jordan3.miz
begin
reserve r1,r2 for
Real;
reserve n,i,i1,i2,j for
Nat;
reserve D for non
empty
set;
reserve f for
FinSequence of D;
theorem ::
JORDAN3:1
for f be
FinSequence of (
TOP-REAL n) st 2
<= (
len f) holds (f
. 1)
in (
L~ f) & (f
/. 1)
in (
L~ f) & (f
. (
len f))
in (
L~ f) & (f
/. (
len f))
in (
L~ f)
proof
let f be
FinSequence of (
TOP-REAL n);
assume
A1: 2
<= (
len f);
then
A2: (1
+ 1)
<= (
len f);
then
A3: (
LSeg (f,1))
in { (
LSeg (f,i)) : 1
<= i & (i
+ 1)
<= (
len f) };
(f
/. 1)
in (
LSeg ((f
/. 1),(f
/. (1
+ 1)))) by
RLTOPSP1: 68;
then (f
/. 1)
in (
LSeg (f,1)) by
A1,
TOPREAL1:def 3;
then (f
/. 1)
in (
union { (
LSeg (f,i)) : 1
<= i & (i
+ 1)
<= (
len f) }) by
A3,
TARSKI:def 4;
then
A4: (f
/. 1)
in (
L~ f) by
TOPREAL1:def 4;
A5: (((
len f)
-' 1)
+ 1)
= (
len f) by
A2,
NAT_D: 46,
XREAL_1: 235;
A6: 1
<= ((
len f)
-' 1) by
A2,
NAT_D: 49;
then
A7: (
LSeg (f,((
len f)
-' 1)))
in { (
LSeg (f,i)) : 1
<= i & (i
+ 1)
<= (
len f) } by
A5;
(f
/. (
len f))
in (
LSeg ((f
/. ((
len f)
-' 1)),(f
/. (((
len f)
-' 1)
+ 1)))) by
A5,
RLTOPSP1: 68;
then (f
/. (
len f))
in (
LSeg (f,((
len f)
-' 1))) by
A6,
A5,
TOPREAL1:def 3;
then (f
/. (
len f))
in (
union { (
LSeg (f,i)) : 1
<= i & (i
+ 1)
<= (
len f) }) by
A7,
TARSKI:def 4;
then
A8: (f
/. (
len f))
in (
L~ f) by
TOPREAL1:def 4;
1
<= (
len f) by
A2,
NAT_D: 46;
hence thesis by
A4,
A8,
FINSEQ_4: 15;
end;
theorem ::
JORDAN3:2
Th2: for p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st ((p1
`1 )
= (p2
`1 ) or (p1
`2 )
= (p2
`2 )) & q1
in (
LSeg (p1,p2)) & q2
in (
LSeg (p1,p2)) holds (q1
`1 )
= (q2
`1 ) or (q1
`2 )
= (q2
`2 )
proof
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: (p1
`1 )
= (p2
`1 ) or (p1
`2 )
= (p2
`2 ) and
A2: q1
in (
LSeg (p1,p2)) and
A3: q2
in (
LSeg (p1,p2));
consider r2 such that
A4: q2
= (((1
- r2)
* p1)
+ (r2
* p2)) and
0
<= r2 and r2
<= 1 by
A3;
consider r1 such that
A5: q1
= (((1
- r1)
* p1)
+ (r1
* p2)) and
0
<= r1 and r1
<= 1 by
A2;
(q1
`1 )
= ((((1
- r1)
* p1)
`1 )
+ ((r1
* p2)
`1 )) by
A5,
TOPREAL3: 2;
then (q1
`1 )
= (((1
- r1)
* (p1
`1 ))
+ ((r1
* p2)
`1 )) by
TOPREAL3: 4;
then
A6: (q1
`1 )
= (((1
- r1)
* (p1
`1 ))
+ (r1
* (p2
`1 ))) by
TOPREAL3: 4;
(q2
`1 )
= ((((1
- r2)
* p1)
`1 )
+ ((r2
* p2)
`1 )) by
A4,
TOPREAL3: 2;
then (q2
`1 )
= (((1
- r2)
* (p1
`1 ))
+ ((r2
* p2)
`1 )) by
TOPREAL3: 4;
then
A7: (q2
`1 )
= (((1
- r2)
* (p1
`1 ))
+ (r2
* (p2
`1 ))) by
TOPREAL3: 4;
(q1
`2 )
= ((((1
- r1)
* p1)
`2 )
+ ((r1
* p2)
`2 )) by
A5,
TOPREAL3: 2;
then (q1
`2 )
= (((1
- r1)
* (p1
`2 ))
+ ((r1
* p2)
`2 )) by
TOPREAL3: 4;
then
A8: (q1
`2 )
= (((1
- r1)
* (p1
`2 ))
+ (r1
* (p2
`2 ))) by
TOPREAL3: 4;
(q2
`2 )
= ((((1
- r2)
* p1)
`2 )
+ ((r2
* p2)
`2 )) by
A4,
TOPREAL3: 2;
then (q2
`2 )
= (((1
- r2)
* (p1
`2 ))
+ ((r2
* p2)
`2 )) by
TOPREAL3: 4;
then
A9: (q2
`2 )
= (((1
- r2)
* (p1
`2 ))
+ (r2
* (p2
`2 ))) by
TOPREAL3: 4;
per cases by
A1;
suppose (p1
`1 )
= (p2
`1 );
hence thesis by
A6,
A7;
end;
suppose (p1
`2 )
= (p2
`2 );
hence thesis by
A8,
A9;
end;
end;
theorem ::
JORDAN3:3
Th3: for p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st ((p1
`1 )
= (p2
`1 ) or (p1
`2 )
= (p2
`2 )) & (
LSeg (q1,q2))
c= (
LSeg (p1,p2)) holds (q1
`1 )
= (q2
`1 ) or (q1
`2 )
= (q2
`2 )
proof
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
A1: q2
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
q1
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
hence thesis by
A1,
Th2;
end;
theorem ::
JORDAN3:4
Th4: for f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT st 2
<= n & f is
being_S-Seq holds (f
| n) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT ;
assume that
A1: 2
<= n and
A2: f is
being_S-Seq;
A3: (
len f)
>= 2 by
A2,
TOPREAL1:def 8;
A4:
now
per cases ;
case n
<= (
len f);
hence (
len (f
| n))
>= 2 by
A1,
FINSEQ_1: 59;
end;
case n
> (
len f);
hence (
len (f
| n))
>= 2 by
A3,
FINSEQ_1: 58;
end;
end;
reconsider f9 = f as
s.n.c.
special
unfolded
one-to-one
FinSequence of (
TOP-REAL 2) by
A2;
(f9
| n) is
one-to-one;
hence thesis by
A4,
TOPREAL1:def 8;
end;
theorem ::
JORDAN3:5
Th5: for f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT st n
<= (
len f) & 2
<= ((
len f)
-' n) & f is
being_S-Seq holds (f
/^ n) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT ;
assume that
A1: n
<= (
len f) and
A2: 2
<= ((
len f)
-' n) and
A3: f is
being_S-Seq;
reconsider f9 = f as
one-to-one
special
s.n.c.
unfolded
FinSequence of (
TOP-REAL 2) by
A3;
(
len (f
/^ n))
= ((
len f)
- n) by
A1,
RFINSEQ:def 1;
then (
len (f9
/^ n))
>= 2 by
A1,
A2,
XREAL_1: 233;
hence thesis by
TOPREAL1:def 8;
end;
theorem ::
JORDAN3:6
for f be
FinSequence of (
TOP-REAL 2), k1,k2 be
Element of
NAT st f is
being_S-Seq & 1
<= k1 & k1
<= (
len f) & 1
<= k2 & k2
<= (
len f) & k1
<> k2 holds (
mid (f,k1,k2)) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), k1,k2 be
Element of
NAT ;
assume that
A1: f is
being_S-Seq and
A2: 1
<= k1 and
A3: k1
<= (
len f) and
A4: 1
<= k2 and
A5: k2
<= (
len f) and
A6: k1
<> k2;
per cases ;
suppose
A7: k1
<= k2;
then k1
< k2 by
A6,
XXREAL_0: 1;
then
A8: (k1
+ 1)
<= k2 by
NAT_1: 13;
then ((k1
+ 1)
- k1)
<= (k2
- k1) by
XREAL_1: 9;
then 1
<= (k2
-' k1) by
NAT_D: 39;
then
A9: (1
+ 1)
<= ((k2
-' k1)
+ 1) by
XREAL_1: 6;
(k1
+ 1)
<= (
len f) by
A5,
A8,
XXREAL_0: 2;
then ((k1
+ 1)
- k1)
<= ((
len f)
- k1) by
XREAL_1: 9;
then
A10: (1
+ 1)
<= (((
len f)
- k1)
+ 1) by
XREAL_1: 6;
((
len f)
-' (k1
-' 1))
= ((
len f)
- (k1
-' 1)) by
A3,
NAT_D: 50,
XREAL_1: 233
.= ((
len f)
- (k1
- 1)) by
A2,
XREAL_1: 233
.= (((
len f)
- k1)
+ 1);
then
A11: (f
/^ (k1
-' 1)) is
being_S-Seq by
A1,
A3,
A10,
Th5,
NAT_D: 50;
(
mid (f,k1,k2))
= ((f
/^ (k1
-' 1))
| ((k2
-' k1)
+ 1)) by
A7,
FINSEQ_6:def 3;
hence thesis by
A11,
A9,
Th4;
end;
suppose
A12: k1
> k2;
then
A13: (k2
+ 1)
<= k1 by
NAT_1: 13;
then ((k2
+ 1)
- k2)
<= (k1
- k2) by
XREAL_1: 9;
then 1
<= (k1
-' k2) by
NAT_D: 39;
then
A14: (1
+ 1)
<= ((k1
-' k2)
+ 1) by
XREAL_1: 6;
(k2
+ 1)
<= (
len f) by
A3,
A13,
XXREAL_0: 2;
then ((k2
+ 1)
- k2)
<= ((
len f)
- k2) by
XREAL_1: 9;
then
A15: (1
+ 1)
<= (((
len f)
- k2)
+ 1) by
XREAL_1: 6;
((
len f)
-' (k2
-' 1))
= ((
len f)
- (k2
-' 1)) by
A5,
NAT_D: 50,
XREAL_1: 233
.= ((
len f)
- (k2
- 1)) by
A4,
XREAL_1: 233
.= (((
len f)
- k2)
+ 1);
then (f
/^ (k2
-' 1)) is
being_S-Seq by
A1,
A5,
A15,
Th5,
NAT_D: 50;
then
A16: ((f
/^ (k2
-' 1))
| ((k1
-' k2)
+ 1)) is
S-Sequence_in_R2 by
A14,
Th4;
(
mid (f,k1,k2))
= (
Rev ((f
/^ (k2
-' 1))
| ((k1
-' k2)
+ 1))) by
A12,
FINSEQ_6:def 3;
hence thesis by
A16;
end;
end;
begin
definition
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
::
JORDAN3:def1
func
Index (p,f) ->
Element of
NAT means
:
Def1: ex S be non
empty
Subset of
NAT st it
= (
min S) & S
= { i : p
in (
LSeg (f,i)) };
existence
proof
set S = { i : p
in (
LSeg (f,i)) };
A2: S
c=
NAT
proof
let x be
object;
assume x
in S;
then ex i st x
= i & p
in (
LSeg (f,i));
hence thesis by
ORDINAL1:def 12;
end;
consider i2 be
Nat such that 1
<= i2 and (i2
+ 1)
<= (
len f) and
A3: p
in (
LSeg (f,i2)) by
A1,
SPPOL_2: 13;
i2
in S by
A3;
then
reconsider S as non
empty
Subset of
NAT by
A2;
take (
min S), S;
thus thesis;
end;
uniqueness ;
end
theorem ::
JORDAN3:7
Th7: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), i be
Element of
NAT st p
in (
LSeg (f,i)) holds (
Index (p,f))
<= i
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2), i0 be
Element of
NAT ;
assume
A1: p
in (
LSeg (f,i0));
(
LSeg (f,i0))
c= (
L~ f) by
TOPREAL3: 19;
then
consider S be non
empty
Subset of
NAT such that
A2: (
Index (p,f))
= (
min S) and
A3: S
= { i : p
in (
LSeg (f,i)) } by
A1,
Def1;
i0
in S by
A1,
A3;
hence thesis by
A2,
XXREAL_2:def 7;
end;
theorem ::
JORDAN3:8
Th8: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds 1
<= (
Index (p,f)) & (
Index (p,f))
< (
len f)
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume p
in (
L~ f);
then
consider S be non
empty
Subset of
NAT such that
A1: (
Index (p,f))
= (
min S) and
A2: S
= { i : p
in (
LSeg (f,i)) } by
Def1;
(
Index (p,f))
in S by
A1,
XXREAL_2:def 7;
then
A3: ex i st i
= (
Index (p,f)) & p
in (
LSeg (f,i)) by
A2;
hence 1
<= (
Index (p,f)) by
TOPREAL1:def 3;
((
Index (p,f))
+ 1)
<= (
len f) by
A3,
TOPREAL1:def 3;
hence thesis by
NAT_1: 13;
end;
theorem ::
JORDAN3:9
Th9: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds p
in (
LSeg (f,(
Index (p,f))))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume p
in (
L~ f);
then
consider S be non
empty
Subset of
NAT such that
A1: (
Index (p,f))
= (
min S) and
A2: S
= { i : p
in (
LSeg (f,i)) } by
Def1;
(
Index (p,f))
in S by
A1,
XXREAL_2:def 7;
then ex i st i
= (
Index (p,f)) & p
in (
LSeg (f,i)) by
A2;
hence thesis;
end;
theorem ::
JORDAN3:10
Th10: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st p
in (
LSeg (f,1)) holds (
Index (p,f))
= 1
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
LSeg (f,1));
then
A2: (
Index (p,f))
<= 1 by
Th7;
(
LSeg (f,1))
c= (
L~ f) by
TOPREAL3: 19;
then (
Index (p,f))
>= 1 by
A1,
Th8;
hence thesis by
A2,
XXREAL_0: 1;
end;
theorem ::
JORDAN3:11
Th11: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st (
len f)
>= 2 holds (
Index ((f
/. 1),f))
= 1
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume (
len f)
>= 2;
then (
len f)
>= (1
+ 1);
then (f
/. 1)
in (
LSeg (f,1)) by
TOPREAL1: 21;
hence thesis by
Th10;
end;
theorem ::
JORDAN3:12
Th12: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), i1 be
Nat st f is
being_S-Seq & 1
< i1 & i1
<= (
len f) & p
= (f
. i1) holds ((
Index (p,f))
+ 1)
= i1
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), i1 be
Nat;
assume
A1: f is
being_S-Seq;
assume that
A2: 1
< i1 and
A3: i1
<= (
len f);
A4: i1
in (
dom f) by
A2,
A3,
FINSEQ_3: 25;
assume p
= (f
. i1);
then
A5: p
= (f
/. i1) by
A4,
PARTFUN1:def 6;
assume
A6: ((
Index (p,f))
+ 1)
<> i1;
consider j be
Nat such that
A7: i1
= (j
+ 1) by
A2,
NAT_1: 6;
reconsider j as
Element of
NAT by
ORDINAL1:def 12;
A8: (1
+
0 )
<= j by
A2,
A7,
NAT_1: 13;
then
A9: p
in (
LSeg (f,j)) by
A3,
A7,
A5,
TOPREAL1: 21;
then (
Index (p,f))
<= j by
Th7;
then (
Index (p,f))
< j by
A7,
A6,
XXREAL_0: 1;
then
A10: ((
Index (p,f))
+ 1)
<= j by
NAT_1: 13;
A11: (
LSeg (f,j))
c= (
L~ f) by
TOPREAL3: 19;
then
A12: p
in (
LSeg (f,(
Index (p,f)))) by
A9,
Th9;
per cases by
A10,
XXREAL_0: 1;
suppose
A13: ((
Index (p,f))
+ 1)
= j;
then
A14: ((
Index (p,f))
+ (1
+ 1))
<= (
len f) by
A3,
A7;
1
<= (
Index (p,f)) by
A9,
A11,
Th8;
then ((
LSeg (f,(
Index (p,f))))
/\ (
LSeg (f,j)))
=
{(f
/. j)} by
A1,
A13,
A14,
TOPREAL1:def 6;
then p
in
{(f
/. j)} by
A9,
A12,
XBOOLE_0:def 4;
then
A15: p
= (f
/. j) by
TARSKI:def 1;
j
< (
len f) by
A3,
A7,
NAT_1: 13;
then
A16: j
in (
dom f) by
A8,
FINSEQ_3: 25;
j
< i1 by
A7,
NAT_1: 13;
hence contradiction by
A1,
A4,
A5,
A15,
A16,
PARTFUN2: 10;
end;
suppose
A17: ((
Index (p,f))
+ 1)
< j;
p
in ((
LSeg (f,(
Index (p,f))))
/\ (
LSeg (f,j))) by
A9,
A12,
XBOOLE_0:def 4;
then (
LSeg (f,(
Index (p,f))))
meets (
LSeg (f,j)) by
XBOOLE_0: 4;
hence contradiction by
A1,
A17,
TOPREAL1:def 7;
end;
end;
theorem ::
JORDAN3:13
Th13: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) holds for i1 be
Element of
NAT st f is
s.n.c. & p
in (
LSeg (f,i1)) holds i1
= (
Index (p,f)) or i1
= ((
Index (p,f))
+ 1)
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
let i1 be
Element of
NAT ;
assume that
A1: f is
s.n.c. and
A2: p
in (
LSeg (f,i1));
p
in (
L~ f) by
A2,
SPPOL_2: 17;
then p
in (
LSeg (f,(
Index (p,f)))) by
Th9;
then p
in ((
LSeg (f,(
Index (p,f))))
/\ (
LSeg (f,i1))) by
A2,
XBOOLE_0:def 4;
then
A3: (
LSeg (f,(
Index (p,f))))
meets (
LSeg (f,i1)) by
XBOOLE_0: 4;
assume
A4: not thesis;
(
Index (p,f))
<= i1 by
A2,
Th7;
then (
Index (p,f))
< i1 by
A4,
XXREAL_0: 1;
then ((
Index (p,f))
+ 1)
<= i1 by
NAT_1: 13;
then ((
Index (p,f))
+ 1)
< i1 by
A4,
XXREAL_0: 1;
hence contradiction by
A1,
A3,
TOPREAL1:def 7;
end;
theorem ::
JORDAN3:14
Th14: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) holds for i1 be
Element of
NAT st f is
unfolded
s.n.c. & (i1
+ 1)
<= (
len f) & p
in (
LSeg (f,i1)) & p
<> (f
. i1) holds i1
= (
Index (p,f))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
let i1 be
Element of
NAT ;
assume that
A1: f is
unfolded
s.n.c. and
A2: (i1
+ 1)
<= (
len f) and
A3: p
in (
LSeg (f,i1));
A4: i1
< (
len f) by
A2,
NAT_1: 13;
A5: 1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
(
Index (p,f))
<= i1 by
A3,
Th7;
then (
Index (p,f))
< (
len f) by
A4,
XXREAL_0: 2;
then ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then
A6: ((
Index (p,f))
+ 1)
in (
dom f) by
A5,
FINSEQ_3: 25;
assume
A7: p
<> (f
. i1);
A8: p
in (
L~ f) by
A3,
SPPOL_2: 17;
then p
in (
LSeg (f,(
Index (p,f)))) by
Th9;
then
A9: p
in ((
LSeg (f,(
Index (p,f))))
/\ (
LSeg (f,i1))) by
A3,
XBOOLE_0:def 4;
A10: 1
<= (
Index (p,f)) by
A8,
Th8;
now
assume
A11: i1
= ((
Index (p,f))
+ 1);
then ((
Index (p,f))
+ (1
+ 1))
<= (
len f) by
A2;
then p
in
{(f
/. ((
Index (p,f))
+ 1))} by
A1,
A9,
A10,
A11,
TOPREAL1:def 6;
then p
= (f
/. ((
Index (p,f))
+ 1)) by
TARSKI:def 1;
hence contradiction by
A7,
A6,
A11,
PARTFUN1:def 6;
end;
hence thesis by
A1,
A3,
Th13;
end;
definition
let g be
FinSequence of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2);
::
JORDAN3:def2
pred g
is_S-Seq_joining p1,p2 means g is
being_S-Seq & (g
. 1)
= p1 & (g
. (
len g))
= p2;
end
theorem ::
JORDAN3:15
Th15: for g be
FinSequence of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2) st g
is_S-Seq_joining (p1,p2) holds (
Rev g)
is_S-Seq_joining (p2,p1)
proof
let g be
FinSequence of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2);
assume that
A1: g is
being_S-Seq and
A2: (g
. 1)
= p1 and
A3: (g
. (
len g))
= p2;
thus (
Rev g) is
being_S-Seq by
A1;
thus ((
Rev g)
. 1)
= p2 by
A3,
FINSEQ_5: 62;
(
dom g)
= (
dom (
Rev g)) by
FINSEQ_5: 57;
hence ((
Rev g)
. (
len (
Rev g)))
= ((
Rev g)
. (
len g)) by
FINSEQ_3: 29
.= p1 by
A2,
FINSEQ_5: 62;
end;
theorem ::
JORDAN3:16
Th16: for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), j be
Nat st p
in (
L~ f) & g
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) & 1
<= j & (j
+ 1)
<= (
len g) holds (
LSeg (g,j))
c= (
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), j be
Nat;
assume that
A1: p
in (
L~ f) and
A2: g
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) and
A3: 1
<= j and
A4: (j
+ 1)
<= (
len g);
A5: j
<= (
len g) by
A4,
NAT_1: 13;
(
len g)
= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A2,
FINSEQ_1: 22;
then
A6: (
len g)
= (1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
FINSEQ_1: 39;
then
A7: ((j
+ 1)
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A4,
XREAL_1: 9;
(j
-' 1)
<= j by
NAT_D: 35;
then
A8: (j
-' 1)
<= (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A7,
XXREAL_0: 2;
1
<= ((
Index (p,f))
+ j) by
A3,
NAT_1: 12;
then
A9: (1
- 1)
<= (((
Index (p,f))
+ j)
- 1) by
XREAL_1: 9;
A10: (j
-' 1)
= (j
- 1) by
A3,
XREAL_1: 233;
A11: j
= (1
+ (j
- 1))
.= ((
len
<*p*>)
+ (j
-' 1)) by
A10,
FINSEQ_1: 39;
1
<= (
Index (p,f)) by
A1,
Th8;
then (1
+ 1)
<= ((
Index (p,f))
+ j) by
A3,
XREAL_1: 7;
then 1
<= (((
Index (p,f))
+ j)
- 1) by
XREAL_1: 19;
then
A12: 1
<= (((
Index (p,f))
+ j)
-' 1) by
NAT_D: 39;
consider i such that 1
<= i and
A13: (i
+ 1)
<= (
len f) and p
in (
LSeg (f,i)) by
A1,
SPPOL_2: 13;
1
<= (i
+ 1) by
NAT_1: 12;
then
A14: 1
<= (
len f) by
A13,
XXREAL_0: 2;
A15: (
Index (p,f))
< (
len f) by
A1,
Th8;
then
A16: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
((
Index (p,f))
+ 1)
<= (
len f) by
A15,
NAT_1: 13;
then (((
Index (p,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then
A17: (1
- 1)
<= (((
len f)
- (
Index (p,f)))
- 1) by
XREAL_1: 9;
then
A18: ((
len f)
-' ((
Index (p,f))
+ 1))
= ((
len f)
- ((
Index (p,f))
+ 1)) by
XREAL_0:def 2
.= (((
len f)
- (
Index (p,f)))
- 1);
A19: (
0
+ 1)
<= ((
Index (p,f))
+ 1) by
NAT_1: 13;
then
A20: 1
<= (
len f) by
A15,
NAT_1: 13;
((
Index (p,f))
+ 1)
<= (
len f) by
A15,
NAT_1: 13;
then
A21: (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A14,
A19,
FINSEQ_6: 118;
A22: (
len g)
= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A2,
FINSEQ_1: 22
.= (1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
FINSEQ_1: 39;
then (
len g)
= (1
+ (((
len f)
- ((
Index (p,f))
+ 1))
+ 1)) by
A17,
A21,
XREAL_0:def 2
.= (1
+ ((
len f)
- (
Index (p,f))));
then j
<= ((
len f)
- (
Index (p,f))) by
A4,
XREAL_1: 6;
then
A23: (j
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
XREAL_1: 6;
then
A24: ((((
Index (p,f))
+ j)
-' 1)
+ 1)
<= (
len f) by
A3,
NAT_1: 12,
XREAL_1: 235;
A25: 1
<= (j
+ 1) by
A3,
NAT_1: 13;
then
A26: (g
/. (j
+ 1))
= (g
. (j
+ 1)) by
A4,
FINSEQ_4: 15;
A27: (j
+ 1)
= ((
len
<*p*>)
+ ((j
+ 1)
- 1)) by
FINSEQ_1: 39
.= ((
len
<*p*>)
+ ((j
+ 1)
-' 1)) by
A25,
XREAL_1: 233;
A28: ((j
+ 1)
-' 1)
= ((j
+ 1)
- 1) by
A25,
XREAL_1: 233;
then ((j
+ 1)
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A3,
A7,
FINSEQ_3: 25;
then (g
. (j
+ 1))
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((j
+ 1)
-' 1)) by
A2,
A27,
FINSEQ_1:def 7
.= (f
. ((((j
+ 1)
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A3,
A19,
A16,
A20,
A28,
A7,
FINSEQ_6: 118
.= (f
. (((((j
+ 1)
-' 1)
+ 1)
+ (
Index (p,f)))
-' 1))
.= (f
. (((j
+ 1)
+ (
Index (p,f)))
-' 1)) by
A25,
XREAL_1: 235
.= (f
. ((((
Index (p,f))
+ j)
+ 1)
-' 1))
.= (f
. ((
Index (p,f))
+ j)) by
NAT_D: 34
.= (f
. ((((
Index (p,f))
+ j)
-' 1)
+ 1)) by
A3,
NAT_1: 12,
XREAL_1: 235;
then
A29: (f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))
= (g
/. (j
+ 1)) by
A24,
A26,
FINSEQ_4: 15,
NAT_1: 11;
((j
+ 1)
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A4,
A6,
XREAL_1: 9;
then (j
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
A21,
A18,
XREAL_1: 6;
then (((
Index (p,f))
+ (j
- 1))
+ 1)
<= (
len f);
then ((((
Index (p,f))
+ j)
-' 1)
+ 1)
<= (
len f) by
A9,
XREAL_0:def 2;
then
A30: (
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
= (
LSeg ((f
/. (((
Index (p,f))
+ j)
-' 1)),(f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1)))) by
A12,
TOPREAL1:def 3;
A31: 1
<= (
len g) by
A22,
NAT_1: 11;
now
per cases by
A3,
XXREAL_0: 1;
case
A32: 1
< j;
then
A33: (j
-' 1)
= (j
- 1) by
XREAL_1: 233;
then
A34: 1
<= (j
-' 1) by
A32,
SPPOL_1: 1;
(j
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A6,
A5,
XREAL_1: 9;
then (j
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A33,
A34,
FINSEQ_3: 25;
then
A35: (g
. j)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (j
-' 1)) by
A2,
A11,
FINSEQ_1:def 7
.= (f
. (((j
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A19,
A16,
A20,
A8,
A34,
FINSEQ_6: 118
.= (f
. ((((j
-' 1)
+ 1)
+ (
Index (p,f)))
-' 1))
.= (f
. (((
Index (p,f))
+ j)
-' 1)) by
A3,
XREAL_1: 235;
(g
/. j)
= (g
. j) by
A3,
A5,
FINSEQ_4: 15;
then (
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A23,
A29,
A12,
A30,
A35,
FINSEQ_4: 15,
NAT_D: 50
.= (
LSeg (g,j)) by
A3,
A4,
TOPREAL1:def 3;
hence thesis;
end;
case
A36: 1
= j;
then j
<= (
len
<*p*>) by
FINSEQ_1: 39;
then j
in (
dom
<*p*>) by
A36,
FINSEQ_3: 25;
then
A37: (g
. j)
= (
<*p*>
. j) by
A2,
FINSEQ_1:def 7
.= p by
A36,
FINSEQ_1: 40;
A38: (f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))
in (
LSeg ((f
/. (((
Index (p,f))
+ j)
-' 1)),(f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1)))) by
RLTOPSP1: 68;
A39: (g
/. j)
= (g
. j) by
A31,
A36,
FINSEQ_4: 15;
A40: (((
Index (p,f))
+ j)
-' 1)
= (
Index (p,f)) by
A36,
NAT_D: 34;
p
in (
LSeg (f,(
Index (p,f)))) by
A1,
Th9;
then (
LSeg (p,(g
/. (j
+ 1))))
c= (
LSeg (f,(((
Index (p,f))
+ j)
-' 1))) by
A29,
A30,
A38,
A40,
TOPREAL1: 6;
hence thesis by
A3,
A4,
A37,
A39,
TOPREAL1:def 3;
end;
end;
hence thesis;
end;
theorem ::
JORDAN3:17
for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. ((
Index (p,f))
+ 1)) & g
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) holds g
is_S-Seq_joining (p,(f
/. (
len f)))
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. ((
Index (p,f))
+ 1)) and
A4: g
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f))));
(
len g)
= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A4,
FINSEQ_1: 22;
then
A5: (
len g)
= (1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
FINSEQ_1: 39;
consider i such that 1
<= i and
A6: (i
+ 1)
<= (
len f) and p
in (
LSeg (f,i)) by
A2,
SPPOL_2: 13;
1
<= (1
+ i) by
NAT_1: 12;
then
A7: 1
<= (
len f) by
A6,
XXREAL_0: 2;
A8: for j1,j2 be
Nat st (j1
+ 1)
< j2 holds (
LSeg (g,j1))
misses (
LSeg (g,j2))
proof
let j1,j2 be
Nat;
assume
A9: (j1
+ 1)
< j2;
A10: j1
=
0 or j1
>= (
0
+ 1) by
NAT_1: 13;
now
per cases by
A10,
XXREAL_0: 1;
case j1
=
0 ;
then (
LSeg (g,j1))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} ;
hence thesis by
XBOOLE_0:def 7;
end;
case that
A11: j1
= 1 or j1
> 1 and
A12: (j2
+ 1)
<= (
len g);
1
< (j1
+ 1) by
A11,
NAT_1: 13;
then 1
<= j2 by
A9,
XXREAL_0: 2;
then
A13: (
LSeg (g,j2))
c= (
LSeg (f,(((
Index (p,f))
+ j2)
-' 1))) by
A2,
A4,
A12,
Th16;
1
<= ((
Index (p,f))
+ j1) by
A2,
Th8,
NAT_1: 12;
then (1
- 1)
<= (((
Index (p,f))
+ j1)
- 1) by
XREAL_1: 9;
then
A14: (((
Index (p,f))
+ j1)
- 1)
= (((
Index (p,f))
+ j1)
-' 1) by
XREAL_0:def 2;
((
Index (p,f))
+ (j1
+ 1))
< ((
Index (p,f))
+ j2) by
A9,
XREAL_1: 6;
then ((((
Index (p,f))
+ j1)
+ 1)
- 1)
< (((
Index (p,f))
+ j2)
- 1) by
XREAL_1: 9;
then ((((
Index (p,f))
+ j1)
-' 1)
+ 1)
< (((
Index (p,f))
+ j2)
-' 1) by
A14,
XREAL_0:def 2;
then (
LSeg (f,(((
Index (p,f))
+ j1)
-' 1)))
misses (
LSeg (f,(((
Index (p,f))
+ j2)
-' 1))) by
A1,
TOPREAL1:def 7;
then
A15: ((
LSeg (f,(((
Index (p,f))
+ j1)
-' 1)))
/\ (
LSeg (f,(((
Index (p,f))
+ j2)
-' 1))))
=
{} by
XBOOLE_0:def 7;
j2
< (
len g) by
A12,
NAT_1: 13;
then (j1
+ 1)
<= (
len g) by
A9,
XXREAL_0: 2;
then (
LSeg (g,j1))
c= (
LSeg (f,(((
Index (p,f))
+ j1)
-' 1))) by
A2,
A4,
A11,
Th16;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} by
A13,
A15,
XBOOLE_1: 3,
XBOOLE_1: 27;
hence thesis by
XBOOLE_0:def 7;
end;
case (j2
+ 1)
> (
len g);
then (
LSeg (g,j2))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} ;
hence thesis by
XBOOLE_0:def 7;
end;
end;
hence thesis;
end;
A16: (
Index (p,f))
< (
len f) by
A2,
Th8;
then
A17: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
((
Index (p,f))
+ 1)
<= (
len f) by
A16,
NAT_1: 13;
then
A18: (((
Index (p,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then
A19: (1
- 1)
<= (((
len f)
- (
Index (p,f)))
- 1) by
XREAL_1: 9;
then
A20: ((
len f)
-' ((
Index (p,f))
+ 1))
= ((
len f)
- ((
Index (p,f))
+ 1)) by
XREAL_0:def 2
.= (((
len f)
- (
Index (p,f)))
- 1);
A21: (
0
+ 1)
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
then
A22: (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A7,
A17,
FINSEQ_6: 118;
A23: for j be
Nat st 1
<= j & (j
+ 2)
<= (
len g) holds ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1))))
=
{(g
/. (j
+ 1))}
proof
let j be
Nat;
assume that
A24: 1
<= j and
A25: (j
+ 2)
<= (
len g);
A26: (j
+ 2)
= ((j
+ 1)
+ 1);
then
A27: (j
+ 1)
<= (
len g) by
A25,
NAT_1: 13;
then
A28: (
LSeg (g,j))
c= (
LSeg (f,(((
Index (p,f))
+ j)
-' 1))) by
A2,
A4,
A24,
Th16;
1
<= (j
+ 1) by
A24,
NAT_1: 13;
then (
LSeg (g,(j
+ 1)))
c= (
LSeg (f,(((
Index (p,f))
+ (j
+ 1))
-' 1))) by
A2,
A4,
A25,
A26,
Th16;
then
A29: ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1))))
c= ((
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
/\ (
LSeg (f,(((
Index (p,f))
+ (j
+ 1))
-' 1)))) by
A28,
XBOOLE_1: 27;
A30: 1
<= (
Index (p,f)) by
A2,
Th8;
1
<= (
Index (p,f)) by
A2,
Th8;
then (1
+ 1)
<= ((
Index (p,f))
+ j) by
A24,
XREAL_1: 7;
then 1
<= (((
Index (p,f))
+ j)
- 1) by
XREAL_1: 19;
then
A31: 1
<= (((
Index (p,f))
+ j)
-' 1) by
NAT_D: 39;
1
<= ((
Index (p,f))
+ j) by
A2,
Th8,
NAT_1: 12;
then
A32: (1
- 1)
<= (((
Index (p,f))
+ j)
- 1) by
XREAL_1: 9;
(((j
+ 1)
+ 1)
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A25,
XREAL_1: 9;
then
A33: ((j
+ 1)
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
A22,
A20,
XREAL_1: 6;
then (((
Index (p,f))
+ j)
+ 1)
<= (
len f);
then (((
Index (p,f))
+ (j
- 1))
+ 1)
<= (
len f) by
NAT_D: 46;
then
A34: ((((
Index (p,f))
+ j)
-' 1)
+ 1)
<= (
len f) by
A32,
XREAL_0:def 2;
((((
Index (p,f))
+ j)
- 1)
+ (1
+ 1))
<= (
len f) by
A33;
then ((((
Index (p,f))
+ j)
-' 1)
+ 2)
<= (
len f) by
A32,
XREAL_0:def 2;
then
A35:
{(f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))}
= ((
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
/\ (
LSeg (f,((((
Index (p,f))
+ j)
-' 1)
+ 1)))) by
A1,
A31,
TOPREAL1:def 6;
A36: 1
< (j
+ 1) by
A24,
NAT_1: 13;
then
A37: (g
/. (j
+ 1))
= (g
. (j
+ 1)) by
A27,
FINSEQ_4: 15;
A38: (g
/. (j
+ 1))
in (
LSeg ((g
/. (j
+ 1)),(g
/. ((j
+ 1)
+ 1)))) by
RLTOPSP1: 68;
(g
/. (j
+ 1))
in (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
RLTOPSP1: 68;
then
A39: (g
/. (j
+ 1))
in ((
LSeg ((g
/. j),(g
/. (j
+ 1))))
/\ (
LSeg ((g
/. (j
+ 1)),(g
/. ((j
+ 1)
+ 1))))) by
A38,
XBOOLE_0:def 4;
A40: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A24,
A27,
TOPREAL1:def 3;
(
LSeg ((g
/. (j
+ 1)),(g
/. ((j
+ 1)
+ 1))))
= (
LSeg (g,(j
+ 1))) by
A25,
A36,
TOPREAL1:def 3;
then
A41:
{(g
/. (j
+ 1))}
c= ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1)))) by
A40,
A39,
ZFMISC_1: 31;
A42: (j
+ 1)
= (((j
+ 1)
- 1)
+ 1)
.= (((j
+ 1)
-' 1)
+ 1) by
A36,
XREAL_1: 233;
then
A43: (j
+ 1)
= ((
len
<*p*>)
+ ((j
+ 1)
-' 1)) by
FINSEQ_1: 39;
A44: ((j
+ 1)
-' 1)
<= (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A5,
A27,
A42,
XREAL_1: 6;
then ((j
+ 1)
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A24,
A42,
FINSEQ_3: 25;
then (g
. (j
+ 1))
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((j
+ 1)
-' 1)) by
A4,
A43,
FINSEQ_1:def 7
.= (f
. ((((j
+ 1)
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A17,
A21,
A24,
A42,
A44,
FINSEQ_6: 118
.= (f
. (((((j
+ 1)
-' 1)
+ 1)
+ (
Index (p,f)))
-' 1))
.= (f
. (((j
+ 1)
+ (
Index (p,f)))
-' 1)) by
A36,
XREAL_1: 235
.= (f
. ((((
Index (p,f))
+ j)
+ 1)
-' 1))
.= (f
. ((
Index (p,f))
+ j)) by
NAT_D: 34
.= (f
. ((((
Index (p,f))
+ j)
-' 1)
+ 1)) by
A30,
NAT_1: 12,
XREAL_1: 235;
then
A45: (f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))
= (g
/. (j
+ 1)) by
A37,
A34,
FINSEQ_4: 15,
NAT_1: 11;
(((
Index (p,f))
+ (j
+ 1))
-' 1)
= ((((
Index (p,f))
+ j)
+ 1)
- 1) by
NAT_1: 11,
XREAL_1: 233
.= ((((
Index (p,f))
+ j)
- 1)
+ 1)
.= ((((
Index (p,f))
+ j)
-' 1)
+ 1) by
A30,
NAT_1: 12,
XREAL_1: 233;
hence thesis by
A29,
A35,
A45,
A41,
XBOOLE_0:def 10;
end;
A46: (
len g)
= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A4,
FINSEQ_1: 22
.= (1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
FINSEQ_1: 39;
then
A47: (
len g)
= (1
+ (((
len f)
- ((
Index (p,f))
+ 1))
+ 1)) by
A19,
A22,
XREAL_0:def 2
.= (1
+ ((
len f)
- (
Index (p,f))));
then
A48: ((
len g)
-' 1)
= ((
len g)
- 1) by
A18,
XREAL_0:def 2;
then
A49: ((
len g)
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A18,
A22,
A47,
A20,
FINSEQ_3: 25;
A50: ((
len f)
- (
Index (p,f)))
>=
0 by
A2,
Th8,
XREAL_1: 50;
then
A51: ((
len f)
- (
Index (p,f)))
= ((
len f)
-' (
Index (p,f))) by
XREAL_0:def 2;
then
A52: ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((
len f)
-' (
Index (p,f))))
= (f
. ((((
len f)
-' (
Index (p,f)))
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A18,
A17,
A21,
A22,
A20,
FINSEQ_6: 118;
A53: ((
len g)
-' 1)
= ((
len f)
-' (
Index (p,f))) by
A47,
A48,
XREAL_0:def 2;
for x1,x2 be
object st x1
in (
dom g) & x2
in (
dom g) & (g
. x1)
= (g
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A54: x1
in (
dom g) and
A55: x2
in (
dom g) and
A56: (g
. x1)
= (g
. x2);
reconsider n1 = x1, n2 = x2 as
Element of
NAT by
A54,
A55;
A57: n1
<= (
len g) by
A54,
FINSEQ_3: 25;
A58: 1
<= n2 by
A55,
FINSEQ_3: 25;
A59: n2
<= (
len g) by
A55,
FINSEQ_3: 25;
A60: 1
<= n1 by
A54,
FINSEQ_3: 25;
now
per cases by
A60,
A58,
XXREAL_0: 1;
case n1
= 1 & n2
= 1;
hence thesis;
end;
case that
A61: n1
= 1 and
A62: n2
> 1;
A63: (n2
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A59,
XREAL_1: 9;
n1
<= (
len
<*p*>) by
A61,
FINSEQ_1: 39;
then n1
in (
dom
<*p*>) by
A61,
FINSEQ_3: 25;
then
A64: (g
. n1)
= (
<*p*>
. n1) by
A4,
FINSEQ_1:def 7;
(n2
- 1)
>
0 by
A62,
XREAL_1: 50;
then
A65: (n2
-' 1)
= (n2
- 1) by
XREAL_0:def 2;
then
A66: ((
len
<*p*>)
+ (n2
-' 1))
= (1
+ (n2
- 1)) by
FINSEQ_1: 39
.= n2;
A67: 1
<= (n2
-' 1) by
A62,
A65,
SPPOL_1: 1;
then (n2
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A65,
A63,
FINSEQ_3: 25;
then (g
. n2)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (n2
-' 1)) by
A4,
A66,
FINSEQ_1:def 7
.= (f
. (((n2
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A17,
A21,
A65,
A63,
A67,
FINSEQ_6: 118
.= (f
. ((n2
+ (
Index (p,f)))
-' 1)) by
A65;
then
A68: (f
. ((n2
+ (
Index (p,f)))
-' 1))
= p by
A56,
A61,
A64,
FINSEQ_1: 40;
(n2
-' 1)
<= ((
len f)
- (
Index (p,f))) by
A47,
A48,
A59,
NAT_D: 42;
then (n2
- 1)
<= ((
len f)
- (
Index (p,f))) by
A62,
XREAL_1: 233;
then
A69: ((n2
- 1)
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
XREAL_1: 6;
(1
+ 1)
< (n2
+ (
Index (p,f))) by
A2,
A62,
Th8,
XREAL_1: 8;
then
A70: 1
< ((n2
+ (
Index (p,f)))
- 1) by
XREAL_1: 20;
then ((n2
+ (
Index (p,f)))
-' 1)
= ((n2
+ (
Index (p,f)))
- 1) by
XREAL_0:def 2;
hence contradiction by
A1,
A3,
A70,
A68,
A69,
Th12;
end;
case that
A71: n1
> 1 and
A72: n2
= 1;
A73: (n1
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A57,
XREAL_1: 9;
n2
<= (
len
<*p*>) by
A72,
FINSEQ_1: 39;
then n2
in (
dom
<*p*>) by
A72,
FINSEQ_3: 25;
then
A74: (g
. n2)
= (
<*p*>
. n2) by
A4,
FINSEQ_1:def 7;
(n1
- 1)
>
0 by
A71,
XREAL_1: 50;
then
A75: (n1
-' 1)
= (n1
- 1) by
XREAL_0:def 2;
then
A76: ((
len
<*p*>)
+ (n1
-' 1))
= (1
+ (n1
- 1)) by
FINSEQ_1: 39
.= n1;
A77: 1
<= (n1
-' 1) by
A71,
A75,
SPPOL_1: 1;
then (n1
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A75,
A73,
FINSEQ_3: 25;
then (g
. n1)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (n1
-' 1)) by
A4,
A76,
FINSEQ_1:def 7
.= (f
. (((n1
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A17,
A21,
A75,
A73,
A77,
FINSEQ_6: 118
.= (f
. ((n1
+ (
Index (p,f)))
-' 1)) by
A75;
then
A78: (f
. ((n1
+ (
Index (p,f)))
-' 1))
= p by
A56,
A72,
A74,
FINSEQ_1: 40;
(n1
-' 1)
<= ((
len f)
- (
Index (p,f))) by
A47,
A48,
A57,
NAT_D: 42;
then (n1
- 1)
<= ((
len f)
- (
Index (p,f))) by
A71,
XREAL_1: 233;
then
A79: ((n1
- 1)
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
XREAL_1: 6;
(1
+ 1)
< (n1
+ (
Index (p,f))) by
A2,
A71,
Th8,
XREAL_1: 8;
then
A80: 1
< ((n1
+ (
Index (p,f)))
- 1) by
XREAL_1: 20;
then ((n1
+ (
Index (p,f)))
-' 1)
= ((n1
+ (
Index (p,f)))
- 1) by
XREAL_0:def 2;
hence contradiction by
A1,
A3,
A80,
A78,
A79,
Th12;
end;
case that
A81: n1
> 1 and
A82: n2
> 1;
A83: (n2
- 1)
>
0 by
A82,
XREAL_1: 50;
then
A84: (n2
-' 1)
= (n2
- 1) by
XREAL_0:def 2;
then
A85: ((
len
<*p*>)
+ (n2
-' 1))
= (1
+ (n2
- 1)) by
FINSEQ_1: 39
.= n2;
A86: (n1
- 1)
>
0 by
A81,
XREAL_1: 50;
then
A87: (n1
-' 1)
= (n1
- 1) by
XREAL_0:def 2;
then
A88: (
0
+ 1)
<= (n1
-' 1) by
A86,
NAT_1: 13;
then
A89: 1
<= ((n1
- 1)
+ (
Index (p,f))) by
A87,
NAT_1: 12;
then
A90: ((n1
+ (
Index (p,f)))
-' 1)
= ((n1
+ (
Index (p,f)))
- 1) by
XREAL_0:def 2;
A91: ((
len
<*p*>)
+ (n1
-' 1))
= (1
+ (n1
- 1)) by
A87,
FINSEQ_1: 39
.= n1;
A92: (n1
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A57,
XREAL_1: 9;
then (n1
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A87,
A88,
FINSEQ_3: 25;
then
A93: (g
. n1)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (n1
-' 1)) by
A4,
A91,
FINSEQ_1:def 7
.= (f
. (((n1
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A17,
A21,
A87,
A88,
A92,
FINSEQ_6: 118
.= (f
. ((n1
+ (
Index (p,f)))
-' 1)) by
A87;
(n1
-' 1)
<= ((
len f)
-' (
Index (p,f))) by
A53,
A57,
NAT_D: 42;
then ((n1
-' 1)
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
A51,
XREAL_1: 6;
then
A94: ((n1
+ (
Index (p,f)))
-' 1)
in (
dom f) by
A87,
A89,
A90,
FINSEQ_3: 25;
A95: (
0
+ 1)
<= (n2
-' 1) by
A83,
A84,
NAT_1: 13;
then
A96: 1
<= ((n2
-' 1)
+ (
Index (p,f))) by
NAT_1: 12;
then
A97: ((n2
+ (
Index (p,f)))
-' 1)
= ((n2
+ (
Index (p,f)))
- 1) by
A84,
XREAL_0:def 2;
A98: (n2
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A59,
XREAL_1: 9;
then (n2
-' 1)
in (
dom (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
A84,
A95,
FINSEQ_3: 25;
then
A99: (g
. n2)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (n2
-' 1)) by
A4,
A85,
FINSEQ_1:def 7
.= (f
. (((n2
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A7,
A17,
A21,
A84,
A95,
A98,
FINSEQ_6: 118
.= (f
. ((n2
+ (
Index (p,f)))
-' 1)) by
A84;
(n2
-' 1)
<= ((
len f)
-' (
Index (p,f))) by
A53,
A59,
NAT_D: 42;
then ((n2
-' 1)
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
A51,
XREAL_1: 6;
then ((n2
+ (
Index (p,f)))
-' 1)
in (
dom f) by
A84,
A96,
A97,
FINSEQ_3: 25;
then ((n1
+ (
Index (p,f)))
-' 1)
= ((n2
+ (
Index (p,f)))
-' 1) by
A1,
A56,
A99,
A93,
A94,
FUNCT_1:def 4;
hence thesis by
A97,
A90;
end;
end;
hence thesis;
end;
then
A100: g is
one-to-one by
FUNCT_1:def 4;
A101: (((
len g)
- 1)
+ 1)
>= (1
+ 1) by
A18,
A47,
XREAL_1: 6;
A102: (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1)
= ((
len f)
- (
Index (p,f))) by
A20;
for j be
Nat st 1
<= j & (j
+ 1)
<= (
len g) holds ((g
/. j)
`1 )
= ((g
/. (j
+ 1))
`1 ) or ((g
/. j)
`2 )
= ((g
/. (j
+ 1))
`2 )
proof
1
<= (
Index (p,f)) by
A2,
Th8;
then
A103: 1
< ((
Index (p,f))
+ 1) by
NAT_1: 13;
let j be
Nat;
assume that
A104: 1
<= j and
A105: (j
+ 1)
<= (
len g);
A106: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A104,
A105,
TOPREAL1:def 3;
((j
+ 1)
- 1)
<= ((1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
- 1) by
A5,
A105,
XREAL_1: 9;
then ((j
+ 1)
- 1)
<= ((
len f)
- (
Index (p,f))) by
A7,
A17,
A21,
A102,
FINSEQ_6: 118;
then
A107: (j
+ (
Index (p,f)))
<= (((
len f)
- (
Index (p,f)))
+ (
Index (p,f))) by
XREAL_1: 6;
((
Index (p,f))
+ 1)
<= ((
Index (p,f))
+ j) by
A104,
XREAL_1: 6;
then 1
< ((
Index (p,f))
+ j) by
A103,
XXREAL_0: 2;
then
A108: 1
<= (((
Index (p,f))
+ j)
- 1) by
SPPOL_1: 1;
then
A109: (((
Index (p,f))
+ j)
- 1)
= (((
Index (p,f))
+ j)
-' 1) by
XREAL_0:def 2;
then
A110: (
LSeg (f,(((
Index (p,f))
+ j)
-' 1)))
= (
LSeg ((f
/. (((
Index (p,f))
+ j)
-' 1)),(f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1)))) by
A108,
A107,
TOPREAL1:def 3;
A111: ((f
/. (((
Index (p,f))
+ j)
-' 1))
`1 )
= ((f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))
`1 ) or ((f
/. (((
Index (p,f))
+ j)
-' 1))
`2 )
= ((f
/. ((((
Index (p,f))
+ j)
-' 1)
+ 1))
`2 ) by
A1,
A108,
A109,
A107,
TOPREAL1:def 5;
(
LSeg (g,j))
c= (
LSeg (f,(((
Index (p,f))
+ j)
-' 1))) by
A2,
A4,
A104,
A105,
Th16;
hence thesis by
A106,
A110,
A111,
Th3;
end;
then g is
unfolded
s.n.c.
special by
A23,
A8,
TOPREAL1:def 5,
TOPREAL1:def 6,
TOPREAL1:def 7;
then
A112: g is
being_S-Seq by
A101,
A100,
TOPREAL1:def 8;
A113: (((
len f)
-' (
Index (p,f)))
+ ((
Index (p,f))
+ 1))
= (((
len f)
- (
Index (p,f)))
+ ((
Index (p,f))
+ 1)) by
A50,
XREAL_0:def 2
.= ((
len f)
+ 1);
(1
+ ((
len g)
-' 1))
= (1
+ ((
len g)
- 1)) by
A46,
XREAL_0:def 2
.= (
len g);
then (g
. (
len g))
= (g
. ((
len
<*p*>)
+ ((
len g)
-' 1))) by
FINSEQ_1: 39
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((
len g)
-' 1)) by
A4,
A49,
FINSEQ_1:def 7;
then (g
. (
len g))
= (f
. (
len f)) by
A47,
A48,
A52,
A113,
NAT_D: 34;
then
A114: (g
. (
len g))
= (f
/. (
len f)) by
A7,
FINSEQ_4: 15;
(g
. 1)
= p by
A4,
FINSEQ_1: 41;
hence thesis by
A112,
A114;
end;
theorem ::
JORDAN3:18
Th18: for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), j be
Nat st p
in (
L~ f) & 1
<= j & (j
+ 1)
<= (
len g) & g
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) holds (
LSeg (g,j))
c= (
LSeg (f,j))
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2), j be
Nat;
assume that
A1: p
in (
L~ f) and
A2: 1
<= j and
A3: (j
+ 1)
<= (
len g) and
A4: g
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>);
A5: (
Index (p,f))
< (
len f) by
A1,
Th8;
A6: 1
<= (j
+ 1) by
NAT_1: 11;
A7: 1
<= (
Index (p,f)) by
A1,
Th8;
1
<= (
Index (p,f)) by
A1,
Th8;
then
A8: 1
<= (
len f) by
A5,
XXREAL_0: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then
A9: j
<= (
len g) by
A3,
XXREAL_0: 2;
now
(
len g)
= ((
len (
mid (f,1,(
Index (p,f)))))
+ (
len
<*p*>)) by
A4,
FINSEQ_1: 22
.= ((
len (
mid (f,1,(
Index (p,f)))))
+ 1) by
FINSEQ_1: 39;
then (
len g)
= ((((
Index (p,f))
-' 1)
+ 1)
+ 1) by
A5,
A8,
A7,
FINSEQ_6: 118;
then
A10: (
len g)
= ((
Index (p,f))
+ 1) by
A1,
Th8,
XREAL_1: 235;
then
A11: j
<= (
Index (p,f)) by
A3,
XREAL_1: 6;
((
Index (p,f))
+ 1)
<= ((
len f)
+ 1) by
A5,
XREAL_1: 6;
then (j
+ 1)
<= ((
len f)
+ 1) by
A3,
A10,
XXREAL_0: 2;
then
A12: ((j
+ 1)
- 1)
<= (((
len f)
+ 1)
- 1) by
XREAL_1: 9;
A13: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A5,
A8,
A7,
FINSEQ_6: 118
.= (
Index (p,f)) by
A1,
Th8,
XREAL_1: 235;
then
A14: j
in (
dom (
mid (f,1,(
Index (p,f))))) by
A2,
A11,
FINSEQ_3: 25;
A15: (g
/. j)
= (g
. j) by
A2,
A9,
FINSEQ_4: 15
.= ((
mid (f,1,(
Index (p,f))))
. j) by
A4,
A14,
FINSEQ_1:def 7
.= (f
. ((j
+ 1)
-' 1)) by
A2,
A5,
A8,
A7,
A11,
A13,
FINSEQ_6: 118
.= (f
. j) by
NAT_D: 34
.= (f
/. j) by
A2,
A12,
FINSEQ_4: 15;
now
per cases ;
case
A16: (j
+ 1)
<= (
Index (p,f));
A17: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A5,
A8,
A7,
FINSEQ_6: 118
.= (
Index (p,f)) by
A1,
Th8,
XREAL_1: 235;
then
A18: (j
+ 1)
in (
dom (
mid (f,1,(
Index (p,f))))) by
A6,
A16,
FINSEQ_3: 25;
A19: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A2,
A3,
TOPREAL1:def 3;
A20: (j
+ 1)
<= (
len f) by
A5,
A16,
XXREAL_0: 2;
(g
/. (j
+ 1))
= (g
. (j
+ 1)) by
A3,
FINSEQ_4: 15,
NAT_1: 11
.= ((
mid (f,1,(
Index (p,f))))
. (j
+ 1)) by
A4,
A18,
FINSEQ_1:def 7
.= (f
. (((j
+ 1)
+ 1)
-' 1)) by
A5,
A8,
A7,
A6,
A16,
A17,
FINSEQ_6: 118
.= (f
. (j
+ 1)) by
NAT_D: 34
.= (f
/. (j
+ 1)) by
A20,
FINSEQ_4: 15,
NAT_1: 11;
hence thesis by
A2,
A15,
A20,
A19,
TOPREAL1:def 3;
end;
case (j
+ 1)
> (
Index (p,f));
then j
>= (
Index (p,f)) by
NAT_1: 13;
then
A21: j
= (
Index (p,f)) by
A11,
XXREAL_0: 1;
then
A22: p
in (
LSeg (f,j)) by
A1,
Th9;
(j
+ 1)
<= (
len f) by
A1,
A21,
Th8,
NAT_1: 13;
then
A23: (
LSeg (f,j))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A2,
TOPREAL1:def 3;
1
<= (
len
<*p*>) by
FINSEQ_1: 40;
then
A24: 1
in (
dom
<*p*>) by
FINSEQ_3: 25;
A25: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A5,
A8,
A7,
FINSEQ_6: 118
.= (
Index (p,f)) by
A1,
Th8,
XREAL_1: 235;
A26: (f
/. j)
in (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
RLTOPSP1: 68;
(g
/. (j
+ 1))
= (g
. (j
+ 1)) by
A3,
FINSEQ_4: 15,
NAT_1: 11
.= (
<*p*>
. 1) by
A4,
A21,
A24,
A25,
FINSEQ_1:def 7
.= p by
FINSEQ_1:def 8;
then (
LSeg ((g
/. j),(g
/. (j
+ 1))))
c= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A15,
A26,
A22,
A23,
TOPREAL1: 6;
hence thesis by
A2,
A3,
A23,
TOPREAL1:def 3;
end;
end;
hence thesis;
end;
hence thesis;
end;
theorem ::
JORDAN3:19
Th19: for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. 1) & g
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) holds g
is_S-Seq_joining ((f
/. 1),p)
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. 1) and
A4: g
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>);
A5: (
Index (p,f))
<= (
len f) by
A2,
Th8;
A6: for j1,j2 be
Nat st (j1
+ 1)
< j2 holds (
LSeg (g,j1))
misses (
LSeg (g,j2))
proof
let j1,j2 be
Nat;
assume
A7: (j1
+ 1)
< j2;
A8: j1
=
0 or j1
>= (
0
+ 1) by
NAT_1: 13;
now
per cases by
A8,
XXREAL_0: 1;
case j1
=
0 ;
then (
LSeg (g,j1))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} ;
hence thesis by
XBOOLE_0:def 7;
end;
case that
A9: j1
= 1 or j1
> 1 and
A10: (j2
+ 1)
<= (
len g);
j2
< (
len g) by
A10,
NAT_1: 13;
then (j1
+ 1)
< (
len g) by
A7,
XXREAL_0: 2;
then
A11: (
LSeg (g,j1))
c= (
LSeg (f,j1)) by
A2,
A4,
A9,
Th18;
(1
+ 1)
<= (j1
+ 1) by
A9,
XREAL_1: 6;
then 2
<= j2 by
A7,
XXREAL_0: 2;
then 1
<= j2 by
XXREAL_0: 2;
then
A12: (
LSeg (g,j2))
c= (
LSeg (f,j2)) by
A2,
A4,
A10,
Th18;
(
LSeg (f,j1))
misses (
LSeg (f,j2)) by
A1,
A7,
TOPREAL1:def 7;
then ((
LSeg (f,j1))
/\ (
LSeg (f,j2)))
=
{} by
XBOOLE_0:def 7;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} by
A11,
A12,
XBOOLE_1: 3,
XBOOLE_1: 27;
hence thesis by
XBOOLE_0:def 7;
end;
case (j2
+ 1)
> (
len g);
then (
LSeg (g,j2))
=
{} by
TOPREAL1:def 3;
then ((
LSeg (g,j1))
/\ (
LSeg (g,j2)))
=
{} ;
hence thesis by
XBOOLE_0:def 7;
end;
end;
hence thesis;
end;
A13: for n1,n2 be
Element of
NAT st 1
<= n1 & n1
<= (
len f) & 1
<= n2 & n2
<= (
len f) & (f
. n1)
= (f
. n2) holds n1
= n2
proof
let n1,n2 be
Element of
NAT ;
assume that
A14: 1
<= n1 and
A15: n1
<= (
len f) and
A16: 1
<= n2 and
A17: n2
<= (
len f) and
A18: (f
. n1)
= (f
. n2);
A19: n2
in (
dom f) by
A16,
A17,
FINSEQ_3: 25;
n1
in (
dom f) by
A14,
A15,
FINSEQ_3: 25;
hence thesis by
A1,
A18,
A19,
FUNCT_1:def 4;
end;
A20: (
len g)
= ((
len (
mid (f,1,(
Index (p,f)))))
+ (
len
<*p*>)) by
A4,
FINSEQ_1: 22
.= ((
len (
mid (f,1,(
Index (p,f)))))
+ 1) by
FINSEQ_1: 39;
consider i such that 1
<= i and
A21: (i
+ 1)
<= (
len f) and p
in (
LSeg (f,i)) by
A2,
SPPOL_2: 13;
A22: 1
<= (
Index (p,f)) by
A2,
Th8;
1
<= (1
+ i) by
NAT_1: 12;
then
A23: 1
<= (
len f) by
A21,
XXREAL_0: 2;
then
A24: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A22,
A5,
FINSEQ_6: 118;
then
A25: (
len (
mid (f,1,(
Index (p,f)))))
= (
Index (p,f)) by
A2,
Th8,
XREAL_1: 235;
then (g
. 1)
= ((
mid (f,1,(
Index (p,f))))
. 1) by
A4,
A22,
FINSEQ_6: 109;
then (g
. 1)
= (f
. 1) by
A22,
A5,
A23,
FINSEQ_6: 118;
then
A26: (g
. 1)
= (f
/. 1) by
A23,
FINSEQ_4: 15;
A27: for j be
Nat st 1
<= j & (j
+ 2)
<= (
len g) holds ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1))))
=
{(g
/. (j
+ 1))}
proof
let j be
Nat;
assume that
A28: 1
<= j and
A29: (j
+ 2)
<= (
len g);
A30: (j
+ 1)
<= (
len g) by
A29,
NAT_D: 47;
then (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A28,
TOPREAL1:def 3;
then
A31: (g
/. (j
+ 1))
in (
LSeg (g,j)) by
RLTOPSP1: 68;
A32: 1
<= (j
+ 1) by
A28,
NAT_D: 48;
then (
LSeg (g,(j
+ 1)))
= (
LSeg ((g
/. (j
+ 1)),(g
/. ((j
+ 1)
+ 1)))) by
A29,
TOPREAL1:def 3;
then (g
/. (j
+ 1))
in (
LSeg (g,(j
+ 1))) by
RLTOPSP1: 68;
then (g
/. (j
+ 1))
in ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1)))) by
A31,
XBOOLE_0:def 4;
then
A33:
{(g
/. (j
+ 1))}
c= ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1)))) by
ZFMISC_1: 31;
(j
+ 1)
<= (
len g) by
A29,
NAT_D: 47;
then
A34: (
LSeg (g,j))
c= (
LSeg (f,j)) by
A2,
A4,
A28,
Th18;
A35: (
Index (p,f))
<= (
len f) by
A2,
Th8;
A36: ((j
+ 1)
+ 1)
<= (
len g) by
A29;
then (
LSeg (g,(j
+ 1)))
c= (
LSeg (f,(j
+ 1))) by
A2,
A4,
A32,
Th18;
then
A37: ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1))))
c= ((
LSeg (f,j))
/\ (
LSeg (f,(j
+ 1)))) by
A34,
XBOOLE_1: 27;
A38: (g
/. (j
+ 1))
= (g
. (j
+ 1)) by
A32,
A30,
FINSEQ_4: 15;
now
A39: (
len g)
= ((
len (
mid (f,1,(
Index (p,f)))))
+ 1) by
A4,
FINSEQ_2: 16;
(
Index (p,f))
<= (
len f) by
A2,
Th8;
then
A40: (
len g)
<= ((
len f)
+ 1) by
A25,
A39,
XREAL_1: 6;
now
per cases by
A40,
XXREAL_0: 1;
case (
len g)
= ((
len f)
+ 1);
hence contradiction by
A2,
A25,
A39,
Th8;
end;
case (
len g)
< ((
len f)
+ 1);
then (
len g)
<= (
len f) by
NAT_1: 13;
then (j
+ 2)
<= (
len f) by
A29,
XXREAL_0: 2;
then
A41: ((
LSeg (g,j))
/\ (
LSeg (g,(j
+ 1))))
c=
{(f
/. (j
+ 1))} by
A1,
A28,
A37,
TOPREAL1:def 6;
A42: (j
+ 1)
<= (
Index (p,f)) by
A25,
A36,
A39,
XREAL_1: 6;
then (j
+ 1)
<= (
len f) by
A35,
XXREAL_0: 2;
then
A43: (f
. (j
+ 1))
= (f
/. (j
+ 1)) by
A32,
FINSEQ_4: 15;
(g
. (j
+ 1))
= ((
mid (f,1,(
Index (p,f))))
. (j
+ 1)) by
A4,
A25,
A32,
A42,
FINSEQ_1: 64
.= (f
. (j
+ 1)) by
A5,
A32,
A42,
FINSEQ_6: 123;
hence thesis by
A38,
A33,
A41,
A43,
XBOOLE_0:def 10;
end;
end;
hence thesis;
end;
hence thesis;
end;
for j be
Nat st 1
<= j & (j
+ 1)
<= (
len g) holds ((g
/. j)
`1 )
= ((g
/. (j
+ 1))
`1 ) or ((g
/. j)
`2 )
= ((g
/. (j
+ 1))
`2 )
proof
A44: (
Index (p,f))
< (
len f) by
A2,
Th8;
let j be
Nat;
assume that
A45: 1
<= j and
A46: (j
+ 1)
<= (
len g);
A47: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A45,
A46,
TOPREAL1:def 3;
(j
+ 1)
<= ((
Index (p,f))
+ 1) by
A4,
A25,
A46,
FINSEQ_2: 16;
then j
<= (
Index (p,f)) by
XREAL_1: 6;
then j
< (
len f) by
A44,
XXREAL_0: 2;
then
A48: (j
+ 1)
<= (
len f) by
NAT_1: 13;
then
A49: (
LSeg (f,j))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A45,
TOPREAL1:def 3;
A50: ((f
/. j)
`1 )
= ((f
/. (j
+ 1))
`1 ) or ((f
/. j)
`2 )
= ((f
/. (j
+ 1))
`2 ) by
A1,
A45,
A48,
TOPREAL1:def 5;
(
LSeg (g,j))
c= (
LSeg (f,j)) by
A2,
A4,
A45,
A46,
Th18;
hence thesis by
A47,
A49,
A50,
Th3;
end;
then
A51: g is
unfolded
s.n.c.
special by
A27,
A6,
TOPREAL1:def 5,
TOPREAL1:def 6,
TOPREAL1:def 7;
1
<= (
len
<*p*>) by
FINSEQ_1: 39;
then
A52: 1
in (
dom
<*p*>) by
FINSEQ_3: 25;
for x1,x2 be
object st x1
in (
dom g) & x2
in (
dom g) & (g
. x1)
= (g
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A53: x1
in (
dom g) and
A54: x2
in (
dom g) and
A55: (g
. x1)
= (g
. x2);
reconsider n1 = x1, n2 = x2 as
Element of
NAT by
A53,
A54;
A56: 1
<= n1 by
A53,
FINSEQ_3: 25;
A57: n2
<= (
len g) by
A54,
FINSEQ_3: 25;
A58: 1
<= n2 by
A54,
FINSEQ_3: 25;
A59: n1
<= (
len g) by
A53,
FINSEQ_3: 25;
now
A60: (g
. (
len g))
= (
<*p*>
. 1) by
A4,
A52,
A20,
FINSEQ_1:def 7
.= p by
FINSEQ_1:def 8;
now
per cases ;
case
A61: n1
= (
len g);
now
assume
A62: n2
<> (
len g);
then n2
< (
len g) by
A57,
XXREAL_0: 1;
then
A63: n2
<= (
len (
mid (f,1,(
Index (p,f))))) by
A20,
NAT_1: 13;
then
A64: n2
<= (
len f) by
A5,
A25,
XXREAL_0: 2;
(g
. n2)
= ((
mid (f,1,(
Index (p,f))))
. n2) by
A4,
A58,
A63,
FINSEQ_1: 64;
then (g
. n2)
= (f
. ((n2
+ 1)
-' 1)) by
A22,
A5,
A23,
A58,
A63,
FINSEQ_6: 118;
then
A65: p
= (f
. n2) by
A55,
A60,
A61,
NAT_D: 34;
then 1
< n2 by
A3,
A58,
XXREAL_0: 1;
then ((
Index (p,f))
+ 1)
= n2 by
A1,
A65,
A64,
Th12;
hence contradiction by
A2,
A24,
A20,
A62,
Th8,
XREAL_1: 235;
end;
hence thesis by
A61;
end;
case
A66: n2
= (
len g);
now
assume
A67: n1
<> (
len g);
then n1
< (
len g) by
A59,
XXREAL_0: 1;
then
A68: n1
<= (
len (
mid (f,1,(
Index (p,f))))) by
A20,
NAT_1: 13;
then
A69: n1
<= (
len f) by
A5,
A25,
XXREAL_0: 2;
(g
. n1)
= ((
mid (f,1,(
Index (p,f))))
. n1) by
A4,
A56,
A68,
FINSEQ_1: 64;
then (g
. n1)
= (f
. ((n1
+ 1)
-' 1)) by
A22,
A5,
A23,
A56,
A68,
FINSEQ_6: 118;
then
A70: p
= (f
. n1) by
A55,
A60,
A66,
NAT_D: 34;
then 1
< n1 by
A3,
A56,
XXREAL_0: 1;
then ((
Index (p,f))
+ 1)
= n1 by
A1,
A70,
A69,
Th12;
hence contradiction by
A2,
A24,
A20,
A67,
Th8,
XREAL_1: 235;
end;
hence thesis by
A66;
end;
case that
A71: n1
<> (
len g) and
A72: n2
<> (
len g);
n1
< (
len g) by
A59,
A71,
XXREAL_0: 1;
then
A73: n1
<= (
len (
mid (f,1,(
Index (p,f))))) by
A20,
NAT_1: 13;
then
A74: n1
<= (
len f) by
A5,
A25,
XXREAL_0: 2;
n2
< (
len g) by
A57,
A72,
XXREAL_0: 1;
then
A75: n2
<= (
len (
mid (f,1,(
Index (p,f))))) by
A20,
NAT_1: 13;
then
A76: (g
. n2)
= ((
mid (f,1,(
Index (p,f))))
. n2) by
A4,
A58,
FINSEQ_1: 64
.= (f
. n2) by
A5,
A25,
A58,
A75,
FINSEQ_6: 123;
A77: n2
<= (
len f) by
A5,
A25,
A75,
XXREAL_0: 2;
(g
. n1)
= ((
mid (f,1,(
Index (p,f))))
. n1) by
A4,
A56,
A73,
FINSEQ_1: 64
.= (f
. n1) by
A5,
A25,
A56,
A73,
FINSEQ_6: 123;
hence thesis by
A13,
A55,
A56,
A58,
A74,
A77,
A76;
end;
end;
hence thesis;
end;
hence thesis;
end;
then
A78: g is
one-to-one by
FUNCT_1:def 4;
(1
+ 1)
<= (
len g) by
A22,
A25,
A20,
XREAL_1: 6;
then
A79: g is
being_S-Seq by
A78,
A51,
TOPREAL1:def 8;
(g
. (
len g))
= p by
A4,
A20,
FINSEQ_1: 42;
hence thesis by
A26,
A79;
end;
begin
definition
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
::
JORDAN3:def3
func
L_Cut (f,p) ->
FinSequence of (
TOP-REAL 2) equals
:
Def3: (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) if p
<> (f
. ((
Index (p,f))
+ 1))
otherwise (
mid (f,((
Index (p,f))
+ 1),(
len f)));
correctness ;
::
JORDAN3:def4
func
R_Cut (f,p) ->
FinSequence of (
TOP-REAL 2) equals
:
Def4: ((
mid (f,1,(
Index (p,f))))
^
<*p*>) if p
<> (f
. 1)
otherwise
<*p*>;
correctness ;
end
theorem ::
JORDAN3:20
Th20: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
= (f
. ((
Index (p,f))
+ 1)) & p
<> (f
. (
len f)) holds (((
Index (p,(
Rev f)))
+ (
Index (p,f)))
+ 1)
= (
len f)
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) such that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
= (f
. ((
Index (p,f))
+ 1)) and
A4: p
<> (f
. (
len f));
A5: (
len f)
<= ((
len f)
+ (
Index (p,f))) by
NAT_1: 11;
(
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
then
A6: ((
len f)
- (
Index (p,f)))
<= (
len (
Rev f)) by
A5,
XREAL_1: 20;
(
Index (p,f))
<= (
len f) by
A2,
Th8;
then
A7: ((
len f)
- (
Index (p,f)))
= ((
len f)
-' (
Index (p,f))) by
XREAL_1: 233;
(
Index (p,f))
< (
len f) by
A2,
Th8;
then
A8: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then ((
Index (p,f))
+ 1)
< (
len f) by
A3,
A4,
XXREAL_0: 1;
then
A9: 1
< ((
len f)
- (
Index (p,f))) by
XREAL_1: 20;
1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
then ((
Index (p,f))
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
then
A10: ((
Index (p,f))
+ 1)
in (
dom (
Rev f)) by
FINSEQ_5: 57;
p
= ((
Rev (
Rev f))
. ((
Index (p,f))
+ 1)) by
A3
.= ((
Rev f)
. (((
len (
Rev f))
- ((
Index (p,f))
+ 1))
+ 1)) by
A10,
FINSEQ_5: 58
.= ((
Rev f)
. ((
len (
Rev f))
- (
Index (p,f))))
.= ((
Rev f)
. ((
len f)
- (
Index (p,f)))) by
FINSEQ_5:def 3;
then ((
Index (p,(
Rev f)))
+ 1)
= ((
len f)
-' (
Index (p,f))) by
A1,
A6,
A9,
A7,
Th12;
hence thesis by
A7;
end;
theorem ::
JORDAN3:21
Th21: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st f is
unfolded
s.n.c. & p
in (
L~ f) & p
<> (f
. ((
Index (p,f))
+ 1)) holds ((
Index (p,(
Rev f)))
+ (
Index (p,f)))
= (
len f)
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2) such that
A1: f is
unfolded
s.n.c. and
A2: p
in (
L~ f) and
A3: p
<> (f
. ((
Index (p,f))
+ 1));
A4: (
Index (p,f))
< (
len f) by
A2,
Th8;
then
A5: (((
len f)
-' (
Index (p,f)))
+ (
Index (p,f)))
= (
len f) by
XREAL_1: 235;
(
0
+ 1)
<= (
Index (p,f)) by
A2,
Th8;
then ((
len f)
+
0 )
< ((
len f)
+ (
Index (p,f))) by
XREAL_1: 6;
then ((
len f)
- (
Index (p,f)))
< (
len f) by
XREAL_1: 19;
then
A6: ((
len f)
-' (
Index (p,f)))
< (
len f) by
A4,
XREAL_1: 233;
A7: (
Index (p,f))
< (
len f) by
A2,
Th8;
then ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then 1
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 19;
then 1
<= ((
len f)
-' (
Index (p,f))) by
NAT_D: 39;
then ((
len f)
-' (
Index (p,f)))
in (
dom f) by
A6,
FINSEQ_3: 25;
then
A8: ((
Rev f)
. ((
len f)
-' (
Index (p,f))))
= (f
. (((
len f)
- ((
len f)
-' (
Index (p,f))))
+ 1)) by
FINSEQ_5: 58
.= (f
. (((
len f)
- ((
len f)
- (
Index (p,f))))
+ 1)) by
A7,
XREAL_1: 233
.= (f
. ((
0
+ (
Index (p,f)))
+ 1));
p
in (
LSeg (f,(
Index (p,f)))) by
A2,
Th9;
then
A9: p
in (
LSeg ((
Rev f),((
len f)
-' (
Index (p,f))))) by
A5,
SPPOL_2: 2;
(
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
then
A10: (((
len f)
-' (
Index (p,f)))
+ 1)
<= (
len (
Rev f)) by
A6,
NAT_1: 13;
(
Rev f) is
s.n.c. by
A1,
SPPOL_2: 35;
then ((
len f)
-' (
Index (p,f)))
= (
Index (p,(
Rev f))) by
A1,
A3,
A9,
A10,
A8,
Th14,
SPPOL_2: 28;
hence thesis by
A7,
XREAL_1: 235;
end;
theorem ::
JORDAN3:22
Th22: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) holds (
L_Cut ((
Rev f),p))
= (
Rev (
R_Cut (f,p)))
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) such that
A1: f is
being_S-Seq and
A2: p
in (
L~ f);
A3: (
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
A4: p
in (
L~ (
Rev f)) by
A2,
SPPOL_2: 22;
A5: 1
<= (
Index (p,f)) by
A2,
Th8;
A6: (
Rev f) is
being_S-Seq by
A1;
A7: (
Rev (
Rev f))
= f;
A8: (
Index (p,f))
< (
len f) by
A2,
Th8;
(
L~ f)
= (
L~ (
Rev f)) by
SPPOL_2: 22;
then (
Index (p,(
Rev f)))
< (
len (
Rev f)) by
A2,
Th8;
then
A9: ((
Index (p,(
Rev f)))
+ 1)
<= (
len f) by
A3,
NAT_1: 13;
1
<= ((
Index (p,(
Rev f)))
+ 1) by
NAT_1: 11;
then
A10: ((
Index (p,(
Rev f)))
+ 1)
in (
dom f) by
A9,
FINSEQ_3: 25;
A11: (1
+ 1)
<= (
len f) by
A1,
TOPREAL1:def 8;
then
A12: 1
< (
len f) by
NAT_1: 13;
then
A13: 1
in (
dom f) by
FINSEQ_3: 25;
A14: (
len f)
in (
dom f) by
A12,
FINSEQ_3: 25;
A15: 2
in (
dom f) by
A11,
FINSEQ_3: 25;
A16: (
dom (
Rev f))
= (
dom f) by
FINSEQ_5: 57;
per cases ;
suppose
A17: p
= (f
. (
len f));
then
A18: p
<> (f
. 1) by
A1,
A12,
A13,
A14,
FUNCT_1:def 4;
A19: p
= ((
Rev f)
. 1) by
A17,
FINSEQ_5: 62;
then
A20: p
<> ((
Rev f)
. (1
+ 1)) by
A1,
A16,
A13,
A15,
FUNCT_1:def 4;
p
= ((
Rev f)
/. 1) by
A16,
A13,
A19,
PARTFUN1:def 6;
then
A21: (
Index (p,(
Rev f)))
= 1 by
A3,
A11,
Th11;
then ((
Index (p,(
Rev f)))
+ (
Index (p,f)))
= (
len f) by
A6,
A4,
A7,
A3,
A20,
Th21;
then
A22: (
Index (p,(
Rev f)))
= ((
len f)
- (
Index (p,f)));
thus (
L_Cut ((
Rev f),p))
= (
<*p*>
^ (
mid ((
Rev f),((
Index (p,(
Rev f)))
+ 1),(
len f)))) by
A3,
A21,
A20,
Def3
.= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(
len f)))) by
A8,
A22,
XREAL_1: 233
.= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(((
len f)
-' 1)
+ 1)))) by
A12,
XREAL_1: 235
.= (
<*p*>
^ (
Rev (
mid (f,1,(
Index (p,f)))))) by
A12,
A5,
A8,
FINSEQ_6: 113
.= (
Rev ((
mid (f,1,(
Index (p,f))))
^
<*p*>)) by
FINSEQ_5: 63
.= (
Rev (
R_Cut (f,p))) by
A18,
Def4;
end;
suppose
A23: p
= (f
. 1);
A24: (((
len (
Rev f))
-' 1)
+ 1)
= (
len (
Rev f)) by
A3,
A12,
XREAL_1: 235;
then
A25: (((
Rev f)
/^ ((
len (
Rev f))
-' 1))
. 1)
= ((
Rev f)
. (
len (
Rev f))) by
FINSEQ_6: 114;
A26: (
len ((
Rev f)
/^ ((
len (
Rev f))
-' 1)))
= ((
len (
Rev f))
-' ((
len (
Rev f))
-' 1)) by
RFINSEQ: 29;
1
<= ((
len (
Rev f))
- ((
len (
Rev f))
-' 1)) by
A24;
then
A27: 1
<= (
len ((
Rev f)
/^ ((
len (
Rev f))
-' 1))) by
A26,
NAT_D: 39;
(((
len (
Rev f))
-' (
len (
Rev f)))
+ 1)
= (((
len (
Rev f))
- (
len (
Rev f)))
+ 1) by
XREAL_1: 233
.= 1;
then
A28: (
mid ((
Rev f),(
len (
Rev f)),(
len (
Rev f))))
= (((
Rev f)
/^ ((
len (
Rev f))
-' 1))
| 1) by
FINSEQ_6:def 3
.=
<*(((
Rev f)
/^ ((
len (
Rev f))
-' 1))
. 1)*> by
A27,
CARD_1: 27,
FINSEQ_5: 20
.=
<*((
Rev f)
. (
len (
Rev f)))*> by
A25;
A29: p
= ((
Rev f)
. (
len f)) by
A23,
FINSEQ_5: 62;
then ((
Index (p,(
Rev f)))
+ 1)
= (
len f) by
A1,
A3,
A12,
Th12;
hence (
L_Cut ((
Rev f),p))
=
<*p*> by
A3,
A29,
A28,
Def3
.= (
Rev
<*p*>) by
FINSEQ_5: 60
.= (
Rev (
R_Cut (f,p))) by
A23,
Def4;
end;
suppose that
A30: p
<> (f
. 1) and
A31: p
<> (f
. (
len f)) and
A32: p
= (f
. ((
Index (p,f))
+ 1));
A33: (
len f)
= (((
Index (p,(
Rev f)))
+ (
Index (p,f)))
+ 1) by
A1,
A2,
A31,
A32,
Th20
.= ((
Index (p,f))
+ ((
Index (p,(
Rev f)))
+ 1));
(
len f)
= (((
Index (p,(
Rev f)))
+ (
Index (p,f)))
+ 1) by
A1,
A2,
A31,
A32,
Th20
.= ((
Index (p,(
Rev f)))
+ ((
Index (p,f))
+ 1));
then
A34: p
= (f
. (((
len f)
- ((
Index (p,(
Rev f)))
+ 1))
+ 1)) by
A32
.= ((
Rev f)
. ((
Index (p,(
Rev f)))
+ 1)) by
A10,
FINSEQ_5: 58;
A35: ((
len f)
-' (
Index (p,f)))
= ((
len f)
- (
Index (p,f))) by
A8,
XREAL_1: 233
.= ((
Index (p,(
Rev f)))
+ 1) by
A33;
p
<> ((
Rev f)
. (
len f)) by
A30,
FINSEQ_5: 62;
then
A36: ((
Index (p,(
Rev f)))
+ 1)
< (
len f) by
A9,
A34,
XXREAL_0: 1;
thus (
L_Cut ((
Rev f),p))
= (
mid ((
Rev f),((
Index (p,(
Rev f)))
+ 1),(
len f))) by
A3,
A34,
Def3
.= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(
len f)))) by
A16,
A10,
A34,
A35,
A36,
FINSEQ_6: 126
.= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(((
len f)
-' 1)
+ 1)))) by
A12,
XREAL_1: 235
.= (
<*p*>
^ (
Rev (
mid (f,1,(
Index (p,f)))))) by
A12,
A5,
A8,
FINSEQ_6: 113
.= (
Rev ((
mid (f,1,(
Index (p,f))))
^
<*p*>)) by
FINSEQ_5: 63
.= (
Rev (
R_Cut (f,p))) by
A30,
Def4;
end;
suppose that
A37: p
<> (f
. 1) and
A38: p
<> (f
. ((
Index (p,f))
+ 1));
A39: p
<> ((
Rev f)
. (
len f)) by
A37,
FINSEQ_5: 62;
A40:
now
assume
A41: p
= ((
Rev f)
. ((
Index (p,(
Rev f)))
+ 1));
then
A42: (
len (
Rev f))
= (((
Index (p,(
Rev (
Rev f))))
+ (
Index (p,(
Rev f))))
+ 1) by
A1,
A4,
A3,
A39,
Th20
.= (((
Index (p,f))
+ 1)
+ (
Index (p,(
Rev f))));
p
= (f
. (((
len f)
- ((
Index (p,(
Rev f)))
+ 1))
+ 1)) by
A10,
A41,
FINSEQ_5: 58
.= (f
. ((
Index (p,f))
+ 1)) by
A3,
A42;
hence contradiction by
A38;
end;
A43: (
Index (p,f))
< (
len f) by
A2,
Th8;
(
len f)
= ((
Index (p,(
Rev f)))
+ (
Index (p,f))) by
A1,
A2,
A38,
Th21;
then (
Index (p,(
Rev f)))
= ((
len f)
- (
Index (p,f)))
.= ((
len f)
-' (
Index (p,f))) by
A43,
XREAL_1: 233;
hence (
L_Cut ((
Rev f),p))
= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(
len f)))) by
A3,
A40,
Def3
.= (
<*p*>
^ (
mid ((
Rev f),(((
len f)
-' (
Index (p,f)))
+ 1),(((
len f)
-' 1)
+ 1)))) by
A12,
XREAL_1: 235
.= (
<*p*>
^ (
Rev (
mid (f,1,(
Index (p,f)))))) by
A12,
A5,
A8,
FINSEQ_6: 113
.= (
Rev ((
mid (f,1,(
Index (p,f))))
^
<*p*>)) by
FINSEQ_5: 63
.= (
Rev (
R_Cut (f,p))) by
A37,
Def4;
end;
end;
theorem ::
JORDAN3:23
Th23: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds ((
L_Cut (f,p))
. 1)
= p & for i st 1
< i & i
<= (
len (
L_Cut (f,p))) holds (p
= (f
. ((
Index (p,f))
+ 1)) implies ((
L_Cut (f,p))
. i)
= (f
. ((
Index (p,f))
+ i))) & (p
<> (f
. ((
Index (p,f))
+ 1)) implies ((
L_Cut (f,p))
. i)
= (f
. (((
Index (p,f))
+ i)
- 1)))
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
then (
Index (p,f))
< (
len f) by
Th8;
then
A2: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
A3: f is non
empty by
A1,
CARD_1: 27,
TOPREAL1: 22;
now
per cases ;
suppose
A4: p
= (f
. ((
Index (p,f))
+ 1));
1
in (
dom f) by
A3,
FINSEQ_5: 6;
then
A5: 1
<= (
len f) by
FINSEQ_3: 25;
(
Index (p,f))
< (
len f) by
A1,
Th8;
then
A6: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
A7: 1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
(
L_Cut (f,p))
= (
mid (f,((
Index (p,f))
+ 1),(
len f))) by
A4,
Def3;
hence ((
L_Cut (f,p))
. 1)
= p by
A4,
A7,
A6,
A5,
FINSEQ_6: 118;
end;
suppose p
<> (f
. ((
Index (p,f))
+ 1));
then (
L_Cut (f,p))
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
Def3;
hence ((
L_Cut (f,p))
. 1)
= p by
FINSEQ_1: 41;
end;
end;
hence ((
L_Cut (f,p))
. 1)
= p;
let i;
assume that
A8: 1
< i and
A9: i
<= (
len (
L_Cut (f,p)));
A10: (
len
<*p*>)
<= i by
A8,
FINSEQ_1: 40;
A11: 1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
then
A12: 1
<= (
len f) by
A2,
XXREAL_0: 2;
then (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A11,
A2,
FINSEQ_6: 118;
then
A13: ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
= (1
+ (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1)) by
FINSEQ_1: 40
.= (1
+ (((
len f)
- ((
Index (p,f))
+ 1))
+ 1)) by
A2,
XREAL_1: 233
.= (((
len f)
- (
Index (p,f)))
+ 1);
A14: ((i
-' 1)
+ 1)
= ((i
- 1)
+ 1) by
A8,
XREAL_1: 233
.= i;
A15: 1
<= (i
- 1) by
A8,
SPPOL_1: 1;
then
A16: 1
<= (i
-' 1) by
NAT_D: 39;
hereby
assume p
= (f
. ((
Index (p,f))
+ 1));
then (
L_Cut (f,p))
= (
mid (f,((
Index (p,f))
+ 1),(
len f))) by
Def3;
hence ((
L_Cut (f,p))
. i)
= (f
. ((i
+ ((
Index (p,f))
+ 1))
-' 1)) by
A8,
A9,
A11,
A2,
A12,
FINSEQ_6: 118
.= (f
. (((i
+ (
Index (p,f)))
+ 1)
-' 1))
.= (f
. ((
Index (p,f))
+ i)) by
NAT_D: 34;
end;
A17: i
<= (i
+ (
Index (p,f))) by
NAT_1: 11;
assume p
<> (f
. ((
Index (p,f))
+ 1));
then
A18: (
L_Cut (f,p))
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
Def3;
then i
<= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A9,
FINSEQ_1: 22;
then (i
- 1)
<= ((((
len f)
- (
Index (p,f)))
+ 1)
- 1) by
A13,
XREAL_1: 9;
then
A19: (i
-' 1)
<= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A15,
NAT_D: 39;
(
len
<*p*>)
< i by
A8,
FINSEQ_1: 39;
then ((
L_Cut (f,p))
. i)
= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (i
- (
len
<*p*>))) by
A9,
A18,
FINSEQ_6: 108
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (i
-' (
len
<*p*>))) by
A10,
XREAL_1: 233
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (i
-' 1)) by
FINSEQ_1: 39
.= (f
. (((i
-' 1)
+ ((
Index (p,f))
+ 1))
-' 1)) by
A11,
A2,
A16,
A19,
FINSEQ_6: 122
.= (f
. (((
Index (p,f))
+ i)
-' 1)) by
A14;
hence thesis by
A8,
A17,
XREAL_1: 233,
XXREAL_0: 2;
end;
theorem ::
JORDAN3:24
Th24: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds ((
R_Cut (f,p))
. (
len (
R_Cut (f,p))))
= p & for i be
Element of
NAT st 1
<= i & i
<= (
Index (p,f)) holds ((
R_Cut (f,p))
. i)
= (f
. i)
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
then
A2: (
Index (p,f))
< (
len f) by
Th8;
now
per cases ;
suppose
A3: p
<> (f
. 1);
A4: (
len ((
mid (f,1,(
Index (p,f))))
^
<*p*>))
= ((
len (
mid (f,1,(
Index (p,f)))))
+ (
len
<*p*>)) by
FINSEQ_1: 22
.= ((
len (
mid (f,1,(
Index (p,f)))))
+ 1) by
FINSEQ_1: 39;
(
R_Cut (f,p))
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) by
A3,
Def4;
hence ((
R_Cut (f,p))
. (
len (
R_Cut (f,p))))
= p by
A4,
FINSEQ_1: 42;
end;
suppose p
= (f
. 1);
then
A5: (
R_Cut (f,p))
=
<*p*> by
Def4;
then (
len (
R_Cut (f,p)))
= 1 by
FINSEQ_1: 40;
hence ((
R_Cut (f,p))
. (
len (
R_Cut (f,p))))
= p by
A5,
FINSEQ_1: 40;
end;
end;
hence ((
R_Cut (f,p))
. (
len (
R_Cut (f,p))))
= p;
A6: 1
<= (
Index (p,f)) by
A1,
Th8;
then (
len f)
> 1 by
A2,
XXREAL_0: 2;
then
A7: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A6,
A2,
FINSEQ_6: 118
.= (
Index (p,f)) by
A1,
Th8,
XREAL_1: 235;
thus for i be
Element of
NAT st 1
<= i & i
<= (
Index (p,f)) holds ((
R_Cut (f,p))
. i)
= (f
. i)
proof
let i be
Element of
NAT ;
assume that
A8: 1
<= i and
A9: i
<= (
Index (p,f));
now
per cases ;
case p
<> (f
. 1);
then ((
R_Cut (f,p))
. i)
= (((
mid (f,1,(
Index (p,f))))
^
<*p*>)
. i) by
Def4
.= ((
mid (f,1,(
Index (p,f))))
. i) by
A7,
A8,
A9,
FINSEQ_1: 64
.= (f
. i) by
A2,
A8,
A9,
FINSEQ_6: 123;
hence thesis;
end;
case
A10: p
= (f
. 1);
A11: (
len f)
> 1 by
A6,
A2,
XXREAL_0: 2;
then 1
in (
dom f) by
FINSEQ_3: 25;
then
A12: p
= (f
/. 1) by
A10,
PARTFUN1:def 6;
(
len f)
>= (1
+ 1) by
A11,
NAT_1: 13;
then (
Index (p,f))
= 1 by
A12,
Th11;
then
A13: i
= 1 by
A8,
A9,
XXREAL_0: 1;
(
R_Cut (f,p))
=
<*p*> by
A10,
Def4;
hence thesis by
A10,
A13,
FINSEQ_1: 40;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN3:25
for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds (p
<> (f
. 1) implies (
len (
R_Cut (f,p)))
= ((
Index (p,f))
+ 1)) & (p
= (f
. 1) implies (
len (
R_Cut (f,p)))
= (
Index (p,f)))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
then
consider i be
Nat such that
A2: 1
<= i and
A3: (i
+ 1)
<= (
len f) and p
in (
LSeg (f,i)) by
SPPOL_2: 13;
A4: 1
<= (
Index (p,f)) by
A1,
Th8;
A5: (
Index (p,f))
<= (
len f) by
A1,
Th8;
i
<= (
len f) by
A3,
NAT_D: 46;
then
A6: 1
<= (
len f) by
A2,
XXREAL_0: 2;
now
per cases ;
case p
<> (f
. 1);
then (
R_Cut (f,p))
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) by
Def4;
hence (
len (
R_Cut (f,p)))
= ((
len (
mid (f,1,(
Index (p,f)))))
+ (
len
<*p*>)) by
FINSEQ_1: 22
.= ((
len (
mid (f,1,(
Index (p,f)))))
+ 1) by
FINSEQ_1: 39
.= ((((
Index (p,f))
-' 1)
+ 1)
+ 1) by
A6,
A4,
A5,
FINSEQ_6: 118
.= ((
Index (p,f))
+ 1) by
A1,
Th8,
XREAL_1: 235;
end;
case
A7: p
= (f
. 1);
(
len f)
> i by
A3,
NAT_1: 13;
then (
len f)
> 1 by
A2,
XXREAL_0: 2;
then
A8: (
len f)
>= (1
+ 1) by
NAT_1: 13;
1
in (
dom f) by
A3,
CARD_1: 27,
FINSEQ_5: 6;
then
A9: p
= (f
/. 1) by
A7,
PARTFUN1:def 6;
(
R_Cut (f,p))
=
<*p*> by
A7,
Def4;
hence (
len (
R_Cut (f,p)))
= 1 by
FINSEQ_1: 39
.= (
Index (p,f)) by
A8,
A9,
Th11;
end;
end;
hence thesis;
end;
theorem ::
JORDAN3:26
Th26: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds (p
= (f
. ((
Index (p,f))
+ 1)) implies (
len (
L_Cut (f,p)))
= ((
len f)
- (
Index (p,f)))) & (p
<> (f
. ((
Index (p,f))
+ 1)) implies (
len (
L_Cut (f,p)))
= (((
len f)
- (
Index (p,f)))
+ 1))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2);
assume
A1: p
in (
L~ f);
then
consider i be
Nat such that
A2: 1
<= i and
A3: (i
+ 1)
<= (
len f) and p
in (
LSeg (f,i)) by
SPPOL_2: 13;
i
<= (
len f) by
A3,
NAT_D: 46;
then
A4: 1
<= (
len f) by
A2,
XXREAL_0: 2;
1
<= (
Index (p,f)) by
A1,
Th8;
then
A5: 1
< ((
Index (p,f))
+ 1) by
NAT_1: 13;
(
Index (p,f))
< (
len f) by
A1,
Th8;
then
A6: (((
Index (p,f))
+ 1)
+
0 )
<= (
len f) by
NAT_1: 13;
then
A7: ((
len f)
- ((
Index (p,f))
+ 1))
>=
0 by
XREAL_1: 19;
now
per cases ;
case p
<> (f
. ((
Index (p,f))
+ 1));
then (
L_Cut (f,p))
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
Def3;
hence (
len (
L_Cut (f,p)))
= (1
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
FINSEQ_5: 8
.= ((((
len f)
-' ((
Index (p,f))
+ 1))
+ 1)
+ 1) by
A4,
A5,
A6,
FINSEQ_6: 118
.= ((((
len f)
- ((
Index (p,f))
+ 1))
+ 1)
+ 1) by
A7,
XREAL_0:def 2
.= (((
len f)
- (
Index (p,f)))
+ 1);
end;
case p
= (f
. ((
Index (p,f))
+ 1));
then (
L_Cut (f,p))
= (
mid (f,((
Index (p,f))
+ 1),(
len f))) by
Def3;
hence (
len (
L_Cut (f,p)))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A4,
A5,
A6,
FINSEQ_6: 118
.= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A7,
XREAL_0:def 2
.= ((
len f)
- (
Index (p,f)));
end;
end;
hence thesis;
end;
definition
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
::
JORDAN3:def5
pred
LE q1,q2,p1,p2 means q1
in (
LSeg (p1,p2)) & q2
in (
LSeg (p1,p2)) & for r1,r2 be
Real st
0
<= r1 & r1
<= 1 & q1
= (((1
- r1)
* p1)
+ (r1
* p2)) &
0
<= r2 & r2
<= 1 & q2
= (((1
- r2)
* p1)
+ (r2
* p2)) holds r1
<= r2;
end
definition
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
::
JORDAN3:def6
pred
LT q1,q2,p1,p2 means
LE (q1,q2,p1,p2) & q1
<> q2;
end
theorem ::
JORDAN3:27
for p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st
LE (q1,q2,p1,p2) &
LE (q2,q1,p1,p2) holds q1
= q2
proof
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1:
LE (q1,q2,p1,p2) and
A2:
LE (q2,q1,p1,p2);
q1
in (
LSeg (p1,p2)) by
A1;
then
consider r1 such that
A3: q1
= (((1
- r1)
* p1)
+ (r1
* p2)) and
A4:
0
<= r1 and
A5: r1
<= 1;
q2
in (
LSeg (p1,p2)) by
A1;
then
consider r2 such that
A6: q2
= (((1
- r2)
* p1)
+ (r2
* p2)) and
A7:
0
<= r2 and
A8: r2
<= 1;
A9: r2
<= r1 by
A2,
A3,
A4,
A5,
A6,
A8;
r1
<= r2 by
A1,
A3,
A5,
A6,
A7,
A8;
then r1
= r2 by
A9,
XXREAL_0: 1;
hence thesis by
A3,
A6;
end;
theorem ::
JORDAN3:28
Th28: for p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st q1
in (
LSeg (p1,p2)) & q2
in (
LSeg (p1,p2)) & p1
<> p2 holds (
LE (q1,q2,p1,p2) or
LT (q2,q1,p1,p2)) & not (
LE (q1,q2,p1,p2) &
LT (q2,q1,p1,p2))
proof
let p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: q1
in (
LSeg (p1,p2)) and
A2: q2
in (
LSeg (p1,p2)) and
A3: p1
<> p2;
consider r1 such that
A4: q1
= (((1
- r1)
* p1)
+ (r1
* p2)) and
A5:
0
<= r1 and
A6: r1
<= 1 by
A1;
consider r2 such that
A7: q2
= (((1
- r2)
* p1)
+ (r2
* p2)) and
A8:
0
<= r2 and
A9: r2
<= 1 by
A2;
A10:
now
per cases ;
case
A11: r1
<= r2;
for s1,s2 be
Real st
0
<= s1 & s1
<= 1 & q1
= (((1
- s1)
* p1)
+ (s1
* p2)) &
0
<= s2 & s2
<= 1 & q2
= (((1
- s2)
* p1)
+ (s2
* p2)) holds s1
<= s2
proof
let s1,s2 be
Real;
assume that
0
<= s1 and s1
<= 1 and
A12: q1
= (((1
- s1)
* p1)
+ (s1
* p2)) and
0
<= s2 and s2
<= 1 and
A13: q2
= (((1
- s2)
* p1)
+ (s2
* p2));
(((1
- s2)
* p1)
+ ((s2
* p2)
- (s2
* p2)))
= ((((1
- r2)
* p1)
+ (r2
* p2))
- (s2
* p2)) by
A7,
A13,
RLVECT_1:def 3;
then (((1
- s2)
* p1)
+ ((s2
* p2)
- (s2
* p2)))
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1:def 3;
then (((1
- s2)
* p1)
+ (
0. (
TOP-REAL 2)))
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1: 5;
then ((1
- s2)
* p1)
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1: 4;
then ((1
- s2)
* p1)
= (((1
- r2)
* p1)
+ ((r2
- s2)
* p2)) by
RLVECT_1: 35;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= (((r2
- s2)
* p2)
+ (((1
- r2)
* p1)
- ((1
- r2)
* p1))) by
RLVECT_1:def 3;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= (((r2
- s2)
* p2)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= ((r2
- s2)
* p2) by
RLVECT_1: 4;
then (((1
- s2)
- (1
- r2))
* p1)
= ((r2
- s2)
* p2) by
RLVECT_1: 35;
then
A14: (r2
- s2)
=
0 or p1
= p2 by
RLVECT_1: 36;
(((1
- s1)
* p1)
+ ((s1
* p2)
- (s1
* p2)))
= ((((1
- r1)
* p1)
+ (r1
* p2))
- (s1
* p2)) by
A4,
A12,
RLVECT_1:def 3;
then (((1
- s1)
* p1)
+ ((s1
* p2)
- (s1
* p2)))
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1:def 3;
then (((1
- s1)
* p1)
+ (
0. (
TOP-REAL 2)))
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1: 5;
then ((1
- s1)
* p1)
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1: 4;
then ((1
- s1)
* p1)
= (((1
- r1)
* p1)
+ ((r1
- s1)
* p2)) by
RLVECT_1: 35;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= (((r1
- s1)
* p2)
+ (((1
- r1)
* p1)
- ((1
- r1)
* p1))) by
RLVECT_1:def 3;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= (((r1
- s1)
* p2)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= ((r1
- s1)
* p2) by
RLVECT_1: 4;
then (((1
- s1)
- (1
- r1))
* p1)
= ((r1
- s1)
* p2) by
RLVECT_1: 35;
then (r1
- s1)
=
0 or p1
= p2 by
RLVECT_1: 36;
hence thesis by
A3,
A11,
A14;
end;
hence
LE (q1,q2,p1,p2) or
LT (q2,q1,p1,p2) by
A1,
A2;
end;
case
A15: r1
> r2;
for s2,s1 be
Real st
0
<= s2 & s2
<= 1 & q2
= (((1
- s2)
* p1)
+ (s2
* p2)) &
0
<= s1 & s1
<= 1 & q1
= (((1
- s1)
* p1)
+ (s1
* p2)) holds s1
>= s2
proof
let s2,s1 be
Real;
assume that
0
<= s2 and s2
<= 1 and
A16: q2
= (((1
- s2)
* p1)
+ (s2
* p2)) and
0
<= s1 and s1
<= 1 and
A17: q1
= (((1
- s1)
* p1)
+ (s1
* p2));
(((1
- s1)
* p1)
+ ((s1
* p2)
- (s1
* p2)))
= ((((1
- r1)
* p1)
+ (r1
* p2))
- (s1
* p2)) by
A4,
A17,
RLVECT_1:def 3;
then (((1
- s1)
* p1)
+ ((s1
* p2)
- (s1
* p2)))
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1:def 3;
then (((1
- s1)
* p1)
+ (
0. (
TOP-REAL 2)))
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1: 5;
then ((1
- s1)
* p1)
= (((1
- r1)
* p1)
+ ((r1
* p2)
- (s1
* p2))) by
RLVECT_1: 4;
then ((1
- s1)
* p1)
= (((1
- r1)
* p1)
+ ((r1
- s1)
* p2)) by
RLVECT_1: 35;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= (((r1
- s1)
* p2)
+ (((1
- r1)
* p1)
- ((1
- r1)
* p1))) by
RLVECT_1:def 3;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= (((r1
- s1)
* p2)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then (((1
- s1)
* p1)
- ((1
- r1)
* p1))
= ((r1
- s1)
* p2) by
RLVECT_1: 4;
then (((1
- s1)
- (1
- r1))
* p1)
= ((r1
- s1)
* p2) by
RLVECT_1: 35;
then
A18: (r1
- s1)
=
0 or p1
= p2 by
RLVECT_1: 36;
(((1
- s2)
* p1)
+ ((s2
* p2)
- (s2
* p2)))
= ((((1
- r2)
* p1)
+ (r2
* p2))
- (s2
* p2)) by
A7,
A16,
RLVECT_1:def 3;
then (((1
- s2)
* p1)
+ ((s2
* p2)
- (s2
* p2)))
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1:def 3;
then (((1
- s2)
* p1)
+ (
0. (
TOP-REAL 2)))
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1: 5;
then ((1
- s2)
* p1)
= (((1
- r2)
* p1)
+ ((r2
* p2)
- (s2
* p2))) by
RLVECT_1: 4
.= (((r2
- s2)
* p2)
+ ((1
- r2)
* p1)) by
RLVECT_1: 35;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= (((r2
- s2)
* p2)
+ (((1
- r2)
* p1)
- ((1
- r2)
* p1))) by
RLVECT_1:def 3;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= (((r2
- s2)
* p2)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then (((1
- s2)
* p1)
- ((1
- r2)
* p1))
= ((r2
- s2)
* p2) by
RLVECT_1: 4;
then (((1
- s2)
- (1
- r2))
* p1)
= ((r2
- s2)
* p2) by
RLVECT_1: 35;
then (r2
- s2)
=
0 or p1
= p2 by
RLVECT_1: 36;
hence thesis by
A3,
A15,
A18;
end;
then
A19:
LE (q2,q1,p1,p2) by
A1,
A2;
thus
LE (q1,q2,p1,p2) or
LT (q2,q1,p1,p2) by
A19;
end;
end;
now
assume that
A20:
LE (q1,q2,p1,p2) and
A21:
LT (q2,q1,p1,p2);
LE (q2,q1,p1,p2) by
A21;
then
A22: r2
<= r1 by
A4,
A5,
A6,
A7,
A9;
r1
<= r2 by
A4,
A6,
A7,
A8,
A9,
A20;
then r1
= r2 by
A22,
XXREAL_0: 1;
hence contradiction by
A4,
A7,
A21;
end;
hence thesis by
A10;
end;
theorem ::
JORDAN3:29
Th29: for f be
FinSequence of (
TOP-REAL 2) holds for p,q be
Point of (
TOP-REAL 2) st p
in (
L~ f) & q
in (
L~ f) & (
Index (p,f))
< (
Index (q,f)) holds q
in (
L~ (
L_Cut (f,p)))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p,q be
Point of (
TOP-REAL 2);
assume that
A1: p
in (
L~ f) and
A2: q
in (
L~ f) and
A3: (
Index (p,f))
< (
Index (q,f));
A4: (
Index (q,f))
< (
len f) by
A2,
Th8;
then
A5: ((
Index (q,f))
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then
A6: (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= (((
len f)
- (
Index (p,f)))
+ 1) by
XREAL_1: 6;
((
Index (q,f))
- (
Index (p,f)))
<= ((((
len f)
- (
Index (p,f)))
- 1)
+ 1) by
A4,
XREAL_1: 9;
then
A7: ((
Index (q,f))
-' (
Index (p,f)))
<= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A3,
XREAL_1: 233;
set i1 = (((
Index (q,f))
-' (
Index (p,f)))
+ 1);
A8: 1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
A9: ((
Index (p,f))
+ 1)
<= (
Index (q,f)) by
A3,
NAT_1: 13;
then
A10: (((
Index (p,f))
+ 1)
- (
Index (p,f)))
<= ((
Index (q,f))
- (
Index (p,f))) by
XREAL_1: 9;
then
A11: 1
<= ((
Index (q,f))
-' (
Index (p,f))) by
XREAL_0:def 2;
then
A12: 1
<= (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
NAT_D: 48;
(1
+ 1)
<= (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
A11,
XREAL_1: 6;
then
A13: 1
< (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
XXREAL_0: 2;
then
A14: (
len
<*p*>)
< (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
FINSEQ_1: 40;
then
A15: (
len
<*p*>)
< ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1) by
NAT_1: 13;
A16: ((
Index (p,f))
+ 1)
<= (
len f) by
A4,
A9,
XXREAL_0: 2;
A17: 1
<= (
Index (q,f)) by
A2,
Th8;
then 1
< (
len f) by
A4,
XXREAL_0: 2;
then (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A8,
A16,
FINSEQ_6: 118;
then
A18: ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
= (1
+ (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1)) by
FINSEQ_1: 40
.= (1
+ (((
len f)
- ((
Index (p,f))
+ 1))
+ 1)) by
A4,
A9,
XREAL_1: 233,
XXREAL_0: 2
.= (((
len f)
- (
Index (p,f)))
+ 1);
then
A19: (((
Index (q,f))
-' (
Index (p,f)))
+ 1)
<= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A3,
A6,
XREAL_1: 233;
per cases ;
suppose
A20: p
= (f
. ((
Index (p,f))
+ 1));
then
A21: (
len (
L_Cut (f,p)))
= ((
len f)
- (
Index (p,f))) by
A1,
Th26;
then (
len (
L_Cut (f,p)))
>= ((
Index (q,f))
-' (
Index (p,f))) by
A3,
A5,
XREAL_1: 233;
then ((
L_Cut (f,p))
/. ((
Index (q,f))
-' (
Index (p,f))))
= ((
L_Cut (f,p))
. ((
Index (q,f))
-' (
Index (p,f)))) by
A11,
FINSEQ_4: 15
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((
Index (q,f))
-' (
Index (p,f)))) by
A20,
Def3
.= (f
. ((((
Index (p,f))
+ 1)
+ ((
Index (q,f))
-' (
Index (p,f))))
- 1)) by
A11,
A8,
A16,
A7,
FINSEQ_6: 122
.= (f
. ((((
Index (p,f))
+ 1)
+ ((
Index (q,f))
- (
Index (p,f))))
- 1)) by
A3,
XREAL_1: 233
.= (f
. (
Index (q,f)));
then
A22: ((
L_Cut (f,p))
/. ((
Index (q,f))
-' (
Index (p,f))))
= (f
/. (
Index (q,f))) by
A2,
A4,
Th8,
FINSEQ_4: 15;
1
<= (
Index (q,f)) by
A2,
Th8;
then
A23: 1
<= ((
Index (q,f))
+ 1) by
NAT_D: 48;
A24: q
in (
LSeg (f,(
Index (q,f)))) by
A2,
Th9;
A25: (
Index (q,f))
< (
len f) by
A2,
Th8;
then
A26: ((
Index (q,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then
A27: (((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f)));
then
A28: (((
Index (q,f))
-' (
Index (p,f)))
+ 1)
<= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A3,
XREAL_1: 233;
(((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
A26,
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f)));
then
A29: i1
<= (
len (
L_Cut (f,p))) by
A10,
A21,
XREAL_0:def 2;
A30: ((
Index (q,f))
+ 1)
<= (
len f) by
A25,
NAT_1: 13;
(((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f))) by
A27;
then (
len (
L_Cut (f,p)))
>= (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
A3,
A21,
XREAL_1: 233;
then ((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
= ((
L_Cut (f,p))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
A13,
FINSEQ_4: 15
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
A20,
Def3
.= (f
. ((((
Index (p,f))
+ 1)
+ (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
- 1)) by
A12,
A8,
A16,
A28,
FINSEQ_6: 122
.= (f
. ((((
Index (p,f))
+ 1)
+ (((
Index (q,f))
- (
Index (p,f)))
+ 1))
- 1)) by
A3,
XREAL_1: 233
.= (f
/. ((
Index (q,f))
+ 1)) by
A23,
A30,
FINSEQ_4: 15;
then q
in (
LSeg (((
L_Cut (f,p))
/. ((
Index (q,f))
-' (
Index (p,f)))),((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)))) by
A17,
A22,
A26,
A24,
TOPREAL1:def 3;
hence thesis by
A11,
A29,
SPPOL_2: 15;
end;
suppose that
A31: p
<> (f
. ((
Index (p,f))
+ 1));
A32: (
len (
L_Cut (f,p)))
= (((
len f)
- (
Index (p,f)))
+ 1) by
A1,
A31,
Th26;
then (
len (
L_Cut (f,p)))
>= (((
Index (q,f))
-' (
Index (p,f)))
+ 1) by
A3,
A6,
XREAL_1: 233;
then ((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
= ((
L_Cut (f,p))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11
.= ((
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
A31,
Def3
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
- (
len
<*p*>))) by
A14,
A19,
FINSEQ_6: 108
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
- 1)) by
FINSEQ_1: 40
.= (f
. ((((
Index (p,f))
+ 1)
+ ((
Index (q,f))
-' (
Index (p,f))))
- 1)) by
A11,
A8,
A16,
A7,
FINSEQ_6: 122
.= (f
. ((((
Index (p,f))
+ 1)
+ ((
Index (q,f))
- (
Index (p,f))))
- 1)) by
A3,
XREAL_1: 233
.= (f
. (
Index (q,f)));
then
A33: ((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
= (f
/. (
Index (q,f))) by
A2,
A4,
Th8,
FINSEQ_4: 15;
A34: (
Index (q,f))
< (
len f) by
A2,
Th8;
then
A35: ((
Index (q,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then
A36: (((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f)));
then
A37: (((
Index (q,f))
-' (
Index (p,f)))
+ 1)
<= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A3,
XREAL_1: 233;
(((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
A35,
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f)));
then i1
<= ((
len f)
- (
Index (p,f))) by
A10,
XREAL_0:def 2;
then
A38: (i1
+ 1)
<= (
len (
L_Cut (f,p))) by
A32,
XREAL_1: 6;
1
<= (
Index (q,f)) by
A2,
Th8;
then
A39: 1
<= ((
Index (q,f))
+ 1) by
NAT_D: 48;
A40: q
in (
LSeg (f,(
Index (q,f)))) by
A2,
Th9;
A41: ((
Index (q,f))
+ 1)
<= (
len f) by
A34,
NAT_1: 13;
A42: ((((
Index (q,f))
- (
Index (p,f)))
+ 1)
+ 1)
<= (((
len f)
- (
Index (p,f)))
+ 1) by
A36,
XREAL_1: 6;
then
A43: ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
<= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A3,
A18,
XREAL_1: 233;
(
len (
L_Cut (f,p)))
>= ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1) by
A3,
A32,
A42,
XREAL_1: 233;
then ((
L_Cut (f,p))
/. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1))
= ((
L_Cut (f,p))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11
.= ((
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)) by
A31,
Def3
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
- (
len
<*p*>))) by
A15,
A43,
FINSEQ_6: 108
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
- 1)) by
FINSEQ_1: 40
.= (f
. ((((
Index (p,f))
+ 1)
+ (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
- 1)) by
A12,
A8,
A16,
A37,
FINSEQ_6: 122
.= (f
. ((((
Index (p,f))
+ 1)
+ (((
Index (q,f))
- (
Index (p,f)))
+ 1))
- 1)) by
A3,
XREAL_1: 233
.= (f
/. ((
Index (q,f))
+ 1)) by
A39,
A41,
FINSEQ_4: 15;
then q
in (
LSeg (((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)),((
L_Cut (f,p))
/. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)))) by
A17,
A33,
A35,
A40,
TOPREAL1:def 3;
hence thesis by
A38,
NAT_1: 11,
SPPOL_2: 15;
end;
end;
theorem ::
JORDAN3:30
Th30: for p,q,p1,p2 be
Point of (
TOP-REAL 2) st
LE (p,q,p1,p2) holds q
in (
LSeg (p,p2)) & p
in (
LSeg (p1,q))
proof
let p,q,p1,p2 be
Point of (
TOP-REAL 2);
assume
A1:
LE (p,q,p1,p2);
then p
in (
LSeg (p1,p2));
then
consider s1 be
Real such that
A2: p
= (((1
- s1)
* p1)
+ (s1
* p2)) and
A3:
0
<= s1 and
A4: s1
<= 1;
q
in (
LSeg (p1,p2)) by
A1;
then
consider s2 be
Real such that
A5: q
= (((1
- s2)
* p1)
+ (s2
* p2)) and
A6:
0
<= s2 and
A7: s2
<= 1;
A8: s1
<= s2 by
A1,
A2,
A4,
A5,
A6,
A7;
A9: (1
- s1)
>=
0 by
A4,
XREAL_1: 48;
A10:
now
per cases ;
case
A11: (1
- s1)
<>
0 ;
set s = ((s2
- s1)
/ (1
- s1));
A12: ((1
- s1)
* ((1
- s2)
/ (1
- s1)))
= (1
- s2) by
A11,
XCMPLX_1: 87;
A13: ((1
- s1)
* ((s2
- s1)
/ (1
- s1)))
= (s2
- s1) by
A11,
XCMPLX_1: 87;
(1
- ((s2
- s1)
/ (1
- s1)))
= (((1
* (1
- s1))
- (s2
- s1))
/ (1
- s1)) by
A11,
XCMPLX_1: 127
.= ((((1
- s1)
+ s1)
- s2)
/ (1
- s1));
then ((1
- s1)
* (((1
- s)
* p)
+ (s
* p2)))
= (((1
- s1)
* (((1
- s2)
/ (1
- s1))
* (((1
- s1)
* p1)
+ (s1
* p2))))
+ ((1
- s1)
* (((s2
- s1)
/ (1
- s1))
* p2))) by
A2,
RLVECT_1:def 5
.= ((((1
- s1)
* ((1
- s2)
/ (1
- s1)))
* (((1
- s1)
* p1)
+ (s1
* p2)))
+ ((1
- s1)
* (((s2
- s1)
/ (1
- s1))
* p2))) by
RLVECT_1:def 7
.= (((1
- s2)
* (((1
- s1)
* p1)
+ (s1
* p2)))
+ (((1
- s1)
* ((s2
- s1)
/ (1
- s1)))
* p2)) by
A12,
RLVECT_1:def 7
.= ((((1
- s2)
* ((1
- s1)
* p1))
+ ((1
- s2)
* (s1
* p2)))
+ ((s2
- s1)
* p2)) by
A13,
RLVECT_1:def 5
.= (((((1
- s2)
* (1
- s1))
* p1)
+ ((1
- s2)
* (s1
* p2)))
+ ((s2
- s1)
* p2)) by
RLVECT_1:def 7
.= (((((1
- s2)
* (1
- s1))
* p1)
+ (((1
- s2)
* s1)
* p2))
+ ((s2
- s1)
* p2)) by
RLVECT_1:def 7
.= ((((1
- s2)
* (1
- s1))
* p1)
+ ((((1
- s2)
* s1)
* p2)
+ ((s2
- s1)
* p2))) by
RLVECT_1:def 3
.= ((((1
- s2)
* (1
- s1))
* p1)
+ ((((1
* s1)
- (s2
* s1))
+ (s2
- s1))
* p2)) by
RLVECT_1:def 6
.= (((1
- s1)
* ((1
- s2)
* p1))
+ (((1
- s1)
* s2)
* p2)) by
RLVECT_1:def 7
.= (((1
- s1)
* ((1
- s2)
* p1))
+ ((1
- s1)
* (s2
* p2))) by
RLVECT_1:def 7
.= ((1
- s1)
* q) by
A5,
RLVECT_1:def 5;
then
A14: q
= (((1
- s)
* p)
+ (s
* p2)) by
A11,
RLVECT_1: 36;
(1
- s1)
>= (s2
- s1) by
A7,
XREAL_1: 9;
then ((1
- s1)
/ (1
- s1))
>= ((s2
- s1)
/ (1
- s1)) by
A9,
XREAL_1: 72;
then
A15: 1
>= s by
A11,
XCMPLX_1: 60;
(s2
- s1)
>=
0 by
A8,
XREAL_1: 48;
hence q
in (
LSeg (p,p2)) by
A9,
A15,
A14;
end;
case (1
- s1)
=
0 ;
then s2
= 1 by
A7,
A8,
XXREAL_0: 1;
then q
= ((
0. (
TOP-REAL 2))
+ (1
* p2)) by
A5,
RLVECT_1: 10
.= ((
0. (
TOP-REAL 2))
+ p2) by
RLVECT_1:def 8
.= p2 by
RLVECT_1: 4;
hence q
in (
LSeg (p,p2)) by
RLTOPSP1: 68;
end;
end;
now
per cases ;
case
A16: s2
<>
0 ;
set s = (s1
/ s2);
(s2
/ s2)
>= (s1
/ s2) by
A6,
A8,
XREAL_1: 72;
then
A17: 1
>= s by
A16,
XCMPLX_1: 60;
A18: ((s2
- s1)
+ (s1
* (1
- s2)))
= (s2
* (1
- s1));
A19: (s2
* (s1
/ s2))
= s1 by
A16,
XCMPLX_1: 87;
A20: (s2
* ((s2
- s1)
/ s2))
= (s2
- s1) by
A16,
XCMPLX_1: 87;
(s2
* (((1
- s)
* p1)
+ (s
* q)))
= (s2
* (((((1
* s2)
- s1)
/ s2)
* p1)
+ ((s1
/ s2)
* (((1
- s2)
* p1)
+ (s2
* p2))))) by
A5,
A16,
XCMPLX_1: 127
.= ((s2
* (((s2
- s1)
/ s2)
* p1))
+ (s2
* ((s1
/ s2)
* (((1
- s2)
* p1)
+ (s2
* p2))))) by
RLVECT_1:def 5
.= (((s2
* ((s2
- s1)
/ s2))
* p1)
+ (s2
* ((s1
/ s2)
* (((1
- s2)
* p1)
+ (s2
* p2))))) by
RLVECT_1:def 7
.= (((s2
- s1)
* p1)
+ ((s2
* (s1
/ s2))
* (((1
- s2)
* p1)
+ (s2
* p2)))) by
A20,
RLVECT_1:def 7
.= (((s2
- s1)
* p1)
+ ((s1
* ((1
- s2)
* p1))
+ (s1
* (s2
* p2)))) by
A19,
RLVECT_1:def 5
.= (((s2
- s1)
* p1)
+ (((s1
* (1
- s2))
* p1)
+ (s1
* (s2
* p2)))) by
RLVECT_1:def 7
.= (((s2
- s1)
* p1)
+ (((s1
* (1
- s2))
* p1)
+ ((s1
* s2)
* p2))) by
RLVECT_1:def 7
.= ((((s2
- s1)
* p1)
+ ((s1
* (1
- s2))
* p1))
+ ((s1
* s2)
* p2)) by
RLVECT_1:def 3
.= ((((s2
- s1)
+ (s1
* (1
- s2)))
* p1)
+ ((s1
* s2)
* p2)) by
RLVECT_1:def 6
.= ((s2
* ((1
- s1)
* p1))
+ ((s2
* s1)
* p2)) by
A18,
RLVECT_1:def 7
.= ((s2
* ((1
- s1)
* p1))
+ (s2
* (s1
* p2))) by
RLVECT_1:def 7
.= (s2
* p) by
A2,
RLVECT_1:def 5;
then p
= (((1
- s)
* p1)
+ (s
* q)) by
A16,
RLVECT_1: 36;
hence p
in (
LSeg (p1,q)) by
A3,
A6,
A17;
end;
case s2
=
0 ;
then s1
=
0 by
A1,
A2,
A3,
A4,
A5;
then p
= ((1
* p1)
+ (
0. (
TOP-REAL 2))) by
A2,
RLVECT_1: 10
.= (p1
+ (
0. (
TOP-REAL 2))) by
RLVECT_1:def 8
.= p1 by
RLVECT_1: 4;
hence p
in (
LSeg (p1,q)) by
RLTOPSP1: 68;
end;
end;
hence thesis by
A10;
end;
theorem ::
JORDAN3:31
Th31: for f be
FinSequence of (
TOP-REAL 2) holds for p,q be
Point of (
TOP-REAL 2) st p
in (
L~ f) & q
in (
L~ f) & p
<> q & (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))) holds q
in (
L~ (
L_Cut (f,p)))
proof
let f be
FinSequence of (
TOP-REAL 2);
let p,q be
Point of (
TOP-REAL 2);
assume that
A1: p
in (
L~ f) and
A2: q
in (
L~ f) and
A3: p
<> q and
A4: (
Index (p,f))
= (
Index (q,f)) and
A5:
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
A6: ((
Index (q,f))
-' (
Index (p,f)))
= ((
Index (q,f))
- (
Index (p,f))) by
A4,
XREAL_1: 233
.=
0 by
A4;
(
Index (q,f))
< (
len f) by
A2,
Th8;
then
A7: ((
Index (q,f))
+ 1)
<= (
len f) by
NAT_1: 13;
A8:
now
q
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A5;
then
consider r be
Real such that
A9: q
= (((1
- r)
* (f
/. (
Index (p,f))))
+ (r
* (f
/. ((
Index (p,f))
+ 1)))) and
A10:
0
<= r and
A11: r
<= 1;
A12: p
= (1
* p) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+ (1
* p)) by
RLVECT_1: 4
.= (((1
- 1)
* (f
/. (
Index (p,f))))
+ (1
* p)) by
RLVECT_1: 10;
assume
A13: p
= (f
. ((
Index (p,f))
+ 1));
then p
= (f
/. ((
Index (p,f))
+ 1)) by
A4,
A7,
FINSEQ_4: 15,
NAT_1: 11;
then 1
<= r by
A5,
A9,
A10,
A12;
then r
= 1 by
A11,
XXREAL_0: 1;
hence contradiction by
A3,
A4,
A7,
A13,
A9,
A12,
FINSEQ_4: 15,
NAT_1: 11;
end;
then
A14: (
len (
L_Cut (f,p)))
= (((
len f)
- (
Index (p,f)))
+ 1) by
A1,
Th26;
1
<= (
Index (q,f)) by
A2,
Th8;
then
A15: 1
<= ((
Index (q,f))
+ 1) by
NAT_D: 48;
1
< ((
0
+ 1)
+ 1);
then
A16: (
len
<*p*>)
< ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1) by
A6,
FINSEQ_1: 40;
A17: (
Index (q,f))
< (
len f) by
A2,
Th8;
then
A18: ((
Index (q,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then
A19: (((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then
A20: ((((
Index (q,f))
- (
Index (p,f)))
+ 1)
+ 1)
<= (((
len f)
- (
Index (p,f)))
+ 1) by
XREAL_1: 6;
(((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f))) by
A19;
then
A21: (((
Index (q,f))
-' (
Index (p,f)))
+ 1)
<= (((
len f)
- ((
Index (p,f))
+ 1))
+ 1) by
A4,
XREAL_1: 233;
A22: 1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
A23: (
Index (q,f))
< (
len f) by
A2,
Th8;
then ((
Index (q,f))
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= (((
len f)
- (
Index (p,f)))
+ 1) by
XREAL_1: 6;
then
A24: ((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1))
= ((
L_Cut (f,p))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
A4,
A6,
A14,
FINSEQ_4: 15
.= ((
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)) by
A8,
Def3
.= p by
A6,
FINSEQ_1: 41;
set i1 = (((
Index (q,f))
-' (
Index (p,f)))
+ 1);
A25: ((
Index (q,f))
+ 1)
<= (
len f) by
A17,
NAT_1: 13;
(((
Index (q,f))
+ 1)
- (
Index (p,f)))
<= ((
len f)
- (
Index (p,f))) by
A18,
XREAL_1: 9;
then (((
Index (q,f))
- (
Index (p,f)))
+ 1)
<= ((
len f)
- (
Index (p,f)));
then i1
<= ((
len f)
- (
Index (p,f))) by
A4,
XREAL_0:def 2;
then
A26: (i1
+ 1)
<= (
len (
L_Cut (f,p))) by
A14,
XREAL_1: 6;
1
<= (
Index (q,f)) by
A2,
Th8;
then 1
< (
len f) by
A23,
XXREAL_0: 2;
then (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))
= (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1) by
A4,
A7,
A22,
FINSEQ_6: 118;
then ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
= (1
+ (((
len f)
-' ((
Index (p,f))
+ 1))
+ 1)) by
FINSEQ_1: 40
.= (1
+ (((
len f)
- ((
Index (p,f))
+ 1))
+ 1)) by
A4,
A7,
XREAL_1: 233
.= (((
len f)
- (
Index (p,f)))
+ 1);
then
A27: ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
<= ((
len
<*p*>)
+ (
len (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
A4,
A20,
XREAL_1: 233;
((
L_Cut (f,p))
/. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1))
= ((
L_Cut (f,p))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)) by
A4,
A6,
A14,
A20,
FINSEQ_4: 15
.= ((
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)) by
A8,
Def3
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
- (
len
<*p*>))) by
A16,
A27,
FINSEQ_6: 108
.= ((
mid (f,((
Index (p,f))
+ 1),(
len f)))
. (((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)
- 1)) by
FINSEQ_1: 40
.= (f
. ((((
Index (p,f))
+ 1)
+ (((
Index (q,f))
- (
Index (p,f)))
+ 1))
- 1)) by
A4,
A7,
A6,
A22,
A21,
FINSEQ_6: 122
.= (f
/. ((
Index (q,f))
+ 1)) by
A15,
A25,
FINSEQ_4: 15;
then q
in (
LSeg (((
L_Cut (f,p))
/. (((
Index (q,f))
-' (
Index (p,f)))
+ 1)),((
L_Cut (f,p))
/. ((((
Index (q,f))
-' (
Index (p,f)))
+ 1)
+ 1)))) by
A4,
A5,
A24,
Th30;
hence thesis by
A6,
A26,
SPPOL_2: 15;
end;
begin
definition
let f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2);
::
JORDAN3:def7
func
B_Cut (f,p,q) ->
FinSequence of (
TOP-REAL 2) equals
:
Def7: (
R_Cut ((
L_Cut (f,p)),q)) if p
in (
L~ f) & q
in (
L~ f) & (
Index (p,f))
< (
Index (q,f)) or (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))
otherwise (
Rev (
R_Cut ((
L_Cut (f,q)),p)));
correctness ;
end
theorem ::
JORDAN3:32
Th32: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. 1) holds (
R_Cut (f,p))
is_S-Seq_joining ((f
/. 1),p)
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. 1);
(
R_Cut (f,p))
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) by
A3,
Def4;
hence thesis by
A1,
A2,
A3,
Th19;
end;
theorem ::
JORDAN3:33
Th33: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. (
len f)) holds (
L_Cut (f,p))
is_S-Seq_joining (p,(f
/. (
len f)))
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. (
len f));
A4: f
<>
{} by
A2,
CARD_1: 27,
TOPREAL1: 22;
A5: (
Rev f) is
being_S-Seq by
A1;
A6: p
in (
L~ (
Rev f)) by
A2,
SPPOL_2: 22;
A7: p
<> ((
Rev f)
. 1) by
A3,
FINSEQ_5: 62;
(
L_Cut (f,p))
= (
L_Cut ((
Rev (
Rev f)),p))
.= (
Rev (
R_Cut ((
Rev f),p))) by
A1,
A6,
Th22;
then (
L_Cut (f,p))
is_S-Seq_joining (p,((
Rev f)
/. 1)) by
A5,
A6,
A7,
Th15,
Th32;
hence thesis by
A4,
FINSEQ_5: 65;
end;
theorem ::
JORDAN3:34
Th34: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. (
len f)) holds (
L_Cut (f,p)) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. (
len f));
(
L_Cut (f,p))
is_S-Seq_joining (p,(f
/. (
len f))) by
A1,
A2,
A3,
Th33;
hence thesis;
end;
theorem ::
JORDAN3:35
Th35: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & p
<> (f
. 1) holds (
R_Cut (f,p)) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: p
<> (f
. 1);
(
R_Cut (f,p))
is_S-Seq_joining ((f
/. 1),p) by
A1,
A2,
A3,
Th32;
hence thesis;
end;
Lm1: for f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & q
in (
L~ f) & p
<> q & ((
Index (p,f))
< (
Index (q,f)) or (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) holds (
B_Cut (f,p,q))
is_S-Seq_joining (p,q)
proof
let f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: q
in (
L~ f) and
A4: p
<> q;
assume
A5: (
Index (p,f))
< (
Index (q,f)) or (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
then
A6: (
B_Cut (f,p,q))
= (
R_Cut ((
L_Cut (f,p)),q)) by
A2,
A3,
Def7;
(
Index (p,f))
< (
len f) by
A2,
Th8;
then
A7: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
A8: (
Index (q,f))
< (
len f) by
A3,
Th8;
1
<= (
Index (q,f)) by
A3,
Th8;
then
A9: 1
< (
len f) by
A8,
XXREAL_0: 2;
A10:
now
per cases by
A5;
case
A11: (
Index (p,f))
< (
Index (q,f));
assume
A12: p
= (f
. (
len f));
((
Index (p,f))
+ 1)
<= (
Index (q,f)) by
A11,
NAT_1: 13;
then (
len f)
<= (
Index (q,f)) by
A1,
A9,
A12,
Th12;
hence contradiction by
A3,
Th8;
end;
case
A13: (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
A14:
now
q
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A13;
then
consider r be
Real such that
A15: q
= (((1
- r)
* (f
/. (
Index (p,f))))
+ (r
* (f
/. ((
Index (p,f))
+ 1)))) and
A16:
0
<= r and
A17: r
<= 1;
A18: p
= (1
* p) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+ (1
* p)) by
RLVECT_1: 4
.= (((1
- 1)
* (f
/. (
Index (p,f))))
+ (1
* p)) by
RLVECT_1: 10;
assume
A19: p
= (f
. ((
Index (p,f))
+ 1));
then p
= (f
/. ((
Index (p,f))
+ 1)) by
A7,
FINSEQ_4: 15,
NAT_1: 11;
then 1
<= r by
A13,
A15,
A16,
A18;
then r
= 1 by
A17,
XXREAL_0: 1;
hence contradiction by
A4,
A7,
A19,
A15,
A18,
FINSEQ_4: 15,
NAT_1: 11;
end;
assume p
= (f
. (
len f));
hence contradiction by
A1,
A9,
A14,
Th12;
end;
end;
then (
L_Cut (f,p))
is_S-Seq_joining (p,(f
/. (
len f))) by
A1,
A2,
Th33;
then
A20: ((
L_Cut (f,p))
. 1)
= p;
now
per cases by
A5;
case (
Index (p,f))
< (
Index (q,f));
then q
in (
L~ (
L_Cut (f,p))) by
A2,
A3,
Th29;
hence ex i1 be
Nat st 1
<= i1 & (i1
+ 1)
<= (
len (
L_Cut (f,p))) & q
in (
LSeg ((
L_Cut (f,p)),i1)) by
SPPOL_2: 13;
end;
case (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
then q
in (
L~ (
L_Cut (f,p))) by
A2,
A3,
A4,
Th31;
hence ex i1 be
Nat st 1
<= i1 & (i1
+ 1)
<= (
len (
L_Cut (f,p))) & q
in (
LSeg ((
L_Cut (f,p)),i1)) by
SPPOL_2: 13;
end;
end;
then
A21: q
in (
L~ (
L_Cut (f,p))) by
SPPOL_2: 17;
then
A22: (
Index (q,(
L_Cut (f,p))))
< (
len (
L_Cut (f,p))) by
Th8;
1
<= (
Index (q,(
L_Cut (f,p)))) by
A21,
Th8;
then 1
<= (
len (
L_Cut (f,p))) by
A22,
XXREAL_0: 2;
then p
= ((
L_Cut (f,p))
/. 1) by
A20,
FINSEQ_4: 15;
hence thesis by
A1,
A2,
A4,
A6,
A10,
A21,
A20,
Th32,
Th34;
end;
theorem ::
JORDAN3:36
Th36: for f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & q
in (
L~ f) & p
<> q holds (
B_Cut (f,p,q))
is_S-Seq_joining (p,q)
proof
let f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: q
in (
L~ f) and
A4: p
<> q;
per cases ;
suppose (
Index (p,f))
< (
Index (q,f)) or (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
hence thesis by
A1,
A2,
A3,
A4,
Lm1;
end;
suppose
A5: not ((
Index (p,f))
< (
Index (q,f)) or (
Index (p,f))
= (
Index (q,f)) &
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))));
A6:
now
A7: (
Index (p,f))
< (
len f) by
A2,
Th8;
then
A8: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
1
<= ((
Index (p,f))
+ 1) by
NAT_1: 11;
then
A9: ((
Index (p,f))
+ 1)
in (
dom f) by
A8,
FINSEQ_3: 25;
A10: ((
Index (p,f))
+
0 )
<> ((
Index (p,f))
+ 1);
A11: 1
<= (
Index (p,f)) by
A2,
Th8;
then
A12: (
LSeg (f,(
Index (p,f))))
= (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A8,
TOPREAL1:def 3;
then
A13: p
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A2,
Th9;
(
Index (p,f))
in (
dom f) by
A11,
A7,
FINSEQ_3: 25;
then
A14: (f
/. (
Index (p,f)))
<> (f
/. ((
Index (p,f))
+ 1)) by
A1,
A9,
A10,
PARTFUN2: 10;
assume that
A15: (
Index (p,f))
= (
Index (q,f)) and
A16: not
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)));
q
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A3,
A15,
A12,
Th9;
then
LT (q,p,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))) by
A16,
A13,
A14,
Th28;
hence
LE (q,p,(f
/. (
Index (q,f))),(f
/. ((
Index (q,f))
+ 1))) by
A15;
end;
A17: (
Index (q,f))
< (
Index (p,f)) or (
Index (p,f))
= (
Index (q,f)) & not
LE (p,q,(f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))) by
A5,
XXREAL_0: 1;
(
B_Cut (f,p,q))
= (
Rev (
R_Cut ((
L_Cut (f,q)),p))) by
A5,
Def7;
then
A18: (
Rev (
B_Cut (f,q,p)))
= (
B_Cut (f,p,q)) by
A2,
A3,
A17,
A6,
Def7;
(
B_Cut (f,q,p))
is_S-Seq_joining (q,p) by
A1,
A2,
A3,
A4,
A17,
A6,
Lm1;
hence thesis by
A18,
Th15;
end;
end;
theorem ::
JORDAN3:37
for f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2) st f is
being_S-Seq & p
in (
L~ f) & q
in (
L~ f) & p
<> q holds (
B_Cut (f,p,q)) is
being_S-Seq
proof
let f be
FinSequence of (
TOP-REAL 2), p,q be
Point of (
TOP-REAL 2);
assume that
A1: f is
being_S-Seq and
A2: p
in (
L~ f) and
A3: q
in (
L~ f) and
A4: p
<> q;
(
B_Cut (f,p,q))
is_S-Seq_joining (p,q) by
A1,
A2,
A3,
A4,
Th36;
hence thesis;
end;
theorem ::
JORDAN3:38
Th38: for f,g be
FinSequence of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} holds (f
^ (
mid (g,2,(
len g)))) is
being_S-Seq
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: f is
being_S-Seq and
A3: g is
being_S-Seq and
A4: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)};
A5: (
len f)
>= 2 by
A2,
TOPREAL1:def 8;
A6: (
len (f
^ (
mid (g,2,(
len g)))))
= ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
FINSEQ_1: 22;
then (
len f)
<= (
len (f
^ (
mid (g,2,(
len g))))) by
NAT_1: 11;
then
A7: (
len (f
^ (
mid (g,2,(
len g)))))
>= 2 by
A5,
XXREAL_0: 2;
A8: (
len g)
>= 2 by
A3,
TOPREAL1:def 8;
then
A9: 1
<= (
len g) by
XXREAL_0: 2;
then
A10: (
len (
mid (g,2,(
len g))))
= (((
len g)
-' 2)
+ 1) by
A8,
FINSEQ_6: 118
.= (((
len g)
- 2)
+ 1) by
A8,
XREAL_1: 233
.= ((
len g)
- 1);
for x1,x2 be
object st x1
in (
dom (f
^ (
mid (g,2,(
len g))))) & x2
in (
dom (f
^ (
mid (g,2,(
len g))))) & ((f
^ (
mid (g,2,(
len g))))
. x1)
= ((f
^ (
mid (g,2,(
len g))))
. x2) holds x1
= x2
proof
A11: (
rng g)
c= (
L~ g) by
A8,
SPPOL_2: 18;
A12: (
rng (f
^ (
mid (g,2,(
len g)))))
c= the
carrier of (
TOP-REAL 2) by
FINSEQ_1:def 4;
let x1,x2 be
object;
assume that
A13: x1
in (
dom (f
^ (
mid (g,2,(
len g))))) and
A14: x2
in (
dom (f
^ (
mid (g,2,(
len g))))) and
A15: ((f
^ (
mid (g,2,(
len g))))
. x1)
= ((f
^ (
mid (g,2,(
len g))))
. x2);
reconsider n1 = x1, n2 = x2 as
Element of
NAT by
A13,
A14;
A16: x2
in (
Seg (
len (f
^ (
mid (g,2,(
len g)))))) by
A14,
FINSEQ_1:def 3;
then
A17: 1
<= n2 by
FINSEQ_1: 1;
((f
^ (
mid (g,2,(
len g))))
. x1)
in (
rng (f
^ (
mid (g,2,(
len g))))) by
A13,
FUNCT_1:def 3;
then
reconsider q = ((f
^ (
mid (g,2,(
len g))))
. x1) as
Point of (
TOP-REAL 2) by
A12;
A18: (
rng (
mid (g,2,(
len g))))
c= (
rng g) by
FINSEQ_6: 119;
A19: (
rng f)
c= (
L~ f) by
A5,
SPPOL_2: 18;
A20:
now
A21:
now
(g
| 1)
= (g
| (
Seg 1)) by
FINSEQ_1:def 15;
then
A22: ((g
| 1)
. 1)
= (g
. 1) by
FINSEQ_1: 3,
FUNCT_1: 49;
(
len (g
| 1))
= 1 by
A8,
FINSEQ_1: 59,
XXREAL_0: 2;
then 1
in (
dom (g
| 1)) by
FINSEQ_3: 25;
then
A23: (g
. 1)
in (
rng (g
| 1)) by
A22,
FUNCT_1:def 3;
A24: (2
-' 1)
= (2
- 1) by
XREAL_1: 233;
assume (g
. 1)
in (
rng (
mid (g,2,(
len g))));
then
A25: (g
. 1)
in (
rng (g
/^ 1)) by
A8,
A24,
FINSEQ_6: 117;
(
rng (g
| 1))
misses (
rng (g
/^ 1)) by
A3,
FINSEQ_5: 34;
hence contradiction by
A25,
A23,
XBOOLE_0: 3;
end;
assume that
A26: q
in (
rng f) and
A27: q
in (
rng (
mid (g,2,(
len g))));
q
in (
rng g) by
A18,
A27;
then q
in ((
L~ f)
/\ (
L~ g)) by
A19,
A11,
A26,
XBOOLE_0:def 4;
hence contradiction by
A4,
A27,
A21,
TARSKI:def 1;
end;
n2
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A16,
FINSEQ_1: 1;
then
A28: (n2
- (
len f))
<= (((
len f)
+ (
len (
mid (g,2,(
len g)))))
- (
len f)) by
A6,
XREAL_1: 9;
A29: x1
in (
Seg (
len (f
^ (
mid (g,2,(
len g)))))) by
A13,
FINSEQ_1:def 3;
then n1
<= (
len (f
^ (
mid (g,2,(
len g))))) by
FINSEQ_1: 1;
then
A30: (n1
- (
len f))
<= (((
len f)
+ (
len (
mid (g,2,(
len g)))))
- (
len f)) by
A6,
XREAL_1: 9;
A31: 1
<= n1 by
A29,
FINSEQ_1: 1;
now
per cases ;
case n1
<= (
len f);
then
A32: n1
in (
dom f) by
A31,
FINSEQ_3: 25;
then
A33: ((f
^ (
mid (g,2,(
len g))))
. x1)
= (f
. n1) by
FINSEQ_1:def 7;
now
per cases ;
case n2
<= (
len f);
then
A34: n2
in (
dom f) by
A17,
FINSEQ_3: 25;
then ((f
^ (
mid (g,2,(
len g))))
. x2)
= (f
. n2) by
FINSEQ_1:def 7;
hence thesis by
A2,
A15,
A32,
A33,
A34,
FUNCT_1:def 4;
end;
case
A35: n2
> (
len f);
then ((
len f)
+ 1)
<= n2 by
NAT_1: 13;
then
A36: (((
len f)
+ 1)
- (
len f))
<= (n2
- (
len f)) by
XREAL_1: 9;
then
A37: 1
<= (n2
-' (
len f)) by
NAT_D: 39;
A38: ((
len f)
+ (n2
-' (
len f)))
= ((
len f)
+ (n2
- (
len f))) by
A35,
XREAL_1: 233
.= n2;
(n2
-' (
len f))
<= (
len (
mid (g,2,(
len g)))) by
A28,
A36,
NAT_D: 39;
then
A39: (n2
-' (
len f))
in (
dom (
mid (g,2,(
len g)))) by
A37,
FINSEQ_3: 25;
then ((f
^ (
mid (g,2,(
len g))))
. ((
len f)
+ (n2
-' (
len f))))
= ((
mid (g,2,(
len g)))
. (n2
-' (
len f))) by
FINSEQ_1:def 7;
hence contradiction by
A15,
A20,
A32,
A33,
A39,
A38,
FUNCT_1:def 3;
end;
end;
hence thesis;
end;
case
A40: n1
> (
len f);
then ((
len f)
+ 1)
<= n1 by
NAT_1: 13;
then
A41: (((
len f)
+ 1)
- (
len f))
<= (n1
- (
len f)) by
XREAL_1: 9;
then
A42: 1
<= (n1
-' (
len f)) by
NAT_D: 39;
then
A43: 1
<= ((n1
-' (
len f))
+ 1) by
NAT_D: 48;
(n1
-' (
len f))
<= ((n1
-' (
len f))
+ 2) by
NAT_1: 11;
then
A44: (((n1
-' (
len f))
+ 2)
-' 1)
= (((n1
-' (
len f))
+ 2)
- 1) by
A42,
XREAL_1: 233,
XXREAL_0: 2
.= ((n1
-' (
len f))
+ ((1
+ 1)
- 1));
A45: ((
len f)
+ (n1
-' (
len f)))
= ((
len f)
+ (n1
- (
len f))) by
A40,
XREAL_1: 233
.= n1;
A46: (n1
-' (
len f))
<= (
len (
mid (g,2,(
len g)))) by
A30,
A41,
NAT_D: 39;
then
A47: (n1
-' (
len f))
in (
dom (
mid (g,2,(
len g)))) by
A42,
FINSEQ_3: 25;
then
A48: ((f
^ (
mid (g,2,(
len g))))
. ((
len f)
+ (n1
-' (
len f))))
= ((
mid (g,2,(
len g)))
. (n1
-' (
len f))) by
FINSEQ_1:def 7;
((n1
-' (
len f))
+ 1)
<= (((
len g)
- 1)
+ 1) by
A10,
A46,
XREAL_1: 6;
then
A49: ((n1
-' (
len f))
+ 1)
in (
dom g) by
A43,
FINSEQ_3: 25;
((
len f)
+ (n1
-' (
len f)))
= ((
len f)
+ (n1
- (
len f))) by
A40,
XREAL_1: 233
.= n1;
then
A50: ((f
^ (
mid (g,2,(
len g))))
. n1)
= (g
. ((n1
-' (
len f))
+ 1)) by
A8,
A9,
A30,
A41,
A48,
A44,
FINSEQ_6: 118;
now
per cases ;
case n2
<= (
len f);
then
A51: n2
in (
dom f) by
A17,
FINSEQ_3: 25;
then ((f
^ (
mid (g,2,(
len g))))
. x2)
= (f
. n2) by
FINSEQ_1:def 7;
hence contradiction by
A15,
A20,
A47,
A48,
A45,
A51,
FUNCT_1:def 3;
end;
case
A52: n2
> (
len f);
then ((
len f)
+ 1)
<= n2 by
NAT_1: 13;
then
A53: (((
len f)
+ 1)
- (
len f))
<= (n2
- (
len f)) by
XREAL_1: 9;
then
A54: 1
<= (n2
-' (
len f)) by
NAT_D: 39;
then
A55: 1
<= ((n2
-' (
len f))
+ 1) by
NAT_D: 48;
A56: (n2
-' (
len f))
<= (
len (
mid (g,2,(
len g)))) by
A28,
A53,
NAT_D: 39;
then ((n2
-' (
len f))
+ 1)
<= (((
len g)
- 1)
+ 1) by
A10,
XREAL_1: 6;
then
A57: ((n2
-' (
len f))
+ 1)
in (
dom g) by
A55,
FINSEQ_3: 25;
(n2
-' (
len f))
<= ((n2
-' (
len f))
+ 2) by
NAT_1: 11;
then
A58: (((n2
-' (
len f))
+ 2)
-' 1)
= (((n2
-' (
len f))
+ 2)
- 1) by
A54,
XREAL_1: 233,
XXREAL_0: 2
.= ((n2
-' (
len f))
+ 1);
1
<= (n2
-' (
len f)) by
A53,
NAT_D: 39;
then (n2
-' (
len f))
in (
dom (
mid (g,2,(
len g)))) by
A56,
FINSEQ_3: 25;
then
A59: ((f
^ (
mid (g,2,(
len g))))
. ((
len f)
+ (n2
-' (
len f))))
= ((
mid (g,2,(
len g)))
. (n2
-' (
len f))) by
FINSEQ_1:def 7;
((
len f)
+ (n2
-' (
len f)))
= ((
len f)
+ (n2
- (
len f))) by
A52,
XREAL_1: 233
.= n2;
then ((f
^ (
mid (g,2,(
len g))))
. n2)
= (g
. ((n2
-' (
len f))
+ 1)) by
A8,
A9,
A28,
A53,
A59,
A58,
FINSEQ_6: 118;
then ((n1
-' (
len f))
+ 1)
= ((n2
-' (
len f))
+ 1) by
A3,
A15,
A49,
A50,
A57,
FUNCT_1:def 4;
then (n1
- (
len f))
= (n2
-' (
len f)) by
A40,
XREAL_1: 233;
then (n1
- (
len f))
= (n2
- (
len f)) by
A52,
XREAL_1: 233;
hence thesis;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
then
A60: (f
^ (
mid (g,2,(
len g)))) is
one-to-one by
FUNCT_1:def 4;
A61: 1
<= (
len f) by
A5,
XXREAL_0: 2;
A62: for i,j be
Nat st (i
+ 1)
< j holds (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
misses (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
proof
let i,j be
Nat;
assume
A63: (i
+ 1)
< j;
now
per cases ;
case
A64: j
< (
len f) & (j
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g)))));
then
A65: (i
+ 1)
< (
len f) by
A63,
XXREAL_0: 2;
then
A66: i
< (
len f) by
NAT_1: 13;
A67: j
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A64,
NAT_D: 46;
then
A68: (i
+ 1)
< (
len (f
^ (
mid (g,2,(
len g))))) by
A63,
XXREAL_0: 2;
then
A69: i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
NAT_D: 46;
now
per cases ;
case
A70: 1
<= i;
then
A71: (f
/. i)
= (f
. i) by
A66,
FINSEQ_4: 15;
((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A69,
A70,
FINSEQ_4: 15;
then
A72: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A66,
A70,
A71,
FINSEQ_1: 64;
A73: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A68,
A70,
TOPREAL1:def 3;
A74: 1
<= (i
+ 1) by
A70,
NAT_D: 48;
then
A75: (f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A65,
FINSEQ_4: 15;
((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A68,
A74,
FINSEQ_4: 15;
then (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A65,
A74,
A72,
A75,
FINSEQ_1: 64;
then
A76: (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (f,i)) by
A65,
A70,
A73,
TOPREAL1:def 3;
A77: 1
< j by
A63,
A74,
XXREAL_0: 2;
then
A78: (f
/. j)
= (f
. j) by
A64,
FINSEQ_4: 15;
((f
^ (
mid (g,2,(
len g))))
/. j)
= ((f
^ (
mid (g,2,(
len g))))
. j) by
A67,
A77,
FINSEQ_4: 15;
then
A79: ((f
^ (
mid (g,2,(
len g))))
/. j)
= (f
/. j) by
A64,
A77,
A78,
FINSEQ_1: 64;
A80: 1
<= (j
+ 1) by
A77,
NAT_D: 48;
then
A81: ((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1)) by
A64,
FINSEQ_4: 15;
A82: (j
+ 1)
<= (
len f) by
A64,
NAT_1: 13;
then
A83: (
LSeg (f,j))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A77,
TOPREAL1:def 3;
(f
/. (j
+ 1))
= (f
. (j
+ 1)) by
A80,
A82,
FINSEQ_4: 15;
then
A84: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. j),((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A80,
A82,
A79,
A81,
FINSEQ_1: 64;
(
LSeg (((f
^ (
mid (g,2,(
len g))))
/. j),((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)) by
A64,
A77,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
misses (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)) by
A2,
A63,
A76,
A84,
A83,
TOPREAL1:def 7;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} by
XBOOLE_0:def 7;
end;
case i
< 1;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence thesis by
XBOOLE_0:def 7;
end;
case
A85: (i
+ 1)
<= (
len f) & (
len f)
<= j & (j
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g)))));
now
per cases by
A63,
A85,
XXREAL_0: 1;
case
A86: (i
+ 1)
< (
len f) & (
len f)
<= j;
(
len f)
<= ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
NAT_1: 11;
then
A87: (i
+ 1)
< (
len (f
^ (
mid (g,2,(
len g))))) by
A6,
A86,
XXREAL_0: 2;
A88: (
len f)
<= (j
+ 1) by
A86,
NAT_D: 48;
A89: (1
+ 1)
<= j by
A5,
A86,
XXREAL_0: 2;
then
A90: 1
<= j by
NAT_D: 46;
now
per cases ;
case
A91: 1
<= i;
i
<= (
len f) by
A85,
NAT_D: 46;
then
A92: (f
/. i)
= (f
. i) by
A91,
FINSEQ_4: 15;
i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A87,
NAT_D: 46;
then
A93: ((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A91,
FINSEQ_4: 15;
i
<= (
len f) by
A85,
NAT_D: 46;
then
A94: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A91,
A93,
A92,
FINSEQ_1: 64;
A95: j
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A85,
NAT_D: 46;
A96:
now
assume 1
> (j
-' (
len f));
then ((j
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A97: (j
-' (
len f))
=
0 by
XREAL_1: 6;
then (j
- (
len f))
=
0 by
A85,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. ((j
-' (
len f))
+ 1)) by
A1,
A61,
A97,
FINSEQ_1: 64;
end;
1
<= (j
+ 1) by
A90,
NAT_D: 48;
then
A98: ((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1)) by
A85,
FINSEQ_4: 15;
A99: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A87,
A91,
TOPREAL1:def 3;
A100: 1
<= (i
+ 1) by
A91,
NAT_D: 48;
then
A101: (f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A85,
FINSEQ_4: 15;
A102:
now
assume 1
> ((j
+ 1)
-' (
len f));
then (((j
+ 1)
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A103: ((j
+ 1)
-' (
len f))
=
0 by
XREAL_1: 6;
then ((j
+ 1)
- (
len f))
=
0 by
A88,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. (((j
+ 1)
-' (
len f))
+ 1)) by
A1,
A61,
A103,
FINSEQ_1: 64;
end;
((j
+ 1)
+ 1)
<= (((
len f)
+ ((
len g)
- 1))
+ 1) by
A6,
A10,
A85,
XREAL_1: 6;
then (((j
+ 1)
+ 1)
- (
len f))
<= (((
len f)
+ (
len g))
- (
len f)) by
XREAL_1: 9;
then (((j
- (
len f))
+ 1)
+ 1)
<= (
len g);
then
A104: (((j
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A86,
XREAL_1: 233;
then ((j
-' (
len f))
+ 1)
<= (
len g) by
NAT_D: 46;
then
A105: (g
/. ((j
-' (
len f))
+ 1))
= (g
. ((j
-' (
len f))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
((((j
-' (
len f))
+ 1)
+ 1)
- 1)
<= ((
len g)
- 1) by
A104,
XREAL_1: 9;
then
A106: ((j
-' (
len f))
+ 1)
<= (((
len g)
- 2)
+ 1);
then ((j
-' (
len f))
+ 1)
<= (((
len g)
-' 2)
+ 1) by
A8,
XREAL_1: 233;
then
A107: (j
-' (
len f))
<= (((
len g)
-' 2)
+ 1) by
NAT_D: 46;
A108:
now
assume
A109: 1
<= (j
-' (
len f));
then 1
<= (j
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= ((j
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A110: (
len f)
< j by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= ((
mid (g,2,(
len g)))
. (j
- (
len f))) by
A95,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= ((
mid (g,2,(
len g)))
. (j
-' (
len f))) by
A110,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. (((j
-' (
len f))
+ 2)
- 1)) by
A8,
A107,
A109,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. ((j
-' (
len f))
+ 1));
end;
A111: ((j
-' (
len f))
+ 1)
= ((j
- (
len f))
+ 1) by
A85,
XREAL_1: 233
.= ((j
+ 1)
- (
len f))
.= ((j
+ 1)
-' (
len f)) by
A88,
XREAL_1: 233;
A112:
now
assume
A113: 1
<= ((j
+ 1)
-' (
len f));
then 1
<= ((j
+ 1)
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= (((j
+ 1)
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A114: (
len f)
< (j
+ 1) by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= ((
mid (g,2,(
len g)))
. ((j
+ 1)
- (
len f))) by
A85,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= ((
mid (g,2,(
len g)))
. ((j
+ 1)
-' (
len f))) by
A114,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. ((((j
+ 1)
-' (
len f))
+ 2)
- 1)) by
A8,
A106,
A111,
A113,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. (((j
+ 1)
-' (
len f))
+ 1));
end;
1
<= (1
+ (j
-' (
len f))) by
NAT_1: 11;
then
A115: (
LSeg (g,((j
-' (
len f))
+ 1)))
= (
LSeg ((g
/. ((j
-' (
len f))
+ 1)),(g
/. (((j
-' (
len f))
+ 1)
+ 1)))) by
A104,
TOPREAL1:def 3;
1
<= j by
A89,
NAT_D: 46;
then
A116: ((f
^ (
mid (g,2,(
len g))))
/. j)
= (g
/. ((j
-' (
len f))
+ 1)) by
A95,
A105,
A108,
A96,
FINSEQ_4: 15;
(g
/. (((j
-' (
len f))
+ 1)
+ 1))
= (g
. (((j
-' (
len f))
+ 1)
+ 1)) by
A104,
FINSEQ_4: 15,
NAT_1: 11;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
= (
LSeg (g,((j
-' (
len f))
+ 1))) by
A85,
A90,
A111,
A115,
A116,
A98,
A112,
A102,
TOPREAL1:def 3;
then
A117: (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
c= (
L~ g) by
TOPREAL3: 19;
A118: ((i
+ 1)
+ 1)
<= (
len f) by
A86,
NAT_1: 13;
((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A87,
A100,
FINSEQ_4: 15;
then (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A85,
A100,
A94,
A101,
FINSEQ_1: 64;
then
A119: (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (f,i)) by
A85,
A91,
A99,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
c= (
L~ f) by
TOPREAL3: 19;
then
A120: ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
c=
{(g
. 1)} by
A4,
A117,
XBOOLE_1: 27;
now
per cases ;
case
A121: (i
+ 1)
< ((
len f)
-' 1);
A122: 1
<= (
len f) by
A5,
XXREAL_0: 2;
A123: (((
len f)
-' 1)
+ 1)
= (((
len f)
- 1)
+ 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2
.= (
len f);
A124: ((1
+ 1)
- 1)
<= ((
len f)
- 1) by
A5,
XREAL_1: 9;
now
(f
/. (
len f))
in (
LSeg (f,((
len f)
-' 1))) by
A124,
A123,
TOPREAL1: 21;
then
A125: (g
. 1)
in (
LSeg (f,((
len f)
-' 1))) by
A1,
A122,
FINSEQ_4: 15;
given x be
object such that
A126: x
in ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)));
A127: x
in (
LSeg (f,i)) by
A119,
A126,
XBOOLE_0:def 4;
x
= (g
. 1) by
A120,
A126,
TARSKI:def 1;
then x
in ((
LSeg (f,i))
/\ (
LSeg (f,((
len f)
-' 1)))) by
A127,
A125,
XBOOLE_0:def 4;
then (
LSeg (f,i))
meets (
LSeg (f,((
len f)
-' 1))) by
XBOOLE_0: 4;
hence contradiction by
A2,
A121,
TOPREAL1:def 7;
end;
hence thesis by
XBOOLE_0: 4;
end;
case (i
+ 1)
>= ((
len f)
-' 1);
then (i
+ 1)
>= ((
len f)
- 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2;
then
A128: ((i
+ 1)
+ 1)
>= (((
len f)
- 1)
+ 1) by
XREAL_1: 6;
then
A129: ((i
+ 1)
+ 1)
= (
len f) by
A118,
XXREAL_0: 1;
then
A130: (i
+ 1)
<= (
len f) by
NAT_1: 11;
(i
+ 1)
= ((
len f)
- 1) by
A129;
then
A131: (i
+ 1)
= ((
len f)
-' 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2;
A132: (((
len f)
-' 1)
+ 1)
= (((
len f)
- 1)
+ 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2
.= (
len f);
then (1
+ 1)
<= (((
len f)
-' 1)
+ 1) by
A2,
TOPREAL1:def 8;
then
A133: 1
<= ((
len f)
-' 1) by
XREAL_1: 6;
A134: (i
+ (1
+ 1))
= (
len f) by
A118,
A128,
XXREAL_0: 1;
now
((1
+ 1)
- 1)
<= ((
len f)
- 1) by
A5,
XREAL_1: 9;
then
A135: 1
<= ((
len f)
-' 1) by
NAT_D: 39;
((
len f)
-' 1)
<= (
len f) by
NAT_D: 35;
then
A136: ((
len f)
-' 1)
in (
dom f) by
A135,
FINSEQ_3: 25;
A137: ((
LSeg (f,i))
/\ (
LSeg (f,((
len f)
-' 1))))
=
{(f
/. (i
+ 1))} by
A2,
A91,
A131,
A134,
TOPREAL1:def 6;
(f
/. (
len f))
in (
LSeg (f,((
len f)
-' 1))) by
A132,
A133,
TOPREAL1: 21;
then
A138: (g
. 1)
in (
LSeg (f,((
len f)
-' 1))) by
A1,
A61,
FINSEQ_4: 15;
given x be
object such that
A139: x
in ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)));
A140: x
= (g
. 1) by
A120,
A139,
TARSKI:def 1;
x
in (
LSeg (f,i)) by
A119,
A139,
XBOOLE_0:def 4;
then x
in ((
LSeg (f,i))
/\ (
LSeg (f,((
len f)
-' 1)))) by
A140,
A138,
XBOOLE_0:def 4;
then (f
. (
len f))
= (f
/. (i
+ 1)) by
A1,
A140,
A137,
TARSKI:def 1;
then
A141: (f
. (
len f))
= (f
. ((
len f)
-' 1)) by
A131,
A130,
FINSEQ_4: 15,
NAT_1: 11;
(
len f)
in (
dom f) by
A61,
FINSEQ_3: 25;
then (
len f)
= ((
len f)
-' 1) by
A2,
A141,
A136,
FUNCT_1:def 4;
then (
len f)
= ((
len f)
- 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2;
hence contradiction;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} by
XBOOLE_0:def 1;
end;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} by
XBOOLE_0:def 7;
end;
case i
< 1;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
case
A142: (i
+ 1)
<= (
len f) & (
len f)
< j;
((1
+ 1)
- 1)
<= ((
len g)
- 1) by
A8,
XREAL_1: 9;
then ((
len f)
+ 1)
<= ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
A10,
XREAL_1: 7;
then (
len f)
< ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
NAT_1: 13;
then
A143: (i
+ 1)
< (
len (f
^ (
mid (g,2,(
len g))))) by
A6,
A142,
XXREAL_0: 2;
A144: (
len f)
<= (j
+ 1) by
A142,
NAT_D: 48;
A145: (1
+ 1)
<= j by
A5,
A142,
XXREAL_0: 2;
then
A146: 1
<= j by
NAT_D: 46;
now
per cases ;
case
A147: 1
<= i;
i
<= (
len f) by
A85,
NAT_D: 46;
then
A148: (f
/. i)
= (f
. i) by
A147,
FINSEQ_4: 15;
i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A143,
NAT_D: 46;
then
A149: ((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A147,
FINSEQ_4: 15;
i
<= (
len f) by
A85,
NAT_D: 46;
then
A150: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A147,
A149,
A148,
FINSEQ_1: 64;
A151: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A143,
A147,
TOPREAL1:def 3;
A152: 1
<= (i
+ 1) by
A147,
NAT_D: 48;
then
A153: (f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A85,
FINSEQ_4: 15;
((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A143,
A152,
FINSEQ_4: 15;
then (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A85,
A152,
A150,
A153,
FINSEQ_1: 64;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (f,i)) by
A85,
A147,
A151,
TOPREAL1:def 3;
then
A154: (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
c= (
L~ f) by
TOPREAL3: 19;
A155: j
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A85,
NAT_D: 46;
A156:
now
assume 1
> (j
-' (
len f));
then ((j
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A157: (j
-' (
len f))
=
0 by
XREAL_1: 6;
then (j
- (
len f))
=
0 by
A85,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. ((j
-' (
len f))
+ 1)) by
A1,
A61,
A157,
FINSEQ_1: 64;
end;
1
<= (j
+ 1) by
A146,
NAT_D: 48;
then
A158: ((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1)) by
A85,
FINSEQ_4: 15;
A159:
now
assume 1
> ((j
+ 1)
-' (
len f));
then (((j
+ 1)
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A160: ((j
+ 1)
-' (
len f))
=
0 by
XREAL_1: 6;
then ((j
+ 1)
- (
len f))
=
0 by
A144,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. (((j
+ 1)
-' (
len f))
+ 1)) by
A1,
A61,
A160,
FINSEQ_1: 64;
end;
((j
+ 1)
+ 1)
<= (((
len f)
+ ((
len g)
- 1))
+ 1) by
A6,
A10,
A85,
XREAL_1: 6;
then (((j
+ 1)
+ 1)
- (
len f))
<= (((
len f)
+ (
len g))
- (
len f)) by
XREAL_1: 9;
then (((j
- (
len f))
+ 1)
+ 1)
<= (
len g);
then
A161: (((j
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A142,
XREAL_1: 233;
then ((j
-' (
len f))
+ 1)
<= (
len g) by
NAT_D: 46;
then
A162: (g
/. ((j
-' (
len f))
+ 1))
= (g
. ((j
-' (
len f))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
((((j
-' (
len f))
+ 1)
+ 1)
- 1)
<= ((
len g)
- 1) by
A161,
XREAL_1: 9;
then
A163: ((j
-' (
len f))
+ 1)
<= (((
len g)
- 2)
+ 1);
then ((j
-' (
len f))
+ 1)
<= (((
len g)
-' 2)
+ 1) by
A8,
XREAL_1: 233;
then
A164: (j
-' (
len f))
<= (((
len g)
-' 2)
+ 1) by
NAT_D: 46;
A165:
now
assume
A166: 1
<= (j
-' (
len f));
then 1
<= (j
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= ((j
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A167: (
len f)
< j by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= ((
mid (g,2,(
len g)))
. (j
- (
len f))) by
A155,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= ((
mid (g,2,(
len g)))
. (j
-' (
len f))) by
A167,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. (((j
-' (
len f))
+ 2)
- 1)) by
A8,
A164,
A166,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. j)
= (g
. ((j
-' (
len f))
+ 1));
end;
A168: ((j
-' (
len f))
+ 1)
= ((j
- (
len f))
+ 1) by
A85,
XREAL_1: 233
.= ((j
+ 1)
- (
len f))
.= ((j
+ 1)
-' (
len f)) by
A144,
XREAL_1: 233;
A169:
now
assume
A170: 1
<= ((j
+ 1)
-' (
len f));
then 1
<= ((j
+ 1)
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= (((j
+ 1)
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A171: (
len f)
< (j
+ 1) by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= ((
mid (g,2,(
len g)))
. ((j
+ 1)
- (
len f))) by
A85,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= ((
mid (g,2,(
len g)))
. ((j
+ 1)
-' (
len f))) by
A171,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. ((((j
+ 1)
-' (
len f))
+ 2)
- 1)) by
A8,
A163,
A168,
A170,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= (g
. (((j
+ 1)
-' (
len f))
+ 1));
end;
1
<= (1
+ (j
-' (
len f))) by
NAT_1: 11;
then
A172: (
LSeg (g,((j
-' (
len f))
+ 1)))
= (
LSeg ((g
/. ((j
-' (
len f))
+ 1)),(g
/. (((j
-' (
len f))
+ 1)
+ 1)))) by
A161,
TOPREAL1:def 3;
1
<= j by
A145,
NAT_D: 46;
then
A173: ((f
^ (
mid (g,2,(
len g))))
/. j)
= (g
/. ((j
-' (
len f))
+ 1)) by
A155,
A162,
A165,
A156,
FINSEQ_4: 15;
(g
/. (((j
-' (
len f))
+ 1)
+ 1))
= (g
. (((j
-' (
len f))
+ 1)
+ 1)) by
A161,
FINSEQ_4: 15,
NAT_1: 11;
then
A174: (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
= (
LSeg (g,((j
-' (
len f))
+ 1))) by
A85,
A146,
A168,
A172,
A173,
A158,
A169,
A159,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
c= (
L~ g) by
TOPREAL3: 19;
then
A175: ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
c=
{(g
. 1)} by
A4,
A154,
XBOOLE_1: 27;
now
A176: (1
+ 1)
in (
dom g) by
A8,
FINSEQ_3: 25;
A177: ((j
-' (
len f))
+ 1)
= ((j
- (
len f))
+ 1) by
A142,
XREAL_1: 233;
A178: (1
+ 1)
<= (
len g) by
A3,
TOPREAL1:def 8;
given x be
object such that
A179: x
in ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)));
A180: x
in (
LSeg (g,((j
-' (
len f))
+ 1))) by
A174,
A179,
XBOOLE_0:def 4;
A181: x
= (g
. 1) by
A175,
A179,
TARSKI:def 1;
then (g
/. 1)
= x by
A9,
FINSEQ_4: 15;
then x
in (
LSeg (g,1)) by
A178,
TOPREAL1: 21;
then
A182: x
in ((
LSeg (g,1))
/\ (
LSeg (g,((j
-' (
len f))
+ 1)))) by
A180,
XBOOLE_0:def 4;
then (
LSeg (g,1))
meets (
LSeg (g,((j
-' (
len f))
+ 1))) by
XBOOLE_0: 4;
then (1
+ 1)
>= ((j
-' (
len f))
+ 1) by
A3,
TOPREAL1:def 7;
then 1
>= (j
-' (
len f)) by
XREAL_1: 6;
then 1
>= (j
- (
len f)) by
NAT_D: 39;
then
A183: (1
+ (
len f))
>= ((j
- (
len f))
+ (
len f)) by
XREAL_1: 6;
j
>= ((
len f)
+ 1) by
A142,
NAT_1: 13;
then
A184: j
= ((
len f)
+ 1) by
A183,
XXREAL_0: 1;
(
LSeg (g,((j
-' (
len f))
+ 1)))
<>
{} by
A174,
A179;
then (1
+ 2)
<= (
len g) by
A184,
A177,
TOPREAL1:def 3;
then ((
LSeg (g,1))
/\ (
LSeg (g,((j
-' (
len f))
+ 1))))
=
{(g
/. (1
+ 1))} by
A3,
A184,
A177,
TOPREAL1:def 6;
then
A185: x
= (g
/. (1
+ 1)) by
A182,
TARSKI:def 1
.= (g
. (1
+ 1)) by
A8,
FINSEQ_4: 15;
1
in (
dom g) by
A9,
FINSEQ_3: 25;
hence contradiction by
A3,
A181,
A185,
A176,
FUNCT_1:def 4;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} by
XBOOLE_0:def 1;
end;
case i
< 1;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence thesis by
XBOOLE_0:def 7;
end;
case
A186: (
len f)
< (i
+ 1) & (j
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g)))));
then
A187: (
len f)
<= i by
NAT_1: 13;
then
A188: (i
-' (
len f))
= (i
- (
len f)) by
XREAL_1: 233;
A189: (1
+ 1)
<= i by
A5,
A187,
XXREAL_0: 2;
then
A190: 1
<= i by
NAT_D: 46;
then
A191: 1
<= (i
+ 1) by
NAT_D: 48;
then
A192: 1
<= j by
A63,
XXREAL_0: 2;
A193: 1
<= ((j
-' (
len f))
+ 1) by
NAT_1: 11;
A194: (
len f)
< j by
A63,
A186,
XXREAL_0: 2;
j
<= (j
+ 1) by
NAT_1: 11;
then
A195: (
len f)
< (j
+ 1) by
A194,
XXREAL_0: 2;
A196: 1
<= ((i
-' (
len f))
+ 1) by
NAT_1: 11;
A197: (j
-' (
len f))
= (j
- (
len f)) by
A63,
A186,
XREAL_1: 233,
XXREAL_0: 2;
((i
+ 1)
- (
len f))
< (j
- (
len f)) by
A63,
XREAL_1: 9;
then
A198: (((i
-' (
len f))
+ 1)
+ 1)
< ((j
-' (
len f))
+ 1) by
A188,
A197,
XREAL_1: 6;
now
per cases ;
case
A199: (j
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g)))));
A200: 1
<= j by
A63,
A191,
XXREAL_0: 2;
then 1
<= (j
+ 1) by
NAT_D: 48;
then
A201: ((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1)) by
A199,
FINSEQ_4: 15;
((
len f)
+ 1)
<= j by
A194,
NAT_1: 13;
then
A202: (((
len f)
+ 1)
- (
len f))
<= (j
- (
len f)) by
XREAL_1: 9;
A203: 1
<= i by
A189,
NAT_D: 46;
then
A204: 1
<= (i
+ 1) by
NAT_D: 48;
A205: j
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A199,
NAT_D: 46;
then
A206: (i
+ 1)
< (
len (f
^ (
mid (g,2,(
len g))))) by
A63,
XXREAL_0: 2;
then
A207: i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
NAT_D: 46;
(i
+ 1)
< ((
len f)
+ ((
len g)
- 1)) by
A10,
A206,
FINSEQ_1: 22;
then
A208: ((i
+ 1)
- (
len f))
< (((
len f)
+ ((
len g)
- 1))
- (
len f)) by
XREAL_1: 9;
then
A209: (((i
- (
len f))
+ 1)
+ 1)
< (((
len g)
- 1)
+ 1) by
XREAL_1: 6;
then (((i
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A187,
XREAL_1: 233;
then
A210: (g
/. (((i
-' (
len f))
+ 1)
+ 1))
= (g
. (((i
-' (
len f))
+ 1)
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
(i
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A63,
A205,
XXREAL_0: 2;
then
A211: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A204,
FINSEQ_4: 15;
A212: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. j),((f
^ (
mid (g,2,(
len g))))
/. (j
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)) by
A192,
A199,
TOPREAL1:def 3;
A213: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A190,
A206,
TOPREAL1:def 3;
A214: ((i
-' (
len f))
+ 1)
<= (
len g) by
A188,
A209,
NAT_D: 46;
then
A215: (g
/. ((i
-' (
len f))
+ 1))
= (g
. ((i
-' (
len f))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
A216:
now
per cases ;
case i
<= (
len f);
then
A217: i
= (
len f) by
A187,
XXREAL_0: 1;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. (
0
+ 1)) by
A1,
A190,
FINSEQ_1: 64
.= (g
. ((i
-' (
len f))
+ 1)) by
A217,
XREAL_1: 232;
hence ((f
^ (
mid (g,2,(
len g))))
/. i)
= (g
/. ((i
-' (
len f))
+ 1)) by
A203,
A207,
A215,
FINSEQ_4: 15;
end;
case
A218: i
> (
len f);
then ((
len f)
+ 1)
<= i by
NAT_1: 13;
then
A219: (((
len f)
+ 1)
- (
len f))
<= (i
- (
len f)) by
XREAL_1: 9;
(((i
-' (
len f))
+ 1)
- 1)
<= ((
len g)
- 1) by
A214,
XREAL_1: 9;
then
A220: (i
-' (
len f))
<= (((
len g)
- 2)
+ 1);
((f
^ (
mid (g,2,(
len g))))
. i)
= ((
mid (g,2,(
len g)))
. (i
-' (
len f))) by
A188,
A207,
A218,
FINSEQ_6: 108
.= (g
. (((i
-' (
len f))
+ 2)
- 1)) by
A8,
A188,
A219,
A220,
FINSEQ_6: 122
.= (g
. ((i
-' (
len f))
+ 1));
hence ((f
^ (
mid (g,2,(
len g))))
/. i)
= (g
/. ((i
-' (
len f))
+ 1)) by
A203,
A207,
A215,
FINSEQ_4: 15;
end;
end;
(j
+ 1)
<= ((
len f)
+ ((
len g)
- 1)) by
A10,
A199,
FINSEQ_1: 22;
then
A221: ((j
+ 1)
- (
len f))
<= (((
len f)
+ ((
len g)
- 1))
- (
len f)) by
XREAL_1: 9;
then
A222: ((j
-' (
len f))
+ 1)
<= (((
len g)
- 2)
+ 1) by
A197;
A223: ((((j
-' (
len f))
+ 1)
+ 2)
- 1)
= (((j
-' (
len f))
+ 1)
+ 1);
A224: ((f
^ (
mid (g,2,(
len g))))
. (j
+ 1))
= ((
mid (g,2,(
len g)))
. ((j
+ 1)
- (
len f))) by
A195,
A199,
FINSEQ_6: 108
.= (g
. (((j
-' (
len f))
+ 1)
+ 1)) by
A8,
A197,
A193,
A222,
A223,
FINSEQ_6: 122;
A225: ((((i
-' (
len f))
+ 1)
+ 2)
- 1)
= (((i
-' (
len f))
+ 1)
+ 1);
A226: ((i
-' (
len f))
+ 1)
<= (((
len g)
- 2)
+ 1) by
A188,
A208;
((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= ((
mid (g,2,(
len g)))
. ((i
+ 1)
- (
len f))) by
A186,
A206,
FINSEQ_6: 108
.= (g
. (((i
-' (
len f))
+ 1)
+ 1)) by
A8,
A188,
A196,
A226,
A225,
FINSEQ_6: 122;
then
A227: (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (g,((i
-' (
len f))
+ 1))) by
A188,
A196,
A209,
A216,
A211,
A210,
A213,
TOPREAL1:def 3;
A228: (((j
- (
len f))
+ 1)
+ 1)
<= (((
len g)
- 1)
+ 1) by
A221,
XREAL_1: 6;
then
A229: ((j
-' (
len f))
+ 1)
<= (
len g) by
A197,
NAT_D: 46;
then
A230: (g
/. ((j
-' (
len f))
+ 1))
= (g
. ((j
-' (
len f))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
A231: j
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A199,
NAT_D: 46;
then
A232: ((f
^ (
mid (g,2,(
len g))))
/. j)
= ((f
^ (
mid (g,2,(
len g))))
. j) by
A200,
FINSEQ_4: 15;
(((j
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A63,
A186,
A228,
XREAL_1: 233,
XXREAL_0: 2;
then
A233: (g
/. (((j
-' (
len f))
+ 1)
+ 1))
= (g
. (((j
-' (
len f))
+ 1)
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
(((j
-' (
len f))
+ 1)
- 1)
<= ((
len g)
- 1) by
A229,
XREAL_1: 9;
then
A234: (j
-' (
len f))
<= (((
len g)
- 2)
+ 1);
((f
^ (
mid (g,2,(
len g))))
. j)
= ((
mid (g,2,(
len g)))
. (j
- (
len f))) by
A194,
A231,
FINSEQ_6: 108
.= (g
. (((j
-' (
len f))
+ 2)
- 1)) by
A8,
A197,
A202,
A234,
FINSEQ_6: 122
.= (g
. ((j
-' (
len f))
+ 1));
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
= (
LSeg (g,((j
-' (
len f))
+ 1))) by
A197,
A193,
A228,
A232,
A230,
A201,
A233,
A224,
A212,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
misses (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)) by
A3,
A198,
A227,
TOPREAL1:def 7;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} by
XBOOLE_0:def 7;
end;
case (j
+ 1)
> (
len (f
^ (
mid (g,2,(
len g)))));
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
case (j
+ 1)
> (
len (f
^ (
mid (g,2,(
len g)))));
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),j))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),j)))
=
{} ;
end;
end;
hence thesis by
XBOOLE_0:def 7;
end;
A235: for i be
Nat st 1
<= i & (i
+ 2)
<= (
len (f
^ (
mid (g,2,(
len g))))) holds ((
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
/\ (
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1))))
=
{((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))}
proof
let i be
Nat;
assume that
A236: 1
<= i and
A237: (i
+ 2)
<= (
len (f
^ (
mid (g,2,(
len g)))));
A238: 1
<= (i
+ 1) by
A236,
NAT_D: 48;
A239: i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A237,
NAT_D: 47;
A240: 1
<= ((i
+ 1)
+ 1) by
A236,
NAT_D: 48;
A241: (i
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A237,
NAT_D: 47;
((i
+ 1)
+ 1)
<= ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
A237,
FINSEQ_1: 22;
then ((i
+ 1)
+ 1)
<= ((
len f)
+ (((
len g)
-' 2)
+ 1)) by
A8,
A9,
FINSEQ_6: 118;
then ((i
+ 1)
+ 1)
<= ((
len f)
+ (((
len g)
- (1
+ 1))
+ 1)) by
A8,
XREAL_1: 233;
then
A242: (((i
+ 1)
+ 1)
- (
len f))
<= (((
len f)
+ (((
len g)
- (1
+ 1))
+ 1))
- (
len f)) by
XREAL_1: 9;
then
A243: ((((i
+ 1)
- (
len f))
+ 1)
+ 1)
<= (((
len g)
- 1)
+ 1) by
XREAL_1: 6;
then
A244: ((((i
- (
len f))
+ 1)
+ 1)
+ 1)
<= (
len g);
now
per cases ;
case
A245: (i
+ 2)
<= (
len f);
A246: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A238,
A241,
FINSEQ_4: 15;
((i
+ 1)
+ 1)
<= (
len f) by
A245;
then
A247: (i
+ 1)
<= (
len f) by
NAT_D: 46;
then (f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A238,
FINSEQ_4: 15;
then
A248: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= (f
/. (i
+ 1)) by
A238,
A247,
A246,
FINSEQ_1: 64;
A249: (f
/. ((i
+ 1)
+ 1))
= (f
. ((i
+ 1)
+ 1)) by
A240,
A245,
FINSEQ_4: 15;
A250: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1)),((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1))) by
A237,
A238,
TOPREAL1:def 3;
A251: ((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A236,
A239,
FINSEQ_4: 15;
A252: i
<= (
len f) by
A247,
NAT_D: 46;
then (f
/. i)
= (f
. i) by
A236,
FINSEQ_4: 15;
then
A253: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A236,
A252,
A251,
FINSEQ_1: 64;
((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1)) by
A237,
A240,
FINSEQ_4: 15;
then (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1)),((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1))))
= (
LSeg ((f
/. (i
+ 1)),(f
/. ((i
+ 1)
+ 1)))) by
A240,
A245,
A248,
A249,
FINSEQ_1: 64;
then
A254: (
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1)))
= (
LSeg (f,(i
+ 1))) by
A238,
A245,
A250,
TOPREAL1:def 3;
(
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A236,
A241,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (f,i)) by
A236,
A247,
A253,
A248,
TOPREAL1:def 3;
hence thesis by
A2,
A236,
A245,
A248,
A254,
TOPREAL1:def 6;
end;
case (i
+ 2)
> (
len f);
then
A255: (i
+ 2)
>= ((
len f)
+ 1) by
NAT_1: 13;
now
per cases by
A255,
XXREAL_0: 1;
case
A256: (i
+ 2)
> ((
len f)
+ 1);
then ((i
+ 1)
+ 1)
> ((
len f)
+ 1);
then
A257: (i
+ 1)
>= ((
len f)
+ 1) by
NAT_1: 13;
then
A258: i
>= (
len f) by
XREAL_1: 6;
A259:
now
assume 1
> (i
-' (
len f));
then ((i
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A260: (i
-' (
len f))
=
0 by
XREAL_1: 6;
then (i
- (
len f))
=
0 by
A258,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. ((i
-' (
len f))
+ 1)) by
A1,
A61,
A260,
FINSEQ_1: 64;
end;
A261: (i
+ 1)
>= (
len f) by
A257,
NAT_D: 48;
A262:
now
assume 1
> ((i
+ 1)
-' (
len f));
then (((i
+ 1)
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then
A263: ((i
+ 1)
-' (
len f))
=
0 by
XREAL_1: 6;
then ((i
+ 1)
- (
len f))
=
0 by
A261,
XREAL_1: 233;
hence ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= (g
. (((i
+ 1)
-' (
len f))
+ 1)) by
A1,
A61,
A263,
FINSEQ_1: 64;
end;
((i
+ 1)
+ 1)
>= (((
len f)
+ 1)
+ 1) by
A256,
NAT_1: 13;
then (((i
+ 1)
+ 1)
- ((
len f)
+ 1))
>= ((((
len f)
+ 1)
+ 1)
- ((
len f)
+ 1)) by
XREAL_1: 9;
then ((i
- (
len f))
+ 1)
>= 1;
then
A264: ((i
-' (
len f))
+ 1)
>= 1 by
A258,
XREAL_1: 233;
then
A265: (((i
-' (
len f))
+ 1)
+ 1)
>= 1 by
NAT_D: 48;
then
A266: (((i
- (
len f))
+ 1)
+ 1)
>= 1 by
A258,
XREAL_1: 233;
then (((i
+ 1)
- (
len f))
+ 1)
>= 1;
then
A267: (((i
+ 1)
-' (
len f))
+ 1)
>= 1 by
A261,
XREAL_1: 233;
then
A268: ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)
>= 1 by
NAT_D: 48;
(((i
+ 1)
- (
len f))
+ 1)
>= (
0
+ 1) by
A266;
then
A269: ((i
+ 1)
- (
len f))
>=
0 by
XREAL_1: 6;
then ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A243,
XREAL_0:def 2;
then
A270: (g
/. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1))
= (g
. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)) by
A268,
FINSEQ_4: 15;
((((i
+ 1)
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A243,
A261,
XREAL_1: 233;
then
A271: (
LSeg (g,(((i
+ 1)
-' (
len f))
+ 1)))
= (
LSeg ((g
/. (((i
+ 1)
-' (
len f))
+ 1)),(g
/. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)))) by
A267,
TOPREAL1:def 3;
((((i
+ 1)
+ 1)
- (
len f))
+ 1)
= ((((i
+ 1)
- (
len f))
+ 1)
+ 1);
then
A272: ((((i
+ 1)
+ 1)
- (
len f))
+ 1)
= ((((i
+ 1)
-' (
len f))
+ 1)
+ 1) by
A269,
XREAL_0:def 2;
A273: ((((i
-' (
len f))
+ 1)
+ 1)
+ 1)
<= (
len g) by
A244,
A258,
XREAL_1: 233;
then
A274: (((i
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
NAT_D: 46;
then
A275: (
LSeg (g,((i
-' (
len f))
+ 1)))
= (
LSeg ((g
/. ((i
-' (
len f))
+ 1)),(g
/. (((i
-' (
len f))
+ 1)
+ 1)))) by
A264,
TOPREAL1:def 3;
((((i
-' (
len f))
+ 1)
+ 1)
- 1)
<= ((
len g)
- 1) by
A274,
XREAL_1: 9;
then ((i
-' (
len f))
+ 1)
<= (((
len g)
- 2)
+ 1);
then
A276: ((i
-' (
len f))
+ 1)
<= (((
len g)
-' 2)
+ 1) by
A8,
XREAL_1: 233;
then
A277: (i
-' (
len f))
<= (((
len g)
-' 2)
+ 1) by
NAT_D: 46;
A278:
now
assume
A279: 1
<= (i
-' (
len f));
then 1
<= (i
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= ((i
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A280: (
len f)
< i by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= ((
mid (g,2,(
len g)))
. (i
- (
len f))) by
A239,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= ((
mid (g,2,(
len g)))
. (i
-' (
len f))) by
A280,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. (((i
-' (
len f))
+ 2)
- 1)) by
A8,
A277,
A279,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. ((i
-' (
len f))
+ 1));
end;
((i
-' (
len f))
+ 1)
<= (
len g) by
A274,
NAT_D: 46;
then (g
/. ((i
-' (
len f))
+ 1))
= (g
. ((i
-' (
len f))
+ 1)) by
A264,
FINSEQ_4: 15;
then
A281: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (g
/. ((i
-' (
len f))
+ 1)) by
A236,
A239,
A278,
A259,
FINSEQ_4: 15;
A282: (((i
-' (
len f))
+ 1)
+ (1
+ 1))
<= (
len g) by
A273;
A283: (g
/. (((i
-' (
len f))
+ 1)
+ 1))
= (g
. (((i
-' (
len f))
+ 1)
+ 1)) by
A274,
A265,
FINSEQ_4: 15;
((i
- (
len f))
+ 1)
<= (((
len g)
-' 2)
+ 1) by
A258,
A276,
XREAL_1: 233;
then ((i
+ 1)
- (
len f))
<= (((
len g)
-' 2)
+ 1);
then
A284: ((i
+ 1)
-' (
len f))
<= (((
len g)
-' 2)
+ 1) by
A261,
XREAL_1: 233;
A285:
now
assume
A286: 1
<= ((i
+ 1)
-' (
len f));
then 1
<= ((i
+ 1)
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= (((i
+ 1)
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A287: (
len f)
< (i
+ 1) by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= ((
mid (g,2,(
len g)))
. ((i
+ 1)
- (
len f))) by
A241,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= ((
mid (g,2,(
len g)))
. ((i
+ 1)
-' (
len f))) by
A287,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= (g
. ((((i
+ 1)
-' (
len f))
+ 2)
- 1)) by
A8,
A284,
A286,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= (g
. (((i
+ 1)
-' (
len f))
+ 1));
end;
A288:
now
assume 1
> (((i
+ 1)
+ 1)
-' (
len f));
then
A289: ((((i
+ 1)
+ 1)
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then (((i
+ 1)
+ 1)
-' (
len f))
<=
0 by
XREAL_1: 6;
then
A290: (((i
+ 1)
+ 1)
- (
len f))
=
0 by
A266,
XREAL_0:def 2;
(((i
+ 1)
+ 1)
-' (
len f))
=
0 by
A289,
XREAL_1: 6;
hence ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= (g
. ((((i
+ 1)
+ 1)
-' (
len f))
+ 1)) by
A1,
A61,
A290,
FINSEQ_1: 64;
end;
(((i
+ 1)
- (
len f))
+ 1)
= (((i
- (
len f))
+ 1)
+ 1);
then
A291: (((i
+ 1)
- (
len f))
+ 1)
= (((i
-' (
len f))
+ 1)
+ 1) by
A258,
XREAL_1: 233;
then
A292: (((i
+ 1)
-' (
len f))
+ 1)
= (((i
-' (
len f))
+ 1)
+ 1) by
A261,
XREAL_1: 233;
A293: (((i
+ 1)
+ 1)
-' (
len f))
<= (((
len g)
- 2)
+ 1) by
A242,
A266,
XREAL_0:def 2;
A294:
now
assume
A295: 1
<= (((i
+ 1)
+ 1)
-' (
len f));
then 1
<= (((i
+ 1)
+ 1)
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= ((((i
+ 1)
+ 1)
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A296: (
len f)
< ((i
+ 1)
+ 1) by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= ((
mid (g,2,(
len g)))
. (((i
+ 1)
+ 1)
- (
len f))) by
A237,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= ((
mid (g,2,(
len g)))
. (((i
+ 1)
+ 1)
-' (
len f))) by
A296,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= (g
. (((((i
+ 1)
+ 1)
-' (
len f))
+ 2)
- 1)) by
A8,
A293,
A295,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= (g
. ((((i
+ 1)
+ 1)
-' (
len f))
+ 1));
end;
A297: ((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1)) by
A237,
A240,
FINSEQ_4: 15;
A298: (
LSeg ((f
^ (
mid (g,2,(
len g)))),i))
= (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1)))) by
A236,
A241,
TOPREAL1:def 3;
A299: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A238,
A241,
FINSEQ_4: 15;
(
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1)))
= (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1)),((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1)))) by
A237,
A238,
TOPREAL1:def 3;
then (
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1)))
= (
LSeg (g,(((i
+ 1)
-' (
len f))
+ 1))) by
A291,
A272,
A299,
A283,
A285,
A262,
A271,
A297,
A270,
A294,
A288,
XREAL_0:def 2;
hence thesis by
A3,
A264,
A292,
A298,
A275,
A281,
A299,
A283,
A285,
A282,
TOPREAL1:def 6;
end;
case
A300: (i
+ 2)
= ((
len f)
+ 1);
then
A301: (f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A238,
FINSEQ_4: 15;
then
A302: (f
/. (i
+ 1))
= (g
/. 1) by
A1,
A9,
A300,
FINSEQ_4: 15;
((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A238,
A241,
FINSEQ_4: 15;
then
A303: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= (f
/. (i
+ 1)) by
A238,
A300,
A301,
FINSEQ_1: 64;
A304: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A236,
A300,
TOPREAL1:def 3;
A305: ((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A236,
A239,
FINSEQ_4: 15;
((i
+ 1)
+ 1)
= ((
len f)
+ 1) by
A300;
then
A306: i
<= (
len f) by
NAT_D: 46;
then (f
/. i)
= (f
. i) by
A236,
FINSEQ_4: 15;
then
A307: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A236,
A306,
A305,
FINSEQ_1: 64;
A308: (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. i),((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))))
= (
LSeg ((f
^ (
mid (g,2,(
len g)))),i)) by
A236,
A241,
TOPREAL1:def 3;
i
= ((
len f)
- 1) by
A300;
then
A309: i
= ((
len f)
-' 1) by
A5,
XREAL_1: 233,
XXREAL_0: 2;
A310: (g
/. 1)
in (
LSeg ((g
/. 1),(g
/. (1
+ 1)))) by
RLTOPSP1: 68;
A311: (g
/. 1)
= (g
. 1) by
A9,
FINSEQ_4: 15;
then (g
/. 1)
= (f
/. (
len f)) by
A1,
A61,
FINSEQ_4: 15;
then
A312: (g
/. 1)
in (
LSeg ((f
/. ((
len f)
-' 1)),(f
/. (
len f)))) by
RLTOPSP1: 68;
((
len g)
- 2)
>=
0 by
A8,
XREAL_1: 48;
then
A313: (
0
+ 1)
<= (((
len g)
- 2)
+ 1) by
XREAL_1: 6;
(
len f)
< ((i
+ 1)
+ 1) by
A300,
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= ((
mid (g,2,(
len g)))
. (((i
+ 1)
+ 1)
- (
len f))) by
A237,
FINSEQ_6: 108;
then
A314: ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1))
= (g
. ((2
+ 1)
-' 1)) by
A8,
A300,
A313,
FINSEQ_6: 122
.= (g
. 2) by
NAT_D: 34;
A315: (
LSeg (g,1))
c= (
L~ g) by
TOPREAL3: 19;
(
LSeg (f,i))
c= (
L~ f) by
TOPREAL3: 19;
then
A316: ((
LSeg (f,i))
/\ (
LSeg (g,1)))
c=
{(g
/. 1)} by
A4,
A311,
A315,
XBOOLE_1: 27;
A317: (((i
+ 1)
-' (
len f))
+ 1)
= (
0
+ 1) by
A300,
XREAL_1: 232
.= 1;
then
A318: (g
/. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1))
= (g
. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)) by
A8,
FINSEQ_4: 15;
(
LSeg (g,1))
= (
LSeg ((g
/. 1),(g
/. (1
+ 1)))) by
A8,
TOPREAL1:def 3;
then (g
/. 1)
in ((
LSeg (f,i))
/\ (
LSeg (g,1))) by
A300,
A309,
A304,
A312,
A310,
XBOOLE_0:def 4;
then
A319:
{(g
/. 1)}
c= ((
LSeg (f,i))
/\ (
LSeg (g,1))) by
ZFMISC_1: 31;
A320: ((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. ((i
+ 1)
+ 1)) by
A237,
A240,
FINSEQ_4: 15;
A321: (
LSeg ((f
^ (
mid (g,2,(
len g)))),(i
+ 1)))
= (
LSeg (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1)),((f
^ (
mid (g,2,(
len g))))
/. ((i
+ 1)
+ 1)))) by
A237,
A238,
TOPREAL1:def 3;
(
LSeg (g,(((i
+ 1)
-' (
len f))
+ 1)))
= (
LSeg ((g
/. (((i
+ 1)
-' (
len f))
+ 1)),(g
/. ((((i
+ 1)
-' (
len f))
+ 1)
+ 1)))) by
A8,
A317,
TOPREAL1:def 3;
hence thesis by
A307,
A302,
A303,
A308,
A304,
A321,
A317,
A320,
A318,
A314,
A319,
A316,
XBOOLE_0:def 10;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
for i be
Nat st 1
<= i & (i
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g))))) holds (((f
^ (
mid (g,2,(
len g))))
/. i)
`1 )
= (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
`1 ) or (((f
^ (
mid (g,2,(
len g))))
/. i)
`2 )
= (((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
`2 )
proof
let i be
Nat;
assume that
A322: 1
<= i and
A323: (i
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g)))));
now
per cases ;
case
A324: i
< (
len f);
i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A323,
NAT_D: 46;
then
A325: ((f
^ (
mid (g,2,(
len g))))
/. i)
= ((f
^ (
mid (g,2,(
len g))))
. i) by
A322,
FINSEQ_4: 15;
(f
/. i)
= (f
. i) by
A322,
A324,
FINSEQ_4: 15;
then
A326: ((f
^ (
mid (g,2,(
len g))))
/. i)
= (f
/. i) by
A322,
A324,
A325,
FINSEQ_1: 64;
A327: 1
<= (i
+ 1) by
A322,
NAT_D: 48;
then
A328: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A323,
FINSEQ_4: 15;
A329: (i
+ 1)
<= (
len f) by
A324,
NAT_1: 13;
then
A330: ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= (f
. (i
+ 1)) by
A327,
FINSEQ_1: 64;
(f
/. (i
+ 1))
= (f
. (i
+ 1)) by
A327,
A329,
FINSEQ_4: 15;
hence thesis by
A2,
A322,
A329,
A326,
A328,
A330,
TOPREAL1:def 5;
end;
case
A331: i
>= (
len f);
1
<= (1
+ (i
-' (
len f))) by
NAT_1: 11;
then 1
<= (1
+ (i
- (
len f))) by
A331,
XREAL_1: 233;
then 1
<= ((1
+ i)
- (
len f));
then
A332: 1
<= ((i
+ 1)
-' (
len f)) by
NAT_D: 39;
A333: i
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A323,
NAT_D: 46;
A334: (i
- (
len f))
>=
0 by
A331,
XREAL_1: 48;
then
A335: (i
-' (
len f))
= (i
- (
len f)) by
XREAL_0:def 2;
A336:
now
assume 1
> (i
-' (
len f));
then ((i
-' (
len f))
+ 1)
<= (
0
+ 1) by
NAT_1: 13;
then (i
-' (
len f))
=
0 by
XREAL_1: 6;
hence ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. ((i
-' (
len f))
+ 1)) by
A1,
A61,
A335,
FINSEQ_1: 64;
end;
A337: (i
+ 1)
>= (
len f) by
A331,
NAT_D: 48;
then
A338: (((i
+ 1)
-' (
len f))
+ 1)
= (((i
+ 1)
- (
len f))
+ 1) by
XREAL_1: 233
.= (((i
- (
len f))
+ 1)
+ 1)
.= (((i
-' (
len f))
+ 1)
+ 1) by
A331,
XREAL_1: 233;
A339: ((i
+ 1)
- (
len f))
<= (((
len f)
+ ((
len g)
- 1))
- (
len f)) by
A6,
A10,
A323,
XREAL_1: 9;
then
A340: (((i
- (
len f))
+ 1)
+ 1)
<= (((
len g)
- 1)
+ 1) by
XREAL_1: 6;
then
A341: (((i
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A334,
XREAL_0:def 2;
(i
-' (
len f))
<= ((i
-' (
len f))
+ 1) by
NAT_1: 11;
then
A342: (i
-' (
len f))
<= (((
len g)
- 2)
+ 1) by
A335,
A339,
XXREAL_0: 2;
A343:
now
assume
A344: 1
<= (i
-' (
len f));
then 1
<= (i
- (
len f)) by
NAT_D: 39;
then (1
+ (
len f))
<= ((i
- (
len f))
+ (
len f)) by
XREAL_1: 6;
then
A345: (
len f)
< i by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= ((
mid (g,2,(
len g)))
. (i
- (
len f))) by
A333,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= ((
mid (g,2,(
len g)))
. (i
-' (
len f))) by
A345,
XREAL_1: 233;
then ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. (((i
-' (
len f))
+ 2)
- 1)) by
A8,
A342,
A344,
FINSEQ_6: 122;
hence ((f
^ (
mid (g,2,(
len g))))
. i)
= (g
. ((i
-' (
len f))
+ 1));
end;
1
<= (i
+ 1) by
A322,
NAT_D: 48;
then
A346: ((f
^ (
mid (g,2,(
len g))))
/. (i
+ 1))
= ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1)) by
A323,
FINSEQ_4: 15;
A347: 1
<= ((i
-' (
len f))
+ 1) by
NAT_1: 11;
((i
+ 1)
- (
len f))
<= (((
len g)
- 2)
+ 1) by
A339;
then ((i
+ 1)
- (
len f))
<= (((
len g)
-' 2)
+ 1) by
A8,
XREAL_1: 233;
then
A348: ((i
+ 1)
-' (
len f))
<= (((
len g)
-' 2)
+ 1) by
A337,
XREAL_1: 233;
(
len f)
< (i
+ 1) by
A331,
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= ((
mid (g,2,(
len g)))
. ((i
+ 1)
- (
len f))) by
A323,
FINSEQ_6: 108;
then ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= ((
mid (g,2,(
len g)))
. ((i
+ 1)
-' (
len f))) by
A337,
XREAL_1: 233;
then
A349: ((f
^ (
mid (g,2,(
len g))))
. (i
+ 1))
= (g
. ((((i
+ 1)
-' (
len f))
+ 2)
- 1)) by
A8,
A348,
A332,
FINSEQ_6: 122;
(((i
-' (
len f))
+ 1)
+ 1)
<= (
len g) by
A334,
A340,
XREAL_0:def 2;
then
A350: (g
/. (((i
-' (
len f))
+ 1)
+ 1))
= (g
. (((i
-' (
len f))
+ 1)
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
((i
-' (
len f))
+ 1)
<= (
len g) by
A335,
A340,
NAT_D: 46;
then (g
/. ((i
-' (
len f))
+ 1))
= (g
. ((i
-' (
len f))
+ 1)) by
FINSEQ_4: 15,
NAT_1: 11;
then ((f
^ (
mid (g,2,(
len g))))
/. i)
= (g
/. ((i
-' (
len f))
+ 1)) by
A322,
A333,
A343,
A336,
FINSEQ_4: 15;
hence thesis by
A3,
A347,
A341,
A338,
A346,
A350,
A349,
TOPREAL1:def 5;
end;
end;
hence thesis;
end;
then (f
^ (
mid (g,2,(
len g)))) is
unfolded
s.n.c.
special by
A235,
A62,
TOPREAL1:def 5,
TOPREAL1:def 6,
TOPREAL1:def 7;
hence thesis by
A60,
A7,
TOPREAL1:def 8;
end;
theorem ::
JORDAN3:39
Th39: for f,g be
FinSequence of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} holds (f
^ (
mid (g,2,(
len g))))
is_S-Seq_joining ((f
/. 1),(g
/. (
len g)))
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: f is
being_S-Seq and
A3: g is
being_S-Seq and
A4: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)};
A5: (f
^ (
mid (g,2,(
len g)))) is
being_S-Seq by
A1,
A2,
A3,
A4,
Th38;
A6: (
len g)
>= 2 by
A3,
TOPREAL1:def 8;
then
A7: ((1
+ 1)
- 1)
<= ((
len g)
- 1) by
XREAL_1: 9;
(
len f)
>= 2 by
A2,
TOPREAL1:def 8;
then
A8: 1
<= (
len f) by
XXREAL_0: 2;
then
A9: ((f
^ (
mid (g,2,(
len g))))
. 1)
= (f
. 1) by
FINSEQ_1: 64
.= (f
/. 1) by
A8,
FINSEQ_4: 15;
A10: (
len (f
^ (
mid (g,2,(
len g)))))
= ((
len f)
+ (
len (
mid (g,2,(
len g))))) by
FINSEQ_1: 22;
A11: 1
<= (
len g) by
A6,
XXREAL_0: 2;
then
A12: (
len (
mid (g,2,(
len g))))
= (((
len g)
-' 2)
+ 1) by
A6,
FINSEQ_6: 118;
then
A13: (
len (
mid (g,2,(
len g))))
= (((
len g)
- 2)
+ 1) by
A6,
XREAL_1: 233
.= ((
len g)
- 1);
then
A14: (((
len (
mid (g,2,(
len g))))
+ 2)
- 1)
= (
len g);
((
len g)
- 1)
>= ((1
+ 1)
- 1) by
A6,
XREAL_1: 9;
then ((
len f)
+ 1)
<= (
len (f
^ (
mid (g,2,(
len g))))) by
A10,
A13,
XREAL_1: 6;
then (
len f)
< (
len (f
^ (
mid (g,2,(
len g))))) by
NAT_1: 13;
then ((f
^ (
mid (g,2,(
len g))))
. (
len (f
^ (
mid (g,2,(
len g))))))
= ((
mid (g,2,(
len g)))
. ((
len (f
^ (
mid (g,2,(
len g)))))
- (
len f))) by
FINSEQ_6: 108
.= (g
. (
len g)) by
A6,
A10,
A12,
A7,
A14,
FINSEQ_6: 122
.= (g
/. (
len g)) by
A11,
FINSEQ_4: 15;
hence thesis by
A5,
A9;
end;
theorem ::
JORDAN3:40
for f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT holds (
L~ (f
/^ n))
c= (
L~ f)
proof
let f be
FinSequence of (
TOP-REAL 2), n be
Element of
NAT ;
let x be
object;
assume x
in (
L~ (f
/^ n));
then x
in (
union { (
LSeg ((f
/^ n),i)) : 1
<= i & (i
+ 1)
<= (
len (f
/^ n)) }) by
TOPREAL1:def 4;
then
consider Y be
set such that
A1: x
in Y & Y
in { (
LSeg ((f
/^ n),i)) : 1
<= i & (i
+ 1)
<= (
len (f
/^ n)) } by
TARSKI:def 4;
consider i such that
A2: Y
= (
LSeg ((f
/^ n),i)) and
A3: 1
<= i and
A4: (i
+ 1)
<= (
len (f
/^ n)) by
A1;
now
per cases ;
case n
<= (
len f);
then (
LSeg ((f
/^ n),i))
= (
LSeg (f,(n
+ i))) by
A3,
SPPOL_2: 4;
then Y
c= (
L~ f) by
A2,
TOPREAL3: 19;
hence thesis by
A1;
end;
case n
> (
len f);
then (f
/^ n)
= (
<*> the
carrier of (
TOP-REAL 2)) by
RFINSEQ:def 1;
hence contradiction by
A4;
end;
end;
hence thesis;
end;
theorem ::
JORDAN3:41
Th41: for f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds (
L~ (
R_Cut (f,p)))
c= (
L~ f)
proof
let f be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) such that
A1: p
in (
L~ f);
A2: 1
<= (
Index (p,f)) by
A1,
Th8;
(
len f)
<>
0 by
A1,
TOPREAL1: 22;
then
A3: (
len f)
>= (
0
+ 1) by
NAT_1: 13;
A4: (
Index (p,f))
<= (
len f) by
A1,
Th8;
per cases ;
suppose p
= (f
. 1);
then (
R_Cut (f,p))
=
<*p*> by
Def4;
then (
len (
R_Cut (f,p)))
= 1 by
FINSEQ_1: 39;
then (
L~ (
R_Cut (f,p)))
=
{} by
TOPREAL1: 22;
hence thesis;
end;
suppose
A5: p
<> (f
. 1);
A6: (f
/. (
Index (p,f)))
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
RLTOPSP1: 68;
A7: (
len (
mid (f,1,(
Index (p,f)))))
= (((
Index (p,f))
-' 1)
+ 1) by
A3,
A2,
A4,
FINSEQ_6: 118
.= (
Index (p,f)) by
A1,
Th8,
XREAL_1: 235;
then (
mid (f,1,(
Index (p,f))))
<> (
<*> the
carrier of (
TOP-REAL 2)) by
A2;
then
A8: (
L~ ((
mid (f,1,(
Index (p,f))))
^
<*p*>))
= ((
L~ (
mid (f,1,(
Index (p,f)))))
\/ (
LSeg (((
mid (f,1,(
Index (p,f))))
/. (
Index (p,f))),p))) by
A7,
SPPOL_2: 19;
(
mid (f,1,(
Index (p,f))))
= ((f
/^ (1
-' 1))
| (((
Index (p,f))
-' 1)
+ 1)) by
A2,
FINSEQ_6:def 3
.= ((f
/^
0 )
| (((
Index (p,f))
-' 1)
+ 1)) by
XREAL_1: 232
.= (f
| (((
Index (p,f))
-' 1)
+ 1))
.= (f
| (
Index (p,f))) by
A1,
Th8,
XREAL_1: 235;
then
A9: (
L~ (
mid (f,1,(
Index (p,f)))))
c= (
L~ f) by
TOPREAL3: 20;
(
Index (p,f))
< (
len f) by
A1,
Th8;
then
A10: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
then
A11: (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))))
c= (
L~ f) by
A1,
Th8,
SPPOL_2: 16;
p
in (
LSeg (f,(
Index (p,f)))) by
A1,
Th9;
then
A12: p
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A2,
A10,
TOPREAL1:def 3;
((
mid (f,1,(
Index (p,f))))
/. (
Index (p,f)))
= ((
mid (f,1,(
Index (p,f))))
. (
Index (p,f))) by
A2,
A7,
FINSEQ_4: 15
.= (f
. (
Index (p,f))) by
A2,
A4,
FINSEQ_6: 123
.= (f
/. (
Index (p,f))) by
A1,
A4,
Th8,
FINSEQ_4: 15;
then (
LSeg (((
mid (f,1,(
Index (p,f))))
/. (
Index (p,f))),p))
c= (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A12,
A6,
TOPREAL1: 6;
then
A13: (
LSeg (((
mid (f,1,(
Index (p,f))))
/. (
Index (p,f))),p))
c= (
L~ f) by
A11;
(
R_Cut (f,p))
= ((
mid (f,1,(
Index (p,f))))
^
<*p*>) by
A5,
Def4;
hence thesis by
A8,
A13,
A9,
XBOOLE_1: 8;
end;
end;
Lm2: ((
<*> D)
| i)
= (
<*> D)
proof
(
len (
<*> D))
=
0 ;
hence thesis by
FINSEQ_1: 58;
end;
Lm3: for f1 be
FinSequence of D, k be
Nat st 1
<= k & k
<= (
len f1) holds (
mid (f1,k,k))
=
<*(f1
/. k)*> & (
len (
mid (f1,k,k)))
= 1
proof
let f1 be
FinSequence of D, k be
Nat;
assume that
A1: 1
<= k and
A2: k
<= (
len f1);
A3: (f1
/. k)
= (f1
. k) by
A1,
A2,
FINSEQ_4: 15;
((k
-' 1)
+ 1)
<= (
len f1) by
A1,
A2,
XREAL_1: 235;
then
A4: (((k
-' 1)
+ 1)
- (k
-' 1))
<= ((
len f1)
- (k
-' 1)) by
XREAL_1: 9;
(
len (f1
/^ (k
-' 1)))
= ((
len f1)
-' (k
-' 1)) by
RFINSEQ: 29;
then
A5: 1
<= (
len (f1
/^ (k
-' 1))) by
A4,
NAT_D: 39;
((k
-' 1)
+ 1)
= k by
A1,
XREAL_1: 235;
then
A6: ((f1
/^ (k
-' 1))
. 1)
= (f1
. k) by
A2,
FINSEQ_6: 114;
((k
-' k)
+ 1)
= ((k
- k)
+ 1) by
XREAL_1: 233
.= 1;
then (
mid (f1,k,k))
= ((f1
/^ (k
-' 1))
| 1) by
FINSEQ_6:def 3
.=
<*((f1
/^ (k
-' 1))
. 1)*> by
A5,
CARD_1: 27,
FINSEQ_5: 20;
hence thesis by
A6,
A3,
FINSEQ_1: 39;
end;
Lm4: for f1 be
FinSequence of D holds (
mid (f1,
0 ,
0 ))
= (f1
| 1)
proof
let f1 be
FinSequence of D;
(
0
- 1)
<
0 ;
then
A1: (
0
-' 1)
=
0 by
XREAL_0:def 2;
((
0
-'
0 )
+ 1)
= ((
0
-
0 )
+ 1) by
XREAL_1: 233
.= 1;
then (
mid (f1,
0 ,
0 ))
= ((f1
/^ (
0
-' 1))
| 1) by
FINSEQ_6:def 3;
hence thesis by
A1;
end;
Lm5: for f1 be
FinSequence of D, k be
Nat st (
len f1)
< k holds (
mid (f1,k,k))
= (
<*> D)
proof
let f1 be
FinSequence of D, k be
Nat;
assume
A1: (
len f1)
< k;
then ((
len f1)
+ 1)
<= k by
NAT_1: 13;
then
A2: (((
len f1)
+ 1)
- 1)
<= (k
- 1) by
XREAL_1: 9;
(
0
+ 1)
<= k by
A1,
NAT_1: 13;
then (
len f1)
<= (k
-' 1) by
A2,
XREAL_1: 233;
then
A3: (f1
/^ (k
-' 1))
= (
<*> D) by
FINSEQ_5: 32;
((k
-' k)
+ 1)
= ((k
- k)
+ 1) by
XREAL_1: 233
.= 1;
then (
mid (f1,k,k))
= ((f1
/^ (k
-' 1))
| 1) by
FINSEQ_6:def 3;
hence thesis by
A3,
Lm2;
end;
Lm6: for f1 be
FinSequence of D, i1, i2 holds (
mid (f1,i1,i2))
= (
Rev (
mid (f1,i2,i1)))
proof
let f1 be
FinSequence of D;
let k1,k2 be
Nat;
now
per cases ;
case
A1: k1
<= k2;
then
A2: (
mid (f1,k1,k2))
= ((f1
/^ (k1
-' 1))
| ((k2
-' k1)
+ 1)) by
FINSEQ_6:def 3;
now
per cases by
A1,
XXREAL_0: 1;
case k1
< k2;
then (
mid (f1,k2,k1))
= (
Rev (
mid (f1,k1,k2))) by
A2,
FINSEQ_6:def 3;
hence thesis;
end;
case
A3: k1
= k2;
A4: k1
=
0 or (
0
+ 1)
<= k1 by
NAT_1: 13;
now
per cases by
A4;
case k1
=
0 ;
then
A5: (
mid (f1,k1,k2))
= (f1
| 1) by
A3,
Lm4;
now
per cases ;
case (
len f1)
=
0 ;
then f1
= (
<*> D);
then (f1
| 1)
= (
<*> D) by
Lm2;
hence thesis by
A3,
A5;
end;
case (
len f1)
<>
0 ;
then f1
<> (
<*> D);
then (f1
| 1)
=
<*(f1
. 1)*> by
FINSEQ_5: 20;
hence thesis by
A3,
A5,
FINSEQ_5: 60;
end;
end;
hence thesis;
end;
case 1
<= k1 & k1
<= (
len f1);
then (
mid (f1,k1,k1))
=
<*(f1
/. k1)*> by
Lm3;
hence thesis by
A3,
FINSEQ_5: 60;
end;
case (
len f1)
< k1;
then (
mid (f1,k1,k1))
= (
<*> D) by
Lm5;
hence thesis by
A3;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
case
A6: k1
> k2;
then (
mid (f1,k1,k2))
= (
Rev ((f1
/^ (k2
-' 1))
| ((k1
-' k2)
+ 1))) by
FINSEQ_6:def 3;
hence thesis by
A6,
FINSEQ_6:def 3;
end;
end;
hence thesis;
end;
Lm7: for h be
FinSequence of (
TOP-REAL 2), i1, i2 st 1
<= i1 & i1
<= (
len h) & 1
<= i2 & i2
<= (
len h) holds (
L~ (
mid (h,i1,i2)))
c= (
L~ h)
proof
let h be
FinSequence of (
TOP-REAL 2), i1, i2;
assume that
A1: 1
<= i1 and
A2: i1
<= (
len h) and
A3: 1
<= i2 and
A4: i2
<= (
len h);
thus (
L~ (
mid (h,i1,i2)))
c= (
L~ h)
proof
let x be
object;
assume
A5: x
in (
L~ (
mid (h,i1,i2)));
now
per cases ;
case
A6: i1
<= i2;
x
in (
union { (
LSeg ((
mid (h,i1,i2)),i)) : 1
<= i & (i
+ 1)
<= (
len (
mid (h,i1,i2))) }) by
A5,
TOPREAL1:def 4;
then
consider Y be
set such that
A7: x
in Y & Y
in { (
LSeg ((
mid (h,i1,i2)),i)) : 1
<= i & (i
+ 1)
<= (
len (
mid (h,i1,i2))) } by
TARSKI:def 4;
consider i such that
A8: Y
= (
LSeg ((
mid (h,i1,i2)),i)) and
A9: 1
<= i and
A10: (i
+ 1)
<= (
len (
mid (h,i1,i2))) by
A7;
A11: (
LSeg ((
mid (h,i1,i2)),i))
= (
LSeg (((
mid (h,i1,i2))
/. i),((
mid (h,i1,i2))
/. (i
+ 1)))) by
A9,
A10,
TOPREAL1:def 3;
(
len (
mid (h,i1,i2)))
= ((i2
-' i1)
+ 1) by
A1,
A2,
A3,
A4,
A6,
FINSEQ_6: 118;
then ((i
+ 1)
- 1)
<= (((i2
-' i1)
+ 1)
- 1) by
A10,
XREAL_1: 9;
then i
<= (i2
- i1) by
A6,
XREAL_1: 233;
then
A12: (i
+ i1)
<= ((i2
- i1)
+ i1) by
XREAL_1: 6;
then
A13: (i
+ i1)
<= (
len h) by
A4,
XXREAL_0: 2;
(1
+ 1)
<= (i
+ i1) by
A1,
A9,
XREAL_1: 7;
then
A14: ((1
+ 1)
- 1)
<= ((i
+ i1)
- 1) by
XREAL_1: 9;
then 1
<= ((i
+ i1)
-' 1) by
A1,
NAT_1: 12,
XREAL_1: 233;
then
A15: (h
/. ((i
+ i1)
-' 1))
= (h
. ((i
+ i1)
-' 1)) by
A13,
FINSEQ_4: 15,
NAT_D: 44;
1
<= (i
+ 1) by
NAT_1: 11;
then
A16: ((
mid (h,i1,i2))
. (i
+ 1))
= (h
. (((i
+ 1)
+ i1)
-' 1)) by
A1,
A2,
A3,
A4,
A6,
A10,
FINSEQ_6: 118;
A17: (((i
+ 1)
+ i1)
-' 1)
= (((i
+ 1)
+ i1)
- 1) by
A1,
NAT_1: 12,
XREAL_1: 233
.= (i
+ i1);
then
A18: (((i
+ 1)
+ i1)
-' 1)
= (((i
+ i1)
- 1)
+ 1)
.= (((i
+ i1)
-' 1)
+ 1) by
A1,
NAT_1: 12,
XREAL_1: 233;
i
<= (i
+ 1) by
NAT_1: 11;
then
A19: i
<= (
len (
mid (h,i1,i2))) by
A10,
XXREAL_0: 2;
then
A20: ((
mid (h,i1,i2))
/. i)
= ((
mid (h,i1,i2))
. i) by
A9,
FINSEQ_4: 15;
A21: ((
mid (h,i1,i2))
/. (i
+ 1))
= ((
mid (h,i1,i2))
. (i
+ 1)) by
A10,
FINSEQ_4: 15,
NAT_1: 11;
A22: (i
+ i1)
<= (
len h) by
A4,
A12,
XXREAL_0: 2;
((
mid (h,i1,i2))
. i)
= (h
. ((i
+ i1)
-' 1)) by
A1,
A2,
A3,
A4,
A6,
A9,
A19,
FINSEQ_6: 118;
then (
LSeg ((
mid (h,i1,i2)),i))
= (
LSeg ((h
/. ((i
+ i1)
-' 1)),(h
/. (((i
+ 1)
+ i1)
-' 1)))) by
A1,
A11,
A16,
A20,
A21,
A15,
A17,
A22,
FINSEQ_4: 15,
NAT_1: 12
.= (
LSeg (h,((i
+ i1)
-' 1))) by
A14,
A13,
A17,
A18,
TOPREAL1:def 3;
then (
LSeg ((
mid (h,i1,i2)),i))
in { (
LSeg (h,j)) : 1
<= j & (j
+ 1)
<= (
len h) } by
A14,
A17,
A18,
A22;
then x
in (
union { (
LSeg (h,j)) : 1
<= j & (j
+ 1)
<= (
len h) }) by
A7,
A8,
TARSKI:def 4;
hence thesis by
TOPREAL1:def 4;
end;
case
A23: i1
> i2;
(
mid (h,i1,i2))
= (
Rev (
mid (h,i2,i1))) by
Lm6;
then x
in (
L~ (
mid (h,i2,i1))) by
A5,
SPPOL_2: 22;
then x
in (
union { (
LSeg ((
mid (h,i2,i1)),i)) : 1
<= i & (i
+ 1)
<= (
len (
mid (h,i2,i1))) }) by
TOPREAL1:def 4;
then
consider Y be
set such that
A24: x
in Y & Y
in { (
LSeg ((
mid (h,i2,i1)),i)) : 1
<= i & (i
+ 1)
<= (
len (
mid (h,i2,i1))) } by
TARSKI:def 4;
consider i such that
A25: Y
= (
LSeg ((
mid (h,i2,i1)),i)) and
A26: 1
<= i and
A27: (i
+ 1)
<= (
len (
mid (h,i2,i1))) by
A24;
A28: (
LSeg ((
mid (h,i2,i1)),i))
= (
LSeg (((
mid (h,i2,i1))
/. i),((
mid (h,i2,i1))
/. (i
+ 1)))) by
A26,
A27,
TOPREAL1:def 3;
(
len (
mid (h,i2,i1)))
= ((i1
-' i2)
+ 1) by
A1,
A2,
A3,
A4,
A23,
FINSEQ_6: 118;
then ((i
+ 1)
- 1)
<= (((i1
-' i2)
+ 1)
- 1) by
A27,
XREAL_1: 9;
then i
<= (i1
- i2) by
A23,
XREAL_1: 233;
then
A29: (i
+ i2)
<= ((i1
- i2)
+ i2) by
XREAL_1: 6;
then
A30: (i
+ i2)
<= (
len h) by
A2,
XXREAL_0: 2;
(1
+ 1)
<= (i
+ i2) by
A3,
A26,
XREAL_1: 7;
then
A31: ((1
+ 1)
- 1)
<= ((i
+ i2)
- 1) by
XREAL_1: 9;
then 1
<= ((i
+ i2)
-' 1) by
A3,
NAT_1: 12,
XREAL_1: 233;
then
A32: (h
/. ((i
+ i2)
-' 1))
= (h
. ((i
+ i2)
-' 1)) by
A30,
FINSEQ_4: 15,
NAT_D: 44;
1
<= (i
+ 1) by
NAT_1: 11;
then
A33: ((
mid (h,i2,i1))
. (i
+ 1))
= (h
. (((i
+ 1)
+ i2)
-' 1)) by
A1,
A2,
A3,
A4,
A23,
A27,
FINSEQ_6: 118;
A34: (((i
+ 1)
+ i2)
-' 1)
= (((i
+ 1)
+ i2)
- 1) by
A3,
NAT_1: 12,
XREAL_1: 233
.= (i
+ i2);
then
A35: (((i
+ 1)
+ i2)
-' 1)
= (((i
+ i2)
- 1)
+ 1)
.= (((i
+ i2)
-' 1)
+ 1) by
A3,
NAT_1: 12,
XREAL_1: 233;
i
<= (i
+ 1) by
NAT_1: 11;
then
A36: i
<= (
len (
mid (h,i2,i1))) by
A27,
XXREAL_0: 2;
then
A37: ((
mid (h,i2,i1))
/. i)
= ((
mid (h,i2,i1))
. i) by
A26,
FINSEQ_4: 15;
A38: ((
mid (h,i2,i1))
/. (i
+ 1))
= ((
mid (h,i2,i1))
. (i
+ 1)) by
A27,
FINSEQ_4: 15,
NAT_1: 11;
A39: (i
+ i2)
<= (
len h) by
A2,
A29,
XXREAL_0: 2;
((
mid (h,i2,i1))
. i)
= (h
. ((i
+ i2)
-' 1)) by
A1,
A2,
A3,
A4,
A23,
A26,
A36,
FINSEQ_6: 118;
then (
LSeg ((
mid (h,i2,i1)),i))
= (
LSeg ((h
/. ((i
+ i2)
-' 1)),(h
/. (((i
+ 1)
+ i2)
-' 1)))) by
A3,
A28,
A33,
A37,
A38,
A32,
A34,
A39,
FINSEQ_4: 15,
NAT_1: 12
.= (
LSeg (h,((i
+ i2)
-' 1))) by
A31,
A30,
A34,
A35,
TOPREAL1:def 3;
then (
LSeg ((
mid (h,i2,i1)),i))
in { (
LSeg (h,j)) : 1
<= j & (j
+ 1)
<= (
len h) } by
A31,
A34,
A35,
A39;
then x
in (
union { (
LSeg (h,j)) : 1
<= j & (j
+ 1)
<= (
len h) }) by
A24,
A25,
TARSKI:def 4;
hence thesis by
TOPREAL1:def 4;
end;
end;
hence thesis;
end;
end;
Lm8: i
in (
dom f) & j
in (
dom f) implies (
len (
mid (f,i,j)))
>= 1
proof
A1: i
<= j or j
< i;
assume
A2: i
in (
dom f);
then
A3: i
<= (
len f) by
FINSEQ_3: 25;
assume
A4: j
in (
dom f);
then
A5: 1
<= j by
FINSEQ_3: 25;
A6: j
<= (
len f) by
A4,
FINSEQ_3: 25;
1
<= i by
A2,
FINSEQ_3: 25;
then (
len (
mid (f,i,j)))
= ((i
-' j)
+ 1) or (
len (
mid (f,i,j)))
= ((j
-' i)
+ 1) by
A3,
A5,
A6,
A1,
FINSEQ_6: 118;
hence thesis by
NAT_1: 11;
end;
Lm9: i
in (
dom f) & j
in (
dom f) implies (
mid (f,i,j)) is non
empty
proof
assume that
A1: i
in (
dom f) and
A2: j
in (
dom f);
(
len (
mid (f,i,j)))
>= 1 by
A1,
A2,
Lm8;
hence thesis;
end;
Lm10: i
in (
dom f) & j
in (
dom f) implies ((
mid (f,i,j))
/. 1)
= (f
/. i)
proof
assume
A1: i
in (
dom f);
then
A2: 1
<= i by
FINSEQ_3: 25;
A3: i
<= (
len f) by
A1,
FINSEQ_3: 25;
assume
A4: j
in (
dom f);
then
A5: 1
<= j by
FINSEQ_3: 25;
A6: j
<= (
len f) by
A4,
FINSEQ_3: 25;
(
mid (f,i,j)) is non
empty by
A1,
A4,
Lm9;
then 1
in (
dom (
mid (f,i,j))) by
FINSEQ_5: 6;
hence ((
mid (f,i,j))
/. 1)
= ((
mid (f,i,j))
. 1) by
PARTFUN1:def 6
.= (f
. i) by
A2,
A3,
A5,
A6,
FINSEQ_6: 118
.= (f
/. i) by
A1,
PARTFUN1:def 6;
end;
theorem ::
JORDAN3:42
Th42: for f be
FinSequence of (
TOP-REAL 2) holds for p be
Point of (
TOP-REAL 2) st p
in (
L~ f) holds (
L~ (
L_Cut (f,p)))
c= (
L~ f)
proof
let f be
FinSequence of (
TOP-REAL 2);
let p be
Point of (
TOP-REAL 2) such that
A1: p
in (
L~ f);
(
Index (p,f))
< (
len f) by
A1,
Th8;
then
A2: ((
Index (p,f))
+ 1)
<= (
len f) by
NAT_1: 13;
A3: 1
<= (
Index (p,f)) by
A1,
Th8;
then
A4: 1
< ((
Index (p,f))
+ 1) by
NAT_1: 13;
then
A5: ((
Index (p,f))
+ 1)
in (
dom f) by
A2,
FINSEQ_3: 25;
(
len f)
<>
0 by
A1,
TOPREAL1: 22;
then
A6: (
len f)
>= (
0
+ 1) by
NAT_1: 13;
then
A7: (
len f)
in (
dom f) by
FINSEQ_3: 25;
per cases ;
suppose p
= (f
. ((
Index (p,f))
+ 1));
then (
L_Cut (f,p))
= (
mid (f,((
Index (p,f))
+ 1),(
len f))) by
Def3;
hence thesis by
A6,
A4,
A2,
Lm7;
end;
suppose p
<> (f
. ((
Index (p,f))
+ 1));
then
A8: (
L_Cut (f,p))
= (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))) by
Def3;
A9: (f
/. ((
Index (p,f))
+ 1))
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
RLTOPSP1: 68;
p
in (
LSeg (f,(
Index (p,f)))) by
A1,
Th9;
then
A10: p
in (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A3,
A2,
TOPREAL1:def 3;
A11: (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1))))
c= (
L~ f) by
A1,
A2,
Th8,
SPPOL_2: 16;
((
mid (f,((
Index (p,f))
+ 1),(
len f)))
/. 1)
= (f
/. ((
Index (p,f))
+ 1)) by
A7,
A5,
Lm10;
then (
LSeg (p,((
mid (f,((
Index (p,f))
+ 1),(
len f)))
/. 1)))
c= (
LSeg ((f
/. (
Index (p,f))),(f
/. ((
Index (p,f))
+ 1)))) by
A10,
A9,
TOPREAL1: 6;
then
A12: (
LSeg (p,((
mid (f,((
Index (p,f))
+ 1),(
len f)))
/. 1)))
c= (
L~ f) by
A11;
(
mid (f,((
Index (p,f))
+ 1),(
len f)))
<>
{} by
A7,
A5,
Lm8,
CARD_1: 27;
then
A13: (
L~ (
<*p*>
^ (
mid (f,((
Index (p,f))
+ 1),(
len f)))))
= ((
LSeg (p,((
mid (f,((
Index (p,f))
+ 1),(
len f)))
/. 1)))
\/ (
L~ (
mid (f,((
Index (p,f))
+ 1),(
len f))))) by
SPPOL_2: 20;
(
L~ (
mid (f,((
Index (p,f))
+ 1),(
len f))))
c= (
L~ f) by
A6,
A4,
A2,
Lm7;
hence thesis by
A8,
A13,
A12,
XBOOLE_1: 8;
end;
end;
theorem ::
JORDAN3:43
Th43: for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & p
in (
L~ f) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} & p
<> (f
. (
len f)) holds ((
L_Cut (f,p))
^ (
mid (g,2,(
len g))))
is_S-Seq_joining (p,(g
/. (
len g)))
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: p
in (
L~ f) and
A3: f is
being_S-Seq and
A4: g is
being_S-Seq and
A5: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} and
A6: p
<> (f
. (
len f));
(
L_Cut (f,p))
is_S-Seq_joining (p,(f
/. (
len f))) by
A2,
A3,
A6,
Th33;
then
A7: ((
L_Cut (f,p))
. (
len (
L_Cut (f,p))))
= (f
/. (
len f));
A8: (
len g)
>= 2 by
A4,
TOPREAL1:def 8;
then
A9: 1
<= (
len g) by
XXREAL_0: 2;
(g
/. 1)
in (
LSeg ((g
/. 1),(g
/. (1
+ 1)))) by
RLTOPSP1: 68;
then (g
/. 1)
in (
LSeg (g,1)) by
A8,
TOPREAL1:def 3;
then (g
. 1)
in (
LSeg (g,1)) by
A9,
FINSEQ_4: 15;
then
A10: (g
. 1)
in (
L~ g) by
SPPOL_2: 17;
(
L~ (
L_Cut (f,p)))
c= (
L~ f) by
A2,
Th42;
then
A11: ((
L~ (
L_Cut (f,p)))
/\ (
L~ g))
c= ((
L~ f)
/\ (
L~ g)) by
XBOOLE_1: 27;
(
len f)
>= 2 by
A3,
TOPREAL1:def 8;
then
A12: 1
<= (
len f) by
XXREAL_0: 2;
A13: (
L_Cut (f,p)) is
being_S-Seq by
A2,
A3,
A6,
Th34;
then
A14: (1
+ 1)
<= (
len (
L_Cut (f,p))) by
TOPREAL1:def 8;
then
A15: ((1
+ 1)
- 1)
<= ((
len (
L_Cut (f,p)))
- 1) by
XREAL_1: 9;
A16: 1
<= (
len (
L_Cut (f,p))) by
A14,
XXREAL_0: 2;
then ((
L_Cut (f,p))
. 1)
= ((
L_Cut (f,p))
/. 1) by
FINSEQ_4: 15;
then
A17: ((
L_Cut (f,p))
/. 1)
= p by
A2,
Th23;
A18: (((
len (
L_Cut (f,p)))
-' 1)
+ 1)
= (
len (
L_Cut (f,p))) by
A14,
XREAL_1: 235,
XXREAL_0: 2;
then ((
L_Cut (f,p))
/. (
len (
L_Cut (f,p))))
in (
LSeg (((
L_Cut (f,p))
/. ((
len (
L_Cut (f,p)))
-' 1)),((
L_Cut (f,p))
/. (((
len (
L_Cut (f,p)))
-' 1)
+ 1)))) by
RLTOPSP1: 68;
then ((
L_Cut (f,p))
. (
len (
L_Cut (f,p))))
in (
LSeg (((
L_Cut (f,p))
/. ((
len (
L_Cut (f,p)))
-' 1)),((
L_Cut (f,p))
/. (((
len (
L_Cut (f,p)))
-' 1)
+ 1)))) by
A16,
FINSEQ_4: 15;
then ((
L_Cut (f,p))
. (
len (
L_Cut (f,p))))
in (
LSeg ((
L_Cut (f,p)),((
len (
L_Cut (f,p)))
-' 1))) by
A15,
A18,
TOPREAL1:def 3;
then (f
/. (
len f))
in (
L~ (
L_Cut (f,p))) by
A7,
SPPOL_2: 17;
then (f
. (
len f))
in (
L~ (
L_Cut (f,p))) by
A12,
FINSEQ_4: 15;
then (g
. 1)
in ((
L~ (
L_Cut (f,p)))
/\ (
L~ g)) by
A1,
A10,
XBOOLE_0:def 4;
then
{(g
. 1)}
c= ((
L~ (
L_Cut (f,p)))
/\ (
L~ g)) by
ZFMISC_1: 31;
then ((
L~ (
L_Cut (f,p)))
/\ (
L~ g))
=
{(g
. 1)} by
A5,
A11,
XBOOLE_0:def 10;
hence thesis by
A1,
A4,
A12,
A13,
A7,
A17,
Th39,
FINSEQ_4: 15;
end;
theorem ::
JORDAN3:44
for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & p
in (
L~ f) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} & p
<> (f
. (
len f)) holds ((
L_Cut (f,p))
^ (
mid (g,2,(
len g)))) is
being_S-Seq
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: p
in (
L~ f) and
A3: f is
being_S-Seq and
A4: g is
being_S-Seq and
A5: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} and
A6: p
<> (f
. (
len f));
((
L_Cut (f,p))
^ (
mid (g,2,(
len g))))
is_S-Seq_joining (p,(g
/. (
len g))) by
A1,
A2,
A3,
A4,
A5,
A6,
Th43;
hence thesis;
end;
theorem ::
JORDAN3:45
Th45: for f,g be
FinSequence of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} holds ((
mid (f,1,((
len f)
-' 1)))
^ g) is
being_S-Seq
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: f is
being_S-Seq and
A3: g is
being_S-Seq and
A4: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)};
A5: (
Rev f) is
being_S-Seq by
A2;
(
L~ (
Rev f))
= (
L~ f) by
SPPOL_2: 22;
then
A6: ((
L~ (
Rev g))
/\ (
L~ (
Rev f)))
=
{(g
. 1)} by
A4,
SPPOL_2: 22;
A7: ((
Rev f)
. 1)
= (f
. (
len f)) by
FINSEQ_5: 62;
A8: (
Rev g) is
being_S-Seq by
A3;
((
Rev g)
. (
len (
Rev g)))
= ((
Rev (
Rev g))
. 1) by
FINSEQ_5: 62
.= ((
Rev f)
. 1) by
A1,
A7;
then
A9: ((
Rev g)
^ (
mid ((
Rev f),2,(
len (
Rev f))))) is
being_S-Seq by
A1,
A5,
A8,
A6,
A7,
Th38;
A10: ((
len f)
-' 1)
<= (
len f) by
NAT_D: 50;
A11: (
len (
Rev f))
= (
len f) by
FINSEQ_5:def 3;
A12: (
len f)
>= 2 by
A2,
TOPREAL1:def 8;
then
A13: ((
len f)
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
A14: (((
len f)
-' 1)
+ 1)
= (((
len f)
- 1)
+ 1) by
A12,
XREAL_1: 233,
XXREAL_0: 2
.= (
len f);
A15: (((
len f)
-' ((
len f)
-' 1))
+ 1)
= (((
len f)
- ((
len f)
-' 1))
+ 1) by
NAT_D: 50,
XREAL_1: 233
.= (((
len f)
- ((
len f)
- 1))
+ 1) by
A12,
XREAL_1: 233,
XXREAL_0: 2
.= 2;
1
<= (
len f) by
A12,
XXREAL_0: 2;
then ((
Rev g)
^ (
Rev (
mid (f,1,((
len f)
-' 1))))) is
being_S-Seq by
A13,
A10,
A15,
A11,
A14,
A9,
FINSEQ_6: 113;
then (
Rev ((
mid (f,1,((
len f)
-' 1)))
^ g)) is
being_S-Seq by
FINSEQ_5: 64;
then (
Rev (
Rev ((
mid (f,1,((
len f)
-' 1)))
^ g))) is
being_S-Seq;
hence thesis;
end;
theorem ::
JORDAN3:46
Th46: for f,g be
FinSequence of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} holds ((
mid (f,1,((
len f)
-' 1)))
^ g)
is_S-Seq_joining ((f
/. 1),(g
/. (
len g)))
proof
let f,g be
FinSequence of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: f is
being_S-Seq and
A3: g is
being_S-Seq and
A4: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)};
A5: ((
len f)
-' 1)
<= (
len f) by
NAT_D: 50;
A6: (
len f)
>= 2 by
A2,
TOPREAL1:def 8;
then ((1
+ 1)
- 1)
<= ((
len f)
- 1) by
XREAL_1: 9;
then
A7: 1
<= ((
len f)
-' 1) by
NAT_D: 39;
A8: 1
<= (
len f) by
A6,
XXREAL_0: 2;
then (
len (
mid (f,1,((
len f)
-' 1))))
= ((((
len f)
-' 1)
-' 1)
+ 1) by
A5,
A7,
FINSEQ_6: 118
.= ((((
len f)
-' 1)
- 1)
+ 1) by
A7,
XREAL_1: 233
.= ((
len f)
-' 1);
then
A9: (((
mid (f,1,((
len f)
-' 1)))
^ g)
. 1)
= ((
mid (f,1,((
len f)
-' 1)))
. 1) by
A7,
FINSEQ_1: 64
.= (f
. 1) by
A5,
A7,
FINSEQ_6: 123
.= (f
/. 1) by
A8,
FINSEQ_4: 15;
A10: (
len ((
mid (f,1,((
len f)
-' 1)))
^ g))
= ((
len (
mid (f,1,((
len f)
-' 1))))
+ (
len g)) by
FINSEQ_1: 22;
A11: (
len g)
>= 2 by
A3,
TOPREAL1:def 8;
then
A12: 1
<= (
len g) by
XXREAL_0: 2;
(
0
+ (
len (
mid (f,1,((
len f)
-' 1)))))
< ((
len g)
+ (
len (
mid (f,1,((
len f)
-' 1))))) by
A11,
XREAL_1: 6;
then
A13: (((
mid (f,1,((
len f)
-' 1)))
^ g)
. (
len ((
mid (f,1,((
len f)
-' 1)))
^ g)))
= (g
. ((
len ((
mid (f,1,((
len f)
-' 1)))
^ g))
- (
len (
mid (f,1,((
len f)
-' 1)))))) by
A10,
FINSEQ_6: 108
.= (g
/. (
len g)) by
A12,
A10,
FINSEQ_4: 15;
((
mid (f,1,((
len f)
-' 1)))
^ g) is
being_S-Seq by
A1,
A2,
A3,
A4,
Th45;
hence thesis by
A9,
A13;
end;
theorem ::
JORDAN3:47
Th47: for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & p
in (
L~ g) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} & p
<> (g
. 1) holds ((
mid (f,1,((
len f)
-' 1)))
^ (
R_Cut (g,p)))
is_S-Seq_joining ((f
/. 1),p)
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: p
in (
L~ g) and
A3: f is
being_S-Seq and
A4: g is
being_S-Seq and
A5: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} and
A6: p
<> (g
. 1);
(
len g)
>= 2 by
A4,
TOPREAL1:def 8;
then
A7: 1
<= (
len g) by
XXREAL_0: 2;
(
R_Cut (g,p))
is_S-Seq_joining ((g
/. 1),p) by
A2,
A4,
A6,
Th32;
then
A8: ((
R_Cut (g,p))
. 1)
= (g
/. 1);
then
A9: ((
R_Cut (g,p))
. 1)
= (f
. (
len f)) by
A1,
A7,
FINSEQ_4: 15;
A10: (
len f)
>= 2 by
A3,
TOPREAL1:def 8;
then
A11: 1
<= (
len f) by
XXREAL_0: 2;
A12: ((1
+ 1)
- 1)
<= ((
len f)
- 1) by
A10,
XREAL_1: 9;
A13: (((
len f)
-' 1)
+ 1)
= (
len f) by
A10,
XREAL_1: 235,
XXREAL_0: 2;
then (f
/. (
len f))
in (
LSeg ((f
/. ((
len f)
-' 1)),(f
/. (((
len f)
-' 1)
+ 1)))) by
RLTOPSP1: 68;
then (f
/. (
len f))
in (
LSeg (f,((
len f)
-' 1))) by
A12,
A13,
TOPREAL1:def 3;
then (f
. (
len f))
in (
LSeg (f,((
len f)
-' 1))) by
A11,
FINSEQ_4: 15;
then
A14: (f
. (
len f))
in (
L~ f) by
SPPOL_2: 17;
A15: (
R_Cut (g,p)) is
being_S-Seq by
A2,
A4,
A6,
Th35;
then
A16: (1
+ 1)
<= (
len (
R_Cut (g,p))) by
TOPREAL1:def 8;
then
A17: 1
<= (
len (
R_Cut (g,p))) by
XXREAL_0: 2;
then ((
R_Cut (g,p))
. (
len (
R_Cut (g,p))))
= ((
R_Cut (g,p))
/. (
len (
R_Cut (g,p)))) by
FINSEQ_4: 15;
then
A18: ((
R_Cut (g,p))
/. (
len (
R_Cut (g,p))))
= p by
A2,
Th24;
((
R_Cut (g,p))
/. 1)
in (
LSeg (((
R_Cut (g,p))
/. 1),((
R_Cut (g,p))
/. (1
+ 1)))) by
RLTOPSP1: 68;
then ((
R_Cut (g,p))
. 1)
in (
LSeg (((
R_Cut (g,p))
/. 1),((
R_Cut (g,p))
/. (1
+ 1)))) by
A17,
FINSEQ_4: 15;
then ((
R_Cut (g,p))
. 1)
in (
LSeg ((
R_Cut (g,p)),1)) by
A16,
TOPREAL1:def 3;
then (g
/. 1)
in (
L~ (
R_Cut (g,p))) by
A8,
SPPOL_2: 17;
then (g
. 1)
in (
L~ (
R_Cut (g,p))) by
A7,
FINSEQ_4: 15;
then (f
. (
len f))
in ((
L~ f)
/\ (
L~ (
R_Cut (g,p)))) by
A1,
A14,
XBOOLE_0:def 4;
then
A19:
{(f
. (
len f))}
c= ((
L~ f)
/\ (
L~ (
R_Cut (g,p)))) by
ZFMISC_1: 31;
(
L~ (
R_Cut (g,p)))
c= (
L~ g) by
A2,
Th41;
then ((
L~ f)
/\ (
L~ (
R_Cut (g,p))))
c= ((
L~ f)
/\ (
L~ g)) by
XBOOLE_1: 27;
then ((
L~ f)
/\ (
L~ (
R_Cut (g,p))))
=
{((
R_Cut (g,p))
. 1)} by
A1,
A5,
A9,
A19,
XBOOLE_0:def 10;
hence thesis by
A3,
A15,
A9,
A18,
Th46;
end;
theorem ::
JORDAN3:48
for f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2) st (f
. (
len f))
= (g
. 1) & p
in (
L~ g) & f is
being_S-Seq & g is
being_S-Seq & ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} & p
<> (g
. 1) holds ((
mid (f,1,((
len f)
-' 1)))
^ (
R_Cut (g,p))) is
being_S-Seq
proof
let f,g be
FinSequence of (
TOP-REAL 2), p be
Point of (
TOP-REAL 2);
assume that
A1: (f
. (
len f))
= (g
. 1) and
A2: p
in (
L~ g) and
A3: f is
being_S-Seq and
A4: g is
being_S-Seq and
A5: ((
L~ f)
/\ (
L~ g))
=
{(g
. 1)} and
A6: p
<> (g
. 1);
((
mid (f,1,((
len f)
-' 1)))
^ (
R_Cut (g,p)))
is_S-Seq_joining ((f
/. 1),p) by
A1,
A2,
A3,
A4,
A5,
A6,
Th47;
hence thesis;
end;