(
'not' (
'not' p))))*>) by
A3,
A5,
A6,
Th43;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:67
Th66:
|- (f
^
<*(
All (x,(
'not' (
'not' p))))*>) implies
|- (f
^
<*(
All (x,p))*>)
proof
assume
A1:
|- (f
^
<*(
All (x,(
'not' (
'not' p))))*>);
consider y0 such that
A2: not y0
in (
still_not-bound_in (f
^
<*(
All (x,p))*>)) by
Th64;
(
Ant (f
^
<*(
All (x,(
'not' (
'not' p))))*>))
= f & (
Suc (f
^
<*(
All (x,(
'not' (
'not' p))))*>))
= (
All (x,(
'not' (
'not' p)))) by
Th5;
then
|- (f
^
<*((
'not' (
'not' p))
. (x,y0))*>) by
A1,
Th42;
then
|- (f
^
<*(
'not' ((
'not' p)
. (x,y0)))*>) by
Th56;
then
A3:
|- (f
^
<*(
'not' (
'not' (p
. (x,y0))))*>) by
Th56;
set f1 = (f
^
<*(p
. (x,y0))*>);
A4: not y0
in ((
still_not-bound_in f)
\/ (
still_not-bound_in
<*(
All (x,p))*>)) by
A2,
Th58;
then not y0
in (
still_not-bound_in f) by
XBOOLE_0:def 3;
then
A5: not y0
in (
still_not-bound_in (
Ant f1)) by
Th5;
not y0
in (
still_not-bound_in
<*(
All (x,p))*>) by
A4,
XBOOLE_0:def 3;
then
A6: not y0
in (
still_not-bound_in (
All (x,p))) by
Th59;
(
Suc f1)
= (p
. (x,y0)) by
Th5;
then
|- ((
Ant f1)
^
<*(
All (x,p))*>) by
A3,
A5,
A6,
Th43,
Th54;
hence thesis by
Th5;
end;
theorem ::
CALCUL_1:68
|- (f
^
<*(
All (x,p))*>) iff
|- (f
^
<*(
'not' (
Ex (x,(
'not' p))))*>)
proof
thus
|- (f
^
<*(
All (x,p))*>) implies
|- (f
^
<*(
'not' (
Ex (x,(
'not' p))))*>)
proof
assume
|- (f
^
<*(
All (x,p))*>);
then
|- (f
^
<*(
All (x,(
'not' (
'not' p))))*>) by
Th65;
then
|- (f
^
<*(
'not' (
'not' (
All (x,(
'not' (
'not' p))))))*>) by
Th53;
hence thesis by
QC_LANG2:def 5;
end;
assume
|- (f
^
<*(
'not' (
Ex (x,(
'not' p))))*>);
then
|- (f
^
<*(
'not' (
'not' (
All (x,(
'not' (
'not' p))))))*>) by
QC_LANG2:def 5;
then
|- (f
^
<*(
All (x,(
'not' (
'not' p))))*>) by
Th54;
hence thesis by
Th66;
end;
definition
let f be
FinSequence, p be
set;
:: original:
is_tail_of
redefine
::
CALCUL_1:def16
pred p
is_tail_of f means ex i be
Nat st i
in (
dom f) & (f
. i)
= p;
compatibility by
Lm1,
Lm2;
end