goboard6.miz
begin
reserve n for
Nat,
i,j for
Nat,
r,s,r1,s1,r2,s2,r9,s9 for
Real,
p,q for
Point of (
TOP-REAL 2),
G for
Go-board,
x,y for
set,
v for
Point of (
Euclid 2);
Lm1: ((p
+ q)
`1 )
= ((p
`1 )
+ (q
`1 )) & ((p
+ q)
`2 )
= ((p
`2 )
+ (q
`2 ))
proof
(p
+ q)
=
|[((p
`1 )
+ (q
`1 )), ((p
`2 )
+ (q
`2 ))]| by
EUCLID: 55;
hence thesis by
EUCLID: 52;
end;
Lm2: ((p
- q)
`1 )
= ((p
`1 )
- (q
`1 )) & ((p
- q)
`2 )
= ((p
`2 )
- (q
`2 ))
proof
(p
- q)
=
|[((p
`1 )
- (q
`1 )), ((p
`2 )
- (q
`2 ))]| by
EUCLID: 61;
hence thesis by
EUCLID: 52;
end;
Lm3: ((r
* p)
`1 )
= (r
* (p
`1 )) & ((r
* p)
`2 )
= (r
* (p
`2 ))
proof
(r
* p)
=
|[(r
* (p
`1 )), (r
* (p
`2 ))]| by
EUCLID: 57;
hence thesis by
EUCLID: 52;
end;
theorem ::
GOBOARD6:1
Th1: for M be non
empty
Reflexive
MetrStruct, u be
Point of M, r be
Real holds r
>
0 implies u
in (
Ball (u,r))
proof
let M be non
empty
Reflexive
MetrStruct, u be
Point of M, r be
Real;
A1: (
Ball (u,r))
= { q where q be
Point of M : (
dist (u,q))
< r } & (
dist (u,u))
=
0 by
METRIC_1: 1,
METRIC_1: 17;
assume r
>
0 ;
hence thesis by
A1;
end;
Lm4: for M be
MetrSpace, B be
Subset of (
TopSpaceMetr M), r be
Real, u be
Point of M st B
= (
Ball (u,r)) holds B is
open
proof
let M be
MetrSpace, B be
Subset of (
TopSpaceMetr M), r be
Real, u be
Point of M;
A1: (
TopSpaceMetr M)
=
TopStruct (# the
carrier of M, (
Family_open_set M) #) & (
Ball (u,r))
in (
Family_open_set M) by
PCOMPS_1: 29,
PCOMPS_1:def 5;
assume B
= (
Ball (u,r));
hence thesis by
A1,
PRE_TOPC:def 2;
end;
theorem ::
GOBOARD6:2
Th2: for p be
Point of (
Euclid n), q be
Point of (
TOP-REAL n), r be
Real st p
= q & r
>
0 holds (
Ball (p,r)) is
a_neighborhood of q
proof
let p be
Point of (
Euclid n), q be
Point of (
TOP-REAL n), r be
Real;
reconsider A = (
Ball (p,r)) as
Subset of (
TOP-REAL n) by
TOPREAL3: 8;
A1: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider AA = A as
Subset of (
TopSpaceMetr (
Euclid n));
AA is
open by
TOPMETR: 14;
then
A2: A is
open by
A1,
PRE_TOPC: 30;
assume p
= q & r
>
0 ;
hence thesis by
A2,
Th1,
CONNSP_2: 3;
end;
theorem ::
GOBOARD6:3
Th3: for B be
Subset of (
TOP-REAL n), u be
Point of (
Euclid n) st B
= (
Ball (u,r)) holds B is
open
proof
let B be
Subset of (
TOP-REAL n), u be
Point of (
Euclid n);
A1: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider BB = B as
Subset of (
TopSpaceMetr (
Euclid n));
assume B
= (
Ball (u,r));
then BB is
open by
Lm4;
hence thesis by
A1,
PRE_TOPC: 30;
end;
theorem ::
GOBOARD6:4
Th4: for M be non
empty
MetrSpace, u be
Point of M, P be
Subset of (
TopSpaceMetr M) holds u
in (
Int P) iff ex r be
Real st r
>
0 & (
Ball (u,r))
c= P
proof
let M be non
empty
MetrSpace, u be
Point of M, P be
Subset of (
TopSpaceMetr M);
hereby
assume u
in (
Int P);
then
consider r be
Real such that
A1: r
>
0 and
A2: (
Ball (u,r))
c= (
Int P) by
TOPMETR: 15;
take r;
thus r
>
0 by
A1;
(
Int P)
c= P by
TOPS_1: 16;
hence (
Ball (u,r))
c= P by
A2;
end;
given r be
Real such that
A3: r
>
0 and
A4: (
Ball (u,r))
c= P;
(
TopSpaceMetr M)
=
TopStruct (# the
carrier of M, (
Family_open_set M) #) by
PCOMPS_1:def 5;
then
reconsider B = (
Ball (u,r)) as
Subset of (
TopSpaceMetr M);
A5: B is
open by
Lm4;
u
in (
Ball (u,r)) by
A3,
Th1;
hence thesis by
A4,
A5,
TOPS_1: 22;
end;
Lm5: for T be
TopSpace, A be
Subset of T, B be
Subset of the TopStruct of T st A
= B holds (
Int A)
= (
Int B)
proof
let T be
TopSpace, A be
Subset of T, B be
Subset of the TopStruct of T such that
A1: A
= B;
reconsider AA = (
Int A) as
Subset of the TopStruct of T;
AA is
open by
PRE_TOPC: 30;
hence (
Int A)
c= (
Int B) by
A1,
TOPS_1: 16,
TOPS_1: 24;
reconsider BB = (
Int B) as
Subset of T;
BB is
open by
PRE_TOPC: 30;
hence (
Int B)
c= (
Int A) by
A1,
TOPS_1: 16,
TOPS_1: 24;
end;
theorem ::
GOBOARD6:5
Th5: for u be
Point of (
Euclid n), P be
Subset of (
TOP-REAL n) holds u
in (
Int P) iff ex r be
Real st r
>
0 & (
Ball (u,r))
c= P
proof
let u be
Point of (
Euclid n), P be
Subset of (
TOP-REAL n);
A1: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider PP = P as
Subset of (
TopSpaceMetr (
Euclid n));
u
in (
Int PP) iff ex r be
Real st r
>
0 & (
Ball (u,r))
c= PP by
Th4;
hence thesis by
A1,
Lm5;
end;
theorem ::
GOBOARD6:6
Th6: for u,v be
Point of (
Euclid 2) st u
=
|[r1, s1]| & v
=
|[r2, s2]| holds (
dist (u,v))
= (
sqrt (((r1
- r2)
^2 )
+ ((s1
- s2)
^2 )))
proof
let u,v be
Point of (
Euclid 2) such that
A1: u
=
|[r1, s1]| & v
=
|[r2, s2]|;
A2: (
|[r1, s1]|
`1 )
= r1 & (
|[r1, s1]|
`2 )
= s1 by
EUCLID: 52;
A3: (
|[r2, s2]|
`1 )
= r2 & (
|[r2, s2]|
`2 )
= s2 by
EUCLID: 52;
thus (
dist (u,v))
= ((
Pitag_dist 2)
. (u,v)) by
METRIC_1:def 1
.= (
sqrt (((r1
- r2)
^2 )
+ ((s1
- s2)
^2 ))) by
A1,
A2,
A3,
TOPREAL3: 7;
end;
theorem ::
GOBOARD6:7
Th7: for u be
Point of (
Euclid 2) st u
=
|[r, s]| holds
0
<= r2 & r2
< r1 implies
|[(r
+ r2), s]|
in (
Ball (u,r1))
proof
let u be
Point of (
Euclid 2) such that
A1: u
=
|[r, s]| and
A2:
0
<= r2 and
A3: r2
< r1;
reconsider v =
|[(r
+ r2), s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(
dist (u,v))
= (
sqrt (((r
- (r
+ r2))
^2 )
+ ((s
- s)
^2 ))) by
A1,
Th6
.= (
sqrt ((
- (r
- (r
+ r2)))
^2 ))
.= r2 by
A2,
SQUARE_1: 22;
hence thesis by
A3,
METRIC_1: 11;
end;
theorem ::
GOBOARD6:8
Th8: for u be
Point of (
Euclid 2) st u
=
|[r, s]| holds
0
<= s2 & s2
< s1 implies
|[r, (s
+ s2)]|
in (
Ball (u,s1))
proof
let u be
Point of (
Euclid 2) such that
A1: u
=
|[r, s]| and
A2:
0
<= s2 and
A3: s2
< s1;
reconsider v =
|[r, (s
+ s2)]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(
dist (u,v))
= (
sqrt (((r
- r)
^2 )
+ ((s
- (s
+ s2))
^2 ))) by
A1,
Th6
.= (
sqrt ((
- (s
- (s
+ s2)))
^2 ))
.= s2 by
A2,
SQUARE_1: 22;
hence thesis by
A3,
METRIC_1: 11;
end;
theorem ::
GOBOARD6:9
Th9: for u be
Point of (
Euclid 2) st u
=
|[r, s]| holds
0
<= r2 & r2
< r1 implies
|[(r
- r2), s]|
in (
Ball (u,r1))
proof
let u be
Point of (
Euclid 2) such that
A1: u
=
|[r, s]| and
A2:
0
<= r2 and
A3: r2
< r1;
reconsider v =
|[(r
- r2), s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(
dist (u,v))
= (
sqrt (((r
- (r
- r2))
^2 )
+ ((s
- s)
^2 ))) by
A1,
Th6
.= r2 by
A2,
SQUARE_1: 22;
hence thesis by
A3,
METRIC_1: 11;
end;
theorem ::
GOBOARD6:10
Th10: for u be
Point of (
Euclid 2) st u
=
|[r, s]| holds
0
<= s2 & s2
< s1 implies
|[r, (s
- s2)]|
in (
Ball (u,s1))
proof
let u be
Point of (
Euclid 2) such that
A1: u
=
|[r, s]| and
A2:
0
<= s2 and
A3: s2
< s1;
reconsider v =
|[r, (s
- s2)]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(
dist (u,v))
= (
sqrt (((s
- (s
- s2))
^2 )
+ ((r
- r)
^2 ))) by
A1,
Th6
.= s2 by
A2,
SQUARE_1: 22;
hence thesis by
A3,
METRIC_1: 11;
end;
theorem ::
GOBOARD6:11
Th11: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
= ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
proof
assume that
A1: 1
<= i & i
< (
len G) and
A2: 1
<= j & j
< (
width G);
A3: 1
<= (j
+ 1) & (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
A4: 1
<= (i
+ 1) & (i
+ 1)
<= (
len G) by
A1,
NAT_1: 13;
then
A5: ((G
* ((i
+ 1),(j
+ 1)))
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A3,
GOBOARD5: 2
.= ((G
* ((i
+ 1),j))
`1 ) by
A2,
A4,
GOBOARD5: 2;
A6: ((G
* ((i
+ 1),(j
+ 1)))
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A4,
A3,
GOBOARD5: 1
.= ((G
* (i,(j
+ 1)))
`2 ) by
A1,
A3,
GOBOARD5: 1;
A7: ((G
* (i,j))
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A2,
GOBOARD5: 1
.= ((G
* ((i
+ 1),j))
`2 ) by
A2,
A4,
GOBOARD5: 1;
A8: (((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
`2 )
= (((G
* (i,j))
`2 )
+ ((G
* ((i
+ 1),(j
+ 1)))
`2 )) by
Lm1
.= (((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`2 ) by
A7,
A6,
Lm1;
A9: ((G
* (i,j))
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A2,
GOBOARD5: 2
.= ((G
* (i,(j
+ 1)))
`1 ) by
A1,
A3,
GOBOARD5: 2;
(((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
`1 )
= (((G
* (i,j))
`1 )
+ ((G
* ((i
+ 1),(j
+ 1)))
`1 )) by
Lm1
.= (((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`1 ) by
A9,
A5,
Lm1;
hence ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
=
|[(((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`1 ), (((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j)))
`2 )]| by
A8,
EUCLID: 53
.= ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),j))) by
EUCLID: 53;
end;
Lm6: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8
.=
TopStruct (# the
carrier of (
Euclid 2), (
Family_open_set (
Euclid 2)) #) by
PCOMPS_1:def 5;
theorem ::
GOBOARD6:12
Th12: (
Int (
v_strip (G,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) }
proof
0
<> (
width G) by
MATRIX_0:def 10;
then 1
<= (
width G) by
NAT_1: 14;
then
A1: (
v_strip (G,
0 ))
= {
|[r, s]| : r
<= ((G
* (1,1))
`1 ) } by
GOBOARD5: 10;
thus (
Int (
v_strip (G,
0 )))
c= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) }
proof
let x be
object;
assume
A2: x
in (
Int (
v_strip (G,
0 )));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider r1 be
Real such that
A3: r1
>
0 and
A4: (
Ball (u,r1))
c= (
v_strip (G,
0 )) by
A2,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A5: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q =
|[((p
`1 )
+ (r1
/ 2)), ((p
`2 )
+
0 )]|;
(r1
/ 2)
< r1 by
A3,
XREAL_1: 216;
then q
in (
Ball (u,r1)) by
A3,
A5,
Th7;
then q
in (
v_strip (G,
0 )) by
A4;
then ex r2, s2 st q
=
|[r2, s2]| & r2
<= ((G
* (1,1))
`1 ) by
A1;
then
A6: ((p
`1 )
+ (r1
/ 2))
<= ((G
* (1,1))
`1 ) by
SPPOL_2: 1;
(p
`1 )
< ((p
`1 )
+ (r1
/ 2)) by
A3,
XREAL_1: 29,
XREAL_1: 215;
then (p
`1 )
< ((G
* (1,1))
`1 ) by
A6,
XXREAL_0: 2;
hence thesis by
A5;
end;
let x be
object;
assume x
in {
|[r, s]| : r
< ((G
* (1,1))
`1 ) };
then
consider r, s such that
A7: x
=
|[r, s]| and
A8: r
< ((G
* (1,1))
`1 );
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
A9: (
Ball (u,(((G
* (1,1))
`1 )
- r)))
c= (
v_strip (G,
0 ))
proof
let y be
object;
A10: (
Ball (u,(((G
* (1,1))
`1 )
- r)))
= { v : (
dist (u,v))
< (((G
* (1,1))
`1 )
- r) } by
METRIC_1: 17;
assume y
in (
Ball (u,(((G
* (1,1))
`1 )
- r)));
then
consider v such that
A11: v
= y and
A12: (
dist (u,v))
< (((G
* (1,1))
`1 )
- r) by
A10;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((r
- (q
`1 ))
^2 )
>=
0 & (((r
- (q
`1 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A13: (
sqrt ((r
- (q
`1 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A14: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (((G
* (1,1))
`1 )
- r) by
A12,
Th6;
then (
sqrt ((r
- (q
`1 ))
^2 ))
<= (((G
* (1,1))
`1 )
- r) by
A13,
XXREAL_0: 2;
then
A15:
|.(r
- (q
`1 )).|
<= (((G
* (1,1))
`1 )
- r) by
COMPLEX1: 72;
per cases ;
suppose r
<= (q
`1 );
then
A16: ((q
`1 )
- r)
>=
0 by
XREAL_1: 48;
|.(r
- (q
`1 )).|
=
|.(
- (r
- (q
`1 ))).| by
COMPLEX1: 52
.= ((q
`1 )
- r) by
A16,
ABSVALUE:def 1;
then (q
`1 )
<= ((G
* (1,1))
`1 ) by
A15,
XREAL_1: 9;
hence thesis by
A1,
A11,
A14;
end;
suppose r
>= (q
`1 );
then (q
`1 )
<= ((G
* (1,1))
`1 ) by
A8,
XXREAL_0: 2;
hence thesis by
A1,
A11,
A14;
end;
end;
reconsider B = (
Ball (u,(((G
* (1,1))
`1 )
- r))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
A17: B is
open by
Th3;
u
in (
Ball (u,(((G
* (1,1))
`1 )
- r))) by
A8,
Th1,
XREAL_1: 50;
hence thesis by
A7,
A9,
A17,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:13
Th13: (
Int (
v_strip (G,(
len G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r }
proof
0
<> (
width G) by
MATRIX_0:def 10;
then 1
<= (
width G) by
NAT_1: 14;
then
A1: (
v_strip (G,(
len G)))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
<= r } by
GOBOARD5: 9;
thus (
Int (
v_strip (G,(
len G))))
c= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r }
proof
let x be
object;
assume
A2: x
in (
Int (
v_strip (G,(
len G))));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider r1 be
Real such that
A3: r1
>
0 and
A4: (
Ball (u,r1))
c= (
v_strip (G,(
len G))) by
A2,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A5: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q =
|[((p
`1 )
- (r1
/ 2)), ((p
`2 )
+
0 )]|;
(r1
/ 2)
< r1 by
A3,
XREAL_1: 216;
then q
in (
Ball (u,r1)) by
A3,
A5,
Th9;
then q
in (
v_strip (G,(
len G))) by
A4;
then ex r2, s2 st q
=
|[r2, s2]| & ((G
* ((
len G),1))
`1 )
<= r2 by
A1;
then ((G
* ((
len G),1))
`1 )
<= ((p
`1 )
- (r1
/ 2)) by
SPPOL_2: 1;
then
A6: (((G
* ((
len G),1))
`1 )
+ (r1
/ 2))
<= (p
`1 ) by
XREAL_1: 19;
((G
* ((
len G),1))
`1 )
< (((G
* ((
len G),1))
`1 )
+ (r1
/ 2)) by
A3,
XREAL_1: 29,
XREAL_1: 215;
then ((G
* ((
len G),1))
`1 )
< (p
`1 ) by
A6,
XXREAL_0: 2;
hence thesis by
A5;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r };
then
consider r, s such that
A7: x
=
|[r, s]| and
A8: ((G
* ((
len G),1))
`1 )
< r;
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
A9: (
Ball (u,(r
- ((G
* ((
len G),1))
`1 ))))
c= (
v_strip (G,(
len G)))
proof
let y be
object;
A10: (
Ball (u,(r
- ((G
* ((
len G),1))
`1 ))))
= { v : (
dist (u,v))
< (r
- ((G
* ((
len G),1))
`1 )) } by
METRIC_1: 17;
assume y
in (
Ball (u,(r
- ((G
* ((
len G),1))
`1 ))));
then
consider v such that
A11: v
= y and
A12: (
dist (u,v))
< (r
- ((G
* ((
len G),1))
`1 )) by
A10;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((r
- (q
`1 ))
^2 )
>=
0 & (((r
- (q
`1 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A13: (
sqrt ((r
- (q
`1 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A14: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (r
- ((G
* ((
len G),1))
`1 )) by
A12,
Th6;
then (
sqrt ((r
- (q
`1 ))
^2 ))
<= (r
- ((G
* ((
len G),1))
`1 )) by
A13,
XXREAL_0: 2;
then
A15:
|.(r
- (q
`1 )).|
<= (r
- ((G
* ((
len G),1))
`1 )) by
COMPLEX1: 72;
per cases ;
suppose r
>= (q
`1 );
then (r
- (q
`1 ))
>=
0 by
XREAL_1: 48;
then
|.(r
- (q
`1 )).|
= (r
- (q
`1 )) by
ABSVALUE:def 1;
then ((G
* ((
len G),1))
`1 )
<= (q
`1 ) by
A15,
XREAL_1: 10;
hence thesis by
A1,
A11,
A14;
end;
suppose r
<= (q
`1 );
then ((G
* ((
len G),1))
`1 )
<= (q
`1 ) by
A8,
XXREAL_0: 2;
hence thesis by
A1,
A11,
A14;
end;
end;
reconsider B = (
Ball (u,(r
- ((G
* ((
len G),1))
`1 )))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
A16: B is
open by
Th3;
u
in (
Ball (u,(r
- ((G
* ((
len G),1))
`1 )))) by
A8,
Th1,
XREAL_1: 50;
hence thesis by
A7,
A9,
A16,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:14
Th14: 1
<= i & i
< (
len G) implies (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) }
proof
0
<> (
width G) by
MATRIX_0:def 10;
then
A1: 1
<= (
width G) by
NAT_1: 14;
assume 1
<= i & i
< (
len G);
then
A2: (
v_strip (G,i))
= {
|[r, s]| : ((G
* (i,1))
`1 )
<= r & r
<= ((G
* ((i
+ 1),1))
`1 ) } by
A1,
GOBOARD5: 8;
thus (
Int (
v_strip (G,i)))
c= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) }
proof
let x be
object;
assume
A3: x
in (
Int (
v_strip (G,i)));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider r1 be
Real such that
A4: r1
>
0 and
A5: (
Ball (u,r1))
c= (
v_strip (G,i)) by
A3,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A6: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q2 =
|[((p
`1 )
- (r1
/ 2)), ((p
`2 )
+
0 )]|;
A7: (r1
/ 2)
< r1 by
A4,
XREAL_1: 216;
then q2
in (
Ball (u,r1)) by
A4,
A6,
Th9;
then q2
in (
v_strip (G,i)) by
A5;
then ex r2, s2 st q2
=
|[r2, s2]| & ((G
* (i,1))
`1 )
<= r2 & r2
<= ((G
* ((i
+ 1),1))
`1 ) by
A2;
then ((G
* (i,1))
`1 )
<= ((p
`1 )
- (r1
/ 2)) by
SPPOL_2: 1;
then
A8: (((G
* (i,1))
`1 )
+ (r1
/ 2))
<= (p
`1 ) by
XREAL_1: 19;
set q1 =
|[((p
`1 )
+ (r1
/ 2)), ((p
`2 )
+
0 )]|;
q1
in (
Ball (u,r1)) by
A4,
A6,
A7,
Th7;
then q1
in (
v_strip (G,i)) by
A5;
then ex r2, s2 st q1
=
|[r2, s2]| & ((G
* (i,1))
`1 )
<= r2 & r2
<= ((G
* ((i
+ 1),1))
`1 ) by
A2;
then
A9: ((p
`1 )
+ (r1
/ 2))
<= ((G
* ((i
+ 1),1))
`1 ) by
SPPOL_2: 1;
((G
* (i,1))
`1 )
< (((G
* (i,1))
`1 )
+ (r1
/ 2)) by
A4,
XREAL_1: 29,
XREAL_1: 215;
then
A10: ((G
* (i,1))
`1 )
< (p
`1 ) by
A8,
XXREAL_0: 2;
(p
`1 )
< ((p
`1 )
+ (r1
/ 2)) by
A4,
XREAL_1: 29,
XREAL_1: 215;
then (p
`1 )
< ((G
* ((i
+ 1),1))
`1 ) by
A9,
XXREAL_0: 2;
hence thesis by
A6,
A10;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) };
then
consider r, s such that
A11: x
=
|[r, s]| and
A12: ((G
* (i,1))
`1 )
< r and
A13: r
< ((G
* ((i
+ 1),1))
`1 );
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(((G
* ((i
+ 1),1))
`1 )
- r)
>
0 & (r
- ((G
* (i,1))
`1 ))
>
0 by
A12,
A13,
XREAL_1: 50;
then (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r)))
>
0 by
XXREAL_0: 15;
then
A14: u
in (
Ball (u,(
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))))) by
Th1;
A15: (
Ball (u,(
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r)))))
c= (
v_strip (G,i))
proof
let y be
object;
A16: (
Ball (u,(
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r)))))
= { v : (
dist (u,v))
< (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))) } by
METRIC_1: 17;
assume y
in (
Ball (u,(
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r)))));
then
consider v such that
A17: v
= y and
A18: (
dist (u,v))
< (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))) by
A16;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((r
- (q
`1 ))
^2 )
>=
0 & (((r
- (q
`1 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A19: (
sqrt ((r
- (q
`1 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A20: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))) by
A18,
Th6;
then (
sqrt ((r
- (q
`1 ))
^2 ))
<= (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))) by
A19,
XXREAL_0: 2;
then
A21:
|.(r
- (q
`1 )).|
<= (
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))) by
COMPLEX1: 72;
then
A22:
|.(r
- (q
`1 )).|
<= (r
- ((G
* (i,1))
`1 )) by
XXREAL_0: 22;
A23:
|.(r
- (q
`1 )).|
<= (((G
* ((i
+ 1),1))
`1 )
- r) by
A21,
XXREAL_0: 22;
per cases ;
suppose
A24: r
<= (q
`1 );
then
A25: ((q
`1 )
- r)
>=
0 by
XREAL_1: 48;
|.(r
- (q
`1 )).|
=
|.(
- (r
- (q
`1 ))).| by
COMPLEX1: 52
.= ((q
`1 )
- r) by
A25,
ABSVALUE:def 1;
then
A26: (q
`1 )
<= ((G
* ((i
+ 1),1))
`1 ) by
A23,
XREAL_1: 9;
((G
* (i,1))
`1 )
<= (q
`1 ) by
A12,
A24,
XXREAL_0: 2;
hence thesis by
A2,
A17,
A20,
A26;
end;
suppose
A27: r
>= (q
`1 );
then (r
- (q
`1 ))
>=
0 by
XREAL_1: 48;
then
|.(r
- (q
`1 )).|
= (r
- (q
`1 )) by
ABSVALUE:def 1;
then
A28: ((G
* (i,1))
`1 )
<= (q
`1 ) by
A22,
XREAL_1: 10;
(q
`1 )
<= ((G
* ((i
+ 1),1))
`1 ) by
A13,
A27,
XXREAL_0: 2;
hence thesis by
A2,
A17,
A20,
A28;
end;
end;
reconsider B = (
Ball (u,(
min ((r
- ((G
* (i,1))
`1 )),(((G
* ((i
+ 1),1))
`1 )
- r))))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
B is
open by
Th3;
hence thesis by
A11,
A14,
A15,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:15
Th15: (
Int (
h_strip (G,
0 )))
= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) }
proof
0
<> (
len G) by
MATRIX_0:def 10;
then 1
<= (
len G) by
NAT_1: 14;
then
A1: (
h_strip (G,
0 ))
= {
|[r, s]| : s
<= ((G
* (1,1))
`2 ) } by
GOBOARD5: 7;
thus (
Int (
h_strip (G,
0 )))
c= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) }
proof
let x be
object;
assume
A2: x
in (
Int (
h_strip (G,
0 )));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider s1 be
Real such that
A3: s1
>
0 and
A4: (
Ball (u,s1))
c= (
h_strip (G,
0 )) by
A2,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A5: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q =
|[((p
`1 )
+
0 ), ((p
`2 )
+ (s1
/ 2))]|;
(s1
/ 2)
< s1 by
A3,
XREAL_1: 216;
then q
in (
Ball (u,s1)) by
A3,
A5,
Th8;
then q
in (
h_strip (G,
0 )) by
A4;
then ex r2, s2 st q
=
|[r2, s2]| & s2
<= ((G
* (1,1))
`2 ) by
A1;
then
A6: ((p
`2 )
+ (s1
/ 2))
<= ((G
* (1,1))
`2 ) by
SPPOL_2: 1;
(p
`2 )
< ((p
`2 )
+ (s1
/ 2)) by
A3,
XREAL_1: 29,
XREAL_1: 215;
then (p
`2 )
< ((G
* (1,1))
`2 ) by
A6,
XXREAL_0: 2;
hence thesis by
A5;
end;
let x be
object;
assume x
in {
|[r, s]| : s
< ((G
* (1,1))
`2 ) };
then
consider r, s such that
A7: x
=
|[r, s]| and
A8: s
< ((G
* (1,1))
`2 );
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
A9: (
Ball (u,(((G
* (1,1))
`2 )
- s)))
c= (
h_strip (G,
0 ))
proof
let y be
object;
A10: (
Ball (u,(((G
* (1,1))
`2 )
- s)))
= { v : (
dist (u,v))
< (((G
* (1,1))
`2 )
- s) } by
METRIC_1: 17;
assume y
in (
Ball (u,(((G
* (1,1))
`2 )
- s)));
then
consider v such that
A11: v
= y and
A12: (
dist (u,v))
< (((G
* (1,1))
`2 )
- s) by
A10;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((s
- (q
`2 ))
^2 )
>=
0 & (((s
- (q
`2 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A13: (
sqrt ((s
- (q
`2 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A14: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (((G
* (1,1))
`2 )
- s) by
A12,
Th6;
then (
sqrt ((s
- (q
`2 ))
^2 ))
<= (((G
* (1,1))
`2 )
- s) by
A13,
XXREAL_0: 2;
then
A15:
|.(s
- (q
`2 )).|
<= (((G
* (1,1))
`2 )
- s) by
COMPLEX1: 72;
per cases ;
suppose s
<= (q
`2 );
then
A16: ((q
`2 )
- s)
>=
0 by
XREAL_1: 48;
|.(s
- (q
`2 )).|
=
|.(
- (s
- (q
`2 ))).| by
COMPLEX1: 52
.= ((q
`2 )
- s) by
A16,
ABSVALUE:def 1;
then (q
`2 )
<= ((G
* (1,1))
`2 ) by
A15,
XREAL_1: 9;
hence thesis by
A1,
A11,
A14;
end;
suppose s
>= (q
`2 );
then (q
`2 )
<= ((G
* (1,1))
`2 ) by
A8,
XXREAL_0: 2;
hence thesis by
A1,
A11,
A14;
end;
end;
reconsider B = (
Ball (u,(((G
* (1,1))
`2 )
- s))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
A17: B is
open by
Th3;
u
in (
Ball (u,(((G
* (1,1))
`2 )
- s))) by
A8,
Th1,
XREAL_1: 50;
hence thesis by
A7,
A9,
A17,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:16
Th16: (
Int (
h_strip (G,(
width G))))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s }
proof
0
<> (
len G) by
MATRIX_0:def 10;
then 1
<= (
len G) by
NAT_1: 14;
then
A1: (
h_strip (G,(
width G)))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
<= s } by
GOBOARD5: 6;
thus (
Int (
h_strip (G,(
width G))))
c= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s }
proof
let x be
object;
assume
A2: x
in (
Int (
h_strip (G,(
width G))));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider s1 be
Real such that
A3: s1
>
0 and
A4: (
Ball (u,s1))
c= (
h_strip (G,(
width G))) by
A2,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A5: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q =
|[((p
`1 )
+
0 ), ((p
`2 )
- (s1
/ 2))]|;
(s1
/ 2)
< s1 by
A3,
XREAL_1: 216;
then q
in (
Ball (u,s1)) by
A3,
A5,
Th10;
then q
in (
h_strip (G,(
width G))) by
A4;
then ex r2, s2 st q
=
|[r2, s2]| & ((G
* (1,(
width G)))
`2 )
<= s2 by
A1;
then ((G
* (1,(
width G)))
`2 )
<= ((p
`2 )
- (s1
/ 2)) by
SPPOL_2: 1;
then
A6: (((G
* (1,(
width G)))
`2 )
+ (s1
/ 2))
<= (p
`2 ) by
XREAL_1: 19;
((G
* (1,(
width G)))
`2 )
< (((G
* (1,(
width G)))
`2 )
+ (s1
/ 2)) by
A3,
XREAL_1: 29,
XREAL_1: 215;
then ((G
* (1,(
width G)))
`2 )
< (p
`2 ) by
A6,
XXREAL_0: 2;
hence thesis by
A5;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s };
then
consider r, s such that
A7: x
=
|[r, s]| and
A8: ((G
* (1,(
width G)))
`2 )
< s;
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
A9: (
Ball (u,(s
- ((G
* (1,(
width G)))
`2 ))))
c= (
h_strip (G,(
width G)))
proof
let y be
object;
A10: (
Ball (u,(s
- ((G
* (1,(
width G)))
`2 ))))
= { v : (
dist (u,v))
< (s
- ((G
* (1,(
width G)))
`2 )) } by
METRIC_1: 17;
assume y
in (
Ball (u,(s
- ((G
* (1,(
width G)))
`2 ))));
then
consider v such that
A11: v
= y and
A12: (
dist (u,v))
< (s
- ((G
* (1,(
width G)))
`2 )) by
A10;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((s
- (q
`2 ))
^2 )
>=
0 & (((s
- (q
`2 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A13: (
sqrt ((s
- (q
`2 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A14: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (s
- ((G
* (1,(
width G)))
`2 )) by
A12,
Th6;
then (
sqrt ((s
- (q
`2 ))
^2 ))
<= (s
- ((G
* (1,(
width G)))
`2 )) by
A13,
XXREAL_0: 2;
then
A15:
|.(s
- (q
`2 )).|
<= (s
- ((G
* (1,(
width G)))
`2 )) by
COMPLEX1: 72;
per cases ;
suppose s
>= (q
`2 );
then (s
- (q
`2 ))
>=
0 by
XREAL_1: 48;
then
|.(s
- (q
`2 )).|
= (s
- (q
`2 )) by
ABSVALUE:def 1;
then ((G
* (1,(
width G)))
`2 )
<= (q
`2 ) by
A15,
XREAL_1: 10;
hence thesis by
A1,
A11,
A14;
end;
suppose s
<= (q
`2 );
then ((G
* (1,(
width G)))
`2 )
<= (q
`2 ) by
A8,
XXREAL_0: 2;
hence thesis by
A1,
A11,
A14;
end;
end;
reconsider B = (
Ball (u,(s
- ((G
* (1,(
width G)))
`2 )))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
A16: B is
open by
Th3;
u
in (
Ball (u,(s
- ((G
* (1,(
width G)))
`2 )))) by
A8,
Th1,
XREAL_1: 50;
hence thesis by
A7,
A9,
A16,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:17
Th17: 1
<= j & j
< (
width G) implies (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
0
<> (
len G) by
MATRIX_0:def 10;
then
A1: 1
<= (
len G) by
NAT_1: 14;
assume 1
<= j & j
< (
width G);
then
A2: (
h_strip (G,j))
= {
|[r, s]| : ((G
* (1,j))
`2 )
<= s & s
<= ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
GOBOARD5: 5;
thus (
Int (
h_strip (G,j)))
c= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
let x be
object;
assume
A3: x
in (
Int (
h_strip (G,j)));
then
reconsider u = x as
Point of (
Euclid 2) by
Lm6;
consider s1 be
Real such that
A4: s1
>
0 and
A5: (
Ball (u,s1))
c= (
h_strip (G,j)) by
A3,
Th5;
reconsider p = u as
Point of (
TOP-REAL 2) by
Lm6;
A6: p
=
|[(p
`1 ), (p
`2 )]| by
EUCLID: 53;
set q2 =
|[((p
`1 )
+
0 ), ((p
`2 )
- (s1
/ 2))]|;
A7: (s1
/ 2)
< s1 by
A4,
XREAL_1: 216;
then q2
in (
Ball (u,s1)) by
A4,
A6,
Th10;
then q2
in (
h_strip (G,j)) by
A5;
then ex r2, s2 st q2
=
|[r2, s2]| & ((G
* (1,j))
`2 )
<= s2 & s2
<= ((G
* (1,(j
+ 1)))
`2 ) by
A2;
then ((G
* (1,j))
`2 )
<= ((p
`2 )
- (s1
/ 2)) by
SPPOL_2: 1;
then
A8: (((G
* (1,j))
`2 )
+ (s1
/ 2))
<= (p
`2 ) by
XREAL_1: 19;
set q1 =
|[((p
`1 )
+
0 ), ((p
`2 )
+ (s1
/ 2))]|;
q1
in (
Ball (u,s1)) by
A4,
A6,
A7,
Th8;
then q1
in (
h_strip (G,j)) by
A5;
then ex r2, s2 st q1
=
|[r2, s2]| & ((G
* (1,j))
`2 )
<= s2 & s2
<= ((G
* (1,(j
+ 1)))
`2 ) by
A2;
then
A9: ((p
`2 )
+ (s1
/ 2))
<= ((G
* (1,(j
+ 1)))
`2 ) by
SPPOL_2: 1;
((G
* (1,j))
`2 )
< (((G
* (1,j))
`2 )
+ (s1
/ 2)) by
A4,
XREAL_1: 29,
XREAL_1: 215;
then
A10: ((G
* (1,j))
`2 )
< (p
`2 ) by
A8,
XXREAL_0: 2;
(p
`2 )
< ((p
`2 )
+ (s1
/ 2)) by
A4,
XREAL_1: 29,
XREAL_1: 215;
then (p
`2 )
< ((G
* (1,(j
+ 1)))
`2 ) by
A9,
XXREAL_0: 2;
hence thesis by
A6,
A10;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) };
then
consider r, s such that
A11: x
=
|[r, s]| and
A12: ((G
* (1,j))
`2 )
< s and
A13: s
< ((G
* (1,(j
+ 1)))
`2 );
reconsider u =
|[r, s]| as
Point of (
Euclid 2) by
TOPREAL3: 8;
(((G
* (1,(j
+ 1)))
`2 )
- s)
>
0 & (s
- ((G
* (1,j))
`2 ))
>
0 by
A12,
A13,
XREAL_1: 50;
then (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s)))
>
0 by
XXREAL_0: 15;
then
A14: u
in (
Ball (u,(
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))))) by
Th1;
A15: (
Ball (u,(
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s)))))
c= (
h_strip (G,j))
proof
let y be
object;
A16: (
Ball (u,(
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s)))))
= { v : (
dist (u,v))
< (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))) } by
METRIC_1: 17;
assume y
in (
Ball (u,(
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s)))));
then
consider v such that
A17: v
= y and
A18: (
dist (u,v))
< (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))) by
A16;
reconsider q = v as
Point of (
TOP-REAL 2) by
TOPREAL3: 8;
((s
- (q
`2 ))
^2 )
>=
0 & (((s
- (q
`2 ))
^2 )
+
0 )
<= (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )) by
XREAL_1: 6,
XREAL_1: 63;
then
A19: (
sqrt ((s
- (q
`2 ))
^2 ))
<= (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 ))) by
SQUARE_1: 26;
A20: q
=
|[(q
`1 ), (q
`2 )]| by
EUCLID: 53;
then (
sqrt (((r
- (q
`1 ))
^2 )
+ ((s
- (q
`2 ))
^2 )))
< (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))) by
A18,
Th6;
then (
sqrt ((s
- (q
`2 ))
^2 ))
<= (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))) by
A19,
XXREAL_0: 2;
then
A21:
|.(s
- (q
`2 )).|
<= (
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))) by
COMPLEX1: 72;
then
A22:
|.(s
- (q
`2 )).|
<= (s
- ((G
* (1,j))
`2 )) by
XXREAL_0: 22;
A23:
|.(s
- (q
`2 )).|
<= (((G
* (1,(j
+ 1)))
`2 )
- s) by
A21,
XXREAL_0: 22;
per cases ;
suppose
A24: s
<= (q
`2 );
then
A25: ((q
`2 )
- s)
>=
0 by
XREAL_1: 48;
|.(s
- (q
`2 )).|
=
|.(
- (s
- (q
`2 ))).| by
COMPLEX1: 52
.= ((q
`2 )
- s) by
A25,
ABSVALUE:def 1;
then
A26: (q
`2 )
<= ((G
* (1,(j
+ 1)))
`2 ) by
A23,
XREAL_1: 9;
((G
* (1,j))
`2 )
<= (q
`2 ) by
A12,
A24,
XXREAL_0: 2;
hence thesis by
A2,
A17,
A20,
A26;
end;
suppose
A27: s
>= (q
`2 );
then (s
- (q
`2 ))
>=
0 by
XREAL_1: 48;
then
|.(s
- (q
`2 )).|
= (s
- (q
`2 )) by
ABSVALUE:def 1;
then
A28: ((G
* (1,j))
`2 )
<= (q
`2 ) by
A22,
XREAL_1: 10;
(q
`2 )
<= ((G
* (1,(j
+ 1)))
`2 ) by
A13,
A27,
XXREAL_0: 2;
hence thesis by
A2,
A17,
A20,
A28;
end;
end;
reconsider B = (
Ball (u,(
min ((s
- ((G
* (1,j))
`2 )),(((G
* (1,(j
+ 1)))
`2 )
- s))))) as
Subset of (
TOP-REAL 2) by
TOPREAL3: 8;
B is
open by
Th3;
hence thesis by
A11,
A14,
A15,
TOPS_1: 22;
end;
theorem ::
GOBOARD6:18
Th18: (
Int (
cell (G,
0 ,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & s
< ((G
* (1,1))
`2 ) }
proof
(
cell (G,
0 ,
0 ))
= ((
v_strip (G,
0 ))
/\ (
h_strip (G,
0 ))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,
0 ,
0 )))
= ((
Int (
v_strip (G,
0 )))
/\ (
Int (
h_strip (G,
0 )))) by
TOPS_1: 17;
A2: (
Int (
h_strip (G,
0 )))
= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) } by
Th15;
A3: (
Int (
v_strip (G,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) } by
Th12;
thus (
Int (
cell (G,
0 ,
0 )))
c= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & s
< ((G
* (1,1))
`2 ) }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,
0 ,
0 )));
then x
in (
Int (
v_strip (G,
0 ))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: r1
< ((G
* (1,1))
`1 ) by
A3;
x
in (
Int (
h_strip (G,
0 ))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: s2
< ((G
* (1,1))
`2 ) by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & s
< ((G
* (1,1))
`2 ) };
then
A9: ex r, s st x
=
|[r, s]| & r
< ((G
* (1,1))
`1 ) & s
< ((G
* (1,1))
`2 );
then
A10: x
in (
Int (
h_strip (G,
0 ))) by
A2;
x
in (
Int (
v_strip (G,
0 ))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:19
Th19: (
Int (
cell (G,
0 ,(
width G))))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s }
proof
(
cell (G,
0 ,(
width G)))
= ((
v_strip (G,
0 ))
/\ (
h_strip (G,(
width G)))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,
0 ,(
width G))))
= ((
Int (
v_strip (G,
0 )))
/\ (
Int (
h_strip (G,(
width G))))) by
TOPS_1: 17;
A2: (
Int (
h_strip (G,(
width G))))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s } by
Th16;
A3: (
Int (
v_strip (G,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) } by
Th12;
thus (
Int (
cell (G,
0 ,(
width G))))
c= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,
0 ,(
width G))));
then x
in (
Int (
v_strip (G,
0 ))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: r1
< ((G
* (1,1))
`1 ) by
A3;
x
in (
Int (
h_strip (G,(
width G)))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: ((G
* (1,(
width G)))
`2 )
< s2 by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s };
then
A9: ex r, s st x
=
|[r, s]| & r
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s;
then
A10: x
in (
Int (
h_strip (G,(
width G)))) by
A2;
x
in (
Int (
v_strip (G,
0 ))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:20
Th20: 1
<= j & j
< (
width G) implies (
Int (
cell (G,
0 ,j)))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
(
cell (G,
0 ,j))
= ((
v_strip (G,
0 ))
/\ (
h_strip (G,j))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,
0 ,j)))
= ((
Int (
v_strip (G,
0 )))
/\ (
Int (
h_strip (G,j)))) by
TOPS_1: 17;
assume 1
<= j & j
< (
width G);
then
A2: (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
Th17;
A3: (
Int (
v_strip (G,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) } by
Th12;
thus (
Int (
cell (G,
0 ,j)))
c= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,
0 ,j)));
then x
in (
Int (
v_strip (G,
0 ))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: r1
< ((G
* (1,1))
`1 ) by
A3;
x
in (
Int (
h_strip (G,j))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: ((G
* (1,j))
`2 )
< s2 & s2
< ((G
* (1,(j
+ 1)))
`2 ) by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) };
then
A9: ex r, s st x
=
|[r, s]| & r
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 );
then
A10: x
in (
Int (
h_strip (G,j))) by
A2;
x
in (
Int (
v_strip (G,
0 ))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:21
Th21: (
Int (
cell (G,(
len G),
0 )))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & s
< ((G
* (1,1))
`2 ) }
proof
(
cell (G,(
len G),
0 ))
= ((
v_strip (G,(
len G)))
/\ (
h_strip (G,
0 ))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,(
len G),
0 )))
= ((
Int (
v_strip (G,(
len G))))
/\ (
Int (
h_strip (G,
0 )))) by
TOPS_1: 17;
A2: (
Int (
h_strip (G,
0 )))
= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) } by
Th15;
A3: (
Int (
v_strip (G,(
len G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r } by
Th13;
thus (
Int (
cell (G,(
len G),
0 )))
c= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & s
< ((G
* (1,1))
`2 ) }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,(
len G),
0 )));
then x
in (
Int (
v_strip (G,(
len G)))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: ((G
* ((
len G),1))
`1 )
< r1 by
A3;
x
in (
Int (
h_strip (G,
0 ))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: s2
< ((G
* (1,1))
`2 ) by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & s
< ((G
* (1,1))
`2 ) };
then
A9: ex r, s st x
=
|[r, s]| & ((G
* ((
len G),1))
`1 )
< r & s
< ((G
* (1,1))
`2 );
then
A10: x
in (
Int (
h_strip (G,
0 ))) by
A2;
x
in (
Int (
v_strip (G,(
len G)))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:22
Th22: (
Int (
cell (G,(
len G),(
width G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,(
width G)))
`2 )
< s }
proof
(
cell (G,(
len G),(
width G)))
= ((
v_strip (G,(
len G)))
/\ (
h_strip (G,(
width G)))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,(
len G),(
width G))))
= ((
Int (
v_strip (G,(
len G))))
/\ (
Int (
h_strip (G,(
width G))))) by
TOPS_1: 17;
A2: (
Int (
h_strip (G,(
width G))))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s } by
Th16;
A3: (
Int (
v_strip (G,(
len G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r } by
Th13;
thus (
Int (
cell (G,(
len G),(
width G))))
c= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,(
width G)))
`2 )
< s }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,(
len G),(
width G))));
then x
in (
Int (
v_strip (G,(
len G)))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: ((G
* ((
len G),1))
`1 )
< r1 by
A3;
x
in (
Int (
h_strip (G,(
width G)))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: ((G
* (1,(
width G)))
`2 )
< s2 by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,(
width G)))
`2 )
< s };
then
A9: ex r, s st x
=
|[r, s]| & ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,(
width G)))
`2 )
< s;
then
A10: x
in (
Int (
h_strip (G,(
width G)))) by
A2;
x
in (
Int (
v_strip (G,(
len G)))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:23
Th23: 1
<= j & j
< (
width G) implies (
Int (
cell (G,(
len G),j)))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
(
cell (G,(
len G),j))
= ((
v_strip (G,(
len G)))
/\ (
h_strip (G,j))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,(
len G),j)))
= ((
Int (
v_strip (G,(
len G))))
/\ (
Int (
h_strip (G,j)))) by
TOPS_1: 17;
assume 1
<= j & j
< (
width G);
then
A2: (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
Th17;
A3: (
Int (
v_strip (G,(
len G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r } by
Th13;
thus (
Int (
cell (G,(
len G),j)))
c= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,(
len G),j)));
then x
in (
Int (
v_strip (G,(
len G)))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: ((G
* ((
len G),1))
`1 )
< r1 by
A3;
x
in (
Int (
h_strip (G,j))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: ((G
* (1,j))
`2 )
< s2 & s2
< ((G
* (1,(j
+ 1)))
`2 ) by
A2;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) };
then
A9: ex r, s st x
=
|[r, s]| & ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 );
then
A10: x
in (
Int (
h_strip (G,j))) by
A2;
x
in (
Int (
v_strip (G,(
len G)))) by
A3,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:24
Th24: 1
<= i & i
< (
len G) implies (
Int (
cell (G,i,
0 )))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & s
< ((G
* (1,1))
`2 ) }
proof
(
cell (G,i,
0 ))
= ((
v_strip (G,i))
/\ (
h_strip (G,
0 ))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,i,
0 )))
= ((
Int (
v_strip (G,i)))
/\ (
Int (
h_strip (G,
0 )))) by
TOPS_1: 17;
assume 1
<= i & i
< (
len G);
then
A2: (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
Th14;
A3: (
Int (
h_strip (G,
0 )))
= {
|[r, s]| : s
< ((G
* (1,1))
`2 ) } by
Th15;
thus (
Int (
cell (G,i,
0 )))
c= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & s
< ((G
* (1,1))
`2 ) }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,i,
0 )));
then x
in (
Int (
v_strip (G,i))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: ((G
* (i,1))
`1 )
< r1 & r1
< ((G
* ((i
+ 1),1))
`1 ) by
A2;
x
in (
Int (
h_strip (G,
0 ))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: s2
< ((G
* (1,1))
`2 ) by
A3;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & s
< ((G
* (1,1))
`2 ) };
then
A9: ex r, s st x
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & s
< ((G
* (1,1))
`2 );
then
A10: x
in (
Int (
h_strip (G,
0 ))) by
A3;
x
in (
Int (
v_strip (G,i))) by
A2,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:25
Th25: 1
<= i & i
< (
len G) implies (
Int (
cell (G,i,(
width G))))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s }
proof
(
cell (G,i,(
width G)))
= ((
v_strip (G,i))
/\ (
h_strip (G,(
width G)))) by
GOBOARD5:def 3;
then
A1: (
Int (
cell (G,i,(
width G))))
= ((
Int (
v_strip (G,i)))
/\ (
Int (
h_strip (G,(
width G))))) by
TOPS_1: 17;
assume 1
<= i & i
< (
len G);
then
A2: (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
Th14;
A3: (
Int (
h_strip (G,(
width G))))
= {
|[r, s]| : ((G
* (1,(
width G)))
`2 )
< s } by
Th16;
thus (
Int (
cell (G,i,(
width G))))
c= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s }
proof
let x be
object;
assume
A4: x
in (
Int (
cell (G,i,(
width G))));
then x
in (
Int (
v_strip (G,i))) by
A1,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A5: x
=
|[r1, s1]| and
A6: ((G
* (i,1))
`1 )
< r1 & r1
< ((G
* ((i
+ 1),1))
`1 ) by
A2;
x
in (
Int (
h_strip (G,(
width G)))) by
A1,
A4,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A7: x
=
|[r2, s2]| and
A8: ((G
* (1,(
width G)))
`2 )
< s2 by
A3;
s1
= s2 by
A5,
A7,
SPPOL_2: 1;
hence thesis by
A5,
A6,
A8;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s };
then
A9: ex r, s st x
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s;
then
A10: x
in (
Int (
h_strip (G,(
width G)))) by
A3;
x
in (
Int (
v_strip (G,i))) by
A2,
A9;
hence thesis by
A1,
A10,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:26
Th26: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies (
Int (
cell (G,i,j)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
assume that
A1: 1
<= i & i
< (
len G) and
A2: 1
<= j & j
< (
width G);
A3: (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A2,
Th17;
(
cell (G,i,j))
= ((
v_strip (G,i))
/\ (
h_strip (G,j))) by
GOBOARD5:def 3;
then
A4: (
Int (
cell (G,i,j)))
= ((
Int (
v_strip (G,i)))
/\ (
Int (
h_strip (G,j)))) by
TOPS_1: 17;
A5: (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
A1,
Th14;
thus (
Int (
cell (G,i,j)))
c= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) }
proof
let x be
object;
assume
A6: x
in (
Int (
cell (G,i,j)));
then x
in (
Int (
v_strip (G,i))) by
A4,
XBOOLE_0:def 4;
then
consider r1, s1 such that
A7: x
=
|[r1, s1]| and
A8: ((G
* (i,1))
`1 )
< r1 & r1
< ((G
* ((i
+ 1),1))
`1 ) by
A5;
x
in (
Int (
h_strip (G,j))) by
A4,
A6,
XBOOLE_0:def 4;
then
consider r2, s2 such that
A9: x
=
|[r2, s2]| and
A10: ((G
* (1,j))
`2 )
< s2 & s2
< ((G
* (1,(j
+ 1)))
`2 ) by
A3;
s1
= s2 by
A7,
A9,
SPPOL_2: 1;
hence thesis by
A7,
A8,
A10;
end;
let x be
object;
assume x
in {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) };
then
A11: ex r, s st x
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 );
then
A12: x
in (
Int (
h_strip (G,j))) by
A3;
x
in (
Int (
v_strip (G,i))) by
A5,
A11;
hence thesis by
A4,
A12,
XBOOLE_0:def 4;
end;
theorem ::
GOBOARD6:27
1
<= j & j
<= (
width G) & p
in (
Int (
h_strip (G,j))) implies (p
`2 )
> ((G
* (1,j))
`2 )
proof
assume that
A1: 1
<= j and
A2: j
<= (
width G) and
A3: p
in (
Int (
h_strip (G,j)));
per cases by
A2,
XXREAL_0: 1;
suppose j
= (
width G);
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s } by
Th16;
then ex r, s st p
=
|[r, s]| & ((G
* (1,j))
`2 )
< s by
A3;
hence thesis by
EUCLID: 52;
end;
suppose j
< (
width G);
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
Th17;
then ex r, s st p
=
|[r, s]| & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) by
A3;
hence thesis by
EUCLID: 52;
end;
end;
theorem ::
GOBOARD6:28
j
< (
width G) & p
in (
Int (
h_strip (G,j))) implies (p
`2 )
< ((G
* (1,(j
+ 1)))
`2 )
proof
assume that
A1: j
< (
width G) and
A2: p
in (
Int (
h_strip (G,j)));
per cases by
NAT_1: 14;
suppose j
=
0 ;
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : s
< ((G
* (1,(j
+ 1)))
`2 ) } by
Th15;
then ex r, s st p
=
|[r, s]| & ((G
* (1,(j
+ 1)))
`2 )
> s by
A2;
hence thesis by
EUCLID: 52;
end;
suppose j
>= 1;
then (
Int (
h_strip (G,j)))
= {
|[r, s]| : ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
Th17;
then ex r, s st p
=
|[r, s]| & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) by
A2;
hence thesis by
EUCLID: 52;
end;
end;
theorem ::
GOBOARD6:29
1
<= i & i
<= (
len G) & p
in (
Int (
v_strip (G,i))) implies (p
`1 )
> ((G
* (i,1))
`1 )
proof
assume that
A1: 1
<= i and
A2: i
<= (
len G) and
A3: p
in (
Int (
v_strip (G,i)));
per cases by
A2,
XXREAL_0: 1;
suppose i
= (
len G);
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r } by
Th13;
then ex r, s st p
=
|[r, s]| & ((G
* (i,1))
`1 )
< r by
A3;
hence thesis by
EUCLID: 52;
end;
suppose i
< (
len G);
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
A1,
Th14;
then ex r, s st p
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) by
A3;
hence thesis by
EUCLID: 52;
end;
end;
theorem ::
GOBOARD6:30
i
< (
len G) & p
in (
Int (
v_strip (G,i))) implies (p
`1 )
< ((G
* ((i
+ 1),1))
`1 )
proof
assume that
A1: i
< (
len G) and
A2: p
in (
Int (
v_strip (G,i)));
per cases by
NAT_1: 14;
suppose i
=
0 ;
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : r
< ((G
* ((i
+ 1),1))
`1 ) } by
Th12;
then ex r, s st p
=
|[r, s]| & ((G
* ((i
+ 1),1))
`1 )
> r by
A2;
hence thesis by
EUCLID: 52;
end;
suppose i
>= 1;
then (
Int (
v_strip (G,i)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) } by
A1,
Th14;
then ex r, s st p
=
|[r, s]| & ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) by
A2;
hence thesis by
EUCLID: 52;
end;
end;
theorem ::
GOBOARD6:31
Th31: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
in (
Int (
cell (G,i,j)))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
width G);
A5: j
< (j
+ 1) by
XREAL_1: 29;
set r1 = ((G
* (i,j))
`1 ), s1 = ((G
* (i,j))
`2 ), r2 = ((G
* ((i
+ 1),(j
+ 1)))
`1 ), s2 = ((G
* ((i
+ 1),(j
+ 1)))
`2 );
A6: 1
<= (i
+ 1) & 1
<= (j
+ 1) by
NAT_1: 11;
then
A7: ((G
* (1,(j
+ 1)))
`2 )
= s2 by
A2,
A4,
GOBOARD5: 1;
i
< (
len G) & j
< (
width G) by
A2,
A4,
NAT_1: 13;
then
A8: (
Int (
cell (G,i,j)))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A3,
Th26;
(G
* (i,j))
=
|[r1, s1]| & (G
* ((i
+ 1),(j
+ 1)))
=
|[r2, s2]| by
EUCLID: 53;
then ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))
=
|[(r1
+ r2), (s1
+ s2)]| by
EUCLID: 56;
then
A9: ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
=
|[((1
/ 2)
* (r1
+ r2)), ((1
/ 2)
* (s1
+ s2))]| by
EUCLID: 58;
i
<= (i
+ 1) by
NAT_1: 11;
then
A10: i
<= (
len G) by
A2,
XXREAL_0: 2;
then
A11: 1
<= (
len G) by
A1,
XXREAL_0: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then
A12: j
<= (
width G) by
A4,
XXREAL_0: 2;
then
A13: 1
<= (
width G) by
A3,
XXREAL_0: 2;
A14: ((G
* (i,1))
`1 )
= r1 by
A1,
A3,
A10,
A12,
GOBOARD5: 2;
((G
* (1,j))
`2 )
= s1 by
A1,
A3,
A10,
A12,
GOBOARD5: 1;
then
A15: s1
< s2 by
A3,
A4,
A7,
A11,
A5,
GOBOARD5: 4;
then (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then ((1
/ 2)
* (s1
+ s1))
< ((1
/ 2)
* (s1
+ s2)) by
XREAL_1: 68;
then
A16: ((G
* (1,j))
`2 )
< ((1
/ 2)
* (s1
+ s2)) by
A1,
A3,
A10,
A12,
GOBOARD5: 1;
A17: i
< (i
+ 1) by
XREAL_1: 29;
((G
* ((i
+ 1),1))
`1 )
= r2 by
A2,
A4,
A6,
GOBOARD5: 2;
then
A18: r1
< r2 by
A1,
A2,
A14,
A13,
A17,
GOBOARD5: 3;
then (r1
+ r2)
< (r2
+ r2) by
XREAL_1: 6;
then ((1
/ 2)
* (r1
+ r2))
< ((1
/ 2)
* (r2
+ r2)) by
XREAL_1: 68;
then
A19: ((1
/ 2)
* (r1
+ r2))
< ((G
* ((i
+ 1),1))
`1 ) by
A2,
A4,
A6,
GOBOARD5: 2;
(s1
+ s2)
< (s2
+ s2) by
A15,
XREAL_1: 6;
then ((1
/ 2)
* (s1
+ s2))
< ((1
/ 2)
* (s2
+ s2)) by
XREAL_1: 68;
then
A20: ((1
/ 2)
* (s1
+ s2))
< ((G
* (1,(j
+ 1)))
`2 ) by
A2,
A4,
A6,
GOBOARD5: 1;
(r1
+ r1)
< (r1
+ r2) by
A18,
XREAL_1: 6;
then ((1
/ 2)
* (r1
+ r1))
< ((1
/ 2)
* (r1
+ r2)) by
XREAL_1: 68;
hence thesis by
A9,
A14,
A19,
A16,
A20,
A8;
end;
theorem ::
GOBOARD6:32
Th32: 1
<= i & (i
+ 1)
<= (
len G) implies (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|)
in (
Int (
cell (G,i,(
width G))))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G);
set r1 = ((G
* (i,(
width G)))
`1 ), s1 = ((G
* (i,(
width G)))
`2 ), r2 = ((G
* ((i
+ 1),(
width G)))
`1 );
(
width G)
<>
0 by
MATRIX_0:def 10;
then
A3: 1
<= (
width G) by
NAT_1: 14;
i
< (
len G) by
A2,
NAT_1: 13;
then
A4: (
Int (
cell (G,i,(
width G))))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s } by
A1,
Th25;
(
width G)
<>
0 by
MATRIX_0:def 10;
then
A5: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A6: r1
< r2 by
A1,
A2,
A5,
GOBOARD5: 3;
then (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A7: ((1
/ 2)
* (r1
+ r1))
< ((1
/ 2)
* (r1
+ r2)) by
XREAL_1: 68;
A8: i
< (
len G) by
A2,
NAT_1: 13;
then
A9: ((G
* (1,(
width G)))
`2 )
= s1 by
A1,
A3,
GOBOARD5: 1;
then
A10: ((G
* (1,(
width G)))
`2 )
< (s1
+ 1) by
XREAL_1: 29;
A11: 1
<= (i
+ 1) by
NAT_1: 11;
then ((G
* (1,(
width G)))
`2 )
= ((G
* ((i
+ 1),(
width G)))
`2 ) by
A2,
A3,
GOBOARD5: 1;
then (G
* (i,(
width G)))
=
|[r1, s1]| & (G
* ((i
+ 1),(
width G)))
=
|[r2, s1]| by
A9,
EUCLID: 53;
then ((1
/ 2)
* (s1
+ s1))
= s1 & ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))
=
|[(r1
+ r2), (s1
+ s1)]| by
EUCLID: 56;
then ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
=
|[((1
/ 2)
* (r1
+ r2)), s1]| by
EUCLID: 58;
then
A12: (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|)
=
|[(((1
/ 2)
* (r1
+ r2))
+
0 ), (s1
+ 1)]| by
EUCLID: 56;
(r1
+ r2)
< (r2
+ r2) by
A6,
XREAL_1: 6;
then ((1
/ 2)
* (r1
+ r2))
< ((1
/ 2)
* (r2
+ r2)) by
XREAL_1: 68;
then
A13: ((1
/ 2)
* (r1
+ r2))
< ((G
* ((i
+ 1),1))
`1 ) by
A2,
A11,
A3,
GOBOARD5: 2;
((G
* (i,1))
`1 )
= r1 by
A1,
A8,
A3,
GOBOARD5: 2;
hence thesis by
A12,
A7,
A13,
A10,
A4;
end;
theorem ::
GOBOARD6:33
Th33: 1
<= i & (i
+ 1)
<= (
len G) implies (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|)
in (
Int (
cell (G,i,
0 )))
proof
assume that
A1: 1
<= i and
A2: (i
+ 1)
<= (
len G);
set r1 = ((G
* (i,1))
`1 ), s1 = ((G
* (i,1))
`2 ), r2 = ((G
* ((i
+ 1),1))
`1 );
(
width G)
<>
0 by
MATRIX_0:def 10;
then
A3: 1
<= (
width G) by
NAT_1: 14;
(
width G)
<>
0 by
MATRIX_0:def 10;
then
A4: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A5: r1
< r2 by
A1,
A2,
A4,
GOBOARD5: 3;
then (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A6: ((1
/ 2)
* (r1
+ r1))
< ((1
/ 2)
* (r1
+ r2)) by
XREAL_1: 68;
i
< (
len G) by
A2,
NAT_1: 13;
then
A7: ((G
* (1,1))
`2 )
= s1 by
A1,
A3,
GOBOARD5: 1;
then s1
< (((G
* (1,1))
`2 )
+ 1) by
XREAL_1: 29;
then
A8: (s1
- 1)
< ((G
* (1,1))
`2 ) by
XREAL_1: 19;
1
<= (i
+ 1) by
NAT_1: 11;
then ((G
* (1,1))
`2 )
= ((G
* ((i
+ 1),1))
`2 ) by
A2,
A3,
GOBOARD5: 1;
then (G
* (i,1))
=
|[r1, s1]| & (G
* ((i
+ 1),1))
=
|[r2, s1]| by
A7,
EUCLID: 53;
then ((1
/ 2)
* (s1
+ s1))
= s1 & ((G
* (i,1))
+ (G
* ((i
+ 1),1)))
=
|[(r1
+ r2), (s1
+ s1)]| by
EUCLID: 56;
then ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
=
|[((1
/ 2)
* (r1
+ r2)), s1]| by
EUCLID: 58;
then
A9: (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|)
=
|[(((1
/ 2)
* (r1
+ r2))
-
0 ), (s1
- 1)]| by
EUCLID: 62
.=
|[((1
/ 2)
* (r1
+ r2)), (s1
- 1)]|;
(r1
+ r2)
< (r2
+ r2) by
A5,
XREAL_1: 6;
then
A10: ((1
/ 2)
* (r1
+ r2))
< ((1
/ 2)
* (r2
+ r2)) by
XREAL_1: 68;
i
< (
len G) by
A2,
NAT_1: 13;
then (
Int (
cell (G,i,
0 )))
= {
|[r, s]| : ((G
* (i,1))
`1 )
< r & r
< ((G
* ((i
+ 1),1))
`1 ) & s
< ((G
* (1,1))
`2 ) } by
A1,
Th24;
hence thesis by
A9,
A6,
A10,
A8;
end;
theorem ::
GOBOARD6:34
Th34: 1
<= j & (j
+ 1)
<= (
width G) implies (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|)
in (
Int (
cell (G,(
len G),j)))
proof
assume that
A1: 1
<= j and
A2: (j
+ 1)
<= (
width G);
set s1 = ((G
* ((
len G),j))
`2 ), r1 = ((G
* ((
len G),j))
`1 ), s2 = ((G
* ((
len G),(j
+ 1)))
`2 );
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A3: 1
<= (
len G) by
NAT_1: 14;
j
< (
width G) by
A2,
NAT_1: 13;
then
A4: (
Int (
cell (G,(
len G),j)))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
Th23;
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A5: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A6: s1
< s2 by
A1,
A2,
A5,
GOBOARD5: 4;
then (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A7: ((1
/ 2)
* (s1
+ s1))
< ((1
/ 2)
* (s1
+ s2)) by
XREAL_1: 68;
A8: j
< (
width G) by
A2,
NAT_1: 13;
then
A9: ((G
* ((
len G),1))
`1 )
= r1 by
A1,
A3,
GOBOARD5: 2;
then
A10: ((G
* ((
len G),1))
`1 )
< (r1
+ 1) by
XREAL_1: 29;
A11: 1
<= (j
+ 1) by
NAT_1: 11;
then ((G
* ((
len G),1))
`1 )
= ((G
* ((
len G),(j
+ 1)))
`1 ) by
A2,
A3,
GOBOARD5: 2;
then (G
* ((
len G),j))
=
|[r1, s1]| & (G
* ((
len G),(j
+ 1)))
=
|[r1, s2]| by
A9,
EUCLID: 53;
then ((1
/ 2)
* (r1
+ r1))
= r1 & ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))
=
|[(r1
+ r1), (s1
+ s2)]| by
EUCLID: 56;
then ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
=
|[r1, ((1
/ 2)
* (s1
+ s2))]| by
EUCLID: 58;
then
A12: (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|)
=
|[(r1
+ 1), (((1
/ 2)
* (s1
+ s2))
+
0 )]| by
EUCLID: 56;
(s1
+ s2)
< (s2
+ s2) by
A6,
XREAL_1: 6;
then ((1
/ 2)
* (s1
+ s2))
< ((1
/ 2)
* (s2
+ s2)) by
XREAL_1: 68;
then
A13: ((1
/ 2)
* (s1
+ s2))
< ((G
* (1,(j
+ 1)))
`2 ) by
A2,
A11,
A3,
GOBOARD5: 1;
((G
* (1,j))
`2 )
= s1 by
A1,
A8,
A3,
GOBOARD5: 1;
hence thesis by
A12,
A7,
A13,
A10,
A4;
end;
theorem ::
GOBOARD6:35
Th35: 1
<= j & (j
+ 1)
<= (
width G) implies (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|)
in (
Int (
cell (G,
0 ,j)))
proof
assume that
A1: 1
<= j and
A2: (j
+ 1)
<= (
width G);
set s1 = ((G
* (1,j))
`2 ), r1 = ((G
* (1,j))
`1 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A3: 1
<= (
len G) by
NAT_1: 14;
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A4: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A5: s1
< s2 by
A1,
A2,
A4,
GOBOARD5: 4;
then (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A6: ((1
/ 2)
* (s1
+ s1))
< ((1
/ 2)
* (s1
+ s2)) by
XREAL_1: 68;
j
< (
width G) by
A2,
NAT_1: 13;
then
A7: ((G
* (1,1))
`1 )
= r1 by
A1,
A3,
GOBOARD5: 2;
then r1
< (((G
* (1,1))
`1 )
+ 1) by
XREAL_1: 29;
then
A8: (r1
- 1)
< ((G
* (1,1))
`1 ) by
XREAL_1: 19;
1
<= (j
+ 1) by
NAT_1: 11;
then ((G
* (1,1))
`1 )
= ((G
* (1,(j
+ 1)))
`1 ) by
A2,
A3,
GOBOARD5: 2;
then (G
* (1,j))
=
|[r1, s1]| & (G
* (1,(j
+ 1)))
=
|[r1, s2]| by
A7,
EUCLID: 53;
then ((1
/ 2)
* (r1
+ r1))
= r1 & ((G
* (1,j))
+ (G
* (1,(j
+ 1))))
=
|[(r1
+ r1), (s1
+ s2)]| by
EUCLID: 56;
then ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
=
|[r1, ((1
/ 2)
* (s1
+ s2))]| by
EUCLID: 58;
then
A9: (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|)
=
|[(r1
- 1), (((1
/ 2)
* (s1
+ s2))
-
0 )]| by
EUCLID: 62
.=
|[(r1
- 1), ((1
/ 2)
* (s1
+ s2))]|;
(s1
+ s2)
< (s2
+ s2) by
A5,
XREAL_1: 6;
then
A10: ((1
/ 2)
* (s1
+ s2))
< ((1
/ 2)
* (s2
+ s2)) by
XREAL_1: 68;
j
< (
width G) by
A2,
NAT_1: 13;
then (
Int (
cell (G,
0 ,j)))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s & s
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
Th20;
hence thesis by
A9,
A6,
A10,
A8;
end;
theorem ::
GOBOARD6:36
Th36: ((G
* (1,1))
-
|[1, 1]|)
in (
Int (
cell (G,
0 ,
0 )))
proof
set s1 = ((G
* (1,1))
`2 ), r1 = ((G
* (1,1))
`1 );
(G
* (1,1))
=
|[r1, s1]| by
EUCLID: 53;
then
A1: ((G
* (1,1))
-
|[1, 1]|)
=
|[(r1
- 1), (s1
- 1)]| by
EUCLID: 62;
s1
< (((G
* (1,1))
`2 )
+ 1) by
XREAL_1: 29;
then
A2: (s1
- 1)
< ((G
* (1,1))
`2 ) by
XREAL_1: 19;
r1
< (((G
* (1,1))
`1 )
+ 1) by
XREAL_1: 29;
then
A3: (r1
- 1)
< ((G
* (1,1))
`1 ) by
XREAL_1: 19;
(
Int (
cell (G,
0 ,
0 )))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & s
< ((G
* (1,1))
`2 ) } by
Th18;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
GOBOARD6:37
Th37: ((G
* ((
len G),(
width G)))
+
|[1, 1]|)
in (
Int (
cell (G,(
len G),(
width G))))
proof
set s1 = ((G
* ((
len G),(
width G)))
`2 ), r1 = ((G
* ((
len G),(
width G)))
`1 );
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A1: 1
<= (
len G) by
NAT_1: 14;
(
width G)
<>
0 by
MATRIX_0:def 10;
then
A2: 1
<= (
width G) by
NAT_1: 14;
then ((G
* ((
len G),1))
`1 )
= r1 by
A1,
GOBOARD5: 2;
then
A3: (r1
+ 1)
> ((G
* ((
len G),1))
`1 ) by
XREAL_1: 29;
(G
* ((
len G),(
width G)))
=
|[r1, s1]| by
EUCLID: 53;
then
A4: ((G
* ((
len G),(
width G)))
+
|[1, 1]|)
=
|[(r1
+ 1), (s1
+ 1)]| by
EUCLID: 56;
((G
* (1,(
width G)))
`2 )
= s1 by
A2,
A1,
GOBOARD5: 1;
then
A5: (s1
+ 1)
> ((G
* (1,(
width G)))
`2 ) by
XREAL_1: 29;
(
Int (
cell (G,(
len G),(
width G))))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & ((G
* (1,(
width G)))
`2 )
< s } by
Th22;
hence thesis by
A4,
A5,
A3;
end;
theorem ::
GOBOARD6:38
Th38: ((G
* (1,(
width G)))
+
|[(
- 1), 1]|)
in (
Int (
cell (G,
0 ,(
width G))))
proof
set s1 = ((G
* (1,(
width G)))
`2 ), r1 = ((G
* (1,(
width G)))
`1 );
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A1: 1
<= (
len G) by
NAT_1: 14;
(
width G)
<>
0 by
MATRIX_0:def 10;
then 1
<= (
width G) by
NAT_1: 14;
then ((G
* (1,1))
`1 )
= r1 by
A1,
GOBOARD5: 2;
then r1
< (((G
* (1,1))
`1 )
+ 1) by
XREAL_1: 29;
then
A2: (s1
+ 1)
> ((G
* (1,(
width G)))
`2 ) & (r1
- 1)
< ((G
* (1,1))
`1 ) by
XREAL_1: 19,
XREAL_1: 29;
(G
* (1,(
width G)))
=
|[r1, s1]| by
EUCLID: 53;
then
A3: ((G
* (1,(
width G)))
+
|[(
- 1), 1]|)
=
|[(r1
+ (
- 1)), (s1
+ 1)]| by
EUCLID: 56
.=
|[(r1
- 1), (s1
+ 1)]|;
(
Int (
cell (G,
0 ,(
width G))))
= {
|[r, s]| : r
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s } by
Th19;
hence thesis by
A3,
A2;
end;
theorem ::
GOBOARD6:39
Th39: ((G
* ((
len G),1))
+
|[1, (
- 1)]|)
in (
Int (
cell (G,(
len G),
0 )))
proof
set s1 = ((G
* ((
len G),1))
`2 ), r1 = ((G
* ((
len G),1))
`1 );
A1: (r1
+ 1)
> ((G
* ((
len G),1))
`1 ) by
XREAL_1: 29;
(
len G)
<>
0 by
MATRIX_0:def 10;
then
A2: 1
<= (
len G) by
NAT_1: 14;
(
width G)
<>
0 by
MATRIX_0:def 10;
then 1
<= (
width G) by
NAT_1: 14;
then ((G
* (1,1))
`2 )
= s1 by
A2,
GOBOARD5: 1;
then s1
< (((G
* (1,1))
`2 )
+ 1) by
XREAL_1: 29;
then
A3: (s1
- 1)
< ((G
* (1,1))
`2 ) by
XREAL_1: 19;
(G
* ((
len G),1))
=
|[r1, s1]| by
EUCLID: 53;
then
A4: ((G
* ((
len G),1))
+
|[1, (
- 1)]|)
=
|[(r1
+ 1), (s1
+ (
- 1))]| by
EUCLID: 56
.=
|[(r1
+ 1), (s1
- 1)]|;
(
Int (
cell (G,(
len G),
0 )))
= {
|[r, s]| : ((G
* ((
len G),1))
`1 )
< r & s
< ((G
* (1,1))
`2 ) } by
Th21;
hence thesis by
A4,
A3,
A1;
end;
theorem ::
GOBOARD6:40
Th40: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))))
c= ((
Int (
cell (G,i,j)))
\/
{((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
<= j and
A4: j
< (
width G);
let x be
object;
assume
A5: x
in (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A6: p
= (((1
- r)
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))))
+ (r
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1))))))) and
A7:
0
<= r and
A8: r
<= 1 by
A5;
now
per cases by
A8,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1))))))) by
A6,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))} by
TARSKI:def 1;
end;
case
A9: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A10: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
0
<> (
len G) by
MATRIX_0:def 10;
then
A11: 1
<= (
len G) by
NAT_1: 14;
A12: (j
+ 1)
<= (
width G) by
A4,
NAT_1: 13;
j
< (j
+ 1) by
XREAL_1: 29;
then
A13: s1
< s2 by
A3,
A12,
A11,
GOBOARD5: 4;
then
A14: (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A15: (s3
* (s1
+ s1))
<= (s3
* (s1
+ s2)) by
A7,
XREAL_1: 64;
(1
- r)
>
0 by
A9,
XREAL_1: 50;
then
A16: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A14,
XREAL_1: 68;
then
A17: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2))) by
A15,
A10,
XREAL_1: 8;
A18: (s1
+ s2)
< (s2
+ s2) by
A13,
XREAL_1: 6;
then
A19: (s3
* (s1
+ s2))
<= (s3
* (s2
+ s2)) by
A7,
XREAL_1: 64;
0
<> (
width G) by
MATRIX_0:def 10;
then
A20: 1
<= (
width G) by
NAT_1: 14;
A21: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A22: (
Int (
cell (G,i,j)))
= {
|[r9, s9]| : r1
< r9 & r9
< r2 & s1
< s9 & s9
< s2 } by
A1,
A2,
A3,
A4,
Th26;
A23: 1
<= (j
+ 1) by
A3,
NAT_1: 13;
A24: (G
* (i,(j
+ 1)))
=
|[((G
* (i,(j
+ 1)))
`1 ), ((G
* (i,(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,(j
+ 1)))
`2 )]| by
A1,
A2,
A23,
A12,
GOBOARD5: 2
.=
|[r1, s2]| by
A1,
A2,
A23,
A12,
GOBOARD5: 1;
A25: ((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
(r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A16,
A18,
XREAL_1: 68;
then
A26: ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))
< s2 by
A19,
A25,
XREAL_1: 8;
A27: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
i
< (i
+ 1) by
XREAL_1: 29;
then
A28: r1
< r2 by
A1,
A27,
A20,
GOBOARD5: 3;
then (r1
+ r1)
< (r2
+ r2) by
XREAL_1: 8;
then
A29: (s3
* (r1
+ r1))
<= (s3
* (r2
+ r2)) by
A7,
XREAL_1: 64;
(r1
+ r2)
< (r2
+ r2) by
A28,
XREAL_1: 6;
then
A30: (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A16,
XREAL_1: 68;
((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
then
A31: ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r1)))
< r2 by
A30,
A29,
XREAL_1: 8;
A32: (G
* (i,j))
=
|[((G
* (i,j))
`1 ), ((G
* (i,j))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,j))
`2 )]| by
A1,
A2,
A3,
A4,
GOBOARD5: 2
.=
|[r1, s1]| by
A1,
A2,
A3,
A4,
GOBOARD5: 1;
A33: (G
* ((i
+ 1),(j
+ 1)))
=
|[((G
* ((i
+ 1),(j
+ 1)))
`1 ), ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
A23,
A12,
A21,
A27,
GOBOARD5: 2
.=
|[r2, s2]| by
A23,
A12,
A21,
A27,
GOBOARD5: 1;
A34: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
(r1
+ r1)
< (r1
+ r2) by
A28,
XREAL_1: 6;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A16,
XREAL_1: 68;
then
A35: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r1))) by
A34,
XREAL_1: 6;
p
= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (r
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* (i,(j
+ 1))))))) by
A6,
RLVECT_1:def 7
.= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (s3
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))) by
RLVECT_1:def 7
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
* ((G
* (i,j))
+ (G
* (i,(j
+ 1)))))) by
A32,
A33,
EUCLID: 56
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
*
|[(r1
+ r1), (s1
+ s2)]|)) by
A32,
A24,
EUCLID: 56
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+ (s3
*
|[(r1
+ r1), (s1
+ s2)]|)) by
EUCLID: 58
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+
|[(s3
* (r1
+ r1)), (s3
* (s1
+ s2))]|) by
EUCLID: 58
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r1
+ r1))), ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,j))) by
A35,
A31,
A17,
A26,
A22;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:41
Th41: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))))
c= ((
Int (
cell (G,i,j)))
\/
{((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
<= j and
A4: j
< (
width G);
let x be
object;
assume
A5: x
in (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A6: p
= (((1
- r)
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))))
+ (r
* ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1))))))) and
A7:
0
<= r and
A8: r
<= 1 by
A5;
now
per cases by
A8,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1))))))) by
A6,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))} by
TARSKI:def 1;
end;
case
A9: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A10: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
A12: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
i
< (i
+ 1) by
XREAL_1: 29;
then
A13: r1
< r2 by
A1,
A12,
A11,
GOBOARD5: 3;
then
A14: (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A15: (s3
* (r1
+ r1))
<= (s3
* (r1
+ r2)) by
A7,
XREAL_1: 64;
(1
- r)
>
0 by
A9,
XREAL_1: 50;
then
A16: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A14,
XREAL_1: 68;
then
A17: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))) by
A15,
A10,
XREAL_1: 8;
0
<> (
len G) by
MATRIX_0:def 10;
then
A18: 1
<= (
len G) by
NAT_1: 14;
A19: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 8;
then
A20: (s3
* (r1
+ r2))
<= (s3
* (r2
+ r2)) by
A7,
XREAL_1: 64;
A21: (j
+ 1)
<= (
width G) by
A4,
NAT_1: 13;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 6;
then
A22: (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A16,
XREAL_1: 68;
((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
then
A23: ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2)))
< r2 by
A22,
A20,
XREAL_1: 8;
A24: (
Int (
cell (G,i,j)))
= {
|[r9, s9]| : r1
< r9 & r9
< r2 & s1
< s9 & s9
< s2 } by
A1,
A2,
A3,
A4,
Th26;
A25: 1
<= (j
+ 1) by
A3,
NAT_1: 13;
j
< (j
+ 1) by
XREAL_1: 29;
then
A26: s1
< s2 by
A3,
A21,
A18,
GOBOARD5: 4;
then
A27: (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
A28: (G
* ((i
+ 1),(j
+ 1)))
=
|[((G
* ((i
+ 1),(j
+ 1)))
`1 ), ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
A25,
A21,
A19,
A12,
GOBOARD5: 2
.=
|[r2, s2]| by
A25,
A21,
A19,
A12,
GOBOARD5: 1;
(s1
+ s2)
< (s2
+ s2) by
A26,
XREAL_1: 6;
then (s1
+ s1)
< (s2
+ s2) by
A27,
XXREAL_0: 2;
then
A29: (s3
* (s1
+ s1))
<= (s3
* (s2
+ s2)) by
A7,
XREAL_1: 64;
A30: (G
* (i,j))
=
|[((G
* (i,j))
`1 ), ((G
* (i,j))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,j))
`2 )]| by
A1,
A2,
A3,
A4,
GOBOARD5: 2
.=
|[r1, s1]| by
A1,
A2,
A3,
A4,
GOBOARD5: 1;
A31: ((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
A32: (G
* (i,(j
+ 1)))
=
|[((G
* (i,(j
+ 1)))
`1 ), ((G
* (i,(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,(j
+ 1)))
`2 )]| by
A1,
A2,
A25,
A21,
GOBOARD5: 2
.=
|[r1, s2]| by
A1,
A2,
A25,
A21,
GOBOARD5: 1;
A33: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
(s1
+ s2)
< (s2
+ s2) by
A26,
XREAL_1: 6;
then (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A16,
XREAL_1: 68;
then
A34: ((r3
* (s1
+ s2))
+ (s3
* (s2
+ s2)))
< s2 by
A31,
XREAL_1: 8;
(r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A16,
A27,
XREAL_1: 68;
then
A35: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s2
+ s2))) by
A29,
A33,
XREAL_1: 8;
p
= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (r
* ((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1))))))) by
A6,
RLVECT_1:def 7
.= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (s3
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
RLVECT_1:def 7
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
A30,
A28,
EUCLID: 56
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
A28,
A32,
EUCLID: 56
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
EUCLID: 58
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+
|[(s3
* (r1
+ r2)), (s3
* (s2
+ s2))]|) by
EUCLID: 58
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))), ((r3
* (s1
+ s2))
+ (s3
* (s2
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,j))) by
A17,
A23,
A35,
A34,
A24;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:42
Th42: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))))
c= ((
Int (
cell (G,i,j)))
\/
{((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
<= j and
A4: j
< (
width G);
let x be
object;
assume
A5: x
in (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A6: p
= (((1
- r)
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))))
+ (r
* ((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1))))))) and
A7:
0
<= r and
A8: r
<= 1 by
A5;
now
per cases by
A8,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1))))))) by
A6,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))} by
TARSKI:def 1;
end;
case
A9: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A10: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
A12: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
i
< (i
+ 1) by
XREAL_1: 29;
then
A13: r1
< r2 by
A1,
A12,
A11,
GOBOARD5: 3;
then
A14: (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 6;
then (r1
+ r1)
< (r2
+ r2) by
A14,
XXREAL_0: 2;
then
A15: (s3
* (r1
+ r1))
<= (s3
* (r2
+ r2)) by
A7,
XREAL_1: 64;
(1
- r)
>
0 by
A9,
XREAL_1: 50;
then
A16: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A14,
XREAL_1: 68;
then
A17: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r2
+ r2))) by
A15,
A10,
XREAL_1: 8;
0
<> (
len G) by
MATRIX_0:def 10;
then
A18: 1
<= (
len G) by
NAT_1: 14;
A19: 1
<= (j
+ 1) by
A3,
NAT_1: 13;
A20: (
Int (
cell (G,i,j)))
= {
|[r9, s9]| : r1
< r9 & r9
< r2 & s1
< s9 & s9
< s2 } by
A1,
A2,
A3,
A4,
Th26;
A21: ((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
A22: (G
* (i,j))
=
|[((G
* (i,j))
`1 ), ((G
* (i,j))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,j))
`2 )]| by
A1,
A2,
A3,
A4,
GOBOARD5: 2
.=
|[r1, s1]| by
A1,
A2,
A3,
A4,
GOBOARD5: 1;
A23: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
A24: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A25: (G
* ((i
+ 1),j))
=
|[((G
* ((i
+ 1),j))
`1 ), ((G
* ((i
+ 1),j))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),j))
`2 )]| by
A3,
A4,
A24,
A12,
GOBOARD5: 2
.=
|[r2, s1]| by
A3,
A4,
A24,
A12,
GOBOARD5: 1;
A26: ((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 6;
then (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A16,
XREAL_1: 68;
then
A27: ((r3
* (r1
+ r2))
+ (s3
* (r2
+ r2)))
< r2 by
A26,
XREAL_1: 8;
A28: (j
+ 1)
<= (
width G) by
A4,
NAT_1: 13;
A29: (G
* ((i
+ 1),(j
+ 1)))
=
|[((G
* ((i
+ 1),(j
+ 1)))
`1 ), ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
A19,
A28,
A24,
A12,
GOBOARD5: 2
.=
|[r2, s2]| by
A19,
A28,
A24,
A12,
GOBOARD5: 1;
j
< (j
+ 1) by
XREAL_1: 29;
then
A30: s1
< s2 by
A3,
A28,
A18,
GOBOARD5: 4;
then
A31: (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A32: (s3
* (s1
+ s1))
<= (s3
* (s1
+ s2)) by
A7,
XREAL_1: 64;
(r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A16,
A31,
XREAL_1: 68;
then
A33: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2))) by
A32,
A23,
XREAL_1: 8;
A34: (s1
+ s2)
< (s2
+ s2) by
A30,
XREAL_1: 6;
then
A35: (s3
* (s1
+ s2))
<= (s3
* (s2
+ s2)) by
A7,
XREAL_1: 64;
(r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A16,
A34,
XREAL_1: 68;
then
A36: ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))
< s2 by
A35,
A21,
XREAL_1: 8;
p
= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (r
* ((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1))))))) by
A6,
RLVECT_1:def 7
.= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (s3
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
RLVECT_1:def 7
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))) by
A22,
A29,
EUCLID: 56
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
A29,
A25,
EUCLID: 56
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
EUCLID: 58
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+
|[(s3
* (r2
+ r2)), (s3
* (s1
+ s2))]|) by
EUCLID: 58
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r2
+ r2))), ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,j))) by
A17,
A27,
A33,
A36,
A20;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:43
Th43: 1
<= i & i
< (
len G) & 1
<= j & j
< (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))))
c= ((
Int (
cell (G,i,j)))
\/
{((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
<= j and
A4: j
< (
width G);
let x be
object;
assume
A5: x
in (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A6: p
= (((1
- r)
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))))
+ (r
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j)))))) and
A7:
0
<= r and
A8: r
<= 1 by
A5;
now
per cases by
A8,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j)))))) by
A6,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j)))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))} by
TARSKI:def 1;
end;
case
A9: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A10: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
A12: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
i
< (i
+ 1) by
XREAL_1: 29;
then
A13: r1
< r2 by
A1,
A12,
A11,
GOBOARD5: 3;
then
A14: (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A15: (s3
* (r1
+ r1))
<= (s3
* (r1
+ r2)) by
A7,
XREAL_1: 64;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 8;
then
A16: (s3
* (r1
+ r2))
<= (s3
* (r2
+ r2)) by
A7,
XREAL_1: 64;
A17: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
(1
- r)
>
0 by
A9,
XREAL_1: 50;
then
A18: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A14,
XREAL_1: 68;
then
A19: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))) by
A15,
A10,
XREAL_1: 8;
(r1
+ r2)
< (r2
+ r2) by
A13,
XREAL_1: 6;
then
A20: (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A18,
XREAL_1: 68;
((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
then
A21: ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2)))
< r2 by
A20,
A16,
XREAL_1: 8;
A22: (
Int (
cell (G,i,j)))
= {
|[r9, s9]| : r1
< r9 & r9
< r2 & s1
< s9 & s9
< s2 } by
A1,
A2,
A3,
A4,
Th26;
A23: (j
+ 1)
<= (
width G) by
A4,
NAT_1: 13;
A24: (G
* ((i
+ 1),j))
=
|[((G
* ((i
+ 1),j))
`1 ), ((G
* ((i
+ 1),j))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),j))
`2 )]| by
A3,
A4,
A17,
A12,
GOBOARD5: 2
.=
|[r2, s1]| by
A3,
A4,
A17,
A12,
GOBOARD5: 1;
A25: 1
<= (j
+ 1) by
A3,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A26: 1
<= (
len G) by
NAT_1: 14;
A27: (G
* (i,j))
=
|[((G
* (i,j))
`1 ), ((G
* (i,j))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* (i,j))
`2 )]| by
A1,
A2,
A3,
A4,
GOBOARD5: 2
.=
|[r1, s1]| by
A1,
A2,
A3,
A4,
GOBOARD5: 1;
j
< (j
+ 1) by
XREAL_1: 29;
then
A28: s1
< s2 by
A3,
A23,
A26,
GOBOARD5: 4;
then (s1
+ s2)
< (s2
+ s2) by
XREAL_1: 6;
then
A29: (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A18,
XREAL_1: 68;
A30: (G
* ((i
+ 1),(j
+ 1)))
=
|[((G
* ((i
+ 1),(j
+ 1)))
`1 ), ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((i
+ 1),(j
+ 1)))
`2 )]| by
A25,
A23,
A17,
A12,
GOBOARD5: 2
.=
|[r2, s2]| by
A25,
A23,
A17,
A12,
GOBOARD5: 1;
A31: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
A32: (s1
+ s1)
< (s1
+ s2) by
A28,
XREAL_1: 6;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A18,
XREAL_1: 68;
then
A33: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s1))) by
A31,
XREAL_1: 8;
(s1
+ s2)
< (s2
+ s2) by
A28,
XREAL_1: 6;
then (s1
+ s1)
< (s2
+ s2) by
A32,
XXREAL_0: 2;
then
A34: (s3
* (s1
+ s1))
<= (s3
* (s2
+ s2)) by
A7,
XREAL_1: 64;
((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
then
A35: ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s1)))
< s2 by
A29,
A34,
XREAL_1: 8;
p
= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (r
* ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),j)))))) by
A6,
RLVECT_1:def 7
.= ((r3
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))))
+ (s3
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))) by
RLVECT_1:def 7
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
* ((G
* (i,j))
+ (G
* ((i
+ 1),j))))) by
A27,
A30,
EUCLID: 56
.= ((r3
*
|[(r1
+ r2), (s1
+ s2)]|)
+ (s3
*
|[(r1
+ r2), (s1
+ s1)]|)) by
A27,
A24,
EUCLID: 56
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+ (s3
*
|[(r1
+ r2), (s1
+ s1)]|)) by
EUCLID: 58
.= (
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s2))]|
+
|[(s3
* (r1
+ r2)), (s3
* (s1
+ s1))]|) by
EUCLID: 58
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))), ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s1)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,j))) by
A19,
A21,
A33,
A35,
A22;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:44
Th44: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))))
c= ((
Int (
cell (G,
0 ,j)))
\/
{((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))) by
A4,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r2 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A8: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
A9: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A10: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A11: s1
< s2 by
A1,
A9,
A10,
GOBOARD5: 4;
then
A12: (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A13: (s3
* (s1
+ s1))
<= (s3
* (s1
+ s2)) by
A5,
XREAL_1: 64;
A14: (1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A15: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A12,
XREAL_1: 68;
then
A16: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2))) by
A13,
A8,
XREAL_1: 8;
r2
< (r2
+ (1
- r)) by
A14,
XREAL_1: 29;
then
A17: (r2
- (1
- r))
< r2 by
XREAL_1: 19;
A18: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
A19: (G
* (1,(j
+ 1)))
=
|[((G
* (1,(j
+ 1)))
`1 ), ((G
* (1,(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, s2]| by
A18,
A9,
A10,
GOBOARD5: 2;
A20: (s1
+ s2)
< (s2
+ s2) by
A11,
XREAL_1: 6;
then
A21: (s3
* (s1
+ s2))
<= (s3
* (s2
+ s2)) by
A5,
XREAL_1: 64;
A22: (
Int (
cell (G,
0 ,j)))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th20;
A23: ((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
(r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A15,
A20,
XREAL_1: 68;
then
A24: ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))
< s2 by
A21,
A23,
XREAL_1: 8;
A25: (G
* (1,j))
=
|[((G
* (1,j))
`1 ), ((G
* (1,j))
`2 )]| by
EUCLID: 53
.=
|[r2, s1]| by
A1,
A2,
A10,
GOBOARD5: 2;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))) by
EUCLID: 58
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[(1
- r),
0 ]|)
+ (s3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))) by
RLVECT_1:def 7
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (s3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))) by
A19,
A25,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
A19,
A25,
EUCLID: 56
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
-
|[(1
- r),
0 ]|)
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
EUCLID: 58
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
-
|[(1
- r),
0 ]|)
+
|[(s3
* (r2
+ r2)), (s3
* (s1
+ s2))]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
- (1
- r)), ((r3
* (s1
+ s2))
-
0 )]|
+
|[(s3
* (r2
+ r2)), (s3
* (s1
+ s2))]|) by
EUCLID: 62
.=
|[(((r3
* (r2
+ r2))
- (1
- r))
+ (s3
* (r2
+ r2))), ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,
0 ,j))) by
A17,
A16,
A24,
A22;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:45
Th45: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))))
c= ((
Int (
cell (G,(
len G),j)))
\/
{((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))) by
A4,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set r2 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A8: ((r3
* (s1
+ s1))
+ (s3
* (s1
+ s1)))
= s1;
A9: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A10: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A11: s1
< s2 by
A1,
A9,
A10,
GOBOARD5: 4;
then
A12: (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A13: (s3
* (s1
+ s1))
<= (s3
* (s1
+ s2)) by
A5,
XREAL_1: 64;
A14: (1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A15: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A12,
XREAL_1: 68;
then
A16: s1
< ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2))) by
A13,
A8,
XREAL_1: 8;
A17: (r2
+ (1
- r))
> r2 by
A14,
XREAL_1: 29;
A18: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
A19: (s1
+ s2)
< (s2
+ s2) by
A11,
XREAL_1: 6;
then
A20: (s3
* (s1
+ s2))
<= (s3
* (s2
+ s2)) by
A5,
XREAL_1: 64;
A21: (
Int (
cell (G,(
len G),j)))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th23;
A22: ((r3
* (s2
+ s2))
+ (s3
* (s2
+ s2)))
= s2;
(r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A15,
A19,
XREAL_1: 68;
then
A23: ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))
< s2 by
A20,
A22,
XREAL_1: 8;
A24: (G
* ((
len G),j))
=
|[((G
* ((
len G),j))
`1 ), ((G
* ((
len G),j))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),j))
`2 )]| by
A1,
A2,
A10,
GOBOARD5: 2
.=
|[r2, s1]| by
A1,
A2,
A10,
GOBOARD5: 1;
A25: (G
* ((
len G),(j
+ 1)))
=
|[((G
* ((
len G),(j
+ 1)))
`1 ), ((G
* ((
len G),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),(j
+ 1)))
`2 )]| by
A18,
A9,
A10,
GOBOARD5: 2
.=
|[r2, s2]| by
A18,
A9,
A10,
GOBOARD5: 1;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))) by
RLVECT_1:def 7
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))) by
EUCLID: 58
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[(1
- r),
0 ]|)
+ (s3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))) by
RLVECT_1:def 7
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (s3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))) by
A25,
A24,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
A25,
A24,
EUCLID: 56
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
+
|[(1
- r),
0 ]|)
+ (s3
*
|[(r2
+ r2), (s1
+ s2)]|)) by
EUCLID: 58
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
+
|[(1
- r),
0 ]|)
+
|[(s3
* (r2
+ r2)), (s3
* (s1
+ s2))]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
+ (1
- r)), ((r3
* (s1
+ s2))
+
0 )]|
+
|[(s3
* (r2
+ r2)), (s3
* (s1
+ s2))]|) by
EUCLID: 56
.=
|[(((r3
* (r2
+ r2))
+ (1
- r))
+ (s3
* (r2
+ r2))), ((r3
* (s1
+ s2))
+ (s3
* (s1
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,(
len G),j))) by
A17,
A16,
A23,
A21;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:46
Th46: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))))
c= ((
Int (
cell (G,i,
0 )))
\/
{((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))) by
A4,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set s2 = ((G
* (1,1))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A8: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
A9: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
0
<> (
width G) by
MATRIX_0:def 10;
then
A10: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A11: r1
< r2 by
A1,
A9,
A10,
GOBOARD5: 3;
then
A12: (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A13: (s3
* (r1
+ r1))
<= (s3
* (r1
+ r2)) by
A5,
XREAL_1: 64;
A14: (1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A15: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A12,
XREAL_1: 68;
then
A16: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))) by
A13,
A8,
XREAL_1: 8;
s2
< (s2
+ (1
- r)) by
A14,
XREAL_1: 29;
then
A17: (s2
- (1
- r))
< s2 by
XREAL_1: 19;
A18: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A19: (G
* ((i
+ 1),1))
=
|[((G
* ((i
+ 1),1))
`1 ), ((G
* ((i
+ 1),1))
`2 )]| by
EUCLID: 53
.=
|[r2, s2]| by
A18,
A9,
A10,
GOBOARD5: 1;
A20: (r1
+ r2)
< (r2
+ r2) by
A11,
XREAL_1: 6;
then
A21: (s3
* (r1
+ r2))
<= (s3
* (r2
+ r2)) by
A5,
XREAL_1: 64;
A22: (
Int (
cell (G,i,
0 )))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & s9
< ((G
* (1,1))
`2 ) } by
A1,
A2,
Th24;
A23: ((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
(r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A15,
A20,
XREAL_1: 68;
then
A24: ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2)))
< r2 by
A21,
A23,
XREAL_1: 8;
A25: (G
* (i,1))
=
|[((G
* (i,1))
`1 ), ((G
* (i,1))
`2 )]| by
EUCLID: 53
.=
|[r1, s2]| by
A1,
A2,
A10,
GOBOARD5: 1;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))) by
EUCLID: 58
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , (1
- r)]|)
+ (s3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))) by
RLVECT_1:def 7
.= (((r3
*
|[(r1
+ r2), (s2
+ s2)]|)
-
|[
0 , (1
- r)]|)
+ (s3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))) by
A19,
A25,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s2
+ s2)]|)
-
|[
0 , (1
- r)]|)
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
A19,
A25,
EUCLID: 56
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s2
+ s2))]|
-
|[
0 , (1
- r)]|)
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
EUCLID: 58
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s2
+ s2))]|
-
|[
0 , (1
- r)]|)
+
|[(s3
* (r1
+ r2)), (s3
* (s2
+ s2))]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
-
0 ), ((r3
* (s2
+ s2))
- (1
- r))]|
+
|[(s3
* (r1
+ r2)), (s3
* (s2
+ s2))]|) by
EUCLID: 62
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))), (((r3
* (s2
+ s2))
- (1
- r))
+ (s3
* (s2
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,
0 ))) by
A17,
A16,
A24,
A22;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:47
Th47: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))))
c= ((
Int (
cell (G,i,(
width G))))
\/
{((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))) by
A4,
RLVECT_1: 10
.= (1
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))) by
RLVECT_1: 4
.= ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))) by
RLVECT_1:def 8;
hence p
in
{((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2)), s3 = (r
* (1
/ 2));
set s2 = ((G
* (1,(
width G)))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A8: ((r3
* (r1
+ r1))
+ (s3
* (r1
+ r1)))
= r1;
A9: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
0
<> (
width G) by
MATRIX_0:def 10;
then
A10: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A11: r1
< r2 by
A1,
A9,
A10,
GOBOARD5: 3;
then
A12: (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A13: (s3
* (r1
+ r1))
<= (s3
* (r1
+ r2)) by
A5,
XREAL_1: 64;
A14: (1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A15: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A12,
XREAL_1: 68;
then
A16: r1
< ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))) by
A13,
A8,
XREAL_1: 8;
A17: (s2
+ (1
- r))
> s2 by
A14,
XREAL_1: 29;
A18: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A19: (r1
+ r2)
< (r2
+ r2) by
A11,
XREAL_1: 6;
then
A20: (s3
* (r1
+ r2))
<= (s3
* (r2
+ r2)) by
A5,
XREAL_1: 64;
A21: (
Int (
cell (G,i,(
width G))))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s9 } by
A1,
A2,
Th25;
A22: ((r3
* (r2
+ r2))
+ (s3
* (r2
+ r2)))
= r2;
(r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A15,
A19,
XREAL_1: 68;
then
A23: ((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2)))
< r2 by
A20,
A22,
XREAL_1: 8;
A24: (G
* (i,(
width G)))
=
|[((G
* (i,(
width G)))
`1 ), ((G
* (i,(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* (i,(
width G)))
`1 ), s2]| by
A1,
A2,
A10,
GOBOARD5: 1
.=
|[r1, s2]| by
A1,
A2,
A10,
GOBOARD5: 2;
A25: (G
* ((i
+ 1),(
width G)))
=
|[((G
* ((i
+ 1),(
width G)))
`1 ), ((G
* ((i
+ 1),(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* ((i
+ 1),(
width G)))
`1 ), s2]| by
A18,
A9,
A10,
GOBOARD5: 1
.=
|[r2, s2]| by
A18,
A9,
A10,
GOBOARD5: 2;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))) by
EUCLID: 58
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , (1
- r)]|)
+ (s3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))) by
RLVECT_1:def 7
.= (((r3
*
|[(r1
+ r2), (s2
+ s2)]|)
+
|[
0 , (1
- r)]|)
+ (s3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))) by
A25,
A24,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s2
+ s2)]|)
+
|[
0 , (1
- r)]|)
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
A25,
A24,
EUCLID: 56
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s2
+ s2))]|
+
|[
0 , (1
- r)]|)
+ (s3
*
|[(r1
+ r2), (s2
+ s2)]|)) by
EUCLID: 58
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s2
+ s2))]|
+
|[
0 , (1
- r)]|)
+
|[(s3
* (r1
+ r2)), (s3
* (s2
+ s2))]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
+
0 ), ((r3
* (s2
+ s2))
+ (1
- r))]|
+
|[(s3
* (r1
+ r2)), (s3
* (s2
+ s2))]|) by
EUCLID: 56
.=
|[((r3
* (r1
+ r2))
+ (s3
* (r1
+ r2))), (((r3
* (s2
+ s2))
+ (1
- r))
+ (s3
* (s2
+ s2)))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,(
width G)))) by
A17,
A16,
A23,
A21;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:48
Th48: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((G
* (1,j))
-
|[1,
0 ]|)))
c= ((
Int (
cell (G,
0 ,j)))
\/
{((G
* (1,j))
-
|[1,
0 ]|)})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((G
* (1,j))
-
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|))
+ (r
* ((G
* (1,j))
-
|[1,
0 ]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,j))
-
|[1,
0 ]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* (1,j))
-
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* (1,j))
-
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,j))
-
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set r2 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A9: ((r3
* (s1
+ s1))
+ (r
* s1))
= s1;
A10: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
r2
< (r2
+ 1) by
XREAL_1: 29;
then
A11: (r2
- 1)
< r2 by
XREAL_1: 19;
A12: (
Int (
cell (G,
0 ,j)))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th20;
0
<> (
len G) by
MATRIX_0:def 10;
then
A13: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A14: s1
< s2 by
A1,
A10,
A13,
GOBOARD5: 4;
then (s1
+ s2)
< (s2
+ s2) by
XREAL_1: 6;
then
A15: (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A8,
XREAL_1: 68;
(s1
+ s1)
< (s1
+ s2) by
A14,
XREAL_1: 6;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A8,
XREAL_1: 68;
then
A16: s1
< ((r3
* (s1
+ s2))
+ (r
* s1)) by
A9,
XREAL_1: 6;
A17: ((r3
* (s2
+ s2))
+ (r
* s2))
= s2;
(r
* s1)
<= (r
* s2) by
A5,
A14,
XREAL_1: 64;
then
A18: ((r3
* (s1
+ s2))
+ (r
* s1))
< s2 by
A15,
A17,
XREAL_1: 8;
A19: (G
* (1,j))
=
|[((G
* (1,j))
`1 ), ((G
* (1,j))
`2 )]| by
EUCLID: 53
.=
|[r2, s1]| by
A1,
A2,
A13,
GOBOARD5: 2;
A20: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
A21: (G
* (1,(j
+ 1)))
=
|[((G
* (1,(j
+ 1)))
`1 ), ((G
* (1,(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, s2]| by
A20,
A10,
A13,
GOBOARD5: 2;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* (1,j))
-
|[1,
0 ]|))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* (1,j))
-
|[1,
0 ]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((G
* (1,j))
-
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (r
* (
|[r2, s1]|
-
|[1,
0 ]|))) by
A21,
A19,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ ((r
*
|[r2, s1]|)
- (r
*
|[1,
0 ]|))) by
RLVECT_1: 34
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s1)]|
- (r
*
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s1)]|
-
|[(r
* 1), (r
*
0 )]|)) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+
|[((r
* r2)
- r), ((r
* s1)
-
0 )]|) by
EUCLID: 62
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
-
|[(1
- r),
0 ]|)
+
|[((r
* r2)
- r), ((r
* s1)
-
0 )]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
- (1
- r)), ((r3
* (s1
+ s2))
-
0 )]|
+
|[((r
* r2)
- r), ((r
* s1)
-
0 )]|) by
EUCLID: 62
.=
|[(((r3
* (r2
+ r2))
- (1
- r))
+ ((r
* r2)
- r)), ((r3
* (s1
+ s2))
+ (r
* s1))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,
0 ,j))) by
A11,
A16,
A18,
A12;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:49
Th49: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)))
c= ((
Int (
cell (G,
0 ,j)))
\/
{((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|))
+ (r
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set r2 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A9: ((r3
* (s1
+ s1))
+ (r
* s1))
= s1;
A10: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A11: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A12: s1
< s2 by
A1,
A10,
A11,
GOBOARD5: 4;
then (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A13: (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A8,
XREAL_1: 68;
(r
* s1)
<= (r
* s2) by
A5,
A12,
XREAL_1: 64;
then
A14: s1
< ((r3
* (s1
+ s2))
+ (r
* s2)) by
A13,
A9,
XREAL_1: 8;
A15: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
A16: (G
* (1,j))
=
|[((G
* (1,j))
`1 ), ((G
* (1,j))
`2 )]| by
EUCLID: 53
.=
|[r2, s1]| by
A1,
A2,
A11,
GOBOARD5: 2;
r2
< (r2
+ 1) by
XREAL_1: 29;
then
A17: (r2
- 1)
< r2 by
XREAL_1: 19;
A18: ((r3
* (s2
+ s2))
+ (r
* s2))
= s2;
(s1
+ s2)
< (s2
+ s2) by
A12,
XREAL_1: 6;
then (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A8,
XREAL_1: 68;
then
A19: ((r3
* (s1
+ s2))
+ (r
* s2))
< s2 by
A18,
XREAL_1: 8;
A20: (
Int (
cell (G,
0 ,j)))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th20;
A21: (G
* (1,(j
+ 1)))
=
|[((G
* (1,(j
+ 1)))
`1 ), ((G
* (1,(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, s2]| by
A15,
A10,
A11,
GOBOARD5: 2;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1))))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((G
* (1,(j
+ 1)))
-
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (r
* (
|[r2, s2]|
-
|[1,
0 ]|))) by
A21,
A16,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ ((r
*
|[r2, s2]|)
- (r
*
|[1,
0 ]|))) by
RLVECT_1: 34
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s2)]|
- (r
*
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s2)]|
-
|[(r
* 1), (r
*
0 )]|)) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
-
|[(1
- r),
0 ]|)
+
|[((r
* r2)
- r), ((r
* s2)
-
0 )]|) by
EUCLID: 62
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
-
|[(1
- r),
0 ]|)
+
|[((r
* r2)
- r), ((r
* s2)
-
0 )]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
- (1
- r)), ((r3
* (s1
+ s2))
-
0 )]|
+
|[((r
* r2)
- r), ((r
* s2)
-
0 )]|) by
EUCLID: 62
.=
|[(((r3
* (r2
+ r2))
- (1
- r))
+ ((r
* r2)
- r)), ((r3
* (s1
+ s2))
+ (r
* s2))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,
0 ,j))) by
A17,
A14,
A19,
A20;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:50
Th50: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((G
* ((
len G),j))
+
|[1,
0 ]|)))
c= ((
Int (
cell (G,(
len G),j)))
\/
{((G
* ((
len G),j))
+
|[1,
0 ]|)})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((G
* ((
len G),j))
+
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),j))
+
|[1,
0 ]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),j))
+
|[1,
0 ]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),j))
+
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),j))
+
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),j))
+
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set r2 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A9: ((r3
* (s1
+ s1))
+ (r
* s1))
= s1;
A10: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A11: 1
<= (
len G) by
NAT_1: 14;
A12: (G
* ((
len G),j))
=
|[((G
* ((
len G),j))
`1 ), ((G
* ((
len G),j))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),j))
`2 )]| by
A1,
A2,
A11,
GOBOARD5: 2
.=
|[r2, s1]| by
A1,
A2,
A11,
GOBOARD5: 1;
A13: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
j
< (j
+ 1) by
XREAL_1: 29;
then
A14: s1
< s2 by
A1,
A10,
A11,
GOBOARD5: 4;
then (s1
+ s2)
< (s2
+ s2) by
XREAL_1: 6;
then
A15: (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A8,
XREAL_1: 68;
(s1
+ s1)
< (s1
+ s2) by
A14,
XREAL_1: 6;
then (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A8,
XREAL_1: 68;
then
A16: r2
< (r2
+ 1) & s1
< ((r3
* (s1
+ s2))
+ (r
* s1)) by
A9,
XREAL_1: 6,
XREAL_1: 29;
A17: (
Int (
cell (G,(
len G),j)))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th23;
A18: (G
* ((
len G),(j
+ 1)))
=
|[((G
* ((
len G),(j
+ 1)))
`1 ), ((G
* ((
len G),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),(j
+ 1)))
`2 )]| by
A13,
A10,
A11,
GOBOARD5: 2
.=
|[r2, s2]| by
A13,
A10,
A11,
GOBOARD5: 1;
A19: ((r3
* (s2
+ s2))
+ (r
* s2))
= s2;
(r
* s1)
<= (r
* s2) by
A5,
A14,
XREAL_1: 64;
then
A20: ((r3
* (s1
+ s2))
+ (r
* s1))
< s2 by
A15,
A19,
XREAL_1: 8;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),j))
+
|[1,
0 ]|))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),j))
+
|[1,
0 ]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((G
* ((
len G),j))
+
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (r
* (
|[r2, s1]|
+
|[1,
0 ]|))) by
A18,
A12,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ ((r
*
|[r2, s1]|)
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 5
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s1)]|
+ (r
*
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s1)]|
+
|[(r
* 1), (r
*
0 )]|)) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+
|[((r
* r2)
+ r), ((r
* s1)
+
0 )]|) by
EUCLID: 56
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
+
|[(1
- r),
0 ]|)
+
|[((r
* r2)
+ r), ((r
* s1)
+
0 )]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
+ (1
- r)), ((r3
* (s1
+ s2))
+
0 )]|
+
|[((r
* r2)
+ r), ((r
* s1)
+
0 )]|) by
EUCLID: 56
.=
|[(((r3
* (r2
+ r2))
+ (1
- r))
+ ((r
* r2)
+ r)), ((r3
* (s1
+ s2))
+ (r
* s1))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,(
len G),j))) by
A16,
A20,
A17;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:51
Th51: 1
<= j & j
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)))
c= ((
Int (
cell (G,(
len G),j)))
\/
{((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set r2 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,j))
`2 ), s2 = ((G
* (1,(j
+ 1)))
`2 );
A9: ((r3
* (s1
+ s1))
+ (r
* s1))
= s1;
A10: (j
+ 1)
<= (
width G) by
A2,
NAT_1: 13;
0
<> (
len G) by
MATRIX_0:def 10;
then
A11: 1
<= (
len G) by
NAT_1: 14;
j
< (j
+ 1) by
XREAL_1: 29;
then
A12: s1
< s2 by
A1,
A10,
A11,
GOBOARD5: 4;
then (s1
+ s1)
< (s1
+ s2) by
XREAL_1: 6;
then
A13: (r3
* (s1
+ s1))
< (r3
* (s1
+ s2)) by
A8,
XREAL_1: 68;
A14: ((r3
* (s2
+ s2))
+ (r
* s2))
= s2;
(s1
+ s2)
< (s2
+ s2) by
A12,
XREAL_1: 6;
then (r3
* (s1
+ s2))
< (r3
* (s2
+ s2)) by
A8,
XREAL_1: 68;
then
A15: ((r3
* (s1
+ s2))
+ (r
* s2))
< s2 by
A14,
XREAL_1: 8;
A16: (G
* ((
len G),j))
=
|[((G
* ((
len G),j))
`1 ), ((G
* ((
len G),j))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),j))
`2 )]| by
A1,
A2,
A11,
GOBOARD5: 2
.=
|[r2, s1]| by
A1,
A2,
A11,
GOBOARD5: 1;
A17: 1
<= (j
+ 1) by
A1,
NAT_1: 13;
(r
* s1)
<= (r
* s2) by
A5,
A12,
XREAL_1: 64;
then
A18: (r2
+ 1)
> r2 & s1
< ((r3
* (s1
+ s2))
+ (r
* s2)) by
A13,
A9,
XREAL_1: 8,
XREAL_1: 29;
A19: (
Int (
cell (G,(
len G),j)))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & ((G
* (1,j))
`2 )
< s9 & s9
< ((G
* (1,(j
+ 1)))
`2 ) } by
A1,
A2,
Th23;
A20: (G
* ((
len G),(j
+ 1)))
=
|[((G
* ((
len G),(j
+ 1)))
`1 ), ((G
* ((
len G),(j
+ 1)))
`2 )]| by
EUCLID: 53
.=
|[r2, ((G
* ((
len G),(j
+ 1)))
`2 )]| by
A17,
A10,
A11,
GOBOARD5: 2
.=
|[r2, s2]| by
A17,
A10,
A11,
GOBOARD5: 1;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1))))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[((1
- r)
* 1), ((1
- r)
*
0 )]|)
+ (r
* ((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (r
* (
|[r2, s2]|
+
|[1,
0 ]|))) by
A20,
A16,
EUCLID: 56
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ ((r
*
|[r2, s2]|)
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 5
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s2)]|
+ (r
*
|[1,
0 ]|))) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+ (
|[(r
* r2), (r
* s2)]|
+
|[(r
* 1), (r
*
0 )]|)) by
EUCLID: 58
.= (((r3
*
|[(r2
+ r2), (s1
+ s2)]|)
+
|[(1
- r),
0 ]|)
+
|[((r
* r2)
+ r), ((r
* s2)
+
0 )]|) by
EUCLID: 56
.= ((
|[(r3
* (r2
+ r2)), (r3
* (s1
+ s2))]|
+
|[(1
- r),
0 ]|)
+
|[((r
* r2)
+ r), ((r
* s2)
+
0 )]|) by
EUCLID: 58
.= (
|[((r3
* (r2
+ r2))
+ (1
- r)), ((r3
* (s1
+ s2))
+
0 )]|
+
|[((r
* r2)
+ r), ((r
* s2)
+
0 )]|) by
EUCLID: 56
.=
|[(((r3
* (r2
+ r2))
+ (1
- r))
+ ((r
* r2)
+ r)), ((r3
* (s1
+ s2))
+ (r
* s2))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,(
len G),j))) by
A18,
A15,
A19;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:52
Th52: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((G
* (i,1))
-
|[
0 , 1]|)))
c= ((
Int (
cell (G,i,
0 )))
\/
{((G
* (i,1))
-
|[
0 , 1]|)})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((G
* (i,1))
-
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|))
+ (r
* ((G
* (i,1))
-
|[
0 , 1]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (i,1))
-
|[
0 , 1]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* (i,1))
-
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* (i,1))
-
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (i,1))
-
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set s1 = ((G
* (1,1))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A9: ((r3
* (r1
+ r1))
+ (r
* r1))
= r1;
A10: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
s1
< (s1
+ 1) by
XREAL_1: 29;
then
A11: (s1
- 1)
< s1 by
XREAL_1: 19;
A12: (
Int (
cell (G,i,
0 )))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & s9
< ((G
* (1,1))
`2 ) } by
A1,
A2,
Th24;
0
<> (
width G) by
MATRIX_0:def 10;
then
A13: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A14: r1
< r2 by
A1,
A10,
A13,
GOBOARD5: 3;
then (r1
+ r2)
< (r2
+ r2) by
XREAL_1: 6;
then
A15: (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A8,
XREAL_1: 68;
(r1
+ r1)
< (r1
+ r2) by
A14,
XREAL_1: 6;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A8,
XREAL_1: 68;
then
A16: r1
< ((r3
* (r1
+ r2))
+ (r
* r1)) by
A9,
XREAL_1: 6;
A17: ((r3
* (r2
+ r2))
+ (r
* r2))
= r2;
(r
* r1)
<= (r
* r2) by
A5,
A14,
XREAL_1: 64;
then
A18: ((r3
* (r1
+ r2))
+ (r
* r1))
< r2 by
A15,
A17,
XREAL_1: 8;
A19: (G
* (i,1))
=
|[((G
* (i,1))
`1 ), ((G
* (i,1))
`2 )]| by
EUCLID: 53
.=
|[r1, s1]| by
A1,
A2,
A13,
GOBOARD5: 1;
A20: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A21: (G
* ((i
+ 1),1))
=
|[((G
* ((i
+ 1),1))
`1 ), ((G
* ((i
+ 1),1))
`2 )]| by
EUCLID: 53
.=
|[r2, s1]| by
A20,
A10,
A13,
GOBOARD5: 1;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* (i,1))
-
|[
0 , 1]|))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* (i,1))
-
|[
0 , 1]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((G
* (i,1))
-
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (r
* (
|[r1, s1]|
-
|[
0 , 1]|))) by
A21,
A19,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ ((r
*
|[r1, s1]|)
- (r
*
|[
0 , 1]|))) by
RLVECT_1: 34
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (
|[(r
* r1), (r
* s1)]|
- (r
*
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (
|[(r
* r1), (r
* s1)]|
-
|[(r
*
0 ), (r
* 1)]|)) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+
|[((r
* r1)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 62
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s1))]|
-
|[
0 , (1
- r)]|)
+
|[((r
* r1)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
-
0 ), ((r3
* (s1
+ s1))
- (1
- r))]|
+
|[((r
* r1)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 62
.=
|[((r3
* (r1
+ r2))
+ (r
* r1)), (((r3
* (s1
+ s1))
- (1
- r))
+ ((r
* s1)
- r))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,
0 ))) by
A11,
A16,
A18,
A12;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:53
Th53: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((G
* ((i
+ 1),1))
-
|[
0 , 1]|)))
c= ((
Int (
cell (G,i,
0 )))
\/
{((G
* ((i
+ 1),1))
-
|[
0 , 1]|)})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((G
* ((i
+ 1),1))
-
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* ((i
+ 1),1))
-
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((i
+ 1),1))
-
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set s1 = ((G
* (1,1))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A9: ((r3
* (r1
+ r1))
+ (r
* r1))
= r1;
A10: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A12: r1
< r2 by
A1,
A10,
A11,
GOBOARD5: 3;
then (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A13: (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A8,
XREAL_1: 68;
(r
* r1)
<= (r
* r2) by
A5,
A12,
XREAL_1: 64;
then
A14: r1
< ((r3
* (r1
+ r2))
+ (r
* r2)) by
A13,
A9,
XREAL_1: 8;
A15: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
A16: (G
* (i,1))
=
|[((G
* (i,1))
`1 ), ((G
* (i,1))
`2 )]| by
EUCLID: 53
.=
|[r1, s1]| by
A1,
A2,
A11,
GOBOARD5: 1;
s1
< (s1
+ 1) by
XREAL_1: 29;
then
A17: (s1
- 1)
< s1 by
XREAL_1: 19;
A18: ((r3
* (r2
+ r2))
+ (r
* r2))
= r2;
(r1
+ r2)
< (r2
+ r2) by
A12,
XREAL_1: 6;
then (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A8,
XREAL_1: 68;
then
A19: ((r3
* (r1
+ r2))
+ (r
* r2))
< r2 by
A18,
XREAL_1: 8;
A20: (
Int (
cell (G,i,
0 )))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & s9
< ((G
* (1,1))
`2 ) } by
A1,
A2,
Th24;
A21: (G
* ((i
+ 1),1))
=
|[((G
* ((i
+ 1),1))
`1 ), ((G
* ((i
+ 1),1))
`2 )]| by
EUCLID: 53
.=
|[r2, s1]| by
A15,
A10,
A11,
GOBOARD5: 1;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1)))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|))) by
A4,
RLVECT_1: 34
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((G
* ((i
+ 1),1))
-
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (r
* (
|[r2, s1]|
-
|[
0 , 1]|))) by
A21,
A16,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ ((r
*
|[r2, s1]|)
- (r
*
|[
0 , 1]|))) by
RLVECT_1: 34
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (
|[(r
* r2), (r
* s1)]|
- (r
*
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+ (
|[(r
* r2), (r
* s1)]|
-
|[(r
*
0 ), (r
* 1)]|)) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
-
|[
0 , (1
- r)]|)
+
|[((r
* r2)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 62
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s1))]|
-
|[
0 , (1
- r)]|)
+
|[((r
* r2)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
-
0 ), ((r3
* (s1
+ s1))
- (1
- r))]|
+
|[((r
* r2)
-
0 ), ((r
* s1)
- r)]|) by
EUCLID: 62
.=
|[((r3
* (r1
+ r2))
+ (r
* r2)), (((r3
* (s1
+ s1))
- (1
- r))
+ ((r
* s1)
- r))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,
0 ))) by
A17,
A14,
A19,
A20;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:54
Th54: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((G
* (i,(
width G)))
+
|[
0 , 1]|)))
c= ((
Int (
cell (G,i,(
width G))))
\/
{((G
* (i,(
width G)))
+
|[
0 , 1]|)})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((G
* (i,(
width G)))
+
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|))
+ (r
* ((G
* (i,(
width G)))
+
|[
0 , 1]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (i,(
width G)))
+
|[
0 , 1]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* (i,(
width G)))
+
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* (i,(
width G)))
+
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (i,(
width G)))
+
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set s1 = ((G
* (1,(
width G)))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A9: ((r3
* (r1
+ r1))
+ (r
* r1))
= r1;
A10: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
A12: (G
* (i,(
width G)))
=
|[((G
* (i,(
width G)))
`1 ), ((G
* (i,(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* (i,(
width G)))
`1 ), s1]| by
A1,
A2,
A11,
GOBOARD5: 1
.=
|[r1, s1]| by
A1,
A2,
A11,
GOBOARD5: 2;
A13: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
i
< (i
+ 1) by
XREAL_1: 29;
then
A14: r1
< r2 by
A1,
A10,
A11,
GOBOARD5: 3;
then (r1
+ r2)
< (r2
+ r2) by
XREAL_1: 6;
then
A15: (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A8,
XREAL_1: 68;
(r1
+ r1)
< (r1
+ r2) by
A14,
XREAL_1: 6;
then (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A8,
XREAL_1: 68;
then
A16: s1
< (s1
+ 1) & r1
< ((r3
* (r1
+ r2))
+ (r
* r1)) by
A9,
XREAL_1: 6,
XREAL_1: 29;
A17: (
Int (
cell (G,i,(
width G))))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s9 } by
A1,
A2,
Th25;
A18: (G
* ((i
+ 1),(
width G)))
=
|[((G
* ((i
+ 1),(
width G)))
`1 ), ((G
* ((i
+ 1),(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* ((i
+ 1),(
width G)))
`1 ), s1]| by
A13,
A10,
A11,
GOBOARD5: 1
.=
|[r2, s1]| by
A13,
A10,
A11,
GOBOARD5: 2;
A19: ((r3
* (r2
+ r2))
+ (r
* r2))
= r2;
(r
* r1)
<= (r
* r2) by
A5,
A14,
XREAL_1: 64;
then
A20: ((r3
* (r1
+ r2))
+ (r
* r1))
< r2 by
A15,
A19,
XREAL_1: 8;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* (i,(
width G)))
+
|[
0 , 1]|))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* (i,(
width G)))
+
|[
0 , 1]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((G
* (i,(
width G)))
+
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (r
* (
|[r1, s1]|
+
|[
0 , 1]|))) by
A18,
A12,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ ((r
*
|[r1, s1]|)
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 5
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (
|[(r
* r1), (r
* s1)]|
+ (r
*
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (
|[(r
* r1), (r
* s1)]|
+
|[(r
*
0 ), (r
* 1)]|)) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+
|[((r
* r1)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 56
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s1))]|
+
|[
0 , (1
- r)]|)
+
|[((r
* r1)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
+
0 ), ((r3
* (s1
+ s1))
+ (1
- r))]|
+
|[((r
* r1)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 56
.=
|[((r3
* (r1
+ r2))
+ (r
* r1)), (((r3
* (s1
+ s1))
+ (1
- r))
+ ((r
* s1)
+ r))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,(
width G)))) by
A16,
A20,
A17;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:55
Th55: 1
<= i & i
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)))
c= ((
Int (
cell (G,i,(
width G))))
\/
{((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G);
let x be
object;
assume
A3: x
in (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A4: p
= (((1
- r)
* (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|))) and
A5:
0
<= r and
A6: r
<= 1 by
A3;
now
per cases by
A6,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|))) by
A4,
RLVECT_1: 10
.= (1
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case
A7: r
< 1;
set r3 = ((1
- r)
* (1
/ 2));
(1
- r)
>
0 by
A7,
XREAL_1: 50;
then
A8: r3
> ((1
/ 2)
*
0 ) by
XREAL_1: 68;
set s1 = ((G
* (1,(
width G)))
`2 ), r1 = ((G
* (i,1))
`1 ), r2 = ((G
* ((i
+ 1),1))
`1 );
A9: ((r3
* (r1
+ r1))
+ (r
* r1))
= r1;
A10: (i
+ 1)
<= (
len G) by
A2,
NAT_1: 13;
0
<> (
width G) by
MATRIX_0:def 10;
then
A11: 1
<= (
width G) by
NAT_1: 14;
i
< (i
+ 1) by
XREAL_1: 29;
then
A12: r1
< r2 by
A1,
A10,
A11,
GOBOARD5: 3;
then (r1
+ r1)
< (r1
+ r2) by
XREAL_1: 6;
then
A13: (r3
* (r1
+ r1))
< (r3
* (r1
+ r2)) by
A8,
XREAL_1: 68;
A14: ((r3
* (r2
+ r2))
+ (r
* r2))
= r2;
(r1
+ r2)
< (r2
+ r2) by
A12,
XREAL_1: 6;
then (r3
* (r1
+ r2))
< (r3
* (r2
+ r2)) by
A8,
XREAL_1: 68;
then
A15: ((r3
* (r1
+ r2))
+ (r
* r2))
< r2 by
A14,
XREAL_1: 8;
A16: (G
* (i,(
width G)))
=
|[((G
* (i,(
width G)))
`1 ), ((G
* (i,(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* (i,(
width G)))
`1 ), s1]| by
A1,
A2,
A11,
GOBOARD5: 1
.=
|[r1, s1]| by
A1,
A2,
A11,
GOBOARD5: 2;
A17: 1
<= (i
+ 1) by
A1,
NAT_1: 13;
(r
* r1)
<= (r
* r2) by
A5,
A12,
XREAL_1: 64;
then
A18: (s1
+ 1)
> s1 & r1
< ((r3
* (r1
+ r2))
+ (r
* r2)) by
A13,
A9,
XREAL_1: 8,
XREAL_1: 29;
A19: (
Int (
cell (G,i,(
width G))))
= {
|[r9, s9]| : ((G
* (i,1))
`1 )
< r9 & r9
< ((G
* ((i
+ 1),1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s9 } by
A1,
A2,
Th25;
A20: (G
* ((i
+ 1),(
width G)))
=
|[((G
* ((i
+ 1),(
width G)))
`1 ), ((G
* ((i
+ 1),(
width G)))
`2 )]| by
EUCLID: 53
.=
|[((G
* ((i
+ 1),(
width G)))
`1 ), s1]| by
A17,
A10,
A11,
GOBOARD5: 1
.=
|[r2, s1]| by
A17,
A10,
A11,
GOBOARD5: 2;
p
= ((((1
- r)
* ((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G))))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|))) by
A4,
RLVECT_1:def 5
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|))) by
RLVECT_1:def 7
.= (((r3
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|)
+ (r
* ((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (r
* (
|[r2, s1]|
+
|[
0 , 1]|))) by
A20,
A16,
EUCLID: 56
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ ((r
*
|[r2, s1]|)
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 5
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (
|[(r
* r2), (r
* s1)]|
+ (r
*
|[
0 , 1]|))) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+ (
|[(r
* r2), (r
* s1)]|
+
|[(r
*
0 ), (r
* 1)]|)) by
EUCLID: 58
.= (((r3
*
|[(r1
+ r2), (s1
+ s1)]|)
+
|[
0 , (1
- r)]|)
+
|[((r
* r2)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 56
.= ((
|[(r3
* (r1
+ r2)), (r3
* (s1
+ s1))]|
+
|[
0 , (1
- r)]|)
+
|[((r
* r2)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 58
.= (
|[((r3
* (r1
+ r2))
+
0 ), ((r3
* (s1
+ s1))
+ (1
- r))]|
+
|[((r
* r2)
+
0 ), ((r
* s1)
+ r)]|) by
EUCLID: 56
.=
|[((r3
* (r1
+ r2))
+ (r
* r2)), (((r3
* (s1
+ s1))
+ (1
- r))
+ ((r
* s1)
+ r))]| by
EUCLID: 56;
hence p
in (
Int (
cell (G,i,(
width G)))) by
A18,
A15,
A19;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:56
Th56: (
LSeg (((G
* (1,1))
-
|[1, 1]|),((G
* (1,1))
-
|[1,
0 ]|)))
c= ((
Int (
cell (G,
0 ,
0 )))
\/
{((G
* (1,1))
-
|[1,
0 ]|)})
proof
let x be
object;
set r1 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,1))
`2 );
assume
A1: x
in (
LSeg (((G
* (1,1))
-
|[1, 1]|),((G
* (1,1))
-
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* (1,1))
-
|[1, 1]|))
+ (r
* ((G
* (1,1))
-
|[1,
0 ]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,1))
-
|[1,
0 ]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* (1,1))
-
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* (1,1))
-
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,1))
-
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then s1
< (s1
+ (1
- r)) by
XREAL_1: 29;
then
A4: (s1
- (1
- r))
< s1 by
XREAL_1: 19;
A5: (G
* (1,1))
=
|[r1, s1]| by
EUCLID: 53;
r1
< (r1
+ 1) by
XREAL_1: 29;
then
A6: (r1
- 1)
< r1 by
XREAL_1: 19;
A7: (
Int (
cell (G,
0 ,
0 )))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & s9
< ((G
* (1,1))
`2 ) } by
Th18;
p
= ((((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
+ (r
* ((G
* (1,1))
-
|[1,
0 ]|))) by
A2,
RLVECT_1: 34
.= ((((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
+ ((r
* (G
* (1,1)))
- (r
*
|[1,
0 ]|))) by
RLVECT_1: 34
.= (((r
* (G
* (1,1)))
+ (((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|)))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* (1,1)))
+ ((1
- r)
* (G
* (1,1))))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (((G
* (1,1))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 8
.= (((G
* (1,1))
-
|[((1
- r)
* 1), ((1
- r)
* 1)]|)
- (r
*
|[1,
0 ]|)) by
EUCLID: 58
.= (((G
* (1,1))
-
|[(1
- r), (1
- r)]|)
-
|[(r
* 1), (r
*
0 )]|) by
EUCLID: 58
.= (
|[(r1
- (1
- r)), (s1
- (1
- r))]|
-
|[r,
0 ]|) by
A5,
EUCLID: 62
.=
|[((r1
- (1
- r))
- r), ((s1
- (1
- r))
-
0 )]| by
EUCLID: 62
.=
|[(r1
- 1), (s1
- (1
- r))]|;
hence p
in (
Int (
cell (G,
0 ,
0 ))) by
A4,
A6,
A7;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:57
Th57: (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),((G
* ((
len G),1))
+
|[1,
0 ]|)))
c= ((
Int (
cell (G,(
len G),
0 )))
\/
{((G
* ((
len G),1))
+
|[1,
0 ]|)})
proof
let x be
object;
set r1 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,1))
`2 );
assume
A1: x
in (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),((G
* ((
len G),1))
+
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* ((
len G),1))
+
|[1, (
- 1)]|))
+ (r
* ((G
* ((
len G),1))
+
|[1,
0 ]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),1))
+
|[1,
0 ]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),1))
+
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),1))
+
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),1))
+
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then
A4: s1
< (s1
+ (1
- r)) by
XREAL_1: 29;
(s1
+ (r
- 1))
= (s1
- (1
- r));
then
A5: (s1
+ (r
- 1))
< s1 by
A4,
XREAL_1: 19;
A6: r1
< (r1
+ 1) by
XREAL_1: 29;
0
<> (
len G) by
MATRIX_0:def 10;
then
A7: 1
<= (
len G) by
NAT_1: 14;
0
<> (
width G) by
MATRIX_0:def 10;
then
A8: 1
<= (
width G) by
NAT_1: 14;
A9: (G
* ((
len G),1))
=
|[r1, ((G
* ((
len G),1))
`2 )]| by
EUCLID: 53
.=
|[r1, s1]| by
A8,
A7,
GOBOARD5: 1;
A10: (
Int (
cell (G,(
len G),
0 )))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & s9
< ((G
* (1,1))
`2 ) } by
Th21;
p
= ((((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ (r
* ((G
* ((
len G),1))
+
|[1,
0 ]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ ((r
* (G
* ((
len G),1)))
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 5
.= (((r
* (G
* ((
len G),1)))
+ (((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|)))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* ((
len G),1)))
+ ((1
- r)
* (G
* ((
len G),1))))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (((G
* ((
len G),1))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 8
.= (((G
* ((
len G),1))
+
|[((1
- r)
* 1), ((1
- r)
* (
- 1))]|)
+ (r
*
|[1,
0 ]|)) by
EUCLID: 58
.= (((G
* ((
len G),1))
+
|[(1
- r), (r
- 1)]|)
+
|[(r
* 1), (r
*
0 )]|) by
EUCLID: 58
.= (
|[(r1
+ (1
- r)), (s1
+ (r
- 1))]|
+
|[r,
0 ]|) by
A9,
EUCLID: 56
.=
|[((r1
+ (1
- r))
+ r), ((s1
+ (r
- 1))
+
0 )]| by
EUCLID: 56
.=
|[(r1
+ 1), (s1
+ (r
- 1))]|;
hence p
in (
Int (
cell (G,(
len G),
0 ))) by
A5,
A6,
A10;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:58
Th58: (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),((G
* (1,(
width G)))
-
|[1,
0 ]|)))
c= ((
Int (
cell (G,
0 ,(
width G))))
\/
{((G
* (1,(
width G)))
-
|[1,
0 ]|)})
proof
let x be
object;
set r1 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,(
width G)))
`2 );
assume
A1: x
in (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),((G
* (1,(
width G)))
-
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* (1,(
width G)))
+
|[(
- 1), 1]|))
+ (r
* ((G
* (1,(
width G)))
-
|[1,
0 ]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,(
width G)))
-
|[1,
0 ]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* (1,(
width G)))
-
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* (1,(
width G)))
-
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,(
width G)))
-
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then
A4: s1
< (s1
+ (1
- r)) by
XREAL_1: 29;
0
<> (
width G) by
MATRIX_0:def 10;
then
A5: 1
<= (
width G) by
NAT_1: 14;
0
<> (
len G) by
MATRIX_0:def 10;
then
A6: 1
<= (
len G) by
NAT_1: 14;
A7: (G
* (1,(
width G)))
=
|[((G
* (1,(
width G)))
`1 ), s1]| by
EUCLID: 53
.=
|[r1, s1]| by
A5,
A6,
GOBOARD5: 2;
A8: (
Int (
cell (G,
0 ,(
width G))))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s9 } by
Th19;
r1
< (r1
+ 1) by
XREAL_1: 29;
then
A9: (r1
- 1)
< r1 by
XREAL_1: 19;
p
= ((((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ (r
* ((G
* (1,(
width G)))
-
|[1,
0 ]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ ((r
* (G
* (1,(
width G))))
- (r
*
|[1,
0 ]|))) by
RLVECT_1: 34
.= (((r
* (G
* (1,(
width G))))
+ (((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|)))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* (1,(
width G))))
+ ((1
- r)
* (G
* (1,(
width G)))))
+ ((1
- r)
*
|[(
- 1), 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (((G
* (1,(
width G)))
+ ((1
- r)
*
|[(
- 1), 1]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 8
.= (((G
* (1,(
width G)))
+
|[((1
- r)
* (
- 1)), ((1
- r)
* 1)]|)
- (r
*
|[1,
0 ]|)) by
EUCLID: 58
.= (((G
* (1,(
width G)))
+
|[(r
- 1), (1
- r)]|)
-
|[(r
* 1), (r
*
0 )]|) by
EUCLID: 58
.= (
|[(r1
+ (r
- 1)), (s1
+ (1
- r))]|
-
|[r,
0 ]|) by
A7,
EUCLID: 56
.=
|[((r1
+ (r
- 1))
- r), ((s1
+ (1
- r))
-
0 )]| by
EUCLID: 62
.=
|[(r1
- 1), (s1
+ (1
- r))]|;
hence p
in (
Int (
cell (G,
0 ,(
width G)))) by
A4,
A9,
A8;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:59
Th59: (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)))
c= ((
Int (
cell (G,(
len G),(
width G))))
\/
{((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)})
proof
let x be
object;
set r1 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,(
width G)))
`2 );
assume
A1: x
in (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* ((
len G),(
width G)))
+
|[1, 1]|))
+ (r
* ((G
* ((
len G),(
width G)))
+
|[1,
0 ]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),(
width G)))
+
|[1,
0 ]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),(
width G)))
+
|[1,
0 ]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then
A4: s1
< (s1
+ (1
- r)) by
XREAL_1: 29;
A5: r1
< (r1
+ 1) by
XREAL_1: 29;
0
<> (
width G) by
MATRIX_0:def 10;
then
A6: 1
<= (
width G) by
NAT_1: 14;
0
<> (
len G) by
MATRIX_0:def 10;
then
A7: 1
<= (
len G) by
NAT_1: 14;
A8: (G
* ((
len G),(
width G)))
=
|[((G
* ((
len G),(
width G)))
`1 ), ((G
* ((
len G),(
width G)))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* ((
len G),(
width G)))
`2 )]| by
A6,
A7,
GOBOARD5: 2
.=
|[r1, s1]| by
A6,
A7,
GOBOARD5: 1;
A9: (
Int (
cell (G,(
len G),(
width G))))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & ((G
* (1,(
width G)))
`2 )
< s9 } by
Th22;
p
= ((((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
* ((G
* ((
len G),(
width G)))
+
|[1,
0 ]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ ((r
* (G
* ((
len G),(
width G))))
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 5
.= (((r
* (G
* ((
len G),(
width G))))
+ (((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|)))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* ((
len G),(
width G))))
+ ((1
- r)
* (G
* ((
len G),(
width G)))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (((G
* ((
len G),(
width G)))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 8
.= (((G
* ((
len G),(
width G)))
+
|[((1
- r)
* 1), ((1
- r)
* 1)]|)
+ (r
*
|[1,
0 ]|)) by
EUCLID: 58
.= (((G
* ((
len G),(
width G)))
+
|[(1
- r), (1
- r)]|)
+
|[(r
* 1), (r
*
0 )]|) by
EUCLID: 58
.= (
|[(r1
+ (1
- r)), (s1
+ (1
- r))]|
+
|[r,
0 ]|) by
A8,
EUCLID: 56
.=
|[((r1
+ (1
- r))
+ r), ((s1
+ (1
- r))
+
0 )]| by
EUCLID: 56
.=
|[(r1
+ 1), (s1
+ (1
- r))]|;
hence p
in (
Int (
cell (G,(
len G),(
width G)))) by
A4,
A5,
A9;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:60
Th60: (
LSeg (((G
* (1,1))
-
|[1, 1]|),((G
* (1,1))
-
|[
0 , 1]|)))
c= ((
Int (
cell (G,
0 ,
0 )))
\/
{((G
* (1,1))
-
|[
0 , 1]|)})
proof
let x be
object;
set r1 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,1))
`2 );
assume
A1: x
in (
LSeg (((G
* (1,1))
-
|[1, 1]|),((G
* (1,1))
-
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* (1,1))
-
|[1, 1]|))
+ (r
* ((G
* (1,1))
-
|[
0 , 1]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,1))
-
|[
0 , 1]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* (1,1))
-
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* (1,1))
-
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,1))
-
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then r1
< (r1
+ (1
- r)) by
XREAL_1: 29;
then
A4: (r1
- (1
- r))
< r1 by
XREAL_1: 19;
A5: (G
* (1,1))
=
|[r1, s1]| by
EUCLID: 53;
s1
< (s1
+ 1) by
XREAL_1: 29;
then
A6: (s1
- 1)
< s1 by
XREAL_1: 19;
A7: (
Int (
cell (G,
0 ,
0 )))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & s9
< ((G
* (1,1))
`2 ) } by
Th18;
p
= ((((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
+ (r
* ((G
* (1,1))
-
|[
0 , 1]|))) by
A2,
RLVECT_1: 34
.= ((((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
+ ((r
* (G
* (1,1)))
- (r
*
|[
0 , 1]|))) by
RLVECT_1: 34
.= (((r
* (G
* (1,1)))
+ (((1
- r)
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|)))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* (1,1)))
+ ((1
- r)
* (G
* (1,1))))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* (1,1)))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (((G
* (1,1))
- ((1
- r)
*
|[1, 1]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 8
.= (((G
* (1,1))
-
|[((1
- r)
* 1), ((1
- r)
* 1)]|)
- (r
*
|[
0 , 1]|)) by
EUCLID: 58
.= (((G
* (1,1))
-
|[(1
- r), (1
- r)]|)
-
|[(r
*
0 ), (r
* 1)]|) by
EUCLID: 58
.= (
|[(r1
- (1
- r)), (s1
- (1
- r))]|
-
|[
0 , r]|) by
A5,
EUCLID: 62
.=
|[((r1
- (1
- r))
-
0 ), ((s1
- (1
- r))
- r)]| by
EUCLID: 62
.=
|[(r1
- (1
- r)), (s1
- 1)]|;
hence p
in (
Int (
cell (G,
0 ,
0 ))) by
A6,
A4,
A7;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:61
Th61: (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),((G
* ((
len G),1))
-
|[
0 , 1]|)))
c= ((
Int (
cell (G,(
len G),
0 )))
\/
{((G
* ((
len G),1))
-
|[
0 , 1]|)})
proof
let x be
object;
set r1 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,1))
`2 );
assume
A1: x
in (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),((G
* ((
len G),1))
-
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* ((
len G),1))
+
|[1, (
- 1)]|))
+ (r
* ((G
* ((
len G),1))
-
|[
0 , 1]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),1))
-
|[
0 , 1]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),1))
-
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),1))
-
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),1))
-
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then
A4: r1
< (r1
+ (1
- r)) by
XREAL_1: 29;
s1
< (s1
+ 1) by
XREAL_1: 29;
then
A5: (s1
- 1)
< s1 by
XREAL_1: 19;
0
<> (
len G) by
MATRIX_0:def 10;
then
A6: 1
<= (
len G) by
NAT_1: 14;
0
<> (
width G) by
MATRIX_0:def 10;
then
A7: 1
<= (
width G) by
NAT_1: 14;
A8: (G
* ((
len G),1))
=
|[r1, ((G
* ((
len G),1))
`2 )]| by
EUCLID: 53
.=
|[r1, s1]| by
A7,
A6,
GOBOARD5: 1;
A9: (
Int (
cell (G,(
len G),
0 )))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & s9
< ((G
* (1,1))
`2 ) } by
Th21;
p
= ((((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ (r
* ((G
* ((
len G),1))
-
|[
0 , 1]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
+ ((r
* (G
* ((
len G),1)))
- (r
*
|[
0 , 1]|))) by
RLVECT_1: 34
.= (((r
* (G
* ((
len G),1)))
+ (((1
- r)
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|)))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* ((
len G),1)))
+ ((1
- r)
* (G
* ((
len G),1))))
+ ((1
- r)
*
|[1, (
- 1)]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* ((
len G),1)))
+ ((1
- r)
*
|[1, (
- 1)]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (((G
* ((
len G),1))
+ ((1
- r)
*
|[1, (
- 1)]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 8
.= (((G
* ((
len G),1))
+
|[((1
- r)
* 1), ((1
- r)
* (
- 1))]|)
- (r
*
|[
0 , 1]|)) by
EUCLID: 58
.= (((G
* ((
len G),1))
+
|[(1
- r), (r
- 1)]|)
-
|[(r
*
0 ), (r
* 1)]|) by
EUCLID: 58
.= (
|[(r1
+ (1
- r)), (s1
+ (r
- 1))]|
-
|[
0 , r]|) by
A8,
EUCLID: 56
.=
|[((r1
+ (1
- r))
-
0 ), ((s1
+ (r
- 1))
- r)]| by
EUCLID: 62
.=
|[(r1
+ (1
- r)), (s1
- 1)]|;
hence p
in (
Int (
cell (G,(
len G),
0 ))) by
A5,
A4,
A9;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:62
Th62: (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),((G
* (1,(
width G)))
+
|[
0 , 1]|)))
c= ((
Int (
cell (G,
0 ,(
width G))))
\/
{((G
* (1,(
width G)))
+
|[
0 , 1]|)})
proof
let x be
object;
set r1 = ((G
* (1,1))
`1 ), s1 = ((G
* (1,(
width G)))
`2 );
assume
A1: x
in (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),((G
* (1,(
width G)))
+
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* (1,(
width G)))
+
|[(
- 1), 1]|))
+ (r
* ((G
* (1,(
width G)))
+
|[
0 , 1]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* (1,(
width G)))
+
|[
0 , 1]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* (1,(
width G)))
+
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* (1,(
width G)))
+
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* (1,(
width G)))
+
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then r1
< (r1
+ (1
- r)) by
XREAL_1: 29;
then
A4: s1
< (s1
+ 1) & (r1
- (1
- r))
< r1 by
XREAL_1: 19,
XREAL_1: 29;
0
<> (
width G) by
MATRIX_0:def 10;
then
A5: 1
<= (
width G) by
NAT_1: 14;
0
<> (
len G) by
MATRIX_0:def 10;
then
A6: 1
<= (
len G) by
NAT_1: 14;
A7: (G
* (1,(
width G)))
=
|[((G
* (1,(
width G)))
`1 ), s1]| by
EUCLID: 53
.=
|[r1, s1]| by
A5,
A6,
GOBOARD5: 2;
A8: (
Int (
cell (G,
0 ,(
width G))))
= {
|[r9, s9]| : r9
< ((G
* (1,1))
`1 ) & ((G
* (1,(
width G)))
`2 )
< s9 } by
Th19;
p
= ((((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ (r
* ((G
* (1,(
width G)))
+
|[
0 , 1]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ ((r
* (G
* (1,(
width G))))
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 5
.= (((r
* (G
* (1,(
width G))))
+ (((1
- r)
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|)))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* (1,(
width G))))
+ ((1
- r)
* (G
* (1,(
width G)))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* (1,(
width G))))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (((G
* (1,(
width G)))
+ ((1
- r)
*
|[(
- 1), 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 8
.= (((G
* (1,(
width G)))
+
|[((1
- r)
* (
- 1)), ((1
- r)
* 1)]|)
+ (r
*
|[
0 , 1]|)) by
EUCLID: 58
.= (((G
* (1,(
width G)))
+
|[(r
- 1), (1
- r)]|)
+
|[(r
*
0 ), (r
* 1)]|) by
EUCLID: 58
.= (
|[(r1
+ (r
- 1)), (s1
+ (1
- r))]|
+
|[
0 , r]|) by
A7,
EUCLID: 56
.=
|[((r1
+ (r
- 1))
+
0 ), ((s1
+ (1
- r))
+ r)]| by
EUCLID: 56
.=
|[(r1
- (1
- r)), (s1
+ 1)]|;
hence p
in (
Int (
cell (G,
0 ,(
width G)))) by
A4,
A8;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:63
Th63: (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)))
c= ((
Int (
cell (G,(
len G),(
width G))))
\/
{((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)})
proof
let x be
object;
set r1 = ((G
* ((
len G),1))
`1 ), s1 = ((G
* (1,(
width G)))
`2 );
assume
A1: x
in (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)));
then
reconsider p = x as
Point of (
TOP-REAL 2);
consider r such that
A2: p
= (((1
- r)
* ((G
* ((
len G),(
width G)))
+
|[1, 1]|))
+ (r
* ((G
* ((
len G),(
width G)))
+
|[
0 , 1]|))) and
0
<= r and
A3: r
<= 1 by
A1;
now
per cases by
A3,
XXREAL_0: 1;
case r
= 1;
then p
= ((
0. (
TOP-REAL 2))
+ (1
* ((G
* ((
len G),(
width G)))
+
|[
0 , 1]|))) by
A2,
RLVECT_1: 10
.= (1
* ((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)) by
RLVECT_1: 4
.= ((G
* ((
len G),(
width G)))
+
|[
0 , 1]|) by
RLVECT_1:def 8;
hence p
in
{((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)} by
TARSKI:def 1;
end;
case r
< 1;
then (1
- r)
>
0 by
XREAL_1: 50;
then
A4: s1
< (s1
+ 1) & r1
< (r1
+ (1
- r)) by
XREAL_1: 29;
0
<> (
width G) by
MATRIX_0:def 10;
then
A5: 1
<= (
width G) by
NAT_1: 14;
0
<> (
len G) by
MATRIX_0:def 10;
then
A6: 1
<= (
len G) by
NAT_1: 14;
A7: (G
* ((
len G),(
width G)))
=
|[((G
* ((
len G),(
width G)))
`1 ), ((G
* ((
len G),(
width G)))
`2 )]| by
EUCLID: 53
.=
|[r1, ((G
* ((
len G),(
width G)))
`2 )]| by
A5,
A6,
GOBOARD5: 2
.=
|[r1, s1]| by
A5,
A6,
GOBOARD5: 1;
A8: (
Int (
cell (G,(
len G),(
width G))))
= {
|[r9, s9]| : ((G
* ((
len G),1))
`1 )
< r9 & ((G
* (1,(
width G)))
`2 )
< s9 } by
Th22;
p
= ((((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
* ((G
* ((
len G),(
width G)))
+
|[
0 , 1]|))) by
A2,
RLVECT_1:def 5
.= ((((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ ((r
* (G
* ((
len G),(
width G))))
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 5
.= (((r
* (G
* ((
len G),(
width G))))
+ (((1
- r)
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|)))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* (G
* ((
len G),(
width G))))
+ ((1
- r)
* (G
* ((
len G),(
width G)))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
+ (1
- r))
* (G
* ((
len G),(
width G))))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (((G
* ((
len G),(
width G)))
+ ((1
- r)
*
|[1, 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 8
.= (((G
* ((
len G),(
width G)))
+
|[((1
- r)
* 1), ((1
- r)
* 1)]|)
+ (r
*
|[
0 , 1]|)) by
EUCLID: 58
.= (((G
* ((
len G),(
width G)))
+
|[(1
- r), (1
- r)]|)
+
|[(r
*
0 ), (r
* 1)]|) by
EUCLID: 58
.= (
|[(r1
+ (1
- r)), (s1
+ (1
- r))]|
+
|[
0 , r]|) by
A7,
EUCLID: 56
.=
|[((r1
+ (1
- r))
+
0 ), ((s1
+ (1
- r))
+ r)]| by
EUCLID: 56
.=
|[(r1
+ (1
- r)), (s1
+ 1)]|;
hence p
in (
Int (
cell (G,(
len G),(
width G)))) by
A4,
A8;
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
theorem ::
GOBOARD6:64
1
<= i & i
< (
len G) & 1
<= j & (j
+ 1)
< (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 2)))))))
c= (((
Int (
cell (G,i,j)))
\/ (
Int (
cell (G,i,(j
+ 1)))))
\/
{((1
/ 2)
* ((G
* (i,(j
+ 1)))
+ (G
* ((i
+ 1),(j
+ 1)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
<= j and
A4: (j
+ 1)
< (
width G);
set p1 = (G
* (i,j)), p2 = (G
* (i,(j
+ 1))), q2 = (G
* ((i
+ 1),(j
+ 1))), q3 = (G
* ((i
+ 1),(j
+ 2))), r = (((p2
`2 )
- (p1
`2 ))
/ ((q3
`2 )
- (p1
`2 )));
A5: (j
+ 1)
>= 1 by
NAT_1: 11;
set I1 = (
Int (
cell (G,i,j))), I2 = (
Int (
cell (G,i,(j
+ 1))));
j
<= (j
+ 1) by
NAT_1: 11;
then
A6: j
< (
width G) by
A4,
XXREAL_0: 2;
then
A7: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q2))))
c= (I1
\/
{((1
/ 2)
* (p2
+ q2))}) by
A1,
A2,
A3,
Th41;
j
< (j
+ 1) by
XREAL_1: 29;
then (p1
`2 )
< (p2
`2 ) by
A1,
A2,
A3,
A4,
GOBOARD5: 4;
then
A8: ((p2
`2 )
- (p1
`2 ))
>
0 by
XREAL_1: 50;
A9: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A10: (j
+ 2)
>= 1 by
NAT_1: 11;
A11: (j
+ (1
+ 1))
<= (
width G) by
A4,
A9,
NAT_1: 13;
A12: (i
+ 1)
>= 1 & (i
+ 1)
<= (
len G) by
A2,
NAT_1: 11,
NAT_1: 13;
then
A13: (q2
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A4,
A5,
GOBOARD5: 2
.= (q3
`1 ) by
A11,
A10,
A12,
GOBOARD5: 2;
A14: (q2
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A4,
A5,
A12,
GOBOARD5: 1
.= (p2
`2 ) by
A1,
A2,
A4,
A5,
GOBOARD5: 1;
(j
+ 1)
< (j
+ 2) by
XREAL_1: 6;
then (q2
`2 )
< (q3
`2 ) by
A5,
A11,
A12,
GOBOARD5: 4;
then
A15: ((p2
`2 )
- (p1
`2 ))
< ((q3
`2 )
- (p1
`2 )) by
A14,
XREAL_1: 9;
then
A16: (r
* ((q3
`2 )
- (p1
`2 )))
= ((p2
`2 )
- (p1
`2 )) by
A8,
XCMPLX_1: 87;
(p1
`1 )
= ((G
* (i,1))
`1 ) by
A1,
A2,
A3,
A6,
GOBOARD5: 2
.= (p2
`1 ) by
A1,
A2,
A4,
A5,
GOBOARD5: 2;
then
A17: ((p2
+ q2)
`1 )
= (((1
- r)
* ((p1
`1 )
+ (q2
`1 )))
+ (r
* ((p2
`1 )
+ (q3
`1 )))) by
A13,
Lm1
.= (((1
- r)
* ((p1
+ q2)
`1 ))
+ (r
* ((p2
`1 )
+ (q3
`1 )))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`1 ))
+ (r
* ((p2
+ q3)
`1 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`1 ))
+ ((r
* (p2
+ q3))
`1 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
`1 )
+ ((r
* (p2
+ q3))
`1 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
`1 ) by
Lm1;
((p2
+ q2)
`2 )
= ((p2
`2 )
+ ((r
+ (1
- r))
* (q2
`2 ))) by
Lm1
.= (((1
- r)
* ((p1
`2 )
+ (q2
`2 )))
+ (r
* ((p2
`2 )
+ (q3
`2 )))) by
A14,
A16
.= (((1
- r)
* ((p1
`2 )
+ (q2
`2 )))
+ (r
* ((p2
+ q3)
`2 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`2 ))
+ (r
* ((p2
+ q3)
`2 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`2 ))
+ ((r
* (p2
+ q3))
`2 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
`2 )
+ ((r
* (p2
+ q3))
`2 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
`2 ) by
Lm1;
then (((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
=
|[((p2
+ q2)
`1 ), ((p2
+ q2)
`2 )]| by
A17,
EUCLID: 53
.= (p2
+ q2) by
EUCLID: 53;
then
A18: ((1
/ 2)
* (p2
+ q2))
= (((1
/ 2)
* ((1
- r)
* (p1
+ q2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* (1
- r))
* (p1
+ q2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
r
< 1 by
A15,
A8,
XREAL_1: 189;
then ((1
/ 2)
* (p2
+ q2))
in (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q3)))) by
A15,
A8,
A18;
then
A19: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q3))))
= ((
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p2
+ q2)),((1
/ 2)
* (p2
+ q3))))) by
TOPREAL1: 5;
A20: ((I1
\/ I2)
\/
{((1
/ 2)
* (p2
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p2
+ q2))}
\/
{((1
/ 2)
* (p2
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p2
+ q2))})
\/
{((1
/ 2)
* (p2
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p2
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p2
+ q2))})) by
XBOOLE_1: 4;
(
LSeg (((1
/ 2)
* (p2
+ q2)),((1
/ 2)
* (p2
+ q3))))
c= (I2
\/
{((1
/ 2)
* (p2
+ q2))}) by
A1,
A2,
A4,
A5,
A9,
Th43;
hence thesis by
A19,
A7,
A20,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:65
1
<= j & j
< (
width G) & 1
<= i & (i
+ 1)
< (
len G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 2),(j
+ 1)))))))
c= (((
Int (
cell (G,i,j)))
\/ (
Int (
cell (G,(i
+ 1),j))))
\/
{((1
/ 2)
* ((G
* ((i
+ 1),j))
+ (G
* ((i
+ 1),(j
+ 1)))))})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G) and
A3: 1
<= i and
A4: (i
+ 1)
< (
len G);
set p1 = (G
* (i,j)), p2 = (G
* ((i
+ 1),j)), q2 = (G
* ((i
+ 1),(j
+ 1))), q3 = (G
* ((i
+ 2),(j
+ 1))), r = (((p2
`1 )
- (p1
`1 ))
/ ((q3
`1 )
- (p1
`1 )));
A5: (i
+ 1)
>= 1 by
NAT_1: 11;
set I1 = (
Int (
cell (G,i,j))), I2 = (
Int (
cell (G,(i
+ 1),j)));
i
<= (i
+ 1) by
NAT_1: 11;
then
A6: i
< (
len G) by
A4,
XXREAL_0: 2;
then
A7: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q2))))
c= (I1
\/
{((1
/ 2)
* (p2
+ q2))}) by
A1,
A2,
A3,
Th42;
i
< (i
+ 1) by
XREAL_1: 29;
then (p1
`1 )
< (p2
`1 ) by
A1,
A2,
A3,
A4,
GOBOARD5: 3;
then
A8: ((p2
`1 )
- (p1
`1 ))
>
0 by
XREAL_1: 50;
A9: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A10: (i
+ 2)
>= 1 by
NAT_1: 11;
A11: (i
+ (1
+ 1))
<= (
len G) by
A4,
A9,
NAT_1: 13;
A12: (j
+ 1)
>= 1 & (j
+ 1)
<= (
width G) by
A2,
NAT_1: 11,
NAT_1: 13;
then
A13: (q2
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A4,
A5,
GOBOARD5: 1
.= (q3
`2 ) by
A11,
A10,
A12,
GOBOARD5: 1;
A14: (q2
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A4,
A5,
A12,
GOBOARD5: 2
.= (p2
`1 ) by
A1,
A2,
A4,
A5,
GOBOARD5: 2;
(i
+ 1)
< (i
+ 2) by
XREAL_1: 6;
then (q2
`1 )
< (q3
`1 ) by
A5,
A11,
A12,
GOBOARD5: 3;
then
A15: ((p2
`1 )
- (p1
`1 ))
< ((q3
`1 )
- (p1
`1 )) by
A14,
XREAL_1: 9;
then
A16: (r
* ((q3
`1 )
- (p1
`1 )))
= ((p2
`1 )
- (p1
`1 )) by
A8,
XCMPLX_1: 87;
(p1
`2 )
= ((G
* (1,j))
`2 ) by
A1,
A2,
A3,
A6,
GOBOARD5: 1
.= (p2
`2 ) by
A1,
A2,
A4,
A5,
GOBOARD5: 1;
then
A17: ((p2
+ q2)
`2 )
= (((1
- r)
* ((p1
`2 )
+ (q2
`2 )))
+ (r
* ((p2
`2 )
+ (q3
`2 )))) by
A13,
Lm1
.= (((1
- r)
* ((p1
+ q2)
`2 ))
+ (r
* ((p2
`2 )
+ (q3
`2 )))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`2 ))
+ (r
* ((p2
+ q3)
`2 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`2 ))
+ ((r
* (p2
+ q3))
`2 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
`2 )
+ ((r
* (p2
+ q3))
`2 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
`2 ) by
Lm1;
((p2
+ q2)
`1 )
= ((p2
`1 )
+ ((r
+ (1
- r))
* (q2
`1 ))) by
Lm1
.= (((1
- r)
* ((p1
`1 )
+ (q2
`1 )))
+ (r
* ((p2
`1 )
+ (q3
`1 )))) by
A14,
A16
.= (((1
- r)
* ((p1
`1 )
+ (q2
`1 )))
+ (r
* ((p2
+ q3)
`1 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`1 ))
+ (r
* ((p2
+ q3)
`1 ))) by
Lm1
.= (((1
- r)
* ((p1
+ q2)
`1 ))
+ ((r
* (p2
+ q3))
`1 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
`1 )
+ ((r
* (p2
+ q3))
`1 )) by
Lm3
.= ((((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
`1 ) by
Lm1;
then (((1
- r)
* (p1
+ q2))
+ (r
* (p2
+ q3)))
=
|[((p2
+ q2)
`1 ), ((p2
+ q2)
`2 )]| by
A17,
EUCLID: 53
.= (p2
+ q2) by
EUCLID: 53;
then
A18: ((1
/ 2)
* (p2
+ q2))
= (((1
/ 2)
* ((1
- r)
* (p1
+ q2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* (1
- r))
* (p1
+ q2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
r
< 1 by
A15,
A8,
XREAL_1: 189;
then ((1
/ 2)
* (p2
+ q2))
in (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q3)))) by
A15,
A8,
A18;
then
A19: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q3))))
= ((
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p2
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p2
+ q2)),((1
/ 2)
* (p2
+ q3))))) by
TOPREAL1: 5;
A20: ((I1
\/ I2)
\/
{((1
/ 2)
* (p2
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p2
+ q2))}
\/
{((1
/ 2)
* (p2
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p2
+ q2))})
\/
{((1
/ 2)
* (p2
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p2
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p2
+ q2))})) by
XBOOLE_1: 4;
(
LSeg (((1
/ 2)
* (p2
+ q2)),((1
/ 2)
* (p2
+ q3))))
c= (I2
\/
{((1
/ 2)
* (p2
+ q2))}) by
A1,
A2,
A4,
A5,
A9,
Th40;
hence thesis by
A19,
A7,
A20,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:66
1
<= i & i
< (
len G) & 1
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),2))))))
c= (((
Int (
cell (G,i,
0 )))
\/ (
Int (
cell (G,i,1))))
\/
{((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
< (
width G);
set p1 = (G
* (i,1)), q2 = (G
* ((i
+ 1),1)), q3 = (G
* ((i
+ 1),2)), r = (1
/ (((1
/ 2)
* ((q3
`2 )
- (p1
`2 )))
+ 1));
A4: (i
+ 1)
>= 1 & (i
+ 1)
<= (
len G) by
A2,
NAT_1: 11,
NAT_1: 13;
A5: (
0
+ (1
+ 1))
<= (
width G) by
A3,
NAT_1: 13;
then
A6: (q2
`1 )
= (q3
`1 ) by
A4,
GOBOARD5: 2;
A7: (q2
`2 )
= ((G
* (1,(
0
+ 1)))
`2 ) by
A3,
A4,
GOBOARD5: 1
.= (p1
`2 ) by
A1,
A2,
A3,
GOBOARD5: 1;
then (p1
`2 )
< (q3
`2 ) by
A5,
A4,
GOBOARD5: 4;
then
A8: ((q3
`2 )
- (p1
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`2 )
- (p1
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A9: r
< 1 by
XREAL_1: 212;
set I1 = (
Int (
cell (G,i,
0 ))), I2 = (
Int (
cell (G,i,1)));
A10: (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[
0 , 1]|),((1
/ 2)
* (p1
+ q2))))
c= (I1
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
Th46;
A11: ((I1
\/ I2)
\/
{((1
/ 2)
* (p1
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p1
+ q2))}
\/
{((1
/ 2)
* (p1
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p1
+ q2))})
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p1
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4;
A12: (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[
0 , 1]|))
`1 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
- (((1
- r)
*
|[
0 , 1]|)
`1 )) by
Lm2
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
- (
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|
`1 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
-
0 ) by
EUCLID: 52
.= ((((1
- r)
* ((1
/ 2)
* q2))
`1 )
+ ((r
* ((1
/ 2)
* q3))
`1 )) by
Lm1
.= (((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ ((r
* ((1
/ 2)
* q3))
`1 )) by
Lm3
.= (((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ (r
* (((1
/ 2)
* q3)
`1 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* (((1
/ 2)
* q3)
`1 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* ((1
/ 2)
* (q2
`1 )))) by
A6,
Lm3
.= (((1
/ 2)
* q2)
`1 ) by
Lm3;
A13: (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
= (((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* p1)))
+ (r
* ((1
/ 2)
* q3))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ ((r
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* q3)))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
A14: (((r
* ((1
/ 2)
* (q3
`2 )))
- (r
* ((1
/ 2)
* (q2
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1))
.= 1 by
A7,
A8,
XCMPLX_1: 106;
(((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[
0 , 1]|))
`2 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
- (((1
- r)
*
|[
0 , 1]|)
`2 )) by
Lm2
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
- (
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|
`2 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
- (1
- r)) by
EUCLID: 52
.= (((((1
- r)
* ((1
/ 2)
* q2))
`2 )
+ ((r
* ((1
/ 2)
* q3))
`2 ))
- (1
- r)) by
Lm1
.= ((((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ ((r
* ((1
/ 2)
* q3))
`2 ))
- (1
- r)) by
Lm3
.= ((((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ (r
* (((1
/ 2)
* q3)
`2 )))
- (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* (((1
/ 2)
* q3)
`2 )))
- (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* ((1
/ 2)
* (q3
`2 ))))
- (1
- r)) by
Lm3
.= (((1
/ 2)
* q2)
`2 ) by
A14,
Lm3;
then
A15: ((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[
0 , 1]|))
=
|[(((1
/ 2)
* q2)
`1 ), (((1
/ 2)
* q2)
`2 )]| by
A12,
EUCLID: 53
.= ((1
/ 2)
* q2) by
EUCLID: 53;
((1
/ 2)
* (p1
+ q2))
= (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 5
.= ((((1
- r)
+ r)
* ((1
/ 2)
* p1))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 8
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 6
.= (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ (((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3))))
- ((1
- r)
*
|[
0 , 1]|)) by
A15,
RLVECT_1:def 3
.= ((((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((r
* ((1
/ 2)
* (p1
+ q3)))
- ((1
- r)
*
|[
0 , 1]|))) by
A13,
RLVECT_1:def 3
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (
- (((1
- r)
*
|[
0 , 1]|)
- (r
* ((1
/ 2)
* (p1
+ q3)))))) by
RLVECT_1: 33
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
- (((1
- r)
*
|[
0 , 1]|)
- (r
* ((1
/ 2)
* (p1
+ q3)))))
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1: 29
.= (((1
- r)
* (((1
/ 2)
* (p1
+ q2))
-
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1: 34;
then ((1
/ 2)
* (p1
+ q2))
in (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[
0 , 1]|),((1
/ 2)
* (p1
+ q3)))) by
A8,
A9;
then
A16: (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[
0 , 1]|),((1
/ 2)
* (p1
+ q3))))
= ((
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[
0 , 1]|),((1
/ 2)
* (p1
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))) by
TOPREAL1: 5;
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))
c= (I2
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
A3,
Th43;
hence thesis by
A16,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:67
1
<= i & i
< (
len G) & 1
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),((
width G)
-' 1)))))))
c= (((
Int (
cell (G,i,((
width G)
-' 1))))
\/ (
Int (
cell (G,i,(
width G)))))
\/
{((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))})
proof
assume that
A1: 1
<= i and
A2: i
< (
len G) and
A3: 1
< (
width G);
set I1 = (
Int (
cell (G,i,((
width G)
-' 1)))), I2 = (
Int (
cell (G,i,(
width G))));
set p1 = (G
* (i,(
width G))), q2 = (G
* ((i
+ 1),(
width G))), q3 = (G
* ((i
+ 1),((
width G)
-' 1))), r = (1
/ (((1
/ 2)
* ((p1
`2 )
- (q3
`2 )))
+ 1));
A4: (((
width G)
-' 1)
+ 1)
= (
width G) by
A3,
XREAL_1: 235;
then
A5: 1
<= ((
width G)
-' 1) by
A3,
NAT_1: 13;
A6: ((
width G)
-' 1)
< (
width G) by
A4,
NAT_1: 13;
then ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),((
width G)
-' 1))))
= ((G
* (i,((
width G)
-' 1)))
+ (G
* ((i
+ 1),(
width G)))) by
A1,
A2,
A4,
A5,
Th11;
then
A7: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))
c= (I1
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
A4,
A5,
A6,
Th41;
A8: (i
+ 1)
>= 1 & (i
+ 1)
<= (
len G) by
A2,
NAT_1: 11,
NAT_1: 13;
then
A9: (q2
`1 )
= ((G
* ((i
+ 1),1))
`1 ) by
A3,
GOBOARD5: 2
.= (q3
`1 ) by
A5,
A6,
A8,
GOBOARD5: 2;
A10: (q2
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A3,
A8,
GOBOARD5: 1
.= (p1
`2 ) by
A1,
A2,
A3,
GOBOARD5: 1;
then (q3
`2 )
< (p1
`2 ) by
A5,
A6,
A8,
GOBOARD5: 4;
then
A11: ((p1
`2 )
- (q3
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((p1
`2 )
- (q3
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A12: r
< 1 by
XREAL_1: 212;
A13: (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[
0 , 1]|))
`1 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+ (((1
- r)
*
|[
0 , 1]|)
`1 )) by
Lm1
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+ (
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|
`1 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+
0 ) by
EUCLID: 52
.= ((((1
- r)
* ((1
/ 2)
* q2))
`1 )
+ ((r
* ((1
/ 2)
* q3))
`1 )) by
Lm1
.= (((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ ((r
* ((1
/ 2)
* q3))
`1 )) by
Lm3
.= (((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ (r
* (((1
/ 2)
* q3)
`1 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* (((1
/ 2)
* q3)
`1 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* ((1
/ 2)
* (q2
`1 )))) by
A9,
Lm3
.= (((1
/ 2)
* q2)
`1 ) by
Lm3;
A14: ((I1
\/ I2)
\/
{((1
/ 2)
* (p1
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p1
+ q2))}
\/
{((1
/ 2)
* (p1
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p1
+ q2))})
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p1
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4;
A15: (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
= (((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* p1)))
+ (r
* ((1
/ 2)
* q3))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ ((r
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* q3)))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
A16: (((r
* ((1
/ 2)
* (q2
`2 )))
- (r
* ((1
/ 2)
* (q3
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1))
.= 1 by
A10,
A11,
XCMPLX_1: 106;
(((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[
0 , 1]|))
`2 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+ (((1
- r)
*
|[
0 , 1]|)
`2 )) by
Lm1
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+ (
|[((1
- r)
*
0 ), ((1
- r)
* 1)]|
`2 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+ (1
- r)) by
EUCLID: 52
.= (((((1
- r)
* ((1
/ 2)
* q2))
`2 )
+ ((r
* ((1
/ 2)
* q3))
`2 ))
+ (1
- r)) by
Lm1
.= ((((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ ((r
* ((1
/ 2)
* q3))
`2 ))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ (r
* (((1
/ 2)
* q3)
`2 )))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* (((1
/ 2)
* q3)
`2 )))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* ((1
/ 2)
* (q3
`2 ))))
+ (1
- r)) by
Lm3
.= (((1
/ 2)
* q2)
`2 ) by
A16,
Lm3;
then
A17: ((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[
0 , 1]|))
=
|[(((1
/ 2)
* q2)
`1 ), (((1
/ 2)
* q2)
`2 )]| by
A13,
EUCLID: 53
.= ((1
/ 2)
* q2) by
EUCLID: 53;
((1
/ 2)
* (p1
+ q2))
= (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 5
.= ((((1
- r)
+ r)
* ((1
/ 2)
* p1))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 8
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 6
.= (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ (((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3))))
+ ((1
- r)
*
|[
0 , 1]|)) by
A17,
RLVECT_1:def 3
.= ((((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
A15,
RLVECT_1:def 3
.= (((1
- r)
* (((1
/ 2)
* (p1
+ q2))
+
|[
0 , 1]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
then ((1
/ 2)
* (p1
+ q2))
in (
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[
0 , 1]|),((1
/ 2)
* (p1
+ q3)))) by
A11,
A12;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[
0 , 1]|),((1
/ 2)
* (p1
+ q3))))
= ((
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[
0 , 1]|),((1
/ 2)
* (p1
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[
0 , 1]|),((1
/ 2)
* (p1
+ q2))))
c= (I2
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
Th47;
hence thesis by
A18,
A7,
A14,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:68
1
<= j & j
< (
width G) & 1
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),((1
/ 2)
* ((G
* (1,j))
+ (G
* (2,(j
+ 1)))))))
c= (((
Int (
cell (G,
0 ,j)))
\/ (
Int (
cell (G,1,j))))
\/
{((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G) and
A3: 1
< (
len G);
set p1 = (G
* (1,j)), q2 = (G
* (1,(j
+ 1))), q3 = (G
* (2,(j
+ 1))), r = (1
/ (((1
/ 2)
* ((q3
`1 )
- (p1
`1 )))
+ 1));
A4: (j
+ 1)
>= 1 & (j
+ 1)
<= (
width G) by
A2,
NAT_1: 11,
NAT_1: 13;
A5: (
0
+ (1
+ 1))
<= (
len G) by
A3,
NAT_1: 13;
then
A6: (q2
`2 )
= (q3
`2 ) by
A4,
GOBOARD5: 1;
A7: (q2
`1 )
= ((G
* (1,1))
`1 ) by
A3,
A4,
GOBOARD5: 2
.= (p1
`1 ) by
A1,
A2,
A3,
GOBOARD5: 2;
then (p1
`1 )
< (q3
`1 ) by
A5,
A4,
GOBOARD5: 3;
then
A8: ((q3
`1 )
- (p1
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`1 )
- (p1
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A9: r
< 1 by
XREAL_1: 212;
set I1 = (
Int (
cell (G,
0 ,j))), I2 = (
Int (
cell (G,1,j)));
A10: (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[1,
0 ]|),((1
/ 2)
* (p1
+ q2))))
c= (I1
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
Th44;
A11: ((I1
\/ I2)
\/
{((1
/ 2)
* (p1
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p1
+ q2))}
\/
{((1
/ 2)
* (p1
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p1
+ q2))})
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p1
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4;
A12: (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[1,
0 ]|))
`2 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
- (((1
- r)
*
|[1,
0 ]|)
`2 )) by
Lm2
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
- (
|[((1
- r)
* 1), ((1
- r)
*
0 )]|
`2 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
-
0 ) by
EUCLID: 52
.= ((((1
- r)
* ((1
/ 2)
* q2))
`2 )
+ ((r
* ((1
/ 2)
* q3))
`2 )) by
Lm1
.= (((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ ((r
* ((1
/ 2)
* q3))
`2 )) by
Lm3
.= (((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ (r
* (((1
/ 2)
* q3)
`2 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* (((1
/ 2)
* q3)
`2 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* ((1
/ 2)
* (q2
`2 )))) by
A6,
Lm3
.= (((1
/ 2)
* q2)
`2 ) by
Lm3;
A13: (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
= (((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* p1)))
+ (r
* ((1
/ 2)
* q3))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ ((r
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* q3)))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
A14: (((r
* ((1
/ 2)
* (q3
`1 )))
- (r
* ((1
/ 2)
* (q2
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1))
.= 1 by
A7,
A8,
XCMPLX_1: 106;
(((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[1,
0 ]|))
`1 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
- (((1
- r)
*
|[1,
0 ]|)
`1 )) by
Lm2
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
- (
|[((1
- r)
* 1), ((1
- r)
*
0 )]|
`1 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
- (1
- r)) by
EUCLID: 52
.= (((((1
- r)
* ((1
/ 2)
* q2))
`1 )
+ ((r
* ((1
/ 2)
* q3))
`1 ))
- (1
- r)) by
Lm1
.= ((((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ ((r
* ((1
/ 2)
* q3))
`1 ))
- (1
- r)) by
Lm3
.= ((((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ (r
* (((1
/ 2)
* q3)
`1 )))
- (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* (((1
/ 2)
* q3)
`1 )))
- (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* ((1
/ 2)
* (q3
`1 ))))
- (1
- r)) by
Lm3
.= (((1
/ 2)
* q2)
`1 ) by
A14,
Lm3;
then
A15: ((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[1,
0 ]|))
=
|[(((1
/ 2)
* q2)
`1 ), (((1
/ 2)
* q2)
`2 )]| by
A12,
EUCLID: 53
.= ((1
/ 2)
* q2) by
EUCLID: 53;
((1
/ 2)
* (p1
+ q2))
= (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 5
.= ((((1
- r)
+ r)
* ((1
/ 2)
* p1))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 8
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 6
.= (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ (((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3))))
- ((1
- r)
*
|[1,
0 ]|)) by
A15,
RLVECT_1:def 3
.= ((((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
- ((1
- r)
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((r
* ((1
/ 2)
* (p1
+ q3)))
- ((1
- r)
*
|[1,
0 ]|))) by
A13,
RLVECT_1:def 3
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (
- (((1
- r)
*
|[1,
0 ]|)
- (r
* ((1
/ 2)
* (p1
+ q3)))))) by
RLVECT_1: 33
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
- (((1
- r)
*
|[1,
0 ]|)
- (r
* ((1
/ 2)
* (p1
+ q3)))))
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1: 29
.= (((1
- r)
* (((1
/ 2)
* (p1
+ q2))
-
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1: 34;
then ((1
/ 2)
* (p1
+ q2))
in (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[1,
0 ]|),((1
/ 2)
* (p1
+ q3)))) by
A8,
A9;
then
A16: (
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[1,
0 ]|),((1
/ 2)
* (p1
+ q3))))
= ((
LSeg ((((1
/ 2)
* (p1
+ q2))
-
|[1,
0 ]|),((1
/ 2)
* (p1
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))) by
TOPREAL1: 5;
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))
c= (I2
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
A3,
Th40;
hence thesis by
A16,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:69
1
<= j & j
< (
width G) & 1
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* (((
len G)
-' 1),(j
+ 1)))))))
c= (((
Int (
cell (G,((
len G)
-' 1),j)))
\/ (
Int (
cell (G,(
len G),j))))
\/
{((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))})
proof
assume that
A1: 1
<= j and
A2: j
< (
width G) and
A3: 1
< (
len G);
set I1 = (
Int (
cell (G,((
len G)
-' 1),j))), I2 = (
Int (
cell (G,(
len G),j)));
set p1 = (G
* ((
len G),j)), q2 = (G
* ((
len G),(j
+ 1))), q3 = (G
* (((
len G)
-' 1),(j
+ 1))), r = (1
/ (((1
/ 2)
* ((p1
`1 )
- (q3
`1 )))
+ 1));
A4: (((
len G)
-' 1)
+ 1)
= (
len G) by
A3,
XREAL_1: 235;
then
A5: 1
<= ((
len G)
-' 1) by
A3,
NAT_1: 13;
A6: ((
len G)
-' 1)
< (
len G) by
A4,
NAT_1: 13;
then ((G
* (((
len G)
-' 1),j))
+ (G
* ((
len G),(j
+ 1))))
= ((G
* ((
len G),j))
+ (G
* (((
len G)
-' 1),(j
+ 1)))) by
A1,
A2,
A4,
A5,
Th11;
then
A7: (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))
c= (I1
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
A4,
A5,
A6,
Th42;
A8: (j
+ 1)
>= 1 & (j
+ 1)
<= (
width G) by
A2,
NAT_1: 11,
NAT_1: 13;
then
A9: (q2
`2 )
= ((G
* (1,(j
+ 1)))
`2 ) by
A3,
GOBOARD5: 1
.= (q3
`2 ) by
A5,
A6,
A8,
GOBOARD5: 1;
A10: (q2
`1 )
= ((G
* ((
len G),1))
`1 ) by
A3,
A8,
GOBOARD5: 2
.= (p1
`1 ) by
A1,
A2,
A3,
GOBOARD5: 2;
then (q3
`1 )
< (p1
`1 ) by
A5,
A6,
A8,
GOBOARD5: 3;
then
A11: ((p1
`1 )
- (q3
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((p1
`1 )
- (q3
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A12: r
< 1 by
XREAL_1: 212;
A13: (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[1,
0 ]|))
`2 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+ (((1
- r)
*
|[1,
0 ]|)
`2 )) by
Lm1
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+ (
|[((1
- r)
* 1), ((1
- r)
*
0 )]|
`2 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`2 )
+
0 ) by
EUCLID: 52
.= ((((1
- r)
* ((1
/ 2)
* q2))
`2 )
+ ((r
* ((1
/ 2)
* q3))
`2 )) by
Lm1
.= (((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ ((r
* ((1
/ 2)
* q3))
`2 )) by
Lm3
.= (((1
- r)
* (((1
/ 2)
* q2)
`2 ))
+ (r
* (((1
/ 2)
* q3)
`2 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* (((1
/ 2)
* q3)
`2 ))) by
Lm3
.= (((1
- r)
* ((1
/ 2)
* (q2
`2 )))
+ (r
* ((1
/ 2)
* (q2
`2 )))) by
A9,
Lm3
.= (((1
/ 2)
* q2)
`2 ) by
Lm3;
A14: ((I1
\/ I2)
\/
{((1
/ 2)
* (p1
+ q2))})
= (I1
\/ (I2
\/ (
{((1
/ 2)
* (p1
+ q2))}
\/
{((1
/ 2)
* (p1
+ q2))}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{((1
/ 2)
* (p1
+ q2))})
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4
.= ((I1
\/
{((1
/ 2)
* (p1
+ q2))})
\/ (I2
\/
{((1
/ 2)
* (p1
+ q2))})) by
XBOOLE_1: 4;
A15: (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
= (((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* p1)))
+ (r
* ((1
/ 2)
* q3))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ ((r
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* q3)))) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
A16: (((r
* ((1
/ 2)
* (q2
`1 )))
- (r
* ((1
/ 2)
* (q3
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1))
.= 1 by
A10,
A11,
XCMPLX_1: 106;
(((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[1,
0 ]|))
`1 )
= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+ (((1
- r)
*
|[1,
0 ]|)
`1 )) by
Lm1
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+ (
|[((1
- r)
* 1), ((1
- r)
*
0 )]|
`1 )) by
EUCLID: 58
.= (((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
`1 )
+ (1
- r)) by
EUCLID: 52
.= (((((1
- r)
* ((1
/ 2)
* q2))
`1 )
+ ((r
* ((1
/ 2)
* q3))
`1 ))
+ (1
- r)) by
Lm1
.= ((((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ ((r
* ((1
/ 2)
* q3))
`1 ))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* (((1
/ 2)
* q2)
`1 ))
+ (r
* (((1
/ 2)
* q3)
`1 )))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* (((1
/ 2)
* q3)
`1 )))
+ (1
- r)) by
Lm3
.= ((((1
- r)
* ((1
/ 2)
* (q2
`1 )))
+ (r
* ((1
/ 2)
* (q3
`1 ))))
+ (1
- r)) by
Lm3
.= (((1
/ 2)
* q2)
`1 ) by
A16,
Lm3;
then
A17: ((((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[1,
0 ]|))
=
|[(((1
/ 2)
* q2)
`1 ), (((1
/ 2)
* q2)
`2 )]| by
A13,
EUCLID: 53
.= ((1
/ 2)
* q2) by
EUCLID: 53;
((1
/ 2)
* (p1
+ q2))
= (((1
/ 2)
* p1)
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 5
.= ((((1
- r)
+ r)
* ((1
/ 2)
* p1))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 8
.= ((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
/ 2)
* q2)) by
RLVECT_1:def 6
.= (((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ (((1
- r)
* ((1
/ 2)
* q2))
+ (r
* ((1
/ 2)
* q3))))
+ ((1
- r)
*
|[1,
0 ]|)) by
A17,
RLVECT_1:def 3
.= ((((((1
- r)
* ((1
/ 2)
* p1))
+ (r
* ((1
/ 2)
* p1)))
+ ((1
- r)
* ((1
/ 2)
* q2)))
+ (r
* ((1
/ 2)
* q3)))
+ ((1
- r)
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ q2)))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
A15,
RLVECT_1:def 3
.= (((1
- r)
* (((1
/ 2)
* (p1
+ q2))
+
|[1,
0 ]|))
+ (r
* ((1
/ 2)
* (p1
+ q3)))) by
RLVECT_1:def 5;
then ((1
/ 2)
* (p1
+ q2))
in (
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[1,
0 ]|),((1
/ 2)
* (p1
+ q3)))) by
A11,
A12;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[1,
0 ]|),((1
/ 2)
* (p1
+ q3))))
= ((
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[1,
0 ]|),((1
/ 2)
* (p1
+ q2))))
\/ (
LSeg (((1
/ 2)
* (p1
+ q2)),((1
/ 2)
* (p1
+ q3))))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ q2))
+
|[1,
0 ]|),((1
/ 2)
* (p1
+ q2))))
c= (I2
\/
{((1
/ 2)
* (p1
+ q2))}) by
A1,
A2,
Th45;
hence thesis by
A18,
A7,
A14,
XBOOLE_1: 13;
end;
Lm7: ((1
/ 2)
+ (1
/ 2))
= 1;
theorem ::
GOBOARD6:70
1
< (
len G) & 1
<= j & (j
+ 1)
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),(((1
/ 2)
* ((G
* (1,(j
+ 1)))
+ (G
* (1,(j
+ 2)))))
-
|[1,
0 ]|)))
c= (((
Int (
cell (G,
0 ,j)))
\/ (
Int (
cell (G,
0 ,(j
+ 1)))))
\/
{((G
* (1,(j
+ 1)))
-
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
<= j and
A3: (j
+ 1)
< (
width G);
set p1 = (G
* (1,j)), p2 = (G
* (1,(j
+ 1))), q3 = (G
* (1,(j
+ 2))), r = (((p2
`2 )
- (p1
`2 ))
/ ((q3
`2 )
- (p1
`2 )));
A4: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A5: (j
+ 2)
>= 1 by
NAT_1: 11;
A6: (j
+ (1
+ 1))
<= (
width G) by
A3,
A4,
NAT_1: 13;
set I1 = (
Int (
cell (G,
0 ,j))), I2 = (
Int (
cell (G,
0 ,(j
+ 1))));
A7: ((I1
\/ I2)
\/
{(p2
-
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(p2
-
|[1,
0 ]|)}
\/
{(p2
-
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(p2
-
|[1,
0 ]|)})
\/
{(p2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(p2
-
|[1,
0 ]|)})
\/ (I2
\/
{(p2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4;
A8: (
LSeg ((((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|),(p2
-
|[1,
0 ]|)))
c= (I2
\/
{(p2
-
|[1,
0 ]|)}) by
A3,
A4,
Th48,
NAT_1: 11;
j
< (j
+ 1) by
XREAL_1: 29;
then (p1
`2 )
< (p2
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
then
A9: ((p2
`2 )
- (p1
`2 ))
>
0 by
XREAL_1: 50;
A10: (j
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (p2
`1 )
= ((G
* (1,1))
`1 ) by
A1,
A3,
GOBOARD5: 2
.= (q3
`1 ) by
A1,
A6,
A5,
GOBOARD5: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then
A12: j
< (
width G) by
A3,
XXREAL_0: 2;
then (p1
`1 )
= ((G
* (1,1))
`1 ) by
A1,
A2,
GOBOARD5: 2
.= (p2
`1 ) by
A1,
A3,
A10,
GOBOARD5: 2;
then
A13: (1
* (p2
`1 ))
= (((1
- r)
* (p1
`1 ))
+ (r
* (q3
`1 ))) by
A11
.= ((((1
- r)
* p1)
`1 )
+ (r
* (q3
`1 ))) by
Lm3
.= ((((1
- r)
* p1)
`1 )
+ ((r
* q3)
`1 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`1 ) by
Lm1;
(j
+ 1)
< (j
+ 2) by
XREAL_1: 6;
then (p2
`2 )
< (q3
`2 ) by
A1,
A10,
A6,
GOBOARD5: 4;
then
A14: ((p2
`2 )
- (p1
`2 ))
< ((q3
`2 )
- (p1
`2 )) by
XREAL_1: 9;
then (r
* ((q3
`2 )
- (p1
`2 )))
= ((p2
`2 )
- (p1
`2 )) by
A9,
XCMPLX_1: 87;
then (p2
`2 )
= (((1
- r)
* (p1
`2 ))
+ (r
* (q3
`2 )));
then (1
* (p2
`2 ))
= ((((1
- r)
* p1)
`2 )
+ (r
* (q3
`2 ))) by
Lm3
.= ((((1
- r)
* p1)
`2 )
+ ((r
* q3)
`2 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`2 ) by
Lm1;
then
A15: (((1
- r)
* p1)
+ (r
* q3))
=
|[(p2
`1 ), (p2
`2 )]| by
A13,
EUCLID: 53
.= p2 by
EUCLID: 53;
p2
= (1
* p2) by
RLVECT_1:def 8
.= (((1
/ 2)
* p2)
+ ((1
/ 2)
* p2)) by
Lm7,
RLVECT_1:def 6
.= (((1
/ 2)
* (((1
- r)
+ r)
* p2))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
A15,
RLVECT_1:def 8
.= (((1
/ 2)
* (((1
- r)
* p2)
+ (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 6
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 5
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* (r
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= (((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (((1
- r)
* p2)
+ ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= (((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 7
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* ((r
* p2)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5;
then
A16: p2
= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
A17: (((1
- r)
* (((1
/ 2)
* (p1
+ p2))
-
|[1,
0 ]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|)))
= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[1,
0 ]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|))) by
RLVECT_1: 34
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[1,
0 ]|))
+ ((r
* ((1
/ 2)
* (p2
+ q3)))
- (r
*
|[1,
0 ]|))) by
RLVECT_1: 34
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[1,
0 ]|)))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- ((1
- r)
*
|[1,
0 ]|))
- (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- (((1
- r)
*
|[1,
0 ]|)
+ (r
*
|[1,
0 ]|))) by
RLVECT_1: 27
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- (((1
- r)
+ r)
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (p2
-
|[1,
0 ]|) by
A16,
RLVECT_1:def 8;
r
< 1 by
A14,
A9,
XREAL_1: 189;
then (p2
-
|[1,
0 ]|)
in (
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|))) by
A14,
A9,
A17;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|)))
= ((
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[1,
0 ]|),(p2
-
|[1,
0 ]|)))
\/ (
LSeg ((p2
-
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
-
|[1,
0 ]|)))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[1,
0 ]|),(p2
-
|[1,
0 ]|)))
c= (I1
\/
{(p2
-
|[1,
0 ]|)}) by
A2,
A12,
Th49;
hence thesis by
A18,
A8,
A7,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:71
1
< (
len G) & 1
<= j & (j
+ 1)
< (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|),(((1
/ 2)
* ((G
* ((
len G),(j
+ 1)))
+ (G
* ((
len G),(j
+ 2)))))
+
|[1,
0 ]|)))
c= (((
Int (
cell (G,(
len G),j)))
\/ (
Int (
cell (G,(
len G),(j
+ 1)))))
\/
{((G
* ((
len G),(j
+ 1)))
+
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
<= j and
A3: (j
+ 1)
< (
width G);
set p1 = (G
* ((
len G),j)), p2 = (G
* ((
len G),(j
+ 1))), q3 = (G
* ((
len G),(j
+ 2))), r = (((p2
`2 )
- (p1
`2 ))
/ ((q3
`2 )
- (p1
`2 )));
A4: ((j
+ 1)
+ 1)
= (j
+ (1
+ 1));
then
A5: (j
+ 2)
>= 1 by
NAT_1: 11;
A6: (j
+ (1
+ 1))
<= (
width G) by
A3,
A4,
NAT_1: 13;
set I1 = (
Int (
cell (G,(
len G),j))), I2 = (
Int (
cell (G,(
len G),(j
+ 1))));
A7: ((I1
\/ I2)
\/
{(p2
+
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(p2
+
|[1,
0 ]|)}
\/
{(p2
+
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(p2
+
|[1,
0 ]|)})
\/
{(p2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(p2
+
|[1,
0 ]|)})
\/ (I2
\/
{(p2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4;
A8: (
LSeg ((((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|),(p2
+
|[1,
0 ]|)))
c= (I2
\/
{(p2
+
|[1,
0 ]|)}) by
A3,
A4,
Th50,
NAT_1: 11;
j
< (j
+ 1) by
XREAL_1: 29;
then (p1
`2 )
< (p2
`2 ) by
A1,
A2,
A3,
GOBOARD5: 4;
then
A9: ((p2
`2 )
- (p1
`2 ))
>
0 by
XREAL_1: 50;
A10: (j
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (p2
`1 )
= ((G
* ((
len G),1))
`1 ) by
A1,
A3,
GOBOARD5: 2
.= (q3
`1 ) by
A1,
A6,
A5,
GOBOARD5: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then
A12: j
< (
width G) by
A3,
XXREAL_0: 2;
then (p1
`1 )
= ((G
* ((
len G),1))
`1 ) by
A1,
A2,
GOBOARD5: 2
.= (p2
`1 ) by
A1,
A3,
A10,
GOBOARD5: 2;
then
A13: (1
* (p2
`1 ))
= (((1
- r)
* (p1
`1 ))
+ (r
* (q3
`1 ))) by
A11
.= ((((1
- r)
* p1)
`1 )
+ (r
* (q3
`1 ))) by
Lm3
.= ((((1
- r)
* p1)
`1 )
+ ((r
* q3)
`1 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`1 ) by
Lm1;
(j
+ 1)
< (j
+ 2) by
XREAL_1: 6;
then (p2
`2 )
< (q3
`2 ) by
A1,
A10,
A6,
GOBOARD5: 4;
then
A14: ((p2
`2 )
- (p1
`2 ))
< ((q3
`2 )
- (p1
`2 )) by
XREAL_1: 9;
then (r
* ((q3
`2 )
- (p1
`2 )))
= ((p2
`2 )
- (p1
`2 )) by
A9,
XCMPLX_1: 87;
then (p2
`2 )
= (((1
- r)
* (p1
`2 ))
+ (r
* (q3
`2 )));
then (1
* (p2
`2 ))
= ((((1
- r)
* p1)
`2 )
+ (r
* (q3
`2 ))) by
Lm3
.= ((((1
- r)
* p1)
`2 )
+ ((r
* q3)
`2 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`2 ) by
Lm1;
then
A15: (((1
- r)
* p1)
+ (r
* q3))
=
|[(p2
`1 ), (p2
`2 )]| by
A13,
EUCLID: 53
.= p2 by
EUCLID: 53;
p2
= (1
* p2) by
RLVECT_1:def 8
.= (((1
/ 2)
* p2)
+ ((1
/ 2)
* p2)) by
Lm7,
RLVECT_1:def 6
.= (((1
/ 2)
* (((1
- r)
+ r)
* p2))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
A15,
RLVECT_1:def 8
.= (((1
/ 2)
* (((1
- r)
* p2)
+ (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 6
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 5
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* (r
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= (((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (((1
- r)
* p2)
+ ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= (((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 7;
then
A16: p2
= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* ((r
* p2)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
A17: (((1
- r)
* (((1
/ 2)
* (p1
+ p2))
+
|[1,
0 ]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|)))
= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|))) by
RLVECT_1:def 5
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[1,
0 ]|))
+ ((r
* ((1
/ 2)
* (p2
+ q3)))
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 5
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[1,
0 ]|)))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= ((((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ ((1
- r)
*
|[1,
0 ]|))
+ (r
*
|[1,
0 ]|)) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ (((1
- r)
*
|[1,
0 ]|)
+ (r
*
|[1,
0 ]|))) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ (((1
- r)
+ r)
*
|[1,
0 ]|)) by
RLVECT_1:def 6
.= (p2
+
|[1,
0 ]|) by
A16,
RLVECT_1:def 8;
r
< 1 by
A14,
A9,
XREAL_1: 189;
then (p2
+
|[1,
0 ]|)
in (
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|))) by
A14,
A9,
A17;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|)))
= ((
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[1,
0 ]|),(p2
+
|[1,
0 ]|)))
\/ (
LSeg ((p2
+
|[1,
0 ]|),(((1
/ 2)
* (p2
+ q3))
+
|[1,
0 ]|)))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[1,
0 ]|),(p2
+
|[1,
0 ]|)))
c= (I1
\/
{(p2
+
|[1,
0 ]|)}) by
A2,
A12,
Th51;
hence thesis by
A18,
A8,
A7,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:72
1
< (
width G) & 1
<= i & (i
+ 1)
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),(((1
/ 2)
* ((G
* ((i
+ 1),1))
+ (G
* ((i
+ 2),1))))
-
|[
0 , 1]|)))
c= (((
Int (
cell (G,i,
0 )))
\/ (
Int (
cell (G,(i
+ 1),
0 ))))
\/
{((G
* ((i
+ 1),1))
-
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
<= i and
A3: (i
+ 1)
< (
len G);
set p1 = (G
* (i,1)), p2 = (G
* ((i
+ 1),1)), q3 = (G
* ((i
+ 2),1)), r = (((p2
`1 )
- (p1
`1 ))
/ ((q3
`1 )
- (p1
`1 )));
A4: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A5: (i
+ 2)
>= 1 by
NAT_1: 11;
A6: (i
+ (1
+ 1))
<= (
len G) by
A3,
A4,
NAT_1: 13;
set I1 = (
Int (
cell (G,i,
0 ))), I2 = (
Int (
cell (G,(i
+ 1),
0 )));
A7: ((I1
\/ I2)
\/
{(p2
-
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(p2
-
|[
0 , 1]|)}
\/
{(p2
-
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(p2
-
|[
0 , 1]|)})
\/
{(p2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(p2
-
|[
0 , 1]|)})
\/ (I2
\/
{(p2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4;
A8: (
LSeg ((((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|),(p2
-
|[
0 , 1]|)))
c= (I2
\/
{(p2
-
|[
0 , 1]|)}) by
A3,
A4,
Th52,
NAT_1: 11;
i
< (i
+ 1) by
XREAL_1: 29;
then (p1
`1 )
< (p2
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
then
A9: ((p2
`1 )
- (p1
`1 ))
>
0 by
XREAL_1: 50;
A10: (i
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (p2
`2 )
= ((G
* (1,1))
`2 ) by
A1,
A3,
GOBOARD5: 1
.= (q3
`2 ) by
A1,
A6,
A5,
GOBOARD5: 1;
i
<= (i
+ 1) by
NAT_1: 11;
then
A12: i
< (
len G) by
A3,
XXREAL_0: 2;
then (p1
`2 )
= ((G
* (1,1))
`2 ) by
A1,
A2,
GOBOARD5: 1
.= (p2
`2 ) by
A1,
A3,
A10,
GOBOARD5: 1;
then
A13: (1
* (p2
`2 ))
= (((1
- r)
* (p1
`2 ))
+ (r
* (q3
`2 ))) by
A11
.= ((((1
- r)
* p1)
`2 )
+ (r
* (q3
`2 ))) by
Lm3
.= ((((1
- r)
* p1)
`2 )
+ ((r
* q3)
`2 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`2 ) by
Lm1;
(i
+ 1)
< (i
+ 2) by
XREAL_1: 6;
then (p2
`1 )
< (q3
`1 ) by
A1,
A10,
A6,
GOBOARD5: 3;
then
A14: ((p2
`1 )
- (p1
`1 ))
< ((q3
`1 )
- (p1
`1 )) by
XREAL_1: 9;
then (r
* ((q3
`1 )
- (p1
`1 )))
= ((p2
`1 )
- (p1
`1 )) by
A9,
XCMPLX_1: 87;
then (p2
`1 )
= (((1
- r)
* (p1
`1 ))
+ (r
* (q3
`1 )));
then (1
* (p2
`1 ))
= ((((1
- r)
* p1)
`1 )
+ (r
* (q3
`1 ))) by
Lm3
.= ((((1
- r)
* p1)
`1 )
+ ((r
* q3)
`1 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`1 ) by
Lm1;
then
A15: (((1
- r)
* p1)
+ (r
* q3))
=
|[(p2
`1 ), (p2
`2 )]| by
A13,
EUCLID: 53
.= p2 by
EUCLID: 53;
p2
= (1
* p2) by
RLVECT_1:def 8
.= (((1
/ 2)
* p2)
+ ((1
/ 2)
* p2)) by
Lm7,
RLVECT_1:def 6
.= (((1
/ 2)
* (((1
- r)
+ r)
* p2))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
A15,
RLVECT_1:def 8
.= (((1
/ 2)
* (((1
- r)
* p2)
+ (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 6
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 5
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* (r
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= (((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (((1
- r)
* p2)
+ ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= (((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 7
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* ((r
* p2)
+ (r
* q3)))) by
RLVECT_1:def 5;
then
A16: p2
= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
A17: (((1
- r)
* (((1
/ 2)
* (p1
+ p2))
-
|[
0 , 1]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|)))
= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[
0 , 1]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|))) by
RLVECT_1: 34
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[
0 , 1]|))
+ ((r
* ((1
/ 2)
* (p2
+ q3)))
- (r
*
|[
0 , 1]|))) by
RLVECT_1: 34
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
- ((1
- r)
*
|[
0 , 1]|)))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- ((1
- r)
*
|[
0 , 1]|))
- (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- (((1
- r)
*
|[
0 , 1]|)
+ (r
*
|[
0 , 1]|))) by
RLVECT_1: 27
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
- (((1
- r)
+ r)
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (p2
-
|[
0 , 1]|) by
A16,
RLVECT_1:def 8;
r
< 1 by
A14,
A9,
XREAL_1: 189;
then (p2
-
|[
0 , 1]|)
in (
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|))) by
A14,
A9,
A17;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|)))
= ((
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[
0 , 1]|),(p2
-
|[
0 , 1]|)))
\/ (
LSeg ((p2
-
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
-
|[
0 , 1]|)))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ p2))
-
|[
0 , 1]|),(p2
-
|[
0 , 1]|)))
c= (I1
\/
{(p2
-
|[
0 , 1]|)}) by
A2,
A12,
Th53;
hence thesis by
A18,
A8,
A7,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:73
1
< (
width G) & 1
<= i & (i
+ 1)
< (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|),(((1
/ 2)
* ((G
* ((i
+ 1),(
width G)))
+ (G
* ((i
+ 2),(
width G)))))
+
|[
0 , 1]|)))
c= (((
Int (
cell (G,i,(
width G))))
\/ (
Int (
cell (G,(i
+ 1),(
width G)))))
\/
{((G
* ((i
+ 1),(
width G)))
+
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
<= i and
A3: (i
+ 1)
< (
len G);
set p1 = (G
* (i,(
width G))), p2 = (G
* ((i
+ 1),(
width G))), q3 = (G
* ((i
+ 2),(
width G))), r = (((p2
`1 )
- (p1
`1 ))
/ ((q3
`1 )
- (p1
`1 )));
A4: ((i
+ 1)
+ 1)
= (i
+ (1
+ 1));
then
A5: (i
+ 2)
>= 1 by
NAT_1: 11;
A6: (i
+ (1
+ 1))
<= (
len G) by
A3,
A4,
NAT_1: 13;
set I1 = (
Int (
cell (G,i,(
width G)))), I2 = (
Int (
cell (G,(i
+ 1),(
width G))));
A7: ((I1
\/ I2)
\/
{(p2
+
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(p2
+
|[
0 , 1]|)}
\/
{(p2
+
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(p2
+
|[
0 , 1]|)})
\/
{(p2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(p2
+
|[
0 , 1]|)})
\/ (I2
\/
{(p2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4;
A8: (
LSeg ((((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|),(p2
+
|[
0 , 1]|)))
c= (I2
\/
{(p2
+
|[
0 , 1]|)}) by
A3,
A4,
Th54,
NAT_1: 11;
i
< (i
+ 1) by
XREAL_1: 29;
then (p1
`1 )
< (p2
`1 ) by
A1,
A2,
A3,
GOBOARD5: 3;
then
A9: ((p2
`1 )
- (p1
`1 ))
>
0 by
XREAL_1: 50;
A10: (i
+ 1)
>= 1 by
NAT_1: 11;
then
A11: (p2
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A1,
A3,
GOBOARD5: 1
.= (q3
`2 ) by
A1,
A6,
A5,
GOBOARD5: 1;
i
<= (i
+ 1) by
NAT_1: 11;
then
A12: i
< (
len G) by
A3,
XXREAL_0: 2;
then (p1
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A1,
A2,
GOBOARD5: 1
.= (p2
`2 ) by
A1,
A3,
A10,
GOBOARD5: 1;
then
A13: (1
* (p2
`2 ))
= (((1
- r)
* (p1
`2 ))
+ (r
* (q3
`2 ))) by
A11
.= ((((1
- r)
* p1)
`2 )
+ (r
* (q3
`2 ))) by
Lm3
.= ((((1
- r)
* p1)
`2 )
+ ((r
* q3)
`2 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`2 ) by
Lm1;
(i
+ 1)
< (i
+ 2) by
XREAL_1: 6;
then (p2
`1 )
< (q3
`1 ) by
A1,
A10,
A6,
GOBOARD5: 3;
then
A14: ((p2
`1 )
- (p1
`1 ))
< ((q3
`1 )
- (p1
`1 )) by
XREAL_1: 9;
then (r
* ((q3
`1 )
- (p1
`1 )))
= ((p2
`1 )
- (p1
`1 )) by
A9,
XCMPLX_1: 87;
then (p2
`1 )
= (((1
- r)
* (p1
`1 ))
+ (r
* (q3
`1 )));
then (1
* (p2
`1 ))
= ((((1
- r)
* p1)
`1 )
+ (r
* (q3
`1 ))) by
Lm3
.= ((((1
- r)
* p1)
`1 )
+ ((r
* q3)
`1 )) by
Lm3
.= ((((1
- r)
* p1)
+ (r
* q3))
`1 ) by
Lm1;
then
A15: (((1
- r)
* p1)
+ (r
* q3))
=
|[(p2
`1 ), (p2
`2 )]| by
A13,
EUCLID: 53
.= p2 by
EUCLID: 53;
p2
= (1
* p2) by
RLVECT_1:def 8
.= (((1
/ 2)
* p2)
+ ((1
/ 2)
* p2)) by
Lm7,
RLVECT_1:def 6
.= (((1
/ 2)
* (((1
- r)
+ r)
* p2))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
A15,
RLVECT_1:def 8
.= (((1
/ 2)
* (((1
- r)
* p2)
+ (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 6
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (((1
- r)
* p1)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* (r
* p2)))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 5
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* (r
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= (((1
/ 2)
* ((1
- r)
* p2))
+ (((1
/ 2)
* ((1
- r)
* p1))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3))))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= (((((1
/ 2)
* ((1
- r)
* p2))
+ ((1
/ 2)
* ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (((1
- r)
* p2)
+ ((1
- r)
* p1)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* ((1
- r)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 5
.= (((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* p2)))
+ ((1
/ 2)
* (r
* q3))) by
RLVECT_1:def 7;
then
A16: p2
= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ (((1
/ 2)
* (r
* p2))
+ ((1
/ 2)
* (r
* q3)))) by
RLVECT_1:def 3
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* ((r
* p2)
+ (r
* q3)))) by
RLVECT_1:def 5
.= ((((1
/ 2)
* (1
- r))
* (p1
+ p2))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 5
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
/ 2)
* (r
* (p2
+ q3)))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (((1
/ 2)
* r)
* (p2
+ q3))) by
RLVECT_1:def 7
.= (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ (r
* ((1
/ 2)
* (p2
+ q3)))) by
RLVECT_1:def 7;
A17: (((1
- r)
* (((1
/ 2)
* (p1
+ p2))
+
|[
0 , 1]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|)))
= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
* (((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|))) by
RLVECT_1:def 5
.= ((((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[
0 , 1]|))
+ ((r
* ((1
/ 2)
* (p2
+ q3)))
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 5
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ (((1
- r)
* ((1
/ 2)
* (p1
+ p2)))
+ ((1
- r)
*
|[
0 , 1]|)))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= ((((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ ((1
- r)
*
|[
0 , 1]|))
+ (r
*
|[
0 , 1]|)) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ (((1
- r)
*
|[
0 , 1]|)
+ (r
*
|[
0 , 1]|))) by
RLVECT_1:def 3
.= (((r
* ((1
/ 2)
* (p2
+ q3)))
+ ((1
- r)
* ((1
/ 2)
* (p1
+ p2))))
+ (((1
- r)
+ r)
*
|[
0 , 1]|)) by
RLVECT_1:def 6
.= (p2
+
|[
0 , 1]|) by
A16,
RLVECT_1:def 8;
r
< 1 by
A14,
A9,
XREAL_1: 189;
then (p2
+
|[
0 , 1]|)
in (
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|))) by
A14,
A9,
A17;
then
A18: (
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|)))
= ((
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[
0 , 1]|),(p2
+
|[
0 , 1]|)))
\/ (
LSeg ((p2
+
|[
0 , 1]|),(((1
/ 2)
* (p2
+ q3))
+
|[
0 , 1]|)))) by
TOPREAL1: 5;
(
LSeg ((((1
/ 2)
* (p1
+ p2))
+
|[
0 , 1]|),(p2
+
|[
0 , 1]|)))
c= (I1
\/
{(p2
+
|[
0 , 1]|)}) by
A2,
A12,
Th55;
hence thesis by
A18,
A8,
A7,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:74
1
< (
len G) & 1
< (
width G) implies (
LSeg (((G
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* ((G
* (1,1))
+ (G
* (1,2))))
-
|[1,
0 ]|)))
c= (((
Int (
cell (G,
0 ,
0 )))
\/ (
Int (
cell (G,
0 ,1))))
\/
{((G
* (1,1))
-
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
< (
width G);
set q2 = (G
* (1,1)), q3 = (G
* (1,2)), r = (1
/ (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1));
A3: (
0
+ (1
+ 1))
<= (
width G) by
A2,
NAT_1: 13;
then
A4: (q2
`1 )
= (q3
`1 ) by
A1,
GOBOARD5: 2;
(q2
`2 )
< (q3
`2 ) by
A1,
A3,
GOBOARD5: 4;
then
A5: ((q3
`2 )
- (q2
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A6: r
< 1 by
XREAL_1: 212;
A7: ((((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
`1 )
= ((((1
- r)
* (q2
-
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`1 )) by
Lm1
.= (((1
- r)
* ((q2
-
|[1, 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`1 )) by
Lm3
.= (((1
- r)
* ((q2
-
|[1, 1]|)
`1 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`1 ))) by
Lm3
.= (((1
- r)
* ((q2
`1 )
- (
|[1, 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`1 ))) by
Lm2
.= (((1
- r)
* ((q2
`1 )
- (
|[1, 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[1,
0 ]|
`1 )))) by
Lm2
.= (((1
- r)
* ((q2
`1 )
- 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[1,
0 ]|
`1 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
- ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`1 )))
- ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 ))))
- 1) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q2
`1 )))))
- 1) by
A4,
Lm1
.= ((q2
`1 )
- (
|[1,
0 ]|
`1 )) by
EUCLID: 52
.= ((q2
-
|[1,
0 ]|)
`1 ) by
Lm2;
A8: (((r
* ((1
/ 2)
* (q3
`2 )))
- (r
* ((1
/ 2)
* (q2
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1))
.= 1 by
A5,
XCMPLX_1: 106;
((((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
`2 )
= ((((1
- r)
* (q2
-
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
- ((1
- r)
*
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
RLVECT_1: 34
.= (((((1
- r)
* q2)
`2 )
- (((1
- r)
*
|[1, 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm2
.= (((((1
- r)
* q2)
`2 )
- ((1
- r)
* (
|[1, 1]|
`2 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm3
.= (((((1
- r)
* q2)
`2 )
- ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
- ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`2 ))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[1,
0 ]|
`2 )))) by
Lm2
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
-
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 )))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q3
`2 ))))) by
Lm1
.= ((q2
`2 )
-
0 ) by
A8
.= ((q2
`2 )
- (
|[1,
0 ]|
`2 )) by
EUCLID: 52
.= ((q2
-
|[1,
0 ]|)
`2 ) by
Lm2;
then (((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
=
|[((q2
-
|[1,
0 ]|)
`1 ), ((q2
-
|[1,
0 ]|)
`2 )]| by
A7,
EUCLID: 53
.= (q2
-
|[1,
0 ]|) by
EUCLID: 53;
then (q2
-
|[1,
0 ]|)
in (
LSeg ((q2
-
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))) by
A5,
A6;
then
A9: (
LSeg ((q2
-
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
= ((
LSeg ((q2
-
|[1, 1]|),(q2
-
|[1,
0 ]|)))
\/ (
LSeg ((q2
-
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,
0 ,
0 ))), I2 = (
Int (
cell (G,
0 ,1)));
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then
A10: (
LSeg ((q2
-
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
c= (I2
\/
{(q2
-
|[1,
0 ]|)}) by
A2,
Th48;
A11: ((I1
\/ I2)
\/
{(q2
-
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(q2
-
|[1,
0 ]|)}
\/
{(q2
-
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
-
|[1,
0 ]|)})
\/
{(q2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
-
|[1,
0 ]|)})
\/ (I2
\/
{(q2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4;
(
LSeg ((q2
-
|[1, 1]|),(q2
-
|[1,
0 ]|)))
c= (I1
\/
{(q2
-
|[1,
0 ]|)}) by
Th56;
hence thesis by
A9,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:75
1
< (
len G) & 1
< (
width G) implies (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* ((G
* ((
len G),1))
+ (G
* ((
len G),2))))
+
|[1,
0 ]|)))
c= (((
Int (
cell (G,(
len G),
0 )))
\/ (
Int (
cell (G,(
len G),1))))
\/
{((G
* ((
len G),1))
+
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
< (
width G);
set q2 = (G
* ((
len G),1)), q3 = (G
* ((
len G),2)), r = (1
/ (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1));
A3: (
0
+ (1
+ 1))
<= (
width G) by
A2,
NAT_1: 13;
then
A4: (q2
`1 )
= (q3
`1 ) by
A1,
GOBOARD5: 2;
(q2
`2 )
< (q3
`2 ) by
A1,
A3,
GOBOARD5: 4;
then
A5: ((q3
`2 )
- (q2
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A6: r
< 1 by
XREAL_1: 212;
A7: ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
`1 )
= ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`1 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[1, (
- 1)]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`1 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[1, (
- 1)]|)
`1 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`1 ))) by
Lm3
.= (((1
- r)
* ((q2
`1 )
+ (
|[1, (
- 1)]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`1 ))) by
Lm1
.= (((1
- r)
* ((q2
`1 )
+ (
|[1, (
- 1)]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[1,
0 ]|
`1 )))) by
Lm1
.= (((1
- r)
* ((q2
`1 )
+ 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[1,
0 ]|
`1 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`1 )))
+ ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 ))))
+ 1) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q2
`1 )))))
+ 1) by
A4,
Lm1
.= ((q2
`1 )
+ (
|[1,
0 ]|
`1 )) by
EUCLID: 52
.= ((q2
+
|[1,
0 ]|)
`1 ) by
Lm1;
A8: (((r
* ((1
/ 2)
* (q3
`2 )))
- (r
* ((1
/ 2)
* (q2
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`2 )
- (q2
`2 )))
+ 1))
.= 1 by
A5,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
`2 )
= ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[1, (
- 1)]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`2 )
+ (((1
- r)
*
|[1, (
- 1)]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* (
|[1, (
- 1)]|
`2 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm3
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* (
- 1)))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (
- (1
- r)))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`2 ))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[1,
0 ]|
`2 )))) by
Lm1
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 )))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q3
`2 ))))) by
Lm1
.= ((q2
`2 )
+
0 ) by
A8
.= ((q2
`2 )
+ (
|[1,
0 ]|
`2 )) by
EUCLID: 52
.= ((q2
+
|[1,
0 ]|)
`2 ) by
Lm1;
then (((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
=
|[((q2
+
|[1,
0 ]|)
`1 ), ((q2
+
|[1,
0 ]|)
`2 )]| by
A7,
EUCLID: 53
.= (q2
+
|[1,
0 ]|) by
EUCLID: 53;
then (q2
+
|[1,
0 ]|)
in (
LSeg ((q2
+
|[1, (
- 1)]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))) by
A5,
A6;
then
A9: (
LSeg ((q2
+
|[1, (
- 1)]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
= ((
LSeg ((q2
+
|[1, (
- 1)]|),(q2
+
|[1,
0 ]|)))
\/ (
LSeg ((q2
+
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,(
len G),
0 ))), I2 = (
Int (
cell (G,(
len G),1)));
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then
A10: (
LSeg ((q2
+
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
c= (I2
\/
{(q2
+
|[1,
0 ]|)}) by
A2,
Th50;
A11: ((I1
\/ I2)
\/
{(q2
+
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(q2
+
|[1,
0 ]|)}
\/
{(q2
+
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
+
|[1,
0 ]|)})
\/
{(q2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
+
|[1,
0 ]|)})
\/ (I2
\/
{(q2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4;
(
LSeg ((q2
+
|[1, (
- 1)]|),(q2
+
|[1,
0 ]|)))
c= (I1
\/
{(q2
+
|[1,
0 ]|)}) by
Th57;
hence thesis by
A9,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:76
1
< (
len G) & 1
< (
width G) implies (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),(((1
/ 2)
* ((G
* (1,(
width G)))
+ (G
* (1,((
width G)
-' 1)))))
-
|[1,
0 ]|)))
c= (((
Int (
cell (G,
0 ,(
width G))))
\/ (
Int (
cell (G,
0 ,((
width G)
-' 1)))))
\/
{((G
* (1,(
width G)))
-
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
< (
width G);
set q2 = (G
* (1,(
width G))), q3 = (G
* (1,((
width G)
-' 1))), r = (1
/ (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1));
A3: (((
width G)
-' 1)
+ 1)
= (
width G) by
A2,
XREAL_1: 235;
then
A4: ((
width G)
-' 1)
>= 1 by
A2,
NAT_1: 13;
A5: ((
width G)
-' 1)
< (
width G) by
A3,
NAT_1: 13;
then (q3
`2 )
< (q2
`2 ) by
A1,
A4,
GOBOARD5: 4;
then
A6: ((q2
`2 )
- (q3
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A7: r
< 1 by
XREAL_1: 212;
A8: (q2
`1 )
= ((G
* (1,1))
`1 ) by
A1,
A2,
GOBOARD5: 2
.= (q3
`1 ) by
A1,
A4,
A5,
GOBOARD5: 2;
A9: ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
`1 )
= ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`1 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[(
- 1), 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`1 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[(
- 1), 1]|)
`1 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`1 ))) by
Lm3
.= (((1
- r)
* ((q2
`1 )
+ (
|[(
- 1), 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`1 ))) by
Lm1
.= (((1
- r)
* ((q2
`1 )
+ (
|[(
- 1), 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[1,
0 ]|
`1 )))) by
Lm2
.= (((1
- r)
* ((q2
`1 )
+ (
- 1)))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[1,
0 ]|
`1 )))) by
EUCLID: 52
.= (((1
- r)
* ((q2
`1 )
- 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`1 )))
- 1)
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 ))))
- 1) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q2
`1 )))))
- 1) by
A8,
Lm1
.= ((q2
`1 )
- (
|[1,
0 ]|
`1 )) by
EUCLID: 52
.= ((q2
-
|[1,
0 ]|)
`1 ) by
Lm2;
A10: (((r
* ((1
/ 2)
* (q2
`2 )))
- (r
* ((1
/ 2)
* (q3
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1))
.= 1 by
A6,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
`2 )
= ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[(
- 1), 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`2 )
+ (((1
- r)
*
|[(
- 1), 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* (
|[(
- 1), 1]|
`2 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm3
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))
`2 )) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)
`2 ))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[1,
0 ]|
`2 )))) by
Lm2
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
-
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 )))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q3
`2 ))))) by
Lm1
.= ((q2
`2 )
-
0 ) by
A10
.= ((q2
`2 )
- (
|[1,
0 ]|
`2 )) by
EUCLID: 52
.= ((q2
-
|[1,
0 ]|)
`2 ) by
Lm2;
then (((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
=
|[((q2
-
|[1,
0 ]|)
`1 ), ((q2
-
|[1,
0 ]|)
`2 )]| by
A9,
EUCLID: 53
.= (q2
-
|[1,
0 ]|) by
EUCLID: 53;
then (q2
-
|[1,
0 ]|)
in (
LSeg ((q2
+
|[(
- 1), 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|))) by
A6,
A7;
then
A11: (
LSeg ((q2
+
|[(
- 1), 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
= ((
LSeg ((q2
+
|[(
- 1), 1]|),(q2
-
|[1,
0 ]|)))
\/ (
LSeg ((q2
-
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,
0 ,(
width G)))), I2 = (
Int (
cell (G,
0 ,((
width G)
-' 1))));
A12: ((I1
\/ I2)
\/
{(q2
-
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(q2
-
|[1,
0 ]|)}
\/
{(q2
-
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
-
|[1,
0 ]|)})
\/
{(q2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
-
|[1,
0 ]|)})
\/ (I2
\/
{(q2
-
|[1,
0 ]|)})) by
XBOOLE_1: 4;
A13: (
LSeg ((q2
+
|[(
- 1), 1]|),(q2
-
|[1,
0 ]|)))
c= (I1
\/
{(q2
-
|[1,
0 ]|)}) by
Th58;
(
LSeg ((q2
-
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
-
|[1,
0 ]|)))
c= (I2
\/
{(q2
-
|[1,
0 ]|)}) by
A3,
A4,
A5,
Th49;
hence thesis by
A11,
A13,
A12,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:77
1
< (
len G) & 1
< (
width G) implies (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),(((1
/ 2)
* ((G
* ((
len G),(
width G)))
+ (G
* ((
len G),((
width G)
-' 1)))))
+
|[1,
0 ]|)))
c= (((
Int (
cell (G,(
len G),(
width G))))
\/ (
Int (
cell (G,(
len G),((
width G)
-' 1)))))
\/
{((G
* ((
len G),(
width G)))
+
|[1,
0 ]|)})
proof
assume that
A1: 1
< (
len G) and
A2: 1
< (
width G);
set q2 = (G
* ((
len G),(
width G))), q3 = (G
* ((
len G),((
width G)
-' 1))), r = (1
/ (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1));
A3: (((
width G)
-' 1)
+ 1)
= (
width G) by
A2,
XREAL_1: 235;
then
A4: ((
width G)
-' 1)
>= 1 by
A2,
NAT_1: 13;
A5: ((
width G)
-' 1)
< (
width G) by
A3,
NAT_1: 13;
then (q3
`2 )
< (q2
`2 ) by
A1,
A4,
GOBOARD5: 4;
then
A6: ((q2
`2 )
- (q3
`2 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A7: r
< 1 by
XREAL_1: 212;
A8: (q2
`1 )
= ((G
* ((
len G),1))
`1 ) by
A1,
A2,
GOBOARD5: 2
.= (q3
`1 ) by
A1,
A4,
A5,
GOBOARD5: 2;
A9: ((((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
`1 )
= ((((1
- r)
* (q2
+
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`1 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[1, 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`1 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[1, 1]|)
`1 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`1 ))) by
Lm3
.= (((1
- r)
* ((q2
`1 )
+ (
|[1, 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`1 ))) by
Lm1
.= (((1
- r)
* ((q2
`1 )
+ (
|[1, 1]|
`1 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[1,
0 ]|
`1 )))) by
Lm1
.= (((1
- r)
* ((q2
`1 )
+ 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[1,
0 ]|
`1 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`1 )))
+ ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 ))))
+ 1) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q2
`1 )))))
+ 1) by
A8,
Lm1
.= ((q2
`1 )
+ (
|[1,
0 ]|
`1 )) by
EUCLID: 52
.= ((q2
+
|[1,
0 ]|)
`1 ) by
Lm1;
A10: (((r
* ((1
/ 2)
* (q2
`2 )))
- (r
* ((1
/ 2)
* (q3
`2 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`2 )
- (q3
`2 )))
+ 1))
.= 1 by
A6,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
`2 )
= ((((1
- r)
* (q2
+
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`2 )
+ (((1
- r)
*
|[1, 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm1
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* (
|[1, 1]|
`2 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm3
.= (((((1
- r)
* q2)
`2 )
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))
`2 )) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)
`2 ))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[1,
0 ]|
`2 )))) by
Lm1
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 )))) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q3
`2 ))))) by
Lm1
.= ((q2
`2 )
+
0 ) by
A10
.= ((q2
`2 )
+ (
|[1,
0 ]|
`2 )) by
EUCLID: 52
.= ((q2
+
|[1,
0 ]|)
`2 ) by
Lm1;
then (((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
=
|[((q2
+
|[1,
0 ]|)
`1 ), ((q2
+
|[1,
0 ]|)
`2 )]| by
A9,
EUCLID: 53
.= (q2
+
|[1,
0 ]|) by
EUCLID: 53;
then (q2
+
|[1,
0 ]|)
in (
LSeg ((q2
+
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|))) by
A6,
A7;
then
A11: (
LSeg ((q2
+
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
= ((
LSeg ((q2
+
|[1, 1]|),(q2
+
|[1,
0 ]|)))
\/ (
LSeg ((q2
+
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,(
len G),(
width G)))), I2 = (
Int (
cell (G,(
len G),((
width G)
-' 1))));
A12: ((I1
\/ I2)
\/
{(q2
+
|[1,
0 ]|)})
= (I1
\/ (I2
\/ (
{(q2
+
|[1,
0 ]|)}
\/
{(q2
+
|[1,
0 ]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
+
|[1,
0 ]|)})
\/
{(q2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
+
|[1,
0 ]|)})
\/ (I2
\/
{(q2
+
|[1,
0 ]|)})) by
XBOOLE_1: 4;
A13: (
LSeg ((q2
+
|[1, 1]|),(q2
+
|[1,
0 ]|)))
c= (I1
\/
{(q2
+
|[1,
0 ]|)}) by
Th59;
(
LSeg ((q2
+
|[1,
0 ]|),(((1
/ 2)
* (q2
+ q3))
+
|[1,
0 ]|)))
c= (I2
\/
{(q2
+
|[1,
0 ]|)}) by
A3,
A4,
A5,
Th51;
hence thesis by
A11,
A13,
A12,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:78
1
< (
width G) & 1
< (
len G) implies (
LSeg (((G
* (1,1))
-
|[1, 1]|),(((1
/ 2)
* ((G
* (1,1))
+ (G
* (2,1))))
-
|[
0 , 1]|)))
c= (((
Int (
cell (G,
0 ,
0 )))
\/ (
Int (
cell (G,1,
0 ))))
\/
{((G
* (1,1))
-
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
< (
len G);
set q2 = (G
* (1,1)), q3 = (G
* (2,1)), r = (1
/ (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1));
A3: (
0
+ (1
+ 1))
<= (
len G) by
A2,
NAT_1: 13;
then
A4: (q2
`2 )
= (q3
`2 ) by
A1,
GOBOARD5: 1;
(q2
`1 )
< (q3
`1 ) by
A1,
A3,
GOBOARD5: 3;
then
A5: ((q3
`1 )
- (q2
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A6: r
< 1 by
XREAL_1: 212;
A7: ((((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
`2 )
= ((((1
- r)
* (q2
-
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`2 )) by
Lm1
.= (((1
- r)
* ((q2
-
|[1, 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`2 )) by
Lm3
.= (((1
- r)
* ((q2
-
|[1, 1]|)
`2 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`2 ))) by
Lm3
.= (((1
- r)
* ((q2
`2 )
- (
|[1, 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`2 ))) by
Lm2
.= (((1
- r)
* ((q2
`2 )
- (
|[1, 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[
0 , 1]|
`2 )))) by
Lm2
.= (((1
- r)
* ((q2
`2 )
- 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[
0 , 1]|
`2 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
- ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`2 )))
- ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 ))))
- 1) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q2
`2 )))))
- 1) by
A4,
Lm1
.= ((q2
`2 )
- (
|[
0 , 1]|
`2 )) by
EUCLID: 52
.= ((q2
-
|[
0 , 1]|)
`2 ) by
Lm2;
A8: (((r
* ((1
/ 2)
* (q3
`1 )))
- (r
* ((1
/ 2)
* (q2
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1))
.= 1 by
A5,
XCMPLX_1: 106;
((((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
`1 )
= ((((1
- r)
* (q2
-
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
- ((1
- r)
*
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
RLVECT_1: 34
.= (((((1
- r)
* q2)
`1 )
- (((1
- r)
*
|[1, 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm2
.= (((((1
- r)
* q2)
`1 )
- ((1
- r)
* (
|[1, 1]|
`1 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm3
.= (((((1
- r)
* q2)
`1 )
- ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
- ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`1 ))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[
0 , 1]|
`1 )))) by
Lm2
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
-
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 )))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q3
`1 ))))) by
Lm1
.= ((q2
`1 )
-
0 ) by
A8
.= ((q2
`1 )
- (
|[
0 , 1]|
`1 )) by
EUCLID: 52
.= ((q2
-
|[
0 , 1]|)
`1 ) by
Lm2;
then (((1
- r)
* (q2
-
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
=
|[((q2
-
|[
0 , 1]|)
`1 ), ((q2
-
|[
0 , 1]|)
`2 )]| by
A7,
EUCLID: 53
.= (q2
-
|[
0 , 1]|) by
EUCLID: 53;
then (q2
-
|[
0 , 1]|)
in (
LSeg ((q2
-
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))) by
A5,
A6;
then
A9: (
LSeg ((q2
-
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
= ((
LSeg ((q2
-
|[1, 1]|),(q2
-
|[
0 , 1]|)))
\/ (
LSeg ((q2
-
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,
0 ,
0 ))), I2 = (
Int (
cell (G,1,
0 )));
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then
A10: (
LSeg ((q2
-
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
c= (I2
\/
{(q2
-
|[
0 , 1]|)}) by
A2,
Th52;
A11: ((I1
\/ I2)
\/
{(q2
-
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(q2
-
|[
0 , 1]|)}
\/
{(q2
-
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
-
|[
0 , 1]|)})
\/
{(q2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
-
|[
0 , 1]|)})
\/ (I2
\/
{(q2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4;
(
LSeg ((q2
-
|[1, 1]|),(q2
-
|[
0 , 1]|)))
c= (I1
\/
{(q2
-
|[
0 , 1]|)}) by
Th60;
hence thesis by
A9,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:79
1
< (
width G) & 1
< (
len G) implies (
LSeg (((G
* (1,(
width G)))
+
|[(
- 1), 1]|),(((1
/ 2)
* ((G
* (1,(
width G)))
+ (G
* (2,(
width G)))))
+
|[
0 , 1]|)))
c= (((
Int (
cell (G,
0 ,(
width G))))
\/ (
Int (
cell (G,1,(
width G)))))
\/
{((G
* (1,(
width G)))
+
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
< (
len G);
set q2 = (G
* (1,(
width G))), q3 = (G
* (2,(
width G))), r = (1
/ (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1));
A3: (
0
+ (1
+ 1))
<= (
len G) by
A2,
NAT_1: 13;
then
A4: (q2
`2 )
= (q3
`2 ) by
A1,
GOBOARD5: 1;
(q2
`1 )
< (q3
`1 ) by
A1,
A3,
GOBOARD5: 3;
then
A5: ((q3
`1 )
- (q2
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A6: r
< 1 by
XREAL_1: 212;
A7: ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
`2 )
= ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`2 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[(
- 1), 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`2 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[(
- 1), 1]|)
`2 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`2 ))) by
Lm3
.= (((1
- r)
* ((q2
`2 )
+ (
|[(
- 1), 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`2 ))) by
Lm1
.= (((1
- r)
* ((q2
`2 )
+ (
|[(
- 1), 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[
0 , 1]|
`2 )))) by
Lm1
.= (((1
- r)
* ((q2
`2 )
+ 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[
0 , 1]|
`2 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`2 )))
+ ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 ))))
+ 1) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q2
`2 )))))
+ 1) by
A4,
Lm1
.= ((q2
`2 )
+ (
|[
0 , 1]|
`2 )) by
EUCLID: 52
.= ((q2
+
|[
0 , 1]|)
`2 ) by
Lm1;
A8: (((r
* ((1
/ 2)
* (q3
`1 )))
- (r
* ((1
/ 2)
* (q2
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q3
`1 )
- (q2
`1 )))
+ 1))
.= 1 by
A5,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
`1 )
= ((((1
- r)
* (q2
+
|[(
- 1), 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[(
- 1), 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`1 )
+ (((1
- r)
*
|[(
- 1), 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* (
|[(
- 1), 1]|
`1 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm3
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* (
- 1)))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
EUCLID: 52
.= (((((1
- r)
* q2)
`1 )
- (1
- r))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 ))
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`1 ))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[
0 , 1]|
`1 )))) by
Lm1
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 )))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
- (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q3
`1 ))))) by
Lm1
.= ((q2
`1 )
+
0 ) by
A8
.= ((q2
`1 )
+ (
|[
0 , 1]|
`1 )) by
EUCLID: 52
.= ((q2
+
|[
0 , 1]|)
`1 ) by
Lm1;
then (((1
- r)
* (q2
+
|[(
- 1), 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
=
|[((q2
+
|[
0 , 1]|)
`1 ), ((q2
+
|[
0 , 1]|)
`2 )]| by
A7,
EUCLID: 53
.= (q2
+
|[
0 , 1]|) by
EUCLID: 53;
then (q2
+
|[
0 , 1]|)
in (
LSeg ((q2
+
|[(
- 1), 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))) by
A5,
A6;
then
A9: (
LSeg ((q2
+
|[(
- 1), 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
= ((
LSeg ((q2
+
|[(
- 1), 1]|),(q2
+
|[
0 , 1]|)))
\/ (
LSeg ((q2
+
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,
0 ,(
width G)))), I2 = (
Int (
cell (G,1,(
width G))));
((
0
+ 1)
+ 1)
= (
0
+ (1
+ 1));
then
A10: (
LSeg ((q2
+
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
c= (I2
\/
{(q2
+
|[
0 , 1]|)}) by
A2,
Th54;
A11: ((I1
\/ I2)
\/
{(q2
+
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(q2
+
|[
0 , 1]|)}
\/
{(q2
+
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
+
|[
0 , 1]|)})
\/
{(q2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
+
|[
0 , 1]|)})
\/ (I2
\/
{(q2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4;
(
LSeg ((q2
+
|[(
- 1), 1]|),(q2
+
|[
0 , 1]|)))
c= (I1
\/
{(q2
+
|[
0 , 1]|)}) by
Th62;
hence thesis by
A9,
A10,
A11,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:80
1
< (
width G) & 1
< (
len G) implies (
LSeg (((G
* ((
len G),1))
+
|[1, (
- 1)]|),(((1
/ 2)
* ((G
* ((
len G),1))
+ (G
* (((
len G)
-' 1),1))))
-
|[
0 , 1]|)))
c= (((
Int (
cell (G,(
len G),
0 )))
\/ (
Int (
cell (G,((
len G)
-' 1),
0 ))))
\/
{((G
* ((
len G),1))
-
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
< (
len G);
set q2 = (G
* ((
len G),1)), q3 = (G
* (((
len G)
-' 1),1)), r = (1
/ (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1));
A3: (((
len G)
-' 1)
+ 1)
= (
len G) by
A2,
XREAL_1: 235;
then
A4: ((
len G)
-' 1)
>= 1 by
A2,
NAT_1: 13;
A5: ((
len G)
-' 1)
< (
len G) by
A3,
NAT_1: 13;
then (q3
`1 )
< (q2
`1 ) by
A1,
A4,
GOBOARD5: 3;
then
A6: ((q2
`1 )
- (q3
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A7: r
< 1 by
XREAL_1: 212;
A8: (q2
`2 )
= ((G
* (1,1))
`2 ) by
A1,
A2,
GOBOARD5: 1
.= (q3
`2 ) by
A1,
A4,
A5,
GOBOARD5: 1;
A9: ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
`2 )
= ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`2 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[1, (
- 1)]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`2 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[1, (
- 1)]|)
`2 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`2 ))) by
Lm3
.= (((1
- r)
* ((q2
`2 )
+ (
|[1, (
- 1)]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`2 ))) by
Lm1
.= (((1
- r)
* ((q2
`2 )
+ (
|[1, (
- 1)]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[
0 , 1]|
`2 )))) by
Lm2
.= (((1
- r)
* ((q2
`2 )
+ (
- 1)))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- (
|[
0 , 1]|
`2 )))) by
EUCLID: 52
.= (((1
- r)
* ((q2
`2 )
- 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
- 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`2 )))
- 1)
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 ))))
- 1) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q2
`2 )))))
- 1) by
A8,
Lm1
.= ((q2
`2 )
- (
|[
0 , 1]|
`2 )) by
EUCLID: 52
.= ((q2
-
|[
0 , 1]|)
`2 ) by
Lm2;
A10: (((r
* ((1
/ 2)
* (q2
`1 )))
- (r
* ((1
/ 2)
* (q3
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1))
.= 1 by
A6,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
`1 )
= ((((1
- r)
* (q2
+
|[1, (
- 1)]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[1, (
- 1)]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`1 )
+ (((1
- r)
*
|[1, (
- 1)]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* (
|[1, (
- 1)]|
`1 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm3
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))
`1 )) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)
`1 ))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
- (
|[
0 , 1]|
`1 )))) by
Lm2
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
-
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 )))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q3
`1 ))))) by
Lm1
.= ((q2
`1 )
-
0 ) by
A10
.= ((q2
`1 )
- (
|[
0 , 1]|
`1 )) by
EUCLID: 52
.= ((q2
-
|[
0 , 1]|)
`1 ) by
Lm2;
then (((1
- r)
* (q2
+
|[1, (
- 1)]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
=
|[((q2
-
|[
0 , 1]|)
`1 ), ((q2
-
|[
0 , 1]|)
`2 )]| by
A9,
EUCLID: 53
.= (q2
-
|[
0 , 1]|) by
EUCLID: 53;
then (q2
-
|[
0 , 1]|)
in (
LSeg ((q2
+
|[1, (
- 1)]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|))) by
A6,
A7;
then
A11: (
LSeg ((q2
+
|[1, (
- 1)]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
= ((
LSeg ((q2
+
|[1, (
- 1)]|),(q2
-
|[
0 , 1]|)))
\/ (
LSeg ((q2
-
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,(
len G),
0 ))), I2 = (
Int (
cell (G,((
len G)
-' 1),
0 )));
A12: ((I1
\/ I2)
\/
{(q2
-
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(q2
-
|[
0 , 1]|)}
\/
{(q2
-
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
-
|[
0 , 1]|)})
\/
{(q2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
-
|[
0 , 1]|)})
\/ (I2
\/
{(q2
-
|[
0 , 1]|)})) by
XBOOLE_1: 4;
A13: (
LSeg ((q2
+
|[1, (
- 1)]|),(q2
-
|[
0 , 1]|)))
c= (I1
\/
{(q2
-
|[
0 , 1]|)}) by
Th61;
(
LSeg ((q2
-
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
-
|[
0 , 1]|)))
c= (I2
\/
{(q2
-
|[
0 , 1]|)}) by
A3,
A4,
A5,
Th53;
hence thesis by
A11,
A13,
A12,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:81
1
< (
width G) & 1
< (
len G) implies (
LSeg (((G
* ((
len G),(
width G)))
+
|[1, 1]|),(((1
/ 2)
* ((G
* ((
len G),(
width G)))
+ (G
* (((
len G)
-' 1),(
width G)))))
+
|[
0 , 1]|)))
c= (((
Int (
cell (G,(
len G),(
width G))))
\/ (
Int (
cell (G,((
len G)
-' 1),(
width G)))))
\/
{((G
* ((
len G),(
width G)))
+
|[
0 , 1]|)})
proof
assume that
A1: 1
< (
width G) and
A2: 1
< (
len G);
set q2 = (G
* ((
len G),(
width G))), q3 = (G
* (((
len G)
-' 1),(
width G))), r = (1
/ (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1));
A3: (((
len G)
-' 1)
+ 1)
= (
len G) by
A2,
XREAL_1: 235;
then
A4: ((
len G)
-' 1)
>= 1 by
A2,
NAT_1: 13;
A5: ((
len G)
-' 1)
< (
len G) by
A3,
NAT_1: 13;
then (q3
`1 )
< (q2
`1 ) by
A1,
A4,
GOBOARD5: 3;
then
A6: ((q2
`1 )
- (q3
`1 ))
>
0 by
XREAL_1: 50;
then 1
< (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1) by
XREAL_1: 29,
XREAL_1: 129;
then
A7: r
< 1 by
XREAL_1: 212;
A8: (q2
`2 )
= ((G
* (1,(
width G)))
`2 ) by
A1,
A2,
GOBOARD5: 1
.= (q3
`2 ) by
A1,
A4,
A5,
GOBOARD5: 1;
A9: ((((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
`2 )
= ((((1
- r)
* (q2
+
|[1, 1]|))
`2 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`2 )) by
Lm1
.= (((1
- r)
* ((q2
+
|[1, 1]|)
`2 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`2 )) by
Lm3
.= (((1
- r)
* ((q2
+
|[1, 1]|)
`2 ))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`2 ))) by
Lm3
.= (((1
- r)
* ((q2
`2 )
+ (
|[1, 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`2 ))) by
Lm1
.= (((1
- r)
* ((q2
`2 )
+ (
|[1, 1]|
`2 )))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[
0 , 1]|
`2 )))) by
Lm1
.= (((1
- r)
* ((q2
`2 )
+ 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ (
|[
0 , 1]|
`2 )))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ ((1
- r)
* 1))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`2 )
+ 1))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`2 ))
+ (r
* (((1
/ 2)
* (q2
+ q3))
`2 )))
+ ((1
- r)
+ r))
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`2 ))))
+ 1) by
Lm3
.= ((((1
- r)
* (q2
`2 ))
+ (r
* ((1
/ 2)
* ((q2
`2 )
+ (q2
`2 )))))
+ 1) by
A8,
Lm1
.= ((q2
`2 )
+ (
|[
0 , 1]|
`2 )) by
EUCLID: 52
.= ((q2
+
|[
0 , 1]|)
`2 ) by
Lm1;
A10: (((r
* ((1
/ 2)
* (q2
`1 )))
- (r
* ((1
/ 2)
* (q3
`1 ))))
+ r)
= (r
* (((1
/ 2)
* ((q2
`1 )
- (q3
`1 )))
+ 1))
.= 1 by
A6,
XCMPLX_1: 106;
((((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
`1 )
= ((((1
- r)
* (q2
+
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
+ ((1
- r)
*
|[1, 1]|))
`1 )
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
RLVECT_1:def 5
.= (((((1
- r)
* q2)
`1 )
+ (((1
- r)
*
|[1, 1]|)
`1 ))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm1
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* (
|[1, 1]|
`1 )))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm3
.= (((((1
- r)
* q2)
`1 )
+ ((1
- r)
* 1))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ ((r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))
`1 )) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)
`1 ))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+ (
|[
0 , 1]|
`1 )))) by
Lm1
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((((1
/ 2)
* (q2
+ q3))
`1 )
+
0 ))) by
EUCLID: 52
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
+ q3)
`1 )))) by
Lm3
.= ((((1
- r)
* (q2
`1 ))
+ (1
- r))
+ (r
* ((1
/ 2)
* ((q2
`1 )
+ (q3
`1 ))))) by
Lm1
.= ((q2
`1 )
+
0 ) by
A10
.= ((q2
`1 )
+ (
|[
0 , 1]|
`1 )) by
EUCLID: 52
.= ((q2
+
|[
0 , 1]|)
`1 ) by
Lm1;
then (((1
- r)
* (q2
+
|[1, 1]|))
+ (r
* (((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
=
|[((q2
+
|[
0 , 1]|)
`1 ), ((q2
+
|[
0 , 1]|)
`2 )]| by
A9,
EUCLID: 53
.= (q2
+
|[
0 , 1]|) by
EUCLID: 53;
then (q2
+
|[
0 , 1]|)
in (
LSeg ((q2
+
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|))) by
A6,
A7;
then
A11: (
LSeg ((q2
+
|[1, 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
= ((
LSeg ((q2
+
|[1, 1]|),(q2
+
|[
0 , 1]|)))
\/ (
LSeg ((q2
+
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))) by
TOPREAL1: 5;
set I1 = (
Int (
cell (G,(
len G),(
width G)))), I2 = (
Int (
cell (G,((
len G)
-' 1),(
width G))));
A12: ((I1
\/ I2)
\/
{(q2
+
|[
0 , 1]|)})
= (I1
\/ (I2
\/ (
{(q2
+
|[
0 , 1]|)}
\/
{(q2
+
|[
0 , 1]|)}))) by
XBOOLE_1: 4
.= (I1
\/ ((I2
\/
{(q2
+
|[
0 , 1]|)})
\/
{(q2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4
.= ((I1
\/
{(q2
+
|[
0 , 1]|)})
\/ (I2
\/
{(q2
+
|[
0 , 1]|)})) by
XBOOLE_1: 4;
A13: (
LSeg ((q2
+
|[1, 1]|),(q2
+
|[
0 , 1]|)))
c= (I1
\/
{(q2
+
|[
0 , 1]|)}) by
Th63;
(
LSeg ((q2
+
|[
0 , 1]|),(((1
/ 2)
* (q2
+ q3))
+
|[
0 , 1]|)))
c= (I2
\/
{(q2
+
|[
0 , 1]|)}) by
A3,
A4,
A5,
Th55;
hence thesis by
A11,
A13,
A12,
XBOOLE_1: 13;
end;
theorem ::
GOBOARD6:82
1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G) implies (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),p))
meets (
Int (
cell (G,i,j)))
proof
assume
A1: 1
<= i & (i
+ 1)
<= (
len G) & 1
<= j & (j
+ 1)
<= (
width G);
now
take a = ((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1)))));
thus a
in (
LSeg (((1
/ 2)
* ((G
* (i,j))
+ (G
* ((i
+ 1),(j
+ 1))))),p)) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,i,j))) by
A1,
Th31;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:83
1
<= i & (i
+ 1)
<= (
len G) implies (
LSeg (p,(((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|)))
meets (
Int (
cell (G,i,(
width G))))
proof
assume
A1: 1
<= i & (i
+ 1)
<= (
len G);
now
take a = (((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|);
thus a
in (
LSeg (p,(((1
/ 2)
* ((G
* (i,(
width G)))
+ (G
* ((i
+ 1),(
width G)))))
+
|[
0 , 1]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,i,(
width G)))) by
A1,
Th32;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:84
1
<= i & (i
+ 1)
<= (
len G) implies (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),p))
meets (
Int (
cell (G,i,
0 )))
proof
assume
A1: 1
<= i & (i
+ 1)
<= (
len G);
now
take a = (((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|);
thus a
in (
LSeg ((((1
/ 2)
* ((G
* (i,1))
+ (G
* ((i
+ 1),1))))
-
|[
0 , 1]|),p)) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,i,
0 ))) by
A1,
Th33;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:85
1
<= j & (j
+ 1)
<= (
width G) implies (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),p))
meets (
Int (
cell (G,
0 ,j)))
proof
assume
A1: 1
<= j & (j
+ 1)
<= (
width G);
now
take a = (((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|);
thus a
in (
LSeg ((((1
/ 2)
* ((G
* (1,j))
+ (G
* (1,(j
+ 1)))))
-
|[1,
0 ]|),p)) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,
0 ,j))) by
A1,
Th35;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:86
1
<= j & (j
+ 1)
<= (
width G) implies (
LSeg (p,(((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|)))
meets (
Int (
cell (G,(
len G),j)))
proof
assume
A1: 1
<= j & (j
+ 1)
<= (
width G);
now
take a = (((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|);
thus a
in (
LSeg (p,(((1
/ 2)
* ((G
* ((
len G),j))
+ (G
* ((
len G),(j
+ 1)))))
+
|[1,
0 ]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,(
len G),j))) by
A1,
Th34;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:87
(
LSeg (p,((G
* (1,1))
-
|[1, 1]|)))
meets (
Int (
cell (G,
0 ,
0 )))
proof
now
take a = ((G
* (1,1))
-
|[1, 1]|);
thus a
in (
LSeg (p,((G
* (1,1))
-
|[1, 1]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,
0 ,
0 ))) by
Th36;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:88
(
LSeg (p,((G
* ((
len G),(
width G)))
+
|[1, 1]|)))
meets (
Int (
cell (G,(
len G),(
width G))))
proof
now
take a = ((G
* ((
len G),(
width G)))
+
|[1, 1]|);
thus a
in (
LSeg (p,((G
* ((
len G),(
width G)))
+
|[1, 1]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,(
len G),(
width G)))) by
Th37;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:89
(
LSeg (p,((G
* (1,(
width G)))
+
|[(
- 1), 1]|)))
meets (
Int (
cell (G,
0 ,(
width G))))
proof
now
take a = ((G
* (1,(
width G)))
+
|[(
- 1), 1]|);
thus a
in (
LSeg (p,((G
* (1,(
width G)))
+
|[(
- 1), 1]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,
0 ,(
width G)))) by
Th38;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:90
(
LSeg (p,((G
* ((
len G),1))
+
|[1, (
- 1)]|)))
meets (
Int (
cell (G,(
len G),
0 )))
proof
now
take a = ((G
* ((
len G),1))
+
|[1, (
- 1)]|);
thus a
in (
LSeg (p,((G
* ((
len G),1))
+
|[1, (
- 1)]|))) by
RLTOPSP1: 68;
thus a
in (
Int (
cell (G,(
len G),
0 ))) by
Th39;
end;
hence thesis by
XBOOLE_0: 3;
end;
theorem ::
GOBOARD6:91
Th91: for M be non
empty
MetrSpace, p be
Point of M, q be
Point of (
TopSpaceMetr M), r be
Real st p
= q & r
>
0 holds (
Ball (p,r)) is
a_neighborhood of q
proof
let M be non
empty
MetrSpace, p be
Point of M, q be
Point of (
TopSpaceMetr M), r be
Real;
reconsider A = (
Ball (p,r)) as
Subset of (
TopSpaceMetr M) by
TOPMETR: 12;
assume p
= q & r
>
0 ;
then q
in A by
Th1;
hence thesis by
CONNSP_2: 3,
TOPMETR: 14;
end;
theorem ::
GOBOARD6:92
for M be non
empty
MetrSpace, A be
Subset of (
TopSpaceMetr M), p be
Point of M holds p
in (
Cl A) iff for r be
Real st r
>
0 holds (
Ball (p,r))
meets A
proof
let M be non
empty
MetrSpace, A be
Subset of (
TopSpaceMetr M), p be
Point of M;
reconsider p9 = p as
Point of (
TopSpaceMetr M) by
TOPMETR: 12;
hereby
assume
A1: p
in (
Cl A);
let r be
Real;
reconsider B = (
Ball (p,r)) as
Subset of (
TopSpaceMetr M) by
TOPMETR: 12;
assume r
>
0 ;
then B is
a_neighborhood of p9 by
Th91;
hence (
Ball (p,r))
meets A by
A1,
CONNSP_2: 27;
end;
assume
A2: for r be
Real st r
>
0 holds (
Ball (p,r))
meets A;
for G be
a_neighborhood of p9 holds G
meets A
proof
let G be
a_neighborhood of p9;
p
in (
Int G) by
CONNSP_2:def 1;
then ex r be
Real st r
>
0 & (
Ball (p,r))
c= G by
Th4;
hence thesis by
A2,
XBOOLE_1: 63;
end;
hence thesis by
CONNSP_2: 27;
end;
theorem ::
GOBOARD6:93
for A be
Subset of (
TOP-REAL n) holds for p be
Point of (
TOP-REAL n) holds for p9 be
Point of (
Euclid n) st p
= p9 holds for s be
Real st s
>
0 holds p
in (
Cl A) iff for r be
Real st
0
< r & r
< s holds (
Ball (p9,r))
meets A
proof
let A be
Subset of (
TOP-REAL n);
let p be
Point of (
TOP-REAL n);
let p9 be
Point of (
Euclid n);
assume
A1: p
= p9;
let s be
Real;
assume
A2: s
>
0 ;
hereby
assume
A3: p
in (
Cl A);
let r be
Real;
assume that
A4:
0
< r and r
< s;
reconsider B = (
Ball (p9,r)) as
Subset of (
TOP-REAL n) by
TOPREAL3: 8;
B is
a_neighborhood of p by
A1,
A4,
Th2;
hence (
Ball (p9,r))
meets A by
A3,
CONNSP_2: 27;
end;
assume
A5: for r be
Real st
0
< r & r
< s holds (
Ball (p9,r))
meets A;
for G be
a_neighborhood of p holds G
meets A
proof
let G be
a_neighborhood of p;
p
in (
Int G) by
CONNSP_2:def 1;
then
consider r9 be
Real such that
A6: r9
>
0 and
A7: (
Ball (p9,r9))
c= G by
A1,
Th5;
set r = (
min (r9,(s
/ 2)));
(
Ball (p9,r))
c= (
Ball (p9,r9)) by
PCOMPS_1: 1,
XXREAL_0: 17;
then
A8: (
Ball (p9,r))
c= G by
A7;
(s
/ 2)
< s & r
<= (s
/ 2) by
A2,
XREAL_1: 216,
XXREAL_0: 17;
then
A9: r
< s by
XXREAL_0: 2;
(s
/ 2)
>
0 by
A2,
XREAL_1: 215;
then r
>
0 by
A6,
XXREAL_0: 15;
hence thesis by
A5,
A8,
A9,
XBOOLE_1: 63;
end;
hence thesis by
CONNSP_2: 27;
end;