euclid_2.miz
begin
reserve i,n for
Nat,
x,y,a for
Real,
v for
Element of (n
-tuples_on
REAL ),
p,p1,p2,p3,q,q1,q2 for
Point of (
TOP-REAL n);
theorem ::
EUCLID_2:1
Th1: ((
mlt (v,(
0* n)))
. i)
=
0
proof
A1: (
0* n)
= (n
|->
0 qua
set) by
EUCLID:def 4;
set v0 = ((
0* n)
. i);
A2: (
dom (
0* n))
= (
Seg n) by
FINSEQ_2: 124;
i
in (
Seg n) or not i
in (
Seg n);
then
A3: v0
=
0 by
A1,
A2,
FUNCOP_1: 7,
FUNCT_1:def 2;
((
mlt (v,(
0* n)))
. i)
= ((v
. i)
* v0) by
RVSUM_1: 60
.=
0 by
A3;
hence thesis;
end;
theorem ::
EUCLID_2:2
Th2: (
mlt (v,(
0* n)))
= (
0* n)
proof
(
len (
0* n))
= n by
CARD_1:def 7;
then
reconsider z = (
0* n) as
Element of (n
-tuples_on
REAL ) by
FINSEQ_2: 92;
A1: (
len (
0* n))
= n by
CARD_1:def 7;
A2: for j be
Nat st j
in (
dom (
0* n)) holds ((
mlt (v,(
0* n)))
. j)
= ((
0* n)
. j)
proof
let j be
Nat;
assume j
in (
dom (
0* n));
thus ((
mlt (v,(
0* n)))
. j)
=
0 by
Th1
.= ((n
|->
0 )
. j)
.= ((
0* n)
. j) by
EUCLID:def 4;
end;
(
len (
mlt (v,z)))
= n by
CARD_1:def 7;
then (
dom (
mlt (v,(
0* n))))
= (
dom (
0* n)) by
A1,
FINSEQ_3: 29;
hence thesis by
A2,
FINSEQ_1: 13;
end;
begin
theorem ::
EUCLID_2:3
for y1,y2 be
real-valued
FinSequence, x1,x2 be
Element of (
REAL n) st x1
= y1 & x2
= y2 holds
|(y1, y2)|
= ((1
/ 4)
* ((
|.(x1
+ x2).|
^2 )
- (
|.(x1
- x2).|
^2 )))
proof
let y1,y2 be
real-valued
FinSequence, x1,x2 be
Element of (
REAL n);
assume
A1: x1
= y1 & x2
= y2;
reconsider w1 = x1, w2 = x2 as
Element of (n
-tuples_on
REAL ) by
EUCLID:def 1;
set v1 = (
sqr (x1
+ x2)), v2 = (
sqr (x1
- x2));
set z1 = (x1
+ x2), z2 = (x1
- x2);
A2: ((1
/ 4)
* ((
|.(x1
+ x2).|
^2 )
- (
|.(x1
- x2).|
^2 )))
= ((1
/ 4)
* (((
sqrt (
Sum (
sqr z1)))
^2 )
- (
|.z2.|
^2 ))) by
EUCLID:def 5
.= ((1
/ 4)
* (((
sqrt (
Sum (
sqr z1)))
^2 )
- ((
sqrt (
Sum (
sqr z2)))
^2 ))) by
EUCLID:def 5;
(
Sum (
sqr (x1
+ x2)))
>=
0 by
RVSUM_1: 86;
then
A3: ((
sqrt (
Sum (
sqr (x1
+ x2))))
^2 )
= (
Sum (
sqr (x1
+ x2))) by
SQUARE_1:def 2;
A4: ((
Sum (
sqr (x1
+ x2)))
- (
Sum (
sqr (x1
- x2))))
= (
Sum (v1
- v2)) by
RVSUM_1: 90;
(
Sum (
sqr (x1
- x2)))
>=
0 by
RVSUM_1: 86;
then
A5: ((
sqrt (
Sum (
sqr (x1
- x2))))
^2 )
= (
Sum (
sqr (x1
- x2))) by
SQUARE_1:def 2;
A6: (((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (2
* (
mlt (w1,w2))))
= ((2
* (
mlt (w1,w2)))
+ ((2
* (
mlt (w1,w2)))
+ (
sqr w2)))
.= (((2
* (
mlt (w1,w2)))
+ (2
* (
mlt (w1,w2))))
+ (
sqr w2)) by
FINSEQOP: 28;
A7: ((
sqr w1)
+ ((2
* (
mlt (w1,w2)))
+ (
sqr w2)))
= (((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (
sqr w1));
(v1
- v2)
= ((((
sqr w1)
+ (2
* (
mlt (w1,w2))))
+ (
sqr w2))
- (
sqr (w1
- w2))) by
RVSUM_1: 68
.= ((((
sqr w1)
+ (2
* (
mlt (w1,w2))))
+ (
sqr w2))
- (((
sqr w1)
- (2
* (
mlt (w1,w2))))
+ (
sqr w2))) by
RVSUM_1: 69
.= ((((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (
sqr w1))
- (((
sqr w1)
- (2
* (
mlt (w1,w2))))
+ (
sqr w2))) by
A7,
FINSEQOP: 28
.= (((((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (
sqr w1))
- ((
sqr w1)
- (2
* (
mlt (w1,w2)))))
- (
sqr w2)) by
RVSUM_1: 39
.= ((((((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (
sqr w1))
- (
sqr w1))
+ (2
* (
mlt (w1,w2))))
- (
sqr w2)) by
RVSUM_1: 41
.= ((((2
* (
mlt (w1,w2)))
+ (
sqr w2))
+ (2
* (
mlt (w1,w2))))
- (
sqr w2)) by
RVSUM_1: 42
.= ((2
* (
mlt (w1,w2)))
+ (2
* (
mlt (w1,w2)))) by
A6,
RVSUM_1: 42
.= ((2
+ 2)
* (
mlt (w1,w2))) by
RVSUM_1: 50
.= (4
* (
mlt (w1,w2)));
then ((1
/ 4)
* ((
|.(x1
+ x2).|
^2 )
- (
|.(x1
- x2).|
^2 )))
= ((1
/ 4)
* (4
* (
Sum (
mlt (w1,w2))))) by
A2,
A3,
A5,
A4,
RVSUM_1: 87
.= (
Sum (
mlt (w1,w2)));
hence thesis by
A1;
end;
Lm1:
now
let x be
real-valued
FinSequence;
(
rng x)
c=
REAL ;
hence x is
FinSequence of
REAL by
FINSEQ_1:def 4;
end;
theorem ::
EUCLID_2:4
Th4: for x be
real-valued
FinSequence holds (
|.x.|
^2 )
=
|(x, x)|
proof
let x be
real-valued
FinSequence;
A1:
0
<=
|(x, x)| by
RVSUM_1: 119;
(
|.x.|
^2 )
= ((
sqrt (
Sum (
sqr x)))
^2 ) by
EUCLID:def 5
.=
|(x, x)| by
A1,
SQUARE_1:def 2;
hence thesis;
end;
theorem ::
EUCLID_2:5
Th5: for x be
real-valued
FinSequence holds
|.x.|
= (
sqrt
|(x, x)|)
proof
let x be
real-valued
FinSequence;
|.x.|
= (
sqrt (
|.x.|
^2 )) by
EUCLID: 9,
SQUARE_1: 22
.= (
sqrt
|(x, x)|) by
Th4;
hence thesis;
end;
::$Canceled
theorem ::
EUCLID_2:7
Th6: for x be
real-valued
FinSequence holds
|(x, x)|
=
0 iff x
= (
0* (
len x))
proof
let x be
real-valued
FinSequence;
thus
|(x, x)|
=
0 implies x
= (
0* (
len x))
proof
x is
FinSequence of
REAL by
Lm1;
then
reconsider y = x as
Element of (
REAL (
len x)) by
EUCLID: 76;
assume
|(x, x)|
=
0 ;
then (
|.x.|
^2 )
=
0 by
Th4;
then
|.x.|
=
0 by
XCMPLX_1: 6;
then y
= (
0* (
len x)) by
EUCLID: 8;
hence thesis;
end;
assume x
= (
0* (
len x));
then
|.x.|
=
0 by
EUCLID: 7;
then
|(x, x)|
= (
0
^2 ) by
Th4;
hence thesis;
end;
theorem ::
EUCLID_2:8
for x be
real-valued
FinSequence holds
|(x, x)|
=
0 iff
|.x.|
=
0
proof
let x be
real-valued
FinSequence;
A1:
|(x, x)|
= (
0
^2 ) implies
|.x.|
=
0
proof
assume
|(x, x)|
= (
0
^2 );
then x
= (
0* (
len x)) by
Th6;
hence thesis by
EUCLID: 7;
end;
|.x.|
=
0 implies
|(x, x)|
= (
0
^2 ) by
Th4;
hence thesis by
A1;
end;
theorem ::
EUCLID_2:9
Th8: for x be
real-valued
FinSequence holds
|(x, (
0* (
len x)))|
=
0
proof
let x be
real-valued
FinSequence;
set n = (
len x);
x is
FinSequence of
REAL by
Lm1;
then
reconsider p1 = x as
Element of (n
-tuples_on
REAL ) by
FINSEQ_2: 92;
A1: (
0* n)
= (n
|->
0 ) by
EUCLID:def 4;
|(x, (
0* n))|
= (
Sum (
mlt (p1,(
0* n))))
.= (
Sum (
0* n)) by
Th2
.=
0 by
A1,
RVSUM_1: 81;
hence thesis;
end;
theorem ::
EUCLID_2:10
for x be
real-valued
FinSequence holds
|((
0* (
len x)), x)|
=
0 by
Th8;
theorem ::
EUCLID_2:11
Th10: for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds (
|.(x
+ y).|
^2 )
= (((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+ (
|.y.|
^2 ))
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
(
|.(x
+ y).|
^2 )
=
|((x
+ y), (x
+ y))| by
Th4
.= ((
|(x, x)|
+ (2
*
|(x, y)|))
+
|(y, y)|) by
A1,
RVSUM_1: 128
.= (((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+
|(y, y)|) by
Th4
.= (((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+ (
|.y.|
^2 )) by
Th4;
hence thesis;
end;
theorem ::
EUCLID_2:12
Th11: for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds (
|.(x
- y).|
^2 )
= (((
|.x.|
^2 )
- (2
*
|(y, x)|))
+ (
|.y.|
^2 ))
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
(
|.(x
- y).|
^2 )
=
|((x
- y), (x
- y))| by
Th4
.= ((
|(x, x)|
- (2
*
|(x, y)|))
+
|(y, y)|) by
A1,
RVSUM_1: 129
.= (((
|.x.|
^2 )
- (2
*
|(y, x)|))
+
|(y, y)|) by
Th4
.= (((
|.x.|
^2 )
- (2
*
|(y, x)|))
+ (
|.y.|
^2 )) by
Th4;
hence thesis;
end;
theorem ::
EUCLID_2:13
for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds ((
|.(x
+ y).|
^2 )
+ (
|.(x
- y).|
^2 ))
= (2
* ((
|.x.|
^2 )
+ (
|.y.|
^2 )))
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
then ((
|.(x
+ y).|
^2 )
+ (
|.(x
- y).|
^2 ))
= ((((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+ (
|.y.|
^2 ))
+ (
|.(x
- y).|
^2 )) by
Th10
.= ((((
|.x.|
^2 )
+ (2
*
|(x, y)|))
+ (
|.y.|
^2 ))
+ (((
|.x.|
^2 )
- (2
*
|(y, x)|))
+ (
|.y.|
^2 ))) by
A1,
Th11
.= (2
* ((
|.x.|
^2 )
+ (
|.y.|
^2 )));
hence thesis;
end;
theorem ::
EUCLID_2:14
for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds ((
|.(x
+ y).|
^2 )
- (
|.(x
- y).|
^2 ))
= (4
*
|(x, y)|)
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
then ((
|.(x
+ y).|
^2 )
- (
|.(x
- y).|
^2 ))
= ((((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+ (
|.y.|
^2 ))
- (
|.(x
- y).|
^2 )) by
Th10
.= ((((
|.x.|
^2 )
+ (2
*
|(x, y)|))
+ (
|.y.|
^2 ))
- (((
|.x.|
^2 )
- (2
*
|(y, x)|))
+ (
|.y.|
^2 ))) by
A1,
Th11
.= (4
*
|(x, y)|);
hence thesis;
end;
theorem ::
EUCLID_2:15
Th14: for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds
|.
|(x, y)|.|
<= (
|.x.|
*
|.y.|)
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
A2: x
= (
0* (
len x)) implies
|.
|(x, y)|.|
<= ((
sqrt
|(x, x)|)
* (
sqrt
|(y, y)|))
proof
assume x
= (
0* (
len x));
then
|(x, y)|
=
0 &
|(x, x)|
=
0 by
A1,
Th8;
hence thesis by
ABSVALUE: 2,
SQUARE_1: 17;
end;
A3: x
<> (
0* (
len x)) implies
|.
|(x, y)|.|
<= ((
sqrt
|(x, x)|)
* (
sqrt
|(y, y)|))
proof
A4: for t be
Real holds (((
|(x, x)|
* (t
^2 ))
+ ((2
*
|(x, y)|)
* t))
+
|(y, y)|)
>=
0
proof
let t be
Real;
set s = (t
^2 );
A5: (
len (t
* x))
= (
len x) by
RVSUM_1: 117;
|(((t
* x)
+ y), ((t
* x)
+ y))|
>=
0 by
RVSUM_1: 119;
then ((
|((t
* x), (t
* x))|
+ (2
*
|((t
* x), y)|))
+
|(y, y)|)
>=
0 by
A1,
A5,
RVSUM_1: 128;
then (((t
*
|((t
* x), x)|)
+ (2
*
|((t
* x), y)|))
+
|(y, y)|)
>=
0 by
A5,
RVSUM_1: 121;
then (((t
* (t
*
|(x, x)|))
+ (2
*
|((t
* x), y)|))
+
|(y, y)|)
>=
0 by
A1,
RVSUM_1: 121;
then (((
|(x, x)|
* s)
+ (2
* (
|(x, y)|
* t)))
+
|(y, y)|)
>=
0 by
A1,
RVSUM_1: 121;
hence thesis;
end;
set w =
|.
|(x, y)|.|, u =
|(x, y)|;
A6:
|(x, x)|
>=
0 by
RVSUM_1: 119;
assume x
<> (
0* (
len x));
then
|(x, x)|
<>
0 by
Th6;
then
|(x, x)|
>
0 by
A6,
XXREAL_0: 1;
then (
delta (
|(x, x)|,(2
*
|(x, y)|),
|(y, y)|))
<=
0 by
A4,
QUIN_1: 10;
then (((2
* u)
^2 )
- ((4
*
|(x, x)|)
*
|(y, y)|))
<=
0 by
QUIN_1:def 1;
then (4
* ((u
^2 )
- (
|(x, x)|
*
|(y, y)|)))
<=
0 ;
then ((
|(x, y)|
^2 )
- (
|(x, x)|
*
|(y, y)|))
<= (
0
/ 4) by
XREAL_1: 77;
then (
|(x, y)|
^2 )
<= (
|(x, x)|
*
|(y, y)|) by
XREAL_1: 50;
then
0
<= (w
^2 ) & (
|.
|(x, y)|.|
^2 )
<= (
|(x, x)|
*
|(y, y)|) by
COMPLEX1: 75,
XREAL_1: 63;
then (
sqrt (
|.
|(x, y)|.|
^2 ))
<= (
sqrt (
|(x, x)|
*
|(y, y)|)) by
SQUARE_1: 26;
then
A7:
|.
|(x, y)|.|
<= (
sqrt (
|(x, x)|
*
|(y, y)|)) by
COMPLEX1: 46,
SQUARE_1: 22;
|(y, y)|
>=
0 by
RVSUM_1: 119;
hence thesis by
A6,
A7,
SQUARE_1: 29;
end;
(
sqrt
|(x, x)|)
=
|.x.| by
Th5;
hence thesis by
A2,
A3,
Th5;
end;
theorem ::
EUCLID_2:16
Th15: for x,y be
real-valued
FinSequence st (
len x)
= (
len y) holds
|.(x
+ y).|
<= (
|.x.|
+
|.y.|)
proof
let x,y be
real-valued
FinSequence;
assume
A1: (
len x)
= (
len y);
then
|(x, y)|
<=
|.
|(x, y)|.| &
|.
|(x, y)|.|
<= (
|.x.|
*
|.y.|) by
Th14,
ABSVALUE: 4;
then
|(x, y)|
<= (
|.x.|
*
|.y.|) by
XXREAL_0: 2;
then (2
*
|(x, y)|)
<= (2
* (
|.x.|
*
|.y.|)) by
XREAL_1: 64;
then
A2: ((
|.x.|
^2 )
+ (2
*
|(x, y)|))
<= ((
|.x.|
^2 )
+ (2
* (
|.x.|
*
|.y.|))) by
XREAL_1: 7;
(
|.(x
+ y).|
^2 )
= (((
|.x.|
^2 )
+ (2
*
|(y, x)|))
+ (
|.y.|
^2 )) by
A1,
Th10;
then
A3: (
|.(x
+ y).|
^2 )
<= (((
|.x.|
^2 )
+ ((2
*
|.x.|)
*
|.y.|))
+ (
|.y.|
^2 )) by
A2,
XREAL_1: 7;
0
<= (
|.(x
+ y).|
^2 ) by
XREAL_1: 63;
then (
sqrt (
|.(x
+ y).|
^2 ))
<= (
sqrt ((
|.x.|
+
|.y.|)
^2 )) by
A3,
SQUARE_1: 26;
then
A4:
|.(x
+ y).|
<= (
sqrt ((
|.x.|
+
|.y.|)
^2 )) by
EUCLID: 9,
SQUARE_1: 22;
0
<=
|.x.| &
0
<=
|.y.| by
EUCLID: 9;
then (
0
+
0 )
<= (
|.x.|
+
|.y.|) by
XREAL_1: 7;
hence thesis by
A4,
SQUARE_1: 22;
end;
begin
::$Canceled
theorem ::
EUCLID_2:18
Th16:
|((p1
+ p2), p3)|
= (
|(p1, p3)|
+
|(p2, p3)|)
proof
reconsider f1 = p1, f2 = p2, f3 = p3 as
FinSequence of
REAL by
EUCLID: 24;
reconsider q1 = p1, q2 = p2 as
Element of (
REAL n) by
EUCLID: 22;
(
len f2)
= n by
CARD_1:def 7;
then
A1: (
len f1)
= (
len f2) & (
len f2)
= (
len f3) by
CARD_1:def 7;
thus thesis by
A1,
RVSUM_1: 120;
end;
theorem ::
EUCLID_2:19
Th17: for x be
Real holds
|((x
* p1), p2)|
= (x
*
|(p1, p2)|)
proof
let x be
Real;
reconsider f1 = p1, f2 = p2 as
FinSequence of
REAL by
EUCLID: 24;
reconsider q1 = p1 as
Element of (
REAL n) by
EUCLID: 22;
(
len f1)
= n & (
len f2)
= n by
CARD_1:def 7;
hence thesis by
RVSUM_1: 121;
end;
theorem ::
EUCLID_2:20
for x be
Real holds
|(p1, (x
* p2))|
= (x
*
|(p1, p2)|) by
Th17;
theorem ::
EUCLID_2:21
Th19:
|((
- p1), p2)|
= (
-
|(p1, p2)|)
proof
|((
- p1), p2)|
=
|(((
- 1)
* p1), p2)|
.= ((
- 1)
*
|(p1, p2)|) by
Th17;
hence thesis;
end;
theorem ::
EUCLID_2:22
|(p1, (
- p2))|
= (
-
|(p1, p2)|) by
Th19;
theorem ::
EUCLID_2:23
|((
- p1), (
- p2))|
=
|(p1, p2)|
proof
|((
- p1), (
- p2))|
= (
-
|(p1, (
- p2))|) by
Th19
.= (
- (
-
|(p1, p2)|)) by
Th19;
hence thesis;
end;
theorem ::
EUCLID_2:24
Th22:
|((p1
- p2), p3)|
= (
|(p1, p3)|
-
|(p2, p3)|)
proof
|((p1
- p2), p3)|
= (
|(p1, p3)|
+
|((
- p2), p3)|) by
Th16
.= (
|(p1, p3)|
+ (
-
|(p2, p3)|)) by
Th19;
hence thesis;
end;
theorem ::
EUCLID_2:25
|(((x
* p1)
+ (y
* p2)), p3)|
= ((x
*
|(p1, p3)|)
+ (y
*
|(p2, p3)|))
proof
|(((x
* p1)
+ (y
* p2)), p3)|
= (
|((x
* p1), p3)|
+
|((y
* p2), p3)|) by
Th16
.= ((x
*
|(p1, p3)|)
+
|((y
* p2), p3)|) by
Th17
.= ((x
*
|(p1, p3)|)
+ (y
*
|(p2, p3)|)) by
Th17;
hence thesis;
end;
theorem ::
EUCLID_2:26
|(p, (q1
+ q2))|
= (
|(p, q1)|
+
|(p, q2)|) by
Th16;
theorem ::
EUCLID_2:27
|(p, (q1
- q2))|
= (
|(p, q1)|
-
|(p, q2)|) by
Th22;
theorem ::
EUCLID_2:28
Th26:
|((p1
+ p2), (q1
+ q2))|
= (((
|(p1, q1)|
+
|(p1, q2)|)
+
|(p2, q1)|)
+
|(p2, q2)|)
proof
A1:
|((p1
+ p2), q1)|
= (
|(p1, q1)|
+
|(p2, q1)|) &
|((p1
+ p2), q2)|
= (
|(p1, q2)|
+
|(p2, q2)|) by
Th16;
|((p1
+ p2), (q1
+ q2))|
= (
|((p1
+ p2), q1)|
+
|((p1
+ p2), q2)|) by
Th16
.= (((
|(p1, q1)|
+
|(p1, q2)|)
+
|(p2, q1)|)
+
|(p2, q2)|) by
A1;
hence thesis;
end;
theorem ::
EUCLID_2:29
Th27:
|((p1
- p2), (q1
- q2))|
= (((
|(p1, q1)|
-
|(p1, q2)|)
-
|(p2, q1)|)
+
|(p2, q2)|)
proof
A1:
|(p1, (q1
- q2))|
= (
|(p1, q1)|
-
|(p1, q2)|) &
|(p2, (q1
- q2))|
= (
|(p2, q1)|
-
|(p2, q2)|) by
Th22;
|((p1
- p2), (q1
- q2))|
= (
|(p1, (q1
- q2))|
-
|(p2, (q1
- q2))|) by
Th22
.= (((
|(p1, q1)|
-
|(p1, q2)|)
-
|(p2, q1)|)
+
|(p2, q2)|) by
A1;
hence thesis;
end;
theorem ::
EUCLID_2:30
Th28:
|((p
+ q), (p
+ q))|
= ((
|(p, p)|
+ (2
*
|(p, q)|))
+
|(q, q)|)
proof
((
|(p, p)|
+
|(p, q)|)
+
|(p, q)|)
= (
|(p, p)|
+ (2
*
|(p, q)|));
hence thesis by
Th26;
end;
theorem ::
EUCLID_2:31
Th29:
|((p
- q), (p
- q))|
= ((
|(p, p)|
- (2
*
|(p, q)|))
+
|(q, q)|)
proof
|((p
- q), (p
- q))|
= (((
|(p, p)|
-
|(p, q)|)
-
|(p, q)|)
+
|(q, q)|) by
Th27
.= ((
|(p, p)|
- (2
*
|(p, q)|))
+
|(q, q)|);
hence thesis;
end;
theorem ::
EUCLID_2:32
Th30:
|(p, (
0. (
TOP-REAL n)))|
=
0
proof
reconsider f1 = p as
FinSequence of
REAL by
EUCLID: 24;
(
len f1)
= n by
CARD_1:def 7;
then (
0* (
len f1))
= (
0. (
TOP-REAL n)) by
EUCLID: 70;
hence thesis by
Th8;
end;
theorem ::
EUCLID_2:33
|((
0. (
TOP-REAL n)), p)|
=
0 by
Th30;
theorem ::
EUCLID_2:34
|((
0. (
TOP-REAL n)), (
0. (
TOP-REAL n)))|
=
0 by
Th30;
theorem ::
EUCLID_2:35
Th33:
|(p, p)|
>=
0 by
RVSUM_1: 119;
theorem ::
EUCLID_2:36
Th34:
|(p, p)|
= (
|.p.|
^2 ) by
Th4;
theorem ::
EUCLID_2:37
Th35:
|.p.|
= (
sqrt
|(p, p)|)
proof
|.p.|
= (
sqrt (
|.p.|
^2 )) by
SQUARE_1: 22,
TOPRNS_1: 25
.= (
sqrt
|(p, p)|) by
Th34;
hence thesis;
end;
theorem ::
EUCLID_2:38
Th36:
0
<=
|.p.|
proof
|.p.|
= (
sqrt
|(p, p)|) &
0
<=
|(p, p)| by
Th33,
Th35;
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
EUCLID_2:39
Th37:
|.(
0. (
TOP-REAL n)).|
=
0 by
TOPRNS_1: 23;
theorem ::
EUCLID_2:40
Th38:
|(p, p)|
=
0 iff
|.p.|
=
0
proof
A1:
|(p, p)|
= (
0
^2 ) implies
|.p.|
=
0
proof
assume
|(p, p)|
= (
0
^2 );
then (
|.p.|
^2 )
=
0 by
Th34;
hence thesis by
XCMPLX_1: 6;
end;
|.p.|
=
0 implies
|(p, p)|
= (
0
^2 ) by
Th34;
hence thesis by
A1;
end;
theorem ::
EUCLID_2:41
Th39:
|(p, p)|
=
0 iff p
= (
0. (
TOP-REAL n))
proof
|(p, p)|
=
0 implies p
= (
0. (
TOP-REAL n))
proof
assume
|(p, p)|
=
0 ;
then n
in
NAT &
|.p.|
=
0 by
Th38,
ORDINAL1:def 12;
hence thesis by
TOPRNS_1: 24;
end;
hence thesis by
Th30;
end;
theorem ::
EUCLID_2:42
|.p.|
=
0 iff p
= (
0. (
TOP-REAL n)) by
Th37,
TOPRNS_1: 24;
theorem ::
EUCLID_2:43
p
<> (
0. (
TOP-REAL n)) iff
|(p, p)|
>
0
proof
p
<> (
0. (
TOP-REAL n)) implies
|(p, p)|
>
0
proof
assume p
<> (
0. (
TOP-REAL n));
then
A1:
|(p, p)|
<>
0 by
Th39;
0
<=
|(p, p)| by
Th33;
hence thesis by
A1,
XXREAL_0: 1;
end;
hence thesis by
Th39;
end;
theorem ::
EUCLID_2:44
p
<> (
0. (
TOP-REAL n)) iff
|.p.|
>
0
proof
p
<> (
0. (
TOP-REAL n)) implies
|.p.|
>
0
proof
assume
A1: p
<> (
0. (
TOP-REAL n));
n
in
NAT &
0
<=
|.p.| by
Th36,
ORDINAL1:def 12;
hence thesis by
A1,
TOPRNS_1: 24,
XXREAL_0: 1;
end;
hence thesis by
Th37;
end;
theorem ::
EUCLID_2:45
Th43: (
|.(p
+ q).|
^2 )
= (((
|.p.|
^2 )
+ (2
*
|(q, p)|))
+ (
|.q.|
^2 ))
proof
(
|.(p
+ q).|
^2 )
=
|((p
+ q), (p
+ q))| by
Th34
.= ((
|(p, p)|
+ (2
*
|(q, p)|))
+
|(q, q)|) by
Th28
.= (((
|.p.|
^2 )
+ (2
*
|(q, p)|))
+
|(q, q)|) by
Th34
.= (((
|.p.|
^2 )
+ (2
*
|(q, p)|))
+ (
|.q.|
^2 )) by
Th34;
hence thesis;
end;
theorem ::
EUCLID_2:46
Th44: (
|.(p
- q).|
^2 )
= (((
|.p.|
^2 )
- (2
*
|(q, p)|))
+ (
|.q.|
^2 ))
proof
(
|.(p
- q).|
^2 )
=
|((p
- q), (p
- q))| by
Th34
.= ((
|(p, p)|
- (2
*
|(q, p)|))
+
|(q, q)|) by
Th29
.= (((
|.p.|
^2 )
- (2
*
|(q, p)|))
+
|(q, q)|) by
Th34
.= (((
|.p.|
^2 )
- (2
*
|(q, p)|))
+ (
|.q.|
^2 )) by
Th34;
hence thesis;
end;
theorem ::
EUCLID_2:47
((
|.(p
+ q).|
^2 )
+ (
|.(p
- q).|
^2 ))
= (2
* ((
|.p.|
^2 )
+ (
|.q.|
^2 )))
proof
A1: (((
|.p.|
^2 )
- (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
= (((
|.p.|
^2 )
+ (
|.q.|
^2 ))
- (2
*
|(p, q)|));
((
|.(p
+ q).|
^2 )
+ (
|.(p
- q).|
^2 ))
= ((((
|.p.|
^2 )
+ (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
+ (
|.(p
- q).|
^2 )) by
Th43
.= ((((
|.p.|
^2 )
+ (
|.q.|
^2 ))
+ (2
*
|(p, q)|))
+ (((
|.p.|
^2 )
+ (
|.q.|
^2 ))
- (2
*
|(p, q)|))) by
A1,
Th44
.= (2
* ((
|.p.|
^2 )
+ (
|.q.|
^2 )));
hence thesis;
end;
theorem ::
EUCLID_2:48
((
|.(p
+ q).|
^2 )
- (
|.(p
- q).|
^2 ))
= (4
*
|(p, q)|)
proof
((
|.(p
+ q).|
^2 )
- (
|.(p
- q).|
^2 ))
= ((((
|.p.|
^2 )
+ (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
- (
|.(p
- q).|
^2 )) by
Th43
.= ((((
|.p.|
^2 )
+ (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
- (((
|.p.|
^2 )
- (2
*
|(p, q)|))
+ (
|.q.|
^2 ))) by
Th44
.= (4
*
|(p, q)|);
hence thesis;
end;
theorem ::
EUCLID_2:49
|(p, q)|
= ((1
/ 4)
* ((
|.(p
+ q).|
^2 )
- (
|.(p
- q).|
^2 )))
proof
((
|.(p
+ q).|
^2 )
- (
|.(p
- q).|
^2 ))
= ((((
|.p.|
^2 )
+ (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
- (
|.(p
- q).|
^2 )) by
Th43
.= ((((
|.p.|
^2 )
+ (2
*
|(p, q)|))
+ (
|.q.|
^2 ))
- (((
|.p.|
^2 )
- (2
*
|(p, q)|))
+ (
|.q.|
^2 ))) by
Th44
.= (4
*
|(p, q)|);
hence thesis;
end;
theorem ::
EUCLID_2:50
|(p, q)|
<= (
|(p, p)|
+
|(q, q)|)
proof
0
<=
|(p, p)| &
0
<=
|(q, q)| by
Th33;
then (
0
+
0 )
<= (
|(p, p)|
+
|(q, q)|) by
XREAL_1: 7;
then
A1: (
0
/ 2)
<= ((
|(p, p)|
+
|(q, q)|)
/ 2) by
XREAL_1: 72;
|((p
- q), (p
- q))|
= ((
|(p, p)|
- (2
*
|(p, q)|))
+
|(q, q)|) by
Th29
.= ((
|(p, p)|
+
|(q, q)|)
- (2
*
|(p, q)|));
then (2
*
|(p, q)|)
<= ((
|(p, p)|
+
|(q, q)|)
-
0 ) by
Th33,
XREAL_1: 11;
then ((2
*
|(p, q)|)
/ 2)
<= ((
|(p, p)|
+
|(q, q)|)
/ 2) by
XREAL_1: 72;
then (
0
+
|(p, q)|)
<= (((
|(p, p)|
+
|(q, q)|)
/ 2)
+ ((
|(p, p)|
+
|(q, q)|)
/ 2)) by
A1,
XREAL_1: 7;
hence thesis;
end;
theorem ::
EUCLID_2:51
|.
|(p, q)|.|
<= (
|.p.|
*
|.q.|)
proof
(
len p)
= n & (
len q)
= n by
CARD_1:def 7;
hence thesis by
Th14;
end;
theorem ::
EUCLID_2:52
|.(p
+ q).|
<= (
|.p.|
+
|.q.|)
proof
A1: (
len p)
= n & (
len q)
= n by
CARD_1:def 7;
thus thesis by
A1,
Th15;
end;
theorem ::
EUCLID_2:53
Th51: (p,(
0. (
TOP-REAL n)))
are_orthogonal by
Th30;
theorem ::
EUCLID_2:54
((
0. (
TOP-REAL n)),p)
are_orthogonal by
Th51;
theorem ::
EUCLID_2:55
Th53: (p,p)
are_orthogonal iff p
= (
0. (
TOP-REAL n)) by
Th39;
theorem ::
EUCLID_2:56
Th54: (p,q)
are_orthogonal implies ((a
* p),q)
are_orthogonal
proof
assume (p,q)
are_orthogonal ;
then
|(p, q)|
=
0 ;
then (a
*
|(p, q)|)
=
0 ;
then
|((a
* p), q)|
=
0 by
Th17;
hence thesis;
end;
theorem ::
EUCLID_2:57
(p,q)
are_orthogonal implies (p,(a
* q))
are_orthogonal by
Th54;
theorem ::
EUCLID_2:58
(for q holds (p,q)
are_orthogonal ) implies p
= (
0. (
TOP-REAL n)) by
Th53;