comseq_1.miz
begin
reserve f for
Function;
reserve n,k,n1 for
Element of
NAT ;
reserve r,p for
Complex;
reserve x,y for
set;
definition
mode
Complex_Sequence is
sequence of
COMPLEX ;
end
reserve seq,seq1,seq2,seq3,seq9,seq19 for
Complex_Sequence;
theorem ::
COMSEQ_1:1
Th1: f is
Complex_Sequence iff ((
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
Element of
COMPLEX )
proof
thus f is
Complex_Sequence implies ((
dom f)
=
NAT & for x st x
in
NAT holds (f
. x) is
Element of
COMPLEX )
proof
assume
A1: f is
Complex_Sequence;
hence
A2: (
dom f)
=
NAT by
FUNCT_2:def 1;
let x;
assume x
in
NAT ;
then
A3: (f
. x)
in (
rng f) by
A2,
FUNCT_1:def 3;
(
rng f)
c=
COMPLEX by
A1,
RELAT_1:def 19;
hence thesis by
A3;
end;
assume that
A4: (
dom f)
=
NAT and
A5: for x st x
in
NAT holds (f
. x) is
Element of
COMPLEX ;
now
let y be
object;
assume y
in (
rng f);
then
consider x be
object such that
A6: x
in (
dom f) and
A7: y
= (f
. x) by
FUNCT_1:def 3;
(f
. x) is
Element of
COMPLEX by
A4,
A5,
A6;
hence y
in
COMPLEX by
A7;
end;
then (
rng f)
c=
COMPLEX by
TARSKI:def 3;
hence thesis by
A4,
FUNCT_2:def 1,
RELSET_1: 4;
end;
theorem ::
COMSEQ_1:2
Th2: f is
Complex_Sequence iff ((
dom f)
=
NAT & for n holds (f
. n) is
Element of
COMPLEX )
proof
thus f is
Complex_Sequence implies ((
dom f)
=
NAT & for n holds (f
. n) is
Element of
COMPLEX ) by
Th1;
assume that
A1: (
dom f)
=
NAT and
A2: for n holds (f
. n) is
Element of
COMPLEX ;
for x holds x
in
NAT implies (f
. x) is
Element of
COMPLEX by
A2;
hence thesis by
A1,
Th1;
end;
scheme ::
COMSEQ_1:sch1
ExComplexSeq { F(
set) ->
Complex } :
ex seq st for n be
Nat holds (seq
. n)
= F(n);
defpred
P[
object,
object] means ex n st n
= $1 & $2
= F(n);
A1:
now
let x be
object;
assume x
in
NAT ;
then
consider n such that
A2: n
= x;
reconsider r2 = F(n) as
object;
take y = r2;
thus
P[x, y] by
A2;
end;
consider f such that
A3: (
dom f)
=
NAT and
A4: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
CLASSES1:sch 1(
A1);
now
let x;
assume x
in
NAT ;
then ex n st n
= x & (f
. x)
= F(n) by
A4;
hence (f
. x) is
Element of
COMPLEX by
XCMPLX_0:def 2;
end;
then
reconsider f as
Complex_Sequence by
A3,
Th1;
take seq = f;
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then ex k st k
= n & (seq
. n)
= F(k) by
A4;
hence thesis;
end;
registration
cluster
non-zero for
Complex_Sequence;
existence
proof
take s = (
NAT
-->
1r );
(
rng s)
=
{1} by
FUNCOP_1: 8;
hence not
0
in (
rng s) by
TARSKI:def 1;
end;
end
theorem ::
COMSEQ_1:3
Th3: seq is
non-zero iff for x st x
in
NAT holds (seq
. x)
<>
0c
proof
thus seq is
non-zero implies for x st x
in
NAT holds (seq
. x)
<>
0c
proof
assume
A1: seq is
non-zero;
let x;
assume x
in
NAT ;
then x
in (
dom seq) by
Th2;
then (seq
. x)
in (
rng seq) by
FUNCT_1:def 3;
hence thesis by
A1;
end;
assume
A2: for x st x
in
NAT holds (seq
. x)
<>
0c ;
assume
0
in (
rng seq);
then
0
in (
rng seq);
then ex x be
object st x
in (
dom seq) & (seq
. x)
=
0 by
FUNCT_1:def 3;
hence contradiction by
A2;
end;
theorem ::
COMSEQ_1:4
Th4: seq is
non-zero iff for n holds (seq
. n)
<>
0c
proof
thus seq is
non-zero implies for n holds (seq
. n)
<>
0c by
Th3;
assume for n holds (seq
. n)
<>
0c ;
then for x holds x
in
NAT implies (seq
. x)
<>
0c ;
hence thesis by
Th3;
end;
theorem ::
COMSEQ_1:5
for IT be
non-zero
Complex_Sequence holds (
rng IT)
c= (
COMPLEX
\
{
0c }) by
ORDINAL1:def 15,
ZFMISC_1: 34;
theorem ::
COMSEQ_1:6
for r holds ex seq st (
rng seq)
=
{r}
proof
let r;
consider f such that
A1: (
dom f)
=
NAT and
A2: (
rng f)
=
{r} by
FUNCT_1: 5;
for x be
object st x
in
{r} holds x
in
COMPLEX by
XCMPLX_0:def 2;
then (
rng f)
c=
COMPLEX by
A2,
TARSKI:def 3;
then
reconsider f as
Complex_Sequence by
A1,
FUNCT_2:def 1,
RELSET_1: 4;
take f;
thus thesis by
A2;
end;
theorem ::
COMSEQ_1:7
Th7: ((seq1
+ seq2)
+ seq3)
= (seq1
+ (seq2
+ seq3))
proof
now
let n;
thus (((seq1
+ seq2)
+ seq3)
. n)
= (((seq1
+ seq2) qua
Complex_Sequence
. n)
+ (seq3
. n)) by
VALUED_1: 1
.= (((seq1
. n)
+ (seq2
. n))
+ (seq3
. n)) by
VALUED_1: 1
.= ((seq1
. n)
+ ((seq2
. n)
+ (seq3
. n)))
.= ((seq1
. n)
+ ((seq2
+ seq3)
. n)) by
VALUED_1: 1
.= ((seq1
+ (seq2
+ seq3))
. n) by
VALUED_1: 1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:8
Th8: ((seq1
(#) seq2)
(#) seq3)
= (seq1
(#) (seq2
(#) seq3))
proof
now
let n;
thus (((seq1
(#) seq2)
(#) seq3)
. n)
= (((seq1
(#) seq2)
. n)
* (seq3
. n)) by
VALUED_1: 5
.= (((seq1
. n)
* (seq2
. n))
* (seq3
. n)) by
VALUED_1: 5
.= ((seq1
. n)
* ((seq2
. n)
* (seq3
. n)))
.= ((seq1
. n)
* ((seq2
(#) seq3)
. n)) by
VALUED_1: 5
.= ((seq1
(#) (seq2
(#) seq3))
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:9
Th9: ((seq1
+ seq2)
(#) seq3)
= ((seq1
(#) seq3)
+ (seq2
(#) seq3))
proof
now
let n;
thus (((seq1
+ seq2)
(#) seq3)
. n)
= (((seq1
+ seq2)
. n)
* (seq3
. n)) by
VALUED_1: 5
.= (((seq1
. n)
+ (seq2
. n))
* (seq3
. n)) by
VALUED_1: 1
.= (((seq1
. n)
* (seq3
. n))
+ ((seq2
. n)
* (seq3
. n)))
.= (((seq1
(#) seq3)
. n)
+ ((seq2
. n)
* (seq3
. n))) by
VALUED_1: 5
.= (((seq1
(#) seq3)
. n)
+ ((seq2
(#) seq3)
. n)) by
VALUED_1: 5
.= (((seq1
(#) seq3)
+ (seq2
(#) seq3))
. n) by
VALUED_1: 1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:10
(seq3
(#) (seq1
+ seq2))
= ((seq3
(#) seq1)
+ (seq3
(#) seq2)) by
Th9;
theorem ::
COMSEQ_1:11
(
- seq)
= ((
-
1r )
(#) seq);
theorem ::
COMSEQ_1:12
Th12: (r
(#) (seq1
(#) seq2))
= ((r
(#) seq1)
(#) seq2)
proof
now
let n;
thus ((r
(#) (seq1
(#) seq2))
. n)
= (r
* ((seq1
(#) seq2)
. n)) by
VALUED_1: 6
.= (r
* ((seq1
. n)
* (seq2
. n))) by
VALUED_1: 5
.= ((r
* (seq1
. n))
* (seq2
. n))
.= (((r
(#) seq1)
. n)
* (seq2
. n)) by
VALUED_1: 6
.= (((r
(#) seq1)
(#) seq2)
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:13
Th13: (r
(#) (seq1
(#) seq2))
= (seq1
(#) (r
(#) seq2))
proof
now
let n;
thus ((r
(#) (seq1
(#) seq2))
. n)
= (r
* ((seq1
(#) seq2)
. n)) by
VALUED_1: 6
.= (r
* ((seq1
. n)
* (seq2
. n))) by
VALUED_1: 5
.= ((seq1
. n)
* (r
* (seq2
. n)))
.= ((seq1
. n)
* ((r
(#) seq2)
. n)) by
VALUED_1: 6
.= ((seq1
(#) (r
(#) seq2))
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:14
Th14: ((seq1
- seq2)
(#) seq3)
= ((seq1
(#) seq3)
- (seq2
(#) seq3))
proof
thus ((seq1
- seq2)
(#) seq3)
= ((seq1
(#) seq3)
+ ((
- seq2)
(#) seq3)) by
Th9
.= ((seq1
(#) seq3)
+ (((
-
1r )
(#) seq2)
(#) seq3))
.= ((seq1
(#) seq3)
+ ((
-
1r )
(#) (seq2
(#) seq3))) by
Th12
.= ((seq1
(#) seq3)
- (seq2
(#) seq3));
end;
theorem ::
COMSEQ_1:15
((seq3
(#) seq1)
- (seq3
(#) seq2))
= (seq3
(#) (seq1
- seq2)) by
Th14;
theorem ::
COMSEQ_1:16
Th16: (r
(#) (seq1
+ seq2))
= ((r
(#) seq1)
+ (r
(#) seq2))
proof
now
let n;
thus ((r
(#) (seq1
+ seq2))
. n)
= (r
* ((seq1
+ seq2)
. n)) by
VALUED_1: 6
.= (r
* ((seq1
. n)
+ (seq2
. n))) by
VALUED_1: 1
.= ((r
* (seq1
. n))
+ (r
* (seq2
. n)))
.= (((r
(#) seq1)
. n)
+ (r
* (seq2
. n))) by
VALUED_1: 6
.= (((r
(#) seq1)
. n)
+ ((r
(#) seq2)
. n)) by
VALUED_1: 6
.= (((r
(#) seq1)
+ (r
(#) seq2))
. n) by
VALUED_1: 1;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:17
Th17: ((r
* p)
(#) seq)
= (r
(#) (p
(#) seq))
proof
now
let n;
thus (((r
* p)
(#) seq)
. n)
= ((r
* p)
* (seq
. n)) by
VALUED_1: 6
.= (r
* (p
* (seq
. n)))
.= (r
* ((p
(#) seq)
. n)) by
VALUED_1: 6
.= ((r
(#) (p
(#) seq))
. n) by
VALUED_1: 6;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:18
Th18: (r
(#) (seq1
- seq2))
= ((r
(#) seq1)
- (r
(#) seq2))
proof
thus (r
(#) (seq1
- seq2))
= ((r
(#) seq1)
+ (r
(#) (
- seq2))) by
Th16
.= ((r
(#) seq1)
+ (r
(#) ((
-
1r )
(#) seq2)))
.= ((r
(#) seq1)
+ (((
-
1r )
* r)
(#) seq2)) by
Th17
.= ((r
(#) seq1)
+ ((
-
1r )
(#) (r
(#) seq2))) by
Th17
.= ((r
(#) seq1)
- (r
(#) seq2));
end;
theorem ::
COMSEQ_1:19
(r
(#) (seq1
/" seq))
= ((r
(#) seq1)
/" seq)
proof
thus (r
(#) (seq1
/" seq))
= (r
(#) (seq1
(#) (seq
" )))
.= ((r
(#) seq1)
/" seq) by
Th12;
end;
theorem ::
COMSEQ_1:20
(seq1
- (seq2
+ seq3))
= ((seq1
- seq2)
- seq3)
proof
thus (seq1
- (seq2
+ seq3))
= (seq1
+ ((
-
1r )
(#) (seq2
+ seq3)))
.= (seq1
+ (((
-
1r )
(#) seq2)
+ ((
-
1r )
(#) seq3))) by
Th16
.= (seq1
+ ((
- seq2)
+ ((
-
1r )
(#) seq3)))
.= (seq1
+ ((
- seq2)
+ (
- seq3)))
.= ((seq1
- seq2)
- seq3) by
Th7;
end;
theorem ::
COMSEQ_1:21
(
1r
(#) seq)
= seq
proof
now
let n;
thus ((
1r
(#) seq)
. n)
= (
1r
* (seq
. n)) by
VALUED_1: 6
.= (seq
. n);
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:22
(
- (
- seq))
= seq;
theorem ::
COMSEQ_1:23
(seq1
- (
- seq2))
= (seq1
+ seq2);
theorem ::
COMSEQ_1:24
(seq1
- (seq2
- seq3))
= ((seq1
- seq2)
+ seq3)
proof
thus (seq1
- (seq2
- seq3))
= (seq1
+ ((
-
1r )
(#) (seq2
- seq3)))
.= (seq1
+ (((
-
1r )
(#) seq2)
- ((
-
1r )
(#) seq3))) by
Th18
.= (seq1
+ ((
- seq2)
- ((
-
1r )
(#) seq3)))
.= (seq1
+ ((
- seq2)
- (
- seq3)))
.= ((seq1
- seq2)
+ seq3) by
Th7;
end;
theorem ::
COMSEQ_1:25
(seq1
+ (seq2
- seq3))
= ((seq1
+ seq2)
- seq3)
proof
thus (seq1
+ (seq2
- seq3))
= (seq1
+ (seq2
+ (
- seq3)))
.= ((seq1
+ seq2)
- seq3) by
Th7;
end;
theorem ::
COMSEQ_1:26
((
- seq1)
(#) seq2)
= (
- (seq1
(#) seq2)) & (seq1
(#) (
- seq2))
= (
- (seq1
(#) seq2)) by
Th12;
theorem ::
COMSEQ_1:27
Th27: seq is
non-zero implies (seq
" ) is
non-zero
proof
assume that
A1: seq is
non-zero and
A2: not (seq
" ) is
non-zero;
consider n1 such that
A3: ((seq
" )
. n1)
=
0c by
A2,
Th4;
((seq
. n1)
" )
= ((seq
" )
. n1) by
VALUED_1: 10;
hence contradiction by
A1,
A3,
Th4,
XCMPLX_1: 202;
end;
::$Canceled
theorem ::
COMSEQ_1:29
Th28: seq is
non-zero & seq1 is
non-zero iff (seq
(#) seq1) is
non-zero
proof
thus seq is
non-zero & seq1 is
non-zero implies (seq
(#) seq1) is
non-zero
proof
assume
A1: seq is
non-zero & seq1 is
non-zero;
now
let n;
A2: ((seq
(#) seq1)
. n)
= ((seq
. n)
* (seq1
. n)) by
VALUED_1: 5;
(seq
. n)
<>
0c & (seq1
. n)
<>
0c by
A1,
Th4;
hence ((seq
(#) seq1)
. n)
<>
0c by
A2;
end;
hence thesis by
Th4;
end;
assume
A3: (seq
(#) seq1) is
non-zero;
now
let n;
((seq
(#) seq1)
. n)
= ((seq
. n)
* (seq1
. n)) by
VALUED_1: 5;
hence (seq
. n)
<>
0c by
A3,
Th4;
end;
hence seq is
non-zero by
Th4;
now
let n;
((seq
(#) seq1)
. n)
= ((seq
. n)
* (seq1
. n)) by
VALUED_1: 5;
hence (seq1
. n)
<>
0c by
A3,
Th4;
end;
hence thesis by
Th4;
end;
theorem ::
COMSEQ_1:30
Th29: ((seq
" )
(#) (seq1
" ))
= ((seq
(#) seq1)
" )
proof
now
let n;
thus (((seq
" )
(#) (seq1
" ))
. n)
= (((seq
" )
. n)
* ((seq1
" )
. n)) by
VALUED_1: 5
.= (((seq
" )
. n)
* ((seq1
. n)
" )) by
VALUED_1: 10
.= (((seq
. n)
" )
* ((seq1
. n)
" )) by
VALUED_1: 10
.= (((seq
. n)
* (seq1
. n))
" ) by
XCMPLX_1: 204
.= (((seq
(#) seq1)
. n)
" ) by
VALUED_1: 5
.= (((seq
(#) seq1)
" )
. n) by
VALUED_1: 10;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:31
seq is
non-zero implies ((seq1
/" seq)
(#) seq)
= seq1
proof
assume
A1: seq is
non-zero;
now
let n;
A2: (seq
. n)
<>
0c by
A1,
Th4;
thus (((seq1
/" seq)
(#) seq)
. n)
= (((seq1
(#) (seq
" ))
. n)
* (seq
. n)) by
VALUED_1: 5
.= (((seq1
. n)
* ((seq
" )
. n))
* (seq
. n)) by
VALUED_1: 5
.= (((seq1
. n)
* ((seq
. n)
" ))
* (seq
. n)) by
VALUED_1: 10
.= ((seq1
. n)
* (((seq
. n)
" )
* (seq
. n)))
.= ((seq1
. n)
*
1r ) by
A2,
XCMPLX_0:def 7
.= (seq1
. n);
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:32
((seq9
/" seq)
(#) (seq19
/" seq1))
= ((seq9
(#) seq19)
/" (seq
(#) seq1))
proof
now
let n;
thus (((seq9
/" seq)
(#) (seq19
/" seq1))
. n)
= (((seq9
(#) (seq
" ))
. n)
* ((seq19
/" seq1)
. n)) by
VALUED_1: 5
.= (((seq9
. n)
* ((seq
" )
. n))
* ((seq19
(#) (seq1
" ))
. n)) by
VALUED_1: 5
.= (((seq9
. n)
* ((seq
" )
. n))
* ((seq19
. n)
* ((seq1
" )
. n))) by
VALUED_1: 5
.= ((seq9
. n)
* ((seq19
. n)
* (((seq
" )
. n)
* ((seq1
" )
. n))))
.= ((seq9
. n)
* ((seq19
. n)
* (((seq
" )
(#) (seq1
" ))
. n))) by
VALUED_1: 5
.= (((seq9
. n)
* (seq19
. n))
* (((seq
" )
(#) (seq1
" ))
. n))
.= (((seq9
. n)
* (seq19
. n))
* (((seq
(#) seq1)
" )
. n)) by
Th29
.= (((seq9
(#) seq19)
. n)
* (((seq
(#) seq1)
" )
. n)) by
VALUED_1: 5
.= (((seq9
(#) seq19)
/" (seq
(#) seq1))
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:33
seq is
non-zero & seq1 is
non-zero implies (seq
/" seq1) is
non-zero
proof
assume that
A1: seq is
non-zero and
A2: seq1 is
non-zero;
(seq1
" ) is
non-zero by
A2,
Th27;
hence thesis by
A1,
Th28;
end;
theorem ::
COMSEQ_1:34
Th33: ((seq
/" seq1)
" )
= (seq1
/" seq)
proof
now
let n;
thus (((seq
/" seq1)
" )
. n)
= (((seq
" )
(#) ((seq1
" )
" ))
. n) by
Th29
.= ((seq1
/" seq)
. n);
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:35
(seq2
(#) (seq1
/" seq))
= ((seq2
(#) seq1)
/" seq)
proof
thus (seq2
(#) (seq1
/" seq))
= ((seq2
(#) seq1)
(#) (seq
" )) by
Th8
.= ((seq2
(#) seq1)
/" seq);
end;
theorem ::
COMSEQ_1:36
(seq2
/" (seq
/" seq1))
= ((seq2
(#) seq1)
/" seq)
proof
now
let n;
thus ((seq2
/" (seq
/" seq1))
. n)
= ((seq2
(#) (seq1
/" seq))
. n) by
Th33
.= (((seq2
(#) seq1)
(#) (seq
" ))
. n) by
Th8
.= (((seq2
(#) seq1)
/" seq)
. n);
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:37
Th36: seq1 is
non-zero implies (seq2
/" seq)
= ((seq2
(#) seq1)
/" (seq
(#) seq1))
proof
assume
A1: seq1 is
non-zero;
now
let n;
A2: (seq1
. n)
<>
0c by
A1,
Th4;
thus ((seq2
/" seq)
. n)
= (((seq2
. n)
*
1r )
* ((seq
" )
. n)) by
VALUED_1: 5
.= (((seq2
. n)
* ((seq1
. n)
* ((seq1
. n)
" )))
* ((seq
" )
. n)) by
A2,
XCMPLX_0:def 7
.= (((seq2
. n)
* (seq1
. n))
* (((seq1
. n)
" )
* ((seq
" )
. n)))
.= (((seq2
(#) seq1)
. n)
* (((seq1
. n)
" )
* ((seq
" )
. n))) by
VALUED_1: 5
.= (((seq2
(#) seq1)
. n)
* (((seq1
" )
. n)
* ((seq
" )
. n))) by
VALUED_1: 10
.= (((seq2
(#) seq1)
. n)
* (((seq
" )
(#) (seq1
" ))
. n)) by
VALUED_1: 5
.= (((seq2
(#) seq1)
. n)
* (((seq
(#) seq1)
" )
. n)) by
Th29
.= (((seq2
(#) seq1)
/" (seq
(#) seq1))
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:38
Th37: r
<>
0c & seq is
non-zero implies (r
(#) seq) is
non-zero
proof
assume that
A1: r
<>
0c and
A2: seq is
non-zero and
A3: not (r
(#) seq) is
non-zero;
consider n1 such that
A4: ((r
(#) seq)
. n1)
=
0c by
A3,
Th4;
A5: (r
* (seq
. n1))
=
0c by
A4,
VALUED_1: 6;
(seq
. n1)
<>
0c by
A2,
Th4;
hence contradiction by
A1,
A5;
end;
theorem ::
COMSEQ_1:39
seq is
non-zero implies (
- seq) is
non-zero by
Th37;
theorem ::
COMSEQ_1:40
Th39: ((r
(#) seq)
" )
= ((r
" )
(#) (seq
" ))
proof
now
let n;
thus (((r
(#) seq)
" )
. n)
= (((r
(#) seq)
. n)
" ) by
VALUED_1: 10
.= ((r
* (seq
. n))
" ) by
VALUED_1: 6
.= ((r
" )
* ((seq
. n)
" )) by
XCMPLX_1: 204
.= ((r
" )
* ((seq
" )
. n)) by
VALUED_1: 10
.= (((r
" )
(#) (seq
" ))
. n) by
VALUED_1: 6;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:41
Th40: seq is
non-zero implies ((
- seq)
" )
= ((
-
1r )
(#) (seq
" ))
proof
((
- 1)
" )
= (
- 1);
hence thesis by
Th39;
end;
theorem ::
COMSEQ_1:42
seq is
non-zero implies (
- (seq1
/" seq))
= ((
- seq1)
/" seq) & (seq1
/" (
- seq))
= (
- (seq1
/" seq))
proof
assume
A1: seq is
non-zero;
thus (
- (seq1
/" seq))
= ((
-
1r )
(#) (seq1
/" seq))
.= (((
-
1r )
(#) seq1)
(#) (seq
" )) by
Th12
.= ((
- seq1)
/" seq);
thus (seq1
/" (
- seq))
= (seq1
(#) ((
-
1r )
(#) (seq
" ))) by
A1,
Th40
.= ((
-
1r )
(#) (seq1
(#) (seq
" ))) by
Th13
.= (
- (seq1
/" seq));
end;
theorem ::
COMSEQ_1:43
((seq1
/" seq)
+ (seq19
/" seq))
= ((seq1
+ seq19)
/" seq) & ((seq1
/" seq)
- (seq19
/" seq))
= ((seq1
- seq19)
/" seq)
proof
thus ((seq1
/" seq)
+ (seq19
/" seq))
= ((seq1
+ seq19)
(#) (seq
" )) by
Th9
.= ((seq1
+ seq19)
/" seq);
thus ((seq1
/" seq)
- (seq19
/" seq))
= ((seq1
- seq19)
(#) (seq
" )) by
Th14
.= ((seq1
- seq19)
/" seq);
end;
theorem ::
COMSEQ_1:44
seq is
non-zero & seq9 is
non-zero implies ((seq1
/" seq)
+ (seq19
/" seq9))
= (((seq1
(#) seq9)
+ (seq19
(#) seq))
/" (seq
(#) seq9)) & ((seq1
/" seq)
- (seq19
/" seq9))
= (((seq1
(#) seq9)
- (seq19
(#) seq))
/" (seq
(#) seq9))
proof
assume that
A1: seq is
non-zero and
A2: seq9 is
non-zero;
thus ((seq1
/" seq)
+ (seq19
/" seq9))
= (((seq1
(#) seq9)
/" (seq
(#) seq9))
+ (seq19
/" seq9)) by
A2,
Th36
.= (((seq1
(#) seq9)
/" (seq
(#) seq9))
+ ((seq19
(#) seq)
/" (seq
(#) seq9))) by
A1,
Th36
.= (((seq1
(#) seq9)
+ (seq19
(#) seq))
(#) ((seq
(#) seq9)
" )) by
Th9
.= (((seq1
(#) seq9)
+ (seq19
(#) seq))
/" (seq
(#) seq9));
thus ((seq1
/" seq)
- (seq19
/" seq9))
= (((seq1
(#) seq9)
/" (seq
(#) seq9))
- (seq19
/" seq9)) by
A2,
Th36
.= (((seq1
(#) seq9)
/" (seq
(#) seq9))
- ((seq19
(#) seq)
/" (seq
(#) seq9))) by
A1,
Th36
.= (((seq1
(#) seq9)
- (seq19
(#) seq))
(#) ((seq
(#) seq9)
" )) by
Th14
.= (((seq1
(#) seq9)
- (seq19
(#) seq))
/" (seq
(#) seq9));
end;
theorem ::
COMSEQ_1:45
((seq19
/" seq)
/" (seq9
/" seq1))
= ((seq19
(#) seq1)
/" (seq
(#) seq9))
proof
thus ((seq19
/" seq)
/" (seq9
/" seq1))
= ((seq19
/" seq)
(#) ((seq9
" )
(#) ((seq1
" )
" ))) by
Th29
.= (((seq19
(#) (seq
" ))
(#) seq1)
(#) (seq9
" )) by
Th8
.= ((seq19
(#) (seq1
(#) (seq
" )))
(#) (seq9
" )) by
Th8
.= (seq19
(#) ((seq1
(#) (seq
" ))
(#) (seq9
" ))) by
Th8
.= (seq19
(#) (seq1
(#) ((seq
" )
(#) (seq9
" )))) by
Th8
.= ((seq19
(#) seq1)
(#) ((seq
" )
(#) (seq9
" ))) by
Th8
.= ((seq19
(#) seq1)
/" (seq
(#) seq9)) by
Th29;
end;
theorem ::
COMSEQ_1:46
Th45:
|.(seq
(#) seq9).|
= (
|.seq.|
(#)
|.seq9.|)
proof
now
let n;
thus (
|.(seq
(#) seq9).|
. n)
=
|.((seq
(#) seq9)
. n).| by
VALUED_1: 18
.=
|.((seq
. n)
* (seq9
. n)).| by
VALUED_1: 5
.= (
|.(seq
. n).|
*
|.(seq9
. n).|) by
COMPLEX1: 65
.= ((
|.seq.|
. n)
*
|.(seq9
. n).|) by
VALUED_1: 18
.= ((
|.seq.|
. n)
* (
|.seq9.|
. n)) by
VALUED_1: 18
.= ((
|.seq.|
(#)
|.seq9.|)
. n) by
VALUED_1: 5;
end;
hence thesis by
FUNCT_2: 63;
end;
::$Canceled
theorem ::
COMSEQ_1:48
Th46: (
|.seq.|
" )
=
|.(seq
" ).|
proof
now
let n;
thus (
|.(seq
" ).|
. n)
=
|.((seq
" )
. n).| by
VALUED_1: 18
.=
|.((seq
. n)
" ).| by
VALUED_1: 10
.=
|.(
1r
/ (seq
. n)).| by
XCMPLX_1: 215
.= (1
/
|.(seq
. n).|) by
COMPLEX1: 48,
COMPLEX1: 67
.= (
|.(seq
. n).|
" ) by
XCMPLX_1: 215
.= ((
|.seq.|
. n)
" ) by
VALUED_1: 18
.= ((
|.seq.|
" )
. n) by
VALUED_1: 10;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
COMSEQ_1:49
|.(seq9
/" seq).|
= (
|.seq9.|
/"
|.seq.|)
proof
thus
|.(seq9
/" seq).|
= (
|.seq9.|
(#)
|.(seq
" ).|) by
Th45
.= (
|.seq9.|
/"
|.seq.|) by
Th46;
end;
theorem ::
COMSEQ_1:50
|.(r
(#) seq).|
= (
|.r.|
(#)
|.seq.|)
proof
now
let n;
thus (
|.(r
(#) seq).|
. n)
=
|.((r
(#) seq)
. n).| by
VALUED_1: 18
.=
|.(r
* (seq
. n)).| by
VALUED_1: 6
.= (
|.r.|
*
|.(seq
. n).|) by
COMPLEX1: 65
.= (
|.r.|
* (
|.seq.|
. n)) by
VALUED_1: 18
.= ((
|.r.|
(#)
|.seq.|)
. n) by
VALUED_1: 6;
end;
hence thesis by
FUNCT_2: 63;
end;