matrix17.miz
begin
reserve i,j,k,n,l for
Nat,
K for
Field,
a,b,c for
Element of K,
p,q for
FinSequence of K,
M1,M2,M3 for
Matrix of n, K;
Lm1: for n,i be
Nat st i
in (
Seg n) holds ((n
+ 1)
- i)
in (
Seg n)
proof
let n,i be
Nat;
assume
A1: i
in (
Seg n);
i
<= n by
A1,
FINSEQ_1: 1;
then (i
+ 1)
<= (n
+ 1) by
XREAL_1: 6;
then
A2: ((i
+ 1)
- i)
<= ((n
+ 1)
- i) by
XREAL_1: 9;
1
<= i by
A1,
FINSEQ_1: 1;
then (n
+ 1)
<= (i
+ n) by
XREAL_1: 6;
then
A3: ((n
+ 1)
- i)
<= ((i
+ n)
- i) by
XREAL_1: 9;
((n
+ 1)
- i)
in
NAT by
A2,
INT_1: 3;
hence thesis by
A2,
A3;
end;
Lm2: for n,i,j be
Nat st
[i, j]
in
[:(
Seg n), (
Seg n):] holds ((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n)
proof
let n,i,j be
Nat;
assume
[i, j]
in
[:(
Seg n), (
Seg n):];
then i
in (
Seg n) & j
in (
Seg n) by
ZFMISC_1: 87;
hence thesis by
Lm1;
end;
definition
let K be
Field, n be
Nat, M be
Matrix of n, K;
::
MATRIX17:def1
attr M is
subsymmetric means
:
Def1: for i,j,k,l be
Nat st
[i, j]
in (
Indices M) & k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i) holds (M
* (i,j))
= (M
* (k,l));
end
registration
let n, K, a;
cluster ((n,n)
--> a) ->
subsymmetric;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= ((n,n)
--> a);
let i,j,k,l be
Nat;
assume that
A2:
[i, j]
in (
Indices M) and
A3: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A4: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
k
in (
Seg n) & l
in (
Seg n) by
A3,
A2,
A4,
Lm2;
then
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
then (M
* (k,l))
= a by
A1,
A4,
MATRIX_0: 46;
hence thesis by
A1,
A2,
MATRIX_0: 46;
end;
end
registration
let n, K;
cluster
subsymmetric for
Matrix of n, K;
existence
proof
take ((n,n)
--> (
0. K));
thus thesis;
end;
end
registration
let n, K;
let M be
subsymmetric
Matrix of n, K;
cluster (
- M) ->
subsymmetric;
coherence
proof
let N be
Matrix of n, K such that
A1: N
= (
- M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices N) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A5: (
Indices (
- M))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then i
in (
Seg n) & j
in (
Seg n) by
A1,
A3,
ZFMISC_1: 87;
then k
in (
Seg n) & l
in (
Seg n) by
A4,
Lm1;
then
A6:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((
- M)
* (i,j))
= (
- (M
* (i,j))) by
A1,
A2,
A3,
A5,
MATRIX_3:def 2
.= (
- (M
* (k,l))) by
A1,
A2,
A3,
A5,
A4,
Def1
.= ((
- M)
* (k,l)) by
A2,
A6,
MATRIX_3:def 2;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
subsymmetric
Matrix of n, K;
cluster (M1
+ M2) ->
subsymmetric;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= (M1
+ M2);
let i,j,k,l be
Nat;
assume that
A2:
[i, j]
in (
Indices M) and
A3: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A4: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A2,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
A3,
ZFMISC_1: 87;
A6: (
Indices M1)
=
[:(
Seg n), (
Seg n):] & (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A2,
A4,
A6,
MATRIX_3:def 3
.= ((M1
* (k,l))
+ (M2
* (i,j))) by
A2,
A4,
A6,
A3,
Def1
.= ((M1
* (k,l))
+ (M2
* (k,l))) by
A2,
A4,
A6,
A3,
Def1
.= ((M1
+ M2)
* (k,l)) by
A6,
A5,
MATRIX_3:def 3;
hence thesis by
A1;
end;
end
registration
let n, K, a;
let M be
subsymmetric
Matrix of n, K;
cluster (a
* M) ->
subsymmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (a
* M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
(
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then k
in (
Seg n) & l
in (
Seg n) by
A3,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
A6:
[i, j]
in (
Indices M) by
A2,
A3,
MATRIX_0: 24;
then ((a
* M)
* (i,j))
= (a
* (M
* (i,j))) by
MATRIX_3:def 5
.= (a
* (M
* (k,l))) by
A4,
A6,
Def1
.= ((a
* M)
* (k,l)) by
A2,
A5,
MATRIX_3:def 5;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
subsymmetric
Matrix of n, K;
cluster (M1
- M2) ->
subsymmetric;
coherence ;
end
registration
let n, K;
let M be
subsymmetric
Matrix of n, K;
cluster (M
@ ) ->
subsymmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (M
@ );
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
[i, j]
in
[:(
Seg n), (
Seg n):] by
A3,
MATRIX_0: 24;
then
A5: i
in (
Seg n) & j
in (
Seg n) by
ZFMISC_1: 87;
then
A6:
[j, i]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A5,
Lm1;
then
A7:
[((n
+ 1)
- i), ((n
+ 1)
- j)]
in
[:(
Seg n), (
Seg n):] &
[((n
+ 1)
- j), ((n
+ 1)
- i)]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
thus (M1
* (i,j))
= (M
* (j,i)) by
A1,
A2,
A6,
MATRIX_0:def 6
.= (M
* (l,k)) by
A4,
A6,
A2,
Def1
.= (M1
* (k,l)) by
A1,
A7,
A2,
A4,
MATRIX_0:def 6;
end;
end
registration
let n, K;
cluster
line_circulant ->
subsymmetric for
Matrix of n, K;
coherence
proof
let M be
Matrix of n, K;
assume M is
line_circulant;
then
consider p be
FinSequence of K such that (
len p)
= (
width M) and
A1: M
is_line_circulant_about p by
MATRIX16:def 2;
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
k
in (
Seg n) & l
in (
Seg n) by
A3,
A2,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
(M
* (k,l))
= (p
. (((((n
+ 1)
- i)
- ((n
+ 1)
- j))
mod (
len p))
+ 1)) by
A1,
A2,
A4,
A5,
MATRIX16:def 1
.= (p
. (((j
- i)
mod (
len p))
+ 1));
hence thesis by
A3,
A1,
MATRIX16:def 1;
end;
cluster
col_circulant ->
subsymmetric for
Matrix of n, K;
coherence
proof
let M be
Matrix of n, K;
assume M is
col_circulant;
then
consider p be
FinSequence of K such that
A6: (
len p)
= (
len M) and
A7: M
is_col_circulant_about p by
MATRIX16:def 5;
A8: (
len M)
= n by
MATRIX_0: 24;
A9: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A10:
[i, j]
in (
Indices M) and
A11: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
k
in (
Seg n) & l
in (
Seg n) by
A10,
A9,
A11,
Lm2;
then
A12:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
(M
* (k,l))
= (p
. (((((n
+ 1)
- j)
- ((n
+ 1)
- i))
mod n)
+ 1)) by
A6,
A7,
A8,
A9,
A11,
A12,
MATRIX16:def 4
.= (p
. (((i
- j)
mod n)
+ 1));
hence thesis by
A6,
A7,
A8,
A10,
MATRIX16:def 4;
end;
end
definition
let K be
Field, n be
Nat, M be
Matrix of n, K;
::
MATRIX17:def2
attr M is
Anti-subsymmetric means
:
Def2: for i,j,k,l be
Nat st
[i, j]
in (
Indices M) & k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i) holds (M
* (i,j))
= (
- (M
* (k,l)));
end
registration
let n, K;
cluster
Anti-subsymmetric for
Matrix of n, K;
existence
proof
take M = ((n,n)
--> (
0. K));
let i,j,k,l be
Nat;
assume that
A1:
[i, j]
in (
Indices M) and
A2: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A3: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
k
in (
Seg n) & l
in (
Seg n) by
A2,
A1,
A3,
Lm2;
then
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
then
A4: (M
* (k,l))
= (
0. K) by
A3,
MATRIX_0: 46;
(
0. K)
= (
- (
0. K)) by
RLVECT_1: 12;
hence thesis by
A4,
A1,
MATRIX_0: 46;
end;
end
theorem ::
MATRIX17:1
for K be
Fanoian
Field, n,i,j,k,l be
Nat, M1 be
Matrix of n, K st
[i, j]
in (
Indices M1) & (i
+ j)
= (n
+ 1) & k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i) & M1 is
Anti-subsymmetric holds (M1
* (i,j))
= (
0. K)
proof
let K be
Fanoian
Field;
let n,i,j,k,l be
Nat;
let M1 be
Matrix of n, K;
assume that
A1:
[i, j]
in (
Indices M1) and
A2: (i
+ j)
= (n
+ 1) & k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i) and
A3: M1 is
Anti-subsymmetric;
(M1
* (i,j))
= (
- (M1
* (i,j))) by
A1,
A3,
A2;
then ((M1
* (i,j))
+ (M1
* (i,j)))
= (
0. K) by
RLVECT_1: 5;
then (((
1_ K)
* (M1
* (i,j)))
+ (M1
* (i,j)))
= (
0. K);
then (((
1_ K)
* (M1
* (i,j)))
+ ((
1_ K)
* (M1
* (i,j))))
= (
0. K);
then ((
1_ K)
+ (
1_ K))
<> (
0. K) & (((
1_ K)
+ (
1_ K))
* (M1
* (i,j)))
= (
0. K) by
VECTSP_1:def 7,
VECTSP_1:def 19;
hence thesis by
VECTSP_1: 12;
end;
registration
let n, K;
let M be
Anti-subsymmetric
Matrix of n, K;
cluster (
- M) ->
Anti-subsymmetric;
coherence
proof
let N be
Matrix of n, K such that
A1: N
= (
- M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices N) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A5: (
Indices (
- M))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then i
in (
Seg n) & j
in (
Seg n) by
A1,
A3,
ZFMISC_1: 87;
then k
in (
Seg n) & l
in (
Seg n) by
A4,
Lm1;
then
A6:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((
- M)
* (i,j))
= (
- (M
* (i,j))) by
A1,
A2,
A3,
A5,
MATRIX_3:def 2
.= (
- (
- (M
* (k,l)))) by
A1,
A2,
A3,
A5,
A4,
Def2
.= (
- ((
- M)
* (k,l))) by
A2,
A6,
MATRIX_3:def 2;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
Anti-subsymmetric
Matrix of n, K;
cluster (M1
+ M2) ->
Anti-subsymmetric;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= (M1
+ M2);
let i,j,k,l be
Nat;
assume that
A2:
[i, j]
in (
Indices M) and
A3: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
A4: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A2,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
A3,
ZFMISC_1: 87;
A6: (
Indices M1)
=
[:(
Seg n), (
Seg n):] & (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A2,
A4,
A6,
MATRIX_3:def 3
.= ((
- (M1
* (k,l)))
+ (M2
* (i,j))) by
A2,
A4,
A6,
A3,
Def2
.= ((
- (M1
* (k,l)))
+ (
- (M2
* (k,l)))) by
A2,
A4,
A6,
A3,
Def2
.= (
- ((M1
* (k,l))
+ (M2
* (k,l)))) by
RLVECT_1: 31
.= (
- ((M1
+ M2)
* (k,l))) by
A6,
A5,
MATRIX_3:def 3;
hence thesis by
A1;
end;
end
registration
let n, K, a;
let M be
Anti-subsymmetric
Matrix of n, K;
cluster (a
* M) ->
Anti-subsymmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (a
* M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
(
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then k
in (
Seg n) & l
in (
Seg n) by
A3,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
A6:
[i, j]
in (
Indices M) by
A2,
A3,
MATRIX_0: 24;
then ((a
* M)
* (i,j))
= (a
* (M
* (i,j))) by
MATRIX_3:def 5
.= (a
* (
- (M
* (k,l)))) by
A4,
A6,
Def2
.= (
- (a
* (M
* (k,l)))) by
VECTSP_1: 8
.= (
- ((a
* M)
* (k,l))) by
A2,
A5,
MATRIX_3:def 5;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
Anti-subsymmetric
Matrix of n, K;
cluster (M1
- M2) ->
Anti-subsymmetric;
coherence ;
end
registration
let n, K;
let M be
Anti-subsymmetric
Matrix of n, K;
cluster (M
@ ) ->
Anti-subsymmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (M
@ );
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- j) & l
= ((n
+ 1)
- i);
[i, j]
in
[:(
Seg n), (
Seg n):] by
A3,
MATRIX_0: 24;
then
A5: i
in (
Seg n) & j
in (
Seg n) by
ZFMISC_1: 87;
then
A6:
[j, i]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A5,
Lm1;
then
A7:
[((n
+ 1)
- i), ((n
+ 1)
- j)]
in
[:(
Seg n), (
Seg n):] &
[((n
+ 1)
- j), ((n
+ 1)
- i)]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
thus (M1
* (i,j))
= (M
* (j,i)) by
A1,
A2,
A6,
MATRIX_0:def 6
.= (
- (M
* (l,k))) by
A4,
A6,
A2,
Def2
.= (
- (M1
* (k,l))) by
A1,
A7,
A2,
A4,
MATRIX_0:def 6;
end;
end
begin
definition
let K be
Field;
let n be
Nat;
let M be
Matrix of n, K;
::
MATRIX17:def3
attr M is
central_symmetric means
:
Def3: for i,j,k,l be
Nat st
[i, j]
in (
Indices M) & k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j) holds (M
* (i,j))
= (M
* (k,l));
end
registration
let n, K, a;
cluster ((n,n)
--> a) ->
central_symmetric;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= ((n,n)
--> a);
let i,j,k,l be
Nat;
assume that
A2:
[i, j]
in (
Indices M) and
A3: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
A4: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
k
in (
Seg n) & l
in (
Seg n) by
A3,
A2,
A4,
Lm2;
then
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
then (M
* (k,l))
= a by
A1,
A4,
MATRIX_0: 46;
hence thesis by
A1,
A2,
MATRIX_0: 46;
end;
end
registration
let n, K;
cluster
central_symmetric for
Matrix of n, K;
existence
proof
take ((n,n)
--> (
0. K));
thus thesis;
end;
end
registration
let n, K;
let M be
central_symmetric
Matrix of n, K;
cluster (
- M) ->
central_symmetric;
coherence
proof
let N be
Matrix of n, K such that
A1: N
= (
- M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices N) and
A4: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
A5: (
Indices (
- M))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then i
in (
Seg n) & j
in (
Seg n) by
A1,
A3,
ZFMISC_1: 87;
then k
in (
Seg n) & l
in (
Seg n) by
A4,
Lm1;
then
A6:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((
- M)
* (i,j))
= (
- (M
* (i,j))) by
A1,
A2,
A3,
A5,
MATRIX_3:def 2
.= (
- (M
* (k,l))) by
A1,
A2,
A3,
A5,
A4,
Def3
.= ((
- M)
* (k,l)) by
A2,
A6,
MATRIX_3:def 2;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
central_symmetric
Matrix of n, K;
cluster (M1
+ M2) ->
central_symmetric;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= (M1
+ M2);
let i,j,k,l be
Nat;
assume that
A2:
[i, j]
in (
Indices M) and
A3: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
A4: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A2,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
A3,
ZFMISC_1: 87;
A6: (
Indices M1)
=
[:(
Seg n), (
Seg n):] & (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A2,
A4,
A6,
MATRIX_3:def 3
.= ((M1
* (k,l))
+ (M2
* (i,j))) by
A2,
A4,
A6,
A3,
Def3
.= ((M1
* (k,l))
+ (M2
* (k,l))) by
A2,
A4,
A6,
A3,
Def3
.= ((M1
+ M2)
* (k,l)) by
A6,
A5,
MATRIX_3:def 3;
hence thesis by
A1;
end;
end
registration
let n, K, a;
let M be
central_symmetric
Matrix of n, K;
cluster (a
* M) ->
central_symmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (a
* M);
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
(
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
then k
in (
Seg n) & l
in (
Seg n) by
A3,
A4,
Lm2;
then
A5:
[k, l]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
A6:
[i, j]
in (
Indices M) by
A2,
A3,
MATRIX_0: 24;
then ((a
* M)
* (i,j))
= (a
* (M
* (i,j))) by
MATRIX_3:def 5
.= (a
* (M
* (k,l))) by
A4,
A6,
Def3
.= ((a
* M)
* (k,l)) by
A2,
A5,
MATRIX_3:def 5;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
central_symmetric
Matrix of n, K;
cluster (M1
- M2) ->
central_symmetric;
coherence ;
end
registration
let n, K;
let M be
central_symmetric
Matrix of n, K;
cluster (M
@ ) ->
central_symmetric;
coherence
proof
let M1 be
Matrix of n, K such that
A1: M1
= (M
@ );
A2: (
Indices M)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A3:
[i, j]
in (
Indices M1) and
A4: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
[i, j]
in
[:(
Seg n), (
Seg n):] by
A3,
MATRIX_0: 24;
then
A5: i
in (
Seg n) & j
in (
Seg n) by
ZFMISC_1: 87;
then
A6:
[j, i]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((n
+ 1)
- j)
in (
Seg n) & ((n
+ 1)
- i)
in (
Seg n) by
A5,
Lm1;
then
A7:
[((n
+ 1)
- i), ((n
+ 1)
- j)]
in
[:(
Seg n), (
Seg n):] &
[((n
+ 1)
- j), ((n
+ 1)
- i)]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
thus (M1
* (i,j))
= (M
* (j,i)) by
A1,
A2,
A6,
MATRIX_0:def 6
.= (M
* (l,k)) by
A4,
A6,
A2,
Def3
.= (M1
* (k,l)) by
A1,
A7,
A2,
A4,
MATRIX_0:def 6;
end;
end
registration
let n, K;
cluster
symmetric
subsymmetric ->
central_symmetric for
Matrix of n, K;
coherence
proof
let M1 be
Matrix of n, K;
assume that
A1: M1 is
symmetric and
A2: M1 is
subsymmetric;
A3: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
let i,j,k,l be
Nat;
assume that
A4:
[i, j]
in (
Indices M1) and
A5: k
= ((n
+ 1)
- i) & l
= ((n
+ 1)
- j);
k
in (
Seg n) & l
in (
Seg n) by
A3,
A4,
A5,
Lm2;
then
A6:
[k, l]
in
[:(
Seg n), (
Seg n):] &
[l, k]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
thus (M1
* (i,j))
= (M1
* (l,k)) by
A2,
A4,
A5
.= ((M1
@ )
* (k,l)) by
A6,
A3,
MATRIX_0:def 6
.= (M1
* (k,l)) by
A1;
end;
end
begin
Lm3: for n,i,j be
Nat st i
in (
Seg n) & j
in (
Seg n) & (i
+ j)
<> (n
+ 1) holds (((i
+ j)
- 1)
mod n)
in (
Seg n)
proof
let n,i,j be
Nat such that
A1: i
in (
Seg n) & j
in (
Seg n);
assume (i
+ j)
<> (n
+ 1);
per cases by
XXREAL_0: 1;
suppose
A2: (i
+ j)
< (n
+ 1);
1
<= i & 1
<= j by
A1,
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then
A3: ((1
+ 1)
- 1)
<= ((i
+ j)
- 1) by
XREAL_1: 9;
A4: ((i
+ j)
- 1)
< ((n
+ 1)
- 1) by
A2,
XREAL_1: 9;
A5: (((i
+ j)
- 1)
mod n)
= ((i
+ j)
- 1) by
A3,
A4,
NAT_D: 63;
(((i
+ j)
- 1)
mod n)
in
NAT by
A3,
A5,
INT_1: 3;
hence thesis by
A3,
A5,
A4;
end;
suppose
A6: (i
+ j)
> (n
+ 1);
((i
+ j)
- n)
> ((n
+ 1)
- n) by
A6,
XREAL_1: 9;
then
A7: (((i
+ j)
- n)
- 1)
> (1
- 1) by
XREAL_1: 9;
A8: (((i
+ j)
- n)
- 1)
>= (
0
+ 1) by
A7,
INT_1: 7;
i
<= n & j
<= n by
A1,
FINSEQ_1: 1;
then (i
+ j)
<= (n
+ n) by
XREAL_1: 7;
then ((i
+ j)
- n)
<= ((n
+ n)
- n) by
XREAL_1: 9;
then
A9: (((i
+ j)
- n)
- 1)
<= (n
- 1) by
XREAL_1: 9;
(n
- 1)
< n by
XREAL_1: 44;
then
A10: (((i
+ j)
- n)
- 1)
< n by
A9,
XXREAL_0: 2;
A11: ((((i
+ j)
- n)
- 1)
mod n)
= (((i
+ j)
- n)
- 1) by
A7,
A10,
NAT_D: 63;
A12: ((((i
+ j)
- n)
- 1)
mod n)
in
NAT by
A7,
A11,
INT_1: 3;
(((i
+ j)
- 1)
mod n)
= (((((i
+ j)
- 1)
- n)
+ n)
mod n)
.= ((((((i
+ j)
- 1)
- n)
mod n)
+ (n
mod n))
mod n) by
NAT_D: 66
.= (((((i
+ j)
- 1)
- n)
+
0 )
mod n) by
A11,
INT_1: 50;
hence thesis by
A10,
A11,
A8,
A12;
end;
end;
Lm4: for n,i,j be
Nat st
[i, j]
in
[:(
Seg n), (
Seg n):] & (i
+ j)
<> (n
+ 1) holds (((i
+ j)
- 1)
mod n)
in (
Seg n)
proof
let n,i,j be
Nat;
assume that
A1:
[i, j]
in
[:(
Seg n), (
Seg n):] and
A2: (i
+ j)
<> (n
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A1,
ZFMISC_1: 87;
hence thesis by
A2,
Lm3;
end;
definition
let K be
set, M be
Matrix of K, p be
FinSequence;
::
MATRIX17:def4
pred M
is_symmetry_circulant_about p means (
len p)
= (
width M) & (for i,j be
Nat st
[i, j]
in (
Indices M) & (i
+ j)
<> ((
len p)
+ 1) holds (M
* (i,j))
= (p
. (((i
+ j)
- 1)
mod (
len p)))) & for i,j be
Nat st
[i, j]
in (
Indices M) & (i
+ j)
= ((
len p)
+ 1) holds (M
* (i,j))
= (p
. (
len p));
end
theorem ::
MATRIX17:2
Th2: ((n,n)
--> a)
is_symmetry_circulant_about (n
|-> a)
proof
set p = (n
|-> a);
set M = ((n,n)
--> a);
A1: (
width M)
= n & (
len p)
= n by
CARD_1:def 7,
MATRIX_0: 24;
hence (
len p)
= (
width M);
A2: (
Indices ((n,n)
--> a))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
thus for i,j be
Nat st
[i, j]
in (
Indices M) & (i
+ j)
<> ((
len p)
+ 1) holds (M
* (i,j))
= (p
. (((i
+ j)
- 1)
mod (
len p)))
proof
let i,j be
Nat;
assume that
A3:
[i, j]
in (
Indices M) and
A4: (i
+ j)
<> ((
len p)
+ 1);
(((
Seg n)
--> a)
. (((i
+ j)
- 1)
mod (
len p)))
= a by
A1,
A2,
A3,
A4,
Lm4,
FUNCOP_1: 7;
hence thesis by
A3,
MATRIX_0: 46;
end;
let i,j be
Nat;
assume that
A5:
[i, j]
in (
Indices ((n,n)
--> a)) and
A6: (i
+ j)
= ((
len p)
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A2,
A5,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len p)
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A6,
XREAL_1: 9;
then
A7: (
len p)
in (
Seg (
len p));
(((
Seg n)
--> a)
. (
len p))
= a by
A1,
A7,
FUNCOP_1: 7;
hence thesis by
A5,
MATRIX_0: 46;
end;
theorem ::
MATRIX17:3
Th3: M1
is_symmetry_circulant_about p implies (a
* M1)
is_symmetry_circulant_about (a
* p)
proof
assume
A1: M1
is_symmetry_circulant_about p;
then
A2: (
len p)
= (
width M1);
A3: (
Indices (a
* M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A4: (
width M1)
= n by
MATRIX_0: 24;
then
A5: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
A6: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
A7: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
A8: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & (i
+ j)
<> ((
len (a
* p))
+ 1) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (((i
+ j)
- 1)
mod (
len (a
* p))))
proof
let i,j be
Nat;
assume that
A9:
[i, j]
in (
Indices (a
* M1)) and
A10: (i
+ j)
<> ((
len (a
* p))
+ 1);
A11: (((i
+ j)
- 1)
mod n)
in (
Seg n) by
A3,
A2,
A4,
A9,
A10,
A7,
Lm4;
A12:
[i, j]
in (
Indices M1) by
A3,
A9,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((i
+ j)
- 1)
mod (
len p)))) by
A1,
A12,
A10,
A7
.= ((a
multfield )
. (p
/. (((i
+ j)
- 1)
mod (
len p)))) by
A2,
A4,
A5,
A11,
PARTFUN1:def 6
.= (a
* (p
/. (((i
+ j)
- 1)
mod (
len p)))) by
FVSUM_1: 49
.= ((a
* p)
/. (((i
+ j)
- 1)
mod (
len p))) by
A2,
A4,
A5,
A11,
POLYNOM1:def 1
.= ((a
* p)
. (((i
+ j)
- 1)
mod (
len p))) by
A2,
A4,
A6,
A7,
A11,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
A13: for i,j be
Nat st
[i, j]
in (
Indices (a
* M1)) & (i
+ j)
= ((
len (a
* p))
+ 1) holds ((a
* M1)
* (i,j))
= ((a
* p)
. (
len (a
* p)))
proof
let i,j be
Nat;
assume that
A14:
[i, j]
in (
Indices (a
* M1)) and
A15: (i
+ j)
= ((
len (a
* p))
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A3,
A14,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then
A16: (((
len (a
* p))
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A15,
XREAL_1: 9;
A17: (
len (a
* p))
in (
Seg (
len (a
* p))) by
A16;
then
A18: (
len p)
in (
dom (a
* p)) by
A7,
FINSEQ_1:def 3;
A19: (
len p)
in (
dom p) by
A7,
A17,
FINSEQ_1:def 3;
A20:
[i, j]
in (
Indices M1) by
A3,
A14,
MATRIX_0: 24;
then ((a
* M1)
* (i,j))
= (a
* (M1
* (i,j))) by
MATRIX_3:def 5
.= ((a
multfield )
. (M1
* (i,j))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (
len p))) by
A1,
A20,
A15,
A7
.= ((a
multfield )
. (p
/. (
len p))) by
A19,
PARTFUN1:def 6
.= (a
* (p
/. (
len p))) by
FVSUM_1: 49
.= ((a
* p)
/. (
len p)) by
A19,
POLYNOM1:def 1
.= ((a
* p)
. (
len p)) by
A18,
PARTFUN1:def 6;
hence thesis by
MATRIXR1: 16;
end;
A21: (
width (a
* M1))
= n & (
len (a
* p))
= (
len p) by
MATRIXR1: 16,
MATRIX_0: 24;
(
len p)
= n by
A2,
MATRIX_0: 24;
hence thesis by
A21,
A8,
A13;
end;
theorem ::
MATRIX17:4
Th4: M1
is_symmetry_circulant_about p implies (
- M1)
is_symmetry_circulant_about (
- p)
proof
assume
A1: M1
is_symmetry_circulant_about p;
then
A2: (
len p)
= (
width M1);
A3: (
width M1)
= n by
MATRIX_0: 24;
A4: (
Indices (
- M1))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then
A5: (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A6: (
width (
- M1))
= n & (
len (
- p))
= (
len p) by
CARD_1:def 7,
MATRIX_0: 24;
A7: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A8: for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & (i
+ j)
<> ((
len p)
+ 1) holds ((
- M1)
* (i,j))
= ((
- p)
. (((i
+ j)
- 1)
mod (
len (
- p))))
proof
let i,j be
Nat;
assume that
A9:
[i, j]
in (
Indices (
- M1)) and
A10: (i
+ j)
<> ((
len p)
+ 1);
(((i
+ j)
- 1)
mod n)
in (
Seg n) by
A3,
A2,
A4,
A9,
A10,
Lm4;
then
A11: (((i
+ j)
- 1)
mod (
len p))
in (
dom p) by
A2,
A3,
FINSEQ_1:def 3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A7,
A4,
A9,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (((i
+ j)
- 1)
mod (
len p)))) by
A1,
A7,
A4,
A9,
A10
.= ((
- p)
. (((i
+ j)
- 1)
mod (
len p))) by
A11,
FUNCT_1: 13;
hence thesis by
A5,
CARD_1:def 7;
end;
for i,j be
Nat st
[i, j]
in (
Indices (
- M1)) & (i
+ j)
= ((
len p)
+ 1) holds ((
- M1)
* (i,j))
= ((
- p)
. (
len (
- p)))
proof
let i,j be
Nat;
assume that
A12:
[i, j]
in (
Indices (
- M1)) and
A13: (i
+ j)
= ((
len p)
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A4,
A12,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len p)
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A13,
XREAL_1: 9;
then (
len p)
in (
Seg (
len p));
then
A14: (
len p)
in (
dom p) by
FINSEQ_1:def 3;
((
- M1)
* (i,j))
= (
- (M1
* (i,j))) by
A7,
A4,
A12,
MATRIX_3:def 2
.= ((
comp K)
. (M1
* (i,j))) by
VECTSP_1:def 13
.= ((
comp K)
. (p
. (
len p))) by
A1,
A7,
A4,
A12,
A13
.= ((
- p)
. (
len p)) by
A14,
FUNCT_1: 13;
hence thesis by
A5,
CARD_1:def 7;
end;
hence thesis by
A2,
A3,
A6,
A8;
end;
theorem ::
MATRIX17:5
Th5: M1
is_symmetry_circulant_about p & M2
is_symmetry_circulant_about q implies (M1
+ M2)
is_symmetry_circulant_about (p
+ q)
proof
assume that
A1: M1
is_symmetry_circulant_about p;
A2: (
len p)
= (
width M1) by
A1;
A3: (
Indices M2)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A4: (
Indices (M1
+ M2))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A5: (
width M1)
= n by
MATRIX_0: 24;
then
A6: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
assume
A7: M2
is_symmetry_circulant_about q;
then
A8: (
len q)
= (
width M2);
A9: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A10: n
in
NAT by
ORDINAL1:def 12;
A11: (
width M2)
= n by
MATRIX_0: 24;
then (
dom q)
= (
Seg n) by
A8,
FINSEQ_1:def 3;
then
A12: (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A13: (
len (p
+ q))
= n by
A6,
A10,
FINSEQ_1:def 3;
A14: (
width (M1
+ M2))
= n by
MATRIX_0: 24;
A15: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A16: for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & (i
+ j)
<> ((
len (p
+ q))
+ 1) holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (((i
+ j)
- 1)
mod (
len (p
+ q))))
proof
let i,j be
Nat;
assume that
A17:
[i, j]
in (
Indices (M1
+ M2)) and
A18: (i
+ j)
<> ((
len (p
+ q))
+ 1);
A19: (((i
+ j)
- 1)
mod (
len (p
+ q)))
in (
dom (p
+ q)) by
A4,
A15,
A18,
A17,
A12,
A6,
Lm4;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A9,
A4,
A17,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (((i
+ j)
- 1)
mod (
len (p
+ q)))))) by
A7,
A3,
A4,
A11,
A17,
A18,
A13
.= (the
addF of K
. ((p
. (((i
+ j)
- 1)
mod (
len (p
+ q)))),(q
. (((i
+ j)
- 1)
mod (
len (p
+ q)))))) by
A1,
A5,
A9,
A4,
A13,
A17,
A18
.= ((p
+ q)
. (((i
+ j)
- 1)
mod (
len (p
+ q)))) by
A19,
FUNCOP_1: 22;
hence thesis;
end;
for i,j be
Nat st
[i, j]
in (
Indices (M1
+ M2)) & (i
+ j)
= ((
len (p
+ q))
+ 1) holds ((M1
+ M2)
* (i,j))
= ((p
+ q)
. (
len (p
+ q)))
proof
let i,j be
Nat;
assume that
A20:
[i, j]
in (
Indices (M1
+ M2)) and
A21: (i
+ j)
= ((
len (p
+ q))
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A4,
A20,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len (p
+ q))
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A21,
XREAL_1: 9;
then (
len (p
+ q))
in (
Seg (
len (p
+ q)));
then
A22: (
len (p
+ q))
in (
dom (p
+ q)) by
FINSEQ_1:def 3;
((M1
+ M2)
* (i,j))
= ((M1
* (i,j))
+ (M2
* (i,j))) by
A9,
A4,
A20,
MATRIX_3:def 3
.= (the
addF of K
. ((M1
* (i,j)),(q
. (
len (p
+ q))))) by
A7,
A11,
A13,
A3,
A4,
A20,
A21
.= (the
addF of K
. ((p
. (
len (p
+ q))),(q
. (
len (p
+ q))))) by
A1,
A9,
A5,
A4,
A13,
A20,
A21
.= ((p
+ q)
. (
len (p
+ q))) by
A22,
FUNCOP_1: 22;
hence thesis;
end;
hence thesis by
A14,
A13,
A16;
end;
definition
let K be
set, M be
Matrix of K;
::
MATRIX17:def5
attr M is
symmetry_circulant means
:
Def5: ex p be
FinSequence of K st (
len p)
= (
width M) & M
is_symmetry_circulant_about p;
end
definition
let K be non
empty
set;
let p be
FinSequence of K;
::
MATRIX17:def6
attr p is
first-symmetry-of-circulant means ex M be
Matrix of (
len p), K st M
is_symmetry_circulant_about p;
end
definition
let K be non
empty
set, p be
FinSequence of K;
assume
A1: p is
first-symmetry-of-circulant;
::
MATRIX17:def7
func
SCirc (p) ->
Matrix of (
len p), K means
:
Def7: it
is_symmetry_circulant_about p;
existence by
A1;
uniqueness
proof
let M1,M2 be
Matrix of (
len p), K;
assume that
A2: M1
is_symmetry_circulant_about p and
A3: M2
is_symmetry_circulant_about p;
A4: (
Indices M1)
= (
Indices M2) by
MATRIX_0: 26;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds (M1
* (i,j))
= (M2
* (i,j))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
per cases ;
suppose
A6: (i
+ j)
<> ((
len p)
+ 1);
then (M1
* (i,j))
= (p
. (((i
+ j)
- 1)
mod (
len p))) by
A5,
A2;
hence thesis by
A3,
A4,
A5,
A6;
end;
suppose
A7: (i
+ j)
= ((
len p)
+ 1);
then (M1
* (i,j))
= (p
. (
len p)) by
A2,
A5;
hence thesis by
A3,
A4,
A5,
A7;
end;
end;
hence thesis by
MATRIX_0: 27;
end;
end
registration
let n, K, a;
cluster ((n,n)
--> a) ->
symmetry_circulant;
coherence
proof
set p = (n
|-> a);
((n,n)
--> a)
is_symmetry_circulant_about p by
Th2;
hence thesis;
end;
end
registration
let n, K;
cluster
symmetry_circulant for
Matrix of n, K;
existence
proof
take ((n,n)
--> (
0. K));
thus thesis;
end;
end
reserve D for non
empty
set,
t for
FinSequence of D,
A for
Matrix of n, D;
theorem ::
MATRIX17:6
Th6: for p be
FinSequence of D holds
0
< n & A
is_symmetry_circulant_about p implies (A
@ )
is_symmetry_circulant_about p
proof
let p be
FinSequence of D;
assume that
A1:
0
< n and
A2: A
is_symmetry_circulant_about p;
A3: (
len p)
= (
width A) by
A2;
(
width A)
= n & (
len A)
= n by
MATRIX_0: 24;
then
A4: (
width (A
@ ))
= (
len p) by
A1,
A3,
MATRIX_0: 54;
A5: for i,j be
Nat st
[i, j]
in (
Indices (A
@ )) & (i
+ j)
<> ((
len p)
+ 1) holds ((A
@ )
* (i,j))
= (p
. (((i
+ j)
- 1)
mod (
len p)))
proof
let i,j be
Nat;
A6: (
Indices A)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume that
A7:
[i, j]
in (
Indices (A
@ )) and
A8: (i
+ j)
<> ((
len p)
+ 1);
[i, j]
in (
Indices A) by
A7,
MATRIX_0: 26;
then i
in (
Seg n) & j
in (
Seg n) by
A6,
ZFMISC_1: 87;
then
A9:
[j, i]
in (
Indices A) by
A6,
ZFMISC_1: 87;
then ((A
@ )
* (i,j))
= (A
* (j,i)) by
MATRIX_0:def 6;
hence thesis by
A2,
A9,
A8;
end;
for i,j be
Nat st
[i, j]
in (
Indices (A
@ )) & (i
+ j)
= ((
len p)
+ 1) holds ((A
@ )
* (i,j))
= (p
. (
len p))
proof
let i,j be
Nat;
A10: (
Indices A)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
assume that
A11:
[i, j]
in (
Indices (A
@ )) and
A12: (i
+ j)
= ((
len p)
+ 1);
[i, j]
in (
Indices A) by
A11,
MATRIX_0: 26;
then i
in (
Seg n) & j
in (
Seg n) by
A10,
ZFMISC_1: 87;
then
A13:
[j, i]
in (
Indices A) by
A10,
ZFMISC_1: 87;
then ((A
@ )
* (i,j))
= (A
* (j,i)) by
MATRIX_0:def 6;
hence thesis by
A2,
A12,
A13;
end;
hence thesis by
A4,
A5;
end;
registration
let n, K, a;
let M1 be
symmetry_circulant
Matrix of n, K;
cluster (a
* M1) ->
symmetry_circulant;
coherence
proof
consider p be
FinSequence of K such that (
len p)
= (
width M1) and
A1: M1
is_symmetry_circulant_about p by
Def5;
(a
* M1)
is_symmetry_circulant_about (a
* p) by
A1,
Th3;
then ex q be
FinSequence of K st (
len q)
= (
width (a
* M1)) & (a
* M1)
is_symmetry_circulant_about q;
hence thesis;
end;
end
registration
let n, K;
let M1,M2 be
symmetry_circulant
Matrix of n, K;
cluster (M1
+ M2) ->
symmetry_circulant;
coherence
proof
let M be
Matrix of n, K such that
A1: M
= (M1
+ M2);
consider p be
FinSequence of K such that
A2: (
len p)
= (
width M1) and
A3: M1
is_symmetry_circulant_about p by
Def5;
(
width M1)
= n by
MATRIX_0: 24;
then
A4: (
dom p)
= (
Seg n) by
A2,
FINSEQ_1:def 3;
consider q be
FinSequence of K such that
A5: (
len q)
= (
width M2) and
A6: M2
is_symmetry_circulant_about q by
Def5;
A7: n
in
NAT by
ORDINAL1:def 12;
(
width M2)
= n by
MATRIX_0: 24;
then (
dom q)
= (
Seg n) by
A5,
FINSEQ_1:def 3;
then (
dom (p
+ q))
= (
dom p) by
A4,
POLYNOM1: 1;
then
A8: (
len (p
+ q))
= n by
A4,
A7,
FINSEQ_1:def 3;
(
width (M1
+ M2))
= n by
MATRIX_0: 24;
then ex r be
FinSequence of K st (
len r)
= (
width (M1
+ M2)) & (M1
+ M2)
is_symmetry_circulant_about r by
A8,
A3,
A6,
Th5;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1 be
symmetry_circulant
Matrix of n, K;
cluster (
- M1) ->
symmetry_circulant;
coherence
proof
let N be
Matrix of n, K such that
A1: N
= (
- M1);
consider p be
FinSequence of K such that (
len p)
= (
width M1) and
A2: M1
is_symmetry_circulant_about p by
Def5;
(
- M1)
is_symmetry_circulant_about (
- p) by
A2,
Th4;
then ex r be
FinSequence of K st (
len r)
= (
width (
- M1)) & (
- M1)
is_symmetry_circulant_about r;
hence thesis by
A1;
end;
end
registration
let n, K;
let M1,M2 be
symmetry_circulant
Matrix of n, K;
cluster (M1
- M2) ->
symmetry_circulant;
coherence ;
end
theorem ::
MATRIX17:7
A is
symmetry_circulant & n
>
0 implies (A
@ ) is
symmetry_circulant
proof
assume that
A1: A is
symmetry_circulant and
A2: n
>
0 ;
consider p be
FinSequence of D such that
A3: (
len p)
= (
width A) and
A4: A
is_symmetry_circulant_about p by
A1;
(
width A)
= n & (
len A)
= n by
MATRIX_0: 24;
then (
width (A
@ ))
= (
len p) by
A2,
A3,
MATRIX_0: 54;
then
consider p be
FinSequence of D such that
A5: (
len p)
= (
width (A
@ )) & (A
@ )
is_symmetry_circulant_about p by
A2,
A4,
Th6;
take p;
thus thesis by
A5;
end;
theorem ::
MATRIX17:8
Th8: p is
first-symmetry-of-circulant implies (
- p) is
first-symmetry-of-circulant
proof
set n = (
len p);
assume p is
first-symmetry-of-circulant;
then
consider M1 be
Matrix of (
len p), K such that
A1: M1
is_symmetry_circulant_about p;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A2: (
len (
- p))
= (
len p) by
CARD_1:def 7;
(
- M1)
is_symmetry_circulant_about (
- p) by
A1,
Th4;
then
consider M2 be
Matrix of (
len (
- p)), K such that
A3: M2
is_symmetry_circulant_about (
- p) by
A2;
take M2;
thus thesis by
A3;
end;
theorem ::
MATRIX17:9
p is
first-symmetry-of-circulant implies (
SCirc (
- p))
= (
- (
SCirc p))
proof
set n = (
len p);
A1: (
len (
SCirc p))
= (
len p) & (
width (
SCirc p))
= (
len p) by
MATRIX_0: 24;
A2: (
Indices (
SCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
then (
- p) is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 113;
then
A3: (
len (
- p))
= (
len p) by
CARD_1:def 7;
assume
A4: p is
first-symmetry-of-circulant;
then (
- p) is
first-symmetry-of-circulant by
Th8;
then
A5: (
SCirc (
- p))
is_symmetry_circulant_about (
- p) by
Def7;
A6: (
SCirc p)
is_symmetry_circulant_about p by
A4,
Def7;
A7: for i,j be
Nat st
[i, j]
in (
Indices (
SCirc p)) holds ((
SCirc (
- p))
* (i,j))
= (
- ((
SCirc p)
* (i,j)))
proof
let i,j be
Nat;
assume
A8:
[i, j]
in (
Indices (
SCirc p));
now
per cases ;
suppose
A9: (i
+ j)
<> ((
len p)
+ 1);
(((i
+ j)
- 1)
mod n)
in (
Seg n) by
A2,
A8,
A9,
Lm4;
then
A10: (((i
+ j)
- 1)
mod (
len p))
in (
dom p) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
SCirc (
- p))) by
A3,
A8,
MATRIX_0: 26;
then ((
SCirc (
- p))
* (i,j))
= ((
- p)
. (((i
+ j)
- 1)
mod (
len (
- p)))) by
A5,
A9,
A3
.= ((
comp K)
. (p
. (((i
+ j)
- 1)
mod (
len p)))) by
A3,
A10,
FUNCT_1: 13
.= ((
comp K)
. ((
SCirc p)
* (i,j))) by
A6,
A8,
A9
.= (
- ((
SCirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
suppose
A11: (i
+ j)
= ((
len p)
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A2,
A8,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len p)
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A11,
XREAL_1: 9;
then (
len p)
in (
Seg (
len p));
then
A12: (
len p)
in (
dom p) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
SCirc (
- p))) by
A3,
A8,
MATRIX_0: 26;
then ((
SCirc (
- p))
* (i,j))
= ((
- p)
. (
len (
- p))) by
A5,
A11,
A3
.= ((
comp K)
. (p
. (
len p))) by
A3,
A12,
FUNCT_1: 13
.= ((
comp K)
. ((
SCirc p)
* (i,j))) by
A6,
A8,
A11
.= (
- ((
SCirc p)
* (i,j))) by
VECTSP_1:def 13;
hence thesis;
end;
end;
hence thesis;
end;
(
len (
SCirc (
- p)))
= (
len p) & (
width (
SCirc (
- p)))
= (
len p) by
A3,
MATRIX_0: 24;
hence thesis by
A1,
A7,
MATRIX_3:def 2;
end;
theorem ::
MATRIX17:10
Th10: p is
first-symmetry-of-circulant & q is
first-symmetry-of-circulant & (
len p)
= (
len q) implies (p
+ q) is
first-symmetry-of-circulant
proof
set n = (
len p);
assume that
A1: p is
first-symmetry-of-circulant and
A2: q is
first-symmetry-of-circulant and
A3: (
len p)
= (
len q);
consider M2 be
Matrix of n, K such that
A4: M2
is_symmetry_circulant_about q by
A2,
A3;
A5: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
(
dom q)
= (
Seg n) by
A3,
FINSEQ_1:def 3;
then (
dom (p
+ q))
= (
dom p) by
A5,
POLYNOM1: 1;
then
A6: (
len (p
+ q))
= n by
A5,
FINSEQ_1:def 3;
consider M1 be
Matrix of n, K such that
A7: M1
is_symmetry_circulant_about p by
A1;
(
width (M1
+ M2))
= n by
MATRIX_0: 24;
then
consider M3 be
Matrix of (
len (p
+ q)), K such that (
len (p
+ q))
= (
width M3) and
A8: M3
is_symmetry_circulant_about (p
+ q) by
A6,
A4,
A7,
Th5;
take M3;
thus thesis by
A8;
end;
theorem ::
MATRIX17:11
Th11: (
len p)
= (
len q) & p is
first-symmetry-of-circulant & q is
first-symmetry-of-circulant implies (
SCirc (p
+ q))
= ((
SCirc p)
+ (
SCirc q))
proof
set n = (
len p);
assume that
A1: (
len p)
= (
len q) and
A2: p is
first-symmetry-of-circulant and
A3: q is
first-symmetry-of-circulant;
A4: (
SCirc q)
is_symmetry_circulant_about q & (
Indices (
SCirc p))
= (
Indices (
SCirc q)) by
A1,
A3,
Def7,
MATRIX_0: 26;
(p
+ q) is
first-symmetry-of-circulant by
A1,
A2,
A3,
Th10;
then
A5: (
SCirc (p
+ q))
is_symmetry_circulant_about (p
+ q) by
Def7;
A6: (
dom p)
= (
Seg n) by
FINSEQ_1:def 3;
A7: (
SCirc p)
is_symmetry_circulant_about p by
A2,
Def7;
A8: (
dom (p
+ q))
= (
Seg (
len (p
+ q))) by
FINSEQ_1:def 3;
A9: (
Indices (
SCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
(
dom q)
= (
Seg n) by
A1,
FINSEQ_1:def 3;
then (
dom (p
+ q))
= (
dom p) by
A6,
POLYNOM1: 1;
then
A10: (
len (p
+ q))
= n by
A6,
FINSEQ_1:def 3;
then
A11: (
Indices (
SCirc p))
= (
Indices (
SCirc (p
+ q))) by
MATRIX_0: 26;
A12: for i,j be
Nat holds
[i, j]
in (
Indices (
SCirc p)) implies ((
SCirc (p
+ q))
* (i,j))
= (((
SCirc p)
* (i,j))
+ ((
SCirc q)
* (i,j)))
proof
let i,j be
Nat;
assume
A13:
[i, j]
in (
Indices (
SCirc p));
now
per cases ;
suppose
A14: (i
+ j)
<> ((
len (p
+ q))
+ 1);
A15: (((i
+ j)
- 1)
mod n)
in (
Seg n) by
A9,
A13,
A14,
A10,
Lm4;
((
SCirc (p
+ q))
* (i,j))
= ((p
+ q)
. (((i
+ j)
- 1)
mod (
len (p
+ q)))) by
A5,
A11,
A13,
A14
.= (the
addF of K
. ((p
. (((i
+ j)
- 1)
mod (
len (p
+ q)))),(q
. (((i
+ j)
- 1)
mod (
len (p
+ q)))))) by
A8,
A10,
A15,
FUNCOP_1: 22
.= (the
addF of K
. (((
SCirc p)
* (i,j)),(q
. (((i
+ j)
- 1)
mod (
len q))))) by
A1,
A10,
A7,
A13,
A14
.= (((
SCirc p)
* (i,j))
+ ((
SCirc q)
* (i,j))) by
A1,
A4,
A13,
A14,
A10;
hence thesis;
end;
suppose
A16: (i
+ j)
= ((
len (p
+ q))
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A9,
A13,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len (p
+ q))
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A16,
XREAL_1: 9;
then (
len (p
+ q))
in (
Seg (
len (p
+ q)));
then
A17: (
len (p
+ q))
in (
dom (p
+ q)) by
FINSEQ_1:def 3;
((
SCirc (p
+ q))
* (i,j))
= ((p
+ q)
. (
len (p
+ q))) by
A5,
A11,
A13,
A16
.= (the
addF of K
. ((p
. (
len (p
+ q))),(q
. (
len (p
+ q))))) by
A17,
FUNCOP_1: 22
.= (the
addF of K
. (((
SCirc p)
* (i,j)),(q
. (
len q)))) by
A1,
A10,
A7,
A13,
A16
.= (((
SCirc p)
* (i,j))
+ ((
SCirc q)
* (i,j))) by
A4,
A13,
A16,
A1,
A10;
hence thesis;
end;
end;
hence thesis;
end;
A18: (
len (
SCirc p))
= (
len p) & (
width (
SCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
SCirc (p
+ q)))
= (
len p) & (
width (
SCirc (p
+ q)))
= (
len p) by
A10,
MATRIX_0: 24;
hence thesis by
A18,
A12,
MATRIX_3:def 3;
end;
theorem ::
MATRIX17:12
Th12: p is
first-symmetry-of-circulant implies (a
* p) is
first-symmetry-of-circulant
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume p is
first-symmetry-of-circulant;
then
consider M1 be
Matrix of n, K such that
A2: M1
is_symmetry_circulant_about p;
(a
* M1)
is_symmetry_circulant_about (a
* p) by
A2,
Th3;
then
consider M2 be
Matrix of (
len (a
* p)), K such that
A3: M2
is_symmetry_circulant_about (a
* p) by
A1;
take M2;
thus thesis by
A3;
end;
theorem ::
MATRIX17:13
Th13: p is
first-symmetry-of-circulant implies (
SCirc (a
* p))
= (a
* (
SCirc p))
proof
set n = (
len p);
A1: (
len (a
* p))
= (
len p) by
MATRIXR1: 16;
assume
A2: p is
first-symmetry-of-circulant;
then (a
* p) is
first-symmetry-of-circulant by
Th12;
then
A3: (
SCirc (a
* p))
is_symmetry_circulant_about (a
* p) by
Def7;
A4: (
Indices (
SCirc p))
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A5: (
SCirc p)
is_symmetry_circulant_about p by
A2,
Def7;
A6: for i,j be
Nat st
[i, j]
in (
Indices (
SCirc p)) holds ((
SCirc (a
* p))
* (i,j))
= (a
* ((
SCirc p)
* (i,j)))
proof
let i,j be
Nat;
A7: (
dom (a
* p))
= (
Seg (
len (a
* p))) by
FINSEQ_1:def 3;
assume
A8:
[i, j]
in (
Indices (
SCirc p));
now
per cases ;
suppose
A9: (i
+ j)
<> ((
len p)
+ 1);
A10: (((i
+ j)
- 1)
mod n)
in (
Seg n) by
A4,
A8,
A9,
Lm4;
A11: (
dom p)
= (
Seg (
len p)) by
FINSEQ_1:def 3;
[i, j]
in (
Indices (
SCirc (a
* p))) by
A1,
A8,
MATRIX_0: 26;
then ((
SCirc (a
* p))
* (i,j))
= ((a
* p)
. (((i
+ j)
- 1)
mod (
len (a
* p)))) by
A1,
A3,
A9
.= ((a
* p)
/. (((i
+ j)
- 1)
mod (
len p))) by
A1,
A10,
A7,
PARTFUN1:def 6
.= (a
* (p
/. (((i
+ j)
- 1)
mod (
len p)))) by
A10,
A11,
POLYNOM1:def 1
.= ((a
multfield )
. (p
/. (((i
+ j)
- 1)
mod (
len p)))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (((i
+ j)
- 1)
mod (
len p)))) by
A10,
A11,
PARTFUN1:def 6
.= ((a
multfield )
. ((
SCirc p)
* (i,j))) by
A5,
A8,
A9
.= (a
* ((
SCirc p)
* (i,j))) by
FVSUM_1: 49;
hence thesis;
end;
suppose
A12: (i
+ j)
= ((
len p)
+ 1);
A13:
[i, j]
in (
Indices (
SCirc (a
* p))) by
A1,
A8,
MATRIX_0: 26;
i
in (
Seg n) & j
in (
Seg n) by
A4,
A8,
ZFMISC_1: 87;
then 1
<= i & 1
<= j by
FINSEQ_1: 1;
then (1
+ 1)
<= (i
+ j) by
XREAL_1: 7;
then (((
len p)
+ 1)
- 1)
>= ((1
+ 1)
- 1) by
A12,
XREAL_1: 9;
then
A14: (
len p)
in (
Seg (
len p));
then
A15: (
len p)
in (
dom (a
* p)) by
A1,
FINSEQ_1:def 3;
A16: (
len p)
in (
dom p) by
A14,
FINSEQ_1:def 3;
((
SCirc (a
* p))
* (i,j))
= ((a
* p)
. (
len (a
* p))) by
A1,
A3,
A12,
A13
.= ((a
* p)
/. (
len p)) by
A1,
A15,
PARTFUN1:def 6
.= (a
* (p
/. (
len p))) by
A16,
POLYNOM1:def 1
.= ((a
multfield )
. (p
/. (
len p))) by
FVSUM_1: 49
.= ((a
multfield )
. (p
. (
len p))) by
A16,
PARTFUN1:def 6
.= ((a
multfield )
. ((
SCirc p)
* (i,j))) by
A5,
A8,
A12
.= (a
* ((
SCirc p)
* (i,j))) by
FVSUM_1: 49;
hence thesis;
end;
end;
hence thesis;
end;
A17: (
len (
SCirc p))
= (
len p) & (
width (
SCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
SCirc (a
* p)))
= (
len p) & (
width (
SCirc (a
* p)))
= (
len p) by
A1,
MATRIX_0: 24;
hence thesis by
A17,
A6,
MATRIX_3:def 5;
end;
theorem ::
MATRIX17:14
p is
first-symmetry-of-circulant implies ((a
* (
SCirc p))
+ (b
* (
SCirc p)))
= (
SCirc ((a
+ b)
* p))
proof
A1: (
len (b
* p))
= (
len p) by
MATRIXR1: 16;
A2: p is
Element of ((
len p)
-tuples_on the
carrier of K) by
FINSEQ_2: 92;
assume
A3: p is
first-symmetry-of-circulant;
then
A4: (a
* p) is
first-symmetry-of-circulant & (b
* p) is
first-symmetry-of-circulant by
Th12;
(a
* (
SCirc p))
= (
SCirc (a
* p)) & (b
* (
SCirc p))
= (
SCirc (b
* p)) by
A3,
Th13;
then ((a
* (
SCirc p))
+ (b
* (
SCirc p)))
= (
SCirc ((a
* p)
+ (b
* p))) by
A4,
A1,
Th11,
MATRIXR1: 16;
hence thesis by
A2,
FVSUM_1: 55;
end;
theorem ::
MATRIX17:15
p is
first-symmetry-of-circulant & q is
first-symmetry-of-circulant & (
len p)
= (
len q) implies ((a
* (
SCirc p))
+ (a
* (
SCirc q)))
= (
SCirc (a
* (p
+ q)))
proof
assume that
A1: p is
first-symmetry-of-circulant & q is
first-symmetry-of-circulant and
A2: (
len p)
= (
len q);
A3: (
len (
SCirc p))
= (
len p) & (
width (
SCirc p))
= (
len p) by
MATRIX_0: 24;
(
len (
SCirc q))
= (
len p) & (
width (
SCirc q))
= (
len p) by
A2,
MATRIX_0: 24;
then ((a
* (
SCirc p))
+ (a
* (
SCirc q)))
= (a
* ((
SCirc p)
+ (
SCirc q))) by
A3,
MATRIX_5: 20
.= (a
* (
SCirc (p
+ q))) by
A1,
A2,
Th11
.= (
SCirc (a
* (p
+ q))) by
A1,
A2,
Th10,
Th13;
hence thesis;
end;
theorem ::
MATRIX17:16
p is
first-symmetry-of-circulant & q is
first-symmetry-of-circulant & (
len p)
= (
len q) implies ((a
* (
SCirc p))
+ (b
* (
SCirc q)))
= (
SCirc ((a
* p)
+ (b
* q)))
proof
set n = (
len p);
assume that
A1: p is
first-symmetry-of-circulant and
A2: q is
first-symmetry-of-circulant and
A3: (
len p)
= (
len q);
A4: (a
* p) is
first-symmetry-of-circulant & (b
* q) is
first-symmetry-of-circulant by
A1,
A2,
Th12;
A5: (
len (b
* q))
= n by
A3,
MATRIXR1: 16;
((a
* (
SCirc p))
+ (b
* (
SCirc q)))
= ((
SCirc (a
* p))
+ (b
* (
SCirc q))) by
A1,
Th13
.= ((
SCirc (a
* p))
+ (
SCirc (b
* q))) by
A2,
Th13
.= (
SCirc ((a
* p)
+ (b
* q))) by
A4,
A5,
Th11,
MATRIXR1: 16;
hence thesis;
end;
theorem ::
MATRIX17:17
Th17: M1 is
symmetry_circulant implies (M1
@ )
= M1
proof
assume M1 is
symmetry_circulant;
then
consider p be
FinSequence of K such that (
len p)
= (
width M1) and
A1: M1
is_symmetry_circulant_about p;
A2: (
Indices M1)
=
[:(
Seg n), (
Seg n):] by
MATRIX_0: 24;
A3: (
len M1)
= n & (
width M1)
= n by
MATRIX_0: 24;
A4: (
len (M1
@ ))
= n & (
width (M1
@ ))
= n by
MATRIX_0: 24;
for i,j be
Nat st
[i, j]
in (
Indices M1) holds ((M1
@ )
* (i,j))
= (M1
* (i,j))
proof
let i,j be
Nat;
assume
A5:
[i, j]
in (
Indices M1);
per cases ;
suppose
A6: (i
+ j)
<> ((
len p)
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A2,
A5,
ZFMISC_1: 87;
then
A7:
[j, i]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
then ((M1
@ )
* (i,j))
= (M1
* (j,i)) by
A2,
MATRIX_0:def 6
.= (p
. (((i
+ j)
- 1)
mod (
len p))) by
A1,
A7,
A6,
A2;
hence thesis by
A1,
A5,
A6;
end;
suppose
A8: (i
+ j)
= ((
len p)
+ 1);
i
in (
Seg n) & j
in (
Seg n) by
A5,
A2,
ZFMISC_1: 87;
then
A9:
[j, i]
in
[:(
Seg n), (
Seg n):] by
ZFMISC_1: 87;
((M1
@ )
* (i,j))
= (M1
* (j,i)) by
A2,
A9,
MATRIX_0:def 6
.= (p
. (
len p)) by
A1,
A9,
A8,
A2;
hence thesis by
A1,
A8,
A5;
end;
end;
hence thesis by
A3,
A4,
MATRIX_0: 21;
end;
registration
let n, K;
cluster
symmetry_circulant ->
symmetric for
Matrix of n, K;
coherence by
Th17;
end