combgras.miz
    
    begin
    
    reserve k,n for
    Nat, 
    
x,y,X,Y,Z for
    set;
    
    theorem :: 
    
    COMBGRAS:1
    
    
    
    
    
    Th1: for a,b be 
    set st a 
    <> b & ( 
    card a) 
    = n & ( 
    card b) 
    = n holds ( 
    card (a 
    /\ b)) 
    in n & (n 
    + 1) 
    c= ( 
    card (a 
    \/ b)) 
    
    proof
    
      let a,b be
    set;
    
      assume that
    
      
    
    A1: a 
    <> b and 
    
      
    
    A2: ( 
    card a) 
    = n and 
    
      
    
    A3: ( 
    card b) 
    = n and 
    
      
    
    A4: not ( 
    card (a 
    /\ b)) 
    in n or not (n 
    + 1) 
    c= ( 
    card (a 
    \/ b)); 
    
      n
    c= ( 
    card (a 
    /\ b)) or ( 
    card (a 
    \/ b)) 
    in ( 
    Segm (n 
    + 1)) by 
    A4,
    ORDINAL1: 16;
    
      then n
    c= ( 
    card (a 
    /\ b)) or ( 
    card (a 
    \/ b)) 
    in ( 
    succ ( 
    Segm n)) by 
    NAT_1: 38;
    
      then
    
      
    
    A5: n 
    c= ( 
    card (a 
    /\ b)) or ( 
    card (a 
    \/ b)) 
    c= n by 
    ORDINAL1: 22;
    
      n
    c= ( 
    card (a 
    \/ b)) & ( 
    card (a 
    /\ b)) 
    c= n by 
    A2,
    CARD_1: 11,
    XBOOLE_1: 7,
    XBOOLE_1: 17;
    
      then
    
      
    
    A6: ( 
    card a) 
    = ( 
    card (a 
    /\ b)) & ( 
    card (a 
    /\ b)) 
    = ( 
    card b) or ( 
    card (a 
    \/ b)) 
    = ( 
    card a) & ( 
    card (a 
    \/ b)) 
    = ( 
    card b) by 
    A2,
    A3,
    A5,
    XBOOLE_0:def 10;
    
      
    
      
    
    A7: a 
    c= (a 
    \/ b) & b 
    c= (a 
    \/ b) by 
    XBOOLE_1: 7;
    
      a is
    finite  
    set & b is 
    finite  
    set by 
    A2,
    A3;
    
      then a
    = (a 
    /\ b) & b 
    = (a 
    /\ b) or a 
    = (a 
    \/ b) & b 
    = (a 
    \/ b) by 
    A7,
    A6,
    CARD_2: 102,
    XBOOLE_1: 17;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    COMBGRAS:2
    
    
    
    
    
    Th2: for a,b be 
    set st ( 
    card a) 
    = (n 
    + k) & ( 
    card b) 
    = (n 
    + k) holds ( 
    card (a 
    /\ b)) 
    = n iff ( 
    card (a 
    \/ b)) 
    = (n 
    + (2 
    * k)) 
    
    proof
    
      let a,b be
    set;
    
      assume that
    
      
    
    A1: ( 
    card a) 
    = (n 
    + k) and 
    
      
    
    A2: ( 
    card b) 
    = (n 
    + k); 
    
      
    
      
    
    A3: a is 
    finite by 
    A1;
    
      
    
      
    
    A4: b is 
    finite by 
    A2;
    
      thus (
    card (a 
    /\ b)) 
    = n implies ( 
    card (a 
    \/ b)) 
    = (n 
    + (2 
    * k)) 
    
      proof
    
        assume (
    card (a 
    /\ b)) 
    = n; 
    
        then (
    card (a 
    \/ b)) 
    = (((n 
    + k) 
    + (n 
    + k)) 
    - n) by 
    A1,
    A2,
    A3,
    A4,
    CARD_2: 45;
    
        hence thesis;
    
      end;
    
      thus (
    card (a 
    \/ b)) 
    = (n 
    + (2 
    * k)) implies ( 
    card (a 
    /\ b)) 
    = n 
    
      proof
    
        reconsider m = (
    card (a 
    /\ b)) as 
    Nat by 
    A3;
    
        assume (
    card (a 
    \/ b)) 
    = (n 
    + (2 
    * k)); 
    
        then (n
    + (2 
    * k)) 
    = (((n 
    + k) 
    + (n 
    + k)) 
    - m) by 
    A1,
    A2,
    A3,
    A4,
    CARD_2: 45;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    COMBGRAS:3
    
    
    
    
    
    Th3: ( 
    card X) 
    c= ( 
    card Y) iff ex f be 
    Function st f is 
    one-to-one & X 
    c= ( 
    dom f) & (f 
    .: X) 
    c= Y 
    
    proof
    
      thus (
    card X) 
    c= ( 
    card Y) implies ex f be 
    Function st f is 
    one-to-one & X 
    c= ( 
    dom f) & (f 
    .: X) 
    c= Y 
    
      proof
    
        assume (
    card X) 
    c= ( 
    card Y); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: f is 
    one-to-one & ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    CARD_1: 10;
    
        take f;
    
        thus thesis by
    A1,
    RELAT_1: 113;
    
      end;
    
      given f be
    Function such that 
    
      
    
    A2: f is 
    one-to-one and 
    
      
    
    A3: X 
    c= ( 
    dom f) and 
    
      
    
    A4: (f 
    .: X) 
    c= Y; 
    
      
    
      
    
    A5: ( 
    rng (f 
    | X)) 
    c= Y 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng (f 
    | X)); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A6: x 
    in ( 
    dom (f 
    | X)) & y 
    = ((f 
    | X) 
    . x) by 
    FUNCT_1:def 3;
    
        x
    in X & y 
    = (f 
    . x) by 
    A3,
    A6,
    FUNCT_1: 47,
    RELAT_1: 62;
    
        then y
    in (f 
    .: X) by 
    A3,
    FUNCT_1:def 6;
    
        hence thesis by
    A4;
    
      end;
    
      (f
    | X) is 
    one-to-one & ( 
    dom (f 
    | X)) 
    = X by 
    A2,
    A3,
    FUNCT_1: 52,
    RELAT_1: 62;
    
      hence thesis by
    A5,
    CARD_1: 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:4
    
    
    
    
    
    Th4: for f be 
    Function st f is 
    one-to-one & X 
    c= ( 
    dom f) holds ( 
    card (f 
    .: X)) 
    = ( 
    card X) 
    
    proof
    
      let f be
    Function;
    
      assume f is
    one-to-one & X 
    c= ( 
    dom f); 
    
      then (
    card (f 
    .: X)) 
    c= ( 
    card X) & ( 
    card X) 
    c= ( 
    card (f 
    .: X)) by 
    Th3,
    CARD_1: 67;
    
      hence thesis by
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:5
    
    
    
    
    
    Th5: (X 
    \ Y) 
    = (X 
    \ Z) & Y 
    c= X & Z 
    c= X implies Y 
    = Z 
    
    proof
    
      assume that
    
      
    
    A1: (X 
    \ Y) 
    = (X 
    \ Z) and 
    
      
    
    A2: Y 
    c= X and 
    
      
    
    A3: Z 
    c= X; 
    
      
    
      
    
    A4: (Y 
    \ Z) 
    c= X by 
    A2;
    
      (X
    \ Z) 
    misses Y by 
    A1,
    XBOOLE_1: 106;
    
      then (Y
    \ Z) 
    =  
    {} by 
    A4,
    XBOOLE_1: 67,
    XBOOLE_1: 81;
    
      then
    
      
    
    A5: Y 
    c= Z by 
    XBOOLE_1: 37;
    
      
    
      
    
    A6: (Z 
    \ Y) 
    c= X by 
    A3;
    
      (X
    \ Y) 
    misses Z by 
    A1,
    XBOOLE_1: 106;
    
      then (Z
    \ Y) 
    =  
    {} by 
    A6,
    XBOOLE_1: 67,
    XBOOLE_1: 81;
    
      then Z
    c= Y by 
    XBOOLE_1: 37;
    
      hence thesis by
    A5,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:6
    
    
    
    
    
    Th6: for Y be non 
    empty  
    set holds for p be 
    Function of X, Y st p is 
    one-to-one holds for x1,x2 be 
    Subset of X holds x1 
    <> x2 implies (p 
    .: x1) 
    <> (p 
    .: x2) 
    
    proof
    
      let Y be non
    empty  
    set;
    
      let p be
    Function of X, Y such that 
    
      
    
    A1: p is 
    one-to-one;
    
      let x1 be
    Subset of X; 
    
      let x2 be
    Subset of X; 
    
      
    
      
    
    A2: X 
    = ( 
    dom p) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A3: not x1 
    c= x2 implies (p 
    .: x1) 
    <> (p 
    .: x2) 
    
      proof
    
        assume not x1
    c= x2; 
    
        then
    
        consider a be
    object such that 
    
        
    
    A4: a 
    in x1 and 
    
        
    
    A5: not a 
    in x2; 
    
         not (p
    . a) 
    in (p 
    .: x2) 
    
        proof
    
          assume (p
    . a) 
    in (p 
    .: x2); 
    
          then ex b be
    object st b 
    in ( 
    dom p) & b 
    in x2 & (p 
    . a) 
    = (p 
    . b) by 
    FUNCT_1:def 6;
    
          hence contradiction by
    A1,
    A2,
    A4,
    A5;
    
        end;
    
        hence thesis by
    A2,
    A4,
    FUNCT_1:def 6;
    
      end;
    
      
    
      
    
    A6: not x2 
    c= x1 implies (p 
    .: x1) 
    <> (p 
    .: x2) 
    
      proof
    
        assume not x2
    c= x1; 
    
        then
    
        consider a be
    object such that 
    
        
    
    A7: a 
    in x2 and 
    
        
    
    A8: not a 
    in x1; 
    
         not (p
    . a) 
    in (p 
    .: x1) 
    
        proof
    
          assume (p
    . a) 
    in (p 
    .: x1); 
    
          then ex b be
    object st b 
    in ( 
    dom p) & b 
    in x1 & (p 
    . a) 
    = (p 
    . b) by 
    FUNCT_1:def 6;
    
          hence contradiction by
    A1,
    A2,
    A7,
    A8;
    
        end;
    
        hence thesis by
    A2,
    A7,
    FUNCT_1:def 6;
    
      end;
    
      assume x1
    <> x2; 
    
      hence thesis by
    A3,
    A6,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:7
    
    
    
    
    
    Th7: for a,b,c be 
    set st ( 
    card a) 
    = (n 
    - 1) & ( 
    card b) 
    = (n 
    - 1) & ( 
    card c) 
    = (n 
    - 1) & ( 
    card (a 
    /\ b)) 
    = (n 
    - 2) & ( 
    card (a 
    /\ c)) 
    = (n 
    - 2) & ( 
    card (b 
    /\ c)) 
    = (n 
    - 2) & 2 
    <= n holds (3 
    <= n implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 2) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = (n 
    + 1) or ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 3) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = n) & (n 
    = 2 implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 2) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = (n 
    + 1)) 
    
    proof
    
      let a,b,c be
    set;
    
      assume that
    
      
    
    A1: ( 
    card a) 
    = (n 
    - 1) and 
    
      
    
    A2: ( 
    card b) 
    = (n 
    - 1) and 
    
      
    
    A3: ( 
    card c) 
    = (n 
    - 1) and 
    
      
    
    A4: ( 
    card (a 
    /\ b)) 
    = (n 
    - 2) and 
    
      
    
    A5: ( 
    card (a 
    /\ c)) 
    = (n 
    - 2) and 
    
      
    
    A6: ( 
    card (b 
    /\ c)) 
    = (n 
    - 2) and 
    
      
    
    A7: 2 
    <= n; 
    
      2
    <= (n 
    + 1) by 
    A7,
    NAT_1: 13;
    
      then
    
      
    
    A8: (2 
    - 1) 
    <= ((n 
    + 1) 
    - 1) by 
    XREAL_1: 13;
    
      then a is
    finite by 
    A1,
    NAT_1: 21;
    
      then
    
      reconsider a as
    finite  
    set;
    
      
    
      
    
    A9: ( 
    card (a 
    \ (a 
    /\ b))) 
    = ((n 
    - 1) 
    - (n 
    - 2)) by 
    A1,
    A4,
    CARD_2: 44,
    XBOOLE_1: 17;
    
      then
    
      consider x1 be
    object such that 
    
      
    
    A10: 
    {x1}
    = (a 
    \ (a 
    /\ b)) by 
    CARD_2: 42;
    
      b is
    finite by 
    A2,
    A8,
    NAT_1: 21;
    
      then
    
      reconsider b as
    finite  
    set;
    
      (
    card (b 
    \ (a 
    /\ b))) 
    = ((n 
    - 1) 
    - (n 
    - 2)) by 
    A2,
    A4,
    CARD_2: 44,
    XBOOLE_1: 17;
    
      then
    
      consider x2 be
    object such that 
    
      
    
    A11: 
    {x2}
    = (b 
    \ (a 
    /\ b)) by 
    CARD_2: 42;
    
      c is
    finite by 
    A3,
    A8,
    NAT_1: 21;
    
      then (
    card (c 
    \ (a 
    /\ c))) 
    = ((n 
    - 1) 
    - (n 
    - 2)) by 
    A3,
    A5,
    CARD_2: 44,
    XBOOLE_1: 17;
    
      then
    
      consider x3 be
    object such that 
    
      
    
    A12: 
    {x3}
    = (c 
    \ (a 
    /\ c)) by 
    CARD_2: 42;
    
      
    
      
    
    A13: a 
    = ((a 
    /\ b) 
    \/  
    {x1}) by
    A10,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
      
    
      
    
    A14: ((a 
    /\ b) 
    /\ c) 
    = ((b 
    /\ c) 
    /\ a) by 
    XBOOLE_1: 16;
    
      
    
      
    
    A15: (a 
    /\ c) 
    c= a by 
    XBOOLE_1: 17;
    
      
    
      
    
    A16: ((a 
    /\ b) 
    /\ c) 
    = ((a 
    /\ c) 
    /\ b) by 
    XBOOLE_1: 16;
    
      
    
      
    
    A17: b 
    = ((a 
    /\ b) 
    \/  
    {x2}) by
    A11,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
      x3
    in  
    {x3} by
    TARSKI:def 1;
    
      then
    
      
    
    A18: not x3 
    in (a 
    /\ c) by 
    A12,
    XBOOLE_0:def 5;
    
      
    
      
    
    A19: c 
    = ((a 
    /\ c) 
    \/  
    {x3}) by
    A12,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
      
    
      
    
    A20: x2 
    in  
    {x2} by
    TARSKI:def 1;
    
      then
    
      
    
    A21: not x2 
    in (a 
    /\ b) by 
    A11,
    XBOOLE_0:def 5;
    
      
    
      
    
    A22: x1 
    in  
    {x1} by
    TARSKI:def 1;
    
      then
    
      
    
    A23: not x1 
    in (a 
    /\ b) by 
    A10,
    XBOOLE_0:def 5;
    
      then
    
      
    
    A24: x1 
    <> x2 by 
    A10,
    A11,
    A20,
    XBOOLE_0:def 4;
    
      
    
      
    
    A25: (a 
    /\ b) 
    c= b by 
    XBOOLE_1: 17;
    
      
    
      
    
    A26: 3 
    <= n implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 2) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = (n 
    + 1) or ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 3) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = n 
    
      proof
    
        assume 3
    <= n; 
    
        
    
        
    
    A27: x1 
    in c implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 3) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = n 
    
        proof
    
          ((a
    /\ b) 
    /\ c) 
    misses  
    {x1}
    
          proof
    
            assume ((a
    /\ b) 
    /\ c) 
    meets  
    {x1};
    
            then not (((a
    /\ b) 
    /\ c) 
    /\  
    {x1})
    =  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider x be
    object such that 
    
            
    
    A28: x 
    in (((a 
    /\ b) 
    /\ c) 
    /\  
    {x1}) by
    XBOOLE_0:def 1;
    
            x
    in  
    {x1} by
    A28,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A29: x 
    = x1 by 
    TARSKI:def 1;
    
            x
    in ((a 
    /\ b) 
    /\ c) by 
    A28,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A23,
    A29,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A30: ((a 
    /\ b) 
    /\ c) 
    c= ((a 
    /\ c) 
    \  
    {x1}) by
    A16,
    XBOOLE_1: 17,
    XBOOLE_1: 86;
    
          ((a
    /\ c) 
    \  
    {x1})
    c= b 
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A31: z 
    in ((a 
    /\ c) 
    \  
    {x1});
    
            then not z
    in  
    {x1} by
    XBOOLE_0:def 5;
    
            then z
    in a & not z 
    in (a 
    \ (a 
    /\ b)) & not z 
    in a or z 
    in (a 
    /\ b) by 
    A10,
    A31,
    XBOOLE_0:def 4,
    XBOOLE_0:def 5;
    
            hence thesis by
    XBOOLE_0:def 4;
    
          end;
    
          then ((a
    /\ c) 
    \  
    {x1})
    c= ((a 
    /\ c) 
    /\ b) by 
    XBOOLE_1: 19;
    
          then
    
          
    
    A32: ((a 
    /\ c) 
    \  
    {x1})
    c= ((a 
    /\ b) 
    /\ c) by 
    XBOOLE_1: 16;
    
          
    
          
    
    A33: (a 
    /\ b) 
    misses  
    {x1, x2}
    
          proof
    
            assume (a
    /\ b) 
    meets  
    {x1, x2};
    
            then ((a
    /\ b) 
    /\  
    {x1, x2})
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider z1 be
    object such that 
    
            
    
    A34: z1 
    in ((a 
    /\ b) 
    /\  
    {x1, x2}) by
    XBOOLE_0:def 1;
    
            z1
    in (a 
    /\ b) & z1 
    in  
    {x1, x2} by
    A34,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A23,
    A21,
    TARSKI:def 2;
    
          end;
    
          assume x1
    in c; 
    
          then x1
    in (a 
    /\ c) by 
    A10,
    A22,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A35: 
    {x1}
    c= (a 
    /\ c) by 
    ZFMISC_1: 31;
    
          (a
    \/ b) 
    = ((a 
    /\ b) 
    \/ ( 
    {x1}
    \/  
    {x2})) by
    A13,
    A17,
    XBOOLE_1: 5;
    
          then
    
          
    
    A36: (a 
    \/ b) 
    = ((a 
    /\ b) 
    \/  
    {x1, x2}) by
    ENUMSET1: 1;
    
          (
    card  
    {x1})
    = 1 by 
    CARD_1: 30;
    
          then
    
          
    
    A37: ( 
    card ((a 
    /\ c) 
    \  
    {x1}))
    = ((n 
    - 2) 
    - 1) by 
    A5,
    A35,
    CARD_2: 44;
    
          then
    
          
    
    A38: ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 3) by 
    A30,
    A32,
    XBOOLE_0:def 10;
    
          x3
    = x2 
    
          proof
    
            assume
    
            
    
    A39: x2 
    <> x3; 
    
            (b
    /\ c) 
    c= ((a 
    /\ b) 
    /\ c) 
    
            proof
    
              let z1 be
    object;
    
              assume
    
              
    
    A40: z1 
    in (b 
    /\ c); 
    
              then z1
    in b by 
    XBOOLE_0:def 4;
    
              then z1
    in (a 
    /\ b) or z1 
    in  
    {x2} by
    A17,
    XBOOLE_0:def 3;
    
              then
    
              
    
    A41: z1 
    in (a 
    /\ b) or z1 
    = x2 by 
    TARSKI:def 1;
    
              z1
    in c by 
    A40,
    XBOOLE_0:def 4;
    
              then z1
    in (a 
    /\ c) or z1 
    in  
    {x3} by
    A19,
    XBOOLE_0:def 3;
    
              then (z1
    in (a 
    /\ b) or z1 
    in  
    {x2}) & z1
    in (a 
    /\ c) or z1 
    in (a 
    /\ b) & (z1 
    in (a 
    /\ c) or z1 
    in  
    {x3}) by
    A39,
    A41,
    TARSKI:def 1;
    
              hence thesis by
    A25,
    A11,
    A12,
    A16,
    XBOOLE_0:def 4;
    
            end;
    
            then (
    Segm ( 
    card (b 
    /\ c))) 
    c= ( 
    Segm ( 
    card ((a 
    /\ b) 
    /\ c))) by 
    CARD_1: 11;
    
            then ((
    - 2) 
    + n) 
    <= (( 
    - 3) 
    + n) by 
    A6,
    A38,
    NAT_1: 39;
    
            hence contradiction by
    XREAL_1: 6;
    
          end;
    
          then
    
          
    
    A42: c 
    c= (a 
    \/ b) by 
    A15,
    A11,
    A19,
    XBOOLE_1: 13;
    
          (
    card  
    {x1, x2})
    = 2 by 
    A24,
    CARD_2: 57;
    
          then (
    card (a 
    \/ b)) 
    = ((n 
    - 2) 
    + 2) by 
    A4,
    A36,
    A33,
    CARD_2: 40;
    
          hence thesis by
    A37,
    A30,
    A32,
    A42,
    XBOOLE_0:def 10,
    XBOOLE_1: 12;
    
        end;
    
         not x1
    in c implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 2) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = (n 
    + 1) 
    
        proof
    
          
    
          
    
    A43: x1 
    <> x3 by 
    A10,
    A12,
    A22,
    A18,
    XBOOLE_0:def 4;
    
          
    
          
    
    A44: ( 
    card (a 
    \  
    {x1}))
    = ((n 
    - 1) 
    - 1) by 
    A1,
    A9,
    A10,
    CARD_2: 44;
    
          assume
    
          
    
    A45: not x1 
    in c; 
    
          
    
          
    
    A46: (a 
    /\ c) 
    misses  
    {x1} & (a
    /\ b) 
    misses  
    {x1}
    
          proof
    
            assume not (a
    /\ c) 
    misses  
    {x1} or not (a
    /\ b) 
    misses  
    {x1};
    
            then ((a
    /\ c) 
    /\  
    {x1})
    <>  
    {} or ((a 
    /\ b) 
    /\  
    {x1})
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider z2 be
    object such that 
    
            
    
    A47: z2 
    in ((a 
    /\ c) 
    /\  
    {x1}) or z2
    in ((a 
    /\ b) 
    /\  
    {x1}) by
    XBOOLE_0:def 1;
    
            z2
    in (a 
    /\ c) & z2 
    in  
    {x1} or z2
    in (a 
    /\ b) & z2 
    in  
    {x1} by
    A47,
    XBOOLE_0:def 4;
    
            then z2
    in a & z2 
    in c & z2 
    = x1 or z2 
    in (a 
    /\ b) & z2 
    = x1 by 
    TARSKI:def 1,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A10,
    A22,
    A45,
    XBOOLE_0:def 5;
    
          end;
    
          then (a
    /\ c) 
    c= (a 
    \  
    {x1}) by
    XBOOLE_1: 17,
    XBOOLE_1: 86;
    
          then
    
          
    
    A48: (a 
    /\ c) 
    = (a 
    \  
    {x1}) by
    A5,
    A44,
    CARD_2: 102;
    
          (a
    /\ b) 
    c= (a 
    \  
    {x1}) by
    A46,
    XBOOLE_1: 17,
    XBOOLE_1: 86;
    
          then
    
          
    
    A49: (a 
    /\ b) 
    = (a 
    \  
    {x1}) by
    A4,
    A44,
    CARD_2: 102;
    
          
    
          
    
    A50: (a 
    /\ b) 
    misses  
    {x1, x2, x3}
    
          proof
    
            assume not (a
    /\ b) 
    misses  
    {x1, x2, x3};
    
            then ((a
    /\ b) 
    /\  
    {x1, x2, x3})
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider z3 be
    object such that 
    
            
    
    A51: z3 
    in ((a 
    /\ b) 
    /\  
    {x1, x2, x3}) by
    XBOOLE_0:def 1;
    
            z3
    in (a 
    /\ b) & z3 
    in  
    {x1, x2, x3} by
    A51,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A23,
    A21,
    A18,
    A48,
    A49,
    ENUMSET1:def 1;
    
          end;
    
          (a
    \/ b) 
    = ((a 
    /\ b) 
    \/ ( 
    {x1}
    \/  
    {x2})) by
    A13,
    A17,
    XBOOLE_1: 5;
    
          then (a
    \/ b) 
    = ((a 
    /\ b) 
    \/  
    {x1, x2}) by
    ENUMSET1: 1;
    
          then ((a
    \/ b) 
    \/ c) 
    = ((a 
    /\ b) 
    \/ ( 
    {x1, x2}
    \/  
    {x3})) by
    A19,
    A48,
    A49,
    XBOOLE_1: 5;
    
          then
    
          
    
    A52: ((a 
    \/ b) 
    \/ c) 
    = ((a 
    /\ b) 
    \/  
    {x1, x2, x3}) by
    ENUMSET1: 3;
    
          ((a
    /\ b) 
    /\ (a 
    /\ c)) 
    = (a 
    /\ b) by 
    A48,
    A49;
    
          then (((b
    /\ a) 
    /\ a) 
    /\ c) 
    = (a 
    /\ b) by 
    XBOOLE_1: 16;
    
          then
    
          
    
    A53: ((b 
    /\ (a 
    /\ a)) 
    /\ c) 
    = (a 
    /\ b) by 
    XBOOLE_1: 16;
    
          then ((a
    /\ b) 
    /\ c) 
    = (b 
    /\ c) by 
    A4,
    A6,
    A14,
    CARD_2: 102,
    XBOOLE_1: 17;
    
          then x2
    <> x3 by 
    A11,
    A12,
    A20,
    A21,
    A53,
    XBOOLE_0:def 4;
    
          then (
    card  
    {x1, x2, x3})
    = 3 by 
    A24,
    A43,
    CARD_2: 58;
    
          then (
    card ((a 
    \/ b) 
    \/ c)) 
    = ((n 
    - 2) 
    + 3) by 
    A4,
    A52,
    A50,
    CARD_2: 40;
    
          hence thesis by
    A4,
    A53;
    
        end;
    
        hence thesis by
    A27;
    
      end;
    
      
    
      
    
    A54: x1 
    <> x3 by 
    A10,
    A12,
    A22,
    A18,
    XBOOLE_0:def 4;
    
      n
    = 2 implies ( 
    card ((a 
    /\ b) 
    /\ c)) 
    = (n 
    - 2) & ( 
    card ((a 
    \/ b) 
    \/ c)) 
    = (n 
    + 1) 
    
      proof
    
        assume
    
        
    
    A55: n 
    = 2; 
    
        then
    
        
    
    A56: (a 
    /\ b) 
    =  
    {} by 
    A4;
    
        then ((a
    /\ b) 
    /\ c) 
    = (a 
    /\ c) by 
    A4,
    A5;
    
        then ((a
    \/ b) 
    \/ c) 
    = (((a 
    /\ b) 
    /\ c) 
    \/ ( 
    {x1, x2}
    \/  
    {x3})) by
    A10,
    A11,
    A12,
    A56,
    ENUMSET1: 1;
    
        then
    
        
    
    A57: ((a 
    \/ b) 
    \/ c) 
    = (((a 
    /\ b) 
    /\ c) 
    \/  
    {x1, x2, x3}) by
    ENUMSET1: 3;
    
        ((a
    /\ b) 
    /\ c) 
    = (b 
    /\ c) by 
    A4,
    A6,
    A56;
    
        then x2
    <> x3 by 
    A11,
    A12,
    A20,
    A56,
    XBOOLE_0:def 4;
    
        hence thesis by
    A24,
    A54,
    A55,
    A56,
    A57,
    CARD_2: 58;
    
      end;
    
      hence thesis by
    A26;
    
    end;
    
    theorem :: 
    
    COMBGRAS:8
    
    for P1,P2 be
    IncProjStr st the IncProjStr of P1 
    = the IncProjStr of P2 holds for A1 be 
    POINT of P1, A2 be 
    POINT of P2 st A1 
    = A2 holds for L1 be 
    LINE of P1, L2 be 
    LINE of P2 st L1 
    = L2 holds A1 
    on L1 implies A2 
    on L2; 
    
    theorem :: 
    
    COMBGRAS:9
    
    
    
    
    
    Th9: for P1,P2 be 
    IncProjStr st the IncProjStr of P1 
    = the IncProjStr of P2 holds for A1 be 
    Subset of the 
    Points of P1 holds for A2 be 
    Subset of the 
    Points of P2 st A1 
    = A2 holds for L1 be 
    LINE of P1, L2 be 
    LINE of P2 st L1 
    = L2 holds A1 
    on L1 implies A2 
    on L2 
    
    proof
    
      let P1,P2 be
    IncProjStr;
    
      assume
    
      
    
    A1: the IncProjStr of P1 
    = the IncProjStr of P2; 
    
      let A1 be
    Subset of the 
    Points of P1, A2 be 
    Subset of the 
    Points of P2; 
    
      assume
    
      
    
    A2: A1 
    = A2; 
    
      let L1 be
    LINE of P1, L2 be 
    LINE of P2; 
    
      assume that
    
      
    
    A3: L1 
    = L2 and 
    
      
    
    A4: A1 
    on L1; 
    
      thus A2
    on L2 
    
      proof
    
        let A be
    POINT of P2; 
    
        consider B be
    POINT of P1 such that 
    
        
    
    A5: A 
    = B by 
    A1;
    
        assume A
    in A2; 
    
        then B
    on L1 by 
    A2,
    A4,
    A5;
    
        then
    [A, L2]
    in the 
    Inc of P2 by 
    A1,
    A3,
    A5;
    
        hence thesis;
    
      end;
    
    end;
    
    registration
    
      cluster 
    with_non-trivial_lines
    linear
    up-2-rank
    strict for 
    IncProjStr;
    
      existence
    
      proof
    
        set P = the
    IncSpace-like
    strict  
    IncStruct;
    
        take IT =
    IncProjStr (# the 
    Points of P, the 
    Lines of P, the 
    Inc of P #); 
    
        thus for L be
    LINE of IT holds ex A,B be 
    POINT of IT st A 
    <> B & 
    {A, B}
    on L 
    
        proof
    
          let L be
    LINE of IT; 
    
          reconsider L9 = L as
    LINE of P; 
    
          consider A9,B9 be
    POINT of P such that 
    
          
    
    A1: A9 
    <> B9 & 
    {A9, B9}
    on L9 by 
    INCSP_1:def 8;
    
          reconsider A = A9, B = B9 as
    POINT of IT; 
    
          take A, B;
    
          thus thesis by
    A1,
    Th9;
    
        end;
    
        thus IT is
    linear
    
        proof
    
          let A,B be
    POINT of IT; 
    
          reconsider A9 = A, B9 = B as
    POINT of P; 
    
          consider L9 be
    LINE of P such that 
    
          
    
    A2: 
    {A9, B9}
    on L9 by 
    INCSP_1:def 9;
    
          reconsider L = L9 as
    LINE of IT; 
    
          take L;
    
          A9
    on L9 & B9 
    on L9 by 
    A2,
    INCSP_1: 1;
    
          hence thesis;
    
        end;
    
        thus for A,B be
    POINT of IT, K,L be 
    LINE of IT st A 
    <> B & 
    {A, B}
    on K & 
    {A, B}
    on L holds K 
    = L 
    
        proof
    
          let A,B be
    POINT of IT, K,L be 
    LINE of IT; 
    
          assume that
    
          
    
    A3: A 
    <> B and 
    
          
    
    A4: 
    {A, B}
    on K & 
    {A, B}
    on L; 
    
          reconsider K9 = K, L9 = L as
    LINE of P; 
    
          reconsider A9 = A, B9 = B as
    POINT of P; 
    
          
    {A9, B9}
    on K9 & 
    {A9, B9}
    on L9 by 
    A4,
    Th9;
    
          hence thesis by
    A3,
    INCSP_1:def 10;
    
        end;
    
        thus thesis;
    
      end;
    
    end
    
    begin
    
    definition
    
      mode
    
    PartialLinearSpace is 
    with_non-trivial_lines
    up-2-rank  
    IncProjStr;
    
    end
    
    definition
    
      let k be
    Nat;
    
      let X be non
    empty  
    set;
    
      :: 
    
    COMBGRAS:def1
    
      func
    
    G_ (k,X) -> 
    strict  
    PartialLinearSpace means 
    
      :
    
    Def1: the 
    Points of it 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } & the 
    Lines of it 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } & the 
    Inc of it 
    = (( 
    RelIncl ( 
    bool X)) 
    /\  
    [:the 
    Points of it , the 
    Lines of it :]); 
    
      existence
    
      proof
    
        set L = { B where B be
    Subset of X : ( 
    card B) 
    = (k 
    + 1) }; 
    
        set P = { A where A be
    Subset of X : ( 
    card A) 
    = k }; 
    
        set I = ((
    RelIncl ( 
    bool X)) 
    /\  
    [:P, L:]);
    
        consider B be
    set such that 
    
        
    
    A3: B 
    c= X & ( 
    card B) 
    = (k 
    + 1) by 
    A2,
    CARD_FIL: 36;
    
        B
    in L by 
    A3;
    
        then
    
        reconsider L as non
    empty  
    set;
    
        k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
        then (
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
        then k
    c= ( 
    card X) by 
    A2;
    
        then
    
        consider A be
    set such that 
    
        
    
    A4: A 
    c= X & ( 
    card A) 
    = k by 
    CARD_FIL: 36;
    
        A
    in P by 
    A4;
    
        then
    
        reconsider P as non
    empty  
    set;
    
        reconsider I as
    Relation of P, L by 
    XBOOLE_1: 17;
    
        set G =
    IncProjStr (# P, L, I #); 
    
        
    
        
    
    A5: G is 
    up-2-rank
    
        proof
    
          let a,b be
    POINT of G; 
    
          let l1,l2 be
    LINE of G; 
    
          assume that
    
          
    
    A6: a 
    <> b and 
    
          
    
    A7: 
    {a, b}
    on l1 and 
    
          
    
    A8: 
    {a, b}
    on l2; 
    
          b
    in P; 
    
          then
    
          
    
    A9: ex B be 
    Subset of X st b 
    = B & ( 
    card B) 
    = k; 
    
          a
    in P; 
    
          then
    
          
    
    A10: ex A be 
    Subset of X st a 
    = A & ( 
    card A) 
    = k; 
    
          then
    
          
    
    A11: (k 
    + 1) 
    c= ( 
    card (a 
    \/ b)) by 
    A9,
    A6,
    Th1;
    
          l1
    in L; 
    
          then
    
          
    
    A12: ex C be 
    Subset of X st l1 
    = C & ( 
    card C) 
    = (k 
    + 1); 
    
          then
    
          
    
    A13: l1 is 
    finite;
    
          
    
          
    
    A14: b 
    in  
    {a, b} by
    TARSKI:def 2;
    
          then b
    on l1 by 
    A7;
    
          then
    [b, l1]
    in I; 
    
          then
    [b, l1]
    in ( 
    RelIncl ( 
    bool X)) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A15: b 
    c= l1 by 
    A9,
    A12,
    WELLORD2:def 1;
    
          l2
    in L; 
    
          then
    
          
    
    A16: ex D be 
    Subset of X st l2 
    = D & ( 
    card D) 
    = (k 
    + 1); 
    
          then
    
          
    
    A17: l2 is 
    finite;
    
          
    
          
    
    A18: a 
    in  
    {a, b} by
    TARSKI:def 2;
    
          then a
    on l2 by 
    A8;
    
          then
    [a, l2]
    in I; 
    
          then
    [a, l2]
    in ( 
    RelIncl ( 
    bool X)) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A19: a 
    c= l2 by 
    A10,
    A16,
    WELLORD2:def 1;
    
          b
    on l2 by 
    A14,
    A8;
    
          then
    [b, l2]
    in I; 
    
          then
    [b, l2]
    in ( 
    RelIncl ( 
    bool X)) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A20: b 
    c= l2 by 
    A9,
    A16,
    WELLORD2:def 1;
    
          then (a
    \/ b) 
    c= l2 by 
    A19,
    XBOOLE_1: 8;
    
          then (
    card (a 
    \/ b)) 
    c= (k 
    + 1) by 
    A16,
    CARD_1: 11;
    
          then
    
          
    
    A21: ( 
    card (a 
    \/ b)) 
    = (k 
    + 1) by 
    A11,
    XBOOLE_0:def 10;
    
          a
    on l1 by 
    A18,
    A7;
    
          then
    [a, l1]
    in I; 
    
          then
    [a, l1]
    in ( 
    RelIncl ( 
    bool X)) by 
    XBOOLE_0:def 4;
    
          then a
    c= l1 by 
    A10,
    A12,
    WELLORD2:def 1;
    
          then (a
    \/ b) 
    = l1 by 
    A12,
    A15,
    A21,
    A13,
    CARD_2: 102,
    XBOOLE_1: 8;
    
          hence thesis by
    A16,
    A19,
    A20,
    A21,
    A17,
    CARD_2: 102,
    XBOOLE_1: 8;
    
        end;
    
        G is
    with_non-trivial_lines
    
        proof
    
          let l be
    LINE of G; 
    
          l
    in L; 
    
          then
    
          consider C be
    Subset of X such that 
    
          
    
    A22: l 
    = C and 
    
          
    
    A23: ( 
    card C) 
    = (k 
    + 1); 
    
          1
    < (k 
    + 1) by 
    A1,
    XREAL_1: 29;
    
          then (1
    + 1) 
    <= (k 
    + 1) by 
    NAT_1: 13;
    
          then (
    Segm 2) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
          then
    
          consider a,b be
    object such that 
    
          
    
    A24: a 
    in C and 
    
          
    
    A25: b 
    in C and 
    
          
    
    A26: a 
    <> b by 
    A23,
    PENCIL_1: 2;
    
          reconsider x = (C
    \  
    {a}), y = (C
    \  
    {b}) as
    Subset of X; 
    
          (
    card x) 
    = k by 
    A23,
    A24,
    STIRL2_1: 55;
    
          then
    
          
    
    A27: x 
    in P; 
    
          (
    card y) 
    = k by 
    A23,
    A25,
    STIRL2_1: 55;
    
          then y
    in P; 
    
          then
    
          reconsider x, y as
    POINT of G by 
    A27;
    
          take x, y;
    
           not b
    in  
    {a} by
    A26,
    TARSKI:def 1;
    
          then b
    in  
    {b} & b
    in x by 
    A25,
    TARSKI:def 1,
    XBOOLE_0:def 5;
    
          hence x
    <> y by 
    XBOOLE_0:def 5;
    
          
    
          
    
    A28: C 
    c= ( 
    {a}
    \/ C) & C 
    c= ( 
    {b}
    \/ C) by 
    XBOOLE_1: 7;
    
          
    {x, y}
    on l 
    
          proof
    
            let z be
    POINT of G; 
    
            assume z
    in  
    {x, y};
    
            then
    
            
    
    A29: z 
    = x or z 
    = y by 
    TARSKI:def 2;
    
            then z
    c= l by 
    A22,
    A28,
    XBOOLE_1: 43;
    
            then
    [z, l]
    in ( 
    RelIncl ( 
    bool X)) by 
    A22,
    A29,
    WELLORD2:def 1;
    
            then
    [z, l]
    in I by 
    XBOOLE_0:def 4;
    
            hence thesis;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    A5;
    
      end;
    
      uniqueness ;
    
    end
    
    theorem :: 
    
    COMBGRAS:10
    
    
    
    
    
    Th10: for k be 
    Nat holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for A be 
    POINT of ( 
    G_ (k,X)) holds for L be 
    LINE of ( 
    G_ (k,X)) holds A 
    on L iff A 
    c= L 
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set;
    
      assume
    
      
    
    A1: 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X); 
    
      then
    
      
    
    A2: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    Def1;
    
      let A be
    POINT of ( 
    G_ (k,X)); 
    
      A
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A3: ex A1 be 
    Subset of X st A1 
    = A & ( 
    card A1) 
    = k by 
    A2;
    
      
    
      
    
    A4: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    Def1;
    
      let L be
    LINE of ( 
    G_ (k,X)); 
    
      L
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A5: ex L1 be 
    Subset of X st L1 
    = L & ( 
    card L1) 
    = (k 
    + 1) by 
    A4;
    
      
    
      
    
    A6: the 
    Inc of ( 
    G_ (k,X)) 
    = (( 
    RelIncl ( 
    bool X)) 
    /\  
    [:the 
    Points of ( 
    G_ (k,X)), the 
    Lines of ( 
    G_ (k,X)):]) by 
    A1,
    Def1;
    
      thus A
    on L implies A 
    c= L 
    
      proof
    
        assume A
    on L; 
    
        then
    [A, L]
    in the 
    Inc of ( 
    G_ (k,X)); 
    
        then
    [A, L]
    in ( 
    RelIncl ( 
    bool X)) by 
    A6,
    XBOOLE_0:def 4;
    
        hence thesis by
    A3,
    A5,
    WELLORD2:def 1;
    
      end;
    
      thus A
    c= L implies A 
    on L 
    
      proof
    
        assume A
    c= L; 
    
        then
    [A, L]
    in ( 
    RelIncl ( 
    bool X)) by 
    A3,
    A5,
    WELLORD2:def 1;
    
        then
    [A, L]
    in the 
    Inc of ( 
    G_ (k,X)) by 
    A6,
    XBOOLE_0:def 4;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    COMBGRAS:11
    
    
    
    
    
    Th11: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds ( 
    G_ (k,X)) is 
    Vebleian
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set;
    
      k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A1: ( 
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
      assume
    
      
    
    A2: 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X); 
    
      then
    
      
    
    A3: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    Def1;
    
      let A1,A2,A3,A4,A5,A6 be
    POINT of ( 
    G_ (k,X)), L1,L2,L3,L4 be 
    LINE of ( 
    G_ (k,X)); 
    
      assume that
    
      
    
    A4: A1 
    on L1 and 
    
      
    
    A5: A2 
    on L1 and 
    
      
    
    A6: A3 
    on L2 and 
    
      
    
    A7: A4 
    on L2 and 
    
      
    
    A8: A5 
    on L1 & A5 
    on L2 and 
    
      
    
    A9: A1 
    on L3 and 
    
      
    
    A10: A3 
    on L3 and 
    
      
    
    A11: A2 
    on L4 and 
    
      
    
    A12: A4 
    on L4 and 
    
      
    
    A13: ( not A5 
    on L3) & not A5 
    on L4 and 
    
      
    
    A14: L1 
    <> L2; 
    
      
    
      
    
    A15: A2 
    c= L1 & A4 
    c= L2 by 
    A2,
    A5,
    A7,
    Th10;
    
      
    
      
    
    A16: A1 
    <> A3 & A2 
    <> A4 
    
      proof
    
        assume A1
    = A3 or A2 
    = A4; 
    
        then
    {A1, A5}
    on L1 & 
    {A1, A5}
    on L2 or 
    {A2, A5}
    on L1 & 
    {A2, A5}
    on L2 by 
    A4,
    A5,
    A6,
    A7,
    A8,
    INCSP_1: 1;
    
        hence contradiction by
    A9,
    A11,
    A13,
    A14,
    INCSP_1:def 10;
    
      end;
    
      
    
      
    
    A17: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A2,
    Def1;
    
      A5
    c= L1 & A5 
    c= L2 by 
    A2,
    A8,
    Th10;
    
      then
    
      
    
    A18: A5 
    c= (L1 
    /\ L2) by 
    XBOOLE_1: 19;
    
      A5
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then ex B5 be
    Subset of X st B5 
    = A5 & ( 
    card B5) 
    = k by 
    A3;
    
      then
    
      
    
    A19: k 
    c= ( 
    card (L1 
    /\ L2)) by 
    A18,
    CARD_1: 11;
    
      L2
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A20: ex K2 be 
    Subset of X st K2 
    = L2 & ( 
    card K2) 
    = (k 
    + 1) by 
    A17;
    
      A3
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A21: ex B3 be 
    Subset of X st B3 
    = A3 & ( 
    card B3) 
    = k by 
    A3;
    
      A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then ex B1 be
    Subset of X st B1 
    = A1 & ( 
    card B1) 
    = k by 
    A3;
    
      then
    
      
    
    A22: (k 
    + 1) 
    c= ( 
    card (A1 
    \/ A3)) by 
    A21,
    A16,
    Th1;
    
      
    
      
    
    A23: A1 
    c= L1 & A3 
    c= L2 by 
    A2,
    A4,
    A6,
    Th10;
    
      L3
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A24: ex K3 be 
    Subset of X st K3 
    = L3 & ( 
    card K3) 
    = (k 
    + 1) by 
    A17;
    
      then
    
      
    
    A25: L3 is 
    finite;
    
      A4
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A26: ex B4 be 
    Subset of X st B4 
    = A4 & ( 
    card B4) 
    = k by 
    A3;
    
      A2
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then ex B2 be
    Subset of X st B2 
    = A2 & ( 
    card B2) 
    = k by 
    A3;
    
      then
    
      
    
    A27: (k 
    + 1) 
    c= ( 
    card (A2 
    \/ A4)) by 
    A26,
    A16,
    Th1;
    
      L4
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A28: ex K4 be 
    Subset of X st K4 
    = L4 & ( 
    card K4) 
    = (k 
    + 1) by 
    A17;
    
      then
    
      
    
    A29: L4 is 
    finite;
    
      
    
      
    
    A30: A2 
    c= L4 & A4 
    c= L4 by 
    A2,
    A11,
    A12,
    Th10;
    
      then (A2
    \/ A4) 
    c= L4 by 
    XBOOLE_1: 8;
    
      then (
    card (A2 
    \/ A4)) 
    c= (k 
    + 1) by 
    A28,
    CARD_1: 11;
    
      then (
    card (A2 
    \/ A4)) 
    = (k 
    + 1) by 
    A27,
    XBOOLE_0:def 10;
    
      then (A2
    \/ A4) 
    = L4 by 
    A28,
    A30,
    A29,
    CARD_2: 102,
    XBOOLE_1: 8;
    
      then
    
      
    
    A31: L4 
    c= (L1 
    \/ L2) by 
    A15,
    XBOOLE_1: 13;
    
      L1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A32: ex K1 be 
    Subset of X st K1 
    = L1 & ( 
    card K1) 
    = (k 
    + 1) by 
    A17;
    
      then (
    card (L1 
    /\ L2)) 
    in ( 
    Segm (k 
    + 1)) by 
    A20,
    A14,
    Th1;
    
      then (
    card (L1 
    /\ L2)) 
    in ( 
    succ ( 
    Segm k)) by 
    NAT_1: 38;
    
      then (
    card (L1 
    /\ L2)) 
    c= k by 
    ORDINAL1: 22;
    
      then (
    card (L1 
    /\ L2)) 
    = k by 
    A19,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A33: ( 
    card (L1 
    \/ L2)) 
    = (k 
    + (2 
    * 1)) by 
    A32,
    A20,
    Th2;
    
      
    
      
    
    A34: A1 
    c= L3 & A3 
    c= L3 by 
    A2,
    A9,
    A10,
    Th10;
    
      then (A1
    \/ A3) 
    c= L3 by 
    XBOOLE_1: 8;
    
      then (
    card (A1 
    \/ A3)) 
    c= (k 
    + 1) by 
    A24,
    CARD_1: 11;
    
      then (
    card (A1 
    \/ A3)) 
    = (k 
    + 1) by 
    A22,
    XBOOLE_0:def 10;
    
      then (A1
    \/ A3) 
    = L3 by 
    A24,
    A34,
    A25,
    CARD_2: 102,
    XBOOLE_1: 8;
    
      then L3
    c= (L1 
    \/ L2) by 
    A23,
    XBOOLE_1: 13;
    
      then (L3
    \/ L4) 
    c= (L1 
    \/ L2) by 
    A31,
    XBOOLE_1: 8;
    
      then (
    card (L3 
    \/ L4)) 
    c= (k 
    + 2) by 
    A33,
    CARD_1: 11;
    
      then (
    card (L3 
    \/ L4)) 
    in ( 
    succ (k 
    + 2)) by 
    ORDINAL1: 22;
    
      then (
    card (L3 
    \/ L4)) 
    in ( 
    Segm ((k 
    + 1) 
    + 1)) or ( 
    card (L3 
    \/ L4)) 
    = (k 
    + 2) by 
    ORDINAL1: 8;
    
      then (
    card (L3 
    \/ L4)) 
    in ( 
    succ ( 
    Segm (k 
    + 1))) or ( 
    card (L3 
    \/ L4)) 
    = (k 
    + 2) by 
    NAT_1: 38;
    
      then
    
      
    
    A35: ( 
    card (L3 
    \/ L4)) 
    c= (k 
    + 1) or ( 
    card (L3 
    \/ L4)) 
    = (k 
    + 2) by 
    ORDINAL1: 22;
    
      (k
    + 1) 
    c= ( 
    card (L3 
    \/ L4)) by 
    A24,
    CARD_1: 11,
    XBOOLE_1: 7;
    
      then (
    card (L3 
    \/ L4)) 
    = ((k 
    + 1) 
    + (2 
    *  
    0 )) or ( 
    card (L3 
    \/ L4)) 
    = (k 
    + (2 
    * 1)) by 
    A35,
    XBOOLE_0:def 10;
    
      then k
    c= ( 
    card (L3 
    /\ L4)) by 
    A24,
    A28,
    A1,
    Th2;
    
      then
    
      consider B6 be
    set such that 
    
      
    
    A36: B6 
    c= (L3 
    /\ L4) and 
    
      
    
    A37: ( 
    card B6) 
    = k by 
    CARD_FIL: 36;
    
      
    
      
    
    A38: (L3 
    /\ L4) 
    c= L3 by 
    XBOOLE_1: 17;
    
      then (L3
    /\ L4) 
    c= X by 
    A24,
    XBOOLE_1: 1;
    
      then
    
      reconsider A6 = B6 as
    Subset of X by 
    A36,
    XBOOLE_1: 1;
    
      
    
      
    
    A39: A6 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A3,
    A37;
    
      (L3
    /\ L4) 
    c= L4 by 
    XBOOLE_1: 17;
    
      then
    
      
    
    A40: B6 
    c= L4 by 
    A36;
    
      reconsider A6 as
    POINT of ( 
    G_ (k,X)) by 
    A39;
    
      take B6;
    
      A6
    c= B6 & B6 
    c= L3 by 
    A36,
    A38;
    
      hence thesis by
    A2,
    A40,
    Th10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:12
    
    
    
    
    
    Th12: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for A1,A2,A3,A4,A5,A6 be 
    POINT of ( 
    G_ (k,X)) holds for L1,L2,L3,L4 be 
    LINE of ( 
    G_ (k,X)) st A1 
    on L1 & A2 
    on L1 & A3 
    on L2 & A4 
    on L2 & A5 
    on L1 & A5 
    on L2 & A1 
    on L3 & A3 
    on L3 & A2 
    on L4 & A4 
    on L4 & not A5 
    on L3 & not A5 
    on L4 & L1 
    <> L2 & L3 
    <> L4 holds ex A6 be 
    POINT of ( 
    G_ (k,X)) st A6 
    on L3 & A6 
    on L4 & A6 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set;
    
      assume that
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 1) 
    c= ( 
    card X); 
    
      
    
      
    
    A3: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    A2,
    Def1;
    
      
    
      
    
    A4: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A2,
    Def1;
    
      let A1,A2,A3,A4,A5,A6 be
    POINT of ( 
    G_ (k,X)), L1,L2,L3,L4 be 
    LINE of ( 
    G_ (k,X)); 
    
      assume that
    
      
    
    A5: A1 
    on L1 and 
    
      
    
    A6: A2 
    on L1 and 
    
      
    
    A7: A3 
    on L2 and 
    
      
    
    A8: A4 
    on L2 and 
    
      
    
    A9: A5 
    on L1 and 
    
      
    
    A10: A5 
    on L2 and 
    
      
    
    A11: A1 
    on L3 and 
    
      
    
    A12: A3 
    on L3 and 
    
      
    
    A13: A2 
    on L4 and 
    
      
    
    A14: A4 
    on L4 and 
    
      
    
    A15: not A5 
    on L3 and 
    
      
    
    A16: not A5 
    on L4 and 
    
      
    
    A17: L1 
    <> L2 and 
    
      
    
    A18: L3 
    <> L4; 
    
      
    
      
    
    A19: A1 
    c= L1 & A2 
    c= L1 by 
    A1,
    A2,
    A5,
    A6,
    Th10;
    
      
    
      
    
    A20: A3 
    c= L2 & A4 
    c= L2 by 
    A1,
    A2,
    A7,
    A8,
    Th10;
    
      
    
      
    
    A21: A5 
    c= L1 & A5 
    c= L2 by 
    A1,
    A2,
    A9,
    A10,
    Th10;
    
      A5
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A22: ex B5 be 
    Subset of X st B5 
    = A5 & ( 
    card B5) 
    = k by 
    A3;
    
      A2
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A23: ex B2 be 
    Subset of X st B2 
    = A2 & ( 
    card B2) 
    = k by 
    A3;
    
      then
    
      
    
    A24: A2 is 
    finite;
    
      reconsider k1 = (k
    - 1) as 
    Element of 
    NAT by 
    A1,
    NAT_1: 20;
    
      L3
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A25: ex K3 be 
    Subset of X st K3 
    = L3 & ( 
    card K3) 
    = (k 
    + 1) by 
    A4;
    
      then
    
      
    
    A26: L3 is 
    finite;
    
      L4
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then ex K4 be
    Subset of X st K4 
    = L4 & ( 
    card K4) 
    = (k 
    + 1) by 
    A4;
    
      then (
    card (L3 
    /\ L4)) 
    in ( 
    Segm (k 
    + 1)) by 
    A25,
    A18,
    Th1;
    
      then (
    card (L3 
    /\ L4)) 
    in ( 
    succ ( 
    Segm k)) by 
    NAT_1: 38;
    
      then
    
      
    
    A27: ( 
    card (L3 
    /\ L4)) 
    c= k by 
    ORDINAL1: 22;
    
      A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A28: ex B1 be 
    Subset of X st B1 
    = A1 & ( 
    card B1) 
    = k by 
    A3;
    
      then
    
      
    
    A29: A1 is 
    finite;
    
      (
    G_ (k,X)) is 
    Vebleian by 
    A1,
    A2,
    Th11;
    
      then
    
      consider A6 be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A30: A6 
    on L3 and 
    
      
    
    A31: A6 
    on L4 by 
    A5,
    A6,
    A7,
    A8,
    A9,
    A10,
    A11,
    A12,
    A13,
    A14,
    A15,
    A16,
    A17;
    
      A6
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A32: ex a6 be 
    Subset of X st a6 
    = A6 & ( 
    card a6) 
    = k by 
    A3;
    
      then
    
      
    
    A33: A6 is 
    finite;
    
      
    
      
    
    A34: A6 
    c= L3 & A6 
    c= L4 by 
    A1,
    A2,
    A30,
    A31,
    Th10;
    
      then A6
    c= (L3 
    /\ L4) by 
    XBOOLE_1: 19;
    
      then k
    c= ( 
    card (L3 
    /\ L4)) by 
    A32,
    CARD_1: 11;
    
      then (
    card (L3 
    /\ L4)) 
    = k by 
    A27,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A35: (L3 
    /\ L4) 
    = A6 by 
    A32,
    A34,
    A26,
    CARD_2: 102,
    XBOOLE_1: 19;
    
      L2
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A36: ex K2 be 
    Subset of X st K2 
    = L2 & ( 
    card K2) 
    = (k 
    + 1) by 
    A4;
    
      then
    
      
    
    A37: L2 is 
    finite;
    
      A4
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A38: ex B4 be 
    Subset of X st B4 
    = A4 & ( 
    card B4) 
    = k by 
    A3;
    
      then
    
      
    
    A39: A4 is 
    finite;
    
      L1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A40: ex K1 be 
    Subset of X st K1 
    = L1 & ( 
    card K1) 
    = (k 
    + 1) by 
    A4;
    
      then
    
      
    
    A41: L1 is 
    finite;
    
      A3
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A42: ex B3 be 
    Subset of X st B3 
    = A3 & ( 
    card B3) 
    = k by 
    A3;
    
      then
    
      
    
    A43: A3 is 
    finite;
    
      
    
      
    
    A44: A3 
    c= L3 & A4 
    c= L4 by 
    A1,
    A2,
    A12,
    A14,
    Th10;
    
      then
    
      
    
    A45: (A3 
    /\ A4) 
    c= A6 by 
    A35,
    XBOOLE_1: 27;
    
      
    
      
    
    A46: A1 
    c= L3 & A2 
    c= L4 by 
    A1,
    A2,
    A11,
    A13,
    Th10;
    
      then
    
      
    
    A47: (A1 
    /\ A2) 
    c= A6 by 
    A35,
    XBOOLE_1: 27;
    
      then
    
      
    
    A48: ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    c= A6 by 
    A45,
    XBOOLE_1: 8;
    
      
    
      
    
    A49: not A6 
    on L1 implies A6 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    
      proof
    
        assume
    
        
    
    A50: not A6 
    on L1; 
    
        
    
        
    
    A51: not A6 
    on L2 implies A6 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    
        proof
    
          
    
          
    
    A52: (A1 
    \/ A2) 
    c= L1 by 
    A19,
    XBOOLE_1: 8;
    
          then
    
          
    
    A53: ( 
    card (A1 
    \/ A2)) 
    c= (k 
    + 1) by 
    A40,
    CARD_1: 11;
    
          
    
          
    
    A54: (A3 
    \/ A4) 
    c= L2 by 
    A20,
    XBOOLE_1: 8;
    
          then
    
          
    
    A55: ( 
    card (A3 
    \/ A4)) 
    c= (k 
    + 1) by 
    A36,
    CARD_1: 11;
    
          
    
          
    
    A56: ( 
    card A3) 
    = ((k 
    - 1) 
    + 1) by 
    A42;
    
          (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    c= k by 
    A32,
    A48,
    CARD_1: 11;
    
          then (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    in ( 
    succ k) by 
    ORDINAL1: 22;
    
          then (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    in ( 
    Segm (k1 
    + 1)) or ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = k by 
    ORDINAL1: 8;
    
          then (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    in ( 
    succ ( 
    Segm k1)) or ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = k by 
    NAT_1: 38;
    
          then
    
          
    
    A57: ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    c= ( 
    Segm k1) or ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = k by 
    ORDINAL1: 22;
    
          
    
          
    
    A58: ( 
    card A1) 
    = ((k 
    - 1) 
    + 1) by 
    A28;
    
          assume
    
          
    
    A59: not A6 
    on L2; 
    
          
    
          
    
    A60: A1 
    <> A2 & A3 
    <> A4 
    
          proof
    
            assume A1
    = A2 or A3 
    = A4; 
    
            then
    {A1, A6}
    on L3 & 
    {A1, A6}
    on L4 or 
    {A3, A6}
    on L3 & 
    {A3, A6}
    on L4 by 
    A11,
    A12,
    A13,
    A14,
    A30,
    A31,
    INCSP_1: 1;
    
            hence contradiction by
    A5,
    A7,
    A18,
    A50,
    A59,
    INCSP_1:def 10;
    
          end;
    
          then (k
    + 1) 
    c= ( 
    card (A1 
    \/ A2)) by 
    A28,
    A23,
    Th1;
    
          then (
    card (A1 
    \/ A2)) 
    = (k1 
    + (2 
    * 1)) by 
    A53,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A61: ( 
    card (A1 
    /\ A2)) 
    = k1 by 
    A23,
    A58,
    Th2;
    
          (k
    + 1) 
    c= ( 
    card (A3 
    \/ A4)) by 
    A42,
    A38,
    A60,
    Th1;
    
          then (
    card (A3 
    \/ A4)) 
    = (k1 
    + (2 
    * 1)) by 
    A55,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A62: ( 
    card (A3 
    /\ A4)) 
    = k1 by 
    A38,
    A56,
    Th2;
    
          
    
          
    
    A63: not ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = (k 
    - 1) 
    
          proof
    
            
    
            
    
    A64: A5 
    c= (L1 
    /\ L2) by 
    A21,
    XBOOLE_1: 19;
    
            
    
            
    
    A65: ((A1 
    /\ A2) 
    /\ (A3 
    /\ A4)) 
    c= (A1 
    /\ A2) by 
    XBOOLE_1: 17;
    
            
    
            
    
    A66: (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    = ((A1 
    /\ A2) 
    /\ (A3 
    /\ A4)) by 
    XBOOLE_1: 16;
    
            
    
            
    
    A67: (A1 
    /\ A2) 
    c= A1 by 
    XBOOLE_1: 17;
    
            then
    
            
    
    A68: A1 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ (A1 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) by 
    A65,
    A66,
    XBOOLE_1: 1,
    XBOOLE_1: 45;
    
            assume
    
            
    
    A69: ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = (k 
    - 1); 
    
            then (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = (k1 
    + (2 
    *  
    0 )); 
    
            then
    
            
    
    A70: ( 
    card ((A1 
    /\ A2) 
    /\ (A3 
    /\ A4))) 
    = k1 by 
    A61,
    A62,
    Th2;
    
            then
    
            
    
    A71: ((A1 
    /\ A2) 
    /\ (A3 
    /\ A4)) 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) by 
    A29,
    A43,
    A69,
    CARD_2: 102,
    XBOOLE_1: 29;
    
            then (
    card (A1 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) 
    = (k 
    - (k 
    - 1)) by 
    A28,
    A29,
    A69,
    A67,
    A65,
    A66,
    CARD_2: 44,
    XBOOLE_1: 1;
    
            then
    
            consider x1 be
    object such that 
    
            
    
    A72: (A1 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4)) 
    =  
    {x1} by
    CARD_2: 42;
    
            
    
            
    
    A73: (A1 
    /\ A2) 
    c= A2 by 
    XBOOLE_1: 17;
    
            then
    
            
    
    A74: A2 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ (A2 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) by 
    A65,
    A66,
    XBOOLE_1: 1,
    XBOOLE_1: 45;
    
            (
    card (A2 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) 
    = (k 
    - (k 
    - 1)) by 
    A23,
    A24,
    A69,
    A73,
    A65,
    A71,
    A66,
    CARD_2: 44,
    XBOOLE_1: 1;
    
            then
    
            consider x2 be
    object such that 
    
            
    
    A75: (A2 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4)) 
    =  
    {x2} by
    CARD_2: 42;
    
            x1
    in  
    {x1} by
    TARSKI:def 1;
    
            then
    
            
    
    A76: not x1 
    in (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) by 
    A72,
    XBOOLE_0:def 5;
    
            
    
            
    
    A77: ((A1 
    /\ A2) 
    /\ (A3 
    /\ A4)) 
    c= (A3 
    /\ A4) by 
    XBOOLE_1: 17;
    
            
    
            
    
    A78: (A3 
    /\ A4) 
    c= A4 by 
    XBOOLE_1: 17;
    
            then
    
            
    
    A79: A4 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ (A4 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) by 
    A77,
    A66,
    XBOOLE_1: 1,
    XBOOLE_1: 45;
    
            (
    card (A4 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) 
    = (k 
    - (k 
    - 1)) by 
    A38,
    A39,
    A69,
    A78,
    A77,
    A71,
    A66,
    CARD_2: 44,
    XBOOLE_1: 1;
    
            then
    
            consider x4 be
    object such that 
    
            
    
    A80: (A4 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4)) 
    =  
    {x4} by
    CARD_2: 42;
    
            
    
            
    
    A81: (A3 
    /\ A4) 
    c= A3 by 
    XBOOLE_1: 17;
    
            then
    
            
    
    A82: A3 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ (A3 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) by 
    A77,
    A66,
    XBOOLE_1: 1,
    XBOOLE_1: 45;
    
            (
    card (A3 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4))) 
    = (k 
    - (k 
    - 1)) by 
    A42,
    A43,
    A69,
    A81,
    A77,
    A71,
    A66,
    CARD_2: 44,
    XBOOLE_1: 1;
    
            then
    
            consider x3 be
    object such that 
    
            
    
    A83: (A3 
    \ (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4)) 
    =  
    {x3} by
    CARD_2: 42;
    
            (k
    + 1) 
    c= ( 
    card (A3 
    \/ A4)) & ( 
    card (A3 
    \/ A4)) 
    c= (k 
    + 1) by 
    A42,
    A38,
    A36,
    A60,
    A54,
    Th1,
    CARD_1: 11;
    
            then (
    card (A3 
    \/ A4)) 
    = (k 
    + 1) by 
    XBOOLE_0:def 10;
    
            then (A3
    \/ A4) 
    = L2 by 
    A36,
    A20,
    A37,
    CARD_2: 102,
    XBOOLE_1: 8;
    
            then
    
            
    
    A84: L2 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ ( 
    {x3}
    \/  
    {x4})) by
    A83,
    A80,
    A82,
    A79,
    XBOOLE_1: 5;
    
            then
    
            
    
    A85: L2 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/  
    {x3, x4}) by
    ENUMSET1: 1;
    
            
    
            
    
    A86: x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 
    
            proof
    
              assume x1
    = x3 or x1 
    = x4 or x2 
    = x3 or x2 
    = x4; 
    
              then
    {A1, A5}
    on L1 & 
    {A1, A5}
    on L2 or 
    {A1, A5}
    on L1 & 
    {A1, A5}
    on L2 or 
    {A2, A5}
    on L1 & 
    {A2, A5}
    on L2 or 
    {A2, A5}
    on L1 & 
    {A2, A5}
    on L2 by 
    A5,
    A6,
    A7,
    A8,
    A9,
    A10,
    A72,
    A75,
    A83,
    A80,
    A68,
    A74,
    A82,
    A79,
    INCSP_1: 1;
    
              hence contradiction by
    A11,
    A13,
    A15,
    A16,
    A17,
    INCSP_1:def 10;
    
            end;
    
            x2
    in  
    {x2} by
    TARSKI:def 1;
    
            then
    
            
    
    A87: not x2 
    in (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) by 
    A75,
    XBOOLE_0:def 5;
    
            (k
    + 1) 
    c= ( 
    card (A1 
    \/ A2)) & ( 
    card (A1 
    \/ A2)) 
    c= (k 
    + 1) by 
    A28,
    A23,
    A40,
    A60,
    A52,
    Th1,
    CARD_1: 11;
    
            then (
    card (A1 
    \/ A2)) 
    = (k 
    + 1) by 
    XBOOLE_0:def 10;
    
            then (A1
    \/ A2) 
    = L1 by 
    A40,
    A19,
    A41,
    CARD_2: 102,
    XBOOLE_1: 8;
    
            then
    
            
    
    A88: L1 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/ ( 
    {x1}
    \/  
    {x2})) by
    A72,
    A75,
    A68,
    A74,
    XBOOLE_1: 5;
    
            then
    
            
    
    A89: L1 
    = ((((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    \/  
    {x1, x2}) by
    ENUMSET1: 1;
    
            
    
            
    
    A90: (L1 
    /\ L2) 
    c= (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    
            proof
    
              assume not (L1
    /\ L2) 
    c= (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4); 
    
              then
    
              consider x be
    object such that 
    
              
    
    A91: x 
    in (L1 
    /\ L2) and 
    
              
    
    A92: not x 
    in (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4); 
    
              x
    in L1 by 
    A91,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A93: x 
    in  
    {x1, x2} by
    A89,
    A92,
    XBOOLE_0:def 3;
    
              x
    in L2 by 
    A91,
    XBOOLE_0:def 4;
    
              then x1
    in L2 or x2 
    in L2 by 
    A93,
    TARSKI:def 2;
    
              then x1
    in  
    {x3, x4} or x2
    in  
    {x3, x4} by
    A85,
    A76,
    A87,
    XBOOLE_0:def 3;
    
              hence contradiction by
    A86,
    TARSKI:def 2;
    
            end;
    
            
    
            
    
    A94: (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) 
    c= L2 by 
    A84,
    XBOOLE_1: 10;
    
            (((A1
    /\ A2) 
    /\ A3) 
    /\ A4) 
    c= L1 by 
    A88,
    XBOOLE_1: 10;
    
            then (((A1
    /\ A2) 
    /\ A3) 
    /\ A4) 
    c= (L1 
    /\ L2) by 
    A94,
    XBOOLE_1: 19;
    
            then (L1
    /\ L2) 
    = (((A1 
    /\ A2) 
    /\ A3) 
    /\ A4) by 
    A90,
    XBOOLE_0:def 10;
    
            then (
    card ( 
    Segm k)) 
    c= ( 
    card ( 
    Segm k1)) by 
    A22,
    A70,
    A66,
    A64,
    CARD_1: 11;
    
            then
    
            
    
    A95: k 
    <= k1 by 
    NAT_1: 40;
    
            k1
    <= (k1 
    + 1) by 
    NAT_1: 11;
    
            then k
    = (k 
    - 1) by 
    A95,
    XXREAL_0: 1;
    
            hence contradiction;
    
          end;
    
          (k
    - 1) 
    c= ( 
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) by 
    A61,
    CARD_1: 11,
    XBOOLE_1: 7;
    
          then (
    card ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4))) 
    = k by 
    A57,
    A63,
    XBOOLE_0:def 10;
    
          hence thesis by
    A32,
    A33,
    A47,
    A45,
    CARD_2: 102,
    XBOOLE_1: 8;
    
        end;
    
        A6
    on L2 implies A6 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    
        proof
    
          assume
    
          
    
    A96: A6 
    on L2; 
    
          
    
          
    
    A97: A4 
    = A6 
    
          proof
    
            assume
    
            
    
    A98: A4 
    <> A6; 
    
            
    {A4, A6}
    on L2 & 
    {A4, A6}
    on L4 by 
    A8,
    A14,
    A31,
    A96,
    INCSP_1: 1;
    
            hence contradiction by
    A10,
    A16,
    A98,
    INCSP_1:def 10;
    
          end;
    
          A3
    = A6 
    
          proof
    
            assume
    
            
    
    A99: A3 
    <> A6; 
    
            
    {A3, A6}
    on L2 & 
    {A3, A6}
    on L3 by 
    A7,
    A12,
    A30,
    A96,
    INCSP_1: 1;
    
            hence contradiction by
    A10,
    A15,
    A99,
    INCSP_1:def 10;
    
          end;
    
          hence thesis by
    A46,
    A35,
    A97,
    XBOOLE_1: 12,
    XBOOLE_1: 27;
    
        end;
    
        hence thesis by
    A51;
    
      end;
    
      A6
    on L1 implies A6 
    = ((A1 
    /\ A2) 
    \/ (A3 
    /\ A4)) 
    
      proof
    
        assume
    
        
    
    A100: A6 
    on L1; 
    
        
    
        
    
    A101: A1 
    = A6 
    
        proof
    
          assume
    
          
    
    A102: A1 
    <> A6; 
    
          
    {A1, A6}
    on L1 & 
    {A1, A6}
    on L3 by 
    A5,
    A11,
    A30,
    A100,
    INCSP_1: 1;
    
          hence contradiction by
    A9,
    A15,
    A102,
    INCSP_1:def 10;
    
        end;
    
        A2
    = A6 
    
        proof
    
          assume
    
          
    
    A103: A2 
    <> A6; 
    
          
    {A2, A6}
    on L1 & 
    {A2, A6}
    on L4 by 
    A6,
    A13,
    A31,
    A100,
    INCSP_1: 1;
    
          hence contradiction by
    A9,
    A16,
    A103,
    INCSP_1:def 10;
    
        end;
    
        hence thesis by
    A44,
    A35,
    A101,
    XBOOLE_1: 12,
    XBOOLE_1: 27;
    
      end;
    
      hence thesis by
    A30,
    A31,
    A49;
    
    end;
    
    theorem :: 
    
    COMBGRAS:13
    
    for k be
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds ( 
    G_ (k,X)) is 
    Desarguesian
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set;
    
      assume that
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 1) 
    c= ( 
    card X); 
    
      let o,b1,a1,b2,a2,b3,a3,r,s,t be
    POINT of ( 
    G_ (k,X)); 
    
      let C1,C2,C3,A1,A2,A3,B1,B2,B3 be
    LINE of ( 
    G_ (k,X)); 
    
      assume that
    
      
    
    A3: 
    {o, b1, a1}
    on C1 and 
    
      
    
    A4: 
    {o, a2, b2}
    on C2 and 
    
      
    
    A5: 
    {o, a3, b3}
    on C3 and 
    
      
    
    A6: 
    {a3, a2, t}
    on A1 and 
    
      
    
    A7: 
    {a3, r, a1}
    on A2 and 
    
      
    
    A8: 
    {a2, s, a1}
    on A3 and 
    
      
    
    A9: 
    {t, b2, b3}
    on B1 and 
    
      
    
    A10: 
    {b1, r, b3}
    on B2 and 
    
      
    
    A11: 
    {b1, s, b2}
    on B3 and 
    
      
    
    A12: (C1,C2,C3) 
    are_mutually_distinct and 
    
      
    
    A13: o 
    <> a1 and 
    
      
    
    A14: o 
    <> a2 & o 
    <> a3 and 
    
      
    
    A15: o 
    <> b1 and 
    
      
    
    A16: o 
    <> b2 & o 
    <> b3 and 
    
      
    
    A17: a1 
    <> b1 and 
    
      
    
    A18: a2 
    <> b2 and 
    
      
    
    A19: a3 
    <> b3; 
    
      
    
      
    
    A20: o 
    on C1 by 
    A3,
    INCSP_1: 2;
    
      
    
      
    
    A21: b2 
    on C2 by 
    A4,
    INCSP_1: 2;
    
      then
    
      
    
    A22: b2 
    c= C2 by 
    A1,
    A2,
    Th10;
    
      
    
      
    
    A23: a2 
    on C2 by 
    A4,
    INCSP_1: 2;
    
      then
    
      
    
    A24: 
    {a2, b2}
    on C2 by 
    A21,
    INCSP_1: 1;
    
      
    
      
    
    A25: o 
    on C2 by 
    A4,
    INCSP_1: 2;
    
      then
    
      
    
    A26: 
    {o, b2}
    on C2 by 
    A21,
    INCSP_1: 1;
    
      
    
      
    
    A27: 
    {o, a2}
    on C2 by 
    A25,
    A23,
    INCSP_1: 1;
    
      
    
      
    
    A28: a3 
    on A1 & a2 
    on A1 by 
    A6,
    INCSP_1: 2;
    
      
    
      
    
    A29: b3 
    on B2 by 
    A10,
    INCSP_1: 2;
    
      
    
      
    
    A30: b3 
    on C3 by 
    A5,
    INCSP_1: 2;
    
      then
    
      
    
    A31: b3 
    c= C3 by 
    A1,
    A2,
    Th10;
    
      
    
      
    
    A32: a3 
    on C3 by 
    A5,
    INCSP_1: 2;
    
      then
    
      
    
    A33: 
    {a3, b3}
    on C3 by 
    A30,
    INCSP_1: 1;
    
      
    
      
    
    A34: o 
    on C3 by 
    A5,
    INCSP_1: 2;
    
      then
    
      
    
    A35: 
    {o, b3}
    on C3 by 
    A30,
    INCSP_1: 1;
    
      
    
      
    
    A36: 
    {o, a3}
    on C3 by 
    A34,
    A32,
    INCSP_1: 1;
    
      
    
      
    
    A37: a3 
    on A2 & a1 
    on A2 by 
    A7,
    INCSP_1: 2;
    
      
    
      
    
    A38: b1 
    on B3 by 
    A11,
    INCSP_1: 2;
    
      
    
      
    
    A39: C1 
    <> C3 by 
    A12,
    ZFMISC_1:def 5;
    
      
    
      
    
    A40: b1 
    on B2 by 
    A10,
    INCSP_1: 2;
    
      
    
      
    
    A41: C2 
    <> C3 by 
    A12,
    ZFMISC_1:def 5;
    
      
    
      
    
    A42: b3 
    on B1 by 
    A9,
    INCSP_1: 2;
    
      
    
      
    
    A43: C1 
    <> C2 by 
    A12,
    ZFMISC_1:def 5;
    
      
    
      
    
    A44: b2 
    on B1 by 
    A9,
    INCSP_1: 2;
    
      
    
      
    
    A45: a1 
    on C1 by 
    A3,
    INCSP_1: 2;
    
      then
    
      
    
    A46: a1 
    c= C1 by 
    A1,
    A2,
    Th10;
    
      
    
      
    
    A47: b1 
    on C1 by 
    A3,
    INCSP_1: 2;
    
      then
    
      
    
    A48: 
    {o, b1}
    on C1 by 
    A20,
    INCSP_1: 1;
    
      
    
      
    
    A49: b2 
    on B3 by 
    A11,
    INCSP_1: 2;
    
      
    
      
    
    A50: 
    {a1, b1}
    on C1 by 
    A47,
    A45,
    INCSP_1: 1;
    
      
    
      
    
    A51: not a1 
    on B2 & not a2 
    on B3 & not a3 
    on B1 
    
      proof
    
        assume a1
    on B2 or a2 
    on B3 or a3 
    on B1; 
    
        then
    {a1, b1}
    on B2 or 
    {a2, b2}
    on B3 or 
    {a3, b3}
    on B1 by 
    A42,
    A40,
    A49,
    INCSP_1: 1;
    
        then b3
    on C1 or b1 
    on C2 or b2 
    on C3 by 
    A17,
    A18,
    A19,
    A44,
    A29,
    A38,
    A50,
    A24,
    A33,
    INCSP_1:def 10;
    
        then
    {o, b3}
    on C1 or 
    {o, b1}
    on C2 or 
    {o, b2}
    on C3 by 
    A20,
    A25,
    A34,
    INCSP_1: 1;
    
        hence contradiction by
    A15,
    A16,
    A48,
    A26,
    A35,
    A43,
    A41,
    A39,
    INCSP_1:def 10;
    
      end;
    
      
    
      
    
    A52: s 
    on A3 & s 
    on B3 by 
    A8,
    A11,
    INCSP_1: 2;
    
      
    
      
    
    A53: t 
    on B1 by 
    A9,
    INCSP_1: 2;
    
      
    
      
    
    A54: r 
    on A2 & r 
    on B2 by 
    A7,
    A10,
    INCSP_1: 2;
    
      
    
      
    
    A55: t 
    on A1 by 
    A6,
    INCSP_1: 2;
    
      
    
      
    
    A56: a1 
    on A3 by 
    A8,
    INCSP_1: 2;
    
      
    
      
    
    A57: a2 
    on A3 by 
    A8,
    INCSP_1: 2;
    
      
    
      
    
    A58: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A2,
    Def1;
    
      
    
      
    
    A59: 
    {o, a1}
    on C1 by 
    A20,
    A45,
    INCSP_1: 1;
    
      
    
      
    
    A60: not o 
    on A1 & not o 
    on B1 & not o 
    on A2 & not o 
    on B2 & not o 
    on A3 & not o 
    on B3 
    
      proof
    
        assume o
    on A1 or o 
    on B1 or o 
    on A2 or o 
    on B2 or o 
    on A3 or o 
    on B3; 
    
        then
    {o, a2}
    on A1 & 
    {o, a3}
    on A1 or 
    {o, b2}
    on B1 & 
    {o, b3}
    on B1 or 
    {o, a1}
    on A2 & 
    {o, a3}
    on A2 or 
    {o, b1}
    on B2 & 
    {o, b3}
    on B2 or 
    {o, a2}
    on A3 & 
    {o, a1}
    on A3 or 
    {o, b2}
    on B3 & 
    {o, b1}
    on B3 by 
    A28,
    A37,
    A57,
    A56,
    A44,
    A42,
    A40,
    A29,
    A38,
    A49,
    INCSP_1: 1;
    
        then A1
    = C2 & A1 
    = C3 or B1 
    = C2 & B1 
    = C3 or A2 
    = C1 & A2 
    = C3 or B2 
    = C1 & B2 
    = C3 or A3 
    = C2 & A3 
    = C1 or B3 
    = C2 & B3 
    = C1 by 
    A13,
    A14,
    A15,
    A16,
    A59,
    A27,
    A36,
    A48,
    A26,
    A35,
    INCSP_1:def 10;
    
        hence contradiction by
    A12,
    ZFMISC_1:def 5;
    
      end;
    
      then
    
      consider salpha be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A61: salpha 
    on A3 & salpha 
    on B3 and 
    
      
    
    A62: salpha 
    = ((a1 
    /\ b1) 
    \/ (a2 
    /\ b2)) by 
    A1,
    A2,
    A20,
    A47,
    A45,
    A25,
    A23,
    A21,
    A57,
    A56,
    A38,
    A49,
    A43,
    A51,
    Th12;
    
      consider ralpha be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A63: ralpha 
    on B2 & ralpha 
    on A2 and 
    
      
    
    A64: ralpha 
    = ((a1 
    /\ b1) 
    \/ (a3 
    /\ b3)) by 
    A1,
    A2,
    A20,
    A47,
    A45,
    A34,
    A32,
    A30,
    A37,
    A40,
    A29,
    A39,
    A51,
    A60,
    Th12;
    
      
    
      
    
    A65: (((a1 
    /\ b1) 
    \/ (a3 
    /\ b3)) 
    \/ (a2 
    /\ b2)) 
    = ((a1 
    /\ b1) 
    \/ ((a3 
    /\ b3) 
    \/ (a2 
    /\ b2))) by 
    XBOOLE_1: 4;
    
      consider talpha be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A66: talpha 
    on A1 & talpha 
    on B1 and 
    
      
    
    A67: talpha 
    = ((a2 
    /\ b2) 
    \/ (a3 
    /\ b3)) by 
    A1,
    A2,
    A25,
    A23,
    A21,
    A34,
    A32,
    A30,
    A28,
    A44,
    A42,
    A41,
    A51,
    A60,
    Th12;
    
      
    
      
    
    A68: A1 
    <> B1 & A2 
    <> B2 by 
    A6,
    A7,
    A51,
    INCSP_1: 2;
    
      
    
      
    
    A69: r 
    = ralpha & s 
    = salpha & t 
    = talpha 
    
      proof
    
        
    
        
    
    A70: 
    {s, salpha}
    on A3 & 
    {s, salpha}
    on B3 by 
    A52,
    A61,
    INCSP_1: 1;
    
        
    
        
    
    A71: 
    {r, ralpha}
    on A2 & 
    {r, ralpha}
    on B2 by 
    A54,
    A63,
    INCSP_1: 1;
    
        assume
    
        
    
    A72: r 
    <> ralpha or s 
    <> salpha or t 
    <> talpha; 
    
        
    {t, talpha}
    on A1 & 
    {t, talpha}
    on B1 by 
    A55,
    A53,
    A66,
    INCSP_1: 1;
    
        hence contradiction by
    A57,
    A51,
    A68,
    A72,
    A71,
    A70,
    INCSP_1:def 10;
    
      end;
    
      then (r
    \/ s) 
    = ((((a3 
    /\ b3) 
    \/ (a1 
    /\ b1)) 
    \/ (a1 
    /\ b1)) 
    \/ (a2 
    /\ b2)) by 
    A62,
    A64,
    XBOOLE_1: 4;
    
      then (r
    \/ s) 
    = (((a3 
    /\ b3) 
    \/ ((a1 
    /\ b1) 
    \/ (a1 
    /\ b1))) 
    \/ (a2 
    /\ b2)) by 
    XBOOLE_1: 4;
    
      then
    
      
    
    A73: ((r 
    \/ s) 
    \/ t) 
    = (((a1 
    /\ b1) 
    \/ (a3 
    /\ b3)) 
    \/ (a2 
    /\ b2)) by 
    A67,
    A69,
    A65,
    XBOOLE_1: 7,
    XBOOLE_1: 12;
    
      a2
    c= C2 by 
    A1,
    A2,
    A23,
    Th10;
    
      then
    
      
    
    A74: (a2 
    \/ b2) 
    c= C2 by 
    A22,
    XBOOLE_1: 8;
    
      r
    c= (r 
    \/ (s 
    \/ t)) by 
    XBOOLE_1: 7;
    
      then
    
      
    
    A75: r 
    c= ((r 
    \/ s) 
    \/ t) by 
    XBOOLE_1: 4;
    
      C1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      consider C11 be
    Subset of X such that 
    
      
    
    A76: C11 
    = C1 & ( 
    card C11) 
    = (k 
    + 1) by 
    A58;
    
      reconsider C1 as
    finite  
    set by 
    A76;
    
      
    
      
    
    A77: b1 
    c= C1 by 
    A1,
    A2,
    A47,
    Th10;
    
      then (a1
    \/ b1) 
    c= C1 by 
    A46,
    XBOOLE_1: 8;
    
      then
    
      
    
    A78: ( 
    card (a1 
    \/ b1)) 
    c= (k 
    + 1) by 
    A76,
    CARD_1: 11;
    
      
    
      
    
    A79: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    A2,
    Def1;
    
      o
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A80: ex o1 be 
    Subset of X st o1 
    = o & ( 
    card o1) 
    = k by 
    A79;
    
      b1
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A81: ex b11 be 
    Subset of X st b11 
    = b1 & ( 
    card b11) 
    = k by 
    A79;
    
      a3
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A82: ex a13 be 
    Subset of X st a13 
    = a3 & ( 
    card a13) 
    = k by 
    A79;
    
      then
    
      
    
    A83: ( 
    card a3) 
    = ((k 
    - 1) 
    + 1); 
    
      t
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A84: ex t1 be 
    Subset of X st t1 
    = t & ( 
    card t1) 
    = k by 
    A79;
    
      then
    
      
    
    A85: t is 
    finite;
    
      a2
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A86: ex a12 be 
    Subset of X st a12 
    = a2 & ( 
    card a12) 
    = k by 
    A79;
    
      then
    
      
    
    A87: ( 
    card a2) 
    = ((k 
    - 1) 
    + 1); 
    
      s
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A88: ex s1 be 
    Subset of X st s1 
    = s & ( 
    card s1) 
    = k by 
    A79;
    
      then
    
      
    
    A89: s is 
    finite;
    
      a1
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A90: ex a11 be 
    Subset of X st a11 
    = a1 & ( 
    card a11) 
    = k by 
    A79;
    
      then (k
    + 1) 
    c= ( 
    card (a1 
    \/ b1)) by 
    A81,
    A17,
    Th1;
    
      then
    
      
    
    A91: ( 
    card (a1 
    \/ b1)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A78,
    XBOOLE_0:def 10;
    
      
    
      
    
    A92: (k 
    - 1) is 
    Element of 
    NAT by 
    A1,
    NAT_1: 20;
    
      C2
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then ex C12 be
    Subset of X st C12 
    = C2 & ( 
    card C12) 
    = (k 
    + 1) by 
    A58;
    
      then
    
      
    
    A93: ( 
    card (a2 
    \/ b2)) 
    c= (k 
    + 1) by 
    A74,
    CARD_1: 11;
    
      b2
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A94: ex b12 be 
    Subset of X st b12 
    = b2 & ( 
    card b12) 
    = k by 
    A79;
    
      then (k
    + 1) 
    c= ( 
    card (a2 
    \/ b2)) by 
    A86,
    A18,
    Th1;
    
      then
    
      
    
    A95: ( 
    card (a2 
    \/ b2)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A93,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A96: ( 
    card (a2 
    /\ b2)) 
    = (k 
    - 1) by 
    A92,
    A94,
    A87,
    Th2;
    
      
    
      
    
    A97: ( 
    card (a2 
    /\ b2)) 
    = ((k 
    - 2) 
    + 1) by 
    A92,
    A94,
    A95,
    A87,
    Th2;
    
      
    
      
    
    A98: ( 
    card a1) 
    = ((k 
    - 1) 
    + 1) by 
    A90;
    
      then
    
      
    
    A99: ( 
    card (a1 
    /\ b1)) 
    = (k 
    - 1) by 
    A92,
    A81,
    A91,
    Th2;
    
      a3
    c= C3 by 
    A1,
    A2,
    A32,
    Th10;
    
      then
    
      
    
    A100: (a3 
    \/ b3) 
    c= C3 by 
    A31,
    XBOOLE_1: 8;
    
      s
    c= (s 
    \/ (r 
    \/ t)) by 
    XBOOLE_1: 7;
    
      then
    
      
    
    A101: s 
    c= ((r 
    \/ s) 
    \/ t) by 
    XBOOLE_1: 4;
    
      (
    0  
    + 1) 
    < (k 
    + 1) by 
    A1,
    XREAL_1: 8;
    
      then 1
    <= ((k 
    - 1) 
    + 1) by 
    NAT_1: 13;
    
      then 1
    <= (k 
    - 1) or k 
    = 1 by 
    A92,
    NAT_1: 8;
    
      then
    
      
    
    A102: (1 
    + 1) 
    <= ((k 
    - 1) 
    + 1) or k 
    = 1 by 
    XREAL_1: 6;
    
      
    
      
    
    A103: o 
    c= C1 by 
    A1,
    A2,
    A20,
    Th10;
    
      
    
      
    
    A104: not k 
    = 1 
    
      proof
    
        assume
    
        
    
    A105: k 
    = 1; 
    
        then
    
        consider z1 be
    object such that 
    
        
    
    A106: o 
    =  
    {z1} by
    A80,
    CARD_2: 42;
    
        consider z3 be
    object such that 
    
        
    
    A107: b1 
    =  
    {z3} by
    A81,
    A105,
    CARD_2: 42;
    
        consider z2 be
    object such that 
    
        
    
    A108: a1 
    =  
    {z2} by
    A90,
    A105,
    CARD_2: 42;
    
        (o
    \/ a1) 
    c= C1 by 
    A103,
    A46,
    XBOOLE_1: 8;
    
        then ((o
    \/ a1) 
    \/ b1) 
    c= C1 by 
    A77,
    XBOOLE_1: 8;
    
        then (
    {z1, z2}
    \/ b1) 
    c= C1 by 
    A106,
    A108,
    ENUMSET1: 1;
    
        then
    
        
    
    A109: 
    {z1, z2, z3}
    c= C1 by 
    A107,
    ENUMSET1: 3;
    
        (
    card  
    {z1, z2, z3})
    = 3 by 
    A13,
    A15,
    A17,
    A106,
    A108,
    A107,
    CARD_2: 58;
    
        then (
    Segm 3) 
    c= ( 
    Segm ( 
    card C1)) by 
    A109,
    CARD_1: 11;
    
        hence contradiction by
    A76,
    A105,
    NAT_1: 39;
    
      end;
    
      then
    
      
    
    A110: (k 
    - 2) is 
    Element of 
    NAT by 
    A102,
    NAT_1: 21;
    
      C3
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then ex C13 be
    Subset of X st C13 
    = C3 & ( 
    card C13) 
    = (k 
    + 1) by 
    A58;
    
      then
    
      
    
    A111: ( 
    card (a3 
    \/ b3)) 
    c= (k 
    + 1) by 
    A100,
    CARD_1: 11;
    
      b3
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A112: ex b13 be 
    Subset of X st b13 
    = b3 & ( 
    card b13) 
    = k by 
    A79;
    
      then (k
    + 1) 
    c= ( 
    card (a3 
    \/ b3)) by 
    A82,
    A19,
    Th1;
    
      then
    
      
    
    A113: ( 
    card (a3 
    \/ b3)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A111,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A114: ( 
    card (a3 
    /\ b3)) 
    = (k 
    - 1) by 
    A92,
    A112,
    A83,
    Th2;
    
      r
    in the 
    Points of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A115: ex r1 be 
    Subset of X st r1 
    = r & ( 
    card r1) 
    = k by 
    A79;
    
      then (r
    \/ s) 
    c= X by 
    A88,
    XBOOLE_1: 8;
    
      then
    
      
    
    A116: ((r 
    \/ s) 
    \/ t) 
    c= X by 
    A84,
    XBOOLE_1: 8;
    
      
    
      
    
    A117: ( 
    card (a3 
    /\ b3)) 
    = ((k 
    - 2) 
    + 1) by 
    A92,
    A112,
    A113,
    A83,
    Th2;
    
      
    
      
    
    A118: ( 
    card (a1 
    /\ b1)) 
    = ((k 
    - 2) 
    + 1) by 
    A92,
    A81,
    A91,
    A98,
    Th2;
    
      (
    card ((a1 
    /\ b1) 
    \/ (a2 
    /\ b2))) 
    = ((k 
    - 2) 
    + (2 
    * 1)) by 
    A62,
    A69,
    A88;
    
      then
    
      
    
    A119: ( 
    card ((a1 
    /\ b1) 
    /\ (a2 
    /\ b2))) 
    = (k 
    - 2) by 
    A110,
    A118,
    A97,
    Th2;
    
      (
    card ((a2 
    /\ b2) 
    \/ (a3 
    /\ b3))) 
    = ((k 
    - 2) 
    + (2 
    * 1)) by 
    A67,
    A69,
    A84;
    
      then
    
      
    
    A120: ( 
    card ((a2 
    /\ b2) 
    /\ (a3 
    /\ b3))) 
    = (k 
    - 2) by 
    A110,
    A97,
    A117,
    Th2;
    
      (
    card ((a1 
    /\ b1) 
    \/ (a3 
    /\ b3))) 
    = ((k 
    - 2) 
    + (2 
    * 1)) by 
    A64,
    A69,
    A115;
    
      then
    
      
    
    A121: ( 
    card ((a1 
    /\ b1) 
    /\ (a3 
    /\ b3))) 
    = (k 
    - 2) by 
    A110,
    A118,
    A117,
    Th2;
    
      
    
      
    
    A122: t 
    c= ((r 
    \/ s) 
    \/ t) by 
    XBOOLE_1: 7;
    
      
    
      
    
    A123: k 
    = 2 implies ex O be 
    LINE of ( 
    G_ (k,X)) st 
    {r, s, t}
    on O 
    
      proof
    
        assume k
    = 2; 
    
        then (
    card ((r 
    \/ s) 
    \/ t)) 
    = (k 
    + 1) by 
    A99,
    A96,
    A114,
    A73,
    A121,
    A120,
    A119,
    Th7;
    
        then ((r
    \/ s) 
    \/ t) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A58,
    A116;
    
        then
    
        consider O be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A124: O 
    = ((r 
    \/ s) 
    \/ t); 
    
        
    
        
    
    A125: t 
    on O by 
    A1,
    A2,
    A122,
    A124,
    Th10;
    
        r
    on O & s 
    on O by 
    A1,
    A2,
    A75,
    A101,
    A124,
    Th10;
    
        then
    {r, s, t}
    on O by 
    A125,
    INCSP_1: 2;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A126: r is 
    finite by 
    A115;
    
      
    
      
    
    A127: 3 
    <= k implies ex O be 
    LINE of ( 
    G_ (k,X)) st 
    {r, s, t}
    on O 
    
      proof
    
        
    
        
    
    A128: ( 
    card ((r 
    \/ s) 
    \/ t)) 
    = (k 
    + 1) implies ex O be 
    LINE of ( 
    G_ (k,X)) st 
    {r, s, t}
    on O 
    
        proof
    
          assume (
    card ((r 
    \/ s) 
    \/ t)) 
    = (k 
    + 1); 
    
          then ((r
    \/ s) 
    \/ t) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A58,
    A116;
    
          then
    
          consider O be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A129: O 
    = ((r 
    \/ s) 
    \/ t); 
    
          
    
          
    
    A130: t 
    on O by 
    A1,
    A2,
    A122,
    A129,
    Th10;
    
          r
    on O & s 
    on O by 
    A1,
    A2,
    A75,
    A101,
    A129,
    Th10;
    
          then
    {r, s, t}
    on O by 
    A130,
    INCSP_1: 2;
    
          hence thesis;
    
        end;
    
        
    
        
    
    A131: ( 
    card ((r 
    \/ s) 
    \/ t)) 
    = k implies ex O be 
    LINE of ( 
    G_ (k,X)) st 
    {r, s, t}
    on O 
    
        proof
    
          assume
    
          
    
    A132: ( 
    card ((r 
    \/ s) 
    \/ t)) 
    = k; 
    
          then
    
          
    
    A133: t 
    = ((r 
    \/ s) 
    \/ t) by 
    A84,
    A126,
    A89,
    A85,
    CARD_2: 102,
    XBOOLE_1: 7;
    
          r
    = ((r 
    \/ s) 
    \/ t) & s 
    = ((r 
    \/ s) 
    \/ t) by 
    A115,
    A88,
    A126,
    A89,
    A85,
    A75,
    A101,
    A132,
    CARD_2: 102;
    
          then
    {r, s, t}
    on A1 by 
    A55,
    A133,
    INCSP_1: 2;
    
          hence thesis;
    
        end;
    
        assume 3
    <= k; 
    
        hence thesis by
    A99,
    A96,
    A114,
    A73,
    A102,
    A121,
    A120,
    A119,
    A128,
    A131,
    Th7;
    
      end;
    
      k
    = 2 or 2 
    <= (k 
    - 1) by 
    A92,
    A104,
    A102,
    NAT_1: 8;
    
      then k
    = 2 or (2 
    + 1) 
    <= ((k 
    - 1) 
    + 1) by 
    XREAL_1: 6;
    
      hence thesis by
    A123,
    A127;
    
    end;
    
    definition
    
      let S be
    IncProjStr;
    
      let K be
    Subset of the 
    Points of S; 
    
      :: 
    
    COMBGRAS:def2
    
      attr K is
    
    clique means for A,B be 
    POINT of S st A 
    in K & B 
    in K holds ex L be 
    LINE of S st 
    {A, B}
    on L; 
    
    end
    
    definition
    
      let S be
    IncProjStr;
    
      let K be
    Subset of the 
    Points of S; 
    
      :: 
    
    COMBGRAS:def3
    
      attr K is
    
    maximal_clique means K is 
    clique & for U be 
    Subset of the 
    Points of S st U is 
    clique & K 
    c= U holds U 
    = K; 
    
    end
    
    definition
    
      let k be
    Nat;
    
      let X be non
    empty  
    set;
    
      let T be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      :: 
    
    COMBGRAS:def4
    
      attr T is
    
    STAR means ex S be 
    Subset of X st ( 
    card S) 
    = (k 
    - 1) & T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A }; 
    
      :: 
    
    COMBGRAS:def5
    
      attr T is
    
    TOP means ex S be 
    Subset of X st ( 
    card S) 
    = (k 
    + 1) & T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & A 
    c= S }; 
    
    end
    
    theorem :: 
    
    COMBGRAS:14
    
    
    
    
    
    Th14: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 2 
    <= k & (k 
    + 2) 
    c= ( 
    card X) holds for K be 
    Subset of the 
    Points of ( 
    G_ (k,X)) holds K is 
    STAR or K is 
    TOP implies K is 
    maximal_clique
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set;
    
      assume that
    
      
    
    A1: 2 
    <= k and 
    
      
    
    A2: (k 
    + 2) 
    c= ( 
    card X); 
    
      
    
      
    
    A3: (k 
    - 2) is 
    Element of 
    NAT by 
    A1,
    NAT_1: 21;
    
      then
    
      reconsider k2 = (k
    - 2) as 
    Nat;
    
      let K be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      
    
      
    
    A4: ( 
    succ ( 
    Segm k)) 
    = ( 
    Segm (k 
    + 1)) by 
    NAT_1: 38;
    
      
    
      
    
    A5: ( 
    succ ( 
    Segm (k 
    + 1))) 
    = ( 
    Segm ((k 
    + 1) 
    + 1)) by 
    NAT_1: 38;
    
      (k
    + 1) 
    <= (k 
    + 2) by 
    XREAL_1: 7;
    
      then (
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 2)) by 
    NAT_1: 39;
    
      then
    
      
    
    A6: (k 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A7: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    Def1;
    
      
    
      
    
    A8: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A6,
    Def1;
    
      reconsider k1 = (k
    - 1) as 
    Element of 
    NAT by 
    A1,
    NAT_1: 21,
    XXREAL_0: 2;
    
      
    
      
    
    A9: ( 
    succ ( 
    Segm k1)) 
    = ( 
    Segm (k1 
    + 1)) by 
    NAT_1: 38;
    
      
    
      
    
    A10: K is 
    STAR implies K is 
    maximal_clique
    
      proof
    
        assume K is
    STAR;
    
        then
    
        consider S be
    Subset of X such that 
    
        
    
    A11: ( 
    card S) 
    = (k 
    - 1) and 
    
        
    
    A12: K 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A }; 
    
        
    
        
    
    A13: S is 
    finite by 
    A1,
    A11,
    NAT_1: 21,
    XXREAL_0: 2;
    
        
    
        
    
    A14: for U be 
    Subset of the 
    Points of ( 
    G_ (k,X)) st U is 
    clique & K 
    c= U holds U 
    = K 
    
        proof
    
          
    
          
    
    A15: ( 
    succ ( 
    Segm k2)) 
    = ( 
    Segm (k2 
    + 1)) by 
    NAT_1: 38;
    
          let U be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
          assume that
    
          
    
    A16: U is 
    clique and 
    
          
    
    A17: K 
    c= U and 
    
          
    
    A18: U 
    <> K; 
    
           not U
    c= K by 
    A17,
    A18,
    XBOOLE_0:def 10;
    
          then
    
          consider A be
    object such that 
    
          
    
    A19: A 
    in U and 
    
          
    
    A20: not A 
    in K; 
    
          reconsider A as
    set by 
    TARSKI: 1;
    
          consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
          
    
    A21: A2 
    = A by 
    A19;
    
          (
    card (S 
    /\ A)) 
    c= (k 
    - 1) by 
    A11,
    CARD_1: 11,
    XBOOLE_1: 17;
    
          then (
    card (S 
    /\ A)) 
    in ( 
    succ k1) by 
    ORDINAL1: 22;
    
          then
    
          
    
    A22: ( 
    card (S 
    /\ A)) 
    in ( 
    succ (k 
    - 2)) or ( 
    card (S 
    /\ A)) 
    = (k 
    - 1) by 
    A15,
    ORDINAL1: 8;
    
          
    
          
    
    A23: (S 
    /\ A) 
    c= S & (S 
    /\ A) 
    c= A by 
    XBOOLE_1: 17;
    
          A
    in the 
    Points of ( 
    G_ (k,X)) by 
    A19;
    
          then
    
          consider A1 be
    Subset of X such that 
    
          
    
    A24: A1 
    = A & ( 
    card A1) 
    = k by 
    A7;
    
           not S
    c= A by 
    A12,
    A20,
    A24;
    
          then
    
          
    
    A25: ( 
    card (S 
    /\ A)) 
    c= (k 
    - 2) by 
    A3,
    A11,
    A13,
    A23,
    A22,
    CARD_2: 102,
    ORDINAL1: 22;
    
          
    
          
    
    A26: not (X 
    \ (A 
    \/ S)) 
    <>  
    {}  
    
          proof
    
            
    
            
    
    A27: ( 
    succ ( 
    Segm k2)) 
    = ( 
    Segm (k2 
    + 1)) by 
    NAT_1: 38;
    
            assume (X
    \ (A 
    \/ S)) 
    <>  
    {} ; 
    
            then
    
            consider y be
    object such that 
    
            
    
    A28: y 
    in (X 
    \ (A 
    \/ S)) by 
    XBOOLE_0:def 1;
    
            
    
            
    
    A29: not y 
    in (A 
    \/ S) by 
    A28,
    XBOOLE_0:def 5;
    
            then
    
            
    
    A30: not y 
    in S by 
    XBOOLE_0:def 3;
    
            then
    
            
    
    A31: ( 
    card (S 
    \/  
    {y}))
    = ((k 
    - 1) 
    + 1) by 
    A11,
    A13,
    CARD_2: 41;
    
            
    
            
    
    A32: 
    {y}
    c= X by 
    A28,
    ZFMISC_1: 31;
    
            then (S
    \/  
    {y})
    c= X by 
    XBOOLE_1: 8;
    
            then (S
    \/  
    {y})
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A31;
    
            then
    
            consider B be
    POINT of ( 
    G_ (k,X)) such that 
    
            
    
    A33: B 
    = (S 
    \/  
    {y});
    
            
    
            
    
    A34: not y 
    in A by 
    A29,
    XBOOLE_0:def 3;
    
            (A
    /\ B) 
    c= (A 
    /\ S) 
    
            proof
    
              let a be
    object;
    
              assume
    
              
    
    A35: a 
    in (A 
    /\ B); 
    
              then a
    in (S 
    \/  
    {y}) by
    A33,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A36: a 
    in S or a 
    in  
    {y} by
    XBOOLE_0:def 3;
    
              a
    in A by 
    A35,
    XBOOLE_0:def 4;
    
              hence thesis by
    A34,
    A36,
    TARSKI:def 1,
    XBOOLE_0:def 4;
    
            end;
    
            then (
    card (A 
    /\ B)) 
    c= ( 
    card (A 
    /\ S)) by 
    CARD_1: 11;
    
            then (
    card (A 
    /\ B)) 
    c= (k 
    - 2) by 
    A25;
    
            then
    
            
    
    A37: ( 
    card (A 
    /\ B)) 
    in (k 
    - 1) by 
    A27,
    ORDINAL1: 22;
    
            
    
            
    
    A38: not ex L be 
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L 
    
            proof
    
              A
    <> B by 
    A33,
    A34,
    XBOOLE_1: 7,
    ZFMISC_1: 31;
    
              then
    
              
    
    A39: (k 
    + 1) 
    c= ( 
    card (A 
    \/ B)) by 
    A24,
    A31,
    A33,
    Th1;
    
              assume ex L be
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L; 
    
              then
    
              consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
              
    
    A40: 
    {A2, B}
    on L; 
    
              B
    on L by 
    A40,
    INCSP_1: 1;
    
              then
    
              
    
    A41: B 
    c= L by 
    A1,
    A6,
    Th10;
    
              L
    in the 
    Lines of ( 
    G_ (k,X)); 
    
              then
    
              
    
    A42: ex L1 be 
    Subset of X st L 
    = L1 & ( 
    card L1) 
    = (k 
    + 1) by 
    A8;
    
              A2
    on L by 
    A40,
    INCSP_1: 1;
    
              then A
    c= L by 
    A1,
    A6,
    A21,
    Th10;
    
              then (A
    \/ B) 
    c= L by 
    A41,
    XBOOLE_1: 8;
    
              then (
    card (A 
    \/ B)) 
    c= (k 
    + 1) by 
    A42,
    CARD_1: 11;
    
              then
    
              
    
    A43: ( 
    card (A 
    \/ B)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A39,
    XBOOLE_0:def 10;
    
              (
    card B) 
    = ((k 
    - 1) 
    + 1) by 
    A11,
    A13,
    A30,
    A33,
    CARD_2: 41;
    
              then (
    card (A 
    /\ B)) 
    = k1 by 
    A24,
    A43,
    Th2;
    
              hence contradiction by
    A37;
    
            end;
    
            
    
            
    
    A44: S 
    c= B by 
    A33,
    XBOOLE_1: 7;
    
            B
    c= X by 
    A32,
    A33,
    XBOOLE_1: 8;
    
            then B
    in K by 
    A12,
    A31,
    A33,
    A44;
    
            hence contradiction by
    A16,
    A17,
    A19,
    A21,
    A38;
    
          end;
    
          k1
    < (k1 
    + 1) by 
    NAT_1: 13;
    
          then (
    card S) 
    in ( 
    Segm k) by 
    A11,
    NAT_1: 44;
    
          then (
    card S) 
    in ( 
    card A) by 
    A24;
    
          then (A
    \ S) 
    <>  
    {} by 
    CARD_1: 68;
    
          then
    
          consider x be
    object such that 
    
          
    
    A45: x 
    in (A 
    \ S) by 
    XBOOLE_0:def 1;
    
           not x
    in S by 
    A45,
    XBOOLE_0:def 5;
    
          then
    
          
    
    A46: ( 
    card (S 
    \/  
    {x}))
    = ((k 
    - 1) 
    + 1) by 
    A11,
    A13,
    CARD_2: 41;
    
          
    
          
    
    A47: 
    {x}
    c= A by 
    A45,
    ZFMISC_1: 31;
    
          x
    in A by 
    A45;
    
          then
    
          
    
    A48: 
    {x}
    c= X by 
    A24,
    ZFMISC_1: 31;
    
          then
    
          
    
    A49: (S 
    \/  
    {x})
    c= X by 
    XBOOLE_1: 8;
    
           not (X
    \ (A 
    \/ S)) 
    =  
    {}  
    
          proof
    
            assume (X
    \ (A 
    \/ S)) 
    =  
    {} ; 
    
            then
    
            
    
    A50: X 
    c= (A 
    \/ S) by 
    XBOOLE_1: 37;
    
            (S
    \/  
    {x})
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A46,
    A49;
    
            then
    
            consider B be
    POINT of ( 
    G_ (k,X)) such that 
    
            
    
    A51: B 
    = (S 
    \/  
    {x});
    
            (A
    \/ B) 
    = ((A 
    \/ S) 
    \/  
    {x}) by
    A51,
    XBOOLE_1: 4;
    
            then
    
            
    
    A52: (A 
    \/ B) 
    = (A 
    \/ S) by 
    A47,
    XBOOLE_1: 10,
    XBOOLE_1: 12;
    
            (A
    \/ S) 
    c= X by 
    A24,
    XBOOLE_1: 8;
    
            then
    
            
    
    A53: (A 
    \/ S) 
    = X by 
    A50,
    XBOOLE_0:def 10;
    
            
    
            
    
    A54: not ex L be 
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L 
    
            proof
    
              assume ex L be
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L; 
    
              then
    
              consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
              
    
    A55: 
    {A2, B}
    on L; 
    
              B
    on L by 
    A55,
    INCSP_1: 1;
    
              then
    
              
    
    A56: B 
    c= L by 
    A1,
    A6,
    Th10;
    
              A2
    on L by 
    A55,
    INCSP_1: 1;
    
              then A
    c= L by 
    A1,
    A6,
    A21,
    Th10;
    
              then (A
    \/ B) 
    c= L by 
    A56,
    XBOOLE_1: 8;
    
              then (
    card (A 
    \/ B)) 
    c= ( 
    card L) by 
    CARD_1: 11;
    
              then
    
              
    
    A57: (k 
    + 2) 
    c= ( 
    card L) by 
    A2,
    A53,
    A52;
    
              L
    in the 
    Lines of ( 
    G_ (k,X)); 
    
              then ex L1 be
    Subset of X st L 
    = L1 & ( 
    card L1) 
    = (k 
    + 1) by 
    A8;
    
              then (k
    + 1) 
    in (k 
    + 1) by 
    A5,
    A57,
    ORDINAL1: 21;
    
              hence contradiction;
    
            end;
    
            S
    c= B & B 
    c= X by 
    A48,
    A51,
    XBOOLE_1: 8,
    XBOOLE_1: 10;
    
            then B
    in K by 
    A12,
    A46,
    A51;
    
            hence contradiction by
    A16,
    A17,
    A19,
    A21,
    A54;
    
          end;
    
          hence thesis by
    A26;
    
        end;
    
        K is
    clique
    
        proof
    
          let A,B be
    POINT of ( 
    G_ (k,X)); 
    
          assume that
    
          
    
    A58: A 
    in K and 
    
          
    
    A59: B 
    in K; 
    
          
    
          
    
    A60: ex A1 be 
    Subset of X st A1 
    = A & ( 
    card A1) 
    = k & S 
    c= A1 by 
    A12,
    A58;
    
          then
    
          
    
    A61: A is 
    finite;
    
          
    
          
    
    A62: ex B1 be 
    Subset of X st B1 
    = B & ( 
    card B1) 
    = k & S 
    c= B1 by 
    A12,
    A59;
    
          then S
    c= (A 
    /\ B) by 
    A60,
    XBOOLE_1: 19;
    
          then (k
    - 1) 
    c= ( 
    card (A 
    /\ B)) by 
    A11,
    CARD_1: 11;
    
          then k1
    in ( 
    succ ( 
    card (A 
    /\ B))) by 
    ORDINAL1: 22;
    
          then (
    card (A 
    /\ B)) 
    = (k 
    - 1) or (k 
    - 1) 
    in ( 
    card (A 
    /\ B)) by 
    ORDINAL1: 8;
    
          then
    
          
    
    A63: ( 
    card (A 
    /\ B)) 
    = (k 
    - 1) or k 
    c= ( 
    card (A 
    /\ B)) by 
    A9,
    ORDINAL1: 21;
    
          
    
          
    
    A64: B is 
    finite by 
    A62;
    
          
    
          
    
    A65: ( 
    card (A 
    /\ B)) 
    = k implies ex L be 
    LINE of ( 
    G_ (k,X)) st 
    {A, B}
    on L 
    
          proof
    
            
    
            
    
    A66: ( 
    card A) 
    <> ( 
    card X) 
    
            proof
    
              assume (
    card A) 
    = ( 
    card X); 
    
              then k
    in k by 
    A6,
    A4,
    A60,
    ORDINAL1: 21;
    
              hence contradiction;
    
            end;
    
            (
    card A) 
    c= ( 
    card X) by 
    A60,
    CARD_1: 11;
    
            then (
    card A) 
    in ( 
    card X) by 
    A66,
    CARD_1: 3;
    
            then (X
    \ A) 
    <>  
    {} by 
    CARD_1: 68;
    
            then
    
            consider x be
    object such that 
    
            
    
    A67: x 
    in (X 
    \ A) by 
    XBOOLE_0:def 1;
    
            
    {x}
    c= X by 
    A67,
    ZFMISC_1: 31;
    
            then
    
            
    
    A68: (A 
    \/  
    {x})
    c= X by 
    A60,
    XBOOLE_1: 8;
    
             not x
    in A by 
    A67,
    XBOOLE_0:def 5;
    
            then (
    card (A 
    \/  
    {x}))
    = (k 
    + 1) by 
    A60,
    A61,
    CARD_2: 41;
    
            then (A
    \/  
    {x})
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A8,
    A68;
    
            then
    
            consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
            
    
    A69: L 
    = (A 
    \/  
    {x});
    
            assume (
    card (A 
    /\ B)) 
    = k; 
    
            then (A
    /\ B) 
    = A & (A 
    /\ B) 
    = B by 
    A60,
    A62,
    A61,
    A64,
    CARD_2: 102,
    XBOOLE_1: 17;
    
            then B
    c= (A 
    \/  
    {x}) by
    XBOOLE_1: 7;
    
            then
    
            
    
    A70: B 
    on L by 
    A1,
    A6,
    A69,
    Th10;
    
            A
    c= (A 
    \/  
    {x}) by
    XBOOLE_1: 7;
    
            then A
    on L by 
    A1,
    A6,
    A69,
    Th10;
    
            then
    {A, B}
    on L by 
    A70,
    INCSP_1: 1;
    
            hence thesis;
    
          end;
    
          
    
          
    
    A71: ( 
    card (A 
    /\ B)) 
    = (k 
    - 1) implies ex L be 
    LINE of ( 
    G_ (k,X)) st 
    {A, B}
    on L 
    
          proof
    
            
    
            
    
    A72: (A 
    \/ B) 
    c= X by 
    A60,
    A62,
    XBOOLE_1: 8;
    
            assume
    
            
    
    A73: ( 
    card (A 
    /\ B)) 
    = (k 
    - 1); 
    
            (
    card A) 
    = ((k 
    - 1) 
    + 1) by 
    A60;
    
            then (
    card (A 
    \/ B)) 
    = (k1 
    + (2 
    * 1)) by 
    A62,
    A73,
    Th2;
    
            then (A
    \/ B) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A8,
    A72;
    
            then
    
            consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
            
    
    A74: L 
    = (A 
    \/ B); 
    
            B
    c= (A 
    \/ B) by 
    XBOOLE_1: 7;
    
            then
    
            
    
    A75: B 
    on L by 
    A1,
    A6,
    A74,
    Th10;
    
            A
    c= (A 
    \/ B) by 
    XBOOLE_1: 7;
    
            then A
    on L by 
    A1,
    A6,
    A74,
    Th10;
    
            then
    {A, B}
    on L by 
    A75,
    INCSP_1: 1;
    
            hence thesis;
    
          end;
    
          (
    card (A 
    /\ B)) 
    c= k by 
    A60,
    CARD_1: 11,
    XBOOLE_1: 17;
    
          hence thesis by
    A63,
    A71,
    A65,
    XBOOLE_0:def 10;
    
        end;
    
        hence thesis by
    A14;
    
      end;
    
      
    
      
    
    A76: ( 
    succ  
    0 ) 
    = ( 
    0  
    + 1); 
    
      K is
    TOP implies K is 
    maximal_clique
    
      proof
    
        assume K is
    TOP;
    
        then
    
        consider S be
    Subset of X such that 
    
        
    
    A77: ( 
    card S) 
    = (k 
    + 1) and 
    
        
    
    A78: K 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & A 
    c= S }; 
    
        reconsider S as
    finite  
    set by 
    A77;
    
        
    
        
    
    A79: for U be 
    Subset of the 
    Points of ( 
    G_ (k,X)) st U is 
    clique & K 
    c= U holds U 
    = K 
    
        proof
    
          
    
          
    
    A80: (k 
    - 2) 
    <= ((k 
    - 2) 
    + 1) by 
    A3,
    NAT_1: 11;
    
          let U be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
          assume that
    
          
    
    A81: U is 
    clique and 
    
          
    
    A82: K 
    c= U and 
    
          
    
    A83: U 
    <> K; 
    
           not U
    c= K by 
    A82,
    A83,
    XBOOLE_0:def 10;
    
          then
    
          consider A be
    object such that 
    
          
    
    A84: A 
    in U and 
    
          
    
    A85: not A 
    in K; 
    
          reconsider A as
    set by 
    TARSKI: 1;
    
          consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
          
    
    A86: A2 
    = A by 
    A84;
    
          A
    in the 
    Points of ( 
    G_ (k,X)) by 
    A84;
    
          then
    
          
    
    A87: ex A1 be 
    Subset of X st A1 
    = A & ( 
    card A1) 
    = k by 
    A7;
    
          then
    
          reconsider A as
    finite  
    set;
    
          
    
          
    
    A88: ( 
    card A) 
    <> ( 
    card S) by 
    A77,
    A87;
    
          
    
          
    
    A89: not A 
    c= S by 
    A78,
    A85,
    A87;
    
          then
    
          consider x be
    object such that 
    
          
    
    A90: x 
    in A and 
    
          
    
    A91: not x 
    in S; 
    
          k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
          then (
    Segm ( 
    card A)) 
    c= ( 
    Segm ( 
    card S)) by 
    A77,
    A87,
    NAT_1: 39;
    
          then (
    card A) 
    in ( 
    card S) by 
    A88,
    CARD_1: 3;
    
          then
    
          
    
    A92: (S 
    \ A) 
    <>  
    {} by 
    CARD_1: 68;
    
          2
    c= ( 
    card (S 
    \ A)) 
    
          proof
    
            
    
            
    
    A93: not ( 
    card (S 
    \ A)) 
    = 1 
    
            proof
    
              assume (
    card (S 
    \ A)) 
    = 1; 
    
              then
    
              
    
    A94: ( 
    card (S 
    \ (S 
    \ A))) 
    = ((k 
    + 1) 
    - 1) by 
    A77,
    CARD_2: 44;
    
              (S
    \ (S 
    \ A)) 
    = (S 
    /\ A) & (S 
    /\ A) 
    c= S by 
    XBOOLE_1: 17,
    XBOOLE_1: 48;
    
              hence contradiction by
    A87,
    A89,
    A94,
    CARD_2: 102,
    XBOOLE_1: 17;
    
            end;
    
            assume not 2
    c= ( 
    card (S 
    \ A)); 
    
            then (
    card (S 
    \ A)) 
    in ( 
    succ 1) by 
    ORDINAL1: 16;
    
            then (
    card (S 
    \ A)) 
    in 1 or ( 
    card (S 
    \ A)) 
    = 1 by 
    ORDINAL1: 8;
    
            then (
    card (S 
    \ A)) 
    c=  
    0 or ( 
    card (S 
    \ A)) 
    = 1 by 
    A76,
    ORDINAL1: 22;
    
            hence contradiction by
    A92,
    A93;
    
          end;
    
          then
    
          consider B1 be
    set such that 
    
          
    
    A95: B1 
    c= (S 
    \ A) and 
    
          
    
    A96: ( 
    card B1) 
    = 2 by 
    CARD_FIL: 36;
    
          
    
          
    
    A97: B1 
    c= S by 
    A95,
    XBOOLE_1: 106;
    
          then
    
          
    
    A98: not x 
    in B1 by 
    A91;
    
          (
    card (S 
    \ B1)) 
    = ((k 
    + 1) 
    - 2) by 
    A77,
    A95,
    A96,
    CARD_2: 44,
    XBOOLE_1: 106;
    
          then (
    Segm k2) 
    c= ( 
    Segm ( 
    card (S 
    \ B1))) by 
    A80,
    NAT_1: 39;
    
          then
    
          consider B2 be
    set such that 
    
          
    
    A99: B2 
    c= (S 
    \ B1) and 
    
          
    
    A100: ( 
    card B2) 
    = (k 
    - 2) by 
    CARD_FIL: 36;
    
          
    
          
    
    A101: ( 
    card (B1 
    \/ B2)) 
    = (2 
    + (k 
    - 2)) by 
    A95,
    A96,
    A99,
    A100,
    CARD_2: 40,
    XBOOLE_1: 106;
    
          (S
    \ B1) 
    c= X by 
    XBOOLE_1: 1;
    
          then
    
          
    
    A102: B2 
    c= X by 
    A99;
    
          (S
    \ A) 
    c= X by 
    XBOOLE_1: 1;
    
          then B1
    c= X by 
    A95;
    
          then
    
          
    
    A103: (B1 
    \/ B2) 
    c= X by 
    A102,
    XBOOLE_1: 8;
    
          then (B1
    \/ B2) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A101;
    
          then
    
          consider B be
    POINT of ( 
    G_ (k,X)) such that 
    
          
    
    A104: B 
    = (B1 
    \/ B2); 
    
          B1
    misses A by 
    A95,
    XBOOLE_1: 106;
    
          then
    
          
    
    A105: (B1 
    /\ A) 
    =  
    {} by 
    XBOOLE_0:def 7;
    
          B2
    c= S by 
    A99,
    XBOOLE_1: 106;
    
          then
    
          
    
    A106: (B1 
    \/ B2) 
    c= S by 
    A97,
    XBOOLE_1: 8;
    
          then
    
          
    
    A107: not x 
    in (B1 
    \/ B2) by 
    A91;
    
          
    
          
    
    A108: (A 
    /\ B) 
    c= (A 
    \/ B) by 
    XBOOLE_1: 29;
    
          
    
          
    
    A109: (k 
    + 2) 
    c= ( 
    card (A 
    \/ B)) 
    
          proof
    
            
    
            
    
    A110: ( 
    {x}
    \/ B1) 
    misses (A 
    /\ B) 
    
            proof
    
              assume not (
    {x}
    \/ B1) 
    misses (A 
    /\ B); 
    
              then ((
    {x}
    \/ B1) 
    /\ (A 
    /\ B)) 
    <>  
    {} by 
    XBOOLE_0:def 7;
    
              then
    
              consider y be
    object such that 
    
              
    
    A111: y 
    in (( 
    {x}
    \/ B1) 
    /\ (A 
    /\ B)) by 
    XBOOLE_0:def 1;
    
              y
    in (A 
    /\ B) by 
    A111,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A112: y 
    in A & y 
    in B by 
    XBOOLE_0:def 4;
    
              y
    in ( 
    {x}
    \/ B1) by 
    A111,
    XBOOLE_0:def 4;
    
              then y
    in  
    {x} or y
    in B1 by 
    XBOOLE_0:def 3;
    
              hence contradiction by
    A104,
    A107,
    A105,
    A112,
    TARSKI:def 1,
    XBOOLE_0:def 4;
    
            end;
    
            
    {x}
    c= A by 
    A90,
    ZFMISC_1: 31;
    
            then
    {x}
    c= (A 
    \/ B) by 
    XBOOLE_1: 10;
    
            then
    
            
    
    A113: ((A 
    /\ B) 
    \/  
    {x})
    c= (A 
    \/ B) by 
    A108,
    XBOOLE_1: 8;
    
            B1
    c= B by 
    A104,
    XBOOLE_1: 10;
    
            then B1
    c= (A 
    \/ B) by 
    XBOOLE_1: 10;
    
            then (((A
    /\ B) 
    \/  
    {x})
    \/ B1) 
    c= (A 
    \/ B) by 
    A113,
    XBOOLE_1: 8;
    
            then ((A
    /\ B) 
    \/ ( 
    {x}
    \/ B1)) 
    c= (A 
    \/ B) by 
    XBOOLE_1: 4;
    
            then
    
            
    
    A114: ( 
    card ((A 
    /\ B) 
    \/ ( 
    {x}
    \/ B1))) 
    c= ( 
    card (A 
    \/ B)) by 
    CARD_1: 11;
    
            assume not (k
    + 2) 
    c= ( 
    card (A 
    \/ B)); 
    
            then
    
            
    
    A115: ( 
    card (A 
    \/ B)) 
    in ( 
    succ (k 
    + 1)) by 
    A5,
    ORDINAL1: 16;
    
            then
    
            
    
    A116: ( 
    card (A 
    \/ B)) 
    c= (k 
    + 1) by 
    ORDINAL1: 22;
    
            (
    card (A 
    \/ B)) 
    = (k 
    + 1) or ( 
    card (A 
    \/ B)) 
    in ( 
    succ k) & A 
    c= (A 
    \/ B) by 
    A4,
    A115,
    ORDINAL1: 8,
    XBOOLE_1: 7;
    
            then (
    card (A 
    \/ B)) 
    = (k 
    + 1) or ( 
    card (A 
    \/ B)) 
    c= k & k 
    c= ( 
    card (A 
    \/ B)) by 
    A87,
    CARD_1: 11,
    ORDINAL1: 22;
    
            then
    
            
    
    A117: ( 
    card (A 
    \/ B)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) or ( 
    card (A 
    \/ B)) 
    = (k 
    + (2 
    *  
    0 )) by 
    XBOOLE_0:def 10;
    
            (
    card A) 
    = ((k 
    - 1) 
    + 1) by 
    A87;
    
            then
    
            
    
    A118: ( 
    card (A 
    /\ B)) 
    = k1 or ( 
    card (A 
    /\ B)) 
    = k by 
    A101,
    A104,
    A117,
    Th2;
    
            (
    card ( 
    {x}
    \/ B1)) 
    = (2 
    + 1) by 
    A95,
    A96,
    A98,
    CARD_2: 41;
    
            then (
    card ((A 
    /\ B) 
    \/ ( 
    {x}
    \/ B1))) 
    = ((k 
    - 1) 
    + 3) or ( 
    card ((A 
    /\ B) 
    \/ ( 
    {x}
    \/ B1))) 
    = (k 
    + 3) by 
    A95,
    A110,
    A118,
    CARD_2: 40;
    
            then (
    Segm (k 
    + 2)) 
    c= ( 
    Segm (k 
    + 1)) or ( 
    Segm (k 
    + 3)) 
    c= ( 
    Segm (k 
    + 1)) by 
    A116,
    A114;
    
            then (k
    + 1) 
    in (k 
    + 1) or (k 
    + 3) 
    <= (k 
    + 1) by 
    A5,
    NAT_1: 39,
    ORDINAL1: 21;
    
            hence contradiction by
    XREAL_1: 6;
    
          end;
    
          
    
          
    
    A119: not ex L be 
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L 
    
          proof
    
            assume ex L be
    LINE of ( 
    G_ (k,X)) st 
    {A2, B}
    on L; 
    
            then
    
            consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
            
    
    A120: 
    {A2, B}
    on L; 
    
            B
    on L by 
    A120,
    INCSP_1: 1;
    
            then
    
            
    
    A121: B 
    c= L by 
    A1,
    A6,
    Th10;
    
            L
    in the 
    Lines of ( 
    G_ (k,X)); 
    
            then
    
            
    
    A122: ex L1 be 
    Subset of X st L 
    = L1 & ( 
    card L1) 
    = (k 
    + 1) by 
    A8;
    
            A2
    on L by 
    A120,
    INCSP_1: 1;
    
            then A
    c= L by 
    A1,
    A6,
    A86,
    Th10;
    
            then (A
    \/ B) 
    c= L by 
    A121,
    XBOOLE_1: 8;
    
            then
    
            
    
    A123: ( 
    card (A 
    \/ B)) 
    c= (k 
    + 1) by 
    A122,
    CARD_1: 11;
    
            (k
    + 2) 
    c= (k 
    + 1) by 
    A109,
    A123;
    
            then (k
    + 1) 
    in (k 
    + 1) by 
    A5,
    ORDINAL1: 21;
    
            hence contradiction;
    
          end;
    
          B
    in K by 
    A78,
    A101,
    A103,
    A106,
    A104;
    
          hence thesis by
    A81,
    A82,
    A84,
    A86,
    A119;
    
        end;
    
        K is
    clique
    
        proof
    
          let A,B be
    POINT of ( 
    G_ (k,X)); 
    
          assume that
    
          
    
    A124: A 
    in K and 
    
          
    
    A125: B 
    in K; 
    
          S
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A8,
    A77;
    
          then
    
          consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A126: L 
    = S; 
    
          ex B1 be
    Subset of X st B1 
    = B & ( 
    card B1) 
    = k & B1 
    c= S by 
    A78,
    A125;
    
          then
    
          
    
    A127: B 
    on L by 
    A1,
    A6,
    A126,
    Th10;
    
          ex A1 be
    Subset of X st A1 
    = A & ( 
    card A1) 
    = k & A1 
    c= S by 
    A78,
    A124;
    
          then A
    on L by 
    A1,
    A6,
    A126,
    Th10;
    
          then
    {A, B}
    on L by 
    A127,
    INCSP_1: 1;
    
          hence thesis;
    
        end;
    
        hence thesis by
    A79;
    
      end;
    
      hence thesis by
    A10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:15
    
    
    
    
    
    Th15: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 2 
    <= k & (k 
    + 2) 
    c= ( 
    card X) holds for K be 
    Subset of the 
    Points of ( 
    G_ (k,X)) holds K is 
    maximal_clique implies K is 
    STAR or K is 
    TOP
    
    proof
    
      
    
      
    
    A1: ( 
    succ  
    0 ) 
    = ( 
    0  
    + 1); 
    
      
    
      
    
    A2: ( 
    succ 2) 
    = (2 
    + 1); 
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set;
    
      assume that
    
      
    
    A3: 2 
    <= k and 
    
      
    
    A4: (k 
    + 2) 
    c= ( 
    card X); 
    
      (k
    + 1) 
    <= (k 
    + 2) by 
    XREAL_1: 7;
    
      then
    
      
    
    A5: ( 
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 2)) by 
    NAT_1: 39;
    
      then
    
      
    
    A6: (k 
    + 1) 
    c= ( 
    card X) by 
    A4;
    
      then
    
      
    
    A7: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A3,
    Def1;
    
      
    
      
    
    A8: ( 
    succ ( 
    Segm (k 
    + 1))) 
    = ( 
    Segm ((k 
    + 1) 
    + 1)) by 
    NAT_1: 38;
    
      
    
      
    
    A9: 1 
    <= k by 
    A3,
    XXREAL_0: 2;
    
      let K be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      
    
      
    
    A10: ( 
    succ ( 
    Segm k)) 
    = ( 
    Segm (k 
    + 1)) by 
    NAT_1: 38;
    
      
    0  
    c= ( 
    card K); 
    
      then
    0  
    in ( 
    succ ( 
    card K)) by 
    ORDINAL1: 22;
    
      then
    
      
    
    A11: ( 
    card K) 
    =  
    0 or 
    0  
    in ( 
    card K) by 
    ORDINAL1: 8;
    
      assume
    
      
    
    A12: K is 
    maximal_clique;
    
      then
    
      
    
    A13: K is 
    clique;
    
      
    
      
    
    A14: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A3,
    A6,
    Def1;
    
      k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A15: ( 
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
      then
    
      
    
    A16: k 
    c= ( 
    card X) by 
    A6;
    
      K
    <>  
    {}  
    
      proof
    
        consider A1 be
    set such that 
    
        
    
    A17: A1 
    c= X and 
    
        
    
    A18: ( 
    card A1) 
    = k by 
    A16,
    CARD_FIL: 36;
    
        A1
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A17,
    A18;
    
        then
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A19: A 
    = A1; 
    
        (
    card A) 
    <> ( 
    card X) 
    
        proof
    
          assume (
    card A) 
    = ( 
    card X); 
    
          then (k
    + 1) 
    c= k by 
    A4,
    A5,
    A18,
    A19;
    
          then k
    in k by 
    A10,
    ORDINAL1: 21;
    
          hence contradiction;
    
        end;
    
        then (
    card A) 
    in ( 
    card X) by 
    A16,
    A18,
    A19,
    CARD_1: 3;
    
        then (X
    \ A) 
    <>  
    {} by 
    CARD_1: 68;
    
        then
    
        consider x be
    object such that 
    
        
    
    A20: x 
    in (X 
    \ A) by 
    XBOOLE_0:def 1;
    
        
    {x}
    c= X by 
    A20,
    ZFMISC_1: 31;
    
        then
    
        
    
    A21: (A 
    \/  
    {x})
    c= X by 
    A17,
    A19,
    XBOOLE_1: 8;
    
        
    
        
    
    A22: not x 
    in A by 
    A20,
    XBOOLE_0:def 5;
    
        A is
    finite by 
    A18,
    A19;
    
        then (
    card (A 
    \/  
    {x}))
    = (k 
    + 1) by 
    A18,
    A19,
    A22,
    CARD_2: 41;
    
        then (A
    \/  
    {x})
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A21;
    
        then
    
        consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A23: L 
    = (A 
    \/  
    {x});
    
        consider U be
    Subset of the 
    Points of ( 
    G_ (k,X)) such that 
    
        
    
    A24: U 
    =  
    {A};
    
        A
    c= L by 
    A23,
    XBOOLE_1: 7;
    
        then
    
        
    
    A25: A 
    on L by 
    A3,
    A6,
    Th10;
    
        
    
        
    
    A26: U is 
    clique
    
        proof
    
          let B,C be
    POINT of ( 
    G_ (k,X)); 
    
          assume B
    in U & C 
    in U; 
    
          then B
    on L & C 
    on L by 
    A25,
    A24,
    TARSKI:def 1;
    
          then
    {B, C}
    on L by 
    INCSP_1: 1;
    
          hence thesis;
    
        end;
    
        assume
    
        
    
    A27: K 
    =  
    {} ; 
    
        then K
    c= U; 
    
        hence contradiction by
    A12,
    A27,
    A24,
    A26;
    
      end;
    
      then 1
    c= ( 
    card K) by 
    A1,
    A11,
    ORDINAL1: 21;
    
      then 1
    in ( 
    succ ( 
    card K)) by 
    ORDINAL1: 22;
    
      then
    
      
    
    A28: ( 
    card K) 
    = 1 or 1 
    in ( 
    card K) by 
    ORDINAL1: 8;
    
      
    
      
    
    A29: (k 
    - 1) is 
    Element of 
    NAT by 
    A3,
    NAT_1: 21,
    XXREAL_0: 2;
    
      then
    
      reconsider k1 = (k
    - 1) as 
    Nat;
    
      
    
      
    
    A30: ( 
    card K) 
    <> 1 
    
      proof
    
        assume (
    card K) 
    = 1; 
    
        then
    
        consider A3 be
    object such that 
    
        
    
    A31: K 
    =  
    {A3} by
    CARD_2: 42;
    
        
    
        
    
    A32: A3 
    in K by 
    A31,
    TARSKI:def 1;
    
        then
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A33: A 
    = A3; 
    
        A3
    in the 
    Points of ( 
    G_ (k,X)) by 
    A32;
    
        then
    
        
    
    A34: ex A4 be 
    Subset of X st A 
    = A4 & ( 
    card A4) 
    = k by 
    A7,
    A33;
    
        then
    
        reconsider AA = A as
    finite  
    set;
    
        
    
        
    
    A35: A is 
    finite by 
    A34;
    
        
    
        
    
    A36: ( 
    card A) 
    <> ( 
    card X) 
    
        proof
    
          assume (
    card A) 
    = ( 
    card X); 
    
          then (k
    + 1) 
    c= k by 
    A4,
    A5,
    A34;
    
          then k
    in k by 
    A10,
    ORDINAL1: 21;
    
          hence contradiction;
    
        end;
    
        (
    card A) 
    c= ( 
    card X) by 
    A6,
    A15,
    A34;
    
        then (
    card A) 
    in ( 
    card X) by 
    A36,
    CARD_1: 3;
    
        then (X
    \ A) 
    <>  
    {} by 
    CARD_1: 68;
    
        then
    
        consider x be
    object such that 
    
        
    
    A37: x 
    in (X 
    \ A) by 
    XBOOLE_0:def 1;
    
        
    
        
    
    A38: 
    {x}
    c= X by 
    A37,
    ZFMISC_1: 31;
    
        then
    
        
    
    A39: (A 
    \/  
    {x})
    c= X by 
    A34,
    XBOOLE_1: 8;
    
         not x
    in A by 
    A37,
    XBOOLE_0:def 5;
    
        then (
    card (A 
    \/  
    {x}))
    = (k 
    + 1) by 
    A34,
    A35,
    CARD_2: 41;
    
        then (A
    \/  
    {x})
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A39;
    
        then
    
        consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A40: L 
    = (A 
    \/  
    {x});
    
        (k
    - 1) 
    <= ((k 
    - 1) 
    + 1) by 
    A29,
    NAT_1: 11;
    
        then (
    Segm k1) 
    c= ( 
    Segm ( 
    card AA)) by 
    A34,
    NAT_1: 39;
    
        then
    
        consider B2 be
    set such that 
    
        
    
    A41: B2 
    c= A and 
    
        
    
    A42: ( 
    card B2) 
    = (k 
    - 1) by 
    CARD_FIL: 36;
    
        
    
        
    
    A43: B2 is 
    finite by 
    A3,
    A42,
    NAT_1: 21,
    XXREAL_0: 2;
    
        B2
    c= X by 
    A34,
    A41,
    XBOOLE_1: 1;
    
        then
    
        
    
    A44: (B2 
    \/  
    {x})
    c= X by 
    A38,
    XBOOLE_1: 8;
    
         not x
    in B2 by 
    A37,
    A41,
    XBOOLE_0:def 5;
    
        then (
    card (B2 
    \/  
    {x}))
    = ((k 
    - 1) 
    + 1) by 
    A42,
    A43,
    CARD_2: 41;
    
        then (B2
    \/  
    {x})
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A44;
    
        then
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A45: A1 
    = (B2 
    \/  
    {x});
    
        
    
        
    
    A46: 
    {x}
    c= L by 
    A40,
    XBOOLE_1: 7;
    
        
    
        
    
    A47: A 
    c= L by 
    A40,
    XBOOLE_1: 7;
    
        then B2
    c= L by 
    A41;
    
        then A1
    c= L by 
    A45,
    A46,
    XBOOLE_1: 8;
    
        then
    
        
    
    A48: A1 
    on L by 
    A3,
    A6,
    Th10;
    
        
    {x}
    c= A1 by 
    A45,
    XBOOLE_1: 7;
    
        then x
    in A1 by 
    ZFMISC_1: 31;
    
        then
    
        
    
    A49: A 
    <> A1 by 
    A37,
    XBOOLE_0:def 5;
    
        consider U be
    Subset of the 
    Points of ( 
    G_ (k,X)) such that 
    
        
    
    A50: U 
    =  
    {A, A1};
    
        
    
        
    
    A51: A 
    on L by 
    A3,
    A6,
    A47,
    Th10;
    
        
    
        
    
    A52: U is 
    clique
    
        proof
    
          let B1,B2 be
    POINT of ( 
    G_ (k,X)); 
    
          assume B1
    in U & B2 
    in U; 
    
          then B1
    on L & B2 
    on L by 
    A51,
    A48,
    A50,
    TARSKI:def 2;
    
          then
    {B1, B2}
    on L by 
    INCSP_1: 1;
    
          hence thesis;
    
        end;
    
        A
    in U by 
    A50,
    TARSKI:def 2;
    
        then
    
        
    
    A53: K 
    c= U by 
    A31,
    A33,
    ZFMISC_1: 31;
    
        A1
    in U by 
    A50,
    TARSKI:def 2;
    
        then U
    <> K by 
    A31,
    A33,
    A49,
    TARSKI:def 1;
    
        hence contradiction by
    A12,
    A53,
    A52;
    
      end;
    
      (
    succ 1) 
    = (1 
    + 1); 
    
      then
    
      
    
    A54: 2 
    c= ( 
    card K) by 
    A30,
    A28,
    ORDINAL1: 21;
    
      then
    
      consider R be
    set such that 
    
      
    
    A55: R 
    c= K and 
    
      
    
    A56: ( 
    card R) 
    = 2 by 
    CARD_FIL: 36;
    
      consider A1,B1 be
    object such that 
    
      
    
    A57: A1 
    <> B1 and 
    
      
    
    A58: R 
    =  
    {A1, B1} by
    A56,
    CARD_2: 60;
    
      
    
      
    
    A59: A1 
    in R by 
    A58,
    TARSKI:def 2;
    
      then
    
      
    
    A60: A1 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A55,
    TARSKI:def 3;
    
      then
    
      consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A61: A 
    = A1; 
    
      
    
      
    
    A62: B1 
    in R by 
    A58,
    TARSKI:def 2;
    
      then
    
      
    
    A63: B1 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A55,
    TARSKI:def 3;
    
      then
    
      consider B be
    POINT of ( 
    G_ (k,X)) such that 
    
      
    
    A64: B 
    = B1; 
    
      consider L be
    LINE of ( 
    G_ (k,X)) such that 
    
      
    
    A65: 
    {A, B}
    on L by 
    A13,
    A55,
    A59,
    A62,
    A61,
    A64;
    
      L
    in the 
    Lines of ( 
    G_ (k,X)); 
    
      then
    
      
    
    A66: ex L1 be 
    Subset of X st L1 
    = L & ( 
    card L1) 
    = (k 
    + 1) by 
    A14;
    
      then
    
      
    
    A67: L is 
    finite;
    
      A
    on L by 
    A65,
    INCSP_1: 1;
    
      then
    
      
    
    A68: A 
    c= L by 
    A3,
    A6,
    Th10;
    
      then
    
      
    
    A69: (A 
    /\ B) 
    c= L by 
    XBOOLE_1: 108;
    
      then
    
      
    
    A70: (A 
    /\ B) 
    c= X by 
    A66,
    XBOOLE_1: 1;
    
      B
    on L by 
    A65,
    INCSP_1: 1;
    
      then
    
      
    
    A71: B 
    c= L by 
    A3,
    A6,
    Th10;
    
      then
    
      
    
    A72: (A 
    \/ B) 
    c= L by 
    A68,
    XBOOLE_1: 8;
    
      then
    
      
    
    A73: ( 
    card (A 
    \/ B)) 
    c= (k 
    + 1) by 
    A66,
    CARD_1: 11;
    
      
    
      
    
    A74: ex B2 be 
    Subset of X st B2 
    = B & ( 
    card B2) 
    = k by 
    A7,
    A63,
    A64;
    
      then
    
      
    
    A75: B is 
    finite;
    
      
    
      
    
    A76: ex A2 be 
    Subset of X st A2 
    = A & ( 
    card A2) 
    = k by 
    A7,
    A60,
    A61;
    
      then
    
      
    
    A77: A is 
    finite;
    
      
    
      
    
    A78: (k 
    + 1) 
    c= ( 
    card (A 
    \/ B)) by 
    A57,
    A61,
    A64,
    A76,
    A74,
    Th1;
    
      then
    
      
    
    A79: ( 
    card (A 
    \/ B)) 
    = (k 
    + 1) by 
    A73,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A80: (A 
    \/ B) 
    = L by 
    A68,
    A71,
    A66,
    A67,
    CARD_2: 102,
    XBOOLE_1: 8;
    
      
    
      
    
    A81: not (ex C be 
    POINT of ( 
    G_ (k,X)) st C 
    in K & C 
    on L & A 
    <> C & B 
    <> C) implies K is 
    STAR
    
      proof
    
        
    
        
    
    A82: ( 
    card L) 
    <> ( 
    card X) 
    
        proof
    
          assume (
    card L) 
    = ( 
    card X); 
    
          then (k
    + 1) 
    in (k 
    + 1) by 
    A4,
    A8,
    A66,
    ORDINAL1: 21;
    
          hence contradiction;
    
        end;
    
        (
    card L) 
    c= ( 
    card X) by 
    A4,
    A5,
    A66;
    
        then (
    card L) 
    in ( 
    card X) by 
    A82,
    CARD_1: 3;
    
        then (X
    \ L) 
    <>  
    {} by 
    CARD_1: 68;
    
        then
    
        consider x be
    object such that 
    
        
    
    A83: x 
    in (X 
    \ L) by 
    XBOOLE_0:def 1;
    
        
    
        
    
    A84: ( not x 
    in A) & not x 
    in B by 
    A68,
    A71,
    A83,
    XBOOLE_0:def 5;
    
        
    
        
    
    A85: (A 
    /\  
    {x})
    =  
    {} & (B 
    /\  
    {x})
    =  
    {}  
    
        proof
    
          assume (A
    /\  
    {x})
    <>  
    {} or (B 
    /\  
    {x})
    <>  
    {} ; 
    
          then
    
          consider z1 be
    object such that 
    
          
    
    A86: z1 
    in (A 
    /\  
    {x}) or z1
    in (B 
    /\  
    {x}) by
    XBOOLE_0:def 1;
    
          z1
    in A & z1 
    in  
    {x} or z1
    in B & z1 
    in  
    {x} by
    A86,
    XBOOLE_0:def 4;
    
          hence contradiction by
    A84,
    TARSKI:def 1;
    
        end;
    
        
    
        
    
    A87: ( 
    card A) 
    = ((k 
    - 1) 
    + 1) & ( 
    card (A 
    \/ B)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A76,
    A73,
    A78,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A88: ( 
    card (A 
    /\ B)) 
    = (k 
    - 1) by 
    A29,
    A74,
    Th2;
    
        then (
    card (A 
    \ (A 
    /\ B))) 
    = (k 
    - (k 
    - 1)) by 
    A76,
    A77,
    CARD_2: 44,
    XBOOLE_1: 17;
    
        then
    
        consider z1 be
    object such that 
    
        
    
    A89: (A 
    \ (A 
    /\ B)) 
    =  
    {z1} by
    CARD_2: 42;
    
        (
    card (B 
    \ (A 
    /\ B))) 
    = (k 
    - (k 
    - 1)) by 
    A74,
    A75,
    A88,
    CARD_2: 44,
    XBOOLE_1: 17;
    
        then
    
        consider z2 be
    object such that 
    
        
    
    A90: (B 
    \ (A 
    /\ B)) 
    =  
    {z2} by
    CARD_2: 42;
    
        
    
        
    
    A91: B 
    = ((A 
    /\ B) 
    \/  
    {z2}) by
    A90,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
        
    
        
    
    A92: z2 
    in  
    {z2} by
    TARSKI:def 1;
    
        
    
        
    
    A93: ( 
    card (A 
    \/ B)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A73,
    A78,
    XBOOLE_0:def 10;
    
        
    
        
    
    A94: not x 
    in (A 
    /\ B) by 
    A69,
    A83,
    XBOOLE_0:def 5;
    
        (
    card A) 
    = ((k 
    - 1) 
    + 1) by 
    A76;
    
        then (
    card (A 
    /\ B)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A93,
    Th2;
    
        then
    
        
    
    A95: ( 
    card ((A 
    /\ B) 
    \/  
    {x}))
    = ((k 
    - 1) 
    + 1) by 
    A68,
    A67,
    A94,
    CARD_2: 41;
    
        
    {x}
    c= X by 
    A83,
    ZFMISC_1: 31;
    
        then
    
        
    
    A96: ((A 
    /\ B) 
    \/  
    {x})
    c= X by 
    A70,
    XBOOLE_1: 8;
    
        then ((A
    /\ B) 
    \/  
    {x})
    in the 
    Points of ( 
    G_ (k,X)) by 
    A7,
    A95;
    
        then
    
        consider C be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A97: C 
    = ((A 
    /\ B) 
    \/  
    {x});
    
        
    
        
    
    A98: (B 
    \/ C) 
    c= X by 
    A74,
    A96,
    A97,
    XBOOLE_1: 8;
    
        
    
        
    
    A99: (A 
    \/ C) 
    c= X by 
    A76,
    A96,
    A97,
    XBOOLE_1: 8;
    
        
    
        
    
    A100: (1 
    + 1) 
    <= (k 
    + 1) by 
    A9,
    XREAL_1: 7;
    
        
    
        
    
    A101: (A 
    /\ B) 
    c= B by 
    XBOOLE_1: 17;
    
        (B
    /\ C) 
    = ((B 
    /\  
    {x})
    \/ (B 
    /\ (B 
    /\ A))) by 
    A97,
    XBOOLE_1: 23;
    
        then (B
    /\ C) 
    = ((B 
    /\  
    {x})
    \/ ((B 
    /\ B) 
    /\ A)) by 
    XBOOLE_1: 16;
    
        then (
    card (B 
    /\ C)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A85,
    A87,
    Th2;
    
        then (
    card (B 
    \/ C)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A29,
    A74,
    A95,
    A97,
    Th2;
    
        then (B
    \/ C) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A98;
    
        then
    
        consider L2 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A102: L2 
    = (B 
    \/ C); 
    
        (A
    /\ C) 
    = ((A 
    /\  
    {x})
    \/ (A 
    /\ (A 
    /\ B))) by 
    A97,
    XBOOLE_1: 23;
    
        then (A
    /\ C) 
    = ((A 
    /\  
    {x})
    \/ ((A 
    /\ A) 
    /\ B)) by 
    XBOOLE_1: 16;
    
        then (
    card (A 
    /\ C)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A85,
    A87,
    Th2;
    
        then (
    card (A 
    \/ C)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A29,
    A76,
    A95,
    A97,
    Th2;
    
        then (A
    \/ C) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A99;
    
        then
    
        consider L1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A103: L1 
    = (A 
    \/ C); 
    
        
    
        
    
    A104: 
    {A, B, C} is
    clique
    
        proof
    
          let Z1,Z2 be
    POINT of ( 
    G_ (k,X)); 
    
          assume that
    
          
    
    A105: Z1 
    in  
    {A, B, C} and
    
          
    
    A106: Z2 
    in  
    {A, B, C};
    
          
    
          
    
    A107: Z2 
    = A or Z2 
    = B or Z2 
    = C by 
    A106,
    ENUMSET1:def 1;
    
          Z1
    = A or Z1 
    = B or Z1 
    = C by 
    A105,
    ENUMSET1:def 1;
    
          then Z1
    c= (A 
    \/ B) & Z2 
    c= (A 
    \/ B) or Z1 
    c= (A 
    \/ C) & Z2 
    c= (A 
    \/ C) or Z1 
    c= (B 
    \/ C) & Z2 
    c= (B 
    \/ C) by 
    A107,
    XBOOLE_1: 11;
    
          then Z1
    on L & Z2 
    on L or Z1 
    on L1 & Z2 
    on L1 or Z1 
    on L2 & Z2 
    on L2 by 
    A3,
    A6,
    A80,
    A103,
    A102,
    Th10;
    
          then
    {Z1, Z2}
    on L or 
    {Z1, Z2}
    on L1 or 
    {Z1, Z2}
    on L2 by 
    INCSP_1: 1;
    
          hence thesis;
    
        end;
    
        
    
        
    
    A108: C 
    <> A & C 
    <> B by 
    A84,
    A97,
    XBOOLE_1: 11,
    ZFMISC_1: 31;
    
        
    
        
    
    A109: 3 
    c= ( 
    card K) 
    
        proof
    
          assume not 3
    c= ( 
    card K); 
    
          then (
    card K) 
    in 3 by 
    ORDINAL1: 16;
    
          then (
    card K) 
    c= 2 by 
    A2,
    ORDINAL1: 22;
    
          then (
    card K) 
    = 2 & K is 
    finite by 
    A54,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A110: K 
    =  
    {A, B} by
    A55,
    A56,
    A58,
    A61,
    A64,
    CARD_2: 102;
    
          A
    in  
    {A, B, C} & B
    in  
    {A, B, C} by
    ENUMSET1:def 1;
    
          then
    
          
    
    A111: 
    {A, B}
    c=  
    {A, B, C} by
    ZFMISC_1: 32;
    
          C
    in  
    {A, B, C} by
    ENUMSET1:def 1;
    
          then not
    {A, B, C}
    c=  
    {A, B} by
    A108,
    TARSKI:def 2;
    
          hence contradiction by
    A12,
    A104,
    A110,
    A111;
    
        end;
    
        (
    card  
    {A, B})
    <> ( 
    card K) 
    
        proof
    
          assume (
    card  
    {A, B})
    = ( 
    card K); 
    
          then 3
    in 3 by 
    A2,
    A56,
    A58,
    A61,
    A64,
    A109,
    ORDINAL1: 22;
    
          hence contradiction;
    
        end;
    
        then (
    card  
    {A, B})
    in ( 
    card K) by 
    A54,
    A56,
    A58,
    A61,
    A64,
    CARD_1: 3;
    
        then (K
    \  
    {A, B})
    <>  
    {} by 
    CARD_1: 68;
    
        then
    
        consider E2 be
    object such that 
    
        
    
    A112: E2 
    in (K 
    \  
    {A, B}) by
    XBOOLE_0:def 1;
    
        
    
        
    
    A113: ( 
    card A) 
    = ((k 
    - 1) 
    + 1) by 
    A76;
    
        then
    
        
    
    A114: ( 
    card (A 
    /\ B)) 
    = ((k 
    + 1) 
    - 2) by 
    A29,
    A74,
    A93,
    Th2;
    
        
    
        
    
    A115: ( 
    card B) 
    = ((k 
    - 1) 
    + 1) by 
    A74;
    
        
    
        
    
    A116: (A 
    /\ B) 
    c= A by 
    XBOOLE_1: 17;
    
        
    
        
    
    A117: not E2 
    in  
    {A, B} by
    A112,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A118: E2 
    <> A by 
    TARSKI:def 2;
    
        E2
    in the 
    Points of ( 
    G_ (k,X)) by 
    A112;
    
        then
    
        consider E1 be
    Subset of X such that 
    
        
    
    A119: E1 
    = E2 and 
    
        
    
    A120: ( 
    card E1) 
    = k by 
    A7;
    
        consider E be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A121: E 
    = E1 by 
    A112,
    A119;
    
        
    
        
    
    A122: A 
    = ((A 
    /\ B) 
    \/  
    {z1}) by
    A89,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
        
    
        
    
    A123: z1 
    in  
    {z1} by
    TARSKI:def 1;
    
        then
    
        
    
    A124: not z1 
    in (A 
    /\ B) by 
    A89,
    XBOOLE_0:def 5;
    
        
    
        
    
    A125: ( 
    card A) 
    = ((k 
    + 1) 
    - 1) & (2 
    + 1) 
    <= (k 
    + 1) by 
    A3,
    A76,
    XREAL_1: 7;
    
        consider S be
    set such that 
    
        
    
    A126: S 
    = { D where D be 
    Subset of X : ( 
    card D) 
    = k & (A 
    /\ B) 
    c= D }; 
    
        
    
        
    
    A127: E2 
    in K by 
    A112,
    XBOOLE_0:def 5;
    
        then
    
        consider K1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A128: 
    {A, E}
    on K1 by 
    A13,
    A55,
    A59,
    A61,
    A119,
    A121;
    
        consider K2 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A129: 
    {B, E}
    on K2 by 
    A13,
    A55,
    A62,
    A64,
    A127,
    A119,
    A121;
    
        E
    on K2 by 
    A129,
    INCSP_1: 1;
    
        then
    
        
    
    A130: E 
    c= K2 by 
    A3,
    A6,
    Th10;
    
        K2
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A131: ex M2 be 
    Subset of X st K2 
    = M2 & ( 
    card M2) 
    = (k 
    + 1) by 
    A14;
    
        B
    on K2 by 
    A129,
    INCSP_1: 1;
    
        then B
    c= K2 by 
    A3,
    A6,
    Th10;
    
        then (B
    \/ E) 
    c= K2 by 
    A130,
    XBOOLE_1: 8;
    
        then
    
        
    
    A132: ( 
    card (B 
    \/ E)) 
    c= (k 
    + 1) by 
    A131,
    CARD_1: 11;
    
        
    
        
    
    A133: E2 
    <> B by 
    A117,
    TARSKI:def 2;
    
        then (k
    + 1) 
    c= ( 
    card (B 
    \/ E)) by 
    A74,
    A119,
    A120,
    A121,
    Th1;
    
        then (
    card (B 
    \/ E)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A132,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A134: ( 
    card (B 
    /\ E)) 
    = ((k 
    + 1) 
    - 2) by 
    A29,
    A120,
    A121,
    A115,
    Th2;
    
        assume not (ex C be
    POINT of ( 
    G_ (k,X)) st C 
    in K & C 
    on L & A 
    <> C & B 
    <> C); 
    
        then
    
        
    
    A135: not E 
    on L by 
    A127,
    A118,
    A133,
    A119,
    A121;
    
        
    
        
    
    A136: not ( 
    card ((A 
    \/ B) 
    \/ E)) 
    = (k 
    + 1) 
    
        proof
    
          assume
    
          
    
    A137: ( 
    card ((A 
    \/ B) 
    \/ E)) 
    = (k 
    + 1); 
    
          then (A
    \/ B) 
    c= ((A 
    \/ B) 
    \/ E) & ((A 
    \/ B) 
    \/ E) is 
    finite by 
    XBOOLE_1: 7;
    
          then
    
          
    
    A138: (A 
    \/ B) 
    = ((A 
    \/ B) 
    \/ E) by 
    A79,
    A137,
    CARD_2: 102;
    
          E
    c= ((A 
    \/ B) 
    \/ E) by 
    XBOOLE_1: 7;
    
          then E
    c= L by 
    A72,
    A138;
    
          hence contradiction by
    A3,
    A6,
    A135,
    Th10;
    
        end;
    
        E
    on K1 by 
    A128,
    INCSP_1: 1;
    
        then
    
        
    
    A139: E 
    c= K1 by 
    A3,
    A6,
    Th10;
    
        K1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A140: ex M1 be 
    Subset of X st K1 
    = M1 & ( 
    card M1) 
    = (k 
    + 1) by 
    A14;
    
        A
    on K1 by 
    A128,
    INCSP_1: 1;
    
        then A
    c= K1 by 
    A3,
    A6,
    Th10;
    
        then (A
    \/ E) 
    c= K1 by 
    A139,
    XBOOLE_1: 8;
    
        then
    
        
    
    A141: ( 
    card (A 
    \/ E)) 
    c= (k 
    + 1) by 
    A140,
    CARD_1: 11;
    
        (k
    + 1) 
    c= ( 
    card (A 
    \/ E)) by 
    A76,
    A118,
    A119,
    A120,
    A121,
    Th1;
    
        then (
    card (A 
    \/ E)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A141,
    XBOOLE_0:def 10;
    
        then (
    card (A 
    /\ E)) 
    = ((k 
    + 1) 
    - 2) by 
    A29,
    A120,
    A121,
    A113,
    Th2;
    
        then (
    card ((A 
    /\ B) 
    /\ E)) 
    = ((k 
    + 1) 
    - 2) & ( 
    card ((A 
    \/ B) 
    \/ E)) 
    = ((k 
    + 1) 
    + 1) or ( 
    card ((A 
    /\ B) 
    /\ E)) 
    = ((k 
    + 1) 
    - 3) & ( 
    card ((A 
    \/ B) 
    \/ E)) 
    = (k 
    + 1) by 
    A74,
    A120,
    A121,
    A134,
    A125,
    A100,
    A114,
    Th7;
    
        then
    
        
    
    A142: (A 
    /\ B) 
    = ((A 
    /\ B) 
    /\ E) by 
    A68,
    A67,
    A88,
    A136,
    CARD_2: 102,
    XBOOLE_1: 17;
    
        then
    
        
    
    A143: (A 
    /\ B) 
    c= E by 
    XBOOLE_1: 17;
    
        E is
    finite by 
    A120,
    A121;
    
        then (
    card (E 
    \ (A 
    /\ B))) 
    = (k 
    - (k 
    - 1)) by 
    A88,
    A120,
    A121,
    A142,
    CARD_2: 44,
    XBOOLE_1: 17;
    
        then
    
        consider z4 be
    object such that 
    
        
    
    A144: (E 
    \ (A 
    /\ B)) 
    =  
    {z4} by
    CARD_2: 42;
    
        
    
        
    
    A145: E 
    = ((A 
    /\ B) 
    \/  
    {z4}) by
    A142,
    A144,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
        
    
        
    
    A146: K 
    c= S 
    
        proof
    
          assume not K
    c= S; 
    
          then
    
          consider D2 be
    object such that 
    
          
    
    A147: D2 
    in K and 
    
          
    
    A148: not D2 
    in S; 
    
          D2
    in the 
    Points of ( 
    G_ (k,X)) by 
    A147;
    
          then
    
          consider D1 be
    Subset of X such that 
    
          
    
    A149: D1 
    = D2 and 
    
          
    
    A150: ( 
    card D1) 
    = k by 
    A7;
    
          consider D be
    POINT of ( 
    G_ (k,X)) such that 
    
          
    
    A151: D 
    = D1 by 
    A147,
    A149;
    
          consider K11 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A152: 
    {A, D}
    on K11 by 
    A13,
    A55,
    A59,
    A61,
    A147,
    A149,
    A151;
    
          D
    on K11 by 
    A152,
    INCSP_1: 1;
    
          then
    
          
    
    A153: D 
    c= K11 by 
    A3,
    A6,
    Th10;
    
          K11
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A154: ex R11 be 
    Subset of X st R11 
    = K11 & ( 
    card R11) 
    = (k 
    + 1) by 
    A14;
    
          
    
          
    
    A155: ( 
    card D) 
    = ((k 
    - 1) 
    + 1) by 
    A150,
    A151;
    
          consider K13 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A156: 
    {E, D}
    on K13 by 
    A13,
    A127,
    A119,
    A121,
    A147,
    A149,
    A151;
    
          consider K12 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A157: 
    {B, D}
    on K12 by 
    A13,
    A55,
    A62,
    A64,
    A147,
    A149,
    A151;
    
          A
    on K11 by 
    A152,
    INCSP_1: 1;
    
          then A
    c= K11 by 
    A3,
    A6,
    Th10;
    
          then (A
    \/ D) 
    c= K11 by 
    A153,
    XBOOLE_1: 8;
    
          then
    
          
    
    A158: ( 
    card (A 
    \/ D)) 
    c= (k 
    + 1) by 
    A154,
    CARD_1: 11;
    
          A
    <> D by 
    A126,
    A116,
    A148,
    A149,
    A150,
    A151;
    
          then (k
    + 1) 
    c= ( 
    card (A 
    \/ D)) by 
    A76,
    A150,
    A151,
    Th1;
    
          then (
    card (A 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A158,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A159: ( 
    card (A 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A76,
    A155,
    Th2;
    
           not (A
    /\ B) 
    c= D by 
    A126,
    A148,
    A149,
    A150,
    A151;
    
          then ex y be
    object st y 
    in (A 
    /\ B) & not y 
    in D; 
    
          then (A
    /\ B) 
    <> ((A 
    /\ B) 
    /\ D) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A160: ( 
    card ((A 
    /\ B) 
    /\ D)) 
    <> ( 
    card (A 
    /\ B)) by 
    A77,
    CARD_2: 102,
    XBOOLE_1: 17;
    
          D
    on K13 by 
    A156,
    INCSP_1: 1;
    
          then
    
          
    
    A161: D 
    c= K13 by 
    A3,
    A6,
    Th10;
    
          K13
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A162: ex R13 be 
    Subset of X st R13 
    = K13 & ( 
    card R13) 
    = (k 
    + 1) by 
    A14;
    
          D
    on K12 by 
    A157,
    INCSP_1: 1;
    
          then
    
          
    
    A163: D 
    c= K12 by 
    A3,
    A6,
    Th10;
    
          K12
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A164: ex R12 be 
    Subset of X st R12 
    = K12 & ( 
    card R12) 
    = (k 
    + 1) by 
    A14;
    
          B
    on K12 by 
    A157,
    INCSP_1: 1;
    
          then B
    c= K12 by 
    A3,
    A6,
    Th10;
    
          then (B
    \/ D) 
    c= K12 by 
    A163,
    XBOOLE_1: 8;
    
          then
    
          
    
    A165: ( 
    card (B 
    \/ D)) 
    c= (k 
    + 1) by 
    A164,
    CARD_1: 11;
    
          B
    <> D by 
    A126,
    A101,
    A148,
    A149,
    A150,
    A151;
    
          then (k
    + 1) 
    c= ( 
    card (B 
    \/ D)) by 
    A74,
    A150,
    A151,
    Th1;
    
          then (
    card (B 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A165,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A166: ( 
    card (B 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A155,
    Th2;
    
          E
    on K13 by 
    A156,
    INCSP_1: 1;
    
          then E
    c= K13 by 
    A3,
    A6,
    Th10;
    
          then (E
    \/ D) 
    c= K13 by 
    A161,
    XBOOLE_1: 8;
    
          then
    
          
    
    A167: ( 
    card (E 
    \/ D)) 
    c= (k 
    + 1) by 
    A162,
    CARD_1: 11;
    
          E
    <> D by 
    A126,
    A143,
    A148,
    A149,
    A150,
    A151;
    
          then (k
    + 1) 
    c= ( 
    card (E 
    \/ D)) by 
    A120,
    A121,
    A150,
    A151,
    Th1;
    
          then (
    card (E 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A167,
    XBOOLE_0:def 10;
    
          then
    
          
    
    A168: ( 
    card (E 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A120,
    A121,
    A155,
    Th2;
    
          
    
          
    
    A169: z1 
    in D & z2 
    in D & z4 
    in D 
    
          proof
    
            assume not z1
    in D or not z2 
    in D or not z4 
    in D; 
    
            then (A
    /\ D) 
    = (((A 
    /\ B) 
    \/  
    {z1})
    /\ D) & 
    {z1}
    misses D or (B 
    /\ D) 
    = (((A 
    /\ B) 
    \/  
    {z2})
    /\ D) & 
    {z2}
    misses D or (E 
    /\ D) 
    = (((A 
    /\ B) 
    \/  
    {z4})
    /\ D) & 
    {z4}
    misses D by 
    A89,
    A90,
    A142,
    A144,
    XBOOLE_1: 17,
    XBOOLE_1: 45,
    ZFMISC_1: 50;
    
            then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    \/ ( 
    {z1}
    /\ D)) & ( 
    {z1}
    /\ D) 
    =  
    {} or (B 
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    \/ ( 
    {z2}
    /\ D)) & ( 
    {z2}
    /\ D) 
    =  
    {} or (E 
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    \/ ( 
    {z4}
    /\ D)) & ( 
    {z4}
    /\ D) 
    =  
    {} by 
    XBOOLE_0:def 7,
    XBOOLE_1: 23;
    
            hence contradiction by
    A29,
    A74,
    A87,
    A159,
    A166,
    A168,
    A160,
    Th2;
    
          end;
    
          then
    {z1, z2}
    c= D & 
    {z4}
    c= D by 
    ZFMISC_1: 31,
    ZFMISC_1: 32;
    
          then (
    {z1, z2}
    \/  
    {z4})
    c= D by 
    XBOOLE_1: 8;
    
          then ((A
    /\ B) 
    /\ D) 
    c= D & 
    {z1, z2, z4}
    c= D by 
    ENUMSET1: 3,
    XBOOLE_1: 17;
    
          then
    
          
    
    A170: (((A 
    /\ B) 
    /\ D) 
    \/  
    {z1, z2, z4})
    c= D by 
    XBOOLE_1: 8;
    
          
    
          
    
    A171: z4 
    in (E 
    \ (A 
    /\ B)) & ((A 
    /\ B) 
    /\ D) 
    c= (A 
    /\ B) by 
    A144,
    TARSKI:def 1,
    XBOOLE_1: 17;
    
          
    
          
    
    A172: 
    {z1, z2, z4}
    misses ((A 
    /\ B) 
    /\ D) 
    
          proof
    
            assume not
    {z1, z2, z4}
    misses ((A 
    /\ B) 
    /\ D); 
    
            then (
    {z1, z2, z4}
    /\ ((A 
    /\ B) 
    /\ D)) 
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider m be
    object such that 
    
            
    
    A173: m 
    in ( 
    {z1, z2, z4}
    /\ ((A 
    /\ B) 
    /\ D)) by 
    XBOOLE_0:def 1;
    
            m
    in  
    {z1, z2, z4} by
    A173,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A174: m 
    = z1 or m 
    = z2 or m 
    = z4 by 
    ENUMSET1:def 1;
    
            m
    in ((A 
    /\ B) 
    /\ D) by 
    A173,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A89,
    A90,
    A123,
    A92,
    A171,
    A174,
    XBOOLE_0:def 5;
    
          end;
    
          reconsider r = (
    card ((A 
    /\ B) 
    /\ D)) as 
    Nat by 
    A77;
    
          
    
          
    
    A175: not z1 
    in ((A 
    /\ B) 
    /\ D) by 
    A124,
    XBOOLE_0:def 4;
    
          (A
    /\ D) 
    = (((A 
    /\ B) 
    \/  
    {z1})
    /\ D) by 
    A89,
    XBOOLE_1: 17,
    XBOOLE_1: 45;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    \/ ( 
    {z1}
    /\ D)) by 
    XBOOLE_1: 23;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    \/  
    {z1}) by
    A169,
    ZFMISC_1: 46;
    
          then
    
          
    
    A176: ( 
    card (A 
    /\ D)) 
    = (r 
    + 1) by 
    A77,
    A175,
    CARD_2: 41;
    
          (
    card  
    {z1, z2, z4})
    = 3 by 
    A57,
    A61,
    A64,
    A122,
    A91,
    A118,
    A133,
    A119,
    A121,
    A145,
    CARD_2: 58;
    
          then (
    card (((A 
    /\ B) 
    /\ D) 
    \/  
    {z1, z2, z4}))
    = ((k 
    - 2) 
    + 3) by 
    A77,
    A159,
    A176,
    A172,
    CARD_2: 40;
    
          then (k
    + 1) 
    c= k by 
    A150,
    A151,
    A170,
    CARD_1: 11;
    
          then k
    in k by 
    A10,
    ORDINAL1: 21;
    
          hence contradiction;
    
        end;
    
        S
    c= the 
    Points of ( 
    G_ (k,X)) 
    
        proof
    
          let Z be
    object;
    
          assume Z
    in S; 
    
          then ex Z1 be
    Subset of X st Z 
    = Z1 & ( 
    card Z1) 
    = k & (A 
    /\ B) 
    c= Z1 by 
    A126;
    
          hence thesis by
    A7;
    
        end;
    
        then
    
        consider S1 be
    Subset of the 
    Points of ( 
    G_ (k,X)) such that 
    
        
    
    A177: S1 
    = S; 
    
        
    
        
    
    A178: S1 is 
    STAR by 
    A70,
    A126,
    A88,
    A177;
    
        then S1 is
    maximal_clique by 
    A3,
    A4,
    Th14;
    
        then S1 is
    clique;
    
        hence thesis by
    A12,
    A146,
    A177,
    A178;
    
      end;
    
      reconsider k2 = (k
    - 2) as 
    Element of 
    NAT by 
    A3,
    NAT_1: 21;
    
      
    
      
    
    A179: ( 
    succ ( 
    Segm k2)) 
    = ( 
    Segm (k2 
    + 1)) by 
    NAT_1: 38;
    
      (ex C be
    POINT of ( 
    G_ (k,X)) st C 
    in K & C 
    on L & A 
    <> C & B 
    <> C) implies K is 
    TOP
    
      proof
    
        
    
        
    
    A180: (1 
    + 1) 
    <= (k 
    + 1) by 
    A9,
    XREAL_1: 7;
    
        
    
        
    
    A181: ( 
    card B) 
    = ((k 
    - 1) 
    + 1) by 
    A74;
    
        
    
        
    
    A182: ( 
    card A) 
    = ((k 
    - 1) 
    + 1) by 
    A76;
    
        assume ex C be
    POINT of ( 
    G_ (k,X)) st C 
    in K & C 
    on L & A 
    <> C & B 
    <> C; 
    
        then
    
        consider C be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A183: C 
    in K and 
    
        
    
    A184: C 
    on L and 
    
        
    
    A185: A 
    <> C and 
    
        
    
    A186: B 
    <> C; 
    
        
    
        
    
    A187: C 
    c= L by 
    A3,
    A6,
    A184,
    Th10;
    
        then (A
    \/ C) 
    c= L by 
    A68,
    XBOOLE_1: 8;
    
        then
    
        
    
    A188: ( 
    card (A 
    \/ C)) 
    c= (k 
    + 1) by 
    A66,
    CARD_1: 11;
    
        (B
    \/ C) 
    c= L by 
    A71,
    A187,
    XBOOLE_1: 8;
    
        then
    
        
    
    A189: ( 
    card (B 
    \/ C)) 
    c= (k 
    + 1) by 
    A66,
    CARD_1: 11;
    
        C
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A190: ex C2 be 
    Subset of X st C2 
    = C & ( 
    card C2) 
    = k by 
    A7;
    
        then (k
    + 1) 
    c= ( 
    card (B 
    \/ C)) by 
    A74,
    A186,
    Th1;
    
        then (
    card (B 
    \/ C)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A189,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A191: ( 
    card (B 
    /\ C)) 
    = ((k 
    + 1) 
    - 2) by 
    A29,
    A190,
    A181,
    Th2;
    
        (k
    + 1) 
    c= ( 
    card (A 
    \/ C)) by 
    A76,
    A185,
    A190,
    Th1;
    
        then (
    card (A 
    \/ C)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A188,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A192: ( 
    card (A 
    /\ C)) 
    = ((k 
    + 1) 
    - 2) by 
    A29,
    A190,
    A182,
    Th2;
    
        
    
        
    
    A193: ( 
    card (A 
    \/ B)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A73,
    A78,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A194: (A 
    \/ B) 
    = L by 
    A68,
    A71,
    A66,
    A67,
    CARD_2: 102,
    XBOOLE_1: 8;
    
        
    
        
    
    A195: (A 
    \/ B) 
    c= ((A 
    \/ B) 
    \/ C) by 
    XBOOLE_1: 7;
    
        ((A
    \/ B) 
    \/ C) 
    c= L by 
    A72,
    A187,
    XBOOLE_1: 8;
    
        then
    
        
    
    A196: ( 
    card ((A 
    \/ B) 
    \/ C)) 
    = (k 
    + 1) by 
    A193,
    A194,
    A195,
    XBOOLE_0:def 10;
    
        
    
        
    
    A197: ( 
    card A) 
    = ((k 
    + 1) 
    - 1) & (2 
    + 1) 
    <= (k 
    + 1) by 
    A3,
    A76,
    XREAL_1: 7;
    
        consider T be
    set such that 
    
        
    
    A198: T 
    = { D where D be 
    Subset of X : ( 
    card D) 
    = k & D 
    c= L }; 
    
        (
    card (A 
    /\ B)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A193,
    A182,
    Th2;
    
        then
    
        
    
    A199: ( 
    card ((A 
    /\ B) 
    /\ C)) 
    = ((k 
    + 1) 
    - 3) & ( 
    card ((A 
    \/ B) 
    \/ C)) 
    = (k 
    + 1) or ( 
    card ((A 
    /\ B) 
    /\ C)) 
    = ((k 
    + 1) 
    - 2) & ( 
    card ((A 
    \/ B) 
    \/ C)) 
    = ((k 
    + 1) 
    + 1) by 
    A74,
    A190,
    A192,
    A197,
    A191,
    A180,
    Th7;
    
        
    
        
    
    A200: K 
    c= T 
    
        proof
    
          let D2 be
    object;
    
          assume that
    
          
    
    A201: D2 
    in K and 
    
          
    
    A202: not D2 
    in T; 
    
          D2
    in the 
    Points of ( 
    G_ (k,X)) by 
    A201;
    
          then
    
          consider D1 be
    Subset of X such that 
    
          
    
    A203: D1 
    = D2 and 
    
          
    
    A204: ( 
    card D1) 
    = k by 
    A7;
    
          consider D be
    POINT of ( 
    G_ (k,X)) such that 
    
          
    
    A205: D 
    = D1 by 
    A201,
    A203;
    
           not D
    c= L by 
    A198,
    A202,
    A203,
    A204,
    A205;
    
          then
    
          consider x be
    object such that 
    
          
    
    A206: x 
    in D and 
    
          
    
    A207: not x 
    in L; 
    
          
    
          
    
    A208: ( 
    card  
    {x})
    = 1 by 
    CARD_1: 30;
    
          
    
          
    
    A209: D is 
    finite by 
    A204,
    A205;
    
          
    
          
    
    A210: ( 
    card D) 
    = ((k 
    - 1) 
    + 1) by 
    A204,
    A205;
    
          
    {x}
    c= D by 
    A206,
    ZFMISC_1: 31;
    
          then
    
          
    
    A211: ( 
    card (D 
    \  
    {x}))
    = (k 
    - 1) by 
    A204,
    A205,
    A209,
    A208,
    CARD_2: 44;
    
          consider L13 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A212: 
    {C, D}
    on L13 by 
    A13,
    A183,
    A201,
    A203,
    A205;
    
          D
    on L13 by 
    A212,
    INCSP_1: 1;
    
          then
    
          
    
    A213: D 
    c= L13 by 
    A3,
    A6,
    Th10;
    
          L13
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A214: ex L23 be 
    Subset of X st L23 
    = L13 & ( 
    card L23) 
    = (k 
    + 1) by 
    A14;
    
          C
    on L13 by 
    A212,
    INCSP_1: 1;
    
          then C
    c= L13 by 
    A3,
    A6,
    Th10;
    
          then (C
    \/ D) 
    c= L13 by 
    A213,
    XBOOLE_1: 8;
    
          then
    
          
    
    A215: ( 
    card (C 
    \/ D)) 
    c= (k 
    + 1) by 
    A214,
    CARD_1: 11;
    
          
    
          
    
    A216: not x 
    in C by 
    A187,
    A207;
    
          
    
          
    
    A217: (C 
    /\ D) 
    c= (D 
    \  
    {x})
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A218: z 
    in (C 
    /\ D); 
    
            then z
    <> x by 
    A216,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A219: not z 
    in  
    {x} by
    TARSKI:def 1;
    
            z
    in D by 
    A218,
    XBOOLE_0:def 4;
    
            hence thesis by
    A219,
    XBOOLE_0:def 5;
    
          end;
    
          C
    <> D by 
    A187,
    A198,
    A202,
    A203,
    A204,
    A205;
    
          then (k
    + 1) 
    c= ( 
    card (C 
    \/ D)) by 
    A190,
    A204,
    A205,
    Th1;
    
          then (
    card (C 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A215,
    XBOOLE_0:def 10;
    
          then (
    card (C 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A190,
    A210,
    Th2;
    
          then
    
          
    
    A220: (C 
    /\ D) 
    = (D 
    \  
    {x}) by
    A209,
    A211,
    A217,
    CARD_2: 102;
    
          consider L12 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A221: 
    {B, D}
    on L12 by 
    A13,
    A55,
    A62,
    A64,
    A201,
    A203,
    A205;
    
          consider L11 be
    LINE of ( 
    G_ (k,X)) such that 
    
          
    
    A222: 
    {A, D}
    on L11 by 
    A13,
    A55,
    A59,
    A61,
    A201,
    A203,
    A205;
    
          D
    on L11 by 
    A222,
    INCSP_1: 1;
    
          then
    
          
    
    A223: D 
    c= L11 by 
    A3,
    A6,
    Th10;
    
          L11
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A224: ex L21 be 
    Subset of X st L21 
    = L11 & ( 
    card L21) 
    = (k 
    + 1) by 
    A14;
    
          A
    on L11 by 
    A222,
    INCSP_1: 1;
    
          then A
    c= L11 by 
    A3,
    A6,
    Th10;
    
          then (A
    \/ D) 
    c= L11 by 
    A223,
    XBOOLE_1: 8;
    
          then
    
          
    
    A225: ( 
    card (A 
    \/ D)) 
    c= (k 
    + 1) by 
    A224,
    CARD_1: 11;
    
          
    
          
    
    A226: not x 
    in A by 
    A68,
    A207;
    
          
    
          
    
    A227: (A 
    /\ D) 
    c= (D 
    \  
    {x})
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A228: z 
    in (A 
    /\ D); 
    
            then z
    <> x by 
    A226,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A229: not z 
    in  
    {x} by
    TARSKI:def 1;
    
            z
    in D by 
    A228,
    XBOOLE_0:def 4;
    
            hence thesis by
    A229,
    XBOOLE_0:def 5;
    
          end;
    
          A
    <> D by 
    A68,
    A198,
    A202,
    A203,
    A204,
    A205;
    
          then (k
    + 1) 
    c= ( 
    card (A 
    \/ D)) by 
    A76,
    A204,
    A205,
    Th1;
    
          then
    
          
    
    A230: ( 
    card (A 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A225,
    XBOOLE_0:def 10;
    
          then (
    card (A 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A76,
    A210,
    Th2;
    
          then
    
          
    
    A231: (A 
    /\ D) 
    = (D 
    \  
    {x}) by
    A209,
    A211,
    A227,
    CARD_2: 102;
    
          D
    on L12 by 
    A221,
    INCSP_1: 1;
    
          then
    
          
    
    A232: D 
    c= L12 by 
    A3,
    A6,
    Th10;
    
          L12
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A233: ex L22 be 
    Subset of X st L22 
    = L12 & ( 
    card L22) 
    = (k 
    + 1) by 
    A14;
    
          B
    on L12 by 
    A221,
    INCSP_1: 1;
    
          then B
    c= L12 by 
    A3,
    A6,
    Th10;
    
          then (B
    \/ D) 
    c= L12 by 
    A232,
    XBOOLE_1: 8;
    
          then
    
          
    
    A234: ( 
    card (B 
    \/ D)) 
    c= (k 
    + 1) by 
    A233,
    CARD_1: 11;
    
          
    
          
    
    A235: not x 
    in B by 
    A71,
    A207;
    
          
    
          
    
    A236: (B 
    /\ D) 
    c= (D 
    \  
    {x})
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A237: z 
    in (B 
    /\ D); 
    
            then z
    <> x by 
    A235,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A238: not z 
    in  
    {x} by
    TARSKI:def 1;
    
            z
    in D by 
    A237,
    XBOOLE_0:def 4;
    
            hence thesis by
    A238,
    XBOOLE_0:def 5;
    
          end;
    
          B
    <> D by 
    A71,
    A198,
    A202,
    A203,
    A204,
    A205;
    
          then (k
    + 1) 
    c= ( 
    card (B 
    \/ D)) by 
    A74,
    A204,
    A205,
    Th1;
    
          then (
    card (B 
    \/ D)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A234,
    XBOOLE_0:def 10;
    
          then (
    card (B 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A74,
    A210,
    Th2;
    
          then (B
    /\ D) 
    = (D 
    \  
    {x}) by
    A209,
    A211,
    A236,
    CARD_2: 102;
    
          then (A
    /\ D) 
    = ((A 
    /\ D) 
    /\ (B 
    /\ D)) by 
    A231;
    
          then (A
    /\ D) 
    = ((A 
    /\ (D 
    /\ B)) 
    /\ D) by 
    XBOOLE_1: 16;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    /\ D) by 
    XBOOLE_1: 16;
    
          then (A
    /\ D) 
    = ((A 
    /\ B) 
    /\ (D 
    /\ D)) by 
    XBOOLE_1: 16;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ D) 
    /\ (C 
    /\ D)) by 
    A231,
    A220;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ (D 
    /\ C)) 
    /\ D) by 
    XBOOLE_1: 16;
    
          then (A
    /\ D) 
    = ((((A 
    /\ B) 
    /\ C) 
    /\ D) 
    /\ D) by 
    XBOOLE_1: 16;
    
          then (A
    /\ D) 
    = (((A 
    /\ B) 
    /\ C) 
    /\ (D 
    /\ D)) by 
    XBOOLE_1: 16;
    
          then (
    card (((A 
    /\ B) 
    /\ C) 
    /\ D)) 
    = (k 
    - 1) by 
    A29,
    A76,
    A210,
    A230,
    Th2;
    
          then (k
    - 1) 
    c= k2 by 
    A196,
    A199,
    CARD_1: 11,
    XBOOLE_1: 17;
    
          then (k
    - 1) 
    in (k 
    - 1) by 
    A179,
    ORDINAL1: 22;
    
          hence contradiction;
    
        end;
    
        T
    c= the 
    Points of ( 
    G_ (k,X)) 
    
        proof
    
          let e be
    object;
    
          assume e
    in T; 
    
          then ex E be
    Subset of X st e 
    = E & ( 
    card E) 
    = k & E 
    c= L by 
    A198;
    
          hence thesis by
    A7;
    
        end;
    
        then
    
        consider T1 be
    Subset of the 
    Points of ( 
    G_ (k,X)) such that 
    
        
    
    A239: T1 
    = T; 
    
        
    
        
    
    A240: T1 is 
    TOP by 
    A66,
    A198,
    A239;
    
        then T1 is
    maximal_clique by 
    A3,
    A4,
    Th14;
    
        then T1 is
    clique;
    
        hence thesis by
    A12,
    A200,
    A239,
    A240;
    
      end;
    
      hence thesis by
    A81;
    
    end;
    
    begin
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      struct
    
    
    IncProjMap over S1,S2 
    
    
    
     (# the 
    
    point-map -> 
    Function of the 
    Points of S1, the 
    Points of S2, 
    
the 
    
    line-map -> 
    Function of the 
    Lines of S1, the 
    Lines of S2 #) 
    
      
    attr strict
    
    strict;
    
    end
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let a be
    POINT of S1; 
    
      :: 
    
    COMBGRAS:def6
    
      func F
    
    . a -> 
    POINT of S2 equals (the 
    point-map of F 
    . a); 
    
      coherence ;
    
    end
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let L be
    LINE of S1; 
    
      :: 
    
    COMBGRAS:def7
    
      func F
    
    . L -> 
    LINE of S2 equals (the 
    line-map of F 
    . L); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    COMBGRAS:16
    
    
    
    
    
    Th16: for S1,S2 be 
    IncProjStr holds for F1,F2 be 
    IncProjMap over S1, S2 st (for A be 
    POINT of S1 holds (F1 
    . A) 
    = (F2 
    . A)) & (for L be 
    LINE of S1 holds (F1 
    . L) 
    = (F2 
    . L)) holds the IncProjMap of F1 
    = the IncProjMap of F2 
    
    proof
    
      let S1,S2 be
    IncProjStr;
    
      let F1,F2 be
    IncProjMap over S1, S2; 
    
      assume that
    
      
    
    A1: for A be 
    POINT of S1 holds (F1 
    . A) 
    = (F2 
    . A) and 
    
      
    
    A2: for L be 
    LINE of S1 holds (F1 
    . L) 
    = (F2 
    . L); 
    
      for a be
    object holds (a 
    in the 
    Points of S1 implies (the 
    point-map of F1 
    . a) 
    = (the 
    point-map of F2 
    . a)) 
    
      proof
    
        let a be
    object;
    
        assume a
    in the 
    Points of S1; 
    
        then
    
        consider A be
    POINT of S1 such that 
    
        
    
    A3: A 
    = a; 
    
        (F1
    . A) 
    = (F2 
    . A) by 
    A1;
    
        hence thesis by
    A3;
    
      end;
    
      then
    
      
    
    A4: the 
    point-map of F1 
    = the 
    point-map of F2 by 
    FUNCT_2: 12;
    
      for l be
    object holds (l 
    in the 
    Lines of S1 implies (the 
    line-map of F1 
    . l) 
    = (the 
    line-map of F2 
    . l)) 
    
      proof
    
        let l be
    object;
    
        assume l
    in the 
    Lines of S1; 
    
        then
    
        consider L be
    LINE of S1 such that 
    
        
    
    A5: L 
    = l; 
    
        (F1
    . L) 
    = (F2 
    . L) by 
    A2;
    
        hence thesis by
    A5;
    
      end;
    
      hence thesis by
    A4,
    FUNCT_2: 12;
    
    end;
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      :: 
    
    COMBGRAS:def8
    
      attr F is
    
    incidence_preserving means for A1 be 
    POINT of S1 holds for L1 be 
    LINE of S1 holds (A1 
    on L1 iff (F 
    . A1) 
    on (F 
    . L1)); 
    
    end
    
    theorem :: 
    
    COMBGRAS:17
    
    for S1,S2 be
    IncProjStr holds for F1,F2 be 
    IncProjMap over S1, S2 st the IncProjMap of F1 
    = the IncProjMap of F2 holds F1 is 
    incidence_preserving implies F2 is 
    incidence_preserving
    
    proof
    
      let S1,S2 be
    IncProjStr;
    
      let F1,F2 be
    IncProjMap over S1, S2; 
    
      assume that
    
      
    
    A1: the IncProjMap of F1 
    = the IncProjMap of F2 and 
    
      
    
    A2: F1 is 
    incidence_preserving;
    
      let A1 be
    POINT of S1; 
    
      let L1 be
    LINE of S1; 
    
      (F2
    . A1) 
    = (F1 
    . A1) & (F2 
    . L1) 
    = (F1 
    . L1) by 
    A1;
    
      hence thesis by
    A2;
    
    end;
    
    definition
    
      let S be
    IncProjStr;
    
      let F be
    IncProjMap over S, S; 
    
      :: 
    
    COMBGRAS:def9
    
      attr F is
    
    automorphism means the 
    line-map of F is 
    bijective & the 
    point-map of F is 
    bijective & F is 
    incidence_preserving;
    
    end
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let K be
    Subset of the 
    Points of S1; 
    
      :: 
    
    COMBGRAS:def10
    
      func F
    
    .: K -> 
    Subset of the 
    Points of S2 equals (the 
    point-map of F 
    .: K); 
    
      coherence
    
      proof
    
        (the
    point-map of F 
    .: K) 
    c= the 
    Points of S2 
    
        proof
    
          let b be
    object;
    
          assume b
    in (the 
    point-map of F 
    .: K); 
    
          then ex a be
    object st a 
    in ( 
    dom the 
    point-map of F) & a 
    in K & b 
    = (the 
    point-map of F 
    . a) by 
    FUNCT_1:def 6;
    
          hence thesis by
    FUNCT_2: 5;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let K be
    Subset of the 
    Points of S2; 
    
      :: 
    
    COMBGRAS:def11
    
      func F
    
    " K -> 
    Subset of the 
    Points of S1 equals (the 
    point-map of F 
    " K); 
    
      coherence
    
      proof
    
        (the
    point-map of F 
    " K) 
    c= the 
    Points of S1 
    
        proof
    
          let b be
    object;
    
          assume b
    in (the 
    point-map of F 
    " K); 
    
          then b
    in ( 
    dom the 
    point-map of F) by 
    FUNCT_1:def 7;
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X be
    set;
    
      let A be
    finite  
    set;
    
      :: 
    
    COMBGRAS:def12
    
      func
    
    ^^ (A,X) -> 
    Subset of ( 
    bool X) equals { B where B be 
    Subset of X : ( 
    card B) 
    = (( 
    card A) 
    + 1) & A 
    c= B }; 
    
      coherence
    
      proof
    
        set Y = { B where B be
    Subset of X : ( 
    card B) 
    = (( 
    card A) 
    + 1) & A 
    c= B }; 
    
        Y
    c= ( 
    bool X) 
    
        proof
    
          let x be
    object;
    
          assume x
    in Y; 
    
          then ex B1 be
    Subset of X st x 
    = B1 & ( 
    card B1) 
    = (( 
    card A) 
    + 1) & A 
    c= B1; 
    
          hence thesis;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let k be
    Nat;
    
      let X be non
    empty  
    set;
    
      let A be
    finite  
    set;
    
      :: 
    
    COMBGRAS:def13
    
      func
    
    ^^ (A,X,k) -> 
    Subset of the 
    Points of ( 
    G_ (k,X)) equals 
    
      :
    
    Def13: ( 
    ^^ (A,X)); 
    
      coherence
    
      proof
    
        
    
        
    
    A3: the 
    Points of ( 
    G_ (k,X)) 
    = { B where B be 
    Subset of X : ( 
    card B) 
    = k } by 
    A1,
    Def1;
    
        (
    ^^ (A,X)) 
    c= the 
    Points of ( 
    G_ (k,X)) 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    ^^ (A,X)); 
    
          then ex B1 be
    Subset of X st x 
    = B1 & ( 
    card B1) 
    = (( 
    card A) 
    + 1) & A 
    c= B1; 
    
          hence thesis by
    A2,
    A3;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMBGRAS:18
    
    
    
    
    
    Th18: for S1,S2 be 
    IncProjStr holds for F be 
    IncProjMap over S1, S2 holds for K be 
    Subset of the 
    Points of S1 holds (F 
    .: K) 
    = { B where B be 
    POINT of S2 : ex A be 
    POINT of S1 st (A 
    in K & (F 
    . A) 
    = B) } 
    
    proof
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let K be
    Subset of the 
    Points of S1; 
    
      set Image = { B where B be
    POINT of S2 : ex A be 
    POINT of S1 st (A 
    in K & (F 
    . A) 
    = B) }; 
    
      
    
      
    
    A1: (F 
    .: K) 
    c= Image 
    
      proof
    
        let b be
    object;
    
        assume b
    in (F 
    .: K); 
    
        then
    
        consider a be
    object such that 
    
        
    
    A2: a 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A3: a 
    in K and 
    
        
    
    A4: b 
    = (the 
    point-map of F 
    . a) by 
    FUNCT_1:def 6;
    
        consider A be
    POINT of S1 such that 
    
        
    
    A5: a 
    = A by 
    A2;
    
        b
    in the 
    Points of S2 by 
    A2,
    A4,
    FUNCT_2: 5;
    
        then
    
        consider B1 be
    POINT of S2 such that 
    
        
    
    A6: b 
    = B1; 
    
        (F
    . A) 
    = B1 by 
    A4,
    A5,
    A6;
    
        hence thesis by
    A3,
    A4,
    A5;
    
      end;
    
      Image
    c= (F 
    .: K) 
    
      proof
    
        let b be
    object;
    
        assume b
    in Image; 
    
        then
    
        
    
    A7: ex B be 
    POINT of S2 st B 
    = b & ex A be 
    POINT of S1 st A 
    in K & (F 
    . A) 
    = B; 
    
        the
    Points of S1 
    = ( 
    dom the 
    point-map of F) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A7,
    FUNCT_1:def 6;
    
      end;
    
      hence thesis by
    A1,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:19
    
    for S1,S2 be
    IncProjStr holds for F be 
    IncProjMap over S1, S2 holds for K be 
    Subset of the 
    Points of S2 holds (F 
    " K) 
    = { A where A be 
    POINT of S1 : ex B be 
    POINT of S2 st (B 
    in K & (F 
    . A) 
    = B) } 
    
    proof
    
      let S1,S2 be
    IncProjStr;
    
      let F be
    IncProjMap over S1, S2; 
    
      let K be
    Subset of the 
    Points of S2; 
    
      set Image = { A where A be
    POINT of S1 : ex B be 
    POINT of S2 st (B 
    in K & (F 
    . A) 
    = B) }; 
    
      
    
      
    
    A1: (F 
    " K) 
    c= Image 
    
      proof
    
        let a be
    object;
    
        assume
    
        
    
    A2: a 
    in (F 
    " K); 
    
        then
    
        consider A be
    POINT of S1 such that 
    
        
    
    A3: a 
    = A; 
    
        
    
        
    
    A4: (the 
    point-map of F 
    . a) 
    in K by 
    A2,
    FUNCT_1:def 7;
    
        then
    
        consider B1 be
    POINT of S2 such that 
    
        
    
    A5: (the 
    point-map of F 
    . a) 
    = B1; 
    
        (F
    . A) 
    = B1 by 
    A3,
    A5;
    
        hence thesis by
    A4,
    A3;
    
      end;
    
      Image
    c= (F 
    " K) 
    
      proof
    
        let a be
    object;
    
        assume a
    in Image; 
    
        then
    
        
    
    A6: ex A be 
    POINT of S1 st A 
    = a & ex B be 
    POINT of S2 st B 
    in K & (F 
    . A) 
    = B; 
    
        the
    Points of S1 
    = ( 
    dom the 
    point-map of F) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A6,
    FUNCT_1:def 7;
    
      end;
    
      hence thesis by
    A1,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:20
    
    
    
    
    
    Th20: for S be 
    IncProjStr holds for F be 
    IncProjMap over S, S holds for K be 
    Subset of the 
    Points of S holds F is 
    incidence_preserving & K is 
    clique implies (F 
    .: K) is 
    clique
    
    proof
    
      let S be
    IncProjStr;
    
      let F be
    IncProjMap over S, S; 
    
      let K be
    Subset of the 
    Points of S; 
    
      assume that
    
      
    
    A1: F is 
    incidence_preserving and 
    
      
    
    A2: K is 
    clique;
    
      let B1,B2 be
    POINT of S; 
    
      assume that
    
      
    
    A3: B1 
    in (F 
    .: K) and 
    
      
    
    A4: B2 
    in (F 
    .: K); 
    
      
    
      
    
    A5: (F 
    .: K) 
    = { B where B be 
    POINT of S : ex A be 
    POINT of S st (A 
    in K & (F 
    . A) 
    = B) } by 
    Th18;
    
      then
    
      consider B11 be
    POINT of S such that 
    
      
    
    A6: B1 
    = B11 and 
    
      
    
    A7: ex A be 
    POINT of S st A 
    in K & (F 
    . A) 
    = B11 by 
    A3;
    
      consider B12 be
    POINT of S such that 
    
      
    
    A8: B2 
    = B12 and 
    
      
    
    A9: ex A be 
    POINT of S st A 
    in K & (F 
    . A) 
    = B12 by 
    A5,
    A4;
    
      consider A12 be
    POINT of S such that 
    
      
    
    A10: A12 
    in K and 
    
      
    
    A11: (F 
    . A12) 
    = B12 by 
    A9;
    
      consider A11 be
    POINT of S such that 
    
      
    
    A12: A11 
    in K and 
    
      
    
    A13: (F 
    . A11) 
    = B11 by 
    A7;
    
      consider L1 be
    LINE of S such that 
    
      
    
    A14: 
    {A11, A12}
    on L1 by 
    A2,
    A12,
    A10;
    
      A12
    on L1 by 
    A14,
    INCSP_1: 1;
    
      then
    
      
    
    A15: (F 
    . A12) 
    on (F 
    . L1) by 
    A1;
    
      A11
    on L1 by 
    A14,
    INCSP_1: 1;
    
      then (F
    . A11) 
    on (F 
    . L1) by 
    A1;
    
      then
    {B1, B2}
    on (F 
    . L1) by 
    A6,
    A8,
    A13,
    A11,
    A15,
    INCSP_1: 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMBGRAS:21
    
    
    
    
    
    Th21: for S be 
    IncProjStr holds for F be 
    IncProjMap over S, S holds for K be 
    Subset of the 
    Points of S holds F is 
    incidence_preserving & the 
    line-map of F is 
    onto & K is 
    clique implies (F 
    " K) is 
    clique
    
    proof
    
      let S be
    IncProjStr;
    
      let F be
    IncProjMap over S, S; 
    
      let K be
    Subset of the 
    Points of S; 
    
      assume that
    
      
    
    A1: F is 
    incidence_preserving and 
    
      
    
    A2: the 
    line-map of F is 
    onto and 
    
      
    
    A3: K is 
    clique;
    
      let A1,A2 be
    POINT of S; 
    
      assume A1
    in (F 
    " K) & A2 
    in (F 
    " K); 
    
      then (F
    . A1) 
    in K & (F 
    . A2) 
    in K by 
    FUNCT_1:def 7;
    
      then
    
      consider L2 be
    LINE of S such that 
    
      
    
    A4: 
    {(F
    . A1), (F 
    . A2)} 
    on L2 by 
    A3;
    
      the
    Lines of S 
    = ( 
    rng the 
    line-map of F) by 
    A2,
    FUNCT_2:def 3;
    
      then
    
      consider l1 be
    object such that 
    
      
    
    A5: l1 
    in ( 
    dom the 
    line-map of F) and 
    
      
    
    A6: L2 
    = (the 
    line-map of F 
    . l1) by 
    FUNCT_1:def 3;
    
      consider L1 be
    LINE of S such that 
    
      
    
    A7: L1 
    = l1 by 
    A5;
    
      
    
      
    
    A8: L2 
    = (F 
    . L1) by 
    A6,
    A7;
    
      (F
    . A2) 
    on L2 by 
    A4,
    INCSP_1: 1;
    
      then
    
      
    
    A9: A2 
    on L1 by 
    A1,
    A8;
    
      (F
    . A1) 
    on L2 by 
    A4,
    INCSP_1: 1;
    
      then A1
    on L1 by 
    A1,
    A8;
    
      then
    {A1, A2}
    on L1 by 
    A9,
    INCSP_1: 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMBGRAS:22
    
    
    
    
    
    Th22: for S be 
    IncProjStr holds for F be 
    IncProjMap over S, S holds for K be 
    Subset of the 
    Points of S holds F is 
    automorphism & K is 
    maximal_clique implies (F 
    .: K) is 
    maximal_clique & (F 
    " K) is 
    maximal_clique
    
    proof
    
      let S be
    IncProjStr;
    
      let F be
    IncProjMap over S, S; 
    
      let K be
    Subset of the 
    Points of S; 
    
      assume that
    
      
    
    A1: F is 
    automorphism and 
    
      
    
    A2: K is 
    maximal_clique;
    
      
    
      
    
    A3: F is 
    incidence_preserving by 
    A1;
    
      the
    point-map of F is 
    bijective by 
    A1;
    
      then
    
      
    
    A4: the 
    Points of S 
    = ( 
    rng the 
    point-map of F) by 
    FUNCT_2:def 3;
    
      
    
      
    
    A5: the 
    Points of S 
    = ( 
    dom the 
    point-map of F) by 
    FUNCT_2: 52;
    
      
    
      
    
    A6: for U be 
    Subset of the 
    Points of S st U is 
    clique & (F 
    " K) 
    c= U holds U 
    = (F 
    " K) 
    
      proof
    
        let U be
    Subset of the 
    Points of S such that 
    
        
    
    A7: U is 
    clique and 
    
        
    
    A8: (F 
    " K) 
    c= U; 
    
        (F
    .: (F 
    " K)) 
    c= (F 
    .: U) by 
    A8,
    RELAT_1: 123;
    
        then
    
        
    
    A9: K 
    c= (F 
    .: U) by 
    A4,
    FUNCT_1: 77;
    
        
    
        
    
    A10: U 
    c= (F 
    " (F 
    .: U)) by 
    A5,
    FUNCT_1: 76;
    
        (F
    .: U) is 
    clique by 
    A3,
    A7,
    Th20;
    
        then U
    c= (F 
    " K) by 
    A2,
    A9,
    A10;
    
        hence thesis by
    A8,
    XBOOLE_0:def 10;
    
      end;
    
      
    
      
    
    A11: the 
    line-map of F is 
    bijective by 
    A1;
    
      
    
      
    
    A12: for U be 
    Subset of the 
    Points of S st U is 
    clique & (F 
    .: K) 
    c= U holds U 
    = (F 
    .: K) 
    
      proof
    
        
    
        
    
    A13: K 
    c= (F 
    " (F 
    .: K)) by 
    A5,
    FUNCT_1: 76;
    
        let U be
    Subset of the 
    Points of S such that 
    
        
    
    A14: U is 
    clique and 
    
        
    
    A15: (F 
    .: K) 
    c= U; 
    
        (F
    " (F 
    .: K)) 
    c= (F 
    " U) by 
    A15,
    RELAT_1: 143;
    
        then
    
        
    
    A16: K 
    c= (F 
    " U) by 
    A13;
    
        (F
    " U) is 
    clique by 
    A11,
    A3,
    A14,
    Th21;
    
        then (F
    .: (F 
    " U)) 
    c= (F 
    .: K) by 
    A2,
    A16;
    
        then U
    c= (F 
    .: K) by 
    A4,
    FUNCT_1: 77;
    
        hence thesis by
    A15,
    XBOOLE_0:def 10;
    
      end;
    
      
    
      
    
    A17: K is 
    clique by 
    A2;
    
      then
    
      
    
    A18: (F 
    .: K) is 
    clique by 
    A3,
    Th20;
    
      (F
    " K) is 
    clique by 
    A11,
    A17,
    A3,
    Th21;
    
      hence thesis by
    A18,
    A12,
    A6;
    
    end;
    
    theorem :: 
    
    COMBGRAS:23
    
    
    
    
    
    Th23: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 2 
    <= k & (k 
    + 2) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st F is 
    automorphism holds for K be 
    Subset of the 
    Points of ( 
    G_ (k,X)) holds K is 
    STAR implies (F 
    .: K) is 
    STAR & (F 
    " K) is 
    STAR
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 2 
    <= k and 
    
      
    
    A2: (k 
    + 2) 
    c= ( 
    card X); 
    
      let F be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) such that 
    
      
    
    A3: F is 
    automorphism;
    
      
    
      
    
    A4: (k 
    - 1) is 
    Element of 
    NAT by 
    A1,
    NAT_1: 21,
    XXREAL_0: 2;
    
      then
    
      reconsider k1 = (k
    - 1) as 
    Nat;
    
      
    
      
    
    A5: ( 
    succ ( 
    Segm k1)) 
    = ( 
    Segm (k1 
    + 1)) by 
    NAT_1: 38;
    
      (2
    - 1) 
    <= (k 
    - 1) by 
    A1,
    XREAL_1: 9;
    
      then
    
      
    
    A6: ( 
    Segm 1) 
    c= ( 
    Segm k1) by 
    NAT_1: 39;
    
      
    
      
    
    A7: 1 
    <= k by 
    A1,
    XXREAL_0: 2;
    
      then
    
      
    
    A8: ( 
    Segm 1) 
    c= ( 
    Segm k) by 
    NAT_1: 39;
    
      let K be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      assume
    
      
    
    A9: K is 
    STAR;
    
      then
    
      
    
    A10: K is 
    maximal_clique by 
    A1,
    A2,
    Th14;
    
      then
    
      
    
    A11: K is 
    clique;
    
      (k
    + 1) 
    <= (k 
    + 2) by 
    XREAL_1: 7;
    
      then (
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 2)) by 
    NAT_1: 39;
    
      then
    
      
    
    A12: (k 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A13: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    Def1;
    
      
    
      
    
    A14: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A12,
    Def1;
    
      
    
      
    
    A15: (k 
    +  
    0 ) 
    <= (k 
    + 1) by 
    XREAL_1: 7;
    
      then 1
    <= (k 
    + 1) by 
    A7,
    XXREAL_0: 2;
    
      then
    
      
    
    A16: ( 
    Segm 1) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
      
    
      
    
    A17: not (F 
    " K) is 
    TOP
    
      proof
    
        assume (F
    " K) is 
    TOP;
    
        then
    
        consider B be
    Subset of X such that 
    
        
    
    A18: ( 
    card B) 
    = (k 
    + 1) & (F 
    " K) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & A 
    c= B }; 
    
        consider X1 be
    set such that 
    
        
    
    A19: X1 
    c= B & ( 
    card X1) 
    = 1 by 
    A16,
    A18,
    CARD_FIL: 36;
    
        
    
        
    
    A20: B is 
    finite by 
    A18;
    
        then
    
        
    
    A21: ( 
    card (B 
    \ X1)) 
    = ((k 
    + 1) 
    - 1) by 
    A18,
    A19,
    CARD_2: 44;
    
        then
    
        consider X2 be
    set such that 
    
        
    
    A22: X2 
    c= (B 
    \ X1) and 
    
        
    
    A23: ( 
    card X2) 
    = 1 by 
    A8,
    CARD_FIL: 36;
    
        consider m be
    Nat such that 
    
        
    
    A24: m 
    = (k 
    - 1) by 
    A4;
    
        
    
        
    
    A25: ( 
    card (B 
    \ X2)) 
    = ((k 
    + 1) 
    - 1) by 
    A18,
    A20,
    A22,
    A23,
    CARD_2: 44,
    XBOOLE_1: 106;
    
        then (B
    \ X2) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13;
    
        then
    
        consider B2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A26: (B 
    \ X2) 
    = B2; 
    
        (
    card ((B 
    \ X1) 
    \ X2)) 
    = (k 
    - 1) by 
    A20,
    A21,
    A22,
    A23,
    CARD_2: 44;
    
        then
    
        consider X3 be
    set such that 
    
        
    
    A27: X3 
    c= ((B 
    \ X1) 
    \ X2) and 
    
        
    
    A28: ( 
    card X3) 
    = 1 by 
    A6,
    CARD_FIL: 36;
    
        
    
        
    
    A29: X3 
    c= (B 
    \ (X2 
    \/ X1)) by 
    A27,
    XBOOLE_1: 41;
    
        then
    
        
    
    A30: ( 
    card (B 
    \ X3)) 
    = ((k 
    + 1) 
    - 1) by 
    A18,
    A20,
    A28,
    CARD_2: 44,
    XBOOLE_1: 106;
    
        then (B
    \ X3) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13;
    
        then
    
        consider B3 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A31: (B 
    \ X3) 
    = B3; 
    
        B
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A18;
    
        then
    
        consider L2 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A32: B 
    = L2; 
    
        (B
    \ X1) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13,
    A21;
    
        then
    
        consider B1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A33: (B 
    \ X1) 
    = B1; 
    
        consider S be
    Subset of X such that 
    
        
    
    A34: ( 
    card S) 
    = (k 
    - 1) and 
    
        
    
    A35: K 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A } by 
    A9;
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A36: A1 
    = (F 
    . B1); 
    
        
    
        
    
    A37: X3 
    c= ((B 
    \ X2) 
    \ X1) by 
    A29,
    XBOOLE_1: 41;
    
        
    
        
    
    A38: (B 
    \ X1) 
    <> (B 
    \ X2) & (B 
    \ X2) 
    <> (B 
    \ X3) & (B 
    \ X1) 
    <> (B 
    \ X3) 
    
        proof
    
          assume (B
    \ X1) 
    = (B 
    \ X2) or (B 
    \ X2) 
    = (B 
    \ X3) or (B 
    \ X1) 
    = (B 
    \ X3); 
    
          then X2
    =  
    {} or X3 
    =  
    {} or X3 
    =  
    {} by 
    A22,
    A27,
    A37,
    XBOOLE_1: 38,
    XBOOLE_1: 106;
    
          hence contradiction by
    A23,
    A28;
    
        end;
    
        consider A3 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A39: A3 
    = (F 
    . B3); 
    
        
    
        
    
    A40: (B 
    \ X3) 
    c= B by 
    XBOOLE_1: 106;
    
        then B3
    in (F 
    " K) by 
    A18,
    A30,
    A31;
    
        then
    
        
    
    A41: A3 
    in K by 
    A39,
    FUNCT_1:def 7;
    
        then
    
        
    
    A42: ex A13 be 
    Subset of X st A3 
    = A13 & ( 
    card A13) 
    = k & S 
    c= A13 by 
    A35;
    
        
    
        
    
    A43: (B 
    \ X1) 
    c= B by 
    XBOOLE_1: 106;
    
        then B1
    in (F 
    " K) by 
    A18,
    A21,
    A33;
    
        then
    
        
    
    A44: A1 
    in K by 
    A36,
    FUNCT_1:def 7;
    
        then
    
        
    
    A45: ex A11 be 
    Subset of X st A1 
    = A11 & ( 
    card A11) 
    = k & S 
    c= A11 by 
    A35;
    
        then
    
        
    
    A46: ( 
    card A1) 
    = ((k 
    - 1) 
    + 1); 
    
        consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A47: A2 
    = (F 
    . B2); 
    
        
    
        
    
    A48: (B 
    \ X2) 
    c= B by 
    XBOOLE_1: 106;
    
        then B2
    in (F 
    " K) by 
    A18,
    A25,
    A26;
    
        then
    
        
    
    A49: A2 
    in K by 
    A47,
    FUNCT_1:def 7;
    
        then
    
        consider L3a be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A50: 
    {A1, A2}
    on L3a by 
    A11,
    A44;
    
        
    
        
    
    A51: ( 
    card A1) 
    = ((k 
    + 1) 
    - 1) by 
    A45;
    
        
    
        
    
    A52: F is 
    incidence_preserving by 
    A3;
    
        
    
        
    
    A53: ( 
    card ((A1 
    /\ A2) 
    /\ A3)) 
    c= ( 
    card (A1 
    /\ A2)) by 
    CARD_1: 11,
    XBOOLE_1: 17;
    
        consider L1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A54: L1 
    = (F 
    . L2); 
    
        B1
    on L2 by 
    A1,
    A12,
    A43,
    A33,
    A32,
    Th10;
    
        then
    
        
    
    A55: A1 
    on L1 by 
    A52,
    A36,
    A54;
    
        then
    
        
    
    A56: A1 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        L1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A57: ex l12 be 
    Subset of X st L1 
    = l12 & ( 
    card l12) 
    = (k 
    + 1) by 
    A14;
    
        B3
    on L2 by 
    A1,
    A12,
    A40,
    A31,
    A32,
    Th10;
    
        then
    
        
    
    A58: A3 
    on L1 by 
    A52,
    A39,
    A54;
    
        then
    
        
    
    A59: A3 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        then (A1
    \/ A3) 
    c= L1 by 
    A56,
    XBOOLE_1: 8;
    
        then
    
        
    
    A60: ( 
    card (A1 
    \/ A3)) 
    c= (k 
    + 1) by 
    A57,
    CARD_1: 11;
    
        
    
        
    
    A61: ex A12 be 
    Subset of X st A2 
    = A12 & ( 
    card A12) 
    = k & S 
    c= A12 by 
    A49,
    A35;
    
        then
    
        
    
    A62: ( 
    card A2) 
    = ((k 
    - 1) 
    + 1); 
    
        B2
    on L2 by 
    A1,
    A12,
    A48,
    A26,
    A32,
    Th10;
    
        then
    
        
    
    A63: A2 
    on L1 by 
    A52,
    A47,
    A54;
    
        then
    
        
    
    A64: A2 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        then (A1
    \/ A2) 
    c= L1 by 
    A56,
    XBOOLE_1: 8;
    
        then
    
        
    
    A65: ( 
    card (A1 
    \/ A2)) 
    c= (k 
    + 1) by 
    A57,
    CARD_1: 11;
    
        
    
        
    
    A66: the 
    point-map of F is 
    bijective & the 
    Points of ( 
    G_ (k,X)) 
    = ( 
    dom the 
    point-map of F) by 
    A3,
    FUNCT_2: 52;
    
        then
    
        
    
    A67: A1 
    <> A2 by 
    A38,
    A33,
    A26,
    A36,
    A47,
    FUNCT_1:def 4;
    
        then (k
    + 1) 
    c= ( 
    card (A1 
    \/ A2)) by 
    A45,
    A61,
    Th1;
    
        then (
    card (A1 
    \/ A2)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A65,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A68: ( 
    card (A1 
    /\ A2)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A61,
    A46,
    Th2;
    
        
    {A1, A2}
    on L1 by 
    A55,
    A63,
    INCSP_1: 1;
    
        then
    
        
    
    A69: L1 
    = L3a by 
    A67,
    A50,
    INCSP_1:def 10;
    
        consider L3b be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A70: 
    {A2, A3}
    on L3b by 
    A11,
    A49,
    A41;
    
        A1
    <> A3 by 
    A66,
    A38,
    A33,
    A31,
    A36,
    A39,
    FUNCT_1:def 4;
    
        then (k
    + 1) 
    c= ( 
    card (A1 
    \/ A3)) by 
    A45,
    A42,
    Th1;
    
        then (
    card (A1 
    \/ A3)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A60,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A71: ( 
    card (A1 
    /\ A3)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A42,
    A46,
    Th2;
    
        A3
    on L3b by 
    A70,
    INCSP_1: 1;
    
        then
    
        
    
    A72: A3 
    c= L3b by 
    A1,
    A12,
    Th10;
    
        A2
    on L3b by 
    A70,
    INCSP_1: 1;
    
        then
    
        
    
    A73: A2 
    c= L3b by 
    A1,
    A12,
    Th10;
    
        L3b
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A74: ex l13b be 
    Subset of X st L3b 
    = l13b & ( 
    card l13b) 
    = (k 
    + 1) by 
    A14;
    
        (
    card (A1 
    /\ A2)) 
    in ( 
    succ (k 
    - 1)) by 
    A5,
    A67,
    A45,
    A61,
    Th1;
    
        then (
    card (A1 
    /\ A2)) 
    c= m by 
    A24,
    ORDINAL1: 22;
    
        then
    
        
    
    A75: ( 
    card ((A1 
    /\ A2) 
    /\ A3)) 
    c= m by 
    A53;
    
        S
    c= (A1 
    /\ A2) by 
    A45,
    A61,
    XBOOLE_1: 19;
    
        then S
    c= ((A1 
    /\ A2) 
    /\ A3) by 
    A42,
    XBOOLE_1: 19;
    
        then m
    c= ( 
    card ((A1 
    /\ A2) 
    /\ A3)) by 
    A34,
    A24,
    CARD_1: 11;
    
        then
    
        
    
    A76: (k 
    - 1) 
    = ( 
    card ((A1 
    /\ A2) 
    /\ A3)) by 
    A24,
    A75,
    XBOOLE_0:def 10;
    
        A1
    on L3a by 
    A50,
    INCSP_1: 1;
    
        then
    
        
    
    A77: A1 
    c= L3a by 
    A1,
    A12,
    Th10;
    
        
    
        
    
    A78: (k 
    - 1) 
    <> ((k 
    + 1) 
    - 3); 
    
        (A2
    \/ A3) 
    c= L1 by 
    A64,
    A59,
    XBOOLE_1: 8;
    
        then
    
        
    
    A79: ( 
    card (A2 
    \/ A3)) 
    c= (k 
    + 1) by 
    A57,
    CARD_1: 11;
    
        
    
        
    
    A80: A2 
    <> A3 by 
    A66,
    A38,
    A26,
    A31,
    A47,
    A39,
    FUNCT_1:def 4;
    
        then (k
    + 1) 
    c= ( 
    card (A2 
    \/ A3)) by 
    A61,
    A42,
    Th1;
    
        then (
    card (A2 
    \/ A3)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A79,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A81: ( 
    card (A2 
    /\ A3)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A42,
    A62,
    Th2;
    
        (2
    + 1) 
    <= (k 
    + 1) & 2 
    <= (k 
    + 1) by 
    A1,
    A15,
    XREAL_1: 6,
    XXREAL_0: 2;
    
        then
    
        
    
    A82: ( 
    card ((A1 
    \/ A2) 
    \/ A3)) 
    = ((k 
    + 1) 
    + 1) by 
    A61,
    A42,
    A76,
    A68,
    A51,
    A81,
    A71,
    A78,
    Th7;
    
        
    
        
    
    A83: L3a 
    <> L3b 
    
        proof
    
          assume L3a
    = L3b; 
    
          then (A1
    \/ A2) 
    c= L3b by 
    A77,
    A73,
    XBOOLE_1: 8;
    
          then ((A1
    \/ A2) 
    \/ A3) 
    c= L3b by 
    A72,
    XBOOLE_1: 8;
    
          then (
    Segm (k 
    + 2)) 
    c= ( 
    Segm (k 
    + 1)) by 
    A82,
    A74,
    CARD_1: 11;
    
          then (k
    + 2) 
    <= (k 
    + 1) by 
    NAT_1: 39;
    
          hence contradiction by
    XREAL_1: 6;
    
        end;
    
        
    {A2, A3}
    on L1 by 
    A63,
    A58,
    INCSP_1: 1;
    
        hence contradiction by
    A80,
    A70,
    A83,
    A69,
    INCSP_1:def 10;
    
      end;
    
      
    
      
    
    A84: not (F 
    .: K) is 
    TOP
    
      proof
    
        
    
        
    
    A85: (k 
    - 1) 
    <> ((k 
    + 1) 
    - 3); 
    
        assume (F
    .: K) is 
    TOP;
    
        then
    
        consider B be
    Subset of X such that 
    
        
    
    A86: ( 
    card B) 
    = (k 
    + 1) & (F 
    .: K) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & A 
    c= B }; 
    
        B
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A14,
    A86;
    
        then
    
        consider L2 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A87: B 
    = L2; 
    
        the
    line-map of F is 
    bijective by 
    A3;
    
        then the
    Lines of ( 
    G_ (k,X)) 
    = ( 
    rng the 
    line-map of F) by 
    FUNCT_2:def 3;
    
        then
    
        consider l1 be
    object such that 
    
        
    
    A88: l1 
    in ( 
    dom the 
    line-map of F) and 
    
        
    
    A89: L2 
    = (the 
    line-map of F 
    . l1) by 
    FUNCT_1:def 3;
    
        consider L1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A90: l1 
    = L1 by 
    A88;
    
        
    
        
    
    A91: L2 
    = (F 
    . L1) by 
    A89,
    A90;
    
        consider X1 be
    set such that 
    
        
    
    A92: X1 
    c= B & ( 
    card X1) 
    = 1 by 
    A16,
    A86,
    CARD_FIL: 36;
    
        
    
        
    
    A93: B is 
    finite by 
    A86;
    
        then
    
        
    
    A94: ( 
    card (B 
    \ X1)) 
    = ((k 
    + 1) 
    - 1) by 
    A86,
    A92,
    CARD_2: 44;
    
        then
    
        consider X2 be
    set such that 
    
        
    
    A95: X2 
    c= (B 
    \ X1) and 
    
        
    
    A96: ( 
    card X2) 
    = 1 by 
    A8,
    CARD_FIL: 36;
    
        consider m be
    Nat such that 
    
        
    
    A97: m 
    = (k 
    - 1) by 
    A4;
    
        (
    card ((B 
    \ X1) 
    \ X2)) 
    = (k 
    - 1) by 
    A93,
    A94,
    A95,
    A96,
    CARD_2: 44;
    
        then
    
        consider X3 be
    set such that 
    
        
    
    A98: X3 
    c= ((B 
    \ X1) 
    \ X2) and 
    
        
    
    A99: ( 
    card X3) 
    = 1 by 
    A6,
    CARD_FIL: 36;
    
        
    
        
    
    A100: X3 
    c= (B 
    \ (X2 
    \/ X1)) by 
    A98,
    XBOOLE_1: 41;
    
        then
    
        
    
    A101: ( 
    card (B 
    \ X3)) 
    = ((k 
    + 1) 
    - 1) by 
    A86,
    A93,
    A99,
    CARD_2: 44,
    XBOOLE_1: 106;
    
        then (B
    \ X3) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13;
    
        then
    
        consider B3 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A102: (B 
    \ X3) 
    = B3; 
    
        L1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A103: ex l12 be 
    Subset of X st L1 
    = l12 & ( 
    card l12) 
    = (k 
    + 1) by 
    A14;
    
        (B
    \ X1) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13,
    A94;
    
        then
    
        consider B1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A104: (B 
    \ X1) 
    = B1; 
    
        
    
        
    
    A105: (B 
    \ X1) 
    c= B by 
    XBOOLE_1: 106;
    
        then
    
        
    
    A106: B1 
    on L2 by 
    A1,
    A12,
    A104,
    A87,
    Th10;
    
        consider S be
    Subset of X such that 
    
        
    
    A107: ( 
    card S) 
    = (k 
    - 1) and 
    
        
    
    A108: K 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A } by 
    A9;
    
        
    
        
    
    A109: F is 
    incidence_preserving by 
    A3;
    
        
    
        
    
    A110: (B 
    \ X3) 
    c= B by 
    XBOOLE_1: 106;
    
        then
    
        
    
    A111: B3 
    on L2 by 
    A1,
    A12,
    A102,
    A87,
    Th10;
    
        
    
        
    
    A112: the 
    point-map of F is 
    bijective by 
    A3;
    
        then
    
        
    
    A113: the 
    Points of ( 
    G_ (k,X)) 
    = ( 
    rng the 
    point-map of F) by 
    FUNCT_2:def 3;
    
        then
    
        consider a3 be
    object such that 
    
        
    
    A114: a3 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A115: B3 
    = (the 
    point-map of F 
    . a3) by 
    FUNCT_1:def 3;
    
        consider A3 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A116: a3 
    = A3 by 
    A114;
    
        consider a1 be
    object such that 
    
        
    
    A117: a1 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A118: B1 
    = (the 
    point-map of F 
    . a1) by 
    A113,
    FUNCT_1:def 3;
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A119: a1 
    = A1 by 
    A117;
    
        B3
    in (F 
    .: K) by 
    A86,
    A101,
    A110,
    A102;
    
        then ex C3 be
    object st C3 
    in ( 
    dom the 
    point-map of F) & C3 
    in K & B3 
    = (the 
    point-map of F 
    . C3) by 
    FUNCT_1:def 6;
    
        then
    
        
    
    A120: A3 
    in K by 
    A112,
    A114,
    A115,
    A116,
    FUNCT_1:def 4;
    
        then
    
        
    
    A121: ex A13 be 
    Subset of X st A3 
    = A13 & ( 
    card A13) 
    = k & S 
    c= A13 by 
    A108;
    
        B1
    in (F 
    .: K) by 
    A86,
    A94,
    A105,
    A104;
    
        then ex C1 be
    object st C1 
    in ( 
    dom the 
    point-map of F) & C1 
    in K & B1 
    = (the 
    point-map of F 
    . C1) by 
    FUNCT_1:def 6;
    
        then
    
        
    
    A122: A1 
    in K by 
    A112,
    A117,
    A118,
    A119,
    FUNCT_1:def 4;
    
        then
    
        
    
    A123: ex A11 be 
    Subset of X st A1 
    = A11 & ( 
    card A11) 
    = k & S 
    c= A11 by 
    A108;
    
        then
    
        
    
    A124: ( 
    card A1) 
    = ((k 
    - 1) 
    + 1); 
    
        
    
        
    
    A125: B1 
    = (F 
    . A1) by 
    A118,
    A119;
    
        then A1
    on L1 by 
    A109,
    A106,
    A91;
    
        then
    
        
    
    A126: A1 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        
    
        
    
    A127: B3 
    = (F 
    . A3) by 
    A115,
    A116;
    
        then A3
    on L1 by 
    A109,
    A111,
    A91;
    
        then
    
        
    
    A128: A3 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        then (A1
    \/ A3) 
    c= L1 by 
    A126,
    XBOOLE_1: 8;
    
        then
    
        
    
    A129: ( 
    card (A1 
    \/ A3)) 
    c= (k 
    + 1) by 
    A103,
    CARD_1: 11;
    
        
    
        
    
    A130: X3 
    c= ((B 
    \ X2) 
    \ X1) by 
    A100,
    XBOOLE_1: 41;
    
        
    
        
    
    A131: (B 
    \ X1) 
    <> (B 
    \ X2) & (B 
    \ X2) 
    <> (B 
    \ X3) & (B 
    \ X1) 
    <> (B 
    \ X3) 
    
        proof
    
          assume (B
    \ X1) 
    = (B 
    \ X2) or (B 
    \ X2) 
    = (B 
    \ X3) or (B 
    \ X1) 
    = (B 
    \ X3); 
    
          then X2
    =  
    {} or X3 
    =  
    {} or X3 
    =  
    {} by 
    A95,
    A98,
    A130,
    XBOOLE_1: 38,
    XBOOLE_1: 106;
    
          hence contradiction by
    A96,
    A99;
    
        end;
    
        then (k
    + 1) 
    c= ( 
    card (A1 
    \/ A3)) by 
    A104,
    A102,
    A118,
    A115,
    A119,
    A116,
    A123,
    A121,
    Th1;
    
        then (
    card (A1 
    \/ A3)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A129,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A132: ( 
    card (A1 
    /\ A3)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A121,
    A124,
    Th2;
    
        
    
        
    
    A133: ( 
    card (B 
    \ X2)) 
    = ((k 
    + 1) 
    - 1) by 
    A86,
    A93,
    A95,
    A96,
    CARD_2: 44,
    XBOOLE_1: 106;
    
        then (B
    \ X2) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A13;
    
        then
    
        consider B2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A134: (B 
    \ X2) 
    = B2; 
    
        
    
        
    
    A135: (B 
    \ X2) 
    c= B by 
    XBOOLE_1: 106;
    
        then
    
        
    
    A136: B2 
    on L2 by 
    A1,
    A12,
    A134,
    A87,
    Th10;
    
        consider a2 be
    object such that 
    
        
    
    A137: a2 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A138: B2 
    = (the 
    point-map of F 
    . a2) by 
    A113,
    FUNCT_1:def 3;
    
        consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A139: a2 
    = A2 by 
    A137;
    
        B2
    in (F 
    .: K) by 
    A86,
    A133,
    A135,
    A134;
    
        then ex C2 be
    object st C2 
    in ( 
    dom the 
    point-map of F) & C2 
    in K & B2 
    = (the 
    point-map of F 
    . C2) by 
    FUNCT_1:def 6;
    
        then
    
        
    
    A140: A2 
    in K by 
    A112,
    A137,
    A138,
    A139,
    FUNCT_1:def 4;
    
        then
    
        
    
    A141: ex A12 be 
    Subset of X st A2 
    = A12 & ( 
    card A12) 
    = k & S 
    c= A12 by 
    A108;
    
        then
    
        
    
    A142: ( 
    card A2) 
    = ((k 
    - 1) 
    + 1); 
    
        
    
        
    
    A143: B2 
    = (F 
    . A2) by 
    A138,
    A139;
    
        then A2
    on L1 by 
    A109,
    A136,
    A91;
    
        then
    
        
    
    A144: A2 
    c= L1 by 
    A1,
    A12,
    Th10;
    
        then (A1
    \/ A2) 
    c= L1 by 
    A126,
    XBOOLE_1: 8;
    
        then
    
        
    
    A145: ( 
    card (A1 
    \/ A2)) 
    c= (k 
    + 1) by 
    A103,
    CARD_1: 11;
    
        (k
    + 1) 
    c= ( 
    card (A1 
    \/ A2)) by 
    A131,
    A104,
    A134,
    A118,
    A138,
    A119,
    A139,
    A123,
    A141,
    Th1;
    
        then (
    card (A1 
    \/ A2)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A145,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A146: ( 
    card (A1 
    /\ A2)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A141,
    A124,
    Th2;
    
        
    
        
    
    A147: A2 
    on L1 by 
    A109,
    A136,
    A143,
    A91;
    
        (A2
    \/ A3) 
    c= L1 by 
    A144,
    A128,
    XBOOLE_1: 8;
    
        then
    
        
    
    A148: ( 
    card (A2 
    \/ A3)) 
    c= (k 
    + 1) by 
    A103,
    CARD_1: 11;
    
        (k
    + 1) 
    c= ( 
    card (A2 
    \/ A3)) by 
    A131,
    A134,
    A102,
    A138,
    A115,
    A139,
    A116,
    A141,
    A121,
    Th1;
    
        then (
    card (A2 
    \/ A3)) 
    = ((k 
    - 1) 
    + (2 
    * 1)) by 
    A148,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A149: ( 
    card (A2 
    /\ A3)) 
    = ((k 
    + 1) 
    - 2) by 
    A4,
    A121,
    A142,
    Th2;
    
        
    
        
    
    A150: ( 
    card A1) 
    = ((k 
    + 1) 
    - 1) by 
    A123;
    
        consider L3a be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A151: 
    {A1, A2}
    on L3a by 
    A11,
    A122,
    A140;
    
        (
    card (A1 
    /\ A2)) 
    in k by 
    A131,
    A104,
    A134,
    A118,
    A138,
    A119,
    A139,
    A123,
    A141,
    Th1;
    
        then
    
        
    
    A152: ( 
    card (A1 
    /\ A2)) 
    c= m by 
    A5,
    A97,
    ORDINAL1: 22;
    
        (
    card ((A1 
    /\ A2) 
    /\ A3)) 
    c= ( 
    card (A1 
    /\ A2)) by 
    CARD_1: 11,
    XBOOLE_1: 17;
    
        then
    
        
    
    A153: ( 
    card ((A1 
    /\ A2) 
    /\ A3)) 
    c= m by 
    A152;
    
        S
    c= (A1 
    /\ A2) by 
    A123,
    A141,
    XBOOLE_1: 19;
    
        then S
    c= ((A1 
    /\ A2) 
    /\ A3) by 
    A121,
    XBOOLE_1: 19;
    
        then m
    c= ( 
    card ((A1 
    /\ A2) 
    /\ A3)) by 
    A107,
    A97,
    CARD_1: 11;
    
        then
    
        
    
    A154: (k 
    - 1) 
    = ( 
    card ((A1 
    /\ A2) 
    /\ A3)) by 
    A97,
    A153,
    XBOOLE_0:def 10;
    
        A1
    on L3a by 
    A151,
    INCSP_1: 1;
    
        then
    
        
    
    A155: A1 
    c= L3a by 
    A1,
    A12,
    Th10;
    
        consider L3b be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A156: 
    {A2, A3}
    on L3b by 
    A11,
    A140,
    A120;
    
        A3
    on L3b by 
    A156,
    INCSP_1: 1;
    
        then
    
        
    
    A157: A3 
    c= L3b by 
    A1,
    A12,
    Th10;
    
        A2
    on L3b by 
    A156,
    INCSP_1: 1;
    
        then
    
        
    
    A158: A2 
    c= L3b by 
    A1,
    A12,
    Th10;
    
        L3b
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A159: ex l13b be 
    Subset of X st L3b 
    = l13b & ( 
    card l13b) 
    = (k 
    + 1) by 
    A14;
    
        (2
    + 1) 
    <= (k 
    + 1) & 2 
    <= (k 
    + 1) by 
    A1,
    A15,
    XREAL_1: 6,
    XXREAL_0: 2;
    
        then
    
        
    
    A160: ( 
    card ((A1 
    \/ A2) 
    \/ A3)) 
    = ((k 
    + 1) 
    + 1) by 
    A141,
    A121,
    A154,
    A146,
    A150,
    A149,
    A132,
    A85,
    Th7;
    
        
    
        
    
    A161: L3a 
    <> L3b 
    
        proof
    
          assume L3a
    = L3b; 
    
          then (A1
    \/ A2) 
    c= L3b by 
    A155,
    A158,
    XBOOLE_1: 8;
    
          then ((A1
    \/ A2) 
    \/ A3) 
    c= L3b by 
    A157,
    XBOOLE_1: 8;
    
          then (
    Segm (k 
    + 2)) 
    c= ( 
    Segm (k 
    + 1)) by 
    A160,
    A159,
    CARD_1: 11;
    
          then (k
    + 2) 
    <= (k 
    + 1) by 
    NAT_1: 39;
    
          hence contradiction by
    XREAL_1: 6;
    
        end;
    
        A1
    on L1 by 
    A109,
    A106,
    A125,
    A91;
    
        then
    {A1, A2}
    on L1 by 
    A147,
    INCSP_1: 1;
    
        then
    
        
    
    A162: L1 
    = L3a by 
    A131,
    A104,
    A134,
    A118,
    A138,
    A119,
    A139,
    A151,
    INCSP_1:def 10;
    
        A3
    on L1 by 
    A109,
    A111,
    A127,
    A91;
    
        then
    {A2, A3}
    on L1 by 
    A147,
    INCSP_1: 1;
    
        hence contradiction by
    A131,
    A134,
    A102,
    A138,
    A115,
    A139,
    A116,
    A156,
    A161,
    A162,
    INCSP_1:def 10;
    
      end;
    
      (F
    .: K) is 
    maximal_clique & (F 
    " K) is 
    maximal_clique by 
    A3,
    A10,
    Th22;
    
      hence thesis by
    A1,
    A2,
    A84,
    A17,
    Th15;
    
    end;
    
    definition
    
      let k be
    Nat;
    
      let X be non
    empty  
    set;
    
      let s be
    Permutation of X; 
    
      :: 
    
    COMBGRAS:def14
    
      func
    
    incprojmap (k,s) -> 
    strict  
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) means 
    
      :
    
    Def14: (for A be 
    POINT of ( 
    G_ (k,X)) holds (it 
    . A) 
    = (s 
    .: A)) & for L be 
    LINE of ( 
    G_ (k,X)) holds (it 
    . L) 
    = (s 
    .: L); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    set) = (s
    .: $1); 
    
        consider P be
    Function such that 
    
        
    
    A2: ( 
    dom P) 
    = the 
    Points of ( 
    G_ (k,X)) & for x st x 
    in the 
    Points of ( 
    G_ (k,X)) holds (P 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 5;
    
        
    
        
    
    A3: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    Def1;
    
        (
    rng P) 
    c= the 
    Points of ( 
    G_ (k,X)) 
    
        proof
    
          let b be
    object;
    
          reconsider bb = b as
    set by 
    TARSKI: 1;
    
          assume b
    in ( 
    rng P); 
    
          then
    
          consider a be
    object such that 
    
          
    
    A4: a 
    in the 
    Points of ( 
    G_ (k,X)) and 
    
          
    
    A5: b 
    = (P 
    . a) by 
    A2,
    FUNCT_1:def 3;
    
          consider A be
    Subset of X such that 
    
          
    
    A6: A 
    = a and 
    
          
    
    A7: ( 
    card A) 
    = k by 
    A3,
    A4;
    
          
    
          
    
    A8: b 
    = (s 
    .: A) by 
    A2,
    A4,
    A5,
    A6;
    
          
    
          
    
    A9: bb 
    c= X 
    
          proof
    
            let y be
    object;
    
            assume y
    in bb; 
    
            then ex x be
    object st x 
    in ( 
    dom s) & x 
    in A & y 
    = (s 
    . x) by 
    A8,
    FUNCT_1:def 6;
    
            then y
    in ( 
    rng s) by 
    FUNCT_1: 3;
    
            hence thesis by
    FUNCT_2:def 3;
    
          end;
    
          (
    dom s) 
    = X by 
    FUNCT_2:def 1;
    
          then (
    card bb) 
    = k by 
    A7,
    A8,
    Th4;
    
          hence thesis by
    A3,
    A9;
    
        end;
    
        then
    
        reconsider P as
    Function of the 
    Points of ( 
    G_ (k,X)), the 
    Points of ( 
    G_ (k,X)) by 
    A2,
    FUNCT_2: 2;
    
        
    
        
    
    A10: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    Def1;
    
        consider L be
    Function such that 
    
        
    
    A11: ( 
    dom L) 
    = the 
    Lines of ( 
    G_ (k,X)) & for x st x 
    in the 
    Lines of ( 
    G_ (k,X)) holds (L 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 5;
    
        (
    rng L) 
    c= the 
    Lines of ( 
    G_ (k,X)) 
    
        proof
    
          let b be
    object;
    
          reconsider bb = b as
    set by 
    TARSKI: 1;
    
          assume b
    in ( 
    rng L); 
    
          then
    
          consider a be
    object such that 
    
          
    
    A12: a 
    in the 
    Lines of ( 
    G_ (k,X)) and 
    
          
    
    A13: b 
    = (L 
    . a) by 
    A11,
    FUNCT_1:def 3;
    
          consider A be
    Subset of X such that 
    
          
    
    A14: A 
    = a and 
    
          
    
    A15: ( 
    card A) 
    = (k 
    + 1) by 
    A10,
    A12;
    
          
    
          
    
    A16: b 
    = (s 
    .: A) by 
    A11,
    A12,
    A13,
    A14;
    
          
    
          
    
    A17: bb 
    c= X 
    
          proof
    
            let y be
    object;
    
            assume y
    in bb; 
    
            then ex x be
    object st x 
    in ( 
    dom s) & x 
    in A & y 
    = (s 
    . x) by 
    A16,
    FUNCT_1:def 6;
    
            then y
    in ( 
    rng s) by 
    FUNCT_1: 3;
    
            hence thesis by
    FUNCT_2:def 3;
    
          end;
    
          (
    dom s) 
    = X by 
    FUNCT_2:def 1;
    
          then (
    card bb) 
    = (k 
    + 1) by 
    A15,
    A16,
    Th4;
    
          hence thesis by
    A10,
    A17;
    
        end;
    
        then
    
        reconsider L as
    Function of the 
    Lines of ( 
    G_ (k,X)), the 
    Lines of ( 
    G_ (k,X)) by 
    A11,
    FUNCT_2: 2;
    
        take
    IncProjMap (# P, L #); 
    
        thus thesis by
    A2,
    A11;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    strict  
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)); 
    
        assume that
    
        
    
    A18: for A be 
    POINT of ( 
    G_ (k,X)) holds (f1 
    . A) 
    = (s 
    .: A) and 
    
        
    
    A19: for L be 
    LINE of ( 
    G_ (k,X)) holds (f1 
    . L) 
    = (s 
    .: L) and 
    
        
    
    A20: for A be 
    POINT of ( 
    G_ (k,X)) holds (f2 
    . A) 
    = (s 
    .: A) and 
    
        
    
    A21: for L be 
    LINE of ( 
    G_ (k,X)) holds (f2 
    . L) 
    = (s 
    .: L); 
    
        
    
        
    
    A22: for L be 
    LINE of ( 
    G_ (k,X)) holds (f1 
    . L) 
    = (f2 
    . L) 
    
        proof
    
          let L be
    LINE of ( 
    G_ (k,X)); 
    
          (f1
    . L) 
    = (s 
    .: L) by 
    A19;
    
          hence thesis by
    A21;
    
        end;
    
        for A be
    POINT of ( 
    G_ (k,X)) holds (f1 
    . A) 
    = (f2 
    . A) 
    
        proof
    
          let A be
    POINT of ( 
    G_ (k,X)); 
    
          (f1
    . A) 
    = (s 
    .: A) by 
    A18;
    
          hence thesis by
    A20;
    
        end;
    
        hence thesis by
    A22,
    Th16;
    
      end;
    
    end
    
    theorem :: 
    
    COMBGRAS:24
    
    
    
    
    
    Th24: for k be 
    Nat holds for X be non 
    empty  
    set st k 
    = 1 & (k 
    + 1) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st F is 
    automorphism holds ex s be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)) 
    
    proof
    
      deffunc
    
    CH(
    object) =
    {$1};
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: k 
    = 1 & (k 
    + 1) 
    c= ( 
    card X); 
    
      
    
      
    
    A2: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = 1 } by 
    A1,
    Def1;
    
      consider c be
    Function such that 
    
      
    
    A3: ( 
    dom c) 
    = X and 
    
      
    
    A4: for x be 
    object st x 
    in X holds (c 
    . x) 
    =  
    CH(x) from
    FUNCT_1:sch 3;
    
      
    
      
    
    A5: ( 
    rng c) 
    c= the 
    Points of ( 
    G_ (k,X)) 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng c); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A6: x 
    in ( 
    dom c) & y 
    = (c 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A7: ( 
    card  
    {x})
    = 1 by 
    CARD_1: 30;
    
        
    {x}
    c= X & y 
    =  
    {x} by
    A3,
    A4,
    A6,
    ZFMISC_1: 31;
    
        hence thesis by
    A2,
    A7;
    
      end;
    
      let F be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) such that 
    
      
    
    A8: F is 
    automorphism;
    
      
    
      
    
    A9: the 
    point-map of F is 
    bijective by 
    A8;
    
      reconsider c as
    Function of X, the 
    Points of ( 
    G_ (k,X)) by 
    A3,
    A5,
    FUNCT_2: 2;
    
      deffunc
    
    W(
    Element of X) = ( 
    union (F 
    . (c 
    . $1))); 
    
      consider f be
    Function such that 
    
      
    
    A10: ( 
    dom f) 
    = X and 
    
      
    
    A11: for x be 
    Element of X holds (f 
    . x) 
    =  
    W(x) from
    FUNCT_1:sch 4;
    
      (
    rng f) 
    c= X 
    
      proof
    
        let b be
    object;
    
        assume b
    in ( 
    rng f); 
    
        then
    
        consider a be
    object such that 
    
        
    
    A12: a 
    in X and 
    
        
    
    A13: b 
    = (f 
    . a) by 
    A10,
    FUNCT_1:def 3;
    
        reconsider a as
    Element of X by 
    A12;
    
        
    
        
    
    A14: b 
    = ( 
    union (F 
    . (c 
    . a))) by 
    A11,
    A13;
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A15: A 
    = (F 
    . (c 
    . a)); 
    
        A
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A16: ex A1 be 
    Subset of X st A1 
    = A & ( 
    card A1) 
    = 1 by 
    A2;
    
        then
    
        consider x be
    object such that 
    
        
    
    A17: A 
    =  
    {x} by
    CARD_2: 42;
    
        x
    in X by 
    A16,
    A17,
    ZFMISC_1: 31;
    
        hence thesis by
    A14,
    A15,
    A17,
    ZFMISC_1: 25;
    
      end;
    
      then
    
      reconsider f as
    Function of X, X by 
    A10,
    FUNCT_2: 2;
    
      
    
      
    
    A18: F is 
    incidence_preserving by 
    A8;
    
      
    
      
    
    A19: ( 
    dom the 
    point-map of F) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      
    
      
    
    A20: f is 
    one-to-one
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A21: x1 
    in ( 
    dom f) & x2 
    in ( 
    dom f) and 
    
        
    
    A22: (f 
    . x1) 
    = (f 
    . x2); 
    
        reconsider x1, x2 as
    Element of X by 
    A21;
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A23: A1 
    = (F 
    . (c 
    . x1)); 
    
        A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then ex A11 be
    Subset of X st A11 
    = A1 & ( 
    card A11) 
    = 1 by 
    A2;
    
        then
    
        consider y1 be
    object such that 
    
        
    
    A24: A1 
    =  
    {y1} by
    CARD_2: 42;
    
        
    
        
    
    A25: (c 
    . x1) 
    =  
    {x1} & (c
    . x2) 
    =  
    {x2} by
    A4;
    
        consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A26: A2 
    = (F 
    . (c 
    . x2)); 
    
        A2
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then ex A12 be
    Subset of X st A12 
    = A2 & ( 
    card A12) 
    = 1 by 
    A2;
    
        then
    
        consider y2 be
    object such that 
    
        
    
    A27: A2 
    =  
    {y2} by
    CARD_2: 42;
    
        (f
    . x2) 
    = ( 
    union (F 
    . (c 
    . x2))) by 
    A11;
    
        then
    
        
    
    A28: (f 
    . x2) 
    = y2 by 
    A26,
    A27,
    ZFMISC_1: 25;
    
        (f
    . x1) 
    = ( 
    union (F 
    . (c 
    . x1))) by 
    A11;
    
        then (f
    . x1) 
    = y1 by 
    A23,
    A24,
    ZFMISC_1: 25;
    
        then (c
    . x1) 
    = (c 
    . x2) by 
    A9,
    A19,
    A22,
    A23,
    A26,
    A24,
    A27,
    A28,
    FUNCT_1:def 4;
    
        hence thesis by
    A25,
    ZFMISC_1: 3;
    
      end;
    
      
    
      
    
    A29: ( 
    rng the 
    point-map of F) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    A9,
    FUNCT_2:def 3;
    
      for y be
    object st y 
    in X holds ex x be 
    object st x 
    in X & y 
    = (f 
    . x) 
    
      proof
    
        let y be
    object;
    
        assume y
    in X; 
    
        then
    
        
    
    A30: 
    {y}
    c= X by 
    ZFMISC_1: 31;
    
        (
    card  
    {y})
    = 1 by 
    CARD_1: 30;
    
        then
    {y}
    in ( 
    rng the 
    point-map of F) by 
    A2,
    A29,
    A30;
    
        then
    
        consider a be
    object such that 
    
        
    
    A31: a 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A32: 
    {y}
    = (the 
    point-map of F 
    . a) by 
    FUNCT_1:def 3;
    
        a
    in the 
    Points of ( 
    G_ (k,X)) by 
    A31;
    
        then
    
        
    
    A33: ex A1 be 
    Subset of X st A1 
    = a & ( 
    card A1) 
    = 1 by 
    A2;
    
        then
    
        consider x be
    object such that 
    
        
    
    A34: a 
    =  
    {x} by
    CARD_2: 42;
    
        reconsider x as
    Element of X by 
    A33,
    A34,
    ZFMISC_1: 31;
    
        
    {y}
    = (F 
    . (c 
    . x)) by 
    A4,
    A32,
    A34;
    
        then y
    = ( 
    union (F 
    . (c 
    . x))) by 
    ZFMISC_1: 25;
    
        then y
    = (f 
    . x) by 
    A11;
    
        hence thesis;
    
      end;
    
      then (
    rng f) 
    = X by 
    FUNCT_2: 10;
    
      then f is
    onto by 
    FUNCT_2:def 3;
    
      then
    
      reconsider f as
    Permutation of X by 
    A20;
    
      
    
      
    
    A35: ( 
    dom the 
    line-map of F) 
    = the 
    Lines of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      
    
      
    
    A36: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (1 
    + 1) } by 
    A1,
    Def1;
    
      
    
      
    
    A37: for x be 
    object st x 
    in ( 
    dom the 
    line-map of F) holds (the 
    line-map of F 
    . x) 
    = (the 
    line-map of ( 
    incprojmap (k,f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A38: x 
    in ( 
    dom the 
    line-map of F); 
    
        then
    
        consider A be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A39: x 
    = A; 
    
        consider A11 be
    Subset of X such that 
    
        
    
    A40: x 
    = A11 and 
    
        
    
    A41: ( 
    card A11) 
    = 2 by 
    A36,
    A35,
    A38;
    
        consider x1,x2 be
    object such that 
    
        
    
    A42: x1 
    <> x2 and 
    
        
    
    A43: x 
    =  
    {x1, x2} by
    A40,
    A41,
    CARD_2: 60;
    
        reconsider x1, x2 as
    Element of X by 
    A40,
    A43,
    ZFMISC_1: 32;
    
        (c
    . x1) 
    =  
    {x1} by
    A4;
    
        then
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A44: A1 
    =  
    {x1};
    
        (c
    . x2) 
    =  
    {x2} by
    A4;
    
        then
    
        consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A45: A2 
    =  
    {x2};
    
        A1
    <> A2 by 
    A42,
    A44,
    A45,
    ZFMISC_1: 18;
    
        then
    
        
    
    A46: (F 
    . A1) 
    <> (F 
    . A2) by 
    A9,
    A19,
    FUNCT_1:def 4;
    
        (F
    . A2) 
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A47: ex B2 be 
    Subset of X st B2 
    = (F 
    . A2) & ( 
    card B2) 
    = 1 by 
    A2;
    
        then
    
        consider y2 be
    object such that 
    
        
    
    A48: (F 
    . A2) 
    =  
    {y2} by
    CARD_2: 42;
    
        A1
    c= A by 
    A39,
    A43,
    A44,
    ZFMISC_1: 36;
    
        then A1
    on A by 
    A1,
    Th10;
    
        then (F
    . A1) 
    on (F 
    . A) by 
    A18;
    
        then
    
        
    
    A49: (F 
    . A1) 
    c= (F 
    . A) by 
    A1,
    Th10;
    
        
    
        
    
    A50: (( 
    incprojmap (k,f)) 
    . A) 
    = (f 
    .: A) & (f 
    .: (A1 
    \/ A2)) 
    = ((f 
    .: A1) 
    \/ (f 
    .: A2)) by 
    A1,
    Def14,
    RELAT_1: 120;
    
        
    
        
    
    A51: (A1 
    \/ A2) 
    = A by 
    A39,
    A43,
    A44,
    A45,
    ENUMSET1: 1;
    
        (F
    . A1) 
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A52: ex B1 be 
    Subset of X st B1 
    = (F 
    . A1) & ( 
    card B1) 
    = 1 by 
    A2;
    
        then
    
        
    
    A53: ex y1 be 
    object st (F 
    . A1) 
    =  
    {y1} by
    CARD_2: 42;
    
        A2
    c= A by 
    A39,
    A43,
    A45,
    ZFMISC_1: 36;
    
        then A2
    on A by 
    A1,
    Th10;
    
        then (F
    . A2) 
    on (F 
    . A) by 
    A18;
    
        then
    
        
    
    A54: (F 
    . A2) 
    c= (F 
    . A) by 
    A1,
    Th10;
    
        (F
    . (c 
    . x2)) 
    = (F 
    . A2) by 
    A4,
    A45;
    
        then
    
        
    
    A55: (f 
    . x2) 
    = ( 
    union (F 
    . A2)) by 
    A11;
    
        (
    Im (f,x2)) 
    =  
    {(f
    . x2)} by 
    A10,
    FUNCT_1: 59;
    
        then
    
        
    
    A56: (f 
    .: A2) 
    = (F 
    . A2) by 
    A45,
    A55,
    A48,
    ZFMISC_1: 25;
    
        
    
        
    
    A57: (F 
    . A1) is 
    finite by 
    A52;
    
         not y2
    in (F 
    . A1) by 
    A46,
    A52,
    A47,
    A57,
    A48,
    CARD_2: 102,
    ZFMISC_1: 31;
    
        then
    
        
    
    A58: ( 
    card ((F 
    . A1) 
    \/ (F 
    . A2))) 
    = (1 
    + 1) by 
    A52,
    A53,
    A48,
    CARD_2: 41;
    
        (F
    . (c 
    . x1)) 
    = (F 
    . A1) by 
    A4,
    A44;
    
        then
    
        
    
    A59: (f 
    . x1) 
    = ( 
    union (F 
    . A1)) by 
    A11;
    
        (
    Im (f,x1)) 
    =  
    {(f
    . x1)} by 
    A10,
    FUNCT_1: 59;
    
        then
    
        
    
    A60: (f 
    .: A1) 
    = (F 
    . A1) by 
    A44,
    A59,
    A53,
    ZFMISC_1: 25;
    
        (F
    . A) 
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A61: ex B3 be 
    Subset of X st B3 
    = (F 
    . A) & ( 
    card B3) 
    = 2 by 
    A36;
    
        then (F
    . A) is 
    finite;
    
        hence thesis by
    A39,
    A50,
    A51,
    A49,
    A54,
    A61,
    A58,
    A60,
    A56,
    CARD_2: 102,
    XBOOLE_1: 8;
    
      end;
    
      
    
      
    
    A62: for x be 
    object st x 
    in ( 
    dom the 
    point-map of F) holds (the 
    point-map of F 
    . x) 
    = (the 
    point-map of ( 
    incprojmap (k,f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A63: x 
    in ( 
    dom the 
    point-map of F); 
    
        then
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A64: x 
    = A; 
    
        
    
        
    
    A65: ex A1 be 
    Subset of X st x 
    = A1 & ( 
    card A1) 
    = 1 by 
    A2,
    A19,
    A63;
    
        then
    
        consider x1 be
    object such that 
    
        
    
    A66: x 
    =  
    {x1} by
    CARD_2: 42;
    
        reconsider x1 as
    Element of X by 
    A65,
    A66,
    ZFMISC_1: 31;
    
        (F
    . (c 
    . x1)) 
    = (F 
    . A) by 
    A4,
    A64,
    A66;
    
        then
    
        
    
    A67: (f 
    . x1) 
    = ( 
    union (F 
    . A)) by 
    A11;
    
        (F
    . A) 
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        consider B be
    Subset of X such that 
    
        
    
    A68: B 
    = (F 
    . A) and 
    
        
    
    A69: ( 
    card B) 
    = 1 by 
    A2;
    
        
    
        
    
    A70: ex x2 be 
    object st B 
    =  
    {x2} by
    A69,
    CARD_2: 42;
    
        ((
    incprojmap (k,f)) 
    . A) 
    = (f 
    .: A) & ( 
    Im (f,x1)) 
    =  
    {(f
    . x1)} by 
    A1,
    A10,
    Def14,
    FUNCT_1: 59;
    
        hence thesis by
    A64,
    A66,
    A67,
    A68,
    A70,
    ZFMISC_1: 25;
    
      end;
    
      (
    dom the 
    point-map of ( 
    incprojmap (k,f))) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      then
    
      
    
    A71: the 
    point-map of F 
    = the 
    point-map of ( 
    incprojmap (k,f)) by 
    A19,
    A62;
    
      (
    dom the 
    line-map of ( 
    incprojmap (k,f))) 
    = the 
    Lines of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      then the IncProjMap of F
    = ( 
    incprojmap (k,f)) by 
    A35,
    A71,
    A37,
    FUNCT_1:def 11;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMBGRAS:25
    
    
    
    
    
    Th25: for k be 
    Nat holds for X be non 
    empty  
    set st 1 
    < k & ( 
    card X) 
    = (k 
    + 1) holds for F be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st F is 
    automorphism holds ex s be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)) 
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 1 
    < k and 
    
      
    
    A2: (k 
    + 1) 
    = ( 
    card X); 
    
      deffunc
    
    CH(
    object) = (X
    \  
    {$1});
    
      consider c be
    Function such that 
    
      
    
    A3: ( 
    dom c) 
    = X and 
    
      
    
    A4: for x be 
    object st x 
    in X holds (c 
    . x) 
    =  
    CH(x) from
    FUNCT_1:sch 3;
    
      
    
      
    
    A5: X is 
    finite by 
    A2;
    
      
    
      
    
    A6: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    A2,
    Def1;
    
      
    
      
    
    A7: ( 
    rng c) 
    c= the 
    Points of ( 
    G_ (k,X)) 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng c); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A8: x 
    in ( 
    dom c) and 
    
        
    
    A9: y 
    = (c 
    . x) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A10: ( 
    card  
    {x})
    = 1 by 
    CARD_1: 30;
    
        
    {x}
    c= X by 
    A3,
    A8,
    ZFMISC_1: 31;
    
        then
    
        
    
    A11: ( 
    card (X 
    \  
    {x}))
    = ((k 
    + 1) 
    - 1) by 
    A2,
    A5,
    A10,
    CARD_2: 44;
    
        y
    = (X 
    \  
    {x}) by
    A3,
    A4,
    A8,
    A9;
    
        hence thesis by
    A6,
    A11;
    
      end;
    
      let F be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)); 
    
      assume F is
    automorphism;
    
      then
    
      
    
    A12: the 
    point-map of F is 
    bijective;
    
      reconsider c as
    Function of X, the 
    Points of ( 
    G_ (k,X)) by 
    A3,
    A7,
    FUNCT_2: 2;
    
      deffunc
    
    W(
    Element of X) = ( 
    union (X 
    \ (F 
    . (c 
    . $1)))); 
    
      consider f be
    Function such that 
    
      
    
    A13: ( 
    dom f) 
    = X and 
    
      
    
    A14: for x be 
    Element of X holds (f 
    . x) 
    =  
    W(x) from
    FUNCT_1:sch 4;
    
      (
    rng f) 
    c= X 
    
      proof
    
        let b be
    object;
    
        assume b
    in ( 
    rng f); 
    
        then
    
        consider a be
    object such that 
    
        
    
    A15: a 
    in X and 
    
        
    
    A16: b 
    = (f 
    . a) by 
    A13,
    FUNCT_1:def 3;
    
        reconsider a as
    Element of X by 
    A15;
    
        
    
        
    
    A17: b 
    = ( 
    union (X 
    \ (F 
    . (c 
    . a)))) by 
    A14,
    A16;
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A18: A 
    = (F 
    . (c 
    . a)); 
    
        A
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then ex A1 be
    Subset of X st A1 
    = A & ( 
    card A1) 
    = k by 
    A6;
    
        then (
    card (X 
    \ A)) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    CARD_2: 44;
    
        then
    
        consider x be
    object such that 
    
        
    
    A19: (X 
    \ A) 
    =  
    {x} by
    CARD_2: 42;
    
        x
    in X by 
    A19,
    ZFMISC_1: 31;
    
        hence thesis by
    A17,
    A18,
    A19,
    ZFMISC_1: 25;
    
      end;
    
      then
    
      reconsider f as
    Function of X, X by 
    A13,
    FUNCT_2: 2;
    
      
    
      
    
    A20: ( 
    dom the 
    point-map of F) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      
    
      
    
    A21: f is 
    one-to-one
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A22: x1 
    in ( 
    dom f) & x2 
    in ( 
    dom f) and 
    
        
    
    A23: (f 
    . x1) 
    = (f 
    . x2); 
    
        reconsider x1, x2 as
    Element of X by 
    A22;
    
        consider A1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A24: A1 
    = (F 
    . (c 
    . x1)); 
    
        consider A2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A25: A2 
    = (F 
    . (c 
    . x2)); 
    
        A2
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A26: ex A12 be 
    Subset of X st A12 
    = A2 & ( 
    card A12) 
    = k by 
    A6;
    
        then (
    card (X 
    \ A2)) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    CARD_2: 44;
    
        then
    
        consider y2 be
    object such that 
    
        
    
    A27: (X 
    \ A2) 
    =  
    {y2} by
    CARD_2: 42;
    
        A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A28: ex A11 be 
    Subset of X st A11 
    = A1 & ( 
    card A11) 
    = k by 
    A6;
    
        then (
    card (X 
    \ A1)) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    CARD_2: 44;
    
        then
    
        consider y1 be
    object such that 
    
        
    
    A29: (X 
    \ A1) 
    =  
    {y1} by
    CARD_2: 42;
    
        (f
    . x2) 
    = ( 
    union (X 
    \ (F 
    . (c 
    . x2)))) by 
    A14;
    
        then
    
        
    
    A30: (f 
    . x2) 
    = y2 by 
    A25,
    A27,
    ZFMISC_1: 25;
    
        (f
    . x1) 
    = ( 
    union (X 
    \ (F 
    . (c 
    . x1)))) by 
    A14;
    
        then (f
    . x1) 
    = y1 by 
    A24,
    A29,
    ZFMISC_1: 25;
    
        then A1
    = A2 by 
    A23,
    A28,
    A26,
    A29,
    A27,
    A30,
    Th5;
    
        then
    
        
    
    A31: (c 
    . x1) 
    = (c 
    . x2) by 
    A12,
    A20,
    A24,
    A25,
    FUNCT_1:def 4;
    
        (c
    . x1) 
    = (X 
    \  
    {x1}) & (c
    . x2) 
    = (X 
    \  
    {x2}) by
    A4;
    
        then
    {x1}
    =  
    {x2} by
    A31,
    Th5;
    
        hence thesis by
    ZFMISC_1: 3;
    
      end;
    
      
    
      
    
    A32: ( 
    rng the 
    point-map of F) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    A12,
    FUNCT_2:def 3;
    
      for y be
    object st y 
    in X holds ex x be 
    object st x 
    in X & y 
    = (f 
    . x) 
    
      proof
    
        let y be
    object;
    
        assume y
    in X; 
    
        then
    
        
    
    A33: 
    {y}
    c= X by 
    ZFMISC_1: 31;
    
        (
    card  
    {y})
    = 1 by 
    CARD_1: 30;
    
        then (
    card (X 
    \  
    {y}))
    = ((k 
    + 1) 
    - 1) by 
    A2,
    A5,
    A33,
    CARD_2: 44;
    
        then (X
    \  
    {y})
    in ( 
    rng the 
    point-map of F) by 
    A6,
    A32;
    
        then
    
        consider a be
    object such that 
    
        
    
    A34: a 
    in ( 
    dom the 
    point-map of F) and 
    
        
    
    A35: (X 
    \  
    {y})
    = (the 
    point-map of F 
    . a) by 
    FUNCT_1:def 3;
    
        reconsider a as
    set by 
    TARSKI: 1;
    
        a
    in the 
    Points of ( 
    G_ (k,X)) by 
    A34;
    
        then
    
        
    
    A36: ex A1 be 
    Subset of X st A1 
    = a & ( 
    card A1) 
    = k by 
    A6;
    
        then (
    card (X 
    \ a)) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    CARD_2: 44;
    
        then
    
        consider x be
    object such that 
    
        
    
    A37: (X 
    \ a) 
    =  
    {x} by
    CARD_2: 42;
    
        reconsider x as
    Element of X by 
    A37,
    ZFMISC_1: 31;
    
        (a
    /\ X) 
    = (X 
    \  
    {x}) by
    A37,
    XBOOLE_1: 48;
    
        then
    
        
    
    A38: (X 
    \  
    {x})
    = a by 
    A36,
    XBOOLE_1: 28;
    
        (c
    . x) 
    = (X 
    \  
    {x}) by
    A4;
    
        then (X
    /\  
    {y})
    = (X 
    \ (F 
    . (c 
    . x))) by 
    A35,
    A38,
    XBOOLE_1: 48;
    
        then
    {y}
    = (X 
    \ (F 
    . (c 
    . x))) by 
    A33,
    XBOOLE_1: 28;
    
        then y
    = ( 
    union (X 
    \ (F 
    . (c 
    . x)))) by 
    ZFMISC_1: 25;
    
        then y
    = (f 
    . x) by 
    A14;
    
        hence thesis;
    
      end;
    
      then
    
      
    
    A39: ( 
    rng f) 
    = X by 
    FUNCT_2: 10;
    
      then f is
    onto by 
    FUNCT_2:def 3;
    
      then
    
      reconsider f as
    Permutation of X by 
    A21;
    
      
    
      
    
    A40: ( 
    dom the 
    line-map of F) 
    = the 
    Lines of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      
    
      
    
    A41: for x be 
    object st x 
    in ( 
    dom the 
    point-map of F) holds (the 
    point-map of F 
    . x) 
    = (the 
    point-map of ( 
    incprojmap (k,f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A42: x 
    in ( 
    dom the 
    point-map of F); 
    
        then
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A43: x 
    = A; 
    
        (F
    . A) 
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A44: ex B be 
    Subset of X st B 
    = (F 
    . A) & ( 
    card B) 
    = k by 
    A6;
    
        then (
    card (X 
    \ (F 
    . A))) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    CARD_2: 44;
    
        then
    
        
    
    A45: ex x2 be 
    object st (X 
    \ (F 
    . A)) 
    =  
    {x2} by
    CARD_2: 42;
    
        (X
    \ (X 
    \ (F 
    . A))) 
    = ((F 
    . A) 
    /\ X) & ((F 
    . A) 
    /\ X) 
    = (F 
    . A) by 
    A44,
    XBOOLE_1: 28,
    XBOOLE_1: 48;
    
        then
    
        
    
    A46: (F 
    . A) 
    = (X 
    \  
    {(
    union (X 
    \ (F 
    . A)))}) by 
    A45,
    ZFMISC_1: 25;
    
        
    
        
    
    A47: (f 
    .: X) 
    = X by 
    A39,
    RELSET_1: 22;
    
        
    
        
    
    A48: ex A1 be 
    Subset of X st x 
    = A1 & ( 
    card A1) 
    = k by 
    A6,
    A20,
    A42;
    
        then
    
        
    
    A49: (X 
    \ (X 
    \ A)) 
    = (A 
    /\ X) & (A 
    /\ X) 
    = A by 
    A43,
    XBOOLE_1: 28,
    XBOOLE_1: 48;
    
        (
    card (X 
    \ A)) 
    = ((k 
    + 1) 
    - k) by 
    A2,
    A5,
    A43,
    A48,
    CARD_2: 44;
    
        then
    
        consider x1 be
    object such that 
    
        
    
    A50: (X 
    \ A) 
    =  
    {x1} by
    CARD_2: 42;
    
        reconsider x1 as
    Element of X by 
    A50,
    ZFMISC_1: 31;
    
        
    
        
    
    A51: (c 
    . x1) 
    = (X 
    \  
    {x1}) & (
    Im (f,x1)) 
    =  
    {(f
    . x1)} by 
    A4,
    A13,
    FUNCT_1: 59;
    
        ((
    incprojmap (k,f)) 
    . A) 
    = (f 
    .: A) by 
    A1,
    A2,
    Def14;
    
        then ((
    incprojmap (k,f)) 
    . A) 
    = ((f 
    .: X) 
    \ (f 
    .:  
    {x1})) by
    A50,
    A49,
    FUNCT_1: 64;
    
        hence thesis by
    A14,
    A43,
    A50,
    A46,
    A49,
    A51,
    A47;
    
      end;
    
      (
    dom the 
    point-map of ( 
    incprojmap (k,f))) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      then
    
      
    
    A52: the 
    point-map of F 
    = the 
    point-map of ( 
    incprojmap (k,f)) by 
    A20,
    A41;
    
      
    
      
    
    A53: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A2,
    Def1;
    
      
    
      
    
    A54: for x be 
    object st x 
    in ( 
    dom the 
    line-map of F) holds (the 
    line-map of F 
    . x) 
    = (the 
    line-map of ( 
    incprojmap (k,f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A55: x 
    in ( 
    dom the 
    line-map of F); 
    
        then
    
        consider A be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A56: x 
    = A; 
    
        (F
    . A) 
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then ex y be
    Subset of X st y 
    = (F 
    . A) & ( 
    card y) 
    = (k 
    + 1) by 
    A53;
    
        then
    
        
    
    A57: (F 
    . A) 
    = X by 
    A2,
    A5,
    CARD_2: 102;
    
        ex A11 be
    Subset of X st x 
    = A11 & ( 
    card A11) 
    = (k 
    + 1) by 
    A53,
    A40,
    A55;
    
        then
    
        
    
    A58: x 
    = X by 
    A2,
    A5,
    CARD_2: 102;
    
        reconsider xx = x as
    set by 
    TARSKI: 1;
    
        ((
    incprojmap (k,f)) 
    . A) 
    = (f 
    .: xx) by 
    A1,
    A2,
    A56,
    Def14;
    
        hence thesis by
    A39,
    A56,
    A58,
    A57,
    RELSET_1: 22;
    
      end;
    
      (
    dom the 
    line-map of ( 
    incprojmap (k,f))) 
    = the 
    Lines of ( 
    G_ (k,X)) by 
    FUNCT_2: 52;
    
      then the IncProjMap of F
    = ( 
    incprojmap (k,f)) by 
    A40,
    A52,
    A54,
    FUNCT_1:def 11;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMBGRAS:26
    
    
    
    
    
    Th26: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for T be 
    Subset of the 
    Points of ( 
    G_ (k,X)) holds for S be 
    Subset of X holds ( 
    card S) 
    = (k 
    - 1) & T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A } implies S 
    = ( 
    meet T) 
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 1) 
    c= ( 
    card X); 
    
      (k
    - 1) is 
    Element of 
    NAT by 
    A1,
    NAT_1: 20;
    
      then
    
      reconsider k1 = (k
    - 1) as 
    Nat;
    
      let T be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      let S be
    Subset of X; 
    
      assume that
    
      
    
    A3: ( 
    card S) 
    = (k 
    - 1) and 
    
      
    
    A4: T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A }; 
    
      
    
      
    
    A5: S is 
    finite by 
    A1,
    A3,
    NAT_1: 20;
    
      
    
      
    
    A6: T 
    <>  
    {}  
    
      proof
    
        (X
    \ S) 
    <>  
    {}  
    
        proof
    
          assume (X
    \ S) 
    =  
    {} ; 
    
          then X
    c= S by 
    XBOOLE_1: 37;
    
          then (
    card X) 
    = k1 by 
    A3,
    XBOOLE_0:def 10;
    
          then (
    Segm (k 
    + 1)) 
    c= ( 
    Segm k1) by 
    A2;
    
          then (1
    + k) 
    <= (( 
    - 1) 
    + k) by 
    NAT_1: 39;
    
          hence contradiction by
    XREAL_1: 6;
    
        end;
    
        then
    
        consider x be
    object such that 
    
        
    
    A7: x 
    in (X 
    \ S) by 
    XBOOLE_0:def 1;
    
        
    {x}
    c= X by 
    A7,
    ZFMISC_1: 31;
    
        then
    
        
    
    A8: S 
    c= (S 
    \/  
    {x}) & (S
    \/  
    {x})
    c= X by 
    XBOOLE_1: 7,
    XBOOLE_1: 8;
    
         not x
    in S by 
    A7,
    XBOOLE_0:def 5;
    
        then (
    card (S 
    \/  
    {x}))
    = ((k 
    - 1) 
    + 1) by 
    A3,
    A5,
    CARD_2: 41;
    
        then (S
    \/  
    {x})
    in T by 
    A4,
    A8;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A9: ( 
    meet T) 
    c= S 
    
      proof
    
        let y be
    object such that 
    
        
    
    A10: y 
    in ( 
    meet T); 
    
        y
    in S 
    
        proof
    
          consider a1 be
    object such that 
    
          
    
    A11: a1 
    in T by 
    A6,
    XBOOLE_0:def 1;
    
          reconsider a1 as
    set by 
    TARSKI: 1;
    
          
    
          
    
    A12: ex A1 be 
    Subset of X st a1 
    = A1 & ( 
    card A1) 
    = k & S 
    c= A1 by 
    A4,
    A11;
    
          then
    
          
    
    A13: a1 is 
    finite;
    
          (X
    \ a1) 
    <>  
    {}  
    
          proof
    
            assume (X
    \ a1) 
    =  
    {} ; 
    
            then X
    c= a1 by 
    XBOOLE_1: 37;
    
            then (
    card X) 
    = k by 
    A12,
    XBOOLE_0:def 10;
    
            then (
    Segm (1 
    + k)) 
    c= ( 
    Segm ( 
    0  
    + k)) by 
    A2;
    
            then (1
    + k) 
    <= ( 
    0  
    + k) by 
    NAT_1: 39;
    
            hence contradiction by
    XREAL_1: 6;
    
          end;
    
          then
    
          consider y2 be
    object such that 
    
          
    
    A14: y2 
    in (X 
    \ a1) by 
    XBOOLE_0:def 1;
    
          assume
    
          
    
    A15: not y 
    in S; 
    
          
    
          
    
    A16: S 
    misses  
    {y}
    
          proof
    
            assume not S
    misses  
    {y};
    
            then (S
    /\  
    {y})
    <>  
    {} by 
    XBOOLE_0:def 7;
    
            then
    
            consider z be
    object such that 
    
            
    
    A17: z 
    in (S 
    /\  
    {y}) by
    XBOOLE_0:def 1;
    
            z
    in  
    {y} & z
    in S by 
    A17,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A15,
    TARSKI:def 1;
    
          end;
    
          then S
    c= (a1 
    \  
    {y}) by
    A12,
    XBOOLE_1: 86;
    
          then
    
          
    
    A18: S 
    c= ((a1 
    \  
    {y})
    \/  
    {y2}) by
    XBOOLE_1: 10;
    
          
    
          
    
    A19: y 
    in a1 by 
    A10,
    A11,
    SETFAM_1:def 1;
    
          then y2
    <> y by 
    A14,
    XBOOLE_0:def 5;
    
          then
    
          
    
    A20: not y 
    in  
    {y2} by
    TARSKI:def 1;
    
          (
    card  
    {y})
    = 1 & 
    {y}
    c= a1 by 
    A19,
    CARD_1: 30,
    ZFMISC_1: 31;
    
          then
    
          
    
    A21: ( 
    card (a1 
    \  
    {y}))
    = (k 
    - 1) by 
    A12,
    A13,
    CARD_2: 44;
    
          then not y
    in (a1 
    \  
    {y}) by
    A3,
    A15,
    A12,
    A13,
    A16,
    CARD_2: 102,
    XBOOLE_1: 86;
    
          then
    
          
    
    A22: not y 
    in ((a1 
    \  
    {y})
    \/  
    {y2}) by
    A20,
    XBOOLE_0:def 3;
    
          
    
          
    
    A23: 
    {y2}
    c= X by 
    A14,
    ZFMISC_1: 31;
    
          (a1
    \  
    {y})
    c= X by 
    A12,
    XBOOLE_1: 1;
    
          then
    
          
    
    A24: ((a1 
    \  
    {y})
    \/  
    {y2})
    c= X by 
    A23,
    XBOOLE_1: 8;
    
           not y2
    in (a1 
    \  
    {y}) by
    A14,
    XBOOLE_0:def 5;
    
          then (
    card ((a1 
    \  
    {y})
    \/  
    {y2}))
    = ((k 
    - 1) 
    + 1) by 
    A13,
    A21,
    CARD_2: 41;
    
          then ((a1
    \  
    {y})
    \/  
    {y2})
    in T by 
    A4,
    A24,
    A18;
    
          hence contradiction by
    A10,
    A22,
    SETFAM_1:def 1;
    
        end;
    
        hence thesis;
    
      end;
    
      for a1 be
    set st a1 
    in T holds S 
    c= a1 
    
      proof
    
        let a1 be
    set;
    
        assume a1
    in T; 
    
        then ex A1 be
    Subset of X st a1 
    = A1 & ( 
    card A1) 
    = k & S 
    c= A1 by 
    A4;
    
        hence thesis;
    
      end;
    
      then S
    c= ( 
    meet T) by 
    A6,
    SETFAM_1: 5;
    
      hence thesis by
    A9,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    COMBGRAS:27
    
    for k be
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for T be 
    Subset of the 
    Points of ( 
    G_ (k,X)) st T is 
    STAR holds for S be 
    Subset of X holds S 
    = ( 
    meet T) implies ( 
    card S) 
    = (k 
    - 1) & T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S 
    c= A } 
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X); 
    
      let T be
    Subset of the 
    Points of ( 
    G_ (k,X)); 
    
      assume T is
    STAR;
    
      then
    
      consider S1 be
    Subset of X such that 
    
      
    
    A2: ( 
    card S1) 
    = (k 
    - 1) & T 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S1 
    c= A }; 
    
      let S be
    Subset of X; 
    
      assume
    
      
    
    A3: S 
    = ( 
    meet T); 
    
      S1
    = ( 
    meet T) by 
    A1,
    A2,
    Th26;
    
      hence thesis by
    A3,
    A2;
    
    end;
    
    theorem :: 
    
    COMBGRAS:28
    
    
    
    
    
    Th28: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for T1,T2 be 
    Subset of the 
    Points of ( 
    G_ (k,X)) st T1 is 
    STAR & T2 is 
    STAR & ( 
    meet T1) 
    = ( 
    meet T2) holds T1 
    = T2 
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X); 
    
      let T1,T2 be
    Subset of the 
    Points of ( 
    G_ (k,X)) such that 
    
      
    
    A2: T1 is 
    STAR and 
    
      
    
    A3: T2 is 
    STAR and 
    
      
    
    A4: ( 
    meet T1) 
    = ( 
    meet T2); 
    
      consider S2 be
    Subset of X such that 
    
      
    
    A5: ( 
    card S2) 
    = (k 
    - 1) & T2 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S2 
    c= A } by 
    A3;
    
      
    
      
    
    A6: S2 
    = ( 
    meet T2) by 
    A1,
    A5,
    Th26;
    
      consider S1 be
    Subset of X such that 
    
      
    
    A7: ( 
    card S1) 
    = (k 
    - 1) & T1 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k & S1 
    c= A } by 
    A2;
    
      S1
    = ( 
    meet T1) by 
    A1,
    A7,
    Th26;
    
      hence thesis by
    A4,
    A7,
    A5,
    A6;
    
    end;
    
    theorem :: 
    
    COMBGRAS:29
    
    
    
    
    
    Th29: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st (k 
    + 1) 
    c= ( 
    card X) holds for A be 
    finite  
    Subset of X st ( 
    card A) 
    = (k 
    - 1) holds ( 
    ^^ (A,X,k)) is 
    STAR
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: (k 
    + 1) 
    c= ( 
    card X); 
    
      let A be
    finite  
    Subset of X such that 
    
      
    
    A2: ( 
    card A) 
    = (k 
    - 1); 
    
      (
    ^^ (A,X,k)) 
    = ( 
    ^^ (A,X)) by 
    A1,
    A2,
    Def13;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMBGRAS:30
    
    
    
    
    
    Th30: for k be 
    Element of 
    NAT holds for X be non 
    empty  
    set st (k 
    + 1) 
    c= ( 
    card X) holds for A be 
    finite  
    Subset of X st ( 
    card A) 
    = (k 
    - 1) holds ( 
    meet ( 
    ^^ (A,X,k))) 
    = A 
    
    proof
    
      let k be
    Element of 
    NAT ; 
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: (k 
    + 1) 
    c= ( 
    card X); 
    
      let A be
    finite  
    Subset of X such that 
    
      
    
    A2: ( 
    card A) 
    = (k 
    - 1); 
    
      (
    ^^ (A,X,k)) 
    = ( 
    ^^ (A,X)) by 
    A1,
    A2,
    Def13;
    
      hence thesis by
    A1,
    A2,
    Th26;
    
    end;
    
    theorem :: 
    
    COMBGRAS:31
    
    
    
    
    
    Th31: for k be 
    Nat holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 3) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ ((k 
    + 1),X)), ( 
    G_ ((k 
    + 1),X)) st F is 
    automorphism holds ex H be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st H is 
    automorphism & the 
    line-map of H 
    = the 
    point-map of F & for A be 
    POINT of ( 
    G_ (k,X)), B be 
    finite  
    set st B 
    = A holds (H 
    . A) 
    = ( 
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))) 
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 3) 
    c= ( 
    card X); 
    
      let F be
    IncProjMap over ( 
    G_ ((k 
    + 1),X)), ( 
    G_ ((k 
    + 1),X)) such that 
    
      
    
    A3: F is 
    automorphism;
    
      (
    0  
    + 2) 
    < (k 
    + (1 
    + 1)) by 
    A1,
    XREAL_1: 6;
    
      then (
    0  
    + 2) 
    < ((k 
    + 1) 
    + 1); 
    
      then
    
      
    
    A4: 2 
    <= (k 
    + 1) by 
    NAT_1: 13;
    
      defpred
    
    P[
    object, 
    object] means ex B be
    finite  
    set st B 
    = $1 & $2 
    = ( 
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))); 
    
      ((k
    + 1) 
    +  
    0 ) 
    <= ((k 
    + 1) 
    + 2) by 
    XREAL_1: 6;
    
      then (
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 3)) by 
    NAT_1: 39;
    
      then
    
      
    
    A5: (k 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A6: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    Def1;
    
      
    
      
    
    A7: for e be 
    object st e 
    in the 
    Points of ( 
    G_ (k,X)) holds ex u be 
    object st 
    P[e, u]
    
      proof
    
        let e be
    object;
    
        assume e
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then ex B be
    Subset of X st B 
    = e & ( 
    card B) 
    = k by 
    A6;
    
        then
    
        reconsider B = e as
    finite  
    Subset of X; 
    
        take (
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))); 
    
        thus thesis;
    
      end;
    
      consider Hp be
    Function such that 
    
      
    
    A8: ( 
    dom Hp) 
    = the 
    Points of ( 
    G_ (k,X)) and 
    
      
    
    A9: for e be 
    object st e 
    in the 
    Points of ( 
    G_ (k,X)) holds 
    P[e, (Hp
    . e)] from 
    CLASSES1:sch 1(
    A7);
    
      
    
      
    
    A10: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    A5,
    Def1;
    
      ((k
    + 1) 
    + 1) 
    <= ((k 
    + 1) 
    + 2) by 
    XREAL_1: 6;
    
      then (
    Segm (k 
    + 2)) 
    c= ( 
    Segm (k 
    + 3)) by 
    NAT_1: 39;
    
      then
    
      
    
    A11: ((k 
    + 1) 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A12: the 
    Points of ( 
    G_ ((k 
    + 1),X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = (k 
    + 1) } by 
    Def1;
    
      then
    
      reconsider Hl = the
    point-map of F as 
    Function of the 
    Lines of ( 
    G_ (k,X)), the 
    Lines of ( 
    G_ (k,X)) by 
    A10;
    
      
    
      
    
    A13: ((k 
    + 1) 
    + 2) 
    c= ( 
    card X) by 
    A2;
    
      (
    rng Hp) 
    c= the 
    Points of ( 
    G_ (k,X)) 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng Hp); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A14: x 
    in ( 
    dom Hp) and 
    
        
    
    A15: y 
    = (Hp 
    . x) by 
    FUNCT_1:def 3;
    
        consider B be
    finite  
    set such that 
    
        
    
    A16: B 
    = x and 
    
        
    
    A17: y 
    = ( 
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))) by 
    A8,
    A9,
    A14,
    A15;
    
        
    
        
    
    A18: ex x1 be 
    Subset of X st x 
    = x1 & ( 
    card x1) 
    = k by 
    A6,
    A8,
    A14;
    
        (
    ^^ (B,X,(k 
    + 1))) is 
    STAR by 
    A11,
    A16,
    A18,
    Th29;
    
        then (F
    .: ( 
    ^^ (B,X,(k 
    + 1)))) is 
    STAR by 
    A3,
    A4,
    A13,
    Th23;
    
        then
    
        consider S be
    Subset of X such that 
    
        
    
    A19: ( 
    card S) 
    = ((k 
    + 1) 
    - 1) and 
    
        
    
    A20: (F 
    .: ( 
    ^^ (B,X,(k 
    + 1)))) 
    = { C where C be 
    Subset of X : ( 
    card C) 
    = (k 
    + 1) & S 
    c= C }; 
    
        S
    = ( 
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))) by 
    A11,
    A19,
    A20,
    Th26;
    
        hence thesis by
    A6,
    A17,
    A19;
    
      end;
    
      then
    
      reconsider Hp as
    Function of the 
    Points of ( 
    G_ (k,X)), the 
    Points of ( 
    G_ (k,X)) by 
    A8,
    FUNCT_2: 2;
    
      
    
      
    
    A21: the 
    point-map of F is 
    bijective by 
    A3;
    
      
    
      
    
    A22: Hp is 
    one-to-one
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A23: x1 
    in ( 
    dom Hp) and 
    
        
    
    A24: x2 
    in ( 
    dom Hp) and 
    
        
    
    A25: (Hp 
    . x1) 
    = (Hp 
    . x2); 
    
        consider X2 be
    finite  
    set such that 
    
        
    
    A26: X2 
    = x2 and 
    
        
    
    A27: (Hp 
    . x2) 
    = ( 
    meet (F 
    .: ( 
    ^^ (X2,X,(k 
    + 1))))) by 
    A9,
    A24;
    
        
    
        
    
    A28: ex x12 be 
    Subset of X st x2 
    = x12 & ( 
    card x12) 
    = k by 
    A6,
    A8,
    A24;
    
        then
    
        
    
    A29: ( 
    card X2) 
    = ((k 
    + 1) 
    - 1) by 
    A26;
    
        then
    
        
    
    A30: ( 
    meet ( 
    ^^ (X2,X,(k 
    + 1)))) 
    = X2 by 
    A11,
    A26,
    A28,
    Th30;
    
        (
    ^^ (X2,X,(k 
    + 1))) is 
    STAR by 
    A11,
    A26,
    A28,
    Th29;
    
        then
    
        
    
    A31: (F 
    .: ( 
    ^^ (X2,X,(k 
    + 1)))) is 
    STAR by 
    A3,
    A4,
    A13,
    Th23;
    
        consider X1 be
    finite  
    set such that 
    
        
    
    A32: X1 
    = x1 and 
    
        
    
    A33: (Hp 
    . x1) 
    = ( 
    meet (F 
    .: ( 
    ^^ (X1,X,(k 
    + 1))))) by 
    A9,
    A23;
    
        
    
        
    
    A34: ex x11 be 
    Subset of X st x1 
    = x11 & ( 
    card x11) 
    = k by 
    A6,
    A8,
    A23;
    
        (
    ^^ (X1,X,(k 
    + 1))) is 
    STAR by 
    A11,
    A32,
    A34,
    Th29;
    
        then
    
        
    
    A35: (F 
    .: ( 
    ^^ (X1,X,(k 
    + 1)))) is 
    STAR by 
    A3,
    A4,
    A13,
    Th23;
    
        (
    meet ( 
    ^^ (X1,X,(k 
    + 1)))) 
    = X1 by 
    A11,
    A32,
    A34,
    A29,
    Th30;
    
        hence thesis by
    A11,
    A21,
    A25,
    A32,
    A33,
    A26,
    A27,
    A35,
    A31,
    A30,
    Th6,
    Th28;
    
      end;
    
      take H =
    IncProjMap (# Hp, Hl #); 
    
      
    
      
    
    A36: ( 
    dom the 
    point-map of F) 
    = the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    FUNCT_2: 52;
    
      
    
      
    
    A37: H is 
    incidence_preserving
    
      proof
    
        let A1 be
    POINT of ( 
    G_ (k,X)); 
    
        let L1 be
    LINE of ( 
    G_ (k,X)); 
    
        
    
        
    
    A38: 
    P[A1, (Hp
    . A1)] by 
    A9;
    
        L1
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A39: ex l1 be 
    Subset of X st l1 
    = L1 & ( 
    card l1) 
    = (k 
    + 1) by 
    A10;
    
        A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        consider a1 be
    Subset of X such that 
    
        
    
    A40: a1 
    = A1 and 
    
        
    
    A41: ( 
    card a1) 
    = k by 
    A6;
    
        consider L11 be
    POINT of ( 
    G_ ((k 
    + 1),X)) such that 
    
        
    
    A42: L11 
    = L1 by 
    A10,
    A12;
    
        reconsider a1 as
    finite  
    Subset of X by 
    A41;
    
        
    
        
    
    A43: ( 
    card a1) 
    = ((k 
    + 1) 
    - 1) by 
    A41;
    
        
    
        
    
    A44: (H 
    . A1) 
    on (H 
    . L1) implies A1 
    on L1 
    
        proof
    
          (F
    " (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1))))) 
    c= ( 
    ^^ (a1,X,(k 
    + 1))) & ( 
    ^^ (a1,X,(k 
    + 1))) 
    c= (F 
    " (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1))))) by 
    A21,
    A36,
    FUNCT_1: 76,
    FUNCT_1: 82;
    
          then
    
          
    
    A45: (F 
    " (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1))))) 
    = ( 
    ^^ (a1,X,(k 
    + 1))) by 
    XBOOLE_0:def 10;
    
          (H
    . L1) 
    in the 
    Lines of ( 
    G_ (k,X)); 
    
          then
    
          
    
    A46: ex hl1 be 
    Subset of X st hl1 
    = (H 
    . L1) & ( 
    card hl1) 
    = (k 
    + 1) by 
    A10;
    
          (
    ^^ (a1,X,(k 
    + 1))) is 
    STAR by 
    A11,
    A43,
    Th29;
    
          then (F
    .: ( 
    ^^ (a1,X,(k 
    + 1)))) is 
    STAR by 
    A3,
    A4,
    A13,
    Th23;
    
          then
    
          consider S be
    Subset of X such that 
    
          
    
    A47: ( 
    card S) 
    = ((k 
    + 1) 
    - 1) and 
    
          
    
    A48: (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1)))) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = (k 
    + 1) & S 
    c= A }; 
    
          (H
    . A1) 
    in the 
    Points of ( 
    G_ (k,X)); 
    
          then
    
          consider ha1 be
    Subset of X such that 
    
          
    
    A49: ha1 
    = (H 
    . A1) and 
    
          
    
    A50: ( 
    card ha1) 
    = k by 
    A6;
    
          reconsider ha1, S as
    finite  
    Subset of X by 
    A50,
    A47;
    
          
    
          
    
    A51: ( 
    ^^ (ha1,X,(k 
    + 1))) 
    = ( 
    ^^ (ha1,X)) by 
    A11,
    A50,
    A47,
    Def13;
    
          assume (H
    . A1) 
    on (H 
    . L1); 
    
          then (H
    . A1) 
    c= (H 
    . L1) by 
    A1,
    A5,
    Th10;
    
          then (F
    . L11) 
    in ( 
    ^^ (ha1,X,(k 
    + 1))) by 
    A42,
    A49,
    A50,
    A46,
    A51;
    
          then L1
    in (F 
    " ( 
    ^^ (ha1,X,(k 
    + 1)))) by 
    A36,
    A42,
    FUNCT_1:def 7;
    
          then
    
          
    
    A52: ( 
    meet (F 
    " ( 
    ^^ (ha1,X,(k 
    + 1))))) 
    c= L1 by 
    SETFAM_1: 3;
    
          (
    ^^ (S,X,(k 
    + 1))) 
    = ( 
    ^^ (S,X)) by 
    A11,
    A47,
    Def13;
    
          then
    
          
    
    A53: S 
    = ( 
    meet (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1))))) by 
    A11,
    A47,
    A48,
    Th30;
    
          (
    meet ( 
    ^^ (a1,X,(k 
    + 1)))) 
    = a1 by 
    A11,
    A41,
    A47,
    Th30;
    
          hence thesis by
    A1,
    A5,
    A40,
    A38,
    A49,
    A50,
    A48,
    A51,
    A53,
    A52,
    A45,
    Th10;
    
        end;
    
        
    
        
    
    A54: ( 
    ^^ (a1,X,(k 
    + 1))) 
    = ( 
    ^^ (a1,X)) by 
    A11,
    A43,
    Def13;
    
        A1
    on L1 implies (H 
    . A1) 
    on (H 
    . L1) 
    
        proof
    
          assume A1
    on L1; 
    
          then A1
    c= L1 by 
    A1,
    A5,
    Th10;
    
          then L1
    in ( 
    ^^ (a1,X,(k 
    + 1))) by 
    A40,
    A41,
    A39,
    A54;
    
          then (F
    . L11) 
    in (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1)))) by 
    A36,
    A42,
    FUNCT_1:def 6;
    
          then (
    meet (F 
    .: ( 
    ^^ (a1,X,(k 
    + 1))))) 
    c= (F 
    . L11) by 
    SETFAM_1: 3;
    
          hence thesis by
    A1,
    A5,
    A40,
    A42,
    A38,
    Th10;
    
        end;
    
        hence thesis by
    A44;
    
      end;
    
      
    
      
    
    A55: ( 
    rng the 
    point-map of F) 
    = the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    A21,
    FUNCT_2:def 3;
    
      for y be
    object st y 
    in the 
    Points of ( 
    G_ (k,X)) holds ex x be 
    object st x 
    in the 
    Points of ( 
    G_ (k,X)) & y 
    = (Hp 
    . x) 
    
      proof
    
        let y be
    object;
    
        assume y
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A56: ex Y1 be 
    Subset of X st y 
    = Y1 & ( 
    card Y1) 
    = k by 
    A6;
    
        then
    
        reconsider y as
    finite  
    Subset of X; 
    
        
    
        
    
    A57: ( 
    card y) 
    = ((k 
    + 1) 
    - 1) by 
    A56;
    
        then (
    ^^ (y,X,(k 
    + 1))) is 
    STAR by 
    A11,
    Th29;
    
        then (F
    " ( 
    ^^ (y,X,(k 
    + 1)))) is 
    STAR by 
    A3,
    A4,
    A13,
    Th23;
    
        then
    
        consider S be
    Subset of X such that 
    
        
    
    A58: ( 
    card S) 
    = ((k 
    + 1) 
    - 1) and 
    
        
    
    A59: (F 
    " ( 
    ^^ (y,X,(k 
    + 1)))) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = (k 
    + 1) & S 
    c= A }; 
    
        
    
        
    
    A60: S 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A6,
    A58;
    
        reconsider S as
    finite  
    Subset of X by 
    A58;
    
        
    
        
    
    A61: 
    P[S, (Hp
    . S)] by 
    A9,
    A60;
    
        (
    ^^ (S,X,(k 
    + 1))) 
    = ( 
    ^^ (S,X)) by 
    A11,
    A58,
    Def13;
    
        then (Hp
    . S) 
    = ( 
    meet ( 
    ^^ (y,X,(k 
    + 1)))) by 
    A55,
    A58,
    A59,
    A61,
    FUNCT_1: 77;
    
        then y
    = (Hp 
    . S) by 
    A11,
    A57,
    Th30;
    
        hence thesis by
    A60;
    
      end;
    
      then (
    rng Hp) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 10;
    
      then
    
      
    
    A62: Hp is 
    onto by 
    FUNCT_2:def 3;
    
      
    
      
    
    A63: for A be 
    POINT of ( 
    G_ (k,X)), B be 
    finite  
    set st B 
    = A holds (Hp 
    . A) 
    = ( 
    meet (F 
    .: ( 
    ^^ (B,X,(k 
    + 1))))) 
    
      proof
    
        let A be
    POINT of ( 
    G_ (k,X)); 
    
        
    
        
    
    A64: 
    P[A, (Hp
    . A)] by 
    A9;
    
        let B be
    finite  
    set;
    
        assume A
    = B; 
    
        hence thesis by
    A64;
    
      end;
    
      the
    line-map of H is 
    bijective by 
    A3,
    A10,
    A12;
    
      hence thesis by
    A63,
    A22,
    A62,
    A37;
    
    end;
    
    theorem :: 
    
    COMBGRAS:32
    
    
    
    
    
    Th32: for k be 
    Nat holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 3) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ ((k 
    + 1),X)), ( 
    G_ ((k 
    + 1),X)) st F is 
    automorphism holds for H be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st the 
    line-map of H 
    = the 
    point-map of F holds for f be 
    Permutation of X st the IncProjMap of H 
    = ( 
    incprojmap (k,f)) holds the IncProjMap of F 
    = ( 
    incprojmap ((k 
    + 1),f)) 
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 3) 
    c= ( 
    card X); 
    
      (k
    + 1) 
    <= (k 
    + 3) by 
    XREAL_1: 7;
    
      then (
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 3)) by 
    NAT_1: 39;
    
      then
    
      
    
    A3: (k 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A4: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    Def1;
    
      (k
    + 2) 
    <= (k 
    + 3) by 
    XREAL_1: 7;
    
      then (
    Segm (k 
    + 2)) 
    c= ( 
    Segm (k 
    + 3)) by 
    NAT_1: 39;
    
      then
    
      
    
    A5: ((k 
    + 1) 
    + 1) 
    c= ( 
    card X) by 
    A2;
    
      then
    
      
    
    A6: the 
    Points of ( 
    G_ ((k 
    + 1),X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = (k 
    + 1) } by 
    Def1;
    
      (k
    +  
    0 ) 
    <= (k 
    + 1) by 
    XREAL_1: 7;
    
      then
    
      
    
    A7: ( 
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
      (k
    + 1) 
    <= (k 
    + 2) by 
    XREAL_1: 7;
    
      then
    
      
    
    A8: ( 
    Segm (k 
    + 1)) 
    c= ( 
    Segm (k 
    + 2)) by 
    NAT_1: 39;
    
      let F be
    IncProjMap over ( 
    G_ ((k 
    + 1),X)), ( 
    G_ ((k 
    + 1),X)) such that 
    
      
    
    A9: F is 
    automorphism;
    
      
    
      
    
    A10: F is 
    incidence_preserving by 
    A9;
    
      let H be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) such that 
    
      
    
    A11: the 
    line-map of H 
    = the 
    point-map of F; 
    
      
    
      
    
    A12: ( 
    dom the 
    point-map of F) 
    = the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    FUNCT_2: 52;
    
      let f be
    Permutation of X such that 
    
      
    
    A13: the IncProjMap of H 
    = ( 
    incprojmap (k,f)); 
    
      
    
      
    
    A14: for x be 
    object st x 
    in ( 
    dom the 
    point-map of F) holds (the 
    point-map of F 
    . x) 
    = (the 
    point-map of ( 
    incprojmap ((k 
    + 1),f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom the 
    point-map of F); 
    
        then
    
        consider A be
    POINT of ( 
    G_ ((k 
    + 1),X)) such that 
    
        
    
    A15: x 
    = A; 
    
        consider A1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A16: x 
    = A1 by 
    A4,
    A6,
    A15;
    
        ((
    incprojmap (k,f)) 
    . A1) 
    = (f 
    .: A1) by 
    A1,
    A3,
    Def14;
    
        then (F
    . A) 
    = (( 
    incprojmap ((k 
    + 1),f)) 
    . A) by 
    A11,
    A13,
    A5,
    A15,
    A16,
    Def14;
    
        hence thesis by
    A15;
    
      end;
    
      
    
      
    
    A17: the 
    Lines of ( 
    G_ ((k 
    + 1),X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = ((k 
    + 1) 
    + 1) } by 
    A5,
    Def1;
    
      
    
      
    
    A18: the 
    point-map of F is 
    bijective by 
    A9;
    
      
    
      
    
    A19: for x be 
    object st x 
    in ( 
    dom the 
    line-map of F) holds (the 
    line-map of F 
    . x) 
    = (the 
    line-map of ( 
    incprojmap ((k 
    + 1),f)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom the 
    line-map of F); 
    
        then
    
        consider A be
    LINE of ( 
    G_ ((k 
    + 1),X)) such that 
    
        
    
    A20: x 
    = A; 
    
        reconsider x as
    set by 
    TARSKI: 1;
    
        x
    in the 
    Lines of ( 
    G_ ((k 
    + 1),X)) by 
    A20;
    
        then
    
        
    
    A21: ex A11 be 
    Subset of X st x 
    = A11 & ( 
    card A11) 
    = ((k 
    + 1) 
    + 1) by 
    A17;
    
        then
    
        consider B1 be
    set such that 
    
        
    
    A22: B1 
    c= x and 
    
        
    
    A23: ( 
    card B1) 
    = (k 
    + 1) by 
    A8,
    CARD_FIL: 36;
    
        
    
        
    
    A24: x is 
    finite by 
    A21;
    
        then
    
        
    
    A25: ( 
    card (x 
    \ B1)) 
    = ((k 
    + 2) 
    - (k 
    + 1)) by 
    A21,
    A22,
    A23,
    CARD_2: 44;
    
        B1
    c= X by 
    A21,
    A22,
    XBOOLE_1: 1;
    
        then B1
    in the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    A6,
    A23;
    
        then
    
        consider b1 be
    POINT of ( 
    G_ ((k 
    + 1),X)) such that 
    
        
    
    A26: b1 
    = B1; 
    
        consider C1 be
    set such that 
    
        
    
    A27: C1 
    c= B1 and 
    
        
    
    A28: ( 
    card C1) 
    = k by 
    A7,
    A23,
    CARD_FIL: 36;
    
        B1 is
    finite by 
    A23;
    
        then
    
        
    
    A29: ( 
    card (C1 
    \/ (x 
    \ B1))) 
    = (k 
    + 1) by 
    A27,
    A28,
    A24,
    A25,
    CARD_2: 40,
    XBOOLE_1: 85;
    
        C1
    c= x by 
    A22,
    A27;
    
        then
    
        
    
    A30: (C1 
    \/ (x 
    \ B1)) 
    c= x by 
    XBOOLE_1: 8;
    
        then (C1
    \/ (x 
    \ B1)) 
    c= X by 
    A21,
    XBOOLE_1: 1;
    
        then (C1
    \/ (x 
    \ B1)) 
    in the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    A6,
    A29;
    
        then
    
        consider b2 be
    POINT of ( 
    G_ ((k 
    + 1),X)) such that 
    
        
    
    A31: b2 
    = (C1 
    \/ (x 
    \ B1)); 
    
        b2
    on A by 
    A5,
    A20,
    A30,
    A31,
    Th10;
    
        then (F
    . b2) 
    on (F 
    . A) by 
    A10;
    
        then
    
        
    
    A32: (F 
    . b2) 
    c= (F 
    . A) by 
    A5,
    Th10;
    
        (B1
    \/ (C1 
    \/ (x 
    \ B1))) 
    c= x by 
    A22,
    A30,
    XBOOLE_1: 8;
    
        then
    
        
    
    A33: ( 
    card (b1 
    \/ b2)) 
    c= (k 
    + 2) by 
    A21,
    A26,
    A31,
    CARD_1: 11;
    
        B1
    misses (x 
    \ B1) by 
    XBOOLE_1: 79;
    
        then (
    card ((x 
    \ B1) 
    /\ B1)) 
    =  
    0 by 
    CARD_1: 27,
    XBOOLE_0:def 7;
    
        then
    
        
    
    A34: b1 
    <> b2 by 
    A25,
    A26,
    A31,
    XBOOLE_1: 11,
    XBOOLE_1: 28;
    
        then ((k
    + 1) 
    + 1) 
    c= ( 
    card (b1 
    \/ b2)) by 
    A23,
    A29,
    A26,
    A31,
    Th1;
    
        then (
    card (b1 
    \/ b2)) 
    = (k 
    + 2) by 
    A33,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A35: (b1 
    \/ b2) 
    = x by 
    A21,
    A22,
    A24,
    A30,
    A26,
    A31,
    CARD_2: 102,
    XBOOLE_1: 8;
    
        (F
    . b2) 
    in the 
    Points of ( 
    G_ ((k 
    + 1),X)); 
    
        then
    
        
    
    A36: ex B12 be 
    Subset of X st (F 
    . b2) 
    = B12 & ( 
    card B12) 
    = (k 
    + 1) by 
    A6;
    
        (F
    . b1) 
    in the 
    Points of ( 
    G_ ((k 
    + 1),X)); 
    
        then
    
        
    
    A37: ex B11 be 
    Subset of X st (F 
    . b1) 
    = B11 & ( 
    card B11) 
    = (k 
    + 1) by 
    A6;
    
        (F
    . A) 
    in the 
    Lines of ( 
    G_ ((k 
    + 1),X)); 
    
        then
    
        
    
    A38: ex L1 be 
    Subset of X st (F 
    . A) 
    = L1 & ( 
    card L1) 
    = ((k 
    + 1) 
    + 1) by 
    A17;
    
        then
    
        
    
    A39: (F 
    . A) is 
    finite;
    
        (F
    . b1) 
    <> (F 
    . b2) by 
    A18,
    A12,
    A34,
    FUNCT_1:def 4;
    
        then
    
        
    
    A40: ((k 
    + 1) 
    + 1) 
    c= ( 
    card ((F 
    . b1) 
    \/ (F 
    . b2))) by 
    A37,
    A36,
    Th1;
    
        b1
    on A by 
    A5,
    A20,
    A22,
    A26,
    Th10;
    
        then (F
    . b1) 
    on (F 
    . A) by 
    A10;
    
        then
    
        
    
    A41: (F 
    . b1) 
    c= (F 
    . A) by 
    A5,
    Th10;
    
        then ((F
    . b1) 
    \/ (F 
    . b2)) 
    c= (F 
    . A) by 
    A32,
    XBOOLE_1: 8;
    
        then (
    card ((F 
    . b1) 
    \/ (F 
    . b2))) 
    c= (k 
    + 2) by 
    A38,
    CARD_1: 11;
    
        then (
    card ((F 
    . b1) 
    \/ (F 
    . b2))) 
    = (k 
    + 2) by 
    A40,
    XBOOLE_0:def 10;
    
        then
    
        
    
    A42: ((F 
    . b1) 
    \/ (F 
    . b2)) 
    = (F 
    . A) by 
    A41,
    A32,
    A38,
    A39,
    CARD_2: 102,
    XBOOLE_1: 8;
    
        
    
        
    
    A43: (( 
    incprojmap ((k 
    + 1),f)) 
    . A) 
    = (f 
    .: x) by 
    A5,
    A20,
    Def14;
    
        
    
        
    
    A44: ((f 
    .: b1) 
    \/ (f 
    .: b2)) 
    = (f 
    .: (b1 
    \/ b2)) & (F 
    . b2) 
    = (( 
    incprojmap ((k 
    + 1),f)) 
    . b2) by 
    A12,
    A14,
    RELAT_1: 120;
    
        (F
    . b1) 
    = (( 
    incprojmap ((k 
    + 1),f)) 
    . b1) & (( 
    incprojmap ((k 
    + 1),f)) 
    . b1) 
    = (f 
    .: b1) by 
    A5,
    A12,
    A14,
    Def14;
    
        hence thesis by
    A5,
    A20,
    A35,
    A42,
    A43,
    A44,
    Def14;
    
      end;
    
      
    
      
    
    A45: ( 
    dom the 
    line-map of F) 
    = the 
    Lines of ( 
    G_ ((k 
    + 1),X)) & ( 
    dom the 
    line-map of ( 
    incprojmap ((k 
    + 1),f))) 
    = the 
    Lines of ( 
    G_ ((k 
    + 1),X)) by 
    FUNCT_2: 52;
    
      (
    dom the 
    point-map of ( 
    incprojmap ((k 
    + 1),f))) 
    = the 
    Points of ( 
    G_ ((k 
    + 1),X)) by 
    FUNCT_2: 52;
    
      then the
    point-map of F 
    = the 
    point-map of ( 
    incprojmap ((k 
    + 1),f)) by 
    A12,
    A14;
    
      hence thesis by
    A45,
    A19,
    FUNCT_1:def 11;
    
    end;
    
    theorem :: 
    
    COMBGRAS:33
    
    
    
    
    
    Th33: for k be 
    Nat holds for X be non 
    empty  
    set st 2 
    <= k & (k 
    + 2) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) st F is 
    automorphism holds ex s be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)) 
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 2 
    <= k and 
    
      
    
    A2: (k 
    + 2) 
    c= ( 
    card X); 
    
      defpred
    
    P[
    Nat] means 1
    <= $1 & $1 
    <= k implies for F be 
    IncProjMap over ( 
    G_ ($1,X)), ( 
    G_ ($1,X)) st F is 
    automorphism holds ex f be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap ($1,f)); 
    
      
    
      
    
    A3: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i be
    Nat such that 
    
        
    
    A4: 
    P[i];
    
        1
    <= (i 
    + 1) & (i 
    + 1) 
    <= k implies for F be 
    IncProjMap over ( 
    G_ ((i 
    + 1),X)), ( 
    G_ ((i 
    + 1),X)) st F is 
    automorphism holds ex f be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap ((i 
    + 1),f)) 
    
        proof
    
          assume that 1
    <= (i 
    + 1) and 
    
          
    
    A5: (i 
    + 1) 
    <= k; 
    
          let F2 be
    IncProjMap over ( 
    G_ ((i 
    + 1),X)), ( 
    G_ ((i 
    + 1),X)) such that 
    
          
    
    A6: F2 is 
    automorphism;
    
          ((i
    + 1) 
    + 2) 
    <= (k 
    + 2) by 
    A5,
    XREAL_1: 7;
    
          then
    
          
    
    A7: ( 
    Segm (i 
    + 3)) 
    c= ( 
    Segm (k 
    + 2)) by 
    NAT_1: 39;
    
          then
    
          
    
    A8: (i 
    + 3) 
    c= ( 
    card X) by 
    A2;
    
          
    
          
    
    A9: i 
    =  
    0 implies ex f be 
    Permutation of X st the IncProjMap of F2 
    = ( 
    incprojmap ((i 
    + 1),f)) 
    
          proof
    
            (i
    + 2) 
    <= (i 
    + 3) by 
    XREAL_1: 7;
    
            then (
    Segm (i 
    + 2)) 
    c= ( 
    Segm (i 
    + 3)) by 
    NAT_1: 39;
    
            then
    
            
    
    A10: ((i 
    + 1) 
    + 1) 
    c= ( 
    card X) by 
    A8;
    
            assume i
    =  
    0 ; 
    
            hence thesis by
    A6,
    A10,
    Th24;
    
          end;
    
          
    0  
    < i implies ex f be 
    Permutation of X st the IncProjMap of F2 
    = ( 
    incprojmap ((i 
    + 1),f)) 
    
          proof
    
            assume
    
            
    
    A11: 
    0  
    < i; 
    
            then
    
            consider F1 be
    IncProjMap over ( 
    G_ (i,X)), ( 
    G_ (i,X)) such that 
    
            
    
    A12: F1 is 
    automorphism and 
    
            
    
    A13: the 
    line-map of F1 
    = the 
    point-map of F2 and for A be 
    POINT of ( 
    G_ (i,X)), B be 
    finite  
    set st B 
    = A holds (F1 
    . A) 
    = ( 
    meet (F2 
    .: ( 
    ^^ (B,X,(i 
    + 1))))) by 
    A2,
    A6,
    A7,
    Th31,
    XBOOLE_1: 1;
    
            (
    0  
    + 1) 
    < (i 
    + 1) by 
    A11,
    XREAL_1: 8;
    
            then
    
            consider f be
    Permutation of X such that 
    
            
    
    A14: the IncProjMap of F1 
    = ( 
    incprojmap (i,f)) by 
    A4,
    A5,
    A12,
    NAT_1: 13;
    
             the IncProjMap of F2
    = ( 
    incprojmap ((i 
    + 1),f)) by 
    A2,
    A6,
    A7,
    A11,
    A13,
    A14,
    Th32,
    XBOOLE_1: 1;
    
            hence thesis;
    
          end;
    
          hence thesis by
    A9;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A15: 
    P[
    0 ]; 
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A15,
    A3);
    
      then
    
      
    
    A16: 
    P[k];
    
      let F be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)); 
    
      assume F is
    automorphism;
    
      hence thesis by
    A1,
    A16,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    COMBGRAS:34
    
    
    
    
    
    Th34: for k be 
    Nat holds for X be non 
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for s be 
    Permutation of X holds ( 
    incprojmap (k,s)) is 
    automorphism
    
    proof
    
      let k be
    Nat;
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X); 
    
      let s be
    Permutation of X; 
    
      
    
      
    
    A2: the 
    Points of ( 
    G_ (k,X)) 
    = { A where A be 
    Subset of X : ( 
    card A) 
    = k } by 
    A1,
    Def1;
    
      
    
      
    
    A3: the 
    point-map of ( 
    incprojmap (k,s)) is 
    one-to-one
    
      proof
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A4: x1 
    in ( 
    dom the 
    point-map of ( 
    incprojmap (k,s))) and 
    
        
    
    A5: x2 
    in ( 
    dom the 
    point-map of ( 
    incprojmap (k,s))) and 
    
        
    
    A6: (the 
    point-map of ( 
    incprojmap (k,s)) 
    . x1) 
    = (the 
    point-map of ( 
    incprojmap (k,s)) 
    . x2); 
    
        consider X1 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A7: X1 
    = x1 by 
    A4;
    
        x1
    in the 
    Points of ( 
    G_ (k,X)) by 
    A4;
    
        then
    
        
    
    A8: ex X11 be 
    Subset of X st X11 
    = x1 & ( 
    card X11) 
    = k by 
    A2;
    
        consider X2 be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A9: X2 
    = x2 by 
    A5;
    
        x2
    in the 
    Points of ( 
    G_ (k,X)) by 
    A5;
    
        then
    
        
    
    A10: ex X12 be 
    Subset of X st X12 
    = x2 & ( 
    card X12) 
    = k by 
    A2;
    
        
    
        
    
    A11: (( 
    incprojmap (k,s)) 
    . X2) 
    = (s 
    .: X2) by 
    A1,
    Def14;
    
        ((
    incprojmap (k,s)) 
    . X1) 
    = (s 
    .: X1) by 
    A1,
    Def14;
    
        hence thesis by
    A6,
    A7,
    A9,
    A8,
    A10,
    A11,
    Th6;
    
      end;
    
      for y be
    object st y 
    in the 
    Points of ( 
    G_ (k,X)) holds ex x be 
    object st x 
    in the 
    Points of ( 
    G_ (k,X)) & y 
    = (the 
    point-map of ( 
    incprojmap (k,s)) 
    . x) 
    
      proof
    
        let y be
    object;
    
        assume y
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A12: ex B be 
    Subset of X st B 
    = y & ( 
    card B) 
    = k by 
    A2;
    
        reconsider y as
    set by 
    TARSKI: 1;
    
        
    
        
    
    A13: (s 
    " y) 
    c= ( 
    dom s) by 
    RELAT_1: 132;
    
        then
    
        
    
    A14: (s 
    " y) 
    c= X by 
    FUNCT_2: 52;
    
        (
    rng s) 
    = X by 
    FUNCT_2:def 3;
    
        then
    
        
    
    A15: (s 
    .: (s 
    " y)) 
    = y by 
    A12,
    FUNCT_1: 77;
    
        then (
    card (s 
    " y)) 
    = k by 
    A12,
    A13,
    Th4;
    
        then (s
    " y) 
    in the 
    Points of ( 
    G_ (k,X)) by 
    A2,
    A14;
    
        then
    
        consider A be
    POINT of ( 
    G_ (k,X)) such that 
    
        
    
    A16: A 
    = (s 
    " y); 
    
        y
    = (( 
    incprojmap (k,s)) 
    . A) by 
    A1,
    A15,
    A16,
    Def14;
    
        hence thesis;
    
      end;
    
      then (
    rng the 
    point-map of ( 
    incprojmap (k,s))) 
    = the 
    Points of ( 
    G_ (k,X)) by 
    FUNCT_2: 10;
    
      then
    
      
    
    A17: the 
    point-map of ( 
    incprojmap (k,s)) is 
    onto by 
    FUNCT_2:def 3;
    
      
    
      
    
    A18: the 
    Lines of ( 
    G_ (k,X)) 
    = { L where L be 
    Subset of X : ( 
    card L) 
    = (k 
    + 1) } by 
    A1,
    Def1;
    
      for y be
    object st y 
    in the 
    Lines of ( 
    G_ (k,X)) holds ex x be 
    object st x 
    in the 
    Lines of ( 
    G_ (k,X)) & y 
    = (the 
    line-map of ( 
    incprojmap (k,s)) 
    . x) 
    
      proof
    
        let y be
    object;
    
        assume y
    in the 
    Lines of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A19: ex B be 
    Subset of X st B 
    = y & ( 
    card B) 
    = (k 
    + 1) by 
    A18;
    
        reconsider y as
    set by 
    TARSKI: 1;
    
        
    
        
    
    A20: (s 
    " y) 
    c= ( 
    dom s) by 
    RELAT_1: 132;
    
        then
    
        
    
    A21: (s 
    " y) 
    c= X by 
    FUNCT_2: 52;
    
        (
    rng s) 
    = X by 
    FUNCT_2:def 3;
    
        then
    
        
    
    A22: (s 
    .: (s 
    " y)) 
    = y by 
    A19,
    FUNCT_1: 77;
    
        then (
    card (s 
    " y)) 
    = (k 
    + 1) by 
    A19,
    A20,
    Th4;
    
        then (s
    " y) 
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A18,
    A21;
    
        then
    
        consider A be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A23: A 
    = (s 
    " y); 
    
        y
    = (( 
    incprojmap (k,s)) 
    . A) by 
    A1,
    A22,
    A23,
    Def14;
    
        hence thesis;
    
      end;
    
      then (
    rng the 
    line-map of ( 
    incprojmap (k,s))) 
    = the 
    Lines of ( 
    G_ (k,X)) by 
    FUNCT_2: 10;
    
      then
    
      
    
    A24: the 
    line-map of ( 
    incprojmap (k,s)) is 
    onto by 
    FUNCT_2:def 3;
    
      
    
      
    
    A25: ( 
    dom s) 
    = X by 
    FUNCT_2: 52;
    
      
    
      
    
    A26: ( 
    incprojmap (k,s)) is 
    incidence_preserving
    
      proof
    
        let A1 be
    POINT of ( 
    G_ (k,X)); 
    
        let L1 be
    LINE of ( 
    G_ (k,X)); 
    
        
    
        
    
    A27: (s 
    .: A1) 
    = (( 
    incprojmap (k,s)) 
    . A1) & (s 
    .: L1) 
    = (( 
    incprojmap (k,s)) 
    . L1) by 
    A1,
    Def14;
    
        A1
    in the 
    Points of ( 
    G_ (k,X)); 
    
        then
    
        
    
    A28: ex a1 be 
    Subset of X st A1 
    = a1 & ( 
    card a1) 
    = k by 
    A2;
    
        
    
        
    
    A29: (( 
    incprojmap (k,s)) 
    . A1) 
    on (( 
    incprojmap (k,s)) 
    . L1) implies A1 
    on L1 
    
        proof
    
          assume ((
    incprojmap (k,s)) 
    . A1) 
    on (( 
    incprojmap (k,s)) 
    . L1); 
    
          then (s
    .: A1) 
    c= (s 
    .: L1) by 
    A1,
    A27,
    Th10;
    
          then A1
    c= L1 by 
    A25,
    A28,
    FUNCT_1: 87;
    
          hence thesis by
    A1,
    Th10;
    
        end;
    
        A1
    on L1 implies (( 
    incprojmap (k,s)) 
    . A1) 
    on (( 
    incprojmap (k,s)) 
    . L1) 
    
        proof
    
          assume A1
    on L1; 
    
          then A1
    c= L1 by 
    A1,
    Th10;
    
          then (s
    .: A1) 
    c= (s 
    .: L1) by 
    RELAT_1: 123;
    
          hence thesis by
    A1,
    A27,
    Th10;
    
        end;
    
        hence thesis by
    A29;
    
      end;
    
      the
    line-map of ( 
    incprojmap (k,s)) is 
    one-to-one
    
      proof
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A30: x1 
    in ( 
    dom the 
    line-map of ( 
    incprojmap (k,s))) and 
    
        
    
    A31: x2 
    in ( 
    dom the 
    line-map of ( 
    incprojmap (k,s))) and 
    
        
    
    A32: (the 
    line-map of ( 
    incprojmap (k,s)) 
    . x1) 
    = (the 
    line-map of ( 
    incprojmap (k,s)) 
    . x2); 
    
        consider X1 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A33: X1 
    = x1 by 
    A30;
    
        x1
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A30;
    
        then
    
        
    
    A34: ex X11 be 
    Subset of X st X11 
    = x1 & ( 
    card X11) 
    = (k 
    + 1) by 
    A18;
    
        consider X2 be
    LINE of ( 
    G_ (k,X)) such that 
    
        
    
    A35: X2 
    = x2 by 
    A31;
    
        x2
    in the 
    Lines of ( 
    G_ (k,X)) by 
    A31;
    
        then
    
        
    
    A36: ex X12 be 
    Subset of X st X12 
    = x2 & ( 
    card X12) 
    = (k 
    + 1) by 
    A18;
    
        
    
        
    
    A37: (( 
    incprojmap (k,s)) 
    . X2) 
    = (s 
    .: X2) by 
    A1,
    Def14;
    
        ((
    incprojmap (k,s)) 
    . X1) 
    = (s 
    .: X1) by 
    A1,
    Def14;
    
        hence thesis by
    A32,
    A33,
    A35,
    A34,
    A36,
    A37,
    Th6;
    
      end;
    
      hence thesis by
    A24,
    A3,
    A17,
    A26;
    
    end;
    
    theorem :: 
    
    COMBGRAS:35
    
    for X be non
    empty  
    set st 
    0  
    < k & (k 
    + 1) 
    c= ( 
    card X) holds for F be 
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)) holds F is 
    automorphism iff ex s be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)) 
    
    proof
    
      let X be non
    empty  
    set such that 
    
      
    
    A1: 
    0  
    < k and 
    
      
    
    A2: (k 
    + 1) 
    c= ( 
    card X); 
    
      let F be
    IncProjMap over ( 
    G_ (k,X)), ( 
    G_ (k,X)); 
    
      
    
      
    
    A3: F is 
    automorphism implies ex s be 
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)) 
    
      proof
    
        
    
        
    
    A4: ( 
    card k) 
    = k & ( 
    succ 1) 
    = (1 
    + 1); 
    
        
    
        
    
    A5: ( 
    card (k 
    + 1)) 
    = (k 
    + 1); 
    
        (k
    + 1) 
    in ( 
    succ ( 
    card X)) by 
    A2,
    ORDINAL1: 22;
    
        then
    
        
    
    A6: (k 
    + 1) 
    = ( 
    card X) or (k 
    + 1) 
    in ( 
    card X) by 
    ORDINAL1: 8;
    
        
    
        
    
    A7: ( 
    card 1) 
    = 1; 
    
        (
    0  
    + 1) 
    < (k 
    + 1) & ( 
    succ ( 
    Segm k)) 
    = ( 
    Segm (k 
    + 1)) by 
    A1,
    NAT_1: 38,
    XREAL_1: 8;
    
        then (
    Segm 1) 
    in ( 
    succ ( 
    Segm k)) by 
    A7,
    A5,
    NAT_1: 41;
    
        then 1
    = k or ( 
    Segm 1) 
    in ( 
    Segm k) by 
    ORDINAL1: 8;
    
        then
    
        
    
    A8: 1 
    = k or 1 
    < k & ( 
    Segm 2) 
    c= ( 
    Segm k) by 
    A7,
    A4,
    NAT_1: 41,
    ORDINAL1: 21;
    
        assume
    
        
    
    A9: F is 
    automorphism;
    
        (
    succ ( 
    Segm (k 
    + 1))) 
    = ( 
    Segm ((k 
    + 1) 
    + 1)) by 
    NAT_1: 38;
    
        then 1
    = k or 1 
    < k & ( 
    card X) 
    = (k 
    + 1) or 2 
    <= k & (k 
    + 2) 
    c= ( 
    card X) by 
    A6,
    A8,
    NAT_1: 39,
    ORDINAL1: 21;
    
        hence thesis by
    A2,
    A9,
    Th24,
    Th25,
    Th33;
    
      end;
    
      (ex s be
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s))) implies F is 
    automorphism
    
      proof
    
        assume ex s be
    Permutation of X st the IncProjMap of F 
    = ( 
    incprojmap (k,s)); 
    
        then
    
        consider s be
    Permutation of X such that 
    
        
    
    A10: the IncProjMap of F 
    = ( 
    incprojmap (k,s)); 
    
        
    
        
    
    A11: ( 
    incprojmap (k,s)) is 
    automorphism by 
    A1,
    A2,
    Th34;
    
        then
    
        
    
    A12: ( 
    incprojmap (k,s)) is 
    incidence_preserving;
    
        
    
        
    
    A13: F is 
    incidence_preserving
    
        proof
    
          let A be
    POINT of ( 
    G_ (k,X)); 
    
          let L be
    LINE of ( 
    G_ (k,X)); 
    
          (F
    . A) 
    = (( 
    incprojmap (k,s)) 
    . A) & (F 
    . L) 
    = (( 
    incprojmap (k,s)) 
    . L) by 
    A10;
    
          hence thesis by
    A12;
    
        end;
    
        the
    line-map of F is 
    bijective & the 
    point-map of F is 
    bijective by 
    A10,
    A11;
    
        hence thesis by
    A13;
    
      end;
    
      hence thesis by
    A3;
    
    end;