goboard6.miz
    
    begin
    
    reserve n for
    Nat, 
    
i,j for
    Nat, 
    
r,s,r1,s1,r2,s2,r9,s9 for
    Real, 
    
p,q for
    Point of ( 
    TOP-REAL 2), 
    
G for
    Go-board, 
    
x,y for
    set, 
    
v for
    Point of ( 
    Euclid 2); 
    
    
    
    
    
    Lm1: ((p 
    + q) 
    `1 ) 
    = ((p 
    `1 ) 
    + (q 
    `1 )) & ((p 
    + q) 
    `2 ) 
    = ((p 
    `2 ) 
    + (q 
    `2 )) 
    
    proof
    
      (p
    + q) 
    =  
    |[((p
    `1 ) 
    + (q 
    `1 )), ((p 
    `2 ) 
    + (q 
    `2 ))]| by 
    EUCLID: 55;
    
      hence thesis by
    EUCLID: 52;
    
    end;
    
    
    
    
    
    Lm2: ((p 
    - q) 
    `1 ) 
    = ((p 
    `1 ) 
    - (q 
    `1 )) & ((p 
    - q) 
    `2 ) 
    = ((p 
    `2 ) 
    - (q 
    `2 )) 
    
    proof
    
      (p
    - q) 
    =  
    |[((p
    `1 ) 
    - (q 
    `1 )), ((p 
    `2 ) 
    - (q 
    `2 ))]| by 
    EUCLID: 61;
    
      hence thesis by
    EUCLID: 52;
    
    end;
    
    
    
    
    
    Lm3: ((r 
    * p) 
    `1 ) 
    = (r 
    * (p 
    `1 )) & ((r 
    * p) 
    `2 ) 
    = (r 
    * (p 
    `2 )) 
    
    proof
    
      (r
    * p) 
    =  
    |[(r
    * (p 
    `1 )), (r 
    * (p 
    `2 ))]| by 
    EUCLID: 57;
    
      hence thesis by
    EUCLID: 52;
    
    end;
    
    theorem :: 
    
    GOBOARD6:1
    
    
    
    
    
    Th1: for M be non 
    empty
    Reflexive  
    MetrStruct, u be 
    Point of M, r be 
    Real holds r 
    >  
    0 implies u 
    in ( 
    Ball (u,r)) 
    
    proof
    
      let M be non
    empty
    Reflexive  
    MetrStruct, u be 
    Point of M, r be 
    Real;
    
      
    
      
    
    A1: ( 
    Ball (u,r)) 
    = { q where q be 
    Point of M : ( 
    dist (u,q)) 
    < r } & ( 
    dist (u,u)) 
    =  
    0 by 
    METRIC_1: 1,
    METRIC_1: 17;
    
      assume r
    >  
    0 ; 
    
      hence thesis by
    A1;
    
    end;
    
    
    
    
    
    Lm4: for M be 
    MetrSpace, B be 
    Subset of ( 
    TopSpaceMetr M), r be 
    Real, u be 
    Point of M st B 
    = ( 
    Ball (u,r)) holds B is 
    open
    
    proof
    
      let M be
    MetrSpace, B be 
    Subset of ( 
    TopSpaceMetr M), r be 
    Real, u be 
    Point of M; 
    
      
    
      
    
    A1: ( 
    TopSpaceMetr M) 
    =  
    TopStruct (# the 
    carrier of M, ( 
    Family_open_set M) #) & ( 
    Ball (u,r)) 
    in ( 
    Family_open_set M) by 
    PCOMPS_1: 29,
    PCOMPS_1:def 5;
    
      assume B
    = ( 
    Ball (u,r)); 
    
      hence thesis by
    A1,
    PRE_TOPC:def 2;
    
    end;
    
    theorem :: 
    
    GOBOARD6:2
    
    
    
    
    
    Th2: for p be 
    Point of ( 
    Euclid n), q be 
    Point of ( 
    TOP-REAL n), r be 
    Real st p 
    = q & r 
    >  
    0 holds ( 
    Ball (p,r)) is 
    a_neighborhood of q 
    
    proof
    
      let p be
    Point of ( 
    Euclid n), q be 
    Point of ( 
    TOP-REAL n), r be 
    Real;
    
      reconsider A = (
    Ball (p,r)) as 
    Subset of ( 
    TOP-REAL n) by 
    TOPREAL3: 8;
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then
    
      reconsider AA = A as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      AA is
    open by 
    TOPMETR: 14;
    
      then
    
      
    
    A2: A is 
    open by 
    A1,
    PRE_TOPC: 30;
    
      assume p
    = q & r 
    >  
    0 ; 
    
      hence thesis by
    A2,
    Th1,
    CONNSP_2: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:3
    
    
    
    
    
    Th3: for B be 
    Subset of ( 
    TOP-REAL n), u be 
    Point of ( 
    Euclid n) st B 
    = ( 
    Ball (u,r)) holds B is 
    open
    
    proof
    
      let B be
    Subset of ( 
    TOP-REAL n), u be 
    Point of ( 
    Euclid n); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then
    
      reconsider BB = B as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      assume B
    = ( 
    Ball (u,r)); 
    
      then BB is
    open by 
    Lm4;
    
      hence thesis by
    A1,
    PRE_TOPC: 30;
    
    end;
    
    theorem :: 
    
    GOBOARD6:4
    
    
    
    
    
    Th4: for M be non 
    empty  
    MetrSpace, u be 
    Point of M, P be 
    Subset of ( 
    TopSpaceMetr M) holds u 
    in ( 
    Int P) iff ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (u,r)) 
    c= P 
    
    proof
    
      let M be non
    empty  
    MetrSpace, u be 
    Point of M, P be 
    Subset of ( 
    TopSpaceMetr M); 
    
      hereby
    
        assume u
    in ( 
    Int P); 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A1: r 
    >  
    0 and 
    
        
    
    A2: ( 
    Ball (u,r)) 
    c= ( 
    Int P) by 
    TOPMETR: 15;
    
        take r;
    
        thus r
    >  
    0 by 
    A1;
    
        (
    Int P) 
    c= P by 
    TOPS_1: 16;
    
        hence (
    Ball (u,r)) 
    c= P by 
    A2;
    
      end;
    
      given r be
    Real such that 
    
      
    
    A3: r 
    >  
    0 and 
    
      
    
    A4: ( 
    Ball (u,r)) 
    c= P; 
    
      (
    TopSpaceMetr M) 
    =  
    TopStruct (# the 
    carrier of M, ( 
    Family_open_set M) #) by 
    PCOMPS_1:def 5;
    
      then
    
      reconsider B = (
    Ball (u,r)) as 
    Subset of ( 
    TopSpaceMetr M); 
    
      
    
      
    
    A5: B is 
    open by 
    Lm4;
    
      u
    in ( 
    Ball (u,r)) by 
    A3,
    Th1;
    
      hence thesis by
    A4,
    A5,
    TOPS_1: 22;
    
    end;
    
    
    
    
    
    Lm5: for T be 
    TopSpace, A be 
    Subset of T, B be 
    Subset of the TopStruct of T st A 
    = B holds ( 
    Int A) 
    = ( 
    Int B) 
    
    proof
    
      let T be
    TopSpace, A be 
    Subset of T, B be 
    Subset of the TopStruct of T such that 
    
      
    
    A1: A 
    = B; 
    
      reconsider AA = (
    Int A) as 
    Subset of the TopStruct of T; 
    
      AA is
    open by 
    PRE_TOPC: 30;
    
      hence (
    Int A) 
    c= ( 
    Int B) by 
    A1,
    TOPS_1: 16,
    TOPS_1: 24;
    
      reconsider BB = (
    Int B) as 
    Subset of T; 
    
      BB is
    open by 
    PRE_TOPC: 30;
    
      hence (
    Int B) 
    c= ( 
    Int A) by 
    A1,
    TOPS_1: 16,
    TOPS_1: 24;
    
    end;
    
    theorem :: 
    
    GOBOARD6:5
    
    
    
    
    
    Th5: for u be 
    Point of ( 
    Euclid n), P be 
    Subset of ( 
    TOP-REAL n) holds u 
    in ( 
    Int P) iff ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (u,r)) 
    c= P 
    
    proof
    
      let u be
    Point of ( 
    Euclid n), P be 
    Subset of ( 
    TOP-REAL n); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then
    
      reconsider PP = P as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      u
    in ( 
    Int PP) iff ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (u,r)) 
    c= PP by 
    Th4;
    
      hence thesis by
    A1,
    Lm5;
    
    end;
    
    theorem :: 
    
    GOBOARD6:6
    
    
    
    
    
    Th6: for u,v be 
    Point of ( 
    Euclid 2) st u 
    =  
    |[r1, s1]| & v
    =  
    |[r2, s2]| holds (
    dist (u,v)) 
    = ( 
    sqrt (((r1 
    - r2) 
    ^2 ) 
    + ((s1 
    - s2) 
    ^2 ))) 
    
    proof
    
      let u,v be
    Point of ( 
    Euclid 2) such that 
    
      
    
    A1: u 
    =  
    |[r1, s1]| & v
    =  
    |[r2, s2]|;
    
      
    
      
    
    A2: ( 
    |[r1, s1]|
    `1 ) 
    = r1 & ( 
    |[r1, s1]|
    `2 ) 
    = s1 by 
    EUCLID: 52;
    
      
    
      
    
    A3: ( 
    |[r2, s2]|
    `1 ) 
    = r2 & ( 
    |[r2, s2]|
    `2 ) 
    = s2 by 
    EUCLID: 52;
    
      
    
      thus (
    dist (u,v)) 
    = (( 
    Pitag_dist 2) 
    . (u,v)) by 
    METRIC_1:def 1
    
      .= (
    sqrt (((r1 
    - r2) 
    ^2 ) 
    + ((s1 
    - s2) 
    ^2 ))) by 
    A1,
    A2,
    A3,
    TOPREAL3: 7;
    
    end;
    
    theorem :: 
    
    GOBOARD6:7
    
    
    
    
    
    Th7: for u be 
    Point of ( 
    Euclid 2) st u 
    =  
    |[r, s]| holds
    0  
    <= r2 & r2 
    < r1 implies 
    |[(r
    + r2), s]| 
    in ( 
    Ball (u,r1)) 
    
    proof
    
      let u be
    Point of ( 
    Euclid 2) such that 
    
      
    
    A1: u 
    =  
    |[r, s]| and
    
      
    
    A2: 
    0  
    <= r2 and 
    
      
    
    A3: r2 
    < r1; 
    
      reconsider v =
    |[(r
    + r2), s]| as 
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (
    dist (u,v)) 
    = ( 
    sqrt (((r 
    - (r 
    + r2)) 
    ^2 ) 
    + ((s 
    - s) 
    ^2 ))) by 
    A1,
    Th6
    
      .= (
    sqrt (( 
    - (r 
    - (r 
    + r2))) 
    ^2 )) 
    
      .= r2 by
    A2,
    SQUARE_1: 22;
    
      hence thesis by
    A3,
    METRIC_1: 11;
    
    end;
    
    theorem :: 
    
    GOBOARD6:8
    
    
    
    
    
    Th8: for u be 
    Point of ( 
    Euclid 2) st u 
    =  
    |[r, s]| holds
    0  
    <= s2 & s2 
    < s1 implies 
    |[r, (s
    + s2)]| 
    in ( 
    Ball (u,s1)) 
    
    proof
    
      let u be
    Point of ( 
    Euclid 2) such that 
    
      
    
    A1: u 
    =  
    |[r, s]| and
    
      
    
    A2: 
    0  
    <= s2 and 
    
      
    
    A3: s2 
    < s1; 
    
      reconsider v =
    |[r, (s
    + s2)]| as 
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (
    dist (u,v)) 
    = ( 
    sqrt (((r 
    - r) 
    ^2 ) 
    + ((s 
    - (s 
    + s2)) 
    ^2 ))) by 
    A1,
    Th6
    
      .= (
    sqrt (( 
    - (s 
    - (s 
    + s2))) 
    ^2 )) 
    
      .= s2 by
    A2,
    SQUARE_1: 22;
    
      hence thesis by
    A3,
    METRIC_1: 11;
    
    end;
    
    theorem :: 
    
    GOBOARD6:9
    
    
    
    
    
    Th9: for u be 
    Point of ( 
    Euclid 2) st u 
    =  
    |[r, s]| holds
    0  
    <= r2 & r2 
    < r1 implies 
    |[(r
    - r2), s]| 
    in ( 
    Ball (u,r1)) 
    
    proof
    
      let u be
    Point of ( 
    Euclid 2) such that 
    
      
    
    A1: u 
    =  
    |[r, s]| and
    
      
    
    A2: 
    0  
    <= r2 and 
    
      
    
    A3: r2 
    < r1; 
    
      reconsider v =
    |[(r
    - r2), s]| as 
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (
    dist (u,v)) 
    = ( 
    sqrt (((r 
    - (r 
    - r2)) 
    ^2 ) 
    + ((s 
    - s) 
    ^2 ))) by 
    A1,
    Th6
    
      .= r2 by
    A2,
    SQUARE_1: 22;
    
      hence thesis by
    A3,
    METRIC_1: 11;
    
    end;
    
    theorem :: 
    
    GOBOARD6:10
    
    
    
    
    
    Th10: for u be 
    Point of ( 
    Euclid 2) st u 
    =  
    |[r, s]| holds
    0  
    <= s2 & s2 
    < s1 implies 
    |[r, (s
    - s2)]| 
    in ( 
    Ball (u,s1)) 
    
    proof
    
      let u be
    Point of ( 
    Euclid 2) such that 
    
      
    
    A1: u 
    =  
    |[r, s]| and
    
      
    
    A2: 
    0  
    <= s2 and 
    
      
    
    A3: s2 
    < s1; 
    
      reconsider v =
    |[r, (s
    - s2)]| as 
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (
    dist (u,v)) 
    = ( 
    sqrt (((s 
    - (s 
    - s2)) 
    ^2 ) 
    + ((r 
    - r) 
    ^2 ))) by 
    A1,
    Th6
    
      .= s2 by
    A2,
    SQUARE_1: 22;
    
      hence thesis by
    A3,
    METRIC_1: 11;
    
    end;
    
    theorem :: 
    
    GOBOARD6:11
    
    
    
    
    
    Th11: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))) 
    = ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i & i 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    <= j & j 
    < ( 
    width G); 
    
      
    
      
    
    A3: 1 
    <= (j 
    + 1) & (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      
    
      
    
    A4: 1 
    <= (i 
    + 1) & (i 
    + 1) 
    <= ( 
    len G) by 
    A1,
    NAT_1: 13;
    
      
    
      then
    
      
    
    A5: ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ) 
    = ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A3,
    GOBOARD5: 2
    
      .= ((G
    * ((i 
    + 1),j)) 
    `1 ) by 
    A2,
    A4,
    GOBOARD5: 2;
    
      
    
      
    
    A6: ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 ) 
    = ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A4,
    A3,
    GOBOARD5: 1
    
      .= ((G
    * (i,(j 
    + 1))) 
    `2 ) by 
    A1,
    A3,
    GOBOARD5: 1;
    
      
    
      
    
    A7: ((G 
    * (i,j)) 
    `2 ) 
    = ((G 
    * (1,j)) 
    `2 ) by 
    A1,
    A2,
    GOBOARD5: 1
    
      .= ((G
    * ((i 
    + 1),j)) 
    `2 ) by 
    A2,
    A4,
    GOBOARD5: 1;
    
      
    
      
    
    A8: (((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))) 
    `2 ) 
    = (((G 
    * (i,j)) 
    `2 ) 
    + ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )) by 
    Lm1
    
      .= (((G
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) 
    `2 ) by 
    A7,
    A6,
    Lm1;
    
      
    
      
    
    A9: ((G 
    * (i,j)) 
    `1 ) 
    = ((G 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    GOBOARD5: 2
    
      .= ((G
    * (i,(j 
    + 1))) 
    `1 ) by 
    A1,
    A3,
    GOBOARD5: 2;
    
      (((G
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))) 
    `1 ) 
    = (((G 
    * (i,j)) 
    `1 ) 
    + ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `1 )) by 
    Lm1
    
      .= (((G
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) 
    `1 ) by 
    A9,
    A5,
    Lm1;
    
      
    
      hence ((G
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))) 
    =  
    |[(((G
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) 
    `1 ), (((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) 
    `2 )]| by 
    A8,
    EUCLID: 53
    
      .= ((G
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),j))) by 
    EUCLID: 53;
    
    end;
    
    
    
    
    
    Lm6: the TopStruct of ( 
    TOP-REAL 2) 
    = ( 
    TopSpaceMetr ( 
    Euclid 2)) by 
    EUCLID:def 8
    
    .=
    TopStruct (# the 
    carrier of ( 
    Euclid 2), ( 
    Family_open_set ( 
    Euclid 2)) #) by 
    PCOMPS_1:def 5;
    
    theorem :: 
    
    GOBOARD6:12
    
    
    
    
    
    Th12: ( 
    Int ( 
    v_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) } 
    
    proof
    
      
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    width G) by 
    NAT_1: 14;
    
      then
    
      
    
    A1: ( 
    v_strip (G, 
    0 )) 
    = { 
    |[r, s]| : r
    <= ((G 
    * (1,1)) 
    `1 ) } by 
    GOBOARD5: 10;
    
      thus (
    Int ( 
    v_strip (G, 
    0 ))) 
    c= { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    Int ( 
    v_strip (G, 
    0 ))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider r1 be
    Real such that 
    
        
    
    A3: r1 
    >  
    0 and 
    
        
    
    A4: ( 
    Ball (u,r1)) 
    c= ( 
    v_strip (G, 
    0 )) by 
    A2,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A5: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q =
    |[((p
    `1 ) 
    + (r1 
    / 2)), ((p 
    `2 ) 
    +  
    0 )]|; 
    
        (r1
    / 2) 
    < r1 by 
    A3,
    XREAL_1: 216;
    
        then q
    in ( 
    Ball (u,r1)) by 
    A3,
    A5,
    Th7;
    
        then q
    in ( 
    v_strip (G, 
    0 )) by 
    A4;
    
        then ex r2, s2 st q
    =  
    |[r2, s2]| & r2
    <= ((G 
    * (1,1)) 
    `1 ) by 
    A1;
    
        then
    
        
    
    A6: ((p 
    `1 ) 
    + (r1 
    / 2)) 
    <= ((G 
    * (1,1)) 
    `1 ) by 
    SPPOL_2: 1;
    
        (p
    `1 ) 
    < ((p 
    `1 ) 
    + (r1 
    / 2)) by 
    A3,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then (p
    `1 ) 
    < ((G 
    * (1,1)) 
    `1 ) by 
    A6,
    XXREAL_0: 2;
    
        hence thesis by
    A5;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) }; 
    
      then
    
      consider r, s such that
    
      
    
    A7: x 
    =  
    |[r, s]| and
    
      
    
    A8: r 
    < ((G 
    * (1,1)) 
    `1 ); 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A9: ( 
    Ball (u,(((G 
    * (1,1)) 
    `1 ) 
    - r))) 
    c= ( 
    v_strip (G, 
    0 )) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A10: ( 
    Ball (u,(((G 
    * (1,1)) 
    `1 ) 
    - r))) 
    = { v : ( 
    dist (u,v)) 
    < (((G 
    * (1,1)) 
    `1 ) 
    - r) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,(((G 
    * (1,1)) 
    `1 ) 
    - r))); 
    
        then
    
        consider v such that
    
        
    
    A11: v 
    = y and 
    
        
    
    A12: ( 
    dist (u,v)) 
    < (((G 
    * (1,1)) 
    `1 ) 
    - r) by 
    A10;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((r
    - (q 
    `1 )) 
    ^2 ) 
    >=  
    0 & (((r 
    - (q 
    `1 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A13: ( 
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A14: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < (((G 
    * (1,1)) 
    `1 ) 
    - r) by 
    A12,
    Th6;
    
        then (
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= (((G 
    * (1,1)) 
    `1 ) 
    - r) by 
    A13,
    XXREAL_0: 2;
    
        then
    
        
    
    A15: 
    |.(r
    - (q 
    `1 )).| 
    <= (((G 
    * (1,1)) 
    `1 ) 
    - r) by 
    COMPLEX1: 72;
    
        per cases ;
    
          suppose r
    <= (q 
    `1 ); 
    
          then
    
          
    
    A16: ((q 
    `1 ) 
    - r) 
    >=  
    0 by 
    XREAL_1: 48;
    
          
    |.(r
    - (q 
    `1 )).| 
    =  
    |.(
    - (r 
    - (q 
    `1 ))).| by 
    COMPLEX1: 52
    
          .= ((q
    `1 ) 
    - r) by 
    A16,
    ABSVALUE:def 1;
    
          then (q
    `1 ) 
    <= ((G 
    * (1,1)) 
    `1 ) by 
    A15,
    XREAL_1: 9;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
          suppose r
    >= (q 
    `1 ); 
    
          then (q
    `1 ) 
    <= ((G 
    * (1,1)) 
    `1 ) by 
    A8,
    XXREAL_0: 2;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,(((G 
    * (1,1)) 
    `1 ) 
    - r))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A17: B is 
    open by 
    Th3;
    
      u
    in ( 
    Ball (u,(((G 
    * (1,1)) 
    `1 ) 
    - r))) by 
    A8,
    Th1,
    XREAL_1: 50;
    
      hence thesis by
    A7,
    A9,
    A17,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:13
    
    
    
    
    
    Th13: ( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r } 
    
    proof
    
      
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    width G) by 
    NAT_1: 14;
    
      then
    
      
    
    A1: ( 
    v_strip (G,( 
    len G))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    <= r } by 
    GOBOARD5: 9;
    
      thus (
    Int ( 
    v_strip (G,( 
    len G)))) 
    c= { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider r1 be
    Real such that 
    
        
    
    A3: r1 
    >  
    0 and 
    
        
    
    A4: ( 
    Ball (u,r1)) 
    c= ( 
    v_strip (G,( 
    len G))) by 
    A2,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A5: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q =
    |[((p
    `1 ) 
    - (r1 
    / 2)), ((p 
    `2 ) 
    +  
    0 )]|; 
    
        (r1
    / 2) 
    < r1 by 
    A3,
    XREAL_1: 216;
    
        then q
    in ( 
    Ball (u,r1)) by 
    A3,
    A5,
    Th9;
    
        then q
    in ( 
    v_strip (G,( 
    len G))) by 
    A4;
    
        then ex r2, s2 st q
    =  
    |[r2, s2]| & ((G
    * (( 
    len G),1)) 
    `1 ) 
    <= r2 by 
    A1;
    
        then ((G
    * (( 
    len G),1)) 
    `1 ) 
    <= ((p 
    `1 ) 
    - (r1 
    / 2)) by 
    SPPOL_2: 1;
    
        then
    
        
    
    A6: (((G 
    * (( 
    len G),1)) 
    `1 ) 
    + (r1 
    / 2)) 
    <= (p 
    `1 ) by 
    XREAL_1: 19;
    
        ((G
    * (( 
    len G),1)) 
    `1 ) 
    < (((G 
    * (( 
    len G),1)) 
    `1 ) 
    + (r1 
    / 2)) by 
    A3,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then ((G
    * (( 
    len G),1)) 
    `1 ) 
    < (p 
    `1 ) by 
    A6,
    XXREAL_0: 2;
    
        hence thesis by
    A5;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r }; 
    
      then
    
      consider r, s such that
    
      
    
    A7: x 
    =  
    |[r, s]| and
    
      
    
    A8: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    < r; 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A9: ( 
    Ball (u,(r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )))) 
    c= ( 
    v_strip (G,( 
    len G))) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A10: ( 
    Ball (u,(r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )))) 
    = { v : ( 
    dist (u,v)) 
    < (r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,(r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )))); 
    
        then
    
        consider v such that
    
        
    
    A11: v 
    = y and 
    
        
    
    A12: ( 
    dist (u,v)) 
    < (r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )) by 
    A10;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((r
    - (q 
    `1 )) 
    ^2 ) 
    >=  
    0 & (((r 
    - (q 
    `1 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A13: ( 
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A14: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < (r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )) by 
    A12,
    Th6;
    
        then (
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= (r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )) by 
    A13,
    XXREAL_0: 2;
    
        then
    
        
    
    A15: 
    |.(r
    - (q 
    `1 )).| 
    <= (r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )) by 
    COMPLEX1: 72;
    
        per cases ;
    
          suppose r
    >= (q 
    `1 ); 
    
          then (r
    - (q 
    `1 )) 
    >=  
    0 by 
    XREAL_1: 48;
    
          then
    |.(r
    - (q 
    `1 )).| 
    = (r 
    - (q 
    `1 )) by 
    ABSVALUE:def 1;
    
          then ((G
    * (( 
    len G),1)) 
    `1 ) 
    <= (q 
    `1 ) by 
    A15,
    XREAL_1: 10;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
          suppose r
    <= (q 
    `1 ); 
    
          then ((G
    * (( 
    len G),1)) 
    `1 ) 
    <= (q 
    `1 ) by 
    A8,
    XXREAL_0: 2;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,(r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A16: B is 
    open by 
    Th3;
    
      u
    in ( 
    Ball (u,(r 
    - ((G 
    * (( 
    len G),1)) 
    `1 )))) by 
    A8,
    Th1,
    XREAL_1: 50;
    
      hence thesis by
    A7,
    A9,
    A16,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:14
    
    
    
    
    
    Th14: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } 
    
    proof
    
      
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A1: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      assume 1
    <= i & i 
    < ( 
    len G); 
    
      then
    
      
    
    A2: ( 
    v_strip (G,i)) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    <= r & r 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    A1,
    GOBOARD5: 8;
    
      thus (
    Int ( 
    v_strip (G,i))) 
    c= { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in ( 
    Int ( 
    v_strip (G,i))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider r1 be
    Real such that 
    
        
    
    A4: r1 
    >  
    0 and 
    
        
    
    A5: ( 
    Ball (u,r1)) 
    c= ( 
    v_strip (G,i)) by 
    A3,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A6: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q2 =
    |[((p
    `1 ) 
    - (r1 
    / 2)), ((p 
    `2 ) 
    +  
    0 )]|; 
    
        
    
        
    
    A7: (r1 
    / 2) 
    < r1 by 
    A4,
    XREAL_1: 216;
    
        then q2
    in ( 
    Ball (u,r1)) by 
    A4,
    A6,
    Th9;
    
        then q2
    in ( 
    v_strip (G,i)) by 
    A5;
    
        then ex r2, s2 st q2
    =  
    |[r2, s2]| & ((G
    * (i,1)) 
    `1 ) 
    <= r2 & r2 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2;
    
        then ((G
    * (i,1)) 
    `1 ) 
    <= ((p 
    `1 ) 
    - (r1 
    / 2)) by 
    SPPOL_2: 1;
    
        then
    
        
    
    A8: (((G 
    * (i,1)) 
    `1 ) 
    + (r1 
    / 2)) 
    <= (p 
    `1 ) by 
    XREAL_1: 19;
    
        set q1 =
    |[((p
    `1 ) 
    + (r1 
    / 2)), ((p 
    `2 ) 
    +  
    0 )]|; 
    
        q1
    in ( 
    Ball (u,r1)) by 
    A4,
    A6,
    A7,
    Th7;
    
        then q1
    in ( 
    v_strip (G,i)) by 
    A5;
    
        then ex r2, s2 st q1
    =  
    |[r2, s2]| & ((G
    * (i,1)) 
    `1 ) 
    <= r2 & r2 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2;
    
        then
    
        
    
    A9: ((p 
    `1 ) 
    + (r1 
    / 2)) 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    SPPOL_2: 1;
    
        ((G
    * (i,1)) 
    `1 ) 
    < (((G 
    * (i,1)) 
    `1 ) 
    + (r1 
    / 2)) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then
    
        
    
    A10: ((G 
    * (i,1)) 
    `1 ) 
    < (p 
    `1 ) by 
    A8,
    XXREAL_0: 2;
    
        (p
    `1 ) 
    < ((p 
    `1 ) 
    + (r1 
    / 2)) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then (p
    `1 ) 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A9,
    XXREAL_0: 2;
    
        hence thesis by
    A6,
    A10;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) }; 
    
      then
    
      consider r, s such that
    
      
    
    A11: x 
    =  
    |[r, s]| and
    
      
    
    A12: ((G 
    * (i,1)) 
    `1 ) 
    < r and 
    
      
    
    A13: r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (((G
    * ((i 
    + 1),1)) 
    `1 ) 
    - r) 
    >  
    0 & (r 
    - ((G 
    * (i,1)) 
    `1 )) 
    >  
    0 by 
    A12,
    A13,
    XREAL_1: 50;
    
      then (
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) 
    >  
    0 by 
    XXREAL_0: 15;
    
      then
    
      
    
    A14: u 
    in ( 
    Ball (u,( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))))) by 
    Th1;
    
      
    
      
    
    A15: ( 
    Ball (u,( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))))) 
    c= ( 
    v_strip (G,i)) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A16: ( 
    Ball (u,( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))))) 
    = { v : ( 
    dist (u,v)) 
    < ( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))))); 
    
        then
    
        consider v such that
    
        
    
    A17: v 
    = y and 
    
        
    
    A18: ( 
    dist (u,v)) 
    < ( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) by 
    A16;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((r
    - (q 
    `1 )) 
    ^2 ) 
    >=  
    0 & (((r 
    - (q 
    `1 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A19: ( 
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A20: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < ( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) by 
    A18,
    Th6;
    
        then (
    sqrt ((r 
    - (q 
    `1 )) 
    ^2 )) 
    <= ( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) by 
    A19,
    XXREAL_0: 2;
    
        then
    
        
    
    A21: 
    |.(r
    - (q 
    `1 )).| 
    <= ( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))) by 
    COMPLEX1: 72;
    
        then
    
        
    
    A22: 
    |.(r
    - (q 
    `1 )).| 
    <= (r 
    - ((G 
    * (i,1)) 
    `1 )) by 
    XXREAL_0: 22;
    
        
    
        
    
    A23: 
    |.(r
    - (q 
    `1 )).| 
    <= (((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r) by 
    A21,
    XXREAL_0: 22;
    
        per cases ;
    
          suppose
    
          
    
    A24: r 
    <= (q 
    `1 ); 
    
          then
    
          
    
    A25: ((q 
    `1 ) 
    - r) 
    >=  
    0 by 
    XREAL_1: 48;
    
          
    |.(r
    - (q 
    `1 )).| 
    =  
    |.(
    - (r 
    - (q 
    `1 ))).| by 
    COMPLEX1: 52
    
          .= ((q
    `1 ) 
    - r) by 
    A25,
    ABSVALUE:def 1;
    
          then
    
          
    
    A26: (q 
    `1 ) 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A23,
    XREAL_1: 9;
    
          ((G
    * (i,1)) 
    `1 ) 
    <= (q 
    `1 ) by 
    A12,
    A24,
    XXREAL_0: 2;
    
          hence thesis by
    A2,
    A17,
    A20,
    A26;
    
        end;
    
          suppose
    
          
    
    A27: r 
    >= (q 
    `1 ); 
    
          then (r
    - (q 
    `1 )) 
    >=  
    0 by 
    XREAL_1: 48;
    
          then
    |.(r
    - (q 
    `1 )).| 
    = (r 
    - (q 
    `1 )) by 
    ABSVALUE:def 1;
    
          then
    
          
    
    A28: ((G 
    * (i,1)) 
    `1 ) 
    <= (q 
    `1 ) by 
    A22,
    XREAL_1: 10;
    
          (q
    `1 ) 
    <= ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A13,
    A27,
    XXREAL_0: 2;
    
          hence thesis by
    A2,
    A17,
    A20,
    A28;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,( 
    min ((r 
    - ((G 
    * (i,1)) 
    `1 )),(((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    - r))))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      B is
    open by 
    Th3;
    
      hence thesis by
    A11,
    A14,
    A15,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:15
    
    
    
    
    
    Th15: ( 
    Int ( 
    h_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) } 
    
    proof
    
      
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    len G) by 
    NAT_1: 14;
    
      then
    
      
    
    A1: ( 
    h_strip (G, 
    0 )) 
    = { 
    |[r, s]| : s
    <= ((G 
    * (1,1)) 
    `2 ) } by 
    GOBOARD5: 7;
    
      thus (
    Int ( 
    h_strip (G, 
    0 ))) 
    c= { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    Int ( 
    h_strip (G, 
    0 ))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider s1 be
    Real such that 
    
        
    
    A3: s1 
    >  
    0 and 
    
        
    
    A4: ( 
    Ball (u,s1)) 
    c= ( 
    h_strip (G, 
    0 )) by 
    A2,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A5: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q =
    |[((p
    `1 ) 
    +  
    0 ), ((p 
    `2 ) 
    + (s1 
    / 2))]|; 
    
        (s1
    / 2) 
    < s1 by 
    A3,
    XREAL_1: 216;
    
        then q
    in ( 
    Ball (u,s1)) by 
    A3,
    A5,
    Th8;
    
        then q
    in ( 
    h_strip (G, 
    0 )) by 
    A4;
    
        then ex r2, s2 st q
    =  
    |[r2, s2]| & s2
    <= ((G 
    * (1,1)) 
    `2 ) by 
    A1;
    
        then
    
        
    
    A6: ((p 
    `2 ) 
    + (s1 
    / 2)) 
    <= ((G 
    * (1,1)) 
    `2 ) by 
    SPPOL_2: 1;
    
        (p
    `2 ) 
    < ((p 
    `2 ) 
    + (s1 
    / 2)) by 
    A3,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then (p
    `2 ) 
    < ((G 
    * (1,1)) 
    `2 ) by 
    A6,
    XXREAL_0: 2;
    
        hence thesis by
    A5;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) }; 
    
      then
    
      consider r, s such that
    
      
    
    A7: x 
    =  
    |[r, s]| and
    
      
    
    A8: s 
    < ((G 
    * (1,1)) 
    `2 ); 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A9: ( 
    Ball (u,(((G 
    * (1,1)) 
    `2 ) 
    - s))) 
    c= ( 
    h_strip (G, 
    0 )) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A10: ( 
    Ball (u,(((G 
    * (1,1)) 
    `2 ) 
    - s))) 
    = { v : ( 
    dist (u,v)) 
    < (((G 
    * (1,1)) 
    `2 ) 
    - s) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,(((G 
    * (1,1)) 
    `2 ) 
    - s))); 
    
        then
    
        consider v such that
    
        
    
    A11: v 
    = y and 
    
        
    
    A12: ( 
    dist (u,v)) 
    < (((G 
    * (1,1)) 
    `2 ) 
    - s) by 
    A10;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((s
    - (q 
    `2 )) 
    ^2 ) 
    >=  
    0 & (((s 
    - (q 
    `2 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A13: ( 
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A14: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < (((G 
    * (1,1)) 
    `2 ) 
    - s) by 
    A12,
    Th6;
    
        then (
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= (((G 
    * (1,1)) 
    `2 ) 
    - s) by 
    A13,
    XXREAL_0: 2;
    
        then
    
        
    
    A15: 
    |.(s
    - (q 
    `2 )).| 
    <= (((G 
    * (1,1)) 
    `2 ) 
    - s) by 
    COMPLEX1: 72;
    
        per cases ;
    
          suppose s
    <= (q 
    `2 ); 
    
          then
    
          
    
    A16: ((q 
    `2 ) 
    - s) 
    >=  
    0 by 
    XREAL_1: 48;
    
          
    |.(s
    - (q 
    `2 )).| 
    =  
    |.(
    - (s 
    - (q 
    `2 ))).| by 
    COMPLEX1: 52
    
          .= ((q
    `2 ) 
    - s) by 
    A16,
    ABSVALUE:def 1;
    
          then (q
    `2 ) 
    <= ((G 
    * (1,1)) 
    `2 ) by 
    A15,
    XREAL_1: 9;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
          suppose s
    >= (q 
    `2 ); 
    
          then (q
    `2 ) 
    <= ((G 
    * (1,1)) 
    `2 ) by 
    A8,
    XXREAL_0: 2;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,(((G 
    * (1,1)) 
    `2 ) 
    - s))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A17: B is 
    open by 
    Th3;
    
      u
    in ( 
    Ball (u,(((G 
    * (1,1)) 
    `2 ) 
    - s))) by 
    A8,
    Th1,
    XREAL_1: 50;
    
      hence thesis by
    A7,
    A9,
    A17,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:16
    
    
    
    
    
    Th16: ( 
    Int ( 
    h_strip (G,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
    proof
    
      
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    len G) by 
    NAT_1: 14;
    
      then
    
      
    
    A1: ( 
    h_strip (G,( 
    width G))) 
    = { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    <= s } by 
    GOBOARD5: 6;
    
      thus (
    Int ( 
    h_strip (G,( 
    width G)))) 
    c= { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider s1 be
    Real such that 
    
        
    
    A3: s1 
    >  
    0 and 
    
        
    
    A4: ( 
    Ball (u,s1)) 
    c= ( 
    h_strip (G,( 
    width G))) by 
    A2,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A5: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q =
    |[((p
    `1 ) 
    +  
    0 ), ((p 
    `2 ) 
    - (s1 
    / 2))]|; 
    
        (s1
    / 2) 
    < s1 by 
    A3,
    XREAL_1: 216;
    
        then q
    in ( 
    Ball (u,s1)) by 
    A3,
    A5,
    Th10;
    
        then q
    in ( 
    h_strip (G,( 
    width G))) by 
    A4;
    
        then ex r2, s2 st q
    =  
    |[r2, s2]| & ((G
    * (1,( 
    width G))) 
    `2 ) 
    <= s2 by 
    A1;
    
        then ((G
    * (1,( 
    width G))) 
    `2 ) 
    <= ((p 
    `2 ) 
    - (s1 
    / 2)) by 
    SPPOL_2: 1;
    
        then
    
        
    
    A6: (((G 
    * (1,( 
    width G))) 
    `2 ) 
    + (s1 
    / 2)) 
    <= (p 
    `2 ) by 
    XREAL_1: 19;
    
        ((G
    * (1,( 
    width G))) 
    `2 ) 
    < (((G 
    * (1,( 
    width G))) 
    `2 ) 
    + (s1 
    / 2)) by 
    A3,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then ((G
    * (1,( 
    width G))) 
    `2 ) 
    < (p 
    `2 ) by 
    A6,
    XXREAL_0: 2;
    
        hence thesis by
    A5;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s }; 
    
      then
    
      consider r, s such that
    
      
    
    A7: x 
    =  
    |[r, s]| and
    
      
    
    A8: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s; 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A9: ( 
    Ball (u,(s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )))) 
    c= ( 
    h_strip (G,( 
    width G))) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A10: ( 
    Ball (u,(s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )))) 
    = { v : ( 
    dist (u,v)) 
    < (s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,(s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )))); 
    
        then
    
        consider v such that
    
        
    
    A11: v 
    = y and 
    
        
    
    A12: ( 
    dist (u,v)) 
    < (s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )) by 
    A10;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((s
    - (q 
    `2 )) 
    ^2 ) 
    >=  
    0 & (((s 
    - (q 
    `2 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A13: ( 
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A14: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < (s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )) by 
    A12,
    Th6;
    
        then (
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= (s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )) by 
    A13,
    XXREAL_0: 2;
    
        then
    
        
    
    A15: 
    |.(s
    - (q 
    `2 )).| 
    <= (s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )) by 
    COMPLEX1: 72;
    
        per cases ;
    
          suppose s
    >= (q 
    `2 ); 
    
          then (s
    - (q 
    `2 )) 
    >=  
    0 by 
    XREAL_1: 48;
    
          then
    |.(s
    - (q 
    `2 )).| 
    = (s 
    - (q 
    `2 )) by 
    ABSVALUE:def 1;
    
          then ((G
    * (1,( 
    width G))) 
    `2 ) 
    <= (q 
    `2 ) by 
    A15,
    XREAL_1: 10;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
          suppose s
    <= (q 
    `2 ); 
    
          then ((G
    * (1,( 
    width G))) 
    `2 ) 
    <= (q 
    `2 ) by 
    A8,
    XXREAL_0: 2;
    
          hence thesis by
    A1,
    A11,
    A14;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,(s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      
    
      
    
    A16: B is 
    open by 
    Th3;
    
      u
    in ( 
    Ball (u,(s 
    - ((G 
    * (1,( 
    width G))) 
    `2 )))) by 
    A8,
    Th1,
    XREAL_1: 50;
    
      hence thesis by
    A7,
    A9,
    A16,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:17
    
    
    
    
    
    Th17: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
    proof
    
      
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A1: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      assume 1
    <= j & j 
    < ( 
    width G); 
    
      then
    
      
    
    A2: ( 
    h_strip (G,j)) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    <= s & s 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    GOBOARD5: 5;
    
      thus (
    Int ( 
    h_strip (G,j))) 
    c= { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in ( 
    Int ( 
    h_strip (G,j))); 
    
        then
    
        reconsider u = x as
    Point of ( 
    Euclid 2) by 
    Lm6;
    
        consider s1 be
    Real such that 
    
        
    
    A4: s1 
    >  
    0 and 
    
        
    
    A5: ( 
    Ball (u,s1)) 
    c= ( 
    h_strip (G,j)) by 
    A3,
    Th5;
    
        reconsider p = u as
    Point of ( 
    TOP-REAL 2) by 
    Lm6;
    
        
    
        
    
    A6: p 
    =  
    |[(p
    `1 ), (p 
    `2 )]| by 
    EUCLID: 53;
    
        set q2 =
    |[((p
    `1 ) 
    +  
    0 ), ((p 
    `2 ) 
    - (s1 
    / 2))]|; 
    
        
    
        
    
    A7: (s1 
    / 2) 
    < s1 by 
    A4,
    XREAL_1: 216;
    
        then q2
    in ( 
    Ball (u,s1)) by 
    A4,
    A6,
    Th10;
    
        then q2
    in ( 
    h_strip (G,j)) by 
    A5;
    
        then ex r2, s2 st q2
    =  
    |[r2, s2]| & ((G
    * (1,j)) 
    `2 ) 
    <= s2 & s2 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2;
    
        then ((G
    * (1,j)) 
    `2 ) 
    <= ((p 
    `2 ) 
    - (s1 
    / 2)) by 
    SPPOL_2: 1;
    
        then
    
        
    
    A8: (((G 
    * (1,j)) 
    `2 ) 
    + (s1 
    / 2)) 
    <= (p 
    `2 ) by 
    XREAL_1: 19;
    
        set q1 =
    |[((p
    `1 ) 
    +  
    0 ), ((p 
    `2 ) 
    + (s1 
    / 2))]|; 
    
        q1
    in ( 
    Ball (u,s1)) by 
    A4,
    A6,
    A7,
    Th8;
    
        then q1
    in ( 
    h_strip (G,j)) by 
    A5;
    
        then ex r2, s2 st q1
    =  
    |[r2, s2]| & ((G
    * (1,j)) 
    `2 ) 
    <= s2 & s2 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2;
    
        then
    
        
    
    A9: ((p 
    `2 ) 
    + (s1 
    / 2)) 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    SPPOL_2: 1;
    
        ((G
    * (1,j)) 
    `2 ) 
    < (((G 
    * (1,j)) 
    `2 ) 
    + (s1 
    / 2)) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then
    
        
    
    A10: ((G 
    * (1,j)) 
    `2 ) 
    < (p 
    `2 ) by 
    A8,
    XXREAL_0: 2;
    
        (p
    `2 ) 
    < ((p 
    `2 ) 
    + (s1 
    / 2)) by 
    A4,
    XREAL_1: 29,
    XREAL_1: 215;
    
        then (p
    `2 ) 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A9,
    XXREAL_0: 2;
    
        hence thesis by
    A6,
    A10;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) }; 
    
      then
    
      consider r, s such that
    
      
    
    A11: x 
    =  
    |[r, s]| and
    
      
    
    A12: ((G 
    * (1,j)) 
    `2 ) 
    < s and 
    
      
    
    A13: s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
      reconsider u =
    |[r, s]| as
    Point of ( 
    Euclid 2) by 
    TOPREAL3: 8;
    
      (((G
    * (1,(j 
    + 1))) 
    `2 ) 
    - s) 
    >  
    0 & (s 
    - ((G 
    * (1,j)) 
    `2 )) 
    >  
    0 by 
    A12,
    A13,
    XREAL_1: 50;
    
      then (
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) 
    >  
    0 by 
    XXREAL_0: 15;
    
      then
    
      
    
    A14: u 
    in ( 
    Ball (u,( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))))) by 
    Th1;
    
      
    
      
    
    A15: ( 
    Ball (u,( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))))) 
    c= ( 
    h_strip (G,j)) 
    
      proof
    
        let y be
    object;
    
        
    
        
    
    A16: ( 
    Ball (u,( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))))) 
    = { v : ( 
    dist (u,v)) 
    < ( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) } by 
    METRIC_1: 17;
    
        assume y
    in ( 
    Ball (u,( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))))); 
    
        then
    
        consider v such that
    
        
    
    A17: v 
    = y and 
    
        
    
    A18: ( 
    dist (u,v)) 
    < ( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) by 
    A16;
    
        reconsider q = v as
    Point of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
        ((s
    - (q 
    `2 )) 
    ^2 ) 
    >=  
    0 & (((s 
    - (q 
    `2 )) 
    ^2 ) 
    +  
    0 ) 
    <= (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 )) by 
    XREAL_1: 6,
    XREAL_1: 63;
    
        then
    
        
    
    A19: ( 
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= ( 
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) by 
    SQUARE_1: 26;
    
        
    
        
    
    A20: q 
    =  
    |[(q
    `1 ), (q 
    `2 )]| by 
    EUCLID: 53;
    
        then (
    sqrt (((r 
    - (q 
    `1 )) 
    ^2 ) 
    + ((s 
    - (q 
    `2 )) 
    ^2 ))) 
    < ( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) by 
    A18,
    Th6;
    
        then (
    sqrt ((s 
    - (q 
    `2 )) 
    ^2 )) 
    <= ( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) by 
    A19,
    XXREAL_0: 2;
    
        then
    
        
    
    A21: 
    |.(s
    - (q 
    `2 )).| 
    <= ( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))) by 
    COMPLEX1: 72;
    
        then
    
        
    
    A22: 
    |.(s
    - (q 
    `2 )).| 
    <= (s 
    - ((G 
    * (1,j)) 
    `2 )) by 
    XXREAL_0: 22;
    
        
    
        
    
    A23: 
    |.(s
    - (q 
    `2 )).| 
    <= (((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s) by 
    A21,
    XXREAL_0: 22;
    
        per cases ;
    
          suppose
    
          
    
    A24: s 
    <= (q 
    `2 ); 
    
          then
    
          
    
    A25: ((q 
    `2 ) 
    - s) 
    >=  
    0 by 
    XREAL_1: 48;
    
          
    |.(s
    - (q 
    `2 )).| 
    =  
    |.(
    - (s 
    - (q 
    `2 ))).| by 
    COMPLEX1: 52
    
          .= ((q
    `2 ) 
    - s) by 
    A25,
    ABSVALUE:def 1;
    
          then
    
          
    
    A26: (q 
    `2 ) 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A23,
    XREAL_1: 9;
    
          ((G
    * (1,j)) 
    `2 ) 
    <= (q 
    `2 ) by 
    A12,
    A24,
    XXREAL_0: 2;
    
          hence thesis by
    A2,
    A17,
    A20,
    A26;
    
        end;
    
          suppose
    
          
    
    A27: s 
    >= (q 
    `2 ); 
    
          then (s
    - (q 
    `2 )) 
    >=  
    0 by 
    XREAL_1: 48;
    
          then
    |.(s
    - (q 
    `2 )).| 
    = (s 
    - (q 
    `2 )) by 
    ABSVALUE:def 1;
    
          then
    
          
    
    A28: ((G 
    * (1,j)) 
    `2 ) 
    <= (q 
    `2 ) by 
    A22,
    XREAL_1: 10;
    
          (q
    `2 ) 
    <= ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A13,
    A27,
    XXREAL_0: 2;
    
          hence thesis by
    A2,
    A17,
    A20,
    A28;
    
        end;
    
      end;
    
      reconsider B = (
    Ball (u,( 
    min ((s 
    - ((G 
    * (1,j)) 
    `2 )),(((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    - s))))) as 
    Subset of ( 
    TOP-REAL 2) by 
    TOPREAL3: 8;
    
      B is
    open by 
    Th3;
    
      hence thesis by
    A11,
    A14,
    A15,
    TOPS_1: 22;
    
    end;
    
    theorem :: 
    
    GOBOARD6:18
    
    
    
    
    
    Th18: ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
    proof
    
      (
    cell (G, 
    0 , 
    0 )) 
    = (( 
    v_strip (G, 
    0 )) 
    /\ ( 
    h_strip (G, 
    0 ))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    = (( 
    Int ( 
    v_strip (G, 
    0 ))) 
    /\ ( 
    Int ( 
    h_strip (G, 
    0 )))) by 
    TOPS_1: 17;
    
      
    
      
    
    A2: ( 
    Int ( 
    h_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th15;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) } by 
    Th12;
    
      thus (
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    c= { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: r1 
    < ((G 
    * (1,1)) 
    `1 ) by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: s2 
    < ((G 
    * (1,1)) 
    `2 ) by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & r
    < ((G 
    * (1,1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ); 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:19
    
    
    
    
    
    Th19: ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
    proof
    
      (
    cell (G, 
    0 ,( 
    width G))) 
    = (( 
    v_strip (G, 
    0 )) 
    /\ ( 
    h_strip (G,( 
    width G)))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    = (( 
    Int ( 
    v_strip (G, 
    0 ))) 
    /\ ( 
    Int ( 
    h_strip (G,( 
    width G))))) by 
    TOPS_1: 17;
    
      
    
      
    
    A2: ( 
    Int ( 
    h_strip (G,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    Th16;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) } by 
    Th12;
    
      thus (
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    c= { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: r1 
    < ((G 
    * (1,1)) 
    `1 ) by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s2 by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s; 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:20
    
    
    
    
    
    Th20: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
    proof
    
      (
    cell (G, 
    0 ,j)) 
    = (( 
    v_strip (G, 
    0 )) 
    /\ ( 
    h_strip (G,j))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    = (( 
    Int ( 
    v_strip (G, 
    0 ))) 
    /\ ( 
    Int ( 
    h_strip (G,j)))) by 
    TOPS_1: 17;
    
      assume 1
    <= j & j 
    < ( 
    width G); 
    
      then
    
      
    
    A2: ( 
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    Th17;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) } by 
    Th12;
    
      thus (
    Int ( 
    cell (G, 
    0 ,j))) 
    c= { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G, 
    0 ,j))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: r1 
    < ((G 
    * (1,1)) 
    `1 ) by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: ((G 
    * (1,j)) 
    `2 ) 
    < s2 & s2 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G, 
    0 ))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:21
    
    
    
    
    
    Th21: ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
    proof
    
      (
    cell (G,( 
    len G), 
    0 )) 
    = (( 
    v_strip (G,( 
    len G))) 
    /\ ( 
    h_strip (G, 
    0 ))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    = (( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    /\ ( 
    Int ( 
    h_strip (G, 
    0 )))) by 
    TOPS_1: 17;
    
      
    
      
    
    A2: ( 
    Int ( 
    h_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th15;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r } by 
    Th13;
    
      thus (
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    c= { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    < r1 by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: s2 
    < ((G 
    * (1,1)) 
    `2 ) by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & s 
    < ((G 
    * (1,1)) 
    `2 ) }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & s 
    < ((G 
    * (1,1)) 
    `2 ); 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:22
    
    
    
    
    
    Th22: ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
    proof
    
      (
    cell (G,( 
    len G),( 
    width G))) 
    = (( 
    v_strip (G,( 
    len G))) 
    /\ ( 
    h_strip (G,( 
    width G)))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    = (( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    /\ ( 
    Int ( 
    h_strip (G,( 
    width G))))) by 
    TOPS_1: 17;
    
      
    
      
    
    A2: ( 
    Int ( 
    h_strip (G,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    Th16;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r } by 
    Th13;
    
      thus (
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    c= { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    < r1 by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s2 by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s; 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:23
    
    
    
    
    
    Th23: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
    proof
    
      (
    cell (G,( 
    len G),j)) 
    = (( 
    v_strip (G,( 
    len G))) 
    /\ ( 
    h_strip (G,j))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = (( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    /\ ( 
    Int ( 
    h_strip (G,j)))) by 
    TOPS_1: 17;
    
      assume 1
    <= j & j 
    < ( 
    width G); 
    
      then
    
      
    
    A2: ( 
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    Th17;
    
      
    
      
    
    A3: ( 
    Int ( 
    v_strip (G,( 
    len G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r } by 
    Th13;
    
      thus (
    Int ( 
    cell (G,( 
    len G),j))) 
    c= { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G,( 
    len G),j))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    < r1 by 
    A3;
    
        x
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: ((G 
    * (1,j)) 
    `2 ) 
    < s2 & s2 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A2;
    
      x
    in ( 
    Int ( 
    v_strip (G,( 
    len G)))) by 
    A3,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:24
    
    
    
    
    
    Th24: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
    proof
    
      (
    cell (G,i, 
    0 )) 
    = (( 
    v_strip (G,i)) 
    /\ ( 
    h_strip (G, 
    0 ))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    = (( 
    Int ( 
    v_strip (G,i))) 
    /\ ( 
    Int ( 
    h_strip (G, 
    0 )))) by 
    TOPS_1: 17;
    
      assume 1
    <= i & i 
    < ( 
    len G); 
    
      then
    
      
    
    A2: ( 
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    Th14;
    
      
    
      
    
    A3: ( 
    Int ( 
    h_strip (G, 
    0 ))) 
    = { 
    |[r, s]| : s
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th15;
    
      thus (
    Int ( 
    cell (G,i, 
    0 ))) 
    c= { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G,i, 
    0 ))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: ((G 
    * (i,1)) 
    `1 ) 
    < r1 & r1 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2;
    
        x
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: s2 
    < ((G 
    * (1,1)) 
    `2 ) by 
    A3;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ); 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G, 
    0 ))) by 
    A3;
    
      x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A2,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:25
    
    
    
    
    
    Th25: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
    proof
    
      (
    cell (G,i,( 
    width G))) 
    = (( 
    v_strip (G,i)) 
    /\ ( 
    h_strip (G,( 
    width G)))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A1: ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = (( 
    Int ( 
    v_strip (G,i))) 
    /\ ( 
    Int ( 
    h_strip (G,( 
    width G))))) by 
    TOPS_1: 17;
    
      assume 1
    <= i & i 
    < ( 
    len G); 
    
      then
    
      
    
    A2: ( 
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    Th14;
    
      
    
      
    
    A3: ( 
    Int ( 
    h_strip (G,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    Th16;
    
      thus (
    Int ( 
    cell (G,i,( 
    width G)))) 
    c= { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A5: x 
    =  
    |[r1, s1]| and
    
        
    
    A6: ((G 
    * (i,1)) 
    `1 ) 
    < r1 & r1 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2;
    
        x
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A7: x 
    =  
    |[r2, s2]| and
    
        
    
    A8: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s2 by 
    A3;
    
        s1
    = s2 by 
    A5,
    A7,
    SPPOL_2: 1;
    
        hence thesis by
    A5,
    A6,
    A8;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s }; 
    
      then
    
      
    
    A9: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s; 
    
      then
    
      
    
    A10: x 
    in ( 
    Int ( 
    h_strip (G,( 
    width G)))) by 
    A3;
    
      x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A2,
    A9;
    
      hence thesis by
    A1,
    A10,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:26
    
    
    
    
    
    Th26: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i & i 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    <= j & j 
    < ( 
    width G); 
    
      
    
      
    
    A3: ( 
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A2,
    Th17;
    
      (
    cell (G,i,j)) 
    = (( 
    v_strip (G,i)) 
    /\ ( 
    h_strip (G,j))) by 
    GOBOARD5:def 3;
    
      then
    
      
    
    A4: ( 
    Int ( 
    cell (G,i,j))) 
    = (( 
    Int ( 
    v_strip (G,i))) 
    /\ ( 
    Int ( 
    h_strip (G,j)))) by 
    TOPS_1: 17;
    
      
    
      
    
    A5: ( 
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    A1,
    Th14;
    
      thus (
    Int ( 
    cell (G,i,j))) 
    c= { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in ( 
    Int ( 
    cell (G,i,j))); 
    
        then x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A4,
    XBOOLE_0:def 4;
    
        then
    
        consider r1, s1 such that
    
        
    
    A7: x 
    =  
    |[r1, s1]| and
    
        
    
    A8: ((G 
    * (i,1)) 
    `1 ) 
    < r1 & r1 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A5;
    
        x
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A4,
    A6,
    XBOOLE_0:def 4;
    
        then
    
        consider r2, s2 such that
    
        
    
    A9: x 
    =  
    |[r2, s2]| and
    
        
    
    A10: ((G 
    * (1,j)) 
    `2 ) 
    < s2 & s2 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A3;
    
        s1
    = s2 by 
    A7,
    A9,
    SPPOL_2: 1;
    
        hence thesis by
    A7,
    A8,
    A10;
    
      end;
    
      let x be
    object;
    
      assume x
    in { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) }; 
    
      then
    
      
    
    A11: ex r, s st x 
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
      then
    
      
    
    A12: x 
    in ( 
    Int ( 
    h_strip (G,j))) by 
    A3;
    
      x
    in ( 
    Int ( 
    v_strip (G,i))) by 
    A5,
    A11;
    
      hence thesis by
    A4,
    A12,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:27
    
    1
    <= j & j 
    <= ( 
    width G) & p 
    in ( 
    Int ( 
    h_strip (G,j))) implies (p 
    `2 ) 
    > ((G 
    * (1,j)) 
    `2 ) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    <= ( 
    width G) and 
    
      
    
    A3: p 
    in ( 
    Int ( 
    h_strip (G,j))); 
    
      per cases by
    A2,
    XXREAL_0: 1;
    
        suppose j
    = ( 
    width G); 
    
        then (
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s } by 
    Th16;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (1,j)) 
    `2 ) 
    < s by 
    A3;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
        suppose j
    < ( 
    width G); 
    
        then (
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    Th17;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A3;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
    end;
    
    theorem :: 
    
    GOBOARD6:28
    
    j
    < ( 
    width G) & p 
    in ( 
    Int ( 
    h_strip (G,j))) implies (p 
    `2 ) 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    
    proof
    
      assume that
    
      
    
    A1: j 
    < ( 
    width G) and 
    
      
    
    A2: p 
    in ( 
    Int ( 
    h_strip (G,j))); 
    
      per cases by
    NAT_1: 14;
    
        suppose j
    =  
    0 ; 
    
        then (
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : s
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    Th15;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (1,(j 
    + 1))) 
    `2 ) 
    > s by 
    A2;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
        suppose j
    >= 1; 
    
        then (
    Int ( 
    h_strip (G,j))) 
    = { 
    |[r, s]| : ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    Th17;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
    end;
    
    theorem :: 
    
    GOBOARD6:29
    
    1
    <= i & i 
    <= ( 
    len G) & p 
    in ( 
    Int ( 
    v_strip (G,i))) implies (p 
    `1 ) 
    > ((G 
    * (i,1)) 
    `1 ) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    <= ( 
    len G) and 
    
      
    
    A3: p 
    in ( 
    Int ( 
    v_strip (G,i))); 
    
      per cases by
    A2,
    XXREAL_0: 1;
    
        suppose i
    = ( 
    len G); 
    
        then (
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r } by 
    Th13;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r by 
    A3;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
        suppose i
    < ( 
    len G); 
    
        then (
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    A1,
    Th14;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A3;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
    end;
    
    theorem :: 
    
    GOBOARD6:30
    
    i
    < ( 
    len G) & p 
    in ( 
    Int ( 
    v_strip (G,i))) implies (p 
    `1 ) 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) 
    
    proof
    
      assume that
    
      
    
    A1: i 
    < ( 
    len G) and 
    
      
    
    A2: p 
    in ( 
    Int ( 
    v_strip (G,i))); 
    
      per cases by
    NAT_1: 14;
    
        suppose i
    =  
    0 ; 
    
        then (
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : r
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    Th12;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * ((i 
    + 1),1)) 
    `1 ) 
    > r by 
    A2;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
        suppose i
    >= 1; 
    
        then (
    Int ( 
    v_strip (G,i))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) } by 
    A1,
    Th14;
    
        then ex r, s st p
    =  
    |[r, s]| & ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2;
    
        hence thesis by
    EUCLID: 52;
    
      end;
    
    end;
    
    theorem :: 
    
    GOBOARD6:31
    
    
    
    
    
    Th31: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    in ( 
    Int ( 
    cell (G,i,j))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: (i 
    + 1) 
    <= ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: (j 
    + 1) 
    <= ( 
    width G); 
    
      
    
      
    
    A5: j 
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      set r1 = ((G
    * (i,j)) 
    `1 ), s1 = ((G 
    * (i,j)) 
    `2 ), r2 = ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ), s2 = ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 ); 
    
      
    
      
    
    A6: 1 
    <= (i 
    + 1) & 1 
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A7: ((G 
    * (1,(j 
    + 1))) 
    `2 ) 
    = s2 by 
    A2,
    A4,
    GOBOARD5: 1;
    
      i
    < ( 
    len G) & j 
    < ( 
    width G) by 
    A2,
    A4,
    NAT_1: 13;
    
      then
    
      
    
    A8: ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A3,
    Th26;
    
      (G
    * (i,j)) 
    =  
    |[r1, s1]| & (G
    * ((i 
    + 1),(j 
    + 1))) 
    =  
    |[r2, s2]| by
    EUCLID: 53;
    
      then ((G
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))) 
    =  
    |[(r1
    + r2), (s1 
    + s2)]| by 
    EUCLID: 56;
    
      then
    
      
    
    A9: ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    =  
    |[((1
    / 2) 
    * (r1 
    + r2)), ((1 
    / 2) 
    * (s1 
    + s2))]| by 
    EUCLID: 58;
    
      i
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A10: i 
    <= ( 
    len G) by 
    A2,
    XXREAL_0: 2;
    
      then
    
      
    
    A11: 1 
    <= ( 
    len G) by 
    A1,
    XXREAL_0: 2;
    
      j
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A12: j 
    <= ( 
    width G) by 
    A4,
    XXREAL_0: 2;
    
      then
    
      
    
    A13: 1 
    <= ( 
    width G) by 
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A14: ((G 
    * (i,1)) 
    `1 ) 
    = r1 by 
    A1,
    A3,
    A10,
    A12,
    GOBOARD5: 2;
    
      ((G
    * (1,j)) 
    `2 ) 
    = s1 by 
    A1,
    A3,
    A10,
    A12,
    GOBOARD5: 1;
    
      then
    
      
    
    A15: s1 
    < s2 by 
    A3,
    A4,
    A7,
    A11,
    A5,
    GOBOARD5: 4;
    
      then (s1
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (s1 
    + s1)) 
    < ((1 
    / 2) 
    * (s1 
    + s2)) by 
    XREAL_1: 68;
    
      then
    
      
    
    A16: ((G 
    * (1,j)) 
    `2 ) 
    < ((1 
    / 2) 
    * (s1 
    + s2)) by 
    A1,
    A3,
    A10,
    A12,
    GOBOARD5: 1;
    
      
    
      
    
    A17: i 
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      ((G
    * ((i 
    + 1),1)) 
    `1 ) 
    = r2 by 
    A2,
    A4,
    A6,
    GOBOARD5: 2;
    
      then
    
      
    
    A18: r1 
    < r2 by 
    A1,
    A2,
    A14,
    A13,
    A17,
    GOBOARD5: 3;
    
      then (r1
    + r2) 
    < (r2 
    + r2) by 
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (r1 
    + r2)) 
    < ((1 
    / 2) 
    * (r2 
    + r2)) by 
    XREAL_1: 68;
    
      then
    
      
    
    A19: ((1 
    / 2) 
    * (r1 
    + r2)) 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2,
    A4,
    A6,
    GOBOARD5: 2;
    
      (s1
    + s2) 
    < (s2 
    + s2) by 
    A15,
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (s1 
    + s2)) 
    < ((1 
    / 2) 
    * (s2 
    + s2)) by 
    XREAL_1: 68;
    
      then
    
      
    
    A20: ((1 
    / 2) 
    * (s1 
    + s2)) 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2,
    A4,
    A6,
    GOBOARD5: 1;
    
      (r1
    + r1) 
    < (r1 
    + r2) by 
    A18,
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (r1 
    + r1)) 
    < ((1 
    / 2) 
    * (r1 
    + r2)) by 
    XREAL_1: 68;
    
      hence thesis by
    A9,
    A14,
    A19,
    A16,
    A20,
    A8;
    
    end;
    
    theorem :: 
    
    GOBOARD6:32
    
    
    
    
    
    Th32: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G) implies (((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|) 
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: (i 
    + 1) 
    <= ( 
    len G); 
    
      set r1 = ((G
    * (i,( 
    width G))) 
    `1 ), s1 = ((G 
    * (i,( 
    width G))) 
    `2 ), r2 = ((G 
    * ((i 
    + 1),( 
    width G))) 
    `1 ); 
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A3: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      i
    < ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    A1,
    Th25;
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A5: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A6: r1 
    < r2 by 
    A1,
    A2,
    A5,
    GOBOARD5: 3;
    
      then (r1
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
      then
    
      
    
    A7: ((1 
    / 2) 
    * (r1 
    + r1)) 
    < ((1 
    / 2) 
    * (r1 
    + r2)) by 
    XREAL_1: 68;
    
      
    
      
    
    A8: i 
    < ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A9: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    = s1 by 
    A1,
    A3,
    GOBOARD5: 1;
    
      then
    
      
    
    A10: ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < (s1 
    + 1) by 
    XREAL_1: 29;
    
      
    
      
    
    A11: 1 
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then ((G
    * (1,( 
    width G))) 
    `2 ) 
    = ((G 
    * ((i 
    + 1),( 
    width G))) 
    `2 ) by 
    A2,
    A3,
    GOBOARD5: 1;
    
      then (G
    * (i,( 
    width G))) 
    =  
    |[r1, s1]| & (G
    * ((i 
    + 1),( 
    width G))) 
    =  
    |[r2, s1]| by
    A9,
    EUCLID: 53;
    
      then ((1
    / 2) 
    * (s1 
    + s1)) 
    = s1 & ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))) 
    =  
    |[(r1
    + r2), (s1 
    + s1)]| by 
    EUCLID: 56;
    
      then ((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    =  
    |[((1
    / 2) 
    * (r1 
    + r2)), s1]| by 
    EUCLID: 58;
    
      then
    
      
    
    A12: (((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|) 
    =  
    |[(((1
    / 2) 
    * (r1 
    + r2)) 
    +  
    0 ), (s1 
    + 1)]| by 
    EUCLID: 56;
    
      (r1
    + r2) 
    < (r2 
    + r2) by 
    A6,
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (r1 
    + r2)) 
    < ((1 
    / 2) 
    * (r2 
    + r2)) by 
    XREAL_1: 68;
    
      then
    
      
    
    A13: ((1 
    / 2) 
    * (r1 
    + r2)) 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A2,
    A11,
    A3,
    GOBOARD5: 2;
    
      ((G
    * (i,1)) 
    `1 ) 
    = r1 by 
    A1,
    A8,
    A3,
    GOBOARD5: 2;
    
      hence thesis by
    A12,
    A7,
    A13,
    A10,
    A4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:33
    
    
    
    
    
    Th33: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G) implies (((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|) 
    in ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: (i 
    + 1) 
    <= ( 
    len G); 
    
      set r1 = ((G
    * (i,1)) 
    `1 ), s1 = ((G 
    * (i,1)) 
    `2 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A3: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A4: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A5: r1 
    < r2 by 
    A1,
    A2,
    A4,
    GOBOARD5: 3;
    
      then (r1
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
      then
    
      
    
    A6: ((1 
    / 2) 
    * (r1 
    + r1)) 
    < ((1 
    / 2) 
    * (r1 
    + r2)) by 
    XREAL_1: 68;
    
      i
    < ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A7: ((G 
    * (1,1)) 
    `2 ) 
    = s1 by 
    A1,
    A3,
    GOBOARD5: 1;
    
      then s1
    < (((G 
    * (1,1)) 
    `2 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A8: (s1 
    - 1) 
    < ((G 
    * (1,1)) 
    `2 ) by 
    XREAL_1: 19;
    
      1
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then ((G
    * (1,1)) 
    `2 ) 
    = ((G 
    * ((i 
    + 1),1)) 
    `2 ) by 
    A2,
    A3,
    GOBOARD5: 1;
    
      then (G
    * (i,1)) 
    =  
    |[r1, s1]| & (G
    * ((i 
    + 1),1)) 
    =  
    |[r2, s1]| by
    A7,
    EUCLID: 53;
    
      then ((1
    / 2) 
    * (s1 
    + s1)) 
    = s1 & ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))) 
    =  
    |[(r1
    + r2), (s1 
    + s1)]| by 
    EUCLID: 56;
    
      then ((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    =  
    |[((1
    / 2) 
    * (r1 
    + r2)), s1]| by 
    EUCLID: 58;
    
      
    
      then
    
      
    
    A9: (((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|) 
    =  
    |[(((1
    / 2) 
    * (r1 
    + r2)) 
    -  
    0 ), (s1 
    - 1)]| by 
    EUCLID: 62
    
      .=
    |[((1
    / 2) 
    * (r1 
    + r2)), (s1 
    - 1)]|; 
    
      (r1
    + r2) 
    < (r2 
    + r2) by 
    A5,
    XREAL_1: 6;
    
      then
    
      
    
    A10: ((1 
    / 2) 
    * (r1 
    + r2)) 
    < ((1 
    / 2) 
    * (r2 
    + r2)) by 
    XREAL_1: 68;
    
      i
    < ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then (
    Int ( 
    cell (G,i, 
    0 ))) 
    = { 
    |[r, s]| : ((G
    * (i,1)) 
    `1 ) 
    < r & r 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    A1,
    Th24;
    
      hence thesis by
    A9,
    A6,
    A10,
    A8;
    
    end;
    
    theorem :: 
    
    GOBOARD6:34
    
    
    
    
    
    Th34: 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies (((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|) 
    in ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: (j 
    + 1) 
    <= ( 
    width G); 
    
      set s1 = ((G
    * (( 
    len G),j)) 
    `2 ), r1 = ((G 
    * (( 
    len G),j)) 
    `1 ), s2 = ((G 
    * (( 
    len G),(j 
    + 1))) 
    `2 ); 
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A3: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      j
    < ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    Th23;
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A5: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A6: s1 
    < s2 by 
    A1,
    A2,
    A5,
    GOBOARD5: 4;
    
      then (s1
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
      then
    
      
    
    A7: ((1 
    / 2) 
    * (s1 
    + s1)) 
    < ((1 
    / 2) 
    * (s1 
    + s2)) by 
    XREAL_1: 68;
    
      
    
      
    
    A8: j 
    < ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A9: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    = r1 by 
    A1,
    A3,
    GOBOARD5: 2;
    
      then
    
      
    
    A10: ((G 
    * (( 
    len G),1)) 
    `1 ) 
    < (r1 
    + 1) by 
    XREAL_1: 29;
    
      
    
      
    
    A11: 1 
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then ((G
    * (( 
    len G),1)) 
    `1 ) 
    = ((G 
    * (( 
    len G),(j 
    + 1))) 
    `1 ) by 
    A2,
    A3,
    GOBOARD5: 2;
    
      then (G
    * (( 
    len G),j)) 
    =  
    |[r1, s1]| & (G
    * (( 
    len G),(j 
    + 1))) 
    =  
    |[r1, s2]| by
    A9,
    EUCLID: 53;
    
      then ((1
    / 2) 
    * (r1 
    + r1)) 
    = r1 & ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))) 
    =  
    |[(r1
    + r1), (s1 
    + s2)]| by 
    EUCLID: 56;
    
      then ((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    =  
    |[r1, ((1
    / 2) 
    * (s1 
    + s2))]| by 
    EUCLID: 58;
    
      then
    
      
    
    A12: (((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|) 
    =  
    |[(r1
    + 1), (((1 
    / 2) 
    * (s1 
    + s2)) 
    +  
    0 )]| by 
    EUCLID: 56;
    
      (s1
    + s2) 
    < (s2 
    + s2) by 
    A6,
    XREAL_1: 6;
    
      then ((1
    / 2) 
    * (s1 
    + s2)) 
    < ((1 
    / 2) 
    * (s2 
    + s2)) by 
    XREAL_1: 68;
    
      then
    
      
    
    A13: ((1 
    / 2) 
    * (s1 
    + s2)) 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A2,
    A11,
    A3,
    GOBOARD5: 1;
    
      ((G
    * (1,j)) 
    `2 ) 
    = s1 by 
    A1,
    A8,
    A3,
    GOBOARD5: 1;
    
      hence thesis by
    A12,
    A7,
    A13,
    A10,
    A4;
    
    end;
    
    theorem :: 
    
    GOBOARD6:35
    
    
    
    
    
    Th35: 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies (((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|) 
    in ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: (j 
    + 1) 
    <= ( 
    width G); 
    
      set s1 = ((G
    * (1,j)) 
    `2 ), r1 = ((G 
    * (1,j)) 
    `1 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A3: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A4: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A5: s1 
    < s2 by 
    A1,
    A2,
    A4,
    GOBOARD5: 4;
    
      then (s1
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
      then
    
      
    
    A6: ((1 
    / 2) 
    * (s1 
    + s1)) 
    < ((1 
    / 2) 
    * (s1 
    + s2)) by 
    XREAL_1: 68;
    
      j
    < ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A7: ((G 
    * (1,1)) 
    `1 ) 
    = r1 by 
    A1,
    A3,
    GOBOARD5: 2;
    
      then r1
    < (((G 
    * (1,1)) 
    `1 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A8: (r1 
    - 1) 
    < ((G 
    * (1,1)) 
    `1 ) by 
    XREAL_1: 19;
    
      1
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then ((G
    * (1,1)) 
    `1 ) 
    = ((G 
    * (1,(j 
    + 1))) 
    `1 ) by 
    A2,
    A3,
    GOBOARD5: 2;
    
      then (G
    * (1,j)) 
    =  
    |[r1, s1]| & (G
    * (1,(j 
    + 1))) 
    =  
    |[r1, s2]| by
    A7,
    EUCLID: 53;
    
      then ((1
    / 2) 
    * (r1 
    + r1)) 
    = r1 & ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))) 
    =  
    |[(r1
    + r1), (s1 
    + s2)]| by 
    EUCLID: 56;
    
      then ((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    =  
    |[r1, ((1
    / 2) 
    * (s1 
    + s2))]| by 
    EUCLID: 58;
    
      
    
      then
    
      
    
    A9: (((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|) 
    =  
    |[(r1
    - 1), (((1 
    / 2) 
    * (s1 
    + s2)) 
    -  
    0 )]| by 
    EUCLID: 62
    
      .=
    |[(r1
    - 1), ((1 
    / 2) 
    * (s1 
    + s2))]|; 
    
      (s1
    + s2) 
    < (s2 
    + s2) by 
    A5,
    XREAL_1: 6;
    
      then
    
      
    
    A10: ((1 
    / 2) 
    * (s1 
    + s2)) 
    < ((1 
    / 2) 
    * (s2 
    + s2)) by 
    XREAL_1: 68;
    
      j
    < ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then (
    Int ( 
    cell (G, 
    0 ,j))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s & s 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    Th20;
    
      hence thesis by
    A9,
    A6,
    A10,
    A8;
    
    end;
    
    theorem :: 
    
    GOBOARD6:36
    
    
    
    
    
    Th36: ((G 
    * (1,1)) 
    -  
    |[1, 1]|)
    in ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    
    proof
    
      set s1 = ((G
    * (1,1)) 
    `2 ), r1 = ((G 
    * (1,1)) 
    `1 ); 
    
      (G
    * (1,1)) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
      then
    
      
    
    A1: ((G 
    * (1,1)) 
    -  
    |[1, 1]|)
    =  
    |[(r1
    - 1), (s1 
    - 1)]| by 
    EUCLID: 62;
    
      s1
    < (((G 
    * (1,1)) 
    `2 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A2: (s1 
    - 1) 
    < ((G 
    * (1,1)) 
    `2 ) by 
    XREAL_1: 19;
    
      r1
    < (((G 
    * (1,1)) 
    `1 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A3: (r1 
    - 1) 
    < ((G 
    * (1,1)) 
    `1 ) by 
    XREAL_1: 19;
    
      (
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & s 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th18;
    
      hence thesis by
    A1,
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:37
    
    
    
    
    
    Th37: ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|)
    in ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    
    proof
    
      set s1 = ((G
    * (( 
    len G),( 
    width G))) 
    `2 ), r1 = ((G 
    * (( 
    len G),( 
    width G))) 
    `1 ); 
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A1: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A2: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
      then ((G
    * (( 
    len G),1)) 
    `1 ) 
    = r1 by 
    A1,
    GOBOARD5: 2;
    
      then
    
      
    
    A3: (r1 
    + 1) 
    > ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    XREAL_1: 29;
    
      (G
    * (( 
    len G),( 
    width G))) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
      then
    
      
    
    A4: ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|)
    =  
    |[(r1
    + 1), (s1 
    + 1)]| by 
    EUCLID: 56;
    
      ((G
    * (1,( 
    width G))) 
    `2 ) 
    = s1 by 
    A2,
    A1,
    GOBOARD5: 1;
    
      then
    
      
    
    A5: (s1 
    + 1) 
    > ((G 
    * (1,( 
    width G))) 
    `2 ) by 
    XREAL_1: 29;
    
      (
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    Th22;
    
      hence thesis by
    A4,
    A5,
    A3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:38
    
    
    
    
    
    Th38: ((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|) 
    in ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    
    proof
    
      set s1 = ((G
    * (1,( 
    width G))) 
    `2 ), r1 = ((G 
    * (1,( 
    width G))) 
    `1 ); 
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A1: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    width G) by 
    NAT_1: 14;
    
      then ((G
    * (1,1)) 
    `1 ) 
    = r1 by 
    A1,
    GOBOARD5: 2;
    
      then r1
    < (((G 
    * (1,1)) 
    `1 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A2: (s1 
    + 1) 
    > ((G 
    * (1,( 
    width G))) 
    `2 ) & (r1 
    - 1) 
    < ((G 
    * (1,1)) 
    `1 ) by 
    XREAL_1: 19,
    XREAL_1: 29;
    
      (G
    * (1,( 
    width G))) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
      
    
      then
    
      
    
    A3: ((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|) 
    =  
    |[(r1
    + ( 
    - 1)), (s1 
    + 1)]| by 
    EUCLID: 56
    
      .=
    |[(r1
    - 1), (s1 
    + 1)]|; 
    
      (
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    = { 
    |[r, s]| : r
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s } by 
    Th19;
    
      hence thesis by
    A3,
    A2;
    
    end;
    
    theorem :: 
    
    GOBOARD6:39
    
    
    
    
    
    Th39: ((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|) 
    in ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    
    proof
    
      set s1 = ((G
    * (( 
    len G),1)) 
    `2 ), r1 = ((G 
    * (( 
    len G),1)) 
    `1 ); 
    
      
    
      
    
    A1: (r1 
    + 1) 
    > ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    XREAL_1: 29;
    
      (
    len G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then
    
      
    
    A2: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
      (
    width G) 
    <>  
    0 by 
    MATRIX_0:def 10;
    
      then 1
    <= ( 
    width G) by 
    NAT_1: 14;
    
      then ((G
    * (1,1)) 
    `2 ) 
    = s1 by 
    A2,
    GOBOARD5: 1;
    
      then s1
    < (((G 
    * (1,1)) 
    `2 ) 
    + 1) by 
    XREAL_1: 29;
    
      then
    
      
    
    A3: (s1 
    - 1) 
    < ((G 
    * (1,1)) 
    `2 ) by 
    XREAL_1: 19;
    
      (G
    * (( 
    len G),1)) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
      
    
      then
    
      
    
    A4: ((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|) 
    =  
    |[(r1
    + 1), (s1 
    + ( 
    - 1))]| by 
    EUCLID: 56
    
      .=
    |[(r1
    + 1), (s1 
    - 1)]|; 
    
      (
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    = { 
    |[r, s]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r & s 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th21;
    
      hence thesis by
    A4,
    A3,
    A1;
    
    end;
    
    theorem :: 
    
    GOBOARD6:40
    
    
    
    
    
    Th40: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))))) 
    c= (( 
    Int ( 
    cell (G,i,j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A6: p 
    = (((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))))) and 
    
      
    
    A7: 
    0  
    <= r and 
    
      
    
    A8: r 
    <= 1 by 
    A5;
    
      now
    
        per cases by
    A8,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))))) by 
    A6,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A9: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r1 = ((G
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A10: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (j 
    + 1) 
    <= ( 
    width G) by 
    A4,
    NAT_1: 13;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A13: s1 
    < s2 by 
    A3,
    A12,
    A11,
    GOBOARD5: 4;
    
          then
    
          
    
    A14: (s1 
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s1 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          (1
    - r) 
    >  
    0 by 
    A9,
    XREAL_1: 50;
    
          then
    
          
    
    A16: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A14,
    XREAL_1: 68;
    
          then
    
          
    
    A17: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) by 
    A15,
    A10,
    XREAL_1: 8;
    
          
    
          
    
    A18: (s1 
    + s2) 
    < (s2 
    + s2) by 
    A13,
    XREAL_1: 6;
    
          then
    
          
    
    A19: (s3 
    * (s1 
    + s2)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A20: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A21: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A22: ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r9, s9]| : r1
    < r9 & r9 
    < r2 & s1 
    < s9 & s9 
    < s2 } by 
    A1,
    A2,
    A3,
    A4,
    Th26;
    
          
    
          
    
    A23: 1 
    <= (j 
    + 1) by 
    A3,
    NAT_1: 13;
    
          
    
          
    
    A24: (G 
    * (i,(j 
    + 1))) 
    =  
    |[((G
    * (i,(j 
    + 1))) 
    `1 ), ((G 
    * (i,(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,(j 
    + 1))) 
    `2 )]| by 
    A1,
    A2,
    A23,
    A12,
    GOBOARD5: 2
    
          .=
    |[r1, s2]| by
    A1,
    A2,
    A23,
    A12,
    GOBOARD5: 1;
    
          
    
          
    
    A25: ((r3 
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A16,
    A18,
    XREAL_1: 68;
    
          then
    
          
    
    A26: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) 
    < s2 by 
    A19,
    A25,
    XREAL_1: 8;
    
          
    
          
    
    A27: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A28: r1 
    < r2 by 
    A1,
    A27,
    A20,
    GOBOARD5: 3;
    
          then (r1
    + r1) 
    < (r2 
    + r2) by 
    XREAL_1: 8;
    
          then
    
          
    
    A29: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A28,
    XREAL_1: 6;
    
          then
    
          
    
    A30: (r3 
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A16,
    XREAL_1: 68;
    
          ((r3
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          then
    
          
    
    A31: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r1))) 
    < r2 by 
    A30,
    A29,
    XREAL_1: 8;
    
          
    
          
    
    A32: (G 
    * (i,j)) 
    =  
    |[((G
    * (i,j)) 
    `1 ), ((G 
    * (i,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,j)) 
    `2 )]| by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 1;
    
          
    
          
    
    A33: (G 
    * ((i 
    + 1),(j 
    + 1))) 
    =  
    |[((G
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ), ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    A23,
    A12,
    A21,
    A27,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A23,
    A12,
    A21,
    A27,
    GOBOARD5: 1;
    
          
    
          
    
    A34: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          (r1
    + r1) 
    < (r1 
    + r2) by 
    A28,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A16,
    XREAL_1: 68;
    
          then
    
          
    
    A35: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r1))) by 
    A34,
    XREAL_1: 6;
    
          p
    = ((r3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1))))))) by 
    A6,
    RLVECT_1:def 7
    
          .= ((r3
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (s3 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1)))))) by 
    RLVECT_1:def 7
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    * ((G 
    * (i,j)) 
    + (G 
    * (i,(j 
    + 1)))))) by 
    A32,
    A33,
    EUCLID: 56
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    *  
    |[(r1
    + r1), (s1 
    + s2)]|)) by 
    A32,
    A24,
    EUCLID: 56
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    + (s3 
    *  
    |[(r1
    + r1), (s1 
    + s2)]|)) by 
    EUCLID: 58
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(s3
    * (r1 
    + r1)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 58
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r1))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,j))) by 
    A35,
    A31,
    A17,
    A26,
    A22;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:41
    
    
    
    
    
    Th41: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) 
    c= (( 
    Int ( 
    cell (G,i,j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A6: p 
    = (((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) and 
    
      
    
    A7: 
    0  
    <= r and 
    
      
    
    A8: r 
    <= 1 by 
    A5;
    
      now
    
        per cases by
    A8,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) by 
    A6,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A9: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r1 = ((G
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A10: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A13: r1 
    < r2 by 
    A1,
    A12,
    A11,
    GOBOARD5: 3;
    
          then
    
          
    
    A14: (r1 
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r1 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          (1
    - r) 
    >  
    0 by 
    A9,
    XREAL_1: 50;
    
          then
    
          
    
    A16: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A14,
    XREAL_1: 68;
    
          then
    
          
    
    A17: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) by 
    A15,
    A10,
    XREAL_1: 8;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A18: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A19: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 8;
    
          then
    
          
    
    A20: (s3 
    * (r1 
    + r2)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          
    
          
    
    A21: (j 
    + 1) 
    <= ( 
    width G) by 
    A4,
    NAT_1: 13;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 6;
    
          then
    
          
    
    A22: (r3 
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A16,
    XREAL_1: 68;
    
          ((r3
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          then
    
          
    
    A23: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) 
    < r2 by 
    A22,
    A20,
    XREAL_1: 8;
    
          
    
          
    
    A24: ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r9, s9]| : r1
    < r9 & r9 
    < r2 & s1 
    < s9 & s9 
    < s2 } by 
    A1,
    A2,
    A3,
    A4,
    Th26;
    
          
    
          
    
    A25: 1 
    <= (j 
    + 1) by 
    A3,
    NAT_1: 13;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A26: s1 
    < s2 by 
    A3,
    A21,
    A18,
    GOBOARD5: 4;
    
          then
    
          
    
    A27: (s1 
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          
    
          
    
    A28: (G 
    * ((i 
    + 1),(j 
    + 1))) 
    =  
    |[((G
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ), ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    A25,
    A21,
    A19,
    A12,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A25,
    A21,
    A19,
    A12,
    GOBOARD5: 1;
    
          (s1
    + s2) 
    < (s2 
    + s2) by 
    A26,
    XREAL_1: 6;
    
          then (s1
    + s1) 
    < (s2 
    + s2) by 
    A27,
    XXREAL_0: 2;
    
          then
    
          
    
    A29: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          
    
          
    
    A30: (G 
    * (i,j)) 
    =  
    |[((G
    * (i,j)) 
    `1 ), ((G 
    * (i,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,j)) 
    `2 )]| by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 1;
    
          
    
          
    
    A31: ((r3 
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          
    
          
    
    A32: (G 
    * (i,(j 
    + 1))) 
    =  
    |[((G
    * (i,(j 
    + 1))) 
    `1 ), ((G 
    * (i,(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,(j 
    + 1))) 
    `2 )]| by 
    A1,
    A2,
    A25,
    A21,
    GOBOARD5: 2
    
          .=
    |[r1, s2]| by
    A1,
    A2,
    A25,
    A21,
    GOBOARD5: 1;
    
          
    
          
    
    A33: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          (s1
    + s2) 
    < (s2 
    + s2) by 
    A26,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A16,
    XREAL_1: 68;
    
          then
    
          
    
    A34: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    < s2 by 
    A31,
    XREAL_1: 8;
    
          (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A16,
    A27,
    XREAL_1: 68;
    
          then
    
          
    
    A35: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) by 
    A29,
    A33,
    XREAL_1: 8;
    
          p
    = ((r3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) by 
    A6,
    RLVECT_1:def 7
    
          .= ((r3
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (s3 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    RLVECT_1:def 7
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    A30,
    A28,
    EUCLID: 56
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    A28,
    A32,
    EUCLID: 56
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    EUCLID: 58
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s2 
    + s2))]|) by 
    EUCLID: 58
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s2 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,j))) by 
    A17,
    A23,
    A35,
    A34,
    A24;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:42
    
    
    
    
    
    Th42: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) 
    c= (( 
    Int ( 
    cell (G,i,j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A6: p 
    = (((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) and 
    
      
    
    A7: 
    0  
    <= r and 
    
      
    
    A8: r 
    <= 1 by 
    A5;
    
      now
    
        per cases by
    A8,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) by 
    A6,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A9: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r1 = ((G
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A10: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A13: r1 
    < r2 by 
    A1,
    A12,
    A11,
    GOBOARD5: 3;
    
          then
    
          
    
    A14: (r1 
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 6;
    
          then (r1
    + r1) 
    < (r2 
    + r2) by 
    A14,
    XXREAL_0: 2;
    
          then
    
          
    
    A15: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          (1
    - r) 
    >  
    0 by 
    A9,
    XREAL_1: 50;
    
          then
    
          
    
    A16: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A14,
    XREAL_1: 68;
    
          then
    
          
    
    A17: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) by 
    A15,
    A10,
    XREAL_1: 8;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A18: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A19: 1 
    <= (j 
    + 1) by 
    A3,
    NAT_1: 13;
    
          
    
          
    
    A20: ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r9, s9]| : r1
    < r9 & r9 
    < r2 & s1 
    < s9 & s9 
    < s2 } by 
    A1,
    A2,
    A3,
    A4,
    Th26;
    
          
    
          
    
    A21: ((r3 
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          
    
          
    
    A22: (G 
    * (i,j)) 
    =  
    |[((G
    * (i,j)) 
    `1 ), ((G 
    * (i,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,j)) 
    `2 )]| by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 1;
    
          
    
          
    
    A23: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          
    
          
    
    A24: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A25: (G 
    * ((i 
    + 1),j)) 
    =  
    |[((G
    * ((i 
    + 1),j)) 
    `1 ), ((G 
    * ((i 
    + 1),j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),j)) 
    `2 )]| by 
    A3,
    A4,
    A24,
    A12,
    GOBOARD5: 2
    
          .=
    |[r2, s1]| by
    A3,
    A4,
    A24,
    A12,
    GOBOARD5: 1;
    
          
    
          
    
    A26: ((r3 
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A16,
    XREAL_1: 68;
    
          then
    
          
    
    A27: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    < r2 by 
    A26,
    XREAL_1: 8;
    
          
    
          
    
    A28: (j 
    + 1) 
    <= ( 
    width G) by 
    A4,
    NAT_1: 13;
    
          
    
          
    
    A29: (G 
    * ((i 
    + 1),(j 
    + 1))) 
    =  
    |[((G
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ), ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    A19,
    A28,
    A24,
    A12,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A19,
    A28,
    A24,
    A12,
    GOBOARD5: 1;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A30: s1 
    < s2 by 
    A3,
    A28,
    A18,
    GOBOARD5: 4;
    
          then
    
          
    
    A31: (s1 
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A32: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s1 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A16,
    A31,
    XREAL_1: 68;
    
          then
    
          
    
    A33: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) by 
    A32,
    A23,
    XREAL_1: 8;
    
          
    
          
    
    A34: (s1 
    + s2) 
    < (s2 
    + s2) by 
    A30,
    XREAL_1: 6;
    
          then
    
          
    
    A35: (s3 
    * (s1 
    + s2)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A16,
    A34,
    XREAL_1: 68;
    
          then
    
          
    
    A36: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) 
    < s2 by 
    A35,
    A21,
    XREAL_1: 8;
    
          p
    = ((r3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))))) by 
    A6,
    RLVECT_1:def 7
    
          .= ((r3
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (s3 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    RLVECT_1:def 7
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) by 
    A22,
    A29,
    EUCLID: 56
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    A29,
    A25,
    EUCLID: 56
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    EUCLID: 58
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(s3
    * (r2 
    + r2)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 58
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r2 
    + r2))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,j))) by 
    A17,
    A27,
    A33,
    A36,
    A20;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:43
    
    
    
    
    
    Th43: 1 
    <= i & i 
    < ( 
    len G) & 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))))) 
    c= (( 
    Int ( 
    cell (G,i,j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A6: p 
    = (((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))))) and 
    
      
    
    A7: 
    0  
    <= r and 
    
      
    
    A8: r 
    <= 1 by 
    A5;
    
      now
    
        per cases by
    A8,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))))) by 
    A6,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A9: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r1 = ((G
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A10: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A13: r1 
    < r2 by 
    A1,
    A12,
    A11,
    GOBOARD5: 3;
    
          then
    
          
    
    A14: (r1 
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r1 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 8;
    
          then
    
          
    
    A16: (s3 
    * (r1 
    + r2)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A7,
    XREAL_1: 64;
    
          
    
          
    
    A17: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          (1
    - r) 
    >  
    0 by 
    A9,
    XREAL_1: 50;
    
          then
    
          
    
    A18: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A14,
    XREAL_1: 68;
    
          then
    
          
    
    A19: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) by 
    A15,
    A10,
    XREAL_1: 8;
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A13,
    XREAL_1: 6;
    
          then
    
          
    
    A20: (r3 
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A18,
    XREAL_1: 68;
    
          ((r3
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          then
    
          
    
    A21: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) 
    < r2 by 
    A20,
    A16,
    XREAL_1: 8;
    
          
    
          
    
    A22: ( 
    Int ( 
    cell (G,i,j))) 
    = { 
    |[r9, s9]| : r1
    < r9 & r9 
    < r2 & s1 
    < s9 & s9 
    < s2 } by 
    A1,
    A2,
    A3,
    A4,
    Th26;
    
          
    
          
    
    A23: (j 
    + 1) 
    <= ( 
    width G) by 
    A4,
    NAT_1: 13;
    
          
    
          
    
    A24: (G 
    * ((i 
    + 1),j)) 
    =  
    |[((G
    * ((i 
    + 1),j)) 
    `1 ), ((G 
    * ((i 
    + 1),j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),j)) 
    `2 )]| by 
    A3,
    A4,
    A17,
    A12,
    GOBOARD5: 2
    
          .=
    |[r2, s1]| by
    A3,
    A4,
    A17,
    A12,
    GOBOARD5: 1;
    
          
    
          
    
    A25: 1 
    <= (j 
    + 1) by 
    A3,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A26: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A27: (G 
    * (i,j)) 
    =  
    |[((G
    * (i,j)) 
    `1 ), ((G 
    * (i,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (i,j)) 
    `2 )]| by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 1;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A28: s1 
    < s2 by 
    A3,
    A23,
    A26,
    GOBOARD5: 4;
    
          then (s1
    + s2) 
    < (s2 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A29: (r3 
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A18,
    XREAL_1: 68;
    
          
    
          
    
    A30: (G 
    * ((i 
    + 1),(j 
    + 1))) 
    =  
    |[((G
    * ((i 
    + 1),(j 
    + 1))) 
    `1 ), ((G 
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * ((i 
    + 1),(j 
    + 1))) 
    `2 )]| by 
    A25,
    A23,
    A17,
    A12,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A25,
    A23,
    A17,
    A12,
    GOBOARD5: 1;
    
          
    
          
    
    A31: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          
    
          
    
    A32: (s1 
    + s1) 
    < (s1 
    + s2) by 
    A28,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A18,
    XREAL_1: 68;
    
          then
    
          
    
    A33: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s1))) by 
    A31,
    XREAL_1: 8;
    
          (s1
    + s2) 
    < (s2 
    + s2) by 
    A28,
    XREAL_1: 6;
    
          then (s1
    + s1) 
    < (s2 
    + s2) by 
    A32,
    XXREAL_0: 2;
    
          then
    
          
    
    A34: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A7,
    XREAL_1: 64;
    
          ((r3
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          then
    
          
    
    A35: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s1))) 
    < s2 by 
    A29,
    A34,
    XREAL_1: 8;
    
          p
    = ((r3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j)))))) by 
    A6,
    RLVECT_1:def 7
    
          .= ((r3
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))) 
    + (s3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j))))) by 
    RLVECT_1:def 7
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),j))))) by 
    A27,
    A30,
    EUCLID: 56
    
          .= ((r3
    *  
    |[(r1
    + r2), (s1 
    + s2)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s1 
    + s1)]|)) by 
    A27,
    A24,
    EUCLID: 56
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    + (s3 
    *  
    |[(r1
    + r2), (s1 
    + s1)]|)) by 
    EUCLID: 58
    
          .= (
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s1 
    + s1))]|) by 
    EUCLID: 58
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s1)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,j))) by 
    A19,
    A21,
    A33,
    A35,
    A22;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:44
    
    
    
    
    
    Th44: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) 
    c= (( 
    Int ( 
    cell (G, 
    0 ,j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r2 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A8: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          
    
          
    
    A9: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A10: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: s1 
    < s2 by 
    A1,
    A9,
    A10,
    GOBOARD5: 4;
    
          then
    
          
    
    A12: (s1 
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s1 
    + s2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A14: (1 
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A15: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A12,
    XREAL_1: 68;
    
          then
    
          
    
    A16: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) by 
    A13,
    A8,
    XREAL_1: 8;
    
          r2
    < (r2 
    + (1 
    - r)) by 
    A14,
    XREAL_1: 29;
    
          then
    
          
    
    A17: (r2 
    - (1 
    - r)) 
    < r2 by 
    XREAL_1: 19;
    
          
    
          
    
    A18: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A19: (G 
    * (1,(j 
    + 1))) 
    =  
    |[((G
    * (1,(j 
    + 1))) 
    `1 ), ((G 
    * (1,(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s2]| by
    A18,
    A9,
    A10,
    GOBOARD5: 2;
    
          
    
          
    
    A20: (s1 
    + s2) 
    < (s2 
    + s2) by 
    A11,
    XREAL_1: 6;
    
          then
    
          
    
    A21: (s3 
    * (s1 
    + s2)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A22: ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th20;
    
          
    
          
    
    A23: ((r3 
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A15,
    A20,
    XREAL_1: 68;
    
          then
    
          
    
    A24: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) 
    < s2 by 
    A21,
    A23,
    XREAL_1: 8;
    
          
    
          
    
    A25: (G 
    * (1,j)) 
    =  
    |[((G
    * (1,j)) 
    `1 ), ((G 
    * (1,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A10,
    GOBOARD5: 2;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))))) by 
    EUCLID: 58
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) by 
    A19,
    A25,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    A19,
    A25,
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    EUCLID: 58
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    -  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[(s3
    * (r2 
    + r2)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    - (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    -  
    0 )]| 
    +  
    |[(s3
    * (r2 
    + r2)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 62
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    - (1 
    - r)) 
    + (s3 
    * (r2 
    + r2))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 ,j))) by 
    A17,
    A16,
    A24,
    A22;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:45
    
    
    
    
    
    Th45: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G),j))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set r2 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A8: ((r3 
    * (s1 
    + s1)) 
    + (s3 
    * (s1 
    + s1))) 
    = s1; 
    
          
    
          
    
    A9: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A10: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: s1 
    < s2 by 
    A1,
    A9,
    A10,
    GOBOARD5: 4;
    
          then
    
          
    
    A12: (s1 
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (s3 
    * (s1 
    + s1)) 
    <= (s3 
    * (s1 
    + s2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A14: (1 
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A15: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A12,
    XREAL_1: 68;
    
          then
    
          
    
    A16: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) by 
    A13,
    A8,
    XREAL_1: 8;
    
          
    
          
    
    A17: (r2 
    + (1 
    - r)) 
    > r2 by 
    A14,
    XREAL_1: 29;
    
          
    
          
    
    A18: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A19: (s1 
    + s2) 
    < (s2 
    + s2) by 
    A11,
    XREAL_1: 6;
    
          then
    
          
    
    A20: (s3 
    * (s1 
    + s2)) 
    <= (s3 
    * (s2 
    + s2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A21: ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th23;
    
          
    
          
    
    A22: ((r3 
    * (s2 
    + s2)) 
    + (s3 
    * (s2 
    + s2))) 
    = s2; 
    
          (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A15,
    A19,
    XREAL_1: 68;
    
          then
    
          
    
    A23: ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2))) 
    < s2 by 
    A20,
    A22,
    XREAL_1: 8;
    
          
    
          
    
    A24: (G 
    * (( 
    len G),j)) 
    =  
    |[((G
    * (( 
    len G),j)) 
    `1 ), ((G 
    * (( 
    len G),j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),j)) 
    `2 )]| by 
    A1,
    A2,
    A10,
    GOBOARD5: 2
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A10,
    GOBOARD5: 1;
    
          
    
          
    
    A25: (G 
    * (( 
    len G),(j 
    + 1))) 
    =  
    |[((G
    * (( 
    len G),(j 
    + 1))) 
    `1 ), ((G 
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    A18,
    A9,
    A10,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A18,
    A9,
    A10,
    GOBOARD5: 1;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))))) by 
    EUCLID: 58
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) by 
    A25,
    A24,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    A25,
    A24,
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (s3 
    *  
    |[(r2
    + r2), (s1 
    + s2)]|)) by 
    EUCLID: 58
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[(s3
    * (r2 
    + r2)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    + (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    +  
    0 )]| 
    +  
    |[(s3
    * (r2 
    + r2)), (s3 
    * (s1 
    + s2))]|) by 
    EUCLID: 56
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    + (1 
    - r)) 
    + (s3 
    * (r2 
    + r2))), ((r3 
    * (s1 
    + s2)) 
    + (s3 
    * (s1 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G),j))) by 
    A17,
    A16,
    A23,
    A21;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:46
    
    
    
    
    
    Th46: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) 
    c= (( 
    Int ( 
    cell (G,i, 
    0 ))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set s2 = ((G
    * (1,1)) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A8: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          
    
          
    
    A9: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A10: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: r1 
    < r2 by 
    A1,
    A9,
    A10,
    GOBOARD5: 3;
    
          then
    
          
    
    A12: (r1 
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r1 
    + r2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A14: (1 
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A15: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A12,
    XREAL_1: 68;
    
          then
    
          
    
    A16: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) by 
    A13,
    A8,
    XREAL_1: 8;
    
          s2
    < (s2 
    + (1 
    - r)) by 
    A14,
    XREAL_1: 29;
    
          then
    
          
    
    A17: (s2 
    - (1 
    - r)) 
    < s2 by 
    XREAL_1: 19;
    
          
    
          
    
    A18: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A19: (G 
    * ((i 
    + 1),1)) 
    =  
    |[((G
    * ((i 
    + 1),1)) 
    `1 ), ((G 
    * ((i 
    + 1),1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s2]| by
    A18,
    A9,
    A10,
    GOBOARD5: 1;
    
          
    
          
    
    A20: (r1 
    + r2) 
    < (r2 
    + r2) by 
    A11,
    XREAL_1: 6;
    
          then
    
          
    
    A21: (s3 
    * (r1 
    + r2)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A22: ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    A1,
    A2,
    Th24;
    
          
    
          
    
    A23: ((r3 
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          (r3
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A15,
    A20,
    XREAL_1: 68;
    
          then
    
          
    
    A24: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) 
    < r2 by 
    A21,
    A23,
    XREAL_1: 8;
    
          
    
          
    
    A25: (G 
    * (i,1)) 
    =  
    |[((G
    * (i,1)) 
    `1 ), ((G 
    * (i,1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, s2]| by
    A1,
    A2,
    A10,
    GOBOARD5: 1;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))))) by 
    EUCLID: 58
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    *  
    |[(r1
    + r2), (s2 
    + s2)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) by 
    A19,
    A25,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s2 
    + s2)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    A19,
    A25,
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s2 
    + s2))]| 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    EUCLID: 58
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s2 
    + s2))]| 
    -  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s2 
    + s2))]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    -  
    0 ), ((r3 
    * (s2 
    + s2)) 
    - (1 
    - r))]| 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s2 
    + s2))]|) by 
    EUCLID: 62
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))), (((r3 
    * (s2 
    + s2)) 
    - (1 
    - r)) 
    + (s3 
    * (s2 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i, 
    0 ))) by 
    A17,
    A16,
    A24,
    A22;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:47
    
    
    
    
    
    Th47: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) 
    c= (( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) by 
    RLVECT_1: 4
    
          .= ((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)), s3 = (r 
    * (1 
    / 2)); 
    
          set s2 = ((G
    * (1,( 
    width G))) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A8: ((r3 
    * (r1 
    + r1)) 
    + (s3 
    * (r1 
    + r1))) 
    = r1; 
    
          
    
          
    
    A9: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A10: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: r1 
    < r2 by 
    A1,
    A9,
    A10,
    GOBOARD5: 3;
    
          then
    
          
    
    A12: (r1 
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (s3 
    * (r1 
    + r1)) 
    <= (s3 
    * (r1 
    + r2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A14: (1 
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A15: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A12,
    XREAL_1: 68;
    
          then
    
          
    
    A16: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) by 
    A13,
    A8,
    XREAL_1: 8;
    
          
    
          
    
    A17: (s2 
    + (1 
    - r)) 
    > s2 by 
    A14,
    XREAL_1: 29;
    
          
    
          
    
    A18: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A19: (r1 
    + r2) 
    < (r2 
    + r2) by 
    A11,
    XREAL_1: 6;
    
          then
    
          
    
    A20: (s3 
    * (r1 
    + r2)) 
    <= (s3 
    * (r2 
    + r2)) by 
    A5,
    XREAL_1: 64;
    
          
    
          
    
    A21: ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    A1,
    A2,
    Th25;
    
          
    
          
    
    A22: ((r3 
    * (r2 
    + r2)) 
    + (s3 
    * (r2 
    + r2))) 
    = r2; 
    
          (r3
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A15,
    A19,
    XREAL_1: 68;
    
          then
    
          
    
    A23: ((r3 
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))) 
    < r2 by 
    A20,
    A22,
    XREAL_1: 8;
    
          
    
          
    
    A24: (G 
    * (i,( 
    width G))) 
    =  
    |[((G
    * (i,( 
    width G))) 
    `1 ), ((G 
    * (i,( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * (i,( 
    width G))) 
    `1 ), s2]| by 
    A1,
    A2,
    A10,
    GOBOARD5: 1
    
          .=
    |[r1, s2]| by
    A1,
    A2,
    A10,
    GOBOARD5: 2;
    
          
    
          
    
    A25: (G 
    * ((i 
    + 1),( 
    width G))) 
    =  
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), ((G 
    * ((i 
    + 1),( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), s2]| by 
    A18,
    A9,
    A10,
    GOBOARD5: 1
    
          .=
    |[r2, s2]| by
    A18,
    A9,
    A10,
    GOBOARD5: 2;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))))) by 
    EUCLID: 58
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) by 
    RLVECT_1:def 7
    
          .= (((r3
    *  
    |[(r1
    + r2), (s2 
    + s2)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) by 
    A25,
    A24,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s2 
    + s2)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    A25,
    A24,
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s2 
    + s2))]| 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (s3 
    *  
    |[(r1
    + r2), (s2 
    + s2)]|)) by 
    EUCLID: 58
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s2 
    + s2))]| 
    +  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s2 
    + s2))]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    +  
    0 ), ((r3 
    * (s2 
    + s2)) 
    + (1 
    - r))]| 
    +  
    |[(s3
    * (r1 
    + r2)), (s3 
    * (s2 
    + s2))]|) by 
    EUCLID: 56
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (s3 
    * (r1 
    + r2))), (((r3 
    * (s2 
    + s2)) 
    + (1 
    - r)) 
    + (s3 
    * (s2 
    + s2)))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))) by 
    A17,
    A16,
    A23,
    A21;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:48
    
    
    
    
    
    Th48: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 ,j))) 
    \/  
    {((G
    * (1,j)) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,j)) 
    -  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,j)) 
    -  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set r2 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A9: ((r3 
    * (s1 
    + s1)) 
    + (r 
    * s1)) 
    = s1; 
    
          
    
          
    
    A10: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          r2
    < (r2 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: (r2 
    - 1) 
    < r2 by 
    XREAL_1: 19;
    
          
    
          
    
    A12: ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th20;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A13: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A14: s1 
    < s2 by 
    A1,
    A10,
    A13,
    GOBOARD5: 4;
    
          then (s1
    + s2) 
    < (s2 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (r3 
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          (s1
    + s1) 
    < (s1 
    + s2) by 
    A14,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A16: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1)) by 
    A9,
    XREAL_1: 6;
    
          
    
          
    
    A17: ((r3 
    * (s2 
    + s2)) 
    + (r 
    * s2)) 
    = s2; 
    
          (r
    * s1) 
    <= (r 
    * s2) by 
    A5,
    A14,
    XREAL_1: 64;
    
          then
    
          
    
    A18: ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1)) 
    < s2 by 
    A15,
    A17,
    XREAL_1: 8;
    
          
    
          
    
    A19: (G 
    * (1,j)) 
    =  
    |[((G
    * (1,j)) 
    `1 ), ((G 
    * (1,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A13,
    GOBOARD5: 2;
    
          
    
          
    
    A20: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A21: (G 
    * (1,(j 
    + 1))) 
    =  
    |[((G
    * (1,(j 
    + 1))) 
    `1 ), ((G 
    * (1,(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s2]| by
    A20,
    A10,
    A13,
    GOBOARD5: 2;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((G 
    * (1,j)) 
    -  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (r 
    * ( 
    |[r2, s1]|
    -  
    |[1,
    0 ]|))) by 
    A21,
    A19,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ((r 
    *  
    |[r2, s1]|)
    - (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    - (r 
    *  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    -  
    |[(r
    * 1), (r 
    *  
    0 )]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s1) 
    -  
    0 )]|) by 
    EUCLID: 62
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    -  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s1) 
    -  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    - (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    -  
    0 )]| 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s1) 
    -  
    0 )]|) by 
    EUCLID: 62
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    - (1 
    - r)) 
    + ((r 
    * r2) 
    - r)), ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 ,j))) by 
    A11,
    A16,
    A18,
    A12;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:49
    
    
    
    
    
    Th49: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 ,j))) 
    \/  
    {((G
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set r2 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A9: ((r3 
    * (s1 
    + s1)) 
    + (r 
    * s1)) 
    = s1; 
    
          
    
          
    
    A10: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A12: s1 
    < s2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 4;
    
          then (s1
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (r3 
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          (r
    * s1) 
    <= (r 
    * s2) by 
    A5,
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A14: s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2)) by 
    A13,
    A9,
    XREAL_1: 8;
    
          
    
          
    
    A15: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A16: (G 
    * (1,j)) 
    =  
    |[((G
    * (1,j)) 
    `1 ), ((G 
    * (1,j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 2;
    
          r2
    < (r2 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A17: (r2 
    - 1) 
    < r2 by 
    XREAL_1: 19;
    
          
    
          
    
    A18: ((r3 
    * (s2 
    + s2)) 
    + (r 
    * s2)) 
    = s2; 
    
          (s1
    + s2) 
    < (s2 
    + s2) by 
    A12,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A19: ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2)) 
    < s2 by 
    A18,
    XREAL_1: 8;
    
          
    
          
    
    A20: ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th20;
    
          
    
          
    
    A21: (G 
    * (1,(j 
    + 1))) 
    =  
    |[((G
    * (1,(j 
    + 1))) 
    `1 ), ((G 
    * (1,(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s2]| by
    A15,
    A10,
    A11,
    GOBOARD5: 2;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((G 
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + (r 
    * ( 
    |[r2, s2]|
    -  
    |[1,
    0 ]|))) by 
    A21,
    A16,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ((r 
    *  
    |[r2, s2]|)
    - (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s2)]| 
    - (r 
    *  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s2)]| 
    -  
    |[(r
    * 1), (r 
    *  
    0 )]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    -  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s2) 
    -  
    0 )]|) by 
    EUCLID: 62
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    -  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s2) 
    -  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    - (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    -  
    0 )]| 
    +  
    |[((r
    * r2) 
    - r), ((r 
    * s2) 
    -  
    0 )]|) by 
    EUCLID: 62
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    - (1 
    - r)) 
    + ((r 
    * r2) 
    - r)), ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 ,j))) by 
    A17,
    A14,
    A19,
    A20;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:50
    
    
    
    
    
    Th50: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G),j))) 
    \/  
    {((G
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set r2 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A9: ((r3 
    * (s1 
    + s1)) 
    + (r 
    * s1)) 
    = s1; 
    
          
    
          
    
    A10: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (G 
    * (( 
    len G),j)) 
    =  
    |[((G
    * (( 
    len G),j)) 
    `1 ), ((G 
    * (( 
    len G),j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),j)) 
    `2 )]| by 
    A1,
    A2,
    A11,
    GOBOARD5: 2
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 1;
    
          
    
          
    
    A13: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A14: s1 
    < s2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 4;
    
          then (s1
    + s2) 
    < (s2 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (r3 
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          (s1
    + s1) 
    < (s1 
    + s2) by 
    A14,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A16: r2 
    < (r2 
    + 1) & s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1)) by 
    A9,
    XREAL_1: 6,
    XREAL_1: 29;
    
          
    
          
    
    A17: ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th23;
    
          
    
          
    
    A18: (G 
    * (( 
    len G),(j 
    + 1))) 
    =  
    |[((G
    * (( 
    len G),(j 
    + 1))) 
    `1 ), ((G 
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    A13,
    A10,
    A11,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A13,
    A10,
    A11,
    GOBOARD5: 1;
    
          
    
          
    
    A19: ((r3 
    * (s2 
    + s2)) 
    + (r 
    * s2)) 
    = s2; 
    
          (r
    * s1) 
    <= (r 
    * s2) by 
    A5,
    A14,
    XREAL_1: 64;
    
          then
    
          
    
    A20: ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1)) 
    < s2 by 
    A15,
    A19,
    XREAL_1: 8;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((G 
    * (( 
    len G),j)) 
    +  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (r 
    * ( 
    |[r2, s1]|
    +  
    |[1,
    0 ]|))) by 
    A18,
    A12,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ((r 
    *  
    |[r2, s1]|)
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    +  
    |[(r
    * 1), (r 
    *  
    0 )]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s1) 
    +  
    0 )]|) by 
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s1) 
    +  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    + (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    +  
    0 )]| 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s1) 
    +  
    0 )]|) by 
    EUCLID: 56
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    + (1 
    - r)) 
    + ((r 
    * r2) 
    + r)), ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s1))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G),j))) by 
    A16,
    A20,
    A17;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:51
    
    
    
    
    
    Th51: 1 
    <= j & j 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G),j))) 
    \/  
    {((G
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set r2 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,j)) 
    `2 ), s2 = ((G 
    * (1,(j 
    + 1))) 
    `2 ); 
    
          
    
          
    
    A9: ((r3 
    * (s1 
    + s1)) 
    + (r 
    * s1)) 
    = s1; 
    
          
    
          
    
    A10: (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A12: s1 
    < s2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 4;
    
          then (s1
    + s1) 
    < (s1 
    + s2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (r3 
    * (s1 
    + s1)) 
    < (r3 
    * (s1 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          
    
          
    
    A14: ((r3 
    * (s2 
    + s2)) 
    + (r 
    * s2)) 
    = s2; 
    
          (s1
    + s2) 
    < (s2 
    + s2) by 
    A12,
    XREAL_1: 6;
    
          then (r3
    * (s1 
    + s2)) 
    < (r3 
    * (s2 
    + s2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A15: ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2)) 
    < s2 by 
    A14,
    XREAL_1: 8;
    
          
    
          
    
    A16: (G 
    * (( 
    len G),j)) 
    =  
    |[((G
    * (( 
    len G),j)) 
    `1 ), ((G 
    * (( 
    len G),j)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),j)) 
    `2 )]| by 
    A1,
    A2,
    A11,
    GOBOARD5: 2
    
          .=
    |[r2, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 1;
    
          
    
          
    
    A17: 1 
    <= (j 
    + 1) by 
    A1,
    NAT_1: 13;
    
          (r
    * s1) 
    <= (r 
    * s2) by 
    A5,
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A18: (r2 
    + 1) 
    > r2 & s1 
    < ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2)) by 
    A13,
    A9,
    XREAL_1: 8,
    XREAL_1: 29;
    
          
    
          
    
    A19: ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & ((G 
    * (1,j)) 
    `2 ) 
    < s9 & s9 
    < ((G 
    * (1,(j 
    + 1))) 
    `2 ) } by 
    A1,
    A2,
    Th23;
    
          
    
          
    
    A20: (G 
    * (( 
    len G),(j 
    + 1))) 
    =  
    |[((G
    * (( 
    len G),(j 
    + 1))) 
    `1 ), ((G 
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, ((G
    * (( 
    len G),(j 
    + 1))) 
    `2 )]| by 
    A17,
    A10,
    A11,
    GOBOARD5: 2
    
          .=
    |[r2, s2]| by
    A17,
    A10,
    A11,
    GOBOARD5: 1;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]|) 
    + (r 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + (r 
    * ( 
    |[r2, s2]|
    +  
    |[1,
    0 ]|))) by 
    A20,
    A16,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ((r 
    *  
    |[r2, s2]|)
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s2)]| 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    + ( 
    |[(r
    * r2), (r 
    * s2)]| 
    +  
    |[(r
    * 1), (r 
    *  
    0 )]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r2
    + r2), (s1 
    + s2)]|) 
    +  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s2) 
    +  
    0 )]|) by 
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r2 
    + r2)), (r3 
    * (s1 
    + s2))]| 
    +  
    |[(1
    - r), 
    0 ]|) 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s2) 
    +  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r2 
    + r2)) 
    + (1 
    - r)), ((r3 
    * (s1 
    + s2)) 
    +  
    0 )]| 
    +  
    |[((r
    * r2) 
    + r), ((r 
    * s2) 
    +  
    0 )]|) by 
    EUCLID: 56
    
          .=
    |[(((r3
    * (r2 
    + r2)) 
    + (1 
    - r)) 
    + ((r 
    * r2) 
    + r)), ((r3 
    * (s1 
    + s2)) 
    + (r 
    * s2))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G),j))) by 
    A18,
    A15,
    A19;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:52
    
    
    
    
    
    Th52: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,i, 
    0 ))) 
    \/  
    {((G
    * (i,1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (i,1)) 
    -  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (i,1)) 
    -  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set s1 = ((G
    * (1,1)) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A9: ((r3 
    * (r1 
    + r1)) 
    + (r 
    * r1)) 
    = r1; 
    
          
    
          
    
    A10: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          s1
    < (s1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A11: (s1 
    - 1) 
    < s1 by 
    XREAL_1: 19;
    
          
    
          
    
    A12: ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    A1,
    A2,
    Th24;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A13: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A14: r1 
    < r2 by 
    A1,
    A10,
    A13,
    GOBOARD5: 3;
    
          then (r1
    + r2) 
    < (r2 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (r3 
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          (r1
    + r1) 
    < (r1 
    + r2) by 
    A14,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A16: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r1)) by 
    A9,
    XREAL_1: 6;
    
          
    
          
    
    A17: ((r3 
    * (r2 
    + r2)) 
    + (r 
    * r2)) 
    = r2; 
    
          (r
    * r1) 
    <= (r 
    * r2) by 
    A5,
    A14,
    XREAL_1: 64;
    
          then
    
          
    
    A18: ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r1)) 
    < r2 by 
    A15,
    A17,
    XREAL_1: 8;
    
          
    
          
    
    A19: (G 
    * (i,1)) 
    =  
    |[((G
    * (i,1)) 
    `1 ), ((G 
    * (i,1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A13,
    GOBOARD5: 1;
    
          
    
          
    
    A20: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A21: (G 
    * ((i 
    + 1),1)) 
    =  
    |[((G
    * ((i 
    + 1),1)) 
    `1 ), ((G 
    * ((i 
    + 1),1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s1]| by
    A20,
    A10,
    A13,
    GOBOARD5: 1;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((G 
    * (i,1)) 
    -  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (r 
    * ( 
    |[r1, s1]|
    -  
    |[
    0 , 1]|))) by 
    A21,
    A19,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ((r 
    *  
    |[r1, s1]|)
    - (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r1), (r 
    * s1)]| 
    - (r 
    *  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r1), (r 
    * s1)]| 
    -  
    |[(r
    *  
    0 ), (r 
    * 1)]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r1) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 62
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s1))]| 
    -  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r1) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    -  
    0 ), ((r3 
    * (s1 
    + s1)) 
    - (1 
    - r))]| 
    +  
    |[((r
    * r1) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 62
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (r 
    * r1)), (((r3 
    * (s1 
    + s1)) 
    - (1 
    - r)) 
    + ((r 
    * s1) 
    - r))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i, 
    0 ))) by 
    A11,
    A16,
    A18,
    A12;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:53
    
    
    
    
    
    Th53: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,i, 
    0 ))) 
    \/  
    {((G
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set s1 = ((G
    * (1,1)) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A9: ((r3 
    * (r1 
    + r1)) 
    + (r 
    * r1)) 
    = r1; 
    
          
    
          
    
    A10: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A12: r1 
    < r2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 3;
    
          then (r1
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (r3 
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          (r
    * r1) 
    <= (r 
    * r2) by 
    A5,
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A14: r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r2)) by 
    A13,
    A9,
    XREAL_1: 8;
    
          
    
          
    
    A15: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          
    
          
    
    A16: (G 
    * (i,1)) 
    =  
    |[((G
    * (i,1)) 
    `1 ), ((G 
    * (i,1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 1;
    
          s1
    < (s1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A17: (s1 
    - 1) 
    < s1 by 
    XREAL_1: 19;
    
          
    
          
    
    A18: ((r3 
    * (r2 
    + r2)) 
    + (r 
    * r2)) 
    = r2; 
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A12,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A19: ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r2)) 
    < r2 by 
    A18,
    XREAL_1: 8;
    
          
    
          
    
    A20: ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    A1,
    A2,
    Th24;
    
          
    
          
    
    A21: (G 
    * ((i 
    + 1),1)) 
    =  
    |[((G
    * ((i 
    + 1),1)) 
    `1 ), ((G 
    * ((i 
    + 1),1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r2, s1]| by
    A15,
    A10,
    A11,
    GOBOARD5: 1;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 34
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((G 
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + (r 
    * ( 
    |[r2, s1]|
    -  
    |[
    0 , 1]|))) by 
    A21,
    A16,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ((r 
    *  
    |[r2, s1]|)
    - (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    - (r 
    *  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    -  
    |[(r
    *  
    0 ), (r 
    * 1)]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    -  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r2) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 62
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s1))]| 
    -  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r2) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    -  
    0 ), ((r3 
    * (s1 
    + s1)) 
    - (1 
    - r))]| 
    +  
    |[((r
    * r2) 
    -  
    0 ), ((r 
    * s1) 
    - r)]|) by 
    EUCLID: 62
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (r 
    * r2)), (((r3 
    * (s1 
    + s1)) 
    - (1 
    - r)) 
    + ((r 
    * s1) 
    - r))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i, 
    0 ))) by 
    A17,
    A14,
    A19,
    A20;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:54
    
    
    
    
    
    Th54: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    \/  
    {((G
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set s1 = ((G
    * (1,( 
    width G))) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A9: ((r3 
    * (r1 
    + r1)) 
    + (r 
    * r1)) 
    = r1; 
    
          
    
          
    
    A10: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A12: (G 
    * (i,( 
    width G))) 
    =  
    |[((G
    * (i,( 
    width G))) 
    `1 ), ((G 
    * (i,( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * (i,( 
    width G))) 
    `1 ), s1]| by 
    A1,
    A2,
    A11,
    GOBOARD5: 1
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 2;
    
          
    
          
    
    A13: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A14: r1 
    < r2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 3;
    
          then (r1
    + r2) 
    < (r2 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A15: (r3 
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          (r1
    + r1) 
    < (r1 
    + r2) by 
    A14,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A16: s1 
    < (s1 
    + 1) & r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r1)) by 
    A9,
    XREAL_1: 6,
    XREAL_1: 29;
    
          
    
          
    
    A17: ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    A1,
    A2,
    Th25;
    
          
    
          
    
    A18: (G 
    * ((i 
    + 1),( 
    width G))) 
    =  
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), ((G 
    * ((i 
    + 1),( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), s1]| by 
    A13,
    A10,
    A11,
    GOBOARD5: 1
    
          .=
    |[r2, s1]| by
    A13,
    A10,
    A11,
    GOBOARD5: 2;
    
          
    
          
    
    A19: ((r3 
    * (r2 
    + r2)) 
    + (r 
    * r2)) 
    = r2; 
    
          (r
    * r1) 
    <= (r 
    * r2) by 
    A5,
    A14,
    XREAL_1: 64;
    
          then
    
          
    
    A20: ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r1)) 
    < r2 by 
    A15,
    A19,
    XREAL_1: 8;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((G 
    * (i,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (r 
    * ( 
    |[r1, s1]|
    +  
    |[
    0 , 1]|))) by 
    A18,
    A12,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ((r 
    *  
    |[r1, s1]|)
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r1), (r 
    * s1)]| 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r1), (r 
    * s1)]| 
    +  
    |[(r
    *  
    0 ), (r 
    * 1)]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r1) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s1))]| 
    +  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r1) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    +  
    0 ), ((r3 
    * (s1 
    + s1)) 
    + (1 
    - r))]| 
    +  
    |[((r
    * r1) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 56
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (r 
    * r1)), (((r3 
    * (s1 
    + s1)) 
    + (1 
    - r)) 
    + ((r 
    * s1) 
    + r))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))) by 
    A16,
    A20,
    A17;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:55
    
    
    
    
    
    Th55: 1 
    <= i & i 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    \/  
    {((G
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G); 
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A4: p 
    = (((1 
    - r) 
    * (((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) and 
    
      
    
    A5: 
    0  
    <= r and 
    
      
    
    A6: r 
    <= 1 by 
    A3;
    
      now
    
        per cases by
    A6,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case
    
          
    
    A7: r 
    < 1; 
    
          set r3 = ((1
    - r) 
    * (1 
    / 2)); 
    
          (1
    - r) 
    >  
    0 by 
    A7,
    XREAL_1: 50;
    
          then
    
          
    
    A8: r3 
    > ((1 
    / 2) 
    *  
    0 ) by 
    XREAL_1: 68;
    
          set s1 = ((G
    * (1,( 
    width G))) 
    `2 ), r1 = ((G 
    * (i,1)) 
    `1 ), r2 = ((G 
    * ((i 
    + 1),1)) 
    `1 ); 
    
          
    
          
    
    A9: ((r3 
    * (r1 
    + r1)) 
    + (r 
    * r1)) 
    = r1; 
    
          
    
          
    
    A10: (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A11: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A12: r1 
    < r2 by 
    A1,
    A10,
    A11,
    GOBOARD5: 3;
    
          then (r1
    + r1) 
    < (r1 
    + r2) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (r3 
    * (r1 
    + r1)) 
    < (r3 
    * (r1 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          
    
          
    
    A14: ((r3 
    * (r2 
    + r2)) 
    + (r 
    * r2)) 
    = r2; 
    
          (r1
    + r2) 
    < (r2 
    + r2) by 
    A12,
    XREAL_1: 6;
    
          then (r3
    * (r1 
    + r2)) 
    < (r3 
    * (r2 
    + r2)) by 
    A8,
    XREAL_1: 68;
    
          then
    
          
    
    A15: ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r2)) 
    < r2 by 
    A14,
    XREAL_1: 8;
    
          
    
          
    
    A16: (G 
    * (i,( 
    width G))) 
    =  
    |[((G
    * (i,( 
    width G))) 
    `1 ), ((G 
    * (i,( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * (i,( 
    width G))) 
    `1 ), s1]| by 
    A1,
    A2,
    A11,
    GOBOARD5: 1
    
          .=
    |[r1, s1]| by
    A1,
    A2,
    A11,
    GOBOARD5: 2;
    
          
    
          
    
    A17: 1 
    <= (i 
    + 1) by 
    A1,
    NAT_1: 13;
    
          (r
    * r1) 
    <= (r 
    * r2) by 
    A5,
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A18: (s1 
    + 1) 
    > s1 & r1 
    < ((r3 
    * (r1 
    + r2)) 
    + (r 
    * r2)) by 
    A13,
    A9,
    XREAL_1: 8,
    XREAL_1: 29;
    
          
    
          
    
    A19: ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    = { 
    |[r9, s9]| : ((G
    * (i,1)) 
    `1 ) 
    < r9 & r9 
    < ((G 
    * ((i 
    + 1),1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    A1,
    A2,
    Th25;
    
          
    
          
    
    A20: (G 
    * ((i 
    + 1),( 
    width G))) 
    =  
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), ((G 
    * ((i 
    + 1),( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[((G
    * ((i 
    + 1),( 
    width G))) 
    `1 ), s1]| by 
    A17,
    A10,
    A11,
    GOBOARD5: 1
    
          .=
    |[r2, s1]| by
    A17,
    A10,
    A11,
    GOBOARD5: 2;
    
          p
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A4,
    RLVECT_1:def 5
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 7
    
          .= (((r3
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]|) 
    + (r 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + (r 
    * ( 
    |[r2, s1]|
    +  
    |[
    0 , 1]|))) by 
    A20,
    A16,
    EUCLID: 56
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ((r 
    *  
    |[r2, s1]|)
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    + ( 
    |[(r
    * r2), (r 
    * s1)]| 
    +  
    |[(r
    *  
    0 ), (r 
    * 1)]|)) by 
    EUCLID: 58
    
          .= (((r3
    *  
    |[(r1
    + r2), (s1 
    + s1)]|) 
    +  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r2) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 56
    
          .= ((
    |[(r3
    * (r1 
    + r2)), (r3 
    * (s1 
    + s1))]| 
    +  
    |[
    0 , (1 
    - r)]|) 
    +  
    |[((r
    * r2) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 58
    
          .= (
    |[((r3
    * (r1 
    + r2)) 
    +  
    0 ), ((r3 
    * (s1 
    + s1)) 
    + (1 
    - r))]| 
    +  
    |[((r
    * r2) 
    +  
    0 ), ((r 
    * s1) 
    + r)]|) by 
    EUCLID: 56
    
          .=
    |[((r3
    * (r1 
    + r2)) 
    + (r 
    * r2)), (((r3 
    * (s1 
    + s1)) 
    + (1 
    - r)) 
    + ((r 
    * s1) 
    + r))]| by 
    EUCLID: 56;
    
          hence p
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))) by 
    A18,
    A15,
    A19;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:56
    
    
    
    
    
    Th56: ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),((G
    * (1,1)) 
    -  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    \/  
    {((G
    * (1,1)) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,1)) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),((G
    * (1,1)) 
    -  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (1,1)) 
    -  
    |[1, 1]|))
    + (r 
    * ((G 
    * (1,1)) 
    -  
    |[1,
    0 ]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,1)) 
    -  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,1)) 
    -  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,1)) 
    -  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,1)) 
    -  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then s1
    < (s1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          then
    
          
    
    A4: (s1 
    - (1 
    - r)) 
    < s1 by 
    XREAL_1: 19;
    
          
    
          
    
    A5: (G 
    * (1,1)) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
          r1
    < (r1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A6: (r1 
    - 1) 
    < r1 by 
    XREAL_1: 19;
    
          
    
          
    
    A7: ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th18;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    * ((G 
    * (1,1)) 
    -  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1: 34
    
          .= ((((1
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    + ((r 
    * (G 
    * (1,1))) 
    - (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
          .= (((r
    * (G 
    * (1,1))) 
    + (((1 
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|)))
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (1,1))) 
    + ((1 
    - r) 
    * (G 
    * (1,1)))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (1,1)) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (1,1)) 
    -  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * 1)]|) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    EUCLID: 58
    
          .= (((G
    * (1,1)) 
    -  
    |[(1
    - r), (1 
    - r)]|) 
    -  
    |[(r
    * 1), (r 
    *  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    - (1 
    - r)), (s1 
    - (1 
    - r))]| 
    -  
    |[r,
    0 ]|) by 
    A5,
    EUCLID: 62
    
          .=
    |[((r1
    - (1 
    - r)) 
    - r), ((s1 
    - (1 
    - r)) 
    -  
    0 )]| by 
    EUCLID: 62
    
          .=
    |[(r1
    - 1), (s1 
    - (1 
    - r))]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) by 
    A4,
    A6,
    A7;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:57
    
    
    
    
    
    Th57: ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    \/  
    {((G
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,1)) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          
    
    A4: s1 
    < (s1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          (s1
    + (r 
    - 1)) 
    = (s1 
    - (1 
    - r)); 
    
          then
    
          
    
    A5: (s1 
    + (r 
    - 1)) 
    < s1 by 
    A4,
    XREAL_1: 19;
    
          
    
          
    
    A6: r1 
    < (r1 
    + 1) by 
    XREAL_1: 29;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A7: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A8: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A9: (G 
    * (( 
    len G),1)) 
    =  
    |[r1, ((G
    * (( 
    len G),1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A8,
    A7,
    GOBOARD5: 1;
    
          
    
          
    
    A10: ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th21;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + (r 
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + ((r 
    * (G 
    * (( 
    len G),1))) 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
          .= (((r
    * (G 
    * (( 
    len G),1))) 
    + (((1 
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|))) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    * (G 
    * (( 
    len G),1)))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (( 
    len G),1)) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (( 
    len G),1)) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * ( 
    - 1))]|) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    EUCLID: 58
    
          .= (((G
    * (( 
    len G),1)) 
    +  
    |[(1
    - r), (r 
    - 1)]|) 
    +  
    |[(r
    * 1), (r 
    *  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (1 
    - r)), (s1 
    + (r 
    - 1))]| 
    +  
    |[r,
    0 ]|) by 
    A9,
    EUCLID: 56
    
          .=
    |[((r1
    + (1 
    - r)) 
    + r), ((s1 
    + (r 
    - 1)) 
    +  
    0 )]| by 
    EUCLID: 56
    
          .=
    |[(r1
    + 1), (s1 
    + (r 
    - 1))]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) by 
    A5,
    A6,
    A10;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:58
    
    
    
    
    
    Th58: ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    \/  
    {((G
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,( 
    width G))) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * ((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          
    
    A4: s1 
    < (s1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A5: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A6: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A7: (G 
    * (1,( 
    width G))) 
    =  
    |[((G
    * (1,( 
    width G))) 
    `1 ), s1]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A5,
    A6,
    GOBOARD5: 2;
    
          
    
          
    
    A8: ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    Th19;
    
          r1
    < (r1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A9: (r1 
    - 1) 
    < r1 by 
    XREAL_1: 19;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + (r 
    * ((G 
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + ((r 
    * (G 
    * (1,( 
    width G)))) 
    - (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
          .= (((r
    * (G 
    * (1,( 
    width G)))) 
    + (((1 
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|))) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    * (G 
    * (1,( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (1,( 
    width G))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (1,( 
    width G))) 
    +  
    |[((1
    - r) 
    * ( 
    - 1)), ((1 
    - r) 
    * 1)]|) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    EUCLID: 58
    
          .= (((G
    * (1,( 
    width G))) 
    +  
    |[(r
    - 1), (1 
    - r)]|) 
    -  
    |[(r
    * 1), (r 
    *  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (r 
    - 1)), (s1 
    + (1 
    - r))]| 
    -  
    |[r,
    0 ]|) by 
    A7,
    EUCLID: 56
    
          .=
    |[((r1
    + (r 
    - 1)) 
    - r), ((s1 
    + (1 
    - r)) 
    -  
    0 )]| by 
    EUCLID: 62
    
          .=
    |[(r1
    - 1), (s1 
    + (1 
    - r))]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) by 
    A4,
    A9,
    A8;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:59
    
    
    
    
    
    Th59: ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    \/  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,( 
    width G))) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|))
    + (r 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          
    
    A4: s1 
    < (s1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          
    
          
    
    A5: r1 
    < (r1 
    + 1) by 
    XREAL_1: 29;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A6: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A7: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A8: (G 
    * (( 
    len G),( 
    width G))) 
    =  
    |[((G
    * (( 
    len G),( 
    width G))) 
    `1 ), ((G 
    * (( 
    len G),( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (( 
    len G),( 
    width G))) 
    `2 )]| by 
    A6,
    A7,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A6,
    A7,
    GOBOARD5: 1;
    
          
    
          
    
    A9: ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    Th22;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + ((r 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
          .= (((r
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + (((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|)))
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * 1)]|) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    EUCLID: 58
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[(1
    - r), (1 
    - r)]|) 
    +  
    |[(r
    * 1), (r 
    *  
    0 )]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (1 
    - r)), (s1 
    + (1 
    - r))]| 
    +  
    |[r,
    0 ]|) by 
    A8,
    EUCLID: 56
    
          .=
    |[((r1
    + (1 
    - r)) 
    + r), ((s1 
    + (1 
    - r)) 
    +  
    0 )]| by 
    EUCLID: 56
    
          .=
    |[(r1
    + 1), (s1 
    + (1 
    - r))]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) by 
    A4,
    A5,
    A9;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:60
    
    
    
    
    
    Th60: ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),((G
    * (1,1)) 
    -  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    \/  
    {((G
    * (1,1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,1)) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),((G
    * (1,1)) 
    -  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (1,1)) 
    -  
    |[1, 1]|))
    + (r 
    * ((G 
    * (1,1)) 
    -  
    |[
    0 , 1]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,1)) 
    -  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,1)) 
    -  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,1)) 
    -  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,1)) 
    -  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then r1
    < (r1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          then
    
          
    
    A4: (r1 
    - (1 
    - r)) 
    < r1 by 
    XREAL_1: 19;
    
          
    
          
    
    A5: (G 
    * (1,1)) 
    =  
    |[r1, s1]| by
    EUCLID: 53;
    
          s1
    < (s1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A6: (s1 
    - 1) 
    < s1 by 
    XREAL_1: 19;
    
          
    
          
    
    A7: ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th18;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    * ((G 
    * (1,1)) 
    -  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1: 34
    
          .= ((((1
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    + ((r 
    * (G 
    * (1,1))) 
    - (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
          .= (((r
    * (G 
    * (1,1))) 
    + (((1 
    - r) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|)))
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (1,1))) 
    + ((1 
    - r) 
    * (G 
    * (1,1)))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (1,1))) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (1,1)) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (1,1)) 
    -  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * 1)]|) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    EUCLID: 58
    
          .= (((G
    * (1,1)) 
    -  
    |[(1
    - r), (1 
    - r)]|) 
    -  
    |[(r
    *  
    0 ), (r 
    * 1)]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    - (1 
    - r)), (s1 
    - (1 
    - r))]| 
    -  
    |[
    0 , r]|) by 
    A5,
    EUCLID: 62
    
          .=
    |[((r1
    - (1 
    - r)) 
    -  
    0 ), ((s1 
    - (1 
    - r)) 
    - r)]| by 
    EUCLID: 62
    
          .=
    |[(r1
    - (1 
    - r)), (s1 
    - 1)]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) by 
    A6,
    A4,
    A7;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:61
    
    
    
    
    
    Th61: ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    \/  
    {((G
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,1)) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * ((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          
    
    A4: r1 
    < (r1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          s1
    < (s1 
    + 1) by 
    XREAL_1: 29;
    
          then
    
          
    
    A5: (s1 
    - 1) 
    < s1 by 
    XREAL_1: 19;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A6: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A7: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    
          
    
    A8: (G 
    * (( 
    len G),1)) 
    =  
    |[r1, ((G
    * (( 
    len G),1)) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A7,
    A6,
    GOBOARD5: 1;
    
          
    
          
    
    A9: ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & s9 
    < ((G 
    * (1,1)) 
    `2 ) } by 
    Th21;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + (r 
    * ((G 
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    + ((r 
    * (G 
    * (( 
    len G),1))) 
    - (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
          .= (((r
    * (G 
    * (( 
    len G),1))) 
    + (((1 
    - r) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|))) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    * (G 
    * (( 
    len G),1)))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (( 
    len G),1))) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (( 
    len G),1)) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (( 
    len G),1)) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * ( 
    - 1))]|) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    EUCLID: 58
    
          .= (((G
    * (( 
    len G),1)) 
    +  
    |[(1
    - r), (r 
    - 1)]|) 
    -  
    |[(r
    *  
    0 ), (r 
    * 1)]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (1 
    - r)), (s1 
    + (r 
    - 1))]| 
    -  
    |[
    0 , r]|) by 
    A8,
    EUCLID: 56
    
          .=
    |[((r1
    + (1 
    - r)) 
    -  
    0 ), ((s1 
    + (r 
    - 1)) 
    - r)]| by 
    EUCLID: 62
    
          .=
    |[(r1
    + (1 
    - r)), (s1 
    - 1)]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) by 
    A5,
    A4,
    A9;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:62
    
    
    
    
    
    Th62: ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    \/  
    {((G
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (1,1)) 
    `1 ), s1 = ((G 
    * (1,( 
    width G))) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then r1
    < (r1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          then
    
          
    
    A4: s1 
    < (s1 
    + 1) & (r1 
    - (1 
    - r)) 
    < r1 by 
    XREAL_1: 19,
    XREAL_1: 29;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A5: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A6: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A7: (G 
    * (1,( 
    width G))) 
    =  
    |[((G
    * (1,( 
    width G))) 
    `1 ), s1]| by 
    EUCLID: 53
    
          .=
    |[r1, s1]| by
    A5,
    A6,
    GOBOARD5: 2;
    
          
    
          
    
    A8: ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    = { 
    |[r9, s9]| : r9
    < ((G 
    * (1,1)) 
    `1 ) & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    Th19;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + (r 
    * ((G 
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + ((r 
    * (G 
    * (1,( 
    width G)))) 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
          .= (((r
    * (G 
    * (1,( 
    width G)))) 
    + (((1 
    - r) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|))) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    * (G 
    * (1,( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (1,( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (1,( 
    width G))) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (1,( 
    width G))) 
    +  
    |[((1
    - r) 
    * ( 
    - 1)), ((1 
    - r) 
    * 1)]|) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    EUCLID: 58
    
          .= (((G
    * (1,( 
    width G))) 
    +  
    |[(r
    - 1), (1 
    - r)]|) 
    +  
    |[(r
    *  
    0 ), (r 
    * 1)]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (r 
    - 1)), (s1 
    + (1 
    - r))]| 
    +  
    |[
    0 , r]|) by 
    A7,
    EUCLID: 56
    
          .=
    |[((r1
    + (r 
    - 1)) 
    +  
    0 ), ((s1 
    + (1 
    - r)) 
    + r)]| by 
    EUCLID: 56
    
          .=
    |[(r1
    - (1 
    - r)), (s1 
    + 1)]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) by 
    A4,
    A8;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:63
    
    
    
    
    
    Th63: ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|))) 
    c= (( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    \/  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      let x be
    object;
    
      set r1 = ((G
    * (( 
    len G),1)) 
    `1 ), s1 = ((G 
    * (1,( 
    width G))) 
    `2 ); 
    
      assume
    
      
    
    A1: x 
    in ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|))); 
    
      then
    
      reconsider p = x as
    Point of ( 
    TOP-REAL 2); 
    
      consider r such that
    
      
    
    A2: p 
    = (((1 
    - r) 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|))
    + (r 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|))) and 
    0  
    <= r and 
    
      
    
    A3: r 
    <= 1 by 
    A1;
    
      now
    
        per cases by
    A3,
    XXREAL_0: 1;
    
          case r
    = 1; 
    
          
    
          then p
    = (( 
    0. ( 
    TOP-REAL 2)) 
    + (1 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1: 10
    
          .= (1
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|)) by 
    RLVECT_1: 4
    
          .= ((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|) by 
    RLVECT_1:def 8;
    
          hence p
    in  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|)} by 
    TARSKI:def 1;
    
        end;
    
          case r
    < 1; 
    
          then (1
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
          then
    
          
    
    A4: s1 
    < (s1 
    + 1) & r1 
    < (r1 
    + (1 
    - r)) by 
    XREAL_1: 29;
    
          
    0  
    <> ( 
    width G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A5: 1 
    <= ( 
    width G) by 
    NAT_1: 14;
    
          
    0  
    <> ( 
    len G) by 
    MATRIX_0:def 10;
    
          then
    
          
    
    A6: 1 
    <= ( 
    len G) by 
    NAT_1: 14;
    
          
    
          
    
    A7: (G 
    * (( 
    len G),( 
    width G))) 
    =  
    |[((G
    * (( 
    len G),( 
    width G))) 
    `1 ), ((G 
    * (( 
    len G),( 
    width G))) 
    `2 )]| by 
    EUCLID: 53
    
          .=
    |[r1, ((G
    * (( 
    len G),( 
    width G))) 
    `2 )]| by 
    A5,
    A6,
    GOBOARD5: 2
    
          .=
    |[r1, s1]| by
    A5,
    A6,
    GOBOARD5: 1;
    
          
    
          
    
    A8: ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    = { 
    |[r9, s9]| : ((G
    * (( 
    len G),1)) 
    `1 ) 
    < r9 & ((G 
    * (1,( 
    width G))) 
    `2 ) 
    < s9 } by 
    Th22;
    
          p
    = ((((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|))) by 
    A2,
    RLVECT_1:def 5
    
          .= ((((1
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + ((r 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
          .= (((r
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + (((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|)))
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    * (G 
    * (( 
    len G),( 
    width G))))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
          .= ((((r
    + (1 
    - r)) 
    * (G 
    * (( 
    len G),( 
    width G)))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 8
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    * 1)]|) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    EUCLID: 58
    
          .= (((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[(1
    - r), (1 
    - r)]|) 
    +  
    |[(r
    *  
    0 ), (r 
    * 1)]|) by 
    EUCLID: 58
    
          .= (
    |[(r1
    + (1 
    - r)), (s1 
    + (1 
    - r))]| 
    +  
    |[
    0 , r]|) by 
    A7,
    EUCLID: 56
    
          .=
    |[((r1
    + (1 
    - r)) 
    +  
    0 ), ((s1 
    + (1 
    - r)) 
    + r)]| by 
    EUCLID: 56
    
          .=
    |[(r1
    + (1 
    - r)), (s1 
    + 1)]|; 
    
          hence p
    in ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) by 
    A4,
    A8;
    
        end;
    
      end;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:64
    
    1
    <= i & i 
    < ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    < ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 2))))))) 
    c= ((( 
    Int ( 
    cell (G,i,j))) 
    \/ ( 
    Int ( 
    cell (G,i,(j 
    + 1))))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,(j 
    + 1))) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: (j 
    + 1) 
    < ( 
    width G); 
    
      set p1 = (G
    * (i,j)), p2 = (G 
    * (i,(j 
    + 1))), q2 = (G 
    * ((i 
    + 1),(j 
    + 1))), q3 = (G 
    * ((i 
    + 1),(j 
    + 2))), r = (((p2 
    `2 ) 
    - (p1 
    `2 )) 
    / ((q3 
    `2 ) 
    - (p1 
    `2 ))); 
    
      
    
      
    
    A5: (j 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      set I1 = (
    Int ( 
    cell (G,i,j))), I2 = ( 
    Int ( 
    cell (G,i,(j 
    + 1)))); 
    
      j
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A6: j 
    < ( 
    width G) by 
    A4,
    XXREAL_0: 2;
    
      then
    
      
    
    A7: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q2)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) by 
    A1,
    A2,
    A3,
    Th41;
    
      j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `2 ) 
    < (p2 
    `2 ) by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 4;
    
      then
    
      
    
    A8: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A9: ((j 
    + 1) 
    + 1) 
    = (j 
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: (j 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A11: (j 
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A4,
    A9,
    NAT_1: 13;
    
      
    
      
    
    A12: (i 
    + 1) 
    >= 1 & (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      then
    
      
    
    A13: (q2 
    `1 ) 
    = ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A4,
    A5,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A11,
    A10,
    A12,
    GOBOARD5: 2;
    
      
    
      
    
    A14: (q2 
    `2 ) 
    = ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A4,
    A5,
    A12,
    GOBOARD5: 1
    
      .= (p2
    `2 ) by 
    A1,
    A2,
    A4,
    A5,
    GOBOARD5: 1;
    
      (j
    + 1) 
    < (j 
    + 2) by 
    XREAL_1: 6;
    
      then (q2
    `2 ) 
    < (q3 
    `2 ) by 
    A5,
    A11,
    A12,
    GOBOARD5: 4;
    
      then
    
      
    
    A15: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    < ((q3 
    `2 ) 
    - (p1 
    `2 )) by 
    A14,
    XREAL_1: 9;
    
      then
    
      
    
    A16: (r 
    * ((q3 
    `2 ) 
    - (p1 
    `2 ))) 
    = ((p2 
    `2 ) 
    - (p1 
    `2 )) by 
    A8,
    XCMPLX_1: 87;
    
      (p1
    `1 ) 
    = ((G 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    A3,
    A6,
    GOBOARD5: 2
    
      .= (p2
    `1 ) by 
    A1,
    A2,
    A4,
    A5,
    GOBOARD5: 2;
    
      
    
      then
    
      
    
    A17: ((p2 
    + q2) 
    `1 ) 
    = (((1 
    - r) 
    * ((p1 
    `1 ) 
    + (q2 
    `1 ))) 
    + (r 
    * ((p2 
    `1 ) 
    + (q3 
    `1 )))) by 
    A13,
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `1 )) 
    + (r 
    * ((p2 
    `1 ) 
    + (q3 
    `1 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `1 )) 
    + (r 
    * ((p2 
    + q3) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `1 )) 
    + ((r 
    * (p2 
    + q3)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    `1 ) 
    + ((r 
    * (p2 
    + q3)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    `1 ) by 
    Lm1;
    
      ((p2
    + q2) 
    `2 ) 
    = ((p2 
    `2 ) 
    + ((r 
    + (1 
    - r)) 
    * (q2 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    `2 ) 
    + (q2 
    `2 ))) 
    + (r 
    * ((p2 
    `2 ) 
    + (q3 
    `2 )))) by 
    A14,
    A16
    
      .= (((1
    - r) 
    * ((p1 
    `2 ) 
    + (q2 
    `2 ))) 
    + (r 
    * ((p2 
    + q3) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `2 )) 
    + (r 
    * ((p2 
    + q3) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `2 )) 
    + ((r 
    * (p2 
    + q3)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    `2 ) 
    + ((r 
    * (p2 
    + q3)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    `2 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    =  
    |[((p2
    + q2) 
    `1 ), ((p2 
    + q2) 
    `2 )]| by 
    A17,
    EUCLID: 53
    
      .= (p2
    + q2) by 
    EUCLID: 53;
    
      
    
      then
    
      
    
    A18: ((1 
    / 2) 
    * (p2 
    + q2)) 
    = (((1 
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + q2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + q2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      r
    < 1 by 
    A15,
    A8,
    XREAL_1: 189;
    
      then ((1
    / 2) 
    * (p2 
    + q2)) 
    in ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) by 
    A15,
    A8,
    A18;
    
      then
    
      
    
    A19: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) 
    = (( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p2 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3))))) by 
    TOPREAL1: 5;
    
      
    
      
    
    A20: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p2 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))})) by 
    XBOOLE_1: 4;
    
      (
    LSeg (((1 
    / 2) 
    * (p2 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) by 
    A1,
    A2,
    A4,
    A5,
    A9,
    Th43;
    
      hence thesis by
    A19,
    A7,
    A20,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:65
    
    1
    <= j & j 
    < ( 
    width G) & 1 
    <= i & (i 
    + 1) 
    < ( 
    len G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 2),(j 
    + 1))))))) 
    c= ((( 
    Int ( 
    cell (G,i,j))) 
    \/ ( 
    Int ( 
    cell (G,(i 
    + 1),j)))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * ((i 
    + 1),j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G) and 
    
      
    
    A3: 1 
    <= i and 
    
      
    
    A4: (i 
    + 1) 
    < ( 
    len G); 
    
      set p1 = (G
    * (i,j)), p2 = (G 
    * ((i 
    + 1),j)), q2 = (G 
    * ((i 
    + 1),(j 
    + 1))), q3 = (G 
    * ((i 
    + 2),(j 
    + 1))), r = (((p2 
    `1 ) 
    - (p1 
    `1 )) 
    / ((q3 
    `1 ) 
    - (p1 
    `1 ))); 
    
      
    
      
    
    A5: (i 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      set I1 = (
    Int ( 
    cell (G,i,j))), I2 = ( 
    Int ( 
    cell (G,(i 
    + 1),j))); 
    
      i
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A6: i 
    < ( 
    len G) by 
    A4,
    XXREAL_0: 2;
    
      then
    
      
    
    A7: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q2)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) by 
    A1,
    A2,
    A3,
    Th42;
    
      i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `1 ) 
    < (p2 
    `1 ) by 
    A1,
    A2,
    A3,
    A4,
    GOBOARD5: 3;
    
      then
    
      
    
    A8: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A9: ((i 
    + 1) 
    + 1) 
    = (i 
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: (i 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A11: (i 
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A4,
    A9,
    NAT_1: 13;
    
      
    
      
    
    A12: (j 
    + 1) 
    >= 1 & (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      then
    
      
    
    A13: (q2 
    `2 ) 
    = ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A4,
    A5,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A11,
    A10,
    A12,
    GOBOARD5: 1;
    
      
    
      
    
    A14: (q2 
    `1 ) 
    = ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A4,
    A5,
    A12,
    GOBOARD5: 2
    
      .= (p2
    `1 ) by 
    A1,
    A2,
    A4,
    A5,
    GOBOARD5: 2;
    
      (i
    + 1) 
    < (i 
    + 2) by 
    XREAL_1: 6;
    
      then (q2
    `1 ) 
    < (q3 
    `1 ) by 
    A5,
    A11,
    A12,
    GOBOARD5: 3;
    
      then
    
      
    
    A15: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    < ((q3 
    `1 ) 
    - (p1 
    `1 )) by 
    A14,
    XREAL_1: 9;
    
      then
    
      
    
    A16: (r 
    * ((q3 
    `1 ) 
    - (p1 
    `1 ))) 
    = ((p2 
    `1 ) 
    - (p1 
    `1 )) by 
    A8,
    XCMPLX_1: 87;
    
      (p1
    `2 ) 
    = ((G 
    * (1,j)) 
    `2 ) by 
    A1,
    A2,
    A3,
    A6,
    GOBOARD5: 1
    
      .= (p2
    `2 ) by 
    A1,
    A2,
    A4,
    A5,
    GOBOARD5: 1;
    
      
    
      then
    
      
    
    A17: ((p2 
    + q2) 
    `2 ) 
    = (((1 
    - r) 
    * ((p1 
    `2 ) 
    + (q2 
    `2 ))) 
    + (r 
    * ((p2 
    `2 ) 
    + (q3 
    `2 )))) by 
    A13,
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `2 )) 
    + (r 
    * ((p2 
    `2 ) 
    + (q3 
    `2 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `2 )) 
    + (r 
    * ((p2 
    + q3) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `2 )) 
    + ((r 
    * (p2 
    + q3)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    `2 ) 
    + ((r 
    * (p2 
    + q3)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    `2 ) by 
    Lm1;
    
      ((p2
    + q2) 
    `1 ) 
    = ((p2 
    `1 ) 
    + ((r 
    + (1 
    - r)) 
    * (q2 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    `1 ) 
    + (q2 
    `1 ))) 
    + (r 
    * ((p2 
    `1 ) 
    + (q3 
    `1 )))) by 
    A14,
    A16
    
      .= (((1
    - r) 
    * ((p1 
    `1 ) 
    + (q2 
    `1 ))) 
    + (r 
    * ((p2 
    + q3) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `1 )) 
    + (r 
    * ((p2 
    + q3) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((p1 
    + q2) 
    `1 )) 
    + ((r 
    * (p2 
    + q3)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    `1 ) 
    + ((r 
    * (p2 
    + q3)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    `1 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (p1 
    + q2)) 
    + (r 
    * (p2 
    + q3))) 
    =  
    |[((p2
    + q2) 
    `1 ), ((p2 
    + q2) 
    `2 )]| by 
    A17,
    EUCLID: 53
    
      .= (p2
    + q2) by 
    EUCLID: 53;
    
      
    
      then
    
      
    
    A18: ((1 
    / 2) 
    * (p2 
    + q2)) 
    = (((1 
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + q2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + q2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      r
    < 1 by 
    A15,
    A8,
    XREAL_1: 189;
    
      then ((1
    / 2) 
    * (p2 
    + q2)) 
    in ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) by 
    A15,
    A8,
    A18;
    
      then
    
      
    
    A19: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) 
    = (( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p2 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p2 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3))))) by 
    TOPREAL1: 5;
    
      
    
      
    
    A20: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p2 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))})) by 
    XBOOLE_1: 4;
    
      (
    LSeg (((1 
    / 2) 
    * (p2 
    + q2)),((1 
    / 2) 
    * (p2 
    + q3)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p2 
    + q2))}) by 
    A1,
    A2,
    A4,
    A5,
    A9,
    Th40;
    
      hence thesis by
    A19,
    A7,
    A20,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:66
    
    1
    <= i & i 
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),2)))))) 
    c= ((( 
    Int ( 
    cell (G,i, 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G,i,1)))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    < ( 
    width G); 
    
      set p1 = (G
    * (i,1)), q2 = (G 
    * ((i 
    + 1),1)), q3 = (G 
    * ((i 
    + 1),2)), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (p1 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A4: (i 
    + 1) 
    >= 1 & (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      
    
    A5: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A3,
    NAT_1: 13;
    
      then
    
      
    
    A6: (q2 
    `1 ) 
    = (q3 
    `1 ) by 
    A4,
    GOBOARD5: 2;
    
      
    
      
    
    A7: (q2 
    `2 ) 
    = ((G 
    * (1,( 
    0  
    + 1))) 
    `2 ) by 
    A3,
    A4,
    GOBOARD5: 1
    
      .= (p1
    `2 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 1;
    
      then (p1
    `2 ) 
    < (q3 
    `2 ) by 
    A5,
    A4,
    GOBOARD5: 4;
    
      then
    
      
    
    A8: ((q3 
    `2 ) 
    - (p1 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (p1 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A9: r 
    < 1 by 
    XREAL_1: 212;
    
      set I1 = (
    Int ( 
    cell (G,i, 
    0 ))), I2 = ( 
    Int ( 
    cell (G,i,1))); 
    
      
    
      
    
    A10: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    Th46;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p1 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A12: (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    `1 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    - (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    `1 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    - ( 
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]| 
    `1 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    -  
    0 ) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `1 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q2 
    `1 )))) by 
    A6,
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `1 ) by 
    Lm3;
    
      
    
      
    
    A13: (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + ((r 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      
    
      
    
    A14: (((r 
    * ((1 
    / 2) 
    * (q3 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A7,
    A8,
    XCMPLX_1: 106;
    
      (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    `2 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    - (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    `2 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    - ( 
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]| 
    `2 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    - (1 
    - r)) by 
    EUCLID: 52
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `2 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) 
    - (1 
    - r)) by 
    Lm1
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q3 
    `2 )))) 
    - (1 
    - r)) by 
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `2 ) by 
    A14,
    Lm3;
    
      
    
      then
    
      
    
    A15: ((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    =  
    |[(((1
    / 2) 
    * q2) 
    `1 ), (((1 
    / 2) 
    * q2) 
    `2 )]| by 
    A12,
    EUCLID: 53
    
      .= ((1
    / 2) 
    * q2) by 
    EUCLID: 53;
    
      ((1
    / 2) 
    * (p1 
    + q2)) 
    = (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    + r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 8
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 6
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) by 
    A15,
    RLVECT_1:def 3
    
      .= ((((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((r 
    * ((1 
    / 2) 
    * (p1 
    + q3))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|))) by 
    A13,
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ( 
    - (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    - (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))))) by 
    RLVECT_1: 33
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    - (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    - (r 
    * ((1 
    / 2) 
    * (p1 
    + q3))))) 
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1: 29
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1: 34;
    
      then ((1
    / 2) 
    * (p1 
    + q2)) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A8,
    A9;
    
      then
    
      
    
    A16: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q3)))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3))))) by 
    TOPREAL1: 5;
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then (
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    A3,
    Th43;
    
      hence thesis by
    A16,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:67
    
    1
    <= i & i 
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),(( 
    width G) 
    -' 1))))))) 
    c= ((( 
    Int ( 
    cell (G,i,(( 
    width G) 
    -' 1)))) 
    \/ ( 
    Int ( 
    cell (G,i,( 
    width G))))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    < ( 
    width G); 
    
      set I1 = (
    Int ( 
    cell (G,i,(( 
    width G) 
    -' 1)))), I2 = ( 
    Int ( 
    cell (G,i,( 
    width G)))); 
    
      set p1 = (G
    * (i,( 
    width G))), q2 = (G 
    * ((i 
    + 1),( 
    width G))), q3 = (G 
    * ((i 
    + 1),(( 
    width G) 
    -' 1))), r = (1 
    / (((1 
    / 2) 
    * ((p1 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A4: ((( 
    width G) 
    -' 1) 
    + 1) 
    = ( 
    width G) by 
    A3,
    XREAL_1: 235;
    
      then
    
      
    
    A5: 1 
    <= (( 
    width G) 
    -' 1) by 
    A3,
    NAT_1: 13;
    
      
    
      
    
    A6: (( 
    width G) 
    -' 1) 
    < ( 
    width G) by 
    A4,
    NAT_1: 13;
    
      then ((G
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),(( 
    width G) 
    -' 1)))) 
    = ((G 
    * (i,(( 
    width G) 
    -' 1))) 
    + (G 
    * ((i 
    + 1),( 
    width G)))) by 
    A1,
    A2,
    A4,
    A5,
    Th11;
    
      then
    
      
    
    A7: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    A4,
    A5,
    A6,
    Th41;
    
      
    
      
    
    A8: (i 
    + 1) 
    >= 1 & (i 
    + 1) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      then
    
      
    
    A9: (q2 
    `1 ) 
    = ((G 
    * ((i 
    + 1),1)) 
    `1 ) by 
    A3,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A5,
    A6,
    A8,
    GOBOARD5: 2;
    
      
    
      
    
    A10: (q2 
    `2 ) 
    = ((G 
    * (1,( 
    width G))) 
    `2 ) by 
    A3,
    A8,
    GOBOARD5: 1
    
      .= (p1
    `2 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 1;
    
      then (q3
    `2 ) 
    < (p1 
    `2 ) by 
    A5,
    A6,
    A8,
    GOBOARD5: 4;
    
      then
    
      
    
    A11: ((p1 
    `2 ) 
    - (q3 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((p1 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A12: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A13: (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    `1 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    + (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    + ( 
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]| 
    `1 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    +  
    0 ) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `1 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q2 
    `1 )))) by 
    A9,
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `1 ) by 
    Lm3;
    
      
    
      
    
    A14: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p1 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A15: (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + ((r 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      
    
      
    
    A16: (((r 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A10,
    A11,
    XCMPLX_1: 106;
    
      (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    `2 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    + (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    + ( 
    |[((1
    - r) 
    *  
    0 ), ((1 
    - r) 
    * 1)]| 
    `2 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    + (1 
    - r)) by 
    EUCLID: 52
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `2 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) 
    + (1 
    - r)) by 
    Lm1
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q3 
    `2 )))) 
    + (1 
    - r)) by 
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `2 ) by 
    A16,
    Lm3;
    
      
    
      then
    
      
    
    A17: ((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    =  
    |[(((1
    / 2) 
    * q2) 
    `1 ), (((1 
    / 2) 
    * q2) 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= ((1
    / 2) 
    * q2) by 
    EUCLID: 53;
    
      ((1
    / 2) 
    * (p1 
    + q2)) 
    = (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    + r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 8
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 6
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) by 
    A17,
    RLVECT_1:def 3
    
      .= ((((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A15,
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[
    0 , 1]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      then ((1
    / 2) 
    * (p1 
    + q2)) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A11,
    A12;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q3)))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3))))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[
    0 , 1]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    Th47;
    
      hence thesis by
    A18,
    A7,
    A14,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:68
    
    1
    <= j & j 
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (2,(j 
    + 1))))))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 ,j))) 
    \/ ( 
    Int ( 
    cell (G,1,j)))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G) and 
    
      
    
    A3: 1 
    < ( 
    len G); 
    
      set p1 = (G
    * (1,j)), q2 = (G 
    * (1,(j 
    + 1))), q3 = (G 
    * (2,(j 
    + 1))), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (p1 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A4: (j 
    + 1) 
    >= 1 & (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      
    
    A5: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A3,
    NAT_1: 13;
    
      then
    
      
    
    A6: (q2 
    `2 ) 
    = (q3 
    `2 ) by 
    A4,
    GOBOARD5: 1;
    
      
    
      
    
    A7: (q2 
    `1 ) 
    = ((G 
    * (1,1)) 
    `1 ) by 
    A3,
    A4,
    GOBOARD5: 2
    
      .= (p1
    `1 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 2;
    
      then (p1
    `1 ) 
    < (q3 
    `1 ) by 
    A5,
    A4,
    GOBOARD5: 3;
    
      then
    
      
    
    A8: ((q3 
    `1 ) 
    - (p1 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (p1 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A9: r 
    < 1 by 
    XREAL_1: 212;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 ,j))), I2 = ( 
    Int ( 
    cell (G,1,j))); 
    
      
    
      
    
    A10: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    Th44;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p1 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A12: (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    `2 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    - (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    `2 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    - ( 
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]| 
    `2 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    -  
    0 ) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `2 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q2 
    `2 )))) by 
    A6,
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `2 ) by 
    Lm3;
    
      
    
      
    
    A13: (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + ((r 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      
    
      
    
    A14: (((r 
    * ((1 
    / 2) 
    * (q3 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A7,
    A8,
    XCMPLX_1: 106;
    
      (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    `1 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    - (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    `1 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    - ( 
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]| 
    `1 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    - (1 
    - r)) by 
    EUCLID: 52
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `1 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) 
    - (1 
    - r)) by 
    Lm1
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) 
    - (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q3 
    `1 )))) 
    - (1 
    - r)) by 
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `1 ) by 
    A14,
    Lm3;
    
      
    
      then
    
      
    
    A15: ((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    =  
    |[(((1
    / 2) 
    * q2) 
    `1 ), (((1 
    / 2) 
    * q2) 
    `2 )]| by 
    A12,
    EUCLID: 53
    
      .= ((1
    / 2) 
    * q2) by 
    EUCLID: 53;
    
      ((1
    / 2) 
    * (p1 
    + q2)) 
    = (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    + r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 8
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 6
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) by 
    A15,
    RLVECT_1:def 3
    
      .= ((((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((r 
    * ((1 
    / 2) 
    * (p1 
    + q3))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|))) by 
    A13,
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ( 
    - (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    - (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))))) by 
    RLVECT_1: 33
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    - (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    - (r 
    * ((1 
    / 2) 
    * (p1 
    + q3))))) 
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1: 29
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1: 34;
    
      then ((1
    / 2) 
    * (p1 
    + q2)) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A8,
    A9;
    
      then
    
      
    
    A16: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q3)))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    -  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3))))) by 
    TOPREAL1: 5;
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then (
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    A3,
    Th40;
    
      hence thesis by
    A16,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:69
    
    1
    <= j & j 
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * ((( 
    len G) 
    -' 1),(j 
    + 1))))))) 
    c= ((( 
    Int ( 
    cell (G,(( 
    len G) 
    -' 1),j))) 
    \/ ( 
    Int ( 
    cell (G,( 
    len G),j)))) 
    \/  
    {((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))))}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    < ( 
    width G) and 
    
      
    
    A3: 1 
    < ( 
    len G); 
    
      set I1 = (
    Int ( 
    cell (G,(( 
    len G) 
    -' 1),j))), I2 = ( 
    Int ( 
    cell (G,( 
    len G),j))); 
    
      set p1 = (G
    * (( 
    len G),j)), q2 = (G 
    * (( 
    len G),(j 
    + 1))), q3 = (G 
    * ((( 
    len G) 
    -' 1),(j 
    + 1))), r = (1 
    / (((1 
    / 2) 
    * ((p1 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A4: ((( 
    len G) 
    -' 1) 
    + 1) 
    = ( 
    len G) by 
    A3,
    XREAL_1: 235;
    
      then
    
      
    
    A5: 1 
    <= (( 
    len G) 
    -' 1) by 
    A3,
    NAT_1: 13;
    
      
    
      
    
    A6: (( 
    len G) 
    -' 1) 
    < ( 
    len G) by 
    A4,
    NAT_1: 13;
    
      then ((G
    * ((( 
    len G) 
    -' 1),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1)))) 
    = ((G 
    * (( 
    len G),j)) 
    + (G 
    * ((( 
    len G) 
    -' 1),(j 
    + 1)))) by 
    A1,
    A2,
    A4,
    A5,
    Th11;
    
      then
    
      
    
    A7: ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3)))) 
    c= (I1 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    A4,
    A5,
    A6,
    Th42;
    
      
    
      
    
    A8: (j 
    + 1) 
    >= 1 & (j 
    + 1) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 11,
    NAT_1: 13;
    
      
    
      then
    
      
    
    A9: (q2 
    `2 ) 
    = ((G 
    * (1,(j 
    + 1))) 
    `2 ) by 
    A3,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A5,
    A6,
    A8,
    GOBOARD5: 1;
    
      
    
      
    
    A10: (q2 
    `1 ) 
    = ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    A3,
    A8,
    GOBOARD5: 2
    
      .= (p1
    `1 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 2;
    
      then (q3
    `1 ) 
    < (p1 
    `1 ) by 
    A5,
    A6,
    A8,
    GOBOARD5: 3;
    
      then
    
      
    
    A11: ((p1 
    `1 ) 
    - (q3 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((p1 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A12: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A13: (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    `2 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    + (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    + ( 
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]| 
    `2 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `2 ) 
    +  
    0 ) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `2 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q2 
    `2 )))) by 
    A9,
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `2 ) by 
    Lm3;
    
      
    
      
    
    A14: ((I1 
    \/ I2) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {((1
    / 2) 
    * (p1 
    + q2))} 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) 
    \/ (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A15: (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + ((r 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      
    
      
    
    A16: (((r 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A10,
    A11,
    XCMPLX_1: 106;
    
      (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    `1 ) 
    = (((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    + (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    + ( 
    |[((1
    - r) 
    * 1), ((1 
    - r) 
    *  
    0 )]| 
    `1 )) by 
    EUCLID: 58
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    `1 ) 
    + (1 
    - r)) by 
    EUCLID: 52
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    `1 ) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) 
    + (1 
    - r)) by 
    Lm1
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + ((r 
    * ((1 
    / 2) 
    * q3)) 
    `1 )) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * (((1 
    / 2) 
    * q2) 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * (((1 
    / 2) 
    * q3) 
    `1 ))) 
    + (1 
    - r)) by 
    Lm3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    + (r 
    * ((1 
    / 2) 
    * (q3 
    `1 )))) 
    + (1 
    - r)) by 
    Lm3
    
      .= (((1
    / 2) 
    * q2) 
    `1 ) by 
    A16,
    Lm3;
    
      
    
      then
    
      
    
    A17: ((((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    =  
    |[(((1
    / 2) 
    * q2) 
    `1 ), (((1 
    / 2) 
    * q2) 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= ((1
    / 2) 
    * q2) by 
    EUCLID: 53;
    
      ((1
    / 2) 
    * (p1 
    + q2)) 
    = (((1 
    / 2) 
    * p1) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    + r) 
    * ((1 
    / 2) 
    * p1)) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 8
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    / 2) 
    * q2)) by 
    RLVECT_1:def 6
    
      .= (((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * q2)) 
    + (r 
    * ((1 
    / 2) 
    * q3)))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) by 
    A17,
    RLVECT_1:def 3
    
      .= ((((((1
    - r) 
    * ((1 
    / 2) 
    * p1)) 
    + (r 
    * ((1 
    / 2) 
    * p1))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * q2))) 
    + (r 
    * ((1 
    / 2) 
    * q3))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + q2))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A15,
    RLVECT_1:def 3
    
      .= (((1
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[1,
    0 ]|)) 
    + (r 
    * ((1 
    / 2) 
    * (p1 
    + q3)))) by 
    RLVECT_1:def 5;
    
      then ((1
    / 2) 
    * (p1 
    + q2)) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q3)))) by 
    A11,
    A12;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q3)))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    \/ ( 
    LSeg (((1 
    / 2) 
    * (p1 
    + q2)),((1 
    / 2) 
    * (p1 
    + q3))))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + q2)) 
    +  
    |[1,
    0 ]|),((1 
    / 2) 
    * (p1 
    + q2)))) 
    c= (I2 
    \/  
    {((1
    / 2) 
    * (p1 
    + q2))}) by 
    A1,
    A2,
    Th45;
    
      hence thesis by
    A18,
    A7,
    A14,
    XBOOLE_1: 13;
    
    end;
    
    
    
    
    
    Lm7: ((1 
    / 2) 
    + (1 
    / 2)) 
    = 1; 
    
    theorem :: 
    
    GOBOARD6:70
    
    1
    < ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * ((G 
    * (1,(j 
    + 1))) 
    + (G 
    * (1,(j 
    + 2))))) 
    -  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 ,j))) 
    \/ ( 
    Int ( 
    cell (G, 
    0 ,(j 
    + 1))))) 
    \/  
    {((G
    * (1,(j 
    + 1))) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    <= j and 
    
      
    
    A3: (j 
    + 1) 
    < ( 
    width G); 
    
      set p1 = (G
    * (1,j)), p2 = (G 
    * (1,(j 
    + 1))), q3 = (G 
    * (1,(j 
    + 2))), r = (((p2 
    `2 ) 
    - (p1 
    `2 )) 
    / ((q3 
    `2 ) 
    - (p1 
    `2 ))); 
    
      
    
      
    
    A4: ((j 
    + 1) 
    + 1) 
    = (j 
    + (1 
    + 1)); 
    
      then
    
      
    
    A5: (j 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A6: (j 
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A3,
    A4,
    NAT_1: 13;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 ,j))), I2 = ( 
    Int ( 
    cell (G, 
    0 ,(j 
    + 1)))); 
    
      
    
      
    
    A7: ((I1 
    \/ I2) 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(p2
    -  
    |[1,
    0 ]|)} 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}) 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A8: ( 
    LSeg ((((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|),(p2 
    -  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}) by 
    A3,
    A4,
    Th48,
    NAT_1: 11;
    
      j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `2 ) 
    < (p2 
    `2 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 4;
    
      then
    
      
    
    A9: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A10: (j 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      then
    
      
    
    A11: (p2 
    `1 ) 
    = ((G 
    * (1,1)) 
    `1 ) by 
    A1,
    A3,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A1,
    A6,
    A5,
    GOBOARD5: 2;
    
      j
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A12: j 
    < ( 
    width G) by 
    A3,
    XXREAL_0: 2;
    
      
    
      then (p1
    `1 ) 
    = ((G 
    * (1,1)) 
    `1 ) by 
    A1,
    A2,
    GOBOARD5: 2
    
      .= (p2
    `1 ) by 
    A1,
    A3,
    A10,
    GOBOARD5: 2;
    
      
    
      then
    
      
    
    A13: (1 
    * (p2 
    `1 )) 
    = (((1 
    - r) 
    * (p1 
    `1 )) 
    + (r 
    * (q3 
    `1 ))) by 
    A11
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + (r 
    * (q3 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + ((r 
    * q3) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `1 ) by 
    Lm1;
    
      (j
    + 1) 
    < (j 
    + 2) by 
    XREAL_1: 6;
    
      then (p2
    `2 ) 
    < (q3 
    `2 ) by 
    A1,
    A10,
    A6,
    GOBOARD5: 4;
    
      then
    
      
    
    A14: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    < ((q3 
    `2 ) 
    - (p1 
    `2 )) by 
    XREAL_1: 9;
    
      then (r
    * ((q3 
    `2 ) 
    - (p1 
    `2 ))) 
    = ((p2 
    `2 ) 
    - (p1 
    `2 )) by 
    A9,
    XCMPLX_1: 87;
    
      then (p2
    `2 ) 
    = (((1 
    - r) 
    * (p1 
    `2 )) 
    + (r 
    * (q3 
    `2 ))); 
    
      
    
      then (1
    * (p2 
    `2 )) 
    = ((((1 
    - r) 
    * p1) 
    `2 ) 
    + (r 
    * (q3 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + ((r 
    * q3) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `2 ) by 
    Lm1;
    
      
    
      then
    
      
    
    A15: (((1 
    - r) 
    * p1) 
    + (r 
    * q3)) 
    =  
    |[(p2
    `1 ), (p2 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= p2 by
    EUCLID: 53;
    
      p2
    = (1 
    * p2) by 
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * p2) 
    + ((1 
    / 2) 
    * p2)) by 
    Lm7,
    RLVECT_1:def 6
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    + r) 
    * p2)) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    A15,
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 6
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= (((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= (((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 7
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * ((r 
    * p2) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5;
    
      
    
      then
    
      
    
    A16: p2 
    = (((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      
    
      
    
    A17: (((1 
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[1,
    0 ]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + ((r 
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    - (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 34
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|))) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= ((((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    - (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1: 27
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - (((1 
    - r) 
    + r) 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
      .= (p2
    -  
    |[1,
    0 ]|) by 
    A16,
    RLVECT_1:def 8;
    
      r
    < 1 by 
    A14,
    A9,
    XREAL_1: 189;
    
      then (p2
    -  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|))) by 
    A14,
    A9,
    A17;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[1,
    0 ]|),(p2 
    -  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((p2 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[1,
    0 ]|),(p2 
    -  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(p2
    -  
    |[1,
    0 ]|)}) by 
    A2,
    A12,
    Th49;
    
      hence thesis by
    A18,
    A8,
    A7,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:71
    
    1
    < ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    < ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * ((G 
    * (( 
    len G),(j 
    + 1))) 
    + (G 
    * (( 
    len G),(j 
    + 2))))) 
    +  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G,( 
    len G),j))) 
    \/ ( 
    Int ( 
    cell (G,( 
    len G),(j 
    + 1))))) 
    \/  
    {((G
    * (( 
    len G),(j 
    + 1))) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    <= j and 
    
      
    
    A3: (j 
    + 1) 
    < ( 
    width G); 
    
      set p1 = (G
    * (( 
    len G),j)), p2 = (G 
    * (( 
    len G),(j 
    + 1))), q3 = (G 
    * (( 
    len G),(j 
    + 2))), r = (((p2 
    `2 ) 
    - (p1 
    `2 )) 
    / ((q3 
    `2 ) 
    - (p1 
    `2 ))); 
    
      
    
      
    
    A4: ((j 
    + 1) 
    + 1) 
    = (j 
    + (1 
    + 1)); 
    
      then
    
      
    
    A5: (j 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A6: (j 
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A3,
    A4,
    NAT_1: 13;
    
      set I1 = (
    Int ( 
    cell (G,( 
    len G),j))), I2 = ( 
    Int ( 
    cell (G,( 
    len G),(j 
    + 1)))); 
    
      
    
      
    
    A7: ((I1 
    \/ I2) 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(p2
    +  
    |[1,
    0 ]|)} 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}) 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A8: ( 
    LSeg ((((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|),(p2 
    +  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}) by 
    A3,
    A4,
    Th50,
    NAT_1: 11;
    
      j
    < (j 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `2 ) 
    < (p2 
    `2 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 4;
    
      then
    
      
    
    A9: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A10: (j 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      then
    
      
    
    A11: (p2 
    `1 ) 
    = ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    A1,
    A3,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A1,
    A6,
    A5,
    GOBOARD5: 2;
    
      j
    <= (j 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A12: j 
    < ( 
    width G) by 
    A3,
    XXREAL_0: 2;
    
      
    
      then (p1
    `1 ) 
    = ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    A1,
    A2,
    GOBOARD5: 2
    
      .= (p2
    `1 ) by 
    A1,
    A3,
    A10,
    GOBOARD5: 2;
    
      
    
      then
    
      
    
    A13: (1 
    * (p2 
    `1 )) 
    = (((1 
    - r) 
    * (p1 
    `1 )) 
    + (r 
    * (q3 
    `1 ))) by 
    A11
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + (r 
    * (q3 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + ((r 
    * q3) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `1 ) by 
    Lm1;
    
      (j
    + 1) 
    < (j 
    + 2) by 
    XREAL_1: 6;
    
      then (p2
    `2 ) 
    < (q3 
    `2 ) by 
    A1,
    A10,
    A6,
    GOBOARD5: 4;
    
      then
    
      
    
    A14: ((p2 
    `2 ) 
    - (p1 
    `2 )) 
    < ((q3 
    `2 ) 
    - (p1 
    `2 )) by 
    XREAL_1: 9;
    
      then (r
    * ((q3 
    `2 ) 
    - (p1 
    `2 ))) 
    = ((p2 
    `2 ) 
    - (p1 
    `2 )) by 
    A9,
    XCMPLX_1: 87;
    
      then (p2
    `2 ) 
    = (((1 
    - r) 
    * (p1 
    `2 )) 
    + (r 
    * (q3 
    `2 ))); 
    
      
    
      then (1
    * (p2 
    `2 )) 
    = ((((1 
    - r) 
    * p1) 
    `2 ) 
    + (r 
    * (q3 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + ((r 
    * q3) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `2 ) by 
    Lm1;
    
      
    
      then
    
      
    
    A15: (((1 
    - r) 
    * p1) 
    + (r 
    * q3)) 
    =  
    |[(p2
    `1 ), (p2 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= p2 by
    EUCLID: 53;
    
      p2
    = (1 
    * p2) by 
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * p2) 
    + ((1 
    / 2) 
    * p2)) by 
    Lm7,
    RLVECT_1:def 6
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    + r) 
    * p2)) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    A15,
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 6
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= (((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= (((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 7;
    
      
    
      then
    
      
    
    A16: p2 
    = ((((1 
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * ((r 
    * p2) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      
    
      
    
    A17: (((1 
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[1,
    0 ]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + ((r 
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 5
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|))) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= ((((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + ((1 
    - r) 
    *  
    |[1,
    0 ]|)) 
    + (r 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + (((1 
    - r) 
    *  
    |[1,
    0 ]|) 
    + (r 
    *  
    |[1,
    0 ]|))) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + (((1 
    - r) 
    + r) 
    *  
    |[1,
    0 ]|)) by 
    RLVECT_1:def 6
    
      .= (p2
    +  
    |[1,
    0 ]|) by 
    A16,
    RLVECT_1:def 8;
    
      r
    < 1 by 
    A14,
    A9,
    XREAL_1: 189;
    
      then (p2
    +  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|))) by 
    A14,
    A9,
    A17;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[1,
    0 ]|),(p2 
    +  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((p2 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[1,
    0 ]|),(p2 
    +  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(p2
    +  
    |[1,
    0 ]|)}) by 
    A2,
    A12,
    Th51;
    
      hence thesis by
    A18,
    A8,
    A7,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:72
    
    1
    < ( 
    width G) & 1 
    <= i & (i 
    + 1) 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),1)) 
    + (G 
    * ((i 
    + 2),1)))) 
    -  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G,i, 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G,(i 
    + 1), 
    0 )))) 
    \/  
    {((G
    * ((i 
    + 1),1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    <= i and 
    
      
    
    A3: (i 
    + 1) 
    < ( 
    len G); 
    
      set p1 = (G
    * (i,1)), p2 = (G 
    * ((i 
    + 1),1)), q3 = (G 
    * ((i 
    + 2),1)), r = (((p2 
    `1 ) 
    - (p1 
    `1 )) 
    / ((q3 
    `1 ) 
    - (p1 
    `1 ))); 
    
      
    
      
    
    A4: ((i 
    + 1) 
    + 1) 
    = (i 
    + (1 
    + 1)); 
    
      then
    
      
    
    A5: (i 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A6: (i 
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A3,
    A4,
    NAT_1: 13;
    
      set I1 = (
    Int ( 
    cell (G,i, 
    0 ))), I2 = ( 
    Int ( 
    cell (G,(i 
    + 1), 
    0 ))); 
    
      
    
      
    
    A7: ((I1 
    \/ I2) 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(p2
    -  
    |[
    0 , 1]|)} 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}) 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A8: ( 
    LSeg ((((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|),(p2 
    -  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}) by 
    A3,
    A4,
    Th52,
    NAT_1: 11;
    
      i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `1 ) 
    < (p2 
    `1 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 3;
    
      then
    
      
    
    A9: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A10: (i 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      then
    
      
    
    A11: (p2 
    `2 ) 
    = ((G 
    * (1,1)) 
    `2 ) by 
    A1,
    A3,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A1,
    A6,
    A5,
    GOBOARD5: 1;
    
      i
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A12: i 
    < ( 
    len G) by 
    A3,
    XXREAL_0: 2;
    
      
    
      then (p1
    `2 ) 
    = ((G 
    * (1,1)) 
    `2 ) by 
    A1,
    A2,
    GOBOARD5: 1
    
      .= (p2
    `2 ) by 
    A1,
    A3,
    A10,
    GOBOARD5: 1;
    
      
    
      then
    
      
    
    A13: (1 
    * (p2 
    `2 )) 
    = (((1 
    - r) 
    * (p1 
    `2 )) 
    + (r 
    * (q3 
    `2 ))) by 
    A11
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + (r 
    * (q3 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + ((r 
    * q3) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `2 ) by 
    Lm1;
    
      (i
    + 1) 
    < (i 
    + 2) by 
    XREAL_1: 6;
    
      then (p2
    `1 ) 
    < (q3 
    `1 ) by 
    A1,
    A10,
    A6,
    GOBOARD5: 3;
    
      then
    
      
    
    A14: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    < ((q3 
    `1 ) 
    - (p1 
    `1 )) by 
    XREAL_1: 9;
    
      then (r
    * ((q3 
    `1 ) 
    - (p1 
    `1 ))) 
    = ((p2 
    `1 ) 
    - (p1 
    `1 )) by 
    A9,
    XCMPLX_1: 87;
    
      then (p2
    `1 ) 
    = (((1 
    - r) 
    * (p1 
    `1 )) 
    + (r 
    * (q3 
    `1 ))); 
    
      
    
      then (1
    * (p2 
    `1 )) 
    = ((((1 
    - r) 
    * p1) 
    `1 ) 
    + (r 
    * (q3 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + ((r 
    * q3) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `1 ) by 
    Lm1;
    
      
    
      then
    
      
    
    A15: (((1 
    - r) 
    * p1) 
    + (r 
    * q3)) 
    =  
    |[(p2
    `1 ), (p2 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= p2 by
    EUCLID: 53;
    
      p2
    = (1 
    * p2) by 
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * p2) 
    + ((1 
    / 2) 
    * p2)) by 
    Lm7,
    RLVECT_1:def 6
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    + r) 
    * p2)) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    A15,
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 6
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= (((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= (((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 7
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * ((r 
    * p2) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5;
    
      
    
      then
    
      
    
    A16: p2 
    = ((((1 
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      
    
      
    
    A17: (((1 
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[
    0 , 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + ((r 
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    - (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 34
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|))) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= ((((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    - (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1: 27
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    - (((1 
    - r) 
    + r) 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
      .= (p2
    -  
    |[
    0 , 1]|) by 
    A16,
    RLVECT_1:def 8;
    
      r
    < 1 by 
    A14,
    A9,
    XREAL_1: 189;
    
      then (p2
    -  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|))) by 
    A14,
    A9,
    A17;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[
    0 , 1]|),(p2 
    -  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((p2 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    -  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    -  
    |[
    0 , 1]|),(p2 
    -  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(p2
    -  
    |[
    0 , 1]|)}) by 
    A2,
    A12,
    Th53;
    
      hence thesis by
    A18,
    A8,
    A7,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:73
    
    1
    < ( 
    width G) & 1 
    <= i & (i 
    + 1) 
    < ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * ((G 
    * ((i 
    + 1),( 
    width G))) 
    + (G 
    * ((i 
    + 2),( 
    width G))))) 
    +  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    \/ ( 
    Int ( 
    cell (G,(i 
    + 1),( 
    width G))))) 
    \/  
    {((G
    * ((i 
    + 1),( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    <= i and 
    
      
    
    A3: (i 
    + 1) 
    < ( 
    len G); 
    
      set p1 = (G
    * (i,( 
    width G))), p2 = (G 
    * ((i 
    + 1),( 
    width G))), q3 = (G 
    * ((i 
    + 2),( 
    width G))), r = (((p2 
    `1 ) 
    - (p1 
    `1 )) 
    / ((q3 
    `1 ) 
    - (p1 
    `1 ))); 
    
      
    
      
    
    A4: ((i 
    + 1) 
    + 1) 
    = (i 
    + (1 
    + 1)); 
    
      then
    
      
    
    A5: (i 
    + 2) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      
    
    A6: (i 
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A3,
    A4,
    NAT_1: 13;
    
      set I1 = (
    Int ( 
    cell (G,i,( 
    width G)))), I2 = ( 
    Int ( 
    cell (G,(i 
    + 1),( 
    width G)))); 
    
      
    
      
    
    A7: ((I1 
    \/ I2) 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(p2
    +  
    |[
    0 , 1]|)} 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}) 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A8: ( 
    LSeg ((((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|),(p2 
    +  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}) by 
    A3,
    A4,
    Th54,
    NAT_1: 11;
    
      i
    < (i 
    + 1) by 
    XREAL_1: 29;
    
      then (p1
    `1 ) 
    < (p2 
    `1 ) by 
    A1,
    A2,
    A3,
    GOBOARD5: 3;
    
      then
    
      
    
    A9: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A10: (i 
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
      
    
      then
    
      
    
    A11: (p2 
    `2 ) 
    = ((G 
    * (1,( 
    width G))) 
    `2 ) by 
    A1,
    A3,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A1,
    A6,
    A5,
    GOBOARD5: 1;
    
      i
    <= (i 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A12: i 
    < ( 
    len G) by 
    A3,
    XXREAL_0: 2;
    
      
    
      then (p1
    `2 ) 
    = ((G 
    * (1,( 
    width G))) 
    `2 ) by 
    A1,
    A2,
    GOBOARD5: 1
    
      .= (p2
    `2 ) by 
    A1,
    A3,
    A10,
    GOBOARD5: 1;
    
      
    
      then
    
      
    
    A13: (1 
    * (p2 
    `2 )) 
    = (((1 
    - r) 
    * (p1 
    `2 )) 
    + (r 
    * (q3 
    `2 ))) by 
    A11
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + (r 
    * (q3 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `2 ) 
    + ((r 
    * q3) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `2 ) by 
    Lm1;
    
      (i
    + 1) 
    < (i 
    + 2) by 
    XREAL_1: 6;
    
      then (p2
    `1 ) 
    < (q3 
    `1 ) by 
    A1,
    A10,
    A6,
    GOBOARD5: 3;
    
      then
    
      
    
    A14: ((p2 
    `1 ) 
    - (p1 
    `1 )) 
    < ((q3 
    `1 ) 
    - (p1 
    `1 )) by 
    XREAL_1: 9;
    
      then (r
    * ((q3 
    `1 ) 
    - (p1 
    `1 ))) 
    = ((p2 
    `1 ) 
    - (p1 
    `1 )) by 
    A9,
    XCMPLX_1: 87;
    
      then (p2
    `1 ) 
    = (((1 
    - r) 
    * (p1 
    `1 )) 
    + (r 
    * (q3 
    `1 ))); 
    
      
    
      then (1
    * (p2 
    `1 )) 
    = ((((1 
    - r) 
    * p1) 
    `1 ) 
    + (r 
    * (q3 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    `1 ) 
    + ((r 
    * q3) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * p1) 
    + (r 
    * q3)) 
    `1 ) by 
    Lm1;
    
      
    
      then
    
      
    
    A15: (((1 
    - r) 
    * p1) 
    + (r 
    * q3)) 
    =  
    |[(p2
    `1 ), (p2 
    `2 )]| by 
    A13,
    EUCLID: 53
    
      .= p2 by
    EUCLID: 53;
    
      p2
    = (1 
    * p2) by 
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * p2) 
    + ((1 
    / 2) 
    * p2)) by 
    Lm7,
    RLVECT_1:def 6
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    + r) 
    * p2)) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    A15,
    RLVECT_1:def 8
    
      .= (((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 6
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (((1 
    - r) 
    * p1) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= (((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + (((1 
    / 2) 
    * ((1 
    - r) 
    * p1)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3))))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= (((((1
    / 2) 
    * ((1 
    - r) 
    * p2)) 
    + ((1 
    / 2) 
    * ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (((1 
    - r) 
    * p2) 
    + ((1 
    - r) 
    * p1))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * ((1 
    - r) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 5
    
      .= (((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * p2))) 
    + ((1 
    / 2) 
    * (r 
    * q3))) by 
    RLVECT_1:def 7;
    
      
    
      then
    
      
    
    A16: p2 
    = ((((1 
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + (((1 
    / 2) 
    * (r 
    * p2)) 
    + ((1 
    / 2) 
    * (r 
    * q3)))) by 
    RLVECT_1:def 3
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * ((r 
    * p2) 
    + (r 
    * q3)))) by 
    RLVECT_1:def 5
    
      .= ((((1
    / 2) 
    * (1 
    - r)) 
    * (p1 
    + p2)) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 5
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    / 2) 
    * (r 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (((1 
    / 2) 
    * r) 
    * (p2 
    + q3))) by 
    RLVECT_1:def 7
    
      .= (((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + (r 
    * ((1 
    / 2) 
    * (p2 
    + q3)))) by 
    RLVECT_1:def 7;
    
      
    
      
    
    A17: (((1 
    - r) 
    * (((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[
    0 , 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    = ((((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
      .= ((((1
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + ((r 
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 5
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + (((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|))) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= ((((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + ((1 
    - r) 
    *  
    |[
    0 , 1]|)) 
    + (r 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + (((1 
    - r) 
    *  
    |[
    0 , 1]|) 
    + (r 
    *  
    |[
    0 , 1]|))) by 
    RLVECT_1:def 3
    
      .= (((r
    * ((1 
    / 2) 
    * (p2 
    + q3))) 
    + ((1 
    - r) 
    * ((1 
    / 2) 
    * (p1 
    + p2)))) 
    + (((1 
    - r) 
    + r) 
    *  
    |[
    0 , 1]|)) by 
    RLVECT_1:def 6
    
      .= (p2
    +  
    |[
    0 , 1]|) by 
    A16,
    RLVECT_1:def 8;
    
      r
    < 1 by 
    A14,
    A9,
    XREAL_1: 189;
    
      then (p2
    +  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|))) by 
    A14,
    A9,
    A17;
    
      then
    
      
    
    A18: ( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[
    0 , 1]|),(p2 
    +  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((p2 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (p2 
    + q3)) 
    +  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      (
    LSeg ((((1 
    / 2) 
    * (p1 
    + p2)) 
    +  
    |[
    0 , 1]|),(p2 
    +  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(p2
    +  
    |[
    0 , 1]|)}) by 
    A2,
    A12,
    Th55;
    
      hence thesis by
    A18,
    A8,
    A7,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:74
    
    1
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),(((1
    / 2) 
    * ((G 
    * (1,1)) 
    + (G 
    * (1,2)))) 
    -  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G, 
    0 ,1)))) 
    \/  
    {((G
    * (1,1)) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    < ( 
    width G); 
    
      set q2 = (G
    * (1,1)), q3 = (G 
    * (1,2)), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A3: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: (q2 
    `1 ) 
    = (q3 
    `1 ) by 
    A1,
    GOBOARD5: 2;
    
      (q2
    `2 ) 
    < (q3 
    `2 ) by 
    A1,
    A3,
    GOBOARD5: 4;
    
      then
    
      
    
    A5: ((q3 
    `2 ) 
    - (q2 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A6: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A7: ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    -  
    |[1, 1]|)
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    -  
    |[1, 1]|)
    `1 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    - ( 
    |[1, 1]|
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    - ( 
    |[1, 1]|
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    - 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ))) 
    - ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) 
    - 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q2 
    `1 ))))) 
    - 1) by 
    A4,
    Lm1
    
      .= ((q2
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[1,
    0 ]|) 
    `1 ) by 
    Lm2;
    
      
    
      
    
    A8: (((r 
    * ((1 
    / 2) 
    * (q3 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A5,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    RLVECT_1: 34
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    - (((1 
    - r) 
    *  
    |[1, 1]|)
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    - ((1 
    - r) 
    * ( 
    |[1, 1]|
    `2 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    - ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[1,
    0 ]| 
    `2 )))) by 
    Lm2
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    -  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q3 
    `2 ))))) by 
    Lm1
    
      .= ((q2
    `2 ) 
    -  
    0 ) by 
    A8
    
      .= ((q2
    `2 ) 
    - ( 
    |[1,
    0 ]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[1,
    0 ]|) 
    `2 ) by 
    Lm2;
    
      
    
      then (((1
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    =  
    |[((q2
    -  
    |[1,
    0 ]|) 
    `1 ), ((q2 
    -  
    |[1,
    0 ]|) 
    `2 )]| by 
    A7,
    EUCLID: 53
    
      .= (q2
    -  
    |[1,
    0 ]|) by 
    EUCLID: 53;
    
      then (q2
    -  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((q2 
    -  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) by 
    A5,
    A6;
    
      then
    
      
    
    A9: ( 
    LSeg ((q2 
    -  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((q2 
    -  
    |[1, 1]|),(q2
    -  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((q2 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 , 
    0 ))), I2 = ( 
    Int ( 
    cell (G, 
    0 ,1))); 
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: ( 
    LSeg ((q2 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) by 
    A2,
    Th48;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    -  
    |[1,
    0 ]|)} 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      (
    LSeg ((q2 
    -  
    |[1, 1]|),(q2
    -  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) by 
    Th56;
    
      hence thesis by
    A9,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:75
    
    1
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * ((G 
    * (( 
    len G),1)) 
    + (G 
    * (( 
    len G),2)))) 
    +  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G,( 
    len G),1)))) 
    \/  
    {((G
    * (( 
    len G),1)) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    < ( 
    width G); 
    
      set q2 = (G
    * (( 
    len G),1)), q3 = (G 
    * (( 
    len G),2)), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A3: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    width G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: (q2 
    `1 ) 
    = (q3 
    `1 ) by 
    A1,
    GOBOARD5: 2;
    
      (q2
    `2 ) 
    < (q3 
    `2 ) by 
    A1,
    A3,
    GOBOARD5: 4;
    
      then
    
      
    
    A5: ((q3 
    `2 ) 
    - (q2 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A6: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A7: ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, (
    - 1)]|) 
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, (
    - 1)]|) 
    `1 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[1, (
    - 1)]| 
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[1, (
    - 1)]| 
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ))) 
    + ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) 
    + 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q2 
    `1 ))))) 
    + 1) by 
    A4,
    Lm1
    
      .= ((q2
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[1,
    0 ]|) 
    `1 ) by 
    Lm1;
    
      
    
      
    
    A8: (((r 
    * ((1 
    / 2) 
    * (q3 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `2 ) 
    - (q2 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A5,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + (((1 
    - r) 
    *  
    |[1, (
    - 1)]|) 
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * ( 
    |[1, (
    - 1)]| 
    `2 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * ( 
    - 1))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + ( 
    - (1 
    - r))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[1,
    0 ]| 
    `2 )))) by 
    Lm1
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    +  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q3 
    `2 ))))) by 
    Lm1
    
      .= ((q2
    `2 ) 
    +  
    0 ) by 
    A8
    
      .= ((q2
    `2 ) 
    + ( 
    |[1,
    0 ]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[1,
    0 ]|) 
    `2 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    =  
    |[((q2
    +  
    |[1,
    0 ]|) 
    `1 ), ((q2 
    +  
    |[1,
    0 ]|) 
    `2 )]| by 
    A7,
    EUCLID: 53
    
      .= (q2
    +  
    |[1,
    0 ]|) by 
    EUCLID: 53;
    
      then (q2
    +  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) by 
    A5,
    A6;
    
      then
    
      
    
    A9: ( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(q2 
    +  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((q2 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G,( 
    len G), 
    0 ))), I2 = ( 
    Int ( 
    cell (G,( 
    len G),1))); 
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: ( 
    LSeg ((q2 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) by 
    A2,
    Th50;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    +  
    |[1,
    0 ]|)} 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      (
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(q2 
    +  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) by 
    Th57;
    
      hence thesis by
    A9,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:76
    
    1
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * ((G 
    * (1,( 
    width G))) 
    + (G 
    * (1,(( 
    width G) 
    -' 1))))) 
    -  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    \/ ( 
    Int ( 
    cell (G, 
    0 ,(( 
    width G) 
    -' 1))))) 
    \/  
    {((G
    * (1,( 
    width G))) 
    -  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    < ( 
    width G); 
    
      set q2 = (G
    * (1,( 
    width G))), q3 = (G 
    * (1,(( 
    width G) 
    -' 1))), r = (1 
    / (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A3: ((( 
    width G) 
    -' 1) 
    + 1) 
    = ( 
    width G) by 
    A2,
    XREAL_1: 235;
    
      then
    
      
    
    A4: (( 
    width G) 
    -' 1) 
    >= 1 by 
    A2,
    NAT_1: 13;
    
      
    
      
    
    A5: (( 
    width G) 
    -' 1) 
    < ( 
    width G) by 
    A3,
    NAT_1: 13;
    
      then (q3
    `2 ) 
    < (q2 
    `2 ) by 
    A1,
    A4,
    GOBOARD5: 4;
    
      then
    
      
    
    A6: ((q2 
    `2 ) 
    - (q3 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A7: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A8: (q2 
    `1 ) 
    = ((G 
    * (1,1)) 
    `1 ) by 
    A1,
    A2,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A1,
    A4,
    A5,
    GOBOARD5: 2;
    
      
    
      
    
    A9: ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[(
    - 1), 1]|) 
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[(
    - 1), 1]|) 
    `1 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[(
    - 1), 1]| 
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[(
    - 1), 1]| 
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    - 1))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )))) by 
    EUCLID: 52
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    - 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ))) 
    - 1) 
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) 
    - 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q2 
    `1 ))))) 
    - 1) by 
    A8,
    Lm1
    
      .= ((q2
    `1 ) 
    - ( 
    |[1,
    0 ]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[1,
    0 ]|) 
    `1 ) by 
    Lm2;
    
      
    
      
    
    A10: (((r 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A6,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + (((1 
    - r) 
    *  
    |[(
    - 1), 1]|) 
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * ( 
    |[(
    - 1), 1]| 
    `2 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|) 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[1,
    0 ]| 
    `2 )))) by 
    Lm2
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    -  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q3 
    `2 ))))) by 
    Lm1
    
      .= ((q2
    `2 ) 
    -  
    0 ) by 
    A10
    
      .= ((q2
    `2 ) 
    - ( 
    |[1,
    0 ]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[1,
    0 ]|) 
    `2 ) by 
    Lm2;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    =  
    |[((q2
    -  
    |[1,
    0 ]|) 
    `1 ), ((q2 
    -  
    |[1,
    0 ]|) 
    `2 )]| by 
    A9,
    EUCLID: 53
    
      .= (q2
    -  
    |[1,
    0 ]|) by 
    EUCLID: 53;
    
      then (q2
    -  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) by 
    A6,
    A7;
    
      then
    
      
    
    A11: ( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(q2 
    -  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((q2 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 ,( 
    width G)))), I2 = ( 
    Int ( 
    cell (G, 
    0 ,(( 
    width G) 
    -' 1)))); 
    
      
    
      
    
    A12: ((I1 
    \/ I2) 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    -  
    |[1,
    0 ]|)} 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A13: ( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(q2 
    -  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) by 
    Th58;
    
      (
    LSeg ((q2 
    -  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(q2
    -  
    |[1,
    0 ]|)}) by 
    A3,
    A4,
    A5,
    Th49;
    
      hence thesis by
    A11,
    A13,
    A12,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:77
    
    1
    < ( 
    len G) & 1 
    < ( 
    width G) implies ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),(((1
    / 2) 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    + (G 
    * (( 
    len G),(( 
    width G) 
    -' 1))))) 
    +  
    |[1,
    0 ]|))) 
    c= ((( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    \/ ( 
    Int ( 
    cell (G,( 
    len G),(( 
    width G) 
    -' 1))))) 
    \/  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1,
    0 ]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    len G) and 
    
      
    
    A2: 1 
    < ( 
    width G); 
    
      set q2 = (G
    * (( 
    len G),( 
    width G))), q3 = (G 
    * (( 
    len G),(( 
    width G) 
    -' 1))), r = (1 
    / (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)); 
    
      
    
      
    
    A3: ((( 
    width G) 
    -' 1) 
    + 1) 
    = ( 
    width G) by 
    A2,
    XREAL_1: 235;
    
      then
    
      
    
    A4: (( 
    width G) 
    -' 1) 
    >= 1 by 
    A2,
    NAT_1: 13;
    
      
    
      
    
    A5: (( 
    width G) 
    -' 1) 
    < ( 
    width G) by 
    A3,
    NAT_1: 13;
    
      then (q3
    `2 ) 
    < (q2 
    `2 ) by 
    A1,
    A4,
    GOBOARD5: 4;
    
      then
    
      
    
    A6: ((q2 
    `2 ) 
    - (q3 
    `2 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A7: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A8: (q2 
    `1 ) 
    = ((G 
    * (( 
    len G),1)) 
    `1 ) by 
    A1,
    A2,
    GOBOARD5: 2
    
      .= (q3
    `1 ) by 
    A1,
    A4,
    A5,
    GOBOARD5: 2;
    
      
    
      
    
    A9: ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, 1]|)
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `1 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, 1]|)
    `1 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[1, 1]|
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `1 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + ( 
    |[1, 1]|
    `1 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `1 ) 
    + 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ))) 
    + ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) 
    + 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q2 
    `1 ))))) 
    + 1) by 
    A8,
    Lm1
    
      .= ((q2
    `1 ) 
    + ( 
    |[1,
    0 ]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[1,
    0 ]|) 
    `1 ) by 
    Lm1;
    
      
    
      
    
    A10: (((r 
    * ((1 
    / 2) 
    * (q2 
    `2 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `2 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `2 ) 
    - (q3 
    `2 ))) 
    + 1)) 
    
      .= 1 by
    A6,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + (((1 
    - r) 
    *  
    |[1, 1]|)
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * ( 
    |[1, 1]|
    `2 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `2 ) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)) 
    `2 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|) 
    `2 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[1,
    0 ]| 
    `2 )))) by 
    Lm1
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    +  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q3 
    `2 ))))) by 
    Lm1
    
      .= ((q2
    `2 ) 
    +  
    0 ) by 
    A10
    
      .= ((q2
    `2 ) 
    + ( 
    |[1,
    0 ]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[1,
    0 ]|) 
    `2 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    =  
    |[((q2
    +  
    |[1,
    0 ]|) 
    `1 ), ((q2 
    +  
    |[1,
    0 ]|) 
    `2 )]| by 
    A9,
    EUCLID: 53
    
      .= (q2
    +  
    |[1,
    0 ]|) by 
    EUCLID: 53;
    
      then (q2
    +  
    |[1,
    0 ]|) 
    in ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) by 
    A6,
    A7;
    
      then
    
      
    
    A11: ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[1, 1]|),(q2
    +  
    |[1,
    0 ]|))) 
    \/ ( 
    LSeg ((q2 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G,( 
    len G),( 
    width G)))), I2 = ( 
    Int ( 
    cell (G,( 
    len G),(( 
    width G) 
    -' 1)))); 
    
      
    
      
    
    A12: ((I1 
    \/ I2) 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    +  
    |[1,
    0 ]|)} 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) 
    \/ (I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A13: ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(q2
    +  
    |[1,
    0 ]|))) 
    c= (I1 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) by 
    Th59;
    
      (
    LSeg ((q2 
    +  
    |[1,
    0 ]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[1,
    0 ]|))) 
    c= (I2 
    \/  
    {(q2
    +  
    |[1,
    0 ]|)}) by 
    A3,
    A4,
    A5,
    Th51;
    
      hence thesis by
    A11,
    A13,
    A12,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:78
    
    1
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg (((G 
    * (1,1)) 
    -  
    |[1, 1]|),(((1
    / 2) 
    * ((G 
    * (1,1)) 
    + (G 
    * (2,1)))) 
    -  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G,1, 
    0 )))) 
    \/  
    {((G
    * (1,1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    < ( 
    len G); 
    
      set q2 = (G
    * (1,1)), q3 = (G 
    * (2,1)), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A3: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: (q2 
    `2 ) 
    = (q3 
    `2 ) by 
    A1,
    GOBOARD5: 1;
    
      (q2
    `1 ) 
    < (q3 
    `1 ) by 
    A1,
    A3,
    GOBOARD5: 3;
    
      then
    
      
    
    A5: ((q3 
    `1 ) 
    - (q2 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A6: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A7: ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    -  
    |[1, 1]|)
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    -  
    |[1, 1]|)
    `2 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    - ( 
    |[1, 1]|
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    - ( 
    |[1, 1]|
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    - 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    - ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ))) 
    - ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) 
    - 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q2 
    `2 ))))) 
    - 1) by 
    A4,
    Lm1
    
      .= ((q2
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[
    0 , 1]|) 
    `2 ) by 
    Lm2;
    
      
    
      
    
    A8: (((r 
    * ((1 
    / 2) 
    * (q3 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A5,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    - ((1 
    - r) 
    *  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    RLVECT_1: 34
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    - (((1 
    - r) 
    *  
    |[1, 1]|)
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm2
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    - ((1 
    - r) 
    * ( 
    |[1, 1]|
    `1 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    - ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[
    0 , 1]| 
    `1 )))) by 
    Lm2
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    -  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q3 
    `1 ))))) by 
    Lm1
    
      .= ((q2
    `1 ) 
    -  
    0 ) by 
    A8
    
      .= ((q2
    `1 ) 
    - ( 
    |[
    0 , 1]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[
    0 , 1]|) 
    `1 ) by 
    Lm2;
    
      
    
      then (((1
    - r) 
    * (q2 
    -  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    =  
    |[((q2
    -  
    |[
    0 , 1]|) 
    `1 ), ((q2 
    -  
    |[
    0 , 1]|) 
    `2 )]| by 
    A7,
    EUCLID: 53
    
      .= (q2
    -  
    |[
    0 , 1]|) by 
    EUCLID: 53;
    
      then (q2
    -  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((q2 
    -  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) by 
    A5,
    A6;
    
      then
    
      
    
    A9: ( 
    LSeg ((q2 
    -  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((q2 
    -  
    |[1, 1]|),(q2
    -  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((q2 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 , 
    0 ))), I2 = ( 
    Int ( 
    cell (G,1, 
    0 ))); 
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: ( 
    LSeg ((q2 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) by 
    A2,
    Th52;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    -  
    |[
    0 , 1]|)} 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      (
    LSeg ((q2 
    -  
    |[1, 1]|),(q2
    -  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) by 
    Th60;
    
      hence thesis by
    A9,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:79
    
    1
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg (((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * ((G 
    * (1,( 
    width G))) 
    + (G 
    * (2,( 
    width G))))) 
    +  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    \/ ( 
    Int ( 
    cell (G,1,( 
    width G))))) 
    \/  
    {((G
    * (1,( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    < ( 
    len G); 
    
      set q2 = (G
    * (1,( 
    width G))), q3 = (G 
    * (2,( 
    width G))), r = (1 
    / (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A3: ( 
    0  
    + (1 
    + 1)) 
    <= ( 
    len G) by 
    A2,
    NAT_1: 13;
    
      then
    
      
    
    A4: (q2 
    `2 ) 
    = (q3 
    `2 ) by 
    A1,
    GOBOARD5: 1;
    
      (q2
    `1 ) 
    < (q3 
    `1 ) by 
    A1,
    A3,
    GOBOARD5: 3;
    
      then
    
      
    
    A5: ((q3 
    `1 ) 
    - (q2 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A6: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A7: ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[(
    - 1), 1]|) 
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[(
    - 1), 1]|) 
    `2 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[(
    - 1), 1]| 
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[(
    - 1), 1]| 
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ))) 
    + ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) 
    + 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q2 
    `2 ))))) 
    + 1) by 
    A4,
    Lm1
    
      .= ((q2
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[
    0 , 1]|) 
    `2 ) by 
    Lm1;
    
      
    
      
    
    A8: (((r 
    * ((1 
    / 2) 
    * (q3 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q2 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q3 
    `1 ) 
    - (q2 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A5,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[(
    - 1), 1]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + (((1 
    - r) 
    *  
    |[(
    - 1), 1]|) 
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * ( 
    |[(
    - 1), 1]| 
    `1 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * ( 
    - 1))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    EUCLID: 52
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    - (1 
    - r)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) 
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[
    0 , 1]| 
    `1 )))) by 
    Lm1
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    +  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    - (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q3 
    `1 ))))) by 
    Lm1
    
      .= ((q2
    `1 ) 
    +  
    0 ) by 
    A8
    
      .= ((q2
    `1 ) 
    + ( 
    |[
    0 , 1]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[
    0 , 1]|) 
    `1 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[(
    - 1), 1]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    =  
    |[((q2
    +  
    |[
    0 , 1]|) 
    `1 ), ((q2 
    +  
    |[
    0 , 1]|) 
    `2 )]| by 
    A7,
    EUCLID: 53
    
      .= (q2
    +  
    |[
    0 , 1]|) by 
    EUCLID: 53;
    
      then (q2
    +  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) by 
    A5,
    A6;
    
      then
    
      
    
    A9: ( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(q2 
    +  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((q2 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G, 
    0 ,( 
    width G)))), I2 = ( 
    Int ( 
    cell (G,1,( 
    width G)))); 
    
      ((
    0  
    + 1) 
    + 1) 
    = ( 
    0  
    + (1 
    + 1)); 
    
      then
    
      
    
    A10: ( 
    LSeg ((q2 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) by 
    A2,
    Th54;
    
      
    
      
    
    A11: ((I1 
    \/ I2) 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    +  
    |[
    0 , 1]|)} 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      (
    LSeg ((q2 
    +  
    |[(
    - 1), 1]|),(q2 
    +  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) by 
    Th62;
    
      hence thesis by
    A9,
    A10,
    A11,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:80
    
    1
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg (((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * ((G 
    * (( 
    len G),1)) 
    + (G 
    * ((( 
    len G) 
    -' 1),1)))) 
    -  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    \/ ( 
    Int ( 
    cell (G,(( 
    len G) 
    -' 1), 
    0 )))) 
    \/  
    {((G
    * (( 
    len G),1)) 
    -  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    < ( 
    len G); 
    
      set q2 = (G
    * (( 
    len G),1)), q3 = (G 
    * ((( 
    len G) 
    -' 1),1)), r = (1 
    / (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A3: ((( 
    len G) 
    -' 1) 
    + 1) 
    = ( 
    len G) by 
    A2,
    XREAL_1: 235;
    
      then
    
      
    
    A4: (( 
    len G) 
    -' 1) 
    >= 1 by 
    A2,
    NAT_1: 13;
    
      
    
      
    
    A5: (( 
    len G) 
    -' 1) 
    < ( 
    len G) by 
    A3,
    NAT_1: 13;
    
      then (q3
    `1 ) 
    < (q2 
    `1 ) by 
    A1,
    A4,
    GOBOARD5: 3;
    
      then
    
      
    
    A6: ((q2 
    `1 ) 
    - (q3 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A7: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A8: (q2 
    `2 ) 
    = ((G 
    * (1,1)) 
    `2 ) by 
    A1,
    A2,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A1,
    A4,
    A5,
    GOBOARD5: 1;
    
      
    
      
    
    A9: ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, (
    - 1)]|) 
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, (
    - 1)]|) 
    `2 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[1, (
    - 1)]| 
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[1, (
    - 1)]| 
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )))) by 
    Lm2
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    - 1))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )))) by 
    EUCLID: 52
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    - 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    - 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ))) 
    - 1) 
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) 
    - 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q2 
    `2 ))))) 
    - 1) by 
    A8,
    Lm1
    
      .= ((q2
    `2 ) 
    - ( 
    |[
    0 , 1]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[
    0 , 1]|) 
    `2 ) by 
    Lm2;
    
      
    
      
    
    A10: (((r 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A6,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[1, (
    - 1)]|)) 
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + (((1 
    - r) 
    *  
    |[1, (
    - 1)]|) 
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * ( 
    |[1, (
    - 1)]| 
    `1 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|) 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    - ( 
    |[
    0 , 1]| 
    `1 )))) by 
    Lm2
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    -  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q3 
    `1 ))))) by 
    Lm1
    
      .= ((q2
    `1 ) 
    -  
    0 ) by 
    A10
    
      .= ((q2
    `1 ) 
    - ( 
    |[
    0 , 1]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    -  
    |[
    0 , 1]|) 
    `1 ) by 
    Lm2;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[1, (
    - 1)]|)) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    =  
    |[((q2
    -  
    |[
    0 , 1]|) 
    `1 ), ((q2 
    -  
    |[
    0 , 1]|) 
    `2 )]| by 
    A9,
    EUCLID: 53
    
      .= (q2
    -  
    |[
    0 , 1]|) by 
    EUCLID: 53;
    
      then (q2
    -  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) by 
    A6,
    A7;
    
      then
    
      
    
    A11: ( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(q2 
    -  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((q2 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G,( 
    len G), 
    0 ))), I2 = ( 
    Int ( 
    cell (G,(( 
    len G) 
    -' 1), 
    0 ))); 
    
      
    
      
    
    A12: ((I1 
    \/ I2) 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    -  
    |[
    0 , 1]|)} 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A13: ( 
    LSeg ((q2 
    +  
    |[1, (
    - 1)]|),(q2 
    -  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) by 
    Th61;
    
      (
    LSeg ((q2 
    -  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    -  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(q2
    -  
    |[
    0 , 1]|)}) by 
    A3,
    A4,
    A5,
    Th53;
    
      hence thesis by
    A11,
    A13,
    A12,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:81
    
    1
    < ( 
    width G) & 1 
    < ( 
    len G) implies ( 
    LSeg (((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|),(((1
    / 2) 
    * ((G 
    * (( 
    len G),( 
    width G))) 
    + (G 
    * ((( 
    len G) 
    -' 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|))) 
    c= ((( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    \/ ( 
    Int ( 
    cell (G,(( 
    len G) 
    -' 1),( 
    width G))))) 
    \/  
    {((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[
    0 , 1]|)}) 
    
    proof
    
      assume that
    
      
    
    A1: 1 
    < ( 
    width G) and 
    
      
    
    A2: 1 
    < ( 
    len G); 
    
      set q2 = (G
    * (( 
    len G),( 
    width G))), q3 = (G 
    * ((( 
    len G) 
    -' 1),( 
    width G))), r = (1 
    / (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)); 
    
      
    
      
    
    A3: ((( 
    len G) 
    -' 1) 
    + 1) 
    = ( 
    len G) by 
    A2,
    XREAL_1: 235;
    
      then
    
      
    
    A4: (( 
    len G) 
    -' 1) 
    >= 1 by 
    A2,
    NAT_1: 13;
    
      
    
      
    
    A5: (( 
    len G) 
    -' 1) 
    < ( 
    len G) by 
    A3,
    NAT_1: 13;
    
      then (q3
    `1 ) 
    < (q2 
    `1 ) by 
    A1,
    A4,
    GOBOARD5: 3;
    
      then
    
      
    
    A6: ((q2 
    `1 ) 
    - (q3 
    `1 )) 
    >  
    0 by 
    XREAL_1: 50;
    
      then 1
    < (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1) by 
    XREAL_1: 29,
    XREAL_1: 129;
    
      then
    
      
    
    A7: r 
    < 1 by 
    XREAL_1: 212;
    
      
    
      
    
    A8: (q2 
    `2 ) 
    = ((G 
    * (1,( 
    width G))) 
    `2 ) by 
    A1,
    A2,
    GOBOARD5: 1
    
      .= (q3
    `2 ) by 
    A1,
    A4,
    A5,
    GOBOARD5: 1;
    
      
    
      
    
    A9: ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    `2 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    `2 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, 1]|)
    `2 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `2 )) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    +  
    |[1, 1]|)
    `2 )) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm3
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[1, 1]|
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `2 ))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + ( 
    |[1, 1]|
    `2 ))) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )))) by 
    Lm1
    
      .= (((1
    - r) 
    * ((q2 
    `2 ) 
    + 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + ((1 
    - r) 
    * 1)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ) 
    + 1))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    `2 ))) 
    + ((1 
    - r) 
    + r)) 
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `2 )))) 
    + 1) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `2 )) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `2 ) 
    + (q2 
    `2 ))))) 
    + 1) by 
    A8,
    Lm1
    
      .= ((q2
    `2 ) 
    + ( 
    |[
    0 , 1]| 
    `2 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[
    0 , 1]|) 
    `2 ) by 
    Lm1;
    
      
    
      
    
    A10: (((r 
    * ((1 
    / 2) 
    * (q2 
    `1 ))) 
    - (r 
    * ((1 
    / 2) 
    * (q3 
    `1 )))) 
    + r) 
    = (r 
    * (((1 
    / 2) 
    * ((q2 
    `1 ) 
    - (q3 
    `1 ))) 
    + 1)) 
    
      .= 1 by
    A6,
    XCMPLX_1: 106;
    
      ((((1
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    `1 ) 
    = ((((1 
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    + ((1 
    - r) 
    *  
    |[1, 1]|))
    `1 ) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    RLVECT_1:def 5
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + (((1 
    - r) 
    *  
    |[1, 1]|)
    `1 )) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm1
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * ( 
    |[1, 1]|
    `1 ))) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= (((((1
    - r) 
    * q2) 
    `1 ) 
    + ((1 
    - r) 
    * 1)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + ((r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)) 
    `1 )) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|) 
    `1 ))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    + ( 
    |[
    0 , 1]| 
    `1 )))) by 
    Lm1
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((((1 
    / 2) 
    * (q2 
    + q3)) 
    `1 ) 
    +  
    0 ))) by 
    EUCLID: 52
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    + q3) 
    `1 )))) by 
    Lm3
    
      .= ((((1
    - r) 
    * (q2 
    `1 )) 
    + (1 
    - r)) 
    + (r 
    * ((1 
    / 2) 
    * ((q2 
    `1 ) 
    + (q3 
    `1 ))))) by 
    Lm1
    
      .= ((q2
    `1 ) 
    +  
    0 ) by 
    A10
    
      .= ((q2
    `1 ) 
    + ( 
    |[
    0 , 1]| 
    `1 )) by 
    EUCLID: 52
    
      .= ((q2
    +  
    |[
    0 , 1]|) 
    `1 ) by 
    Lm1;
    
      
    
      then (((1
    - r) 
    * (q2 
    +  
    |[1, 1]|))
    + (r 
    * (((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    =  
    |[((q2
    +  
    |[
    0 , 1]|) 
    `1 ), ((q2 
    +  
    |[
    0 , 1]|) 
    `2 )]| by 
    A9,
    EUCLID: 53
    
      .= (q2
    +  
    |[
    0 , 1]|) by 
    EUCLID: 53;
    
      then (q2
    +  
    |[
    0 , 1]|) 
    in ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) by 
    A6,
    A7;
    
      then
    
      
    
    A11: ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(((1
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    = (( 
    LSeg ((q2 
    +  
    |[1, 1]|),(q2
    +  
    |[
    0 , 1]|))) 
    \/ ( 
    LSeg ((q2 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|)))) by 
    TOPREAL1: 5;
    
      set I1 = (
    Int ( 
    cell (G,( 
    len G),( 
    width G)))), I2 = ( 
    Int ( 
    cell (G,(( 
    len G) 
    -' 1),( 
    width G)))); 
    
      
    
      
    
    A12: ((I1 
    \/ I2) 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    = (I1 
    \/ (I2 
    \/ ( 
    {(q2
    +  
    |[
    0 , 1]|)} 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}))) by 
    XBOOLE_1: 4
    
      .= (I1
    \/ ((I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4
    
      .= ((I1
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) 
    \/ (I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)})) by 
    XBOOLE_1: 4;
    
      
    
      
    
    A13: ( 
    LSeg ((q2 
    +  
    |[1, 1]|),(q2
    +  
    |[
    0 , 1]|))) 
    c= (I1 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) by 
    Th63;
    
      (
    LSeg ((q2 
    +  
    |[
    0 , 1]|),(((1 
    / 2) 
    * (q2 
    + q3)) 
    +  
    |[
    0 , 1]|))) 
    c= (I2 
    \/  
    {(q2
    +  
    |[
    0 , 1]|)}) by 
    A3,
    A4,
    A5,
    Th55;
    
      hence thesis by
    A11,
    A13,
    A12,
    XBOOLE_1: 13;
    
    end;
    
    theorem :: 
    
    GOBOARD6:82
    
    1
    <= i & (i 
    + 1) 
    <= ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),p)) 
    meets ( 
    Int ( 
    cell (G,i,j))) 
    
    proof
    
      assume
    
      
    
    A1: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G) & 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G); 
    
      now
    
        take a = ((1
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))); 
    
        thus a
    in ( 
    LSeg (((1 
    / 2) 
    * ((G 
    * (i,j)) 
    + (G 
    * ((i 
    + 1),(j 
    + 1))))),p)) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,i,j))) by 
    A1,
    Th31;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:83
    
    1
    <= i & (i 
    + 1) 
    <= ( 
    len G) implies ( 
    LSeg (p,(((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|))) 
    meets ( 
    Int ( 
    cell (G,i,( 
    width G)))) 
    
    proof
    
      assume
    
      
    
    A1: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G); 
    
      now
    
        take a = (((1
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|); 
    
        thus a
    in ( 
    LSeg (p,(((1 
    / 2) 
    * ((G 
    * (i,( 
    width G))) 
    + (G 
    * ((i 
    + 1),( 
    width G))))) 
    +  
    |[
    0 , 1]|))) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,i,( 
    width G)))) by 
    A1,
    Th32;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:84
    
    1
    <= i & (i 
    + 1) 
    <= ( 
    len G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),p)) 
    meets ( 
    Int ( 
    cell (G,i, 
    0 ))) 
    
    proof
    
      assume
    
      
    
    A1: 1 
    <= i & (i 
    + 1) 
    <= ( 
    len G); 
    
      now
    
        take a = (((1
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|); 
    
        thus a
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (i,1)) 
    + (G 
    * ((i 
    + 1),1)))) 
    -  
    |[
    0 , 1]|),p)) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,i, 
    0 ))) by 
    A1,
    Th33;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:85
    
    1
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),p)) 
    meets ( 
    Int ( 
    cell (G, 
    0 ,j))) 
    
    proof
    
      assume
    
      
    
    A1: 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G); 
    
      now
    
        take a = (((1
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|); 
    
        thus a
    in ( 
    LSeg ((((1 
    / 2) 
    * ((G 
    * (1,j)) 
    + (G 
    * (1,(j 
    + 1))))) 
    -  
    |[1,
    0 ]|),p)) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G, 
    0 ,j))) by 
    A1,
    Th35;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:86
    
    1
    <= j & (j 
    + 1) 
    <= ( 
    width G) implies ( 
    LSeg (p,(((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|))) 
    meets ( 
    Int ( 
    cell (G,( 
    len G),j))) 
    
    proof
    
      assume
    
      
    
    A1: 1 
    <= j & (j 
    + 1) 
    <= ( 
    width G); 
    
      now
    
        take a = (((1
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|); 
    
        thus a
    in ( 
    LSeg (p,(((1 
    / 2) 
    * ((G 
    * (( 
    len G),j)) 
    + (G 
    * (( 
    len G),(j 
    + 1))))) 
    +  
    |[1,
    0 ]|))) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,( 
    len G),j))) by 
    A1,
    Th34;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:87
    
    (
    LSeg (p,((G 
    * (1,1)) 
    -  
    |[1, 1]|)))
    meets ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) 
    
    proof
    
      now
    
        take a = ((G
    * (1,1)) 
    -  
    |[1, 1]|);
    
        thus a
    in ( 
    LSeg (p,((G 
    * (1,1)) 
    -  
    |[1, 1]|))) by
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G, 
    0 , 
    0 ))) by 
    Th36;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:88
    
    (
    LSeg (p,((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|)))
    meets ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) 
    
    proof
    
      now
    
        take a = ((G
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|);
    
        thus a
    in ( 
    LSeg (p,((G 
    * (( 
    len G),( 
    width G))) 
    +  
    |[1, 1]|))) by
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,( 
    len G),( 
    width G)))) by 
    Th37;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:89
    
    (
    LSeg (p,((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|))) 
    meets ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) 
    
    proof
    
      now
    
        take a = ((G
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|); 
    
        thus a
    in ( 
    LSeg (p,((G 
    * (1,( 
    width G))) 
    +  
    |[(
    - 1), 1]|))) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G, 
    0 ,( 
    width G)))) by 
    Th38;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:90
    
    (
    LSeg (p,((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|))) 
    meets ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) 
    
    proof
    
      now
    
        take a = ((G
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|); 
    
        thus a
    in ( 
    LSeg (p,((G 
    * (( 
    len G),1)) 
    +  
    |[1, (
    - 1)]|))) by 
    RLTOPSP1: 68;
    
        thus a
    in ( 
    Int ( 
    cell (G,( 
    len G), 
    0 ))) by 
    Th39;
    
      end;
    
      hence thesis by
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    GOBOARD6:91
    
    
    
    
    
    Th91: for M be non 
    empty  
    MetrSpace, p be 
    Point of M, q be 
    Point of ( 
    TopSpaceMetr M), r be 
    Real st p 
    = q & r 
    >  
    0 holds ( 
    Ball (p,r)) is 
    a_neighborhood of q 
    
    proof
    
      let M be non
    empty  
    MetrSpace, p be 
    Point of M, q be 
    Point of ( 
    TopSpaceMetr M), r be 
    Real;
    
      reconsider A = (
    Ball (p,r)) as 
    Subset of ( 
    TopSpaceMetr M) by 
    TOPMETR: 12;
    
      assume p
    = q & r 
    >  
    0 ; 
    
      then q
    in A by 
    Th1;
    
      hence thesis by
    CONNSP_2: 3,
    TOPMETR: 14;
    
    end;
    
    theorem :: 
    
    GOBOARD6:92
    
    for M be non
    empty  
    MetrSpace, A be 
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of M holds p 
    in ( 
    Cl A) iff for r be 
    Real st r 
    >  
    0 holds ( 
    Ball (p,r)) 
    meets A 
    
    proof
    
      let M be non
    empty  
    MetrSpace, A be 
    Subset of ( 
    TopSpaceMetr M), p be 
    Point of M; 
    
      reconsider p9 = p as
    Point of ( 
    TopSpaceMetr M) by 
    TOPMETR: 12;
    
      hereby
    
        assume
    
        
    
    A1: p 
    in ( 
    Cl A); 
    
        let r be
    Real;
    
        reconsider B = (
    Ball (p,r)) as 
    Subset of ( 
    TopSpaceMetr M) by 
    TOPMETR: 12;
    
        assume r
    >  
    0 ; 
    
        then B is
    a_neighborhood of p9 by 
    Th91;
    
        hence (
    Ball (p,r)) 
    meets A by 
    A1,
    CONNSP_2: 27;
    
      end;
    
      assume
    
      
    
    A2: for r be 
    Real st r 
    >  
    0 holds ( 
    Ball (p,r)) 
    meets A; 
    
      for G be
    a_neighborhood of p9 holds G 
    meets A 
    
      proof
    
        let G be
    a_neighborhood of p9; 
    
        p
    in ( 
    Int G) by 
    CONNSP_2:def 1;
    
        then ex r be
    Real st r 
    >  
    0 & ( 
    Ball (p,r)) 
    c= G by 
    Th4;
    
        hence thesis by
    A2,
    XBOOLE_1: 63;
    
      end;
    
      hence thesis by
    CONNSP_2: 27;
    
    end;
    
    theorem :: 
    
    GOBOARD6:93
    
    for A be
    Subset of ( 
    TOP-REAL n) holds for p be 
    Point of ( 
    TOP-REAL n) holds for p9 be 
    Point of ( 
    Euclid n) st p 
    = p9 holds for s be 
    Real st s 
    >  
    0 holds p 
    in ( 
    Cl A) iff for r be 
    Real st 
    0  
    < r & r 
    < s holds ( 
    Ball (p9,r)) 
    meets A 
    
    proof
    
      let A be
    Subset of ( 
    TOP-REAL n); 
    
      let p be
    Point of ( 
    TOP-REAL n); 
    
      let p9 be
    Point of ( 
    Euclid n); 
    
      assume
    
      
    
    A1: p 
    = p9; 
    
      let s be
    Real;
    
      assume
    
      
    
    A2: s 
    >  
    0 ; 
    
      hereby
    
        assume
    
        
    
    A3: p 
    in ( 
    Cl A); 
    
        let r be
    Real;
    
        assume that
    
        
    
    A4: 
    0  
    < r and r 
    < s; 
    
        reconsider B = (
    Ball (p9,r)) as 
    Subset of ( 
    TOP-REAL n) by 
    TOPREAL3: 8;
    
        B is
    a_neighborhood of p by 
    A1,
    A4,
    Th2;
    
        hence (
    Ball (p9,r)) 
    meets A by 
    A3,
    CONNSP_2: 27;
    
      end;
    
      assume
    
      
    
    A5: for r be 
    Real st 
    0  
    < r & r 
    < s holds ( 
    Ball (p9,r)) 
    meets A; 
    
      for G be
    a_neighborhood of p holds G 
    meets A 
    
      proof
    
        let G be
    a_neighborhood of p; 
    
        p
    in ( 
    Int G) by 
    CONNSP_2:def 1;
    
        then
    
        consider r9 be
    Real such that 
    
        
    
    A6: r9 
    >  
    0 and 
    
        
    
    A7: ( 
    Ball (p9,r9)) 
    c= G by 
    A1,
    Th5;
    
        set r = (
    min (r9,(s 
    / 2))); 
    
        (
    Ball (p9,r)) 
    c= ( 
    Ball (p9,r9)) by 
    PCOMPS_1: 1,
    XXREAL_0: 17;
    
        then
    
        
    
    A8: ( 
    Ball (p9,r)) 
    c= G by 
    A7;
    
        (s
    / 2) 
    < s & r 
    <= (s 
    / 2) by 
    A2,
    XREAL_1: 216,
    XXREAL_0: 17;
    
        then
    
        
    
    A9: r 
    < s by 
    XXREAL_0: 2;
    
        (s
    / 2) 
    >  
    0 by 
    A2,
    XREAL_1: 215;
    
        then r
    >  
    0 by 
    A6,
    XXREAL_0: 15;
    
        hence thesis by
    A5,
    A8,
    A9,
    XBOOLE_1: 63;
    
      end;
    
      hence thesis by
    CONNSP_2: 27;
    
    end;