kurato_1.miz
begin
reserve T for non
empty
TopSpace;
reserve A for
Subset of T;
notation
let T be non
empty
TopSpace, A be
Subset of T;
synonym A
- for
Cl A;
end
theorem ::
KURATO_1:1
Th1: (((((((A
- )
` )
- )
` )
- )
` )
- )
= (((A
- )
` )
- )
proof
set B = (
Cl ((
Cl A)
` ));
set U = ((
Cl A)
` );
U
= (
Int U) by
TOPS_1: 23;
then U
c= (
Int (
Cl U)) by
PRE_TOPC: 18,
TOPS_1: 19;
then (
Cl (
Int B))
c= (
Cl B) & (
Cl U)
c= (
Cl (
Int (
Cl U))) by
PRE_TOPC: 19,
TOPS_1: 16;
then (
Cl (
Int B))
= B by
XBOOLE_0:def 10;
hence thesis by
TOPS_1:def 1;
end;
Lm1: for T be
1-sorted, A,B be
Subset-Family of T holds (A
\/ B) is
Subset-Family of T;
definition
let T, A;
::
KURATO_1:def1
func
Kurat14Part A ->
set equals
{A, (A
- ), ((A
- )
` ), (((A
- )
` )
- ), ((((A
- )
` )
- )
` ), (((((A
- )
` )
- )
` )
- ), ((((((A
- )
` )
- )
` )
- )
` )};
coherence ;
end
registration
let T, A;
cluster (
Kurat14Part A) ->
finite;
coherence ;
end
definition
let T, A;
::
KURATO_1:def2
func
Kurat14Set A ->
Subset-Family of T equals (
{A, (A
- ), ((A
- )
` ), (((A
- )
` )
- ), ((((A
- )
` )
- )
` ), (((((A
- )
` )
- )
` )
- ), ((((((A
- )
` )
- )
` )
- )
` )}
\/
{(A
` ), ((A
` )
- ), (((A
` )
- )
` ), ((((A
` )
- )
` )
- ), (((((A
` )
- )
` )
- )
` ), ((((((A
` )
- )
` )
- )
` )
- ), (((((((A
` )
- )
` )
- )
` )
- )
` )});
coherence
proof
set X1 =
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )}, X2 =
{(A
` ), (
Cl (A
` )), ((
Cl (A
` ))
` ), (
Cl ((
Cl (A
` ))
` )), ((
Cl ((
Cl (A
` ))
` ))
` ), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )};
X2
c= (
bool the
carrier of T)
proof
let x be
object;
assume x
in X2;
then x
= (A
` ) or x
= (
Cl (A
` )) or x
= ((
Cl (A
` ))
` ) or x
= (
Cl ((
Cl (A
` ))
` )) or x
= ((
Cl ((
Cl (A
` ))
` ))
` ) or x
= (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) or x
= ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
ENUMSET1:def 5;
hence thesis;
end;
then
reconsider X2 as
Subset-Family of T;
X1
c= (
bool the
carrier of T)
proof
let x be
object;
assume x
in X1;
then x
= A or x
= (
Cl A) or x
= ((
Cl A)
` ) or x
= (
Cl ((
Cl A)
` )) or x
= ((
Cl ((
Cl A)
` ))
` ) or x
= (
Cl ((
Cl ((
Cl A)
` ))
` )) or x
= ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ) by
ENUMSET1:def 5;
hence thesis;
end;
then
reconsider X1 as
Subset-Family of T;
(X1
\/ X2) is
Subset-Family of T;
hence thesis;
end;
end
theorem ::
KURATO_1:2
(
Kurat14Set A)
= ((
Kurat14Part A)
\/ (
Kurat14Part (A
` )));
theorem ::
KURATO_1:3
Th3: A
in (
Kurat14Set A) & (A
- )
in (
Kurat14Set A) & ((A
- )
` )
in (
Kurat14Set A) & (((A
- )
` )
- )
in (
Kurat14Set A) & ((((A
- )
` )
- )
` )
in (
Kurat14Set A) & (((((A
- )
` )
- )
` )
- )
in (
Kurat14Set A) & ((((((A
- )
` )
- )
` )
- )
` )
in (
Kurat14Set A)
proof
A1: (
Cl A)
in (
Kurat14Part A) & ((
Cl A)
` )
in (
Kurat14Part A) by
ENUMSET1:def 5;
A2: (
Cl ((
Cl A)
` ))
in (
Kurat14Part A) & ((
Cl ((
Cl A)
` ))
` )
in (
Kurat14Part A) by
ENUMSET1:def 5;
A3: (
Cl ((
Cl ((
Cl A)
` ))
` ))
in (
Kurat14Part A) & ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
in (
Kurat14Part A) by
ENUMSET1:def 5;
(
Kurat14Part A)
c= (
Kurat14Set A) & A
in (
Kurat14Part A) by
ENUMSET1:def 5,
XBOOLE_1: 7;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
KURATO_1:4
Th4: (A
` )
in (
Kurat14Set A) & ((A
` )
- )
in (
Kurat14Set A) & (((A
` )
- )
` )
in (
Kurat14Set A) & ((((A
` )
- )
` )
- )
in (
Kurat14Set A) & (((((A
` )
- )
` )
- )
` )
in (
Kurat14Set A) & ((((((A
` )
- )
` )
- )
` )
- )
in (
Kurat14Set A) & (((((((A
` )
- )
` )
- )
` )
- )
` )
in (
Kurat14Set A)
proof
A1: (
Cl (A
` ))
in (
Kurat14Part (A
` )) & ((
Cl (A
` ))
` )
in (
Kurat14Part (A
` )) by
ENUMSET1:def 5;
A2: (
Cl ((
Cl (A
` ))
` ))
in (
Kurat14Part (A
` )) & ((
Cl ((
Cl (A
` ))
` ))
` )
in (
Kurat14Part (A
` )) by
ENUMSET1:def 5;
A3: (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
in (
Kurat14Part (A
` )) & ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )
in (
Kurat14Part (A
` )) by
ENUMSET1:def 5;
(
Kurat14Part (A
` ))
c= (
Kurat14Set A) & (A
` )
in (
Kurat14Part (A
` )) by
ENUMSET1:def 5,
XBOOLE_1: 7;
hence thesis by
A1,
A2,
A3;
end;
definition
let T, A;
::
KURATO_1:def3
func
Kurat14ClPart A ->
Subset-Family of T equals
{(A
- ), (((A
- )
` )
- ), (((((A
- )
` )
- )
` )
- ), ((A
` )
- ), ((((A
` )
- )
` )
- ), ((((((A
` )
- )
` )
- )
` )
- )};
coherence
proof
A1:
{(
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))} is
Subset-Family of T by
MEASURE1: 3;
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` )), (
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))}
= (
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` ))}
\/
{(
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))}) &
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` ))} is
Subset-Family of T by
ENUMSET1: 13,
MEASURE1: 3;
hence thesis by
A1,
Lm1;
end;
::
KURATO_1:def4
func
Kurat14OpPart A ->
Subset-Family of T equals
{((A
- )
` ), ((((A
- )
` )
- )
` ), ((((((A
- )
` )
- )
` )
- )
` ), (((A
` )
- )
` ), (((((A
` )
- )
` )
- )
` ), (((((((A
` )
- )
` )
- )
` )
- )
` )};
coherence
proof
A2:
{((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )} is
Subset-Family of T by
MEASURE1: 3;
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), ((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )}
= (
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )}
\/
{((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )}) &
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} is
Subset-Family of T by
ENUMSET1: 13,
MEASURE1: 3;
hence thesis by
A2,
Lm1;
end;
end
Lm2: (
Kurat14Set A)
= ((
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` )), (
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))}
\/
{A, (A
` )})
\/
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), ((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )})
proof
set Y1 =
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` )), (
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))}, Y2 =
{A, (A
` )}, Y3 =
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), ((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )};
set Y = ((Y1
\/ Y2)
\/ Y3);
A1: Y3
c= Y by
XBOOLE_1: 7;
A2: Y
c= (
Kurat14Set A)
proof
let x be
object;
assume x
in Y;
then
A3: x
in (
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` )), (
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))}
\/
{A, (A
` )}) or x
in
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), ((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )} by
XBOOLE_0:def 3;
per cases by
A3,
XBOOLE_0:def 3;
suppose x
in
{(
Cl A), (
Cl ((
Cl A)
` )), (
Cl ((
Cl ((
Cl A)
` ))
` )), (
Cl (A
` )), (
Cl ((
Cl (A
` ))
` )), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))};
then x
= (
Cl A) or x
= (
Cl ((
Cl A)
` )) or x
= (
Cl ((
Cl ((
Cl A)
` ))
` )) or x
= (
Cl (A
` )) or x
= (
Cl ((
Cl (A
` ))
` )) or x
= (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
ENUMSET1:def 4;
hence thesis by
Th3,
Th4;
end;
suppose x
in
{A, (A
` )};
then x
= A or x
= (A
` ) by
TARSKI:def 2;
hence thesis by
Th3,
Th4;
end;
suppose x
in
{((
Cl A)
` ), ((
Cl ((
Cl A)
` ))
` ), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), ((
Cl (A
` ))
` ), ((
Cl ((
Cl (A
` ))
` ))
` ), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )};
then x
= ((
Cl A)
` ) or x
= ((
Cl ((
Cl A)
` ))
` ) or x
= ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ) or x
= ((
Cl (A
` ))
` ) or x
= ((
Cl ((
Cl (A
` ))
` ))
` ) or x
= ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
ENUMSET1:def 4;
hence thesis by
Th3,
Th4;
end;
end;
A4: (Y1
\/ Y2)
c= Y by
XBOOLE_1: 7;
((
Cl ((
Cl A)
` ))
` )
in Y3 by
ENUMSET1:def 4;
then
A5: ((
Cl ((
Cl A)
` ))
` )
in Y by
A1;
((
Cl A)
` )
in Y3 by
ENUMSET1:def 4;
then
A6: ((
Cl A)
` )
in Y by
A1;
Y2
c= (Y1
\/ Y2) by
XBOOLE_1: 7;
then
A7: Y2
c= Y by
A4;
((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )
in Y3 by
ENUMSET1:def 4;
then
A8: ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )
in Y by
A1;
((
Cl ((
Cl (A
` ))
` ))
` )
in Y3 by
ENUMSET1:def 4;
then
A9: ((
Cl ((
Cl (A
` ))
` ))
` )
in Y by
A1;
((
Cl (A
` ))
` )
in Y3 by
ENUMSET1:def 4;
then
A10: ((
Cl (A
` ))
` )
in Y by
A1;
((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
in Y3 by
ENUMSET1:def 4;
then
A11: ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
in Y by
A1;
A
in Y2 by
TARSKI:def 2;
then
A12: A
in Y by
A7;
Y1
c= (Y1
\/ Y2) by
XBOOLE_1: 7;
then
A13: Y1
c= Y by
A4;
(A
` )
in Y2 by
TARSKI:def 2;
then
A14: (A
` )
in Y by
A7;
(
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
in Y1 by
ENUMSET1:def 4;
then
A15: (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
in Y by
A13;
(
Cl ((
Cl (A
` ))
` ))
in Y1 by
ENUMSET1:def 4;
then
A16: (
Cl ((
Cl (A
` ))
` ))
in Y by
A13;
(
Cl (A
` ))
in Y1 by
ENUMSET1:def 4;
then
A17: (
Cl (A
` ))
in Y by
A13;
(
Cl ((
Cl ((
Cl A)
` ))
` ))
in Y1 by
ENUMSET1:def 4;
then
A18: (
Cl ((
Cl ((
Cl A)
` ))
` ))
in Y by
A13;
(
Cl ((
Cl A)
` ))
in Y1 by
ENUMSET1:def 4;
then
A19: (
Cl ((
Cl A)
` ))
in Y by
A13;
(
Cl A)
in Y1 by
ENUMSET1:def 4;
then
A20: (
Cl A)
in Y by
A13;
(
Kurat14Set A)
c= Y
proof
let x be
object;
assume
A21: x
in (
Kurat14Set A);
per cases by
A21,
XBOOLE_0:def 3;
suppose x
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )};
hence thesis by
A20,
A19,
A18,
A12,
A6,
A5,
A11,
ENUMSET1:def 5;
end;
suppose x
in
{(A
` ), (
Cl (A
` )), ((
Cl (A
` ))
` ), (
Cl ((
Cl (A
` ))
` )), ((
Cl ((
Cl (A
` ))
` ))
` ), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )};
hence thesis by
A17,
A16,
A15,
A14,
A10,
A9,
A8,
ENUMSET1:def 5;
end;
end;
hence thesis by
A2,
XBOOLE_0:def 10;
end;
theorem ::
KURATO_1:5
(
Kurat14Set A)
= ((
{A, (A
` )}
\/ (
Kurat14ClPart A))
\/ (
Kurat14OpPart A)) by
Lm2;
registration
let T, A;
cluster (
Kurat14Set A) ->
finite;
coherence ;
end
theorem ::
KURATO_1:6
Th6: for Q be
Subset of T holds Q
in (
Kurat14Set A) implies (Q
` )
in (
Kurat14Set A) & (Q
- )
in (
Kurat14Set A)
proof
let Q be
Subset of T;
set k1 = (
Cl A), k2 = ((
Cl A)
` ), k3 = (
Cl ((
Cl A)
` )), k4 = ((
Cl ((
Cl A)
` ))
` ), k5 = (
Cl ((
Cl ((
Cl A)
` ))
` )), k6 = ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ), k7 = (
Cl (A
` )), k8 = ((
Cl (A
` ))
` ), k9 = (
Cl ((
Cl (A
` ))
` )), k10 = ((
Cl ((
Cl (A
` ))
` ))
` ), k11 = (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )), k12 = ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` );
assume
A1: Q
in (
Kurat14Set A);
per cases by
A1,
XBOOLE_0:def 3;
suppose
A2: Q
in
{A, k1, k2, k3, k4, k5, k6};
(Q
` )
in (
Kurat14Set A) & (
Cl Q)
in (
Kurat14Set A)
proof
per cases by
A2,
ENUMSET1:def 5;
suppose Q
= A;
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{(A
` ), (
Cl (A
` )), ((
Cl (A
` ))
` ), (
Cl ((
Cl (A
` ))
` )), ((
Cl ((
Cl (A
` ))
` ))
` ), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl A);
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{A, k1, k2, k3, k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= ((
Cl A)
` );
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{A, (
Cl A), ((
Cl A)
` ), k3, k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl ((
Cl A)
` ));
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{A, k1, k2, k3, k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= ((
Cl ((
Cl A)
` ))
` );
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{A, k1, k2, (
Cl ((
Cl A)
` )), k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl ((
Cl ((
Cl A)
` ))
` ));
then (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} & (Q
` )
in
{A, k1, k2, k3, k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose
A3: Q
= ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` );
(
Cl ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ))
= (
Cl ((
Cl A)
` )) by
Th1;
then
A4: (
Cl Q)
in
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )} by
A3,
ENUMSET1:def 5;
(Q
` )
in
{A, k1, k2, k3, k4, k5, k6} by
A3,
ENUMSET1:def 5;
hence thesis by
A4,
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
suppose
A5: Q
in
{(A
` ), k7, k8, k9, k10, k11, k12};
(Q
` )
in (
Kurat14Set A) & (
Cl Q)
in (
Kurat14Set A)
proof
per cases by
A5,
ENUMSET1:def 5;
suppose Q
= (A
` );
then (
Cl Q)
in
{(A
` ), (
Cl (A
` )), k8, k9, k10, k11, k12} & (Q
` )
in
{A, k1, k2, k3, k4, k5, k6} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl (A
` ));
then (
Cl Q)
in
{(A
` ), (
Cl (A
` )), k8, k9, k10, k11, k12} & (Q
` )
in
{(A
` ), k7, ((
Cl (A
` ))
` ), k9, k10, k11, k12} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= ((
Cl (A
` ))
` );
then (
Cl Q)
in
{(A
` ), k7, k8, (
Cl ((
Cl (A
` ))
` )), k10, k11, k12} & (Q
` )
in
{(A
` ), (
Cl (A
` )), k8, k9, k10, k11, k12} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl ((
Cl (A
` ))
` ));
then (
Cl Q)
in
{(A
` ), k7, k8, k9, k10, k11, k12} & (Q
` )
in
{(A
` ), k7, k8, k9, k10, k11, k12} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= ((
Cl ((
Cl (A
` ))
` ))
` );
then (
Cl Q)
in
{(A
` ), k7, k8, k9, k10, k11, k12} & (Q
` )
in
{(A
` ), k7, k8, k9, k10, k11, k12} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose Q
= (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ));
then (
Cl Q)
in
{(A
` ), k7, k8, k9, k10, k11, k12} & (Q
` )
in
{(A
` ), k7, k8, k9, k10, k11, k12} by
ENUMSET1:def 5;
hence thesis by
XBOOLE_0:def 3;
end;
suppose
A6: Q
= ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` );
then (
Cl Q)
= (
Cl ((
Cl (A
` ))
` )) by
Th1;
then
A7: (
Cl Q)
in
{(A
` ), k7, k8, k9, k10, k11, k12} by
ENUMSET1:def 5;
(Q
` )
in
{(A
` ), k7, k8, k9, k10, k11, k12} by
A6,
ENUMSET1:def 5;
hence thesis by
A7,
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
end;
theorem ::
KURATO_1:7
(
card (
Kurat14Set A))
<= 14
proof
set X =
{A, (
Cl A), ((
Cl A)
` ), (
Cl ((
Cl A)
` )), ((
Cl ((
Cl A)
` ))
` ), (
Cl ((
Cl ((
Cl A)
` ))
` )), ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )}, Y =
{(A
` ), (
Cl (A
` )), ((
Cl (A
` ))
` ), (
Cl ((
Cl (A
` ))
` )), ((
Cl ((
Cl (A
` ))
` ))
` ), (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )), ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )};
(
card X)
<= 7 & (
card Y)
<= 7 by
CARD_2: 55;
then (
card (X
\/ Y))
<= ((
card X)
+ (
card Y)) & ((
card X)
+ (
card Y))
<= (7
+ 7) by
CARD_2: 43,
XREAL_1: 7;
hence thesis by
XXREAL_0: 2;
end;
begin
definition
let T, A;
::
KURATO_1:def5
func
Kurat7Set A ->
Subset-Family of T equals
{A, (
Int A), (
Cl A), (
Int (
Cl A)), (
Cl (
Int A)), (
Cl (
Int (
Cl A))), (
Int (
Cl (
Int A)))};
coherence
proof
set X =
{A, (
Int A), (
Cl A), (
Int (
Cl A)), (
Cl (
Int A)), (
Cl (
Int (
Cl A))), (
Int (
Cl (
Int A)))};
X
c= (
bool the
carrier of T)
proof
let x be
object;
assume x
in X;
then x
= A or x
= (
Int A) or x
= (
Cl A) or x
= (
Int (
Cl A)) or x
= (
Cl (
Int A)) or x
= (
Cl (
Int (
Cl A))) or x
= (
Int (
Cl (
Int A))) by
ENUMSET1:def 5;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
KURATO_1:8
(
Kurat7Set A)
= ((
{A}
\/
{(
Int A), (
Int (
Cl A)), (
Int (
Cl (
Int A)))})
\/
{(
Cl A), (
Cl (
Int A)), (
Cl (
Int (
Cl A)))})
proof
(
Kurat7Set A)
= (
{A}
\/
{(
Int A), (
Cl A), (
Int (
Cl A)), (
Cl (
Int A)), (
Cl (
Int (
Cl A))), (
Int (
Cl (
Int A)))}) by
ENUMSET1: 16
.= (
{A}
\/ (
{(
Int A), (
Int (
Cl A)), (
Int (
Cl (
Int A)))}
\/
{(
Cl A), (
Cl (
Int A)), (
Cl (
Int (
Cl A)))})) by
BORSUK_5: 2
.= ((
{A}
\/
{(
Int A), (
Int (
Cl A)), (
Int (
Cl (
Int A)))})
\/
{(
Cl A), (
Cl (
Int A)), (
Cl (
Int (
Cl A)))}) by
XBOOLE_1: 4;
hence thesis;
end;
registration
let T, A;
cluster (
Kurat7Set A) ->
finite;
coherence ;
end
theorem ::
KURATO_1:9
Th9: for Q be
Subset of T holds Q
in (
Kurat7Set A) implies (
Int Q)
in (
Kurat7Set A) & (
Cl Q)
in (
Kurat7Set A)
proof
let Q be
Subset of T;
assume
A1: Q
in (
Kurat7Set A);
(
Int Q)
in (
Kurat7Set A) & (
Cl Q)
in (
Kurat7Set A)
proof
per cases by
A1,
ENUMSET1:def 5;
suppose Q
= A;
hence thesis by
ENUMSET1:def 5;
end;
suppose Q
= (
Int A);
hence thesis by
ENUMSET1:def 5;
end;
suppose Q
= (
Cl A);
hence thesis by
ENUMSET1:def 5;
end;
suppose Q
= (
Int (
Cl A));
hence thesis by
ENUMSET1:def 5;
end;
suppose Q
= (
Cl (
Int A));
hence thesis by
ENUMSET1:def 5;
end;
suppose
A2: Q
= (
Cl (
Int (
Cl A)));
(
Int (
Cl (
Int (
Cl A))))
= (
Int (
Cl A)) by
TDLAT_1: 5;
hence thesis by
A2,
ENUMSET1:def 5;
end;
suppose
A3: Q
= (
Int (
Cl (
Int A)));
then (
Cl Q)
= (
Cl (
Int A)) by
TOPS_1: 26;
hence thesis by
A3,
ENUMSET1:def 5;
end;
end;
hence thesis;
end;
begin
definition
::
KURATO_1:def6
func
KurExSet ->
Subset of
R^1 equals (((
{1}
\/ (
RAT (2,4)))
\/
].4, 5.[)
\/
].5,
+infty .[);
coherence by
TOPMETR: 17;
end
theorem ::
KURATO_1:10
Th10: (
Cl
KurExSet )
= (
{1}
\/
[.2,
+infty .[)
proof
set A =
KurExSet ;
reconsider B =
{1}, C = (((
RAT (2,4))
\/
].4, 5.[)
\/
].5,
+infty .[) as
Subset of
R^1 by
TOPMETR: 17;
A
= (
{1}
\/ (((
RAT (2,4))
\/
].4, 5.[)
\/
].5,
+infty .[)) by
XBOOLE_1: 113;
then
A1: (
Cl A)
= ((
Cl B)
\/ (
Cl C)) by
PRE_TOPC: 20;
(
Cl B)
=
{1} by
BORSUK_5: 38;
hence thesis by
A1,
BORSUK_5: 56;
end;
theorem ::
KURATO_1:11
Th11: ((
Cl
KurExSet )
` )
= (
].
-infty , 1.[
\/
].1, 2.[) by
Th10,
BORSUK_5: 63;
theorem ::
KURATO_1:12
Th12: (
Cl ((
Cl
KurExSet )
` ))
=
].
-infty , 2.] by
Th11,
BORSUK_5: 64;
theorem ::
KURATO_1:13
Th13: ((
Cl ((
Cl
KurExSet )
` ))
` )
=
].2,
+infty .[ by
Th12,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
theorem ::
KURATO_1:14
Th14: (
Cl ((
Cl ((
Cl
KurExSet )
` ))
` ))
=
[.2,
+infty .[ by
Th13,
BORSUK_5: 49;
theorem ::
KURATO_1:15
Th15: ((
Cl ((
Cl ((
Cl
KurExSet )
` ))
` ))
` )
=
].
-infty , 2.[ by
Th14,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 294;
theorem ::
KURATO_1:16
Th16: (
KurExSet
` )
= ((((
].
-infty , 1.[
\/
].1, 2.])
\/ (
IRRAT (2,4)))
\/
{4})
\/
{5})
proof
set A =
KurExSet ;
reconsider B =
{1}, C = (((
RAT (2,4))
\/
].4, 5.[)
\/
].5,
+infty .[) as
Subset of
R^1 by
TOPMETR: 17;
A1: (C
` )
= (((
].
-infty , 2.]
\/ (
IRRAT (2,4)))
\/
{4})
\/
{5}) by
BORSUK_5: 60;
A
= (
{1}
\/ (((
RAT (2,4))
\/
].4, 5.[)
\/
].5,
+infty .[)) & (B
` )
= (
].
-infty , 1.[
\/
].1,
+infty .[) by
BORSUK_5: 61,
XBOOLE_1: 113;
hence thesis by
A1,
BORSUK_5: 62,
XBOOLE_1: 53;
end;
theorem ::
KURATO_1:17
Th17: (
Cl (
KurExSet
` ))
= (
].
-infty , 4.]
\/
{5}) by
Th16,
BORSUK_5: 67;
theorem ::
KURATO_1:18
Th18: ((
Cl (
KurExSet
` ))
` )
= (
].4, 5.[
\/
].5,
+infty .[) by
Th17,
BORSUK_5: 68;
theorem ::
KURATO_1:19
Th19: (
Cl ((
Cl (
KurExSet
` ))
` ))
=
[.4,
+infty .[ by
Th18,
BORSUK_5: 55;
theorem ::
KURATO_1:20
Th20: ((
Cl ((
Cl (
KurExSet
` ))
` ))
` )
=
].
-infty , 4.[ by
Th19,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 294;
theorem ::
KURATO_1:21
Th21: (
Cl ((
Cl ((
Cl (
KurExSet
` ))
` ))
` ))
=
].
-infty , 4.] by
Th20,
BORSUK_5: 51;
theorem ::
KURATO_1:22
Th22: ((
Cl ((
Cl ((
Cl (
KurExSet
` ))
` ))
` ))
` )
=
].4,
+infty .[ by
Th21,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
begin
theorem ::
KURATO_1:23
Th23: (
Int
KurExSet )
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
TOPS_1:def 1;
theorem ::
KURATO_1:24
Th24: (
Cl (
Int
KurExSet ))
=
[.4,
+infty .[ by
Th18,
BORSUK_5: 55,
TOPS_1:def 1;
theorem ::
KURATO_1:25
Th25: (
Int (
Cl (
Int
KurExSet )))
=
].4,
+infty .[
proof
set A =
KurExSet ;
(
Cl (
Int A))
= (
Cl ((
Cl (A
` ))
` )) by
TOPS_1:def 1;
then
A1: (
Int (
Cl (
Int A)))
= ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
TOPS_1:def 1;
((
Cl ((
Cl (A
` ))
` ))
` )
=
].
-infty , 4.[ by
Th19,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 294;
then (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
=
].
-infty , 4.] by
BORSUK_5: 51;
hence thesis by
A1,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
end;
theorem ::
KURATO_1:26
Th26: (
Int (
Cl
KurExSet ))
=
].2,
+infty .[
proof
set A =
KurExSet ;
((
Cl A)
` )
= (
].
-infty , 1.[
\/
].1, 2.[) by
Th10,
BORSUK_5: 63;
then (
Cl ((
Cl A)
` ))
=
].
-infty , 2.] by
BORSUK_5: 64;
then ((
Cl ((
Cl A)
` ))
` )
=
].2,
+infty .[ by
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
hence thesis by
TOPS_1:def 1;
end;
theorem ::
KURATO_1:27
Th27: (
Cl (
Int (
Cl
KurExSet )))
=
[.2,
+infty .[
proof
set A =
KurExSet ;
((
Cl A)
` )
= (
].
-infty , 1.[
\/
].1, 2.[) by
Th10,
BORSUK_5: 63;
then (
Cl ((
Cl A)
` ))
=
].
-infty , 2.] by
BORSUK_5: 64;
then ((
Cl ((
Cl A)
` ))
` )
=
].2,
+infty .[ by
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
hence thesis by
BORSUK_5: 49,
TOPS_1:def 1;
end;
begin
theorem ::
KURATO_1:28
(
Cl (
Int (
Cl
KurExSet )))
<> (
Int (
Cl
KurExSet )) by
Th27,
XXREAL_1: 236,
Th26,
XXREAL_1: 235;
theorem ::
KURATO_1:29
Th29: (
Cl (
Int (
Cl
KurExSet )))
<> (
Cl
KurExSet )
proof
set A =
KurExSet ;
1
in
{1} by
TARSKI:def 1;
then 1
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
hence thesis by
Th27,
XXREAL_1: 236;
end;
theorem ::
KURATO_1:30
(
Cl (
Int (
Cl
KurExSet )))
<> (
Int (
Cl (
Int
KurExSet ))) by
Th27,
XXREAL_1: 236,
Th25,
XXREAL_1: 235;
theorem ::
KURATO_1:31
Th31: (
Cl (
Int (
Cl
KurExSet )))
<> (
Cl (
Int
KurExSet ))
proof
set A =
KurExSet ;
2
in (
Cl (
Int (
Cl A))) by
Th27,
XXREAL_1: 236;
hence thesis by
Th24,
XXREAL_1: 236;
end;
theorem ::
KURATO_1:32
(
Cl (
Int (
Cl
KurExSet )))
<> (
Int
KurExSet )
proof
set A =
KurExSet ;
2
in (
Cl (
Int (
Cl A))) & (
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
Th27,
TOPS_1:def 1,
XXREAL_1: 236;
hence thesis by
XXREAL_1: 223;
end;
theorem ::
KURATO_1:33
(
Int (
Cl
KurExSet ))
<> (
Cl
KurExSet )
proof
set A =
KurExSet ;
1
in
{1} by
TARSKI:def 1;
then 1
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
hence thesis by
Th26,
XXREAL_1: 235;
end;
theorem ::
KURATO_1:34
(
Int (
Cl
KurExSet ))
<> (
Int (
Cl (
Int
KurExSet )))
proof
set A =
KurExSet ;
3
in (
Int (
Cl A)) by
Th26,
XXREAL_1: 235;
hence thesis by
Th25,
XXREAL_1: 235;
end;
theorem ::
KURATO_1:35
(
Int (
Cl
KurExSet ))
<> (
Cl (
Int
KurExSet )) by
Th26,
BORSUK_5: 34,
BORSUK_5: 45;
theorem ::
KURATO_1:36
Th36: (
Int (
Cl
KurExSet ))
<> (
Int
KurExSet )
proof
set A =
KurExSet ;
5
in (
Int (
Cl A)) & (
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
Th26,
TOPS_1:def 1,
XXREAL_1: 235;
hence thesis by
XXREAL_1: 205;
end;
theorem ::
KURATO_1:37
(
Int (
Cl (
Int
KurExSet )))
<> (
Cl
KurExSet )
proof
set A =
KurExSet ;
2
in
[.2,
+infty .[ by
XXREAL_1: 236;
then 2
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
hence thesis by
Th25,
XXREAL_1: 235;
end;
theorem ::
KURATO_1:38
Th38: (
Cl (
Int
KurExSet ))
<> (
Cl
KurExSet )
proof
set A =
KurExSet ;
2
in
[.2,
+infty .[ by
XXREAL_1: 236;
then 2
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
hence thesis by
Th24,
XXREAL_1: 236;
end;
theorem ::
KURATO_1:39
(
Int
KurExSet )
<> (
Cl
KurExSet )
proof
set A =
KurExSet ;
5
in
[.2,
+infty .[ by
XXREAL_1: 236;
then
A1: 5
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
(
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
TOPS_1:def 1;
hence thesis by
A1,
XXREAL_1: 205;
end;
theorem ::
KURATO_1:40
Th40: (
Cl
KurExSet )
<>
KurExSet
proof
set A =
KurExSet ;
( not 5
in
{1}) & not 5
in (
RAT (2,4)) by
BORSUK_5: 29,
TARSKI:def 1;
then ( not 5
in
].4, 5.[) & not 5
in (
{1}
\/ (
RAT (2,4))) by
XBOOLE_0:def 3,
XXREAL_1: 4;
then
A1: ( not 5
in
].5,
+infty .[) & not 5
in ((
{1}
\/ (
RAT (2,4)))
\/
].4, 5.[) by
XBOOLE_0:def 3,
XXREAL_1: 235;
5
in
[.2,
+infty .[ by
XXREAL_1: 236;
then 5
in (
Cl A) by
Th10,
XBOOLE_0:def 3;
hence thesis by
A1,
XBOOLE_0:def 3;
end;
theorem ::
KURATO_1:41
Th41:
KurExSet
<> (
Int
KurExSet )
proof
set A =
KurExSet ;
1
in
{1} by
TARSKI:def 1;
then 1
in (
{1}
\/ (
RAT (2,4))) by
XBOOLE_0:def 3;
then 1
in ((
{1}
\/ (
RAT (2,4)))
\/
].4, 5.[) by
XBOOLE_0:def 3;
then
A1: 1
in A by
XBOOLE_0:def 3;
(
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
TOPS_1:def 1;
hence thesis by
A1,
XXREAL_1: 223;
end;
theorem ::
KURATO_1:42
(
Cl (
Int
KurExSet ))
<> (
Int (
Cl (
Int
KurExSet ))) by
Th24,
XXREAL_1: 236,
Th25,
XXREAL_1: 235;
theorem ::
KURATO_1:43
Th43: (
Int (
Cl (
Int
KurExSet )))
<> (
Int
KurExSet )
proof
set A =
KurExSet ;
5
in (
Int (
Cl (
Int A))) & (
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
Th25,
TOPS_1:def 1,
XXREAL_1: 235;
hence thesis by
XXREAL_1: 205;
end;
theorem ::
KURATO_1:44
(
Cl (
Int
KurExSet ))
<> (
Int
KurExSet )
proof
set A =
KurExSet ;
4
in (
Cl (
Int A)) & (
Int A)
= (
].4, 5.[
\/
].5,
+infty .[) by
Th18,
Th24,
TOPS_1:def 1,
XXREAL_1: 236;
hence thesis by
XXREAL_1: 223;
end;
begin
theorem ::
KURATO_1:45
Th45: (
Int (
Cl (
Int
KurExSet )))
<> (
Int (
Cl
KurExSet ))
proof
set A =
KurExSet ;
not 3
in (
Int (
Cl (
Int A))) by
Th25,
XXREAL_1: 235;
hence thesis by
Th26,
XXREAL_1: 235;
end;
theorem ::
KURATO_1:46
Th46: ((
Int
KurExSet ),(
Int (
Cl
KurExSet )),(
Int (
Cl (
Int
KurExSet ))))
are_mutually_distinct by
Th36,
Th43,
Th45;
theorem ::
KURATO_1:47
Th47: ((
Cl
KurExSet ),(
Cl (
Int
KurExSet )),(
Cl (
Int (
Cl
KurExSet ))))
are_mutually_distinct by
Th38,
Th29,
Th31;
theorem ::
KURATO_1:48
Th48: for X be
set st X
in
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))} holds X is
open non
empty
Subset of
R^1
proof
let X be
set;
assume
A1: X
in
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))};
per cases by
A1,
ENUMSET1:def 1;
suppose X
= (
Int
KurExSet );
hence thesis by
Th18,
TOPS_1:def 1;
end;
suppose X
= (
Int (
Cl
KurExSet ));
hence thesis by
Th26;
end;
suppose X
= (
Int (
Cl (
Int
KurExSet )));
hence thesis by
Th25;
end;
end;
theorem ::
KURATO_1:49
Th49: for X be
set st X
in
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))} holds X
<>
REAL
proof
let X be
set;
assume
A1: X
in
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))};
per cases by
A1,
ENUMSET1:def 1;
suppose
A2: X
= (
Int
KurExSet );
5
in
REAL by
XREAL_0:def 1;
hence thesis by
Th23,
XXREAL_1: 205,
A2;
end;
suppose X
= (
Int (
Cl
KurExSet ));
hence thesis by
Th26,
BORSUK_5: 45;
end;
suppose X
= (
Int (
Cl (
Int
KurExSet )));
hence thesis by
Th25,
BORSUK_5: 45;
end;
end;
theorem ::
KURATO_1:50
for X be
set st X
in
{(
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))} holds X
<>
REAL
proof
let X be
set;
assume
A1: X
in
{(
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))};
per cases by
A1,
ENUMSET1:def 1;
suppose
A2: X
= (
Cl
KurExSet );
A3:
0
in
REAL by
XREAL_0:def 1;
( not
0
in
{1}) & not
0
in
[.2,
+infty .[ by
XXREAL_1: 236,
TARSKI:def 1;
hence thesis by
A2,
Th10,
XBOOLE_0:def 3,
A3;
end;
suppose X
= (
Cl (
Int
KurExSet ));
hence thesis by
Th24,
BORSUK_5: 46;
end;
suppose X
= (
Cl (
Int (
Cl
KurExSet )));
hence thesis by
Th27,
BORSUK_5: 46;
end;
end;
theorem ::
KURATO_1:51
Th51:
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))}
misses
{(
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))}
proof
set X =
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet )))}, Y =
{(
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))};
assume X
meets Y;
then
consider x be
object such that
A1: x
in X and
A2: x
in Y by
XBOOLE_0: 3;
x is
open non
empty
Subset of
R^1 & x is
closed
Subset of
R^1 by
A1,
A2,
Th48,
ENUMSET1:def 1;
hence thesis by
A1,
Th49,
BORSUK_5: 34;
end;
theorem ::
KURATO_1:52
Th52: ((
Int
KurExSet ),(
Int (
Cl
KurExSet )),(
Int (
Cl (
Int
KurExSet ))),(
Cl
KurExSet ),(
Cl (
Int
KurExSet )),(
Cl (
Int (
Cl
KurExSet ))))
are_mutually_distinct by
Th46,
Th47,
Th51,
BORSUK_5: 6;
registration
cluster
KurExSet -> non
closed non
open;
coherence by
Th40,
Th41,
PRE_TOPC: 22,
TOPS_1: 23;
end
theorem ::
KURATO_1:53
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet ))), (
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))}
misses
{
KurExSet }
proof
set A =
KurExSet ;
assume
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet ))), (
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))}
meets
{
KurExSet };
then
A1:
KurExSet
in
{(
Int
KurExSet ), (
Int (
Cl
KurExSet )), (
Int (
Cl (
Int
KurExSet ))), (
Cl
KurExSet ), (
Cl (
Int
KurExSet )), (
Cl (
Int (
Cl
KurExSet )))} by
ZFMISC_1: 50;
per cases by
A1,
ENUMSET1:def 4;
suppose A
= (
Int A);
hence thesis;
end;
suppose A
= (
Int (
Cl A));
hence thesis;
end;
suppose A
= (
Int (
Cl (
Int A)));
hence thesis;
end;
suppose A
= (
Cl A);
hence thesis;
end;
suppose A
= (
Cl (
Int A));
hence thesis;
end;
suppose A
= (
Cl (
Int (
Cl A)));
hence thesis;
end;
end;
theorem ::
KURATO_1:54
Th54: (
KurExSet ,(
Int
KurExSet ),(
Int (
Cl
KurExSet )),(
Int (
Cl (
Int
KurExSet ))),(
Cl
KurExSet ),(
Cl (
Int
KurExSet )),(
Cl (
Int (
Cl
KurExSet ))))
are_mutually_distinct by
Th52;
theorem ::
KURATO_1:55
(
card (
Kurat7Set
KurExSet ))
= 7
proof
set A =
KurExSet ;
(A,(
Int A),(
Cl A),(
Int (
Cl A)),(
Cl (
Int A)),(
Cl (
Int (
Cl A))),(
Int (
Cl (
Int A))))
are_mutually_distinct by
Th54;
hence thesis by
BORSUK_5: 4;
end;
begin
registration
cluster (
Kurat14ClPart
KurExSet ) ->
with_proper_subsets;
coherence
proof
set A =
KurExSet ;
assume
A1: the
carrier of
R^1
in (
Kurat14ClPart
KurExSet );
per cases by
A1,
ENUMSET1:def 4,
TOPMETR: 17;
suppose
REAL
= (
Cl A);
hence thesis by
Th10,
BORSUK_5: 69;
end;
suppose
REAL
= (
Cl ((
Cl A)
` ));
hence thesis by
Th12,
BORSUK_5: 47;
end;
suppose
REAL
= (
Cl ((
Cl ((
Cl A)
` ))
` ));
hence thesis by
Th14,
BORSUK_5: 46;
end;
suppose
REAL
= (
Cl (A
` ));
hence thesis by
Th17,
BORSUK_5: 70;
end;
suppose
REAL
= (
Cl ((
Cl (A
` ))
` ));
hence thesis by
Th19,
BORSUK_5: 46;
end;
suppose
REAL
= (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ));
hence thesis by
Th21,
BORSUK_5: 47;
end;
end;
cluster (
Kurat14OpPart
KurExSet ) ->
with_proper_subsets;
coherence
proof
set A =
KurExSet ;
assume
A2: the
carrier of
R^1
in (
Kurat14OpPart
KurExSet );
per cases by
A2,
ENUMSET1:def 4,
TOPMETR: 17;
suppose
REAL
= ((
Cl A)
` );
hence thesis by
Th10,
BORSUK_5: 72;
end;
suppose
REAL
= ((
Cl ((
Cl A)
` ))
` );
hence thesis by
Th12,
BORSUK_5: 72;
end;
suppose
REAL
= ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` );
hence thesis by
Th14,
BORSUK_5: 72;
end;
suppose
REAL
= ((
Cl (A
` ))
` );
hence thesis by
Th17,
BORSUK_5: 72;
end;
suppose
REAL
= ((
Cl ((
Cl (A
` ))
` ))
` );
hence thesis by
Th19,
BORSUK_5: 72;
end;
suppose
REAL
= ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` );
hence thesis by
Th21,
BORSUK_5: 72;
end;
end;
end
registration
cluster (
Kurat14Set
KurExSet ) ->
with_proper_subsets;
coherence
proof
reconsider AA =
{
KurExSet , (
KurExSet
` )} as
Subset-Family of
R^1 by
MEASURE1: 2;
AA is
with_proper_subsets
proof
assume
A1: the
carrier of
R^1
in AA;
per cases by
A1,
TARSKI:def 2,
TOPMETR: 17;
suppose
REAL
=
KurExSet ;
then (
[#]
R^1 )
=
KurExSet by
TOPMETR: 17;
hence thesis;
end;
suppose
REAL
= (
KurExSet
` );
then (
[#]
R^1 )
= (
KurExSet
` ) by
TOPMETR: 17;
hence thesis by
TOPS_1: 3;
end;
end;
then
A2: (AA
\/ (
Kurat14ClPart
KurExSet )) is
with_proper_subsets by
SETFAM_1: 48;
(
Kurat14Set
KurExSet )
= ((AA
\/ (
Kurat14ClPart
KurExSet ))
\/ (
Kurat14OpPart
KurExSet )) by
Lm2;
hence thesis by
A2,
SETFAM_1: 48;
end;
end
registration
cluster (
Kurat14Set
KurExSet ) ->
with_non-empty_elements;
coherence
proof
reconsider E = (
{}
R^1 ) as
Subset of
R^1 ;
assume
{}
in (
Kurat14Set
KurExSet );
then (E
` )
in (
Kurat14Set
KurExSet ) by
Th6;
hence thesis by
SETFAM_1:def 12;
end;
end
theorem ::
KURATO_1:56
Th56: for A be
with_non-empty_elements
set, B be
set st B
c= A holds B is
with_non-empty_elements
proof
let A be
with_non-empty_elements
set, B be
set;
assume
A1: B
c= A;
assume
{}
in B;
hence thesis by
A1;
end;
registration
cluster (
Kurat14ClPart
KurExSet ) ->
with_non-empty_elements;
coherence
proof
(
Kurat14Set
KurExSet )
= ((
{
KurExSet , (
KurExSet
` )}
\/ (
Kurat14ClPart
KurExSet ))
\/ (
Kurat14OpPart
KurExSet )) by
Lm2;
then
A1: (
{
KurExSet , (
KurExSet
` )}
\/ (
Kurat14ClPart
KurExSet ))
c= (
Kurat14Set
KurExSet ) by
XBOOLE_1: 7;
(
Kurat14ClPart
KurExSet )
c= (
{
KurExSet , (
KurExSet
` )}
\/ (
Kurat14ClPart
KurExSet )) by
XBOOLE_1: 7;
hence thesis by
A1,
Th56,
XBOOLE_1: 1;
end;
cluster (
Kurat14OpPart
KurExSet ) ->
with_non-empty_elements;
coherence
proof
(
Kurat14Set
KurExSet )
= ((
{
KurExSet , (
KurExSet
` )}
\/ (
Kurat14ClPart
KurExSet ))
\/ (
Kurat14OpPart
KurExSet )) by
Lm2;
hence thesis by
Th56,
XBOOLE_1: 7;
end;
end
registration
cluster
with_proper_subsets
with_non-empty_elements for
Subset-Family of
R^1 ;
existence
proof
take (
Kurat14Set
KurExSet );
thus thesis;
end;
end
theorem ::
KURATO_1:57
Th57: for F,G be
with_proper_subsets
with_non-empty_elements
Subset-Family of
R^1 st F is
open & G is
closed holds F
misses G
proof
let F,G be
with_proper_subsets
with_non-empty_elements
Subset-Family of
R^1 ;
assume
A1: F is
open & G is
closed;
assume F
meets G;
then
consider x be
object such that
A2: x
in F and
A3: x
in G by
XBOOLE_0: 3;
reconsider x as
Subset of
R^1 by
A2;
x is
open & x is
closed by
A1,
A2,
A3;
then x
=
{} or x
=
REAL by
BORSUK_5: 34;
hence thesis by
A2,
SETFAM_1:def 12,
TOPMETR: 17;
end;
registration
cluster (
Kurat14ClPart
KurExSet ) ->
closed;
coherence by
ENUMSET1:def 4;
cluster (
Kurat14OpPart
KurExSet ) ->
open;
coherence by
ENUMSET1:def 4;
end
theorem ::
KURATO_1:58
(
Kurat14ClPart
KurExSet )
misses (
Kurat14OpPart
KurExSet ) by
Th57;
registration
let T, A;
cluster (
Kurat14ClPart A) ->
finite;
coherence ;
cluster (
Kurat14OpPart A) ->
finite;
coherence ;
end
theorem ::
KURATO_1:59
Th59: (
card (
Kurat14ClPart
KurExSet ))
= 6
proof
set A =
KurExSet ;
A1: (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
=
].
-infty , 4.] by
Th20,
BORSUK_5: 51;
5
in
{5} by
TARSKI:def 1;
then 5
in (
Cl (A
` )) by
Th17,
XBOOLE_0:def 3;
then
A2: (
Cl (
Int A))
= (
Cl ((
Cl (A
` ))
` )) & (
Cl (A
` ))
<> (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
A1,
TOPS_1:def 1,
XXREAL_1: 234;
( not 5
in (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))) & 5
in
[.2,
+infty .[ by
Th21,
XXREAL_1: 234,
XXREAL_1: 236;
then
A3: (
Cl A)
<> (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
Th10,
XBOOLE_0:def 3;
( not 5
in (
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))) & (
Cl ((
Cl (A
` ))
` ))
=
[.4,
+infty .[ by
Th18,
Th21,
BORSUK_5: 55,
XXREAL_1: 234;
then
A4: (
Cl ((
Cl (A
` ))
` ))
<> (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
XXREAL_1: 236;
5
in (
Cl ((
Cl ((
Cl A)
` ))
` )) by
Th14,
XXREAL_1: 236;
then
A5: (
Cl ((
Cl ((
Cl A)
` ))
` ))
<> (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
Th21,
XXREAL_1: 234;
( not 6
in
].
-infty , 4.]) & not 6
in
{5} by
TARSKI:def 1,
XXREAL_1: 234;
then
A6: not 6
in (
Cl (A
` )) by
Th17,
XBOOLE_0:def 3;
(
Cl ((
Cl ((
Cl A)
` ))
` ))
=
[.2,
+infty .[ by
Th13,
BORSUK_5: 49;
then
A7: (
Cl ((
Cl ((
Cl A)
` ))
` ))
<> (
Cl (A
` )) by
A6,
XXREAL_1: 236;
A8: 4
in (
Cl ((
Cl ((
Cl A)
` ))
` )) & (
Cl (
Int (
Cl A)))
= (
Cl ((
Cl ((
Cl A)
` ))
` )) by
Th14,
TOPS_1:def 1,
XXREAL_1: 236;
A9: not 4
in (
Cl ((
Cl A)
` )) by
Th12,
XXREAL_1: 234;
then (
Cl ((
Cl A)
` ))
<> (
Cl ((
Cl ((
Cl (A
` ))
` ))
` )) by
A1,
XXREAL_1: 234;
then ((
Cl A),(
Cl ((
Cl A)
` )),(
Cl ((
Cl ((
Cl A)
` ))
` )),(
Cl (A
` )),(
Cl ((
Cl (A
` ))
` )),(
Cl ((
Cl ((
Cl (A
` ))
` ))
` )))
are_mutually_distinct by
A9,
A3,
A7,
A5,
A8,
A2,
A4,
Th29,
Th31;
hence thesis by
BORSUK_5: 3;
end;
theorem ::
KURATO_1:60
Th60: (
card (
Kurat14OpPart
KurExSet ))
= 6
proof
set A =
KurExSet ;
A1: ( not 5
in
].
-infty , 1.[) & not 5
in
].1, 2.[ by
XXREAL_1: 4;
((
Cl A)
` )
= (
].
-infty , 1.[
\/
].1, 2.[) & 5
in ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
Th10,
Th22,
BORSUK_5: 63,
XXREAL_1: 235;
then
A2: ((
Cl A)
` )
<> ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
A1,
XBOOLE_0:def 3;
A3: ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
=
].
-infty , 2.[ by
Th14,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 294;
6
in
].5,
+infty .[ by
XXREAL_1: 235;
then 6
in ((
Cl (A
` ))
` ) by
Th18,
XBOOLE_0:def 3;
then
A4: ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
<> ((
Cl (A
` ))
` ) by
A3,
XXREAL_1: 233;
A5: 4
in ((
Cl ((
Cl A)
` ))
` ) by
Th13,
XXREAL_1: 235;
( not 5
in
].4, 5.[) & not 5
in
].5,
+infty .[ by
XXREAL_1: 4;
then
A6: not 5
in ((
Cl (A
` ))
` ) by
Th18,
XBOOLE_0:def 3;
((
Cl A)
` )
<> ((
Cl (
Int (
Cl A)))
` ) by
Th29,
BORSUK_5: 71;
then
A7: ((
Cl A)
` )
<> ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ) by
TOPS_1:def 1;
A8: not 5
in ((
Cl ((
Cl (A
` ))
` ))
` ) by
Th20,
XXREAL_1: 233;
((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` )
=
].4,
+infty .[ by
Th21,
TOPMETR: 17,
XXREAL_1: 224,
XXREAL_1: 288;
then
A9: ((
Cl ((
Cl A)
` ))
` )
<> ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
A5,
XXREAL_1: 235;
((
Cl (
Int (
Cl A)))
` )
= ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ) & ((
Cl (
Int A))
` )
= ((
Cl ((
Cl (A
` ))
` ))
` ) by
TOPS_1:def 1;
then
A10: ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )
<> ((
Cl ((
Cl (A
` ))
` ))
` ) by
Th31,
BORSUK_5: 71;
A11: ( not 5
in ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` )) & 5
in ((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ) by
Th15,
Th22,
XXREAL_1: 233,
XXREAL_1: 235;
((
Cl ((
Cl A)
` ))
` )
<> ((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ) by
A3,
A5,
XXREAL_1: 233;
then (((
Cl A)
` ),((
Cl ((
Cl A)
` ))
` ),((
Cl ((
Cl ((
Cl A)
` ))
` ))
` ),((
Cl (A
` ))
` ),((
Cl ((
Cl (A
` ))
` ))
` ),((
Cl ((
Cl ((
Cl (A
` ))
` ))
` ))
` ))
are_mutually_distinct by
A2,
A7,
A9,
A4,
A10,
A6,
A11,
A8;
hence thesis by
BORSUK_5: 3;
end;
theorem ::
KURATO_1:61
Th61:
{
KurExSet , (
KurExSet
` )}
misses (
Kurat14ClPart
KurExSet )
proof
set A =
KurExSet ;
assume
{A, (A
` )}
meets (
Kurat14ClPart A);
then
consider x be
object such that
A1: x
in
{A, (A
` )} and
A2: x
in (
Kurat14ClPart A) by
XBOOLE_0: 3;
reconsider x as
Subset of
R^1 by
A2;
x
= A or x
= (A
` ) by
A1,
TARSKI:def 2;
then
A3: (x
` )
= A by
A2,
TOPS_2:def 2;
x is
closed by
A2,
TOPS_2:def 2;
hence thesis by
A3;
end;
registration
cluster
KurExSet -> non
empty;
coherence ;
end
theorem ::
KURATO_1:62
Th62:
KurExSet
<> (
KurExSet
` ) by
XBOOLE_1: 66,
XBOOLE_1: 79;
theorem ::
KURATO_1:63
Th63:
{
KurExSet , (
KurExSet
` )}
misses (
Kurat14OpPart
KurExSet )
proof
set A =
KurExSet ;
assume
{A, (A
` )}
meets (
Kurat14OpPart A);
then
consider x be
object such that
A1: x
in
{A, (A
` )} and
A2: x
in (
Kurat14OpPart A) by
XBOOLE_0: 3;
reconsider x as
Subset of
R^1 by
A2;
x
= A or x
= (A
` ) by
A1,
TARSKI:def 2;
then
A3: (x
` )
= A by
A2,
TOPS_2:def 1;
x is
open by
A2,
TOPS_2:def 1;
hence thesis by
A3;
end;
::$Notion-Name
theorem ::
KURATO_1:64
(
card (
Kurat14Set
KurExSet ))
= 14
proof
set A =
KurExSet ;
set B =
{A, (A
` )};
A1: B
misses ((
Kurat14ClPart A)
\/ (
Kurat14OpPart A)) by
Th61,
Th63,
XBOOLE_1: 70;
A2: (
card ((
Kurat14ClPart A)
\/ (
Kurat14OpPart A)))
= (6
+ 6) by
Th57,
Th59,
Th60,
CARD_2: 40
.= 12;
(
card (
Kurat14Set A))
= (
card ((B
\/ (
Kurat14ClPart A))
\/ (
Kurat14OpPart A))) by
Lm2
.= (
card (B
\/ ((
Kurat14ClPart A)
\/ (
Kurat14OpPart A)))) by
XBOOLE_1: 4
.= ((
card B)
+ (
card ((
Kurat14ClPart A)
\/ (
Kurat14OpPart A)))) by
A1,
CARD_2: 40
.= (2
+ 12) by
A2,
Th62,
CARD_2: 57
.= 14;
hence thesis;
end;
begin
definition
let T be
TopStruct, A be
Subset-Family of T;
::
KURATO_1:def7
attr A is
Cl-closed means for P be
Subset of T st P
in A holds (
Cl P)
in A;
::
KURATO_1:def8
attr A is
Int-closed means for P be
Subset of T st P
in A holds (
Int P)
in A;
end
registration
let T, A;
cluster (
Kurat14Set A) -> non
empty;
coherence ;
cluster (
Kurat14Set A) ->
Cl-closed;
coherence by
Th6;
cluster (
Kurat14Set A) ->
compl-closed;
coherence
proof
for P be
Subset of T st P
in (
Kurat14Set A) holds (P
` )
in (
Kurat14Set A) by
Th6;
hence thesis by
PROB_1:def 1;
end;
end
registration
let T, A;
cluster (
Kurat7Set A) -> non
empty;
coherence ;
cluster (
Kurat7Set A) ->
Int-closed;
coherence by
Th9;
cluster (
Kurat7Set A) ->
Cl-closed;
coherence by
Th9;
end
registration
let T;
cluster
Int-closed
Cl-closed non
empty for
Subset-Family of T;
existence
proof
take (
Kurat7Set (
{} T));
thus thesis;
end;
cluster
compl-closed
Cl-closed non
empty for
Subset-Family of T;
existence
proof
take (
Kurat14Set (
{} T));
thus thesis;
end;
end