newton01.miz
begin
reserve a,b,c,d,x,j,k,l,m,n for
Nat,
p,q,t,z,u,v for
Integer,
a1,b1,c1,d1 for
Complex;
registration
let u,v be
even
Integer;
cluster (u
- v) ->
even;
coherence
proof
((u
+ 1)
- (v
+ 1)) is
even;
hence thesis;
end;
end
registration
let u be
odd
Integer;
let k;
cluster (u
|^ k) ->
odd;
coherence
proof
A1: 2
divides u iff
|.2.|
divides
|.u.| by
INT_2: 16;
A2:
|.u.| is
odd implies (
|.u.|
|^ k) is
odd by
PEPIN: 20;
|.(u
|^ k).|
= (
|.u.|
|^ k) by
TAYLOR_2: 1;
hence thesis by
A1,
A2,
INT_2: 16;
end;
end
registration
let k be
positive
Nat;
let u be
even
Integer;
cluster (u
|^ k) ->
even;
coherence
proof
A0: 2
=
|.2.|;
A2: k
>
0 &
|.u.| is
even implies (
|.u.|
|^ k) is
even by
PEPIN: 21;
|.(u
|^ k).|
= (
|.u.|
|^ k) by
TAYLOR_2: 1;
hence thesis by
A2,
A0,
ABIAN:def 1,
INT_2: 16;
end;
end
Lm10: ((a1
+ b1)
|^ 2)
= (((a1
|^ 2)
+ ((2
* a1)
* b1))
+ (b1
|^ 2))
proof
((a1
+ b1)
|^ 2)
= ((a1
+ b1)
^2 ) & (a1
|^ 2)
= (a1
^2 ) & (b1
|^ 2)
= (b1
^2 ) by
NEWTON: 81;
hence thesis by
SQUARE_1: 4;
end;
theorem ::
NEWTON01:1
Th1: ((a1
|^ 2)
- (b1
|^ 2))
= ((a1
- b1)
* (a1
+ b1))
proof
(a1
|^ 2)
= (a1
^2 ) & (b1
|^ 2)
= (b1
^2 ) by
NEWTON: 81;
hence thesis by
SQUARE_1: 8;
end;
theorem ::
NEWTON01:2
Th2: ((((2
* a1)
+ 1)
|^ 2)
+ (((2
* (a1
|^ 2))
+ (2
* a1))
|^ 2))
= ((((2
* (a1
|^ 2))
+ (2
* a1))
+ 1)
|^ 2)
proof
((((2
* (a1
|^ 2))
+ (2
* a1))
+ 1)
|^ 2)
= ((((2
* (a1
|^ 2))
+ (2
* a1))
+ 1)
* (((2
* (a1
|^ 2))
+ (2
* a1))
+ 1)) by
NEWTON: 81
.= (((((((2
* (a1
|^ 2))
* (2
* (a1
|^ 2)))
+ ((2
* a1)
* (2
* a1)))
+ 1)
+ ((2
* (2
* a1))
* (2
* (a1
|^ 2))))
+ (2
* (2
* (a1
|^ 2))))
+ (2
* (2
* a1)))
.= (((((((2
* (a1
|^ 2))
|^ 2)
+ ((2
* a1)
* (2
* a1)))
+ 1)
+ ((2
* (2
* a1))
* (2
* (a1
|^ 2))))
+ (2
* (2
* (a1
|^ 2))))
+ (2
* (2
* a1))) by
NEWTON: 81
.= (((((((2
* (a1
|^ 2))
|^ 2)
+ ((2
* a1)
|^ 2))
+ 1)
+ ((2
* (2
* (a1
|^ 2)))
* (2
* a1)))
+ (2
* (2
* (a1
|^ 2))))
+ ((2
* (2
* a1))
* 1)) by
NEWTON: 81
.= (((((2
* (a1
|^ 2))
|^ 2)
+ ((2
* (2
* (a1
|^ 2)))
* (2
* a1)))
+ ((2
* a1)
|^ 2))
+ ((((2
* 2)
* (a1
|^ 2))
+ ((2
* (2
* a1))
* 1))
+ (1
|^ 2)))
.= ((((2
* (a1
|^ 2))
+ (2
* a1))
|^ 2)
+ ((((2
* 2)
* (a1
|^ 2))
+ ((2
* (2
* a1))
* 1))
+ (1
|^ 2))) by
Lm10
.= ((((2
* (a1
|^ 2))
+ (2
* a1))
|^ 2)
+ ((((2
|^ 2)
* (a1
|^ 2))
+ ((2
* (2
* a1))
* 1))
+ (1
|^ 2))) by
NEWTON: 81
.= ((((2
* (a1
|^ 2))
+ (2
* a1))
|^ 2)
+ ((((2
* a1)
|^ 2)
+ ((2
* (2
* a1))
* 1))
+ (1
|^ 2))) by
NEWTON: 7;
hence thesis by
Lm10;
end;
theorem ::
NEWTON01:3
(((a1
|^ 2)
+ (a1
* b1))
+ (b1
|^ 2))
= (((3
* ((a1
+ b1)
|^ 2))
+ ((a1
- b1)
|^ 2))
/ 4)
proof
A1: ((a1
+ b1)
|^ 2)
= ((a1
+ b1)
* (a1
+ b1)) by
NEWTON: 81
.= (((a1
* a1)
+ ((2
* a1)
* b1))
+ (b1
* b1))
.= (((a1
|^ 2)
+ ((2
* a1)
* b1))
+ (b1
* b1)) by
NEWTON: 81
.= (((a1
|^ 2)
+ ((2
* a1)
* b1))
+ (b1
|^ 2)) by
NEWTON: 81;
((a1
- b1)
|^ 2)
= ((a1
- b1)
* (a1
- b1)) by
NEWTON: 81
.= (((a1
* a1)
- ((2
* a1)
* b1))
+ (b1
* b1))
.= (((a1
|^ 2)
- ((2
* a1)
* b1))
+ (b1
* b1)) by
NEWTON: 81
.= (((a1
|^ 2)
- ((2
* a1)
* b1))
+ (b1
|^ 2)) by
NEWTON: 81;
hence thesis by
A1;
end;
theorem ::
NEWTON01:4
a is
odd implies ex b st ((a
|^ 2)
+ (b
|^ 2))
= ((b
+ 1)
|^ 2)
proof
assume a is
odd;
then
consider k be
Nat such that
A2: a
= ((2
* k)
+ 1) by
ABIAN: 9;
((((2
* k)
+ 1)
|^ 2)
+ (((2
* (k
|^ 2))
+ (2
* k))
|^ 2))
= ((((2
* (k
|^ 2))
+ (2
* k))
+ 1)
|^ 2) by
Th2;
hence thesis by
A2;
end;
theorem ::
NEWTON01:5
Th5: (((((a1
|^ m)
+ (b1
|^ m))
* ((a1
|^ n)
- (b1
|^ n)))
+ (((a1
|^ n)
+ (b1
|^ n))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
= ((a1
|^ (m
+ n))
- (b1
|^ (m
+ n)))
proof
(((((a1
|^ m)
+ (b1
|^ m))
* ((a1
|^ n)
- (b1
|^ n)))
+ (((a1
|^ n)
+ (b1
|^ n))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
= ((((((a1
|^ m)
* (a1
|^ n))
- ((b1
|^ m)
* (b1
|^ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
- ((b1
|^ n)
* (b1
|^ m)))
/ 2)
.= (((((a1
|^ (m
+ n))
- ((b1
|^ m)
* (b1
|^ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
- ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
- (b1
|^ (m
+ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
- ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
- (b1
|^ (m
+ n)))
+ (a1
|^ (m
+ n)))
- ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
- (b1
|^ (m
+ n)))
+ (a1
|^ (n
+ m)))
- (b1
|^ (n
+ m)))
/ 2) by
NEWTON: 8
.= ((a1
|^ (m
+ n))
- (b1
|^ (m
+ n)));
hence thesis;
end;
Lm0: ((a
|^
0 )
+ (b
|^
0 ))
> (c
|^
0 )
proof
(a
|^
0 )
= 1 & (b
|^
0 )
= 1 & (c
|^
0 )
= 1 by
NEWTON: 4;
hence thesis;
end;
theorem ::
NEWTON01:6
Th6: ((a
|^ m)
+ (b
|^ m))
<= (c
|^ m) implies a
<= c
proof
assume
A0: ((a
|^ m)
+ (b
|^ m))
<= (c
|^ m);
m
=
0 implies ((a
|^ m)
+ (b
|^ m))
> (c
|^ m) by
Lm0;
then
A2e: (
0
+ 1)
<= m by
A0,
NAT_1: 13;
((a
|^ m)
+ (b
|^ m))
<= ((c
|^ m)
+ (b
|^ m)) by
A0,
NAT_1: 12;
then (((a
|^ m)
+ (b
|^ m))
- (b
|^ m))
<= (((c
|^ m)
+ (b
|^ m))
- (b
|^ m)) by
XREAL_1: 9;
hence thesis by
A2e,
PREPOWER: 10;
end;
theorem ::
NEWTON01:7
((a1
+ b1)
|^ (n
+ 1))
= (((a1
|^ (n
+ 1))
+ (b1
|^ (n
+ 1)))
+ ((a1
* b1)
* c1)) implies ((a1
+ b1)
|^ (n
+ 2))
= (((a1
|^ (n
+ 2))
+ (b1
|^ (n
+ 2)))
+ ((a1
* b1)
* (((a1
|^ n)
+ (b1
|^ n))
+ (c1
* (a1
+ b1)))))
proof
assume ((a1
+ b1)
|^ (n
+ 1))
= (((a1
|^ (n
+ 1))
+ (b1
|^ (n
+ 1)))
+ ((a1
* b1)
* c1));
then ((a1
+ b1)
|^ ((n
+ 1)
+ 1))
= ((a1
+ b1)
* (((a1
|^ (n
+ 1))
+ (b1
|^ (n
+ 1)))
+ ((a1
* b1)
* c1))) by
NEWTON: 6
.= (((((a1
* (a1
|^ (n
+ 1)))
+ (b1
* (a1
|^ (n
+ 1))))
+ (a1
* (b1
|^ (n
+ 1))))
+ (b1
* (b1
|^ (n
+ 1))))
+ ((((a1
+ b1)
* a1)
* b1)
* c1))
.= (((((a1
|^ ((n
+ 1)
+ 1))
+ (b1
* (a1
|^ (n
+ 1))))
+ (a1
* (b1
|^ (n
+ 1))))
+ (b1
* (b1
|^ (n
+ 1))))
+ ((a1
* b1)
* (c1
* (a1
+ b1)))) by
NEWTON: 6
.= (((((a1
|^ (n
+ 2))
+ (b1
* (a1
* (a1
|^ n))))
+ (a1
* (b1
|^ (n
+ 1))))
+ (b1
* (b1
|^ (n
+ 1))))
+ (((a1
* b1)
* c1)
* (a1
+ b1))) by
NEWTON: 6
.= (((((a1
|^ (n
+ 2))
+ ((b1
* a1)
* (a1
|^ n)))
+ (a1
* (b1
* (b1
|^ n))))
+ (b1
* (b1
|^ (n
+ 1))))
+ (((a1
* b1)
* c1)
* (a1
+ b1))) by
NEWTON: 6
.= (((((a1
|^ (n
+ 2))
+ ((b1
* a1)
* (a1
|^ n)))
+ ((a1
* b1)
* (b1
|^ n)))
+ (b1
|^ ((n
+ 1)
+ 1)))
+ ((a1
* b1)
* ((c1
* a1)
+ (c1
* b1)))) by
NEWTON: 6
.= (((a1
|^ (n
+ 2))
+ (b1
|^ (n
+ 2)))
+ ((a1
* b1)
* (((a1
|^ n)
+ (b1
|^ n))
+ (c1
* (a1
+ b1)))));
hence thesis;
end;
theorem ::
NEWTON01:8
Th8: (((((a1
|^ m)
+ (b1
|^ m))
* ((a1
|^ n)
+ (b1
|^ n)))
+ (((a1
|^ n)
- (b1
|^ n))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
= ((a1
|^ (m
+ n))
+ (b1
|^ (m
+ n)))
proof
thus (((((a1
|^ m)
+ (b1
|^ m))
* ((a1
|^ n)
+ (b1
|^ n)))
+ (((a1
|^ n)
- (b1
|^ n))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
= ((((((a1
|^ m)
* (a1
|^ n))
+ ((b1
|^ m)
* (b1
|^ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
+ ((b1
|^ n)
* (b1
|^ m)))
/ 2)
.= (((((a1
|^ (m
+ n))
+ ((b1
|^ m)
* (b1
|^ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
+ ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
+ (b1
|^ (m
+ n)))
+ ((a1
|^ n)
* (a1
|^ m)))
+ ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
+ (b1
|^ (m
+ n)))
+ (a1
|^ (m
+ n)))
+ ((b1
|^ n)
* (b1
|^ m)))
/ 2) by
NEWTON: 8
.= (((((a1
|^ (m
+ n))
+ (b1
|^ (m
+ n)))
+ (a1
|^ (n
+ m)))
+ (b1
|^ (n
+ m)))
/ 2) by
NEWTON: 8
.= ((a1
|^ (m
+ n))
+ (b1
|^ (m
+ n)));
end;
Lm3a: a
<= b implies (a
|^ n)
<= (b
|^ n)
proof
per cases by
NAT_1: 14;
suppose
A1: n
=
0 ;
(a
|^
0 )
= 1 & (b
|^
0 )
= 1 by
NEWTON: 4;
hence thesis by
A1;
end;
suppose
A1: 1
<= n;
assume a
<= b;
per cases by
XXREAL_0: 1;
suppose a
< b;
hence thesis by
A1,
PREPOWER: 10;
end;
suppose a
= b;
hence thesis;
end;
end;
end;
Lm4a: (a
|^ n)
> (b
|^ n) implies (a
|^ (n
+ 1))
> (b
|^ (n
+ 1))
proof
assume
A1: (a
|^ n)
> (b
|^ n);
A2: (a
|^ (n
+ 1))
= (a
* (a
|^ n)) & (b
|^ (n
+ 1))
= (b
* (b
|^ n)) by
NEWTON: 6;
A3: a
> b by
A1,
Lm3a;
then
A4: (a
* (a
|^ n))
> (a
* (b
|^ n)) by
A1,
XREAL_1: 68;
((b
|^ n)
* a)
>= ((b
|^ n)
* b) by
A3,
XREAL_1: 66;
hence thesis by
A2,
A4,
XXREAL_0: 2;
end;
Lm5c: b
>
0 implies a
< (a
+ (b
|^ m))
proof
assume b
>
0 ;
then (b
|^ m)
>
0 by
PREPOWER: 6;
hence thesis by
NAT_1: 16;
end;
Lm5d: ((a
+ x)
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 implies x
>
0
proof
assume ((a
+ x)
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 ;
then x
<>
0 by
Lm5c;
hence thesis;
end;
theorem ::
NEWTON01:9
Th9: ((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
+ b1))
+ ((a1
- b1)
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
proof
thus ((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
+ b1))
+ (((a1
|^ 1)
- (b1
|^ 1))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2) by
Th8
.= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
+ b1))
+ ((a1
- b1)
* ((a1
|^ m)
- (b1
|^ m))))
/ 2);
end;
theorem ::
NEWTON01:10
Th10: ((a
- b)
* ((a
|^ m)
- (b
|^ m)))
>=
0
proof
A0: (a
|^
0 )
= 1 & (b
|^
0 )
= 1 by
NEWTON: 4;
per cases ;
suppose
A1: ((a
|^ m)
- (b
|^ m))
>=
0 ;
then (((a
|^ m)
- (b
|^ m))
+ (b
|^ m))
>= (
0
+ (b
|^ m)) by
XREAL_1: 7;
then a
>= b or m
< 1 by
PREPOWER: 10;
then (a
- b)
>= (b
- b) or m
=
0 by
XREAL_1: 9,
NAT_1: 14;
hence thesis by
A0,
A1;
end;
suppose
A2: ((a
|^ m)
- (b
|^ m))
<
0 ;
then (((a
|^ m)
- (b
|^ m))
+ (b
|^ m))
< (
0
+ (b
|^ m)) by
XREAL_1: 8;
then (a
- b)
< (b
- b) by
Lm3a,
XREAL_1: 9;
hence thesis by
A2;
end;
end;
theorem ::
NEWTON01:11
((a
|^ (m
+ 1))
+ (b
|^ (m
+ 1)))
>= ((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
/ 2)
proof
A1: ((a
|^ (m
+ 1))
+ (b
|^ (m
+ 1)))
= (((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
+ ((a
- b)
* ((a
|^ m)
- (b
|^ m))))
/ 2) by
Th9
.= (((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
/ 2)
+ (((a
- b)
* ((a
|^ m)
- (b
|^ m)))
/ 2));
((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
+ ((a
- b)
* ((a
|^ m)
- (b
|^ m))))
>= (((a
|^ m)
+ (b
|^ m))
* (a
+ b)) by
Th10,
XREAL_1: 31;
then (((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
+ ((a
- b)
* ((a
|^ m)
- (b
|^ m))))
/ 2)
>= ((((a
|^ m)
+ (b
|^ m))
* (a
+ b))
/ 2) by
XREAL_1: 72;
hence thesis by
A1;
end;
theorem ::
NEWTON01:12
((a
|^ m)
+ (b
|^ m))
<= (c
|^ m) implies ex x st ((a
|^ m)
+ (b
|^ m))
<= ((a
+ x)
|^ m)
proof
assume
A1: ((a
|^ m)
+ (b
|^ m))
<= (c
|^ m);
then ex x st c
= (a
+ x) by
Th6,
NAT_1: 10;
hence thesis by
A1;
end;
theorem ::
NEWTON01:13
Th13: ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
- b1))
+ ((a1
+ b1)
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
proof
thus ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
- b1))
+ (((a1
|^ 1)
+ (b1
|^ 1))
* ((a1
|^ m)
- (b1
|^ m))))
/ 2) by
Th5
.= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
- b1))
+ ((a1
+ b1)
* ((a1
|^ m)
- (b1
|^ m))))
/ 2);
end;
Lm16: ((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* t) implies ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((a1
- b1)
* (((t
* (a1
+ b1))
+ (a1
|^ m))
+ (b1
|^ m)))
/ 2)
proof
assume ((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* t);
then ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((((a1
|^ m)
+ (b1
|^ m))
* (a1
- b1))
+ ((a1
+ b1)
* ((a1
- b1)
* t)))
/ 2) by
Th13;
hence thesis;
end;
Lm17: ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((a1
- b1)
* (((t
* (a1
+ b1))
+ (a1
|^ m))
+ (b1
|^ m)))
/ 2) & (a1
+ b1)
<>
0 implies ((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* t)
proof
assume
A1: ((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
= (((a1
- b1)
* (((t
* (a1
+ b1))
+ (a1
|^ m))
+ (b1
|^ m)))
/ 2) & (a1
+ b1)
<>
0 ;
then (((((a1
|^ m)
+ (b1
|^ m))
* (a1
- b1))
+ ((a1
+ b1)
* ((a1
|^ m)
- (b1
|^ m))))
/ 2)
= (((a1
- b1)
* (((t
* (a1
+ b1))
+ (a1
|^ m))
+ (b1
|^ m)))
/ 2) by
Th13;
then ((a1
+ b1)
* ((a1
|^ m)
- (b1
|^ m)))
= (((a1
- b1)
* t)
* (a1
+ b1));
hence thesis by
A1,
XCMPLX_1: 5;
end;
theorem ::
NEWTON01:14
Th14: ((a
|^ (m
+ 1))
- (b
|^ (m
+ 1)))
= (((a
- b)
* (((t
* (a
+ b))
+ (a
|^ m))
+ (b
|^ m)))
/ 2) iff ((a
|^ m)
- (b
|^ m))
= ((a
- b)
* t)
proof
(a
+ b)
=
0 implies ((a
|^ m)
- (b
|^ m))
= ((a
- b)
* t)
proof
assume (a
+ b)
=
0 ;
then a
=
0 & b
=
0 ;
hence thesis;
end;
hence thesis by
Lm16,
Lm17;
end;
theorem ::
NEWTON01:15
(((((c1
|^ n)
/ 2)
+ (c1
/ 2))
|^ 2)
- ((((c1
|^ n)
/ 2)
- (c1
/ 2))
|^ 2))
= (c1
|^ (n
+ 1))
proof
set k = (((c1
|^ n)
/ 2)
+ (c1
/ 2));
set l = (((c1
|^ n)
/ 2)
- (c1
/ 2));
((k
|^ 2)
- (l
|^ 2))
= ((k
* k)
- (l
|^ 2)) by
NEWTON: 81
.= ((k
* k)
- (l
* l)) by
NEWTON: 81
.= (c1
* (c1
|^ n))
.= (c1
|^ (n
+ 1)) by
NEWTON: 6;
hence thesis;
end;
Lm18d: n
>
0 & (u
- v) is
odd implies (u
+ v) is
odd & ((u
|^ n)
- (v
|^ n)) is
odd & ((u
|^ n)
+ (v
|^ n)) is
odd
proof
(u is
odd or u is
even) & (v is
odd or v is
even);
hence thesis;
end;
Lm18e: (u
- v) is
even implies (u
+ v) is
even & ((u
|^ n)
- (v
|^ n)) is
even & ((u
|^ n)
+ (v
|^ n)) is
even
proof
assume
A1: (u
- v) is
even;
per cases ;
suppose
A2: u is
even & v is
even;
then ((u
|^ n) is
even & (v
|^ n) is
even) or n
=
0 ;
then
A3a: ((u
|^ n) is
even & (v
|^ n) is
even) or ((u
|^ n)
= 1 & (v
|^ n)
= 1) by
NEWTON: 4;
then (((u
|^ n)
- (v
|^ n)) is
even) or (((u
|^ n)
- (v
|^ n))
=
0 );
hence thesis by
A2,
A3a;
end;
suppose u is
odd & v is
odd;
hence thesis;
end;
suppose u is
odd & v is
even;
hence thesis by
A1;
end;
suppose u is
even & v is
odd;
hence thesis by
A1;
end;
end;
theorem ::
NEWTON01:16
((a
|^ 3)
- (b
|^ 3))
= (((a
- b)
* ((((a
+ b)
* (a
+ b))
+ (a
|^ 2))
+ (b
|^ 2)))
/ 2)
proof
A1: ((a
|^ 2)
- (b
|^ 2))
= ((a
- b)
* (a
+ b)) by
Th1;
((a
|^ 3)
- (b
|^ 3))
= ((a
|^ (2
+ 1))
- (b
|^ (2
+ 1)))
.= (((a
- b)
* ((((a
+ b)
* (a
+ b))
+ (a
|^ 2))
+ (b
|^ 2)))
/ 2) by
A1,
Th14;
hence thesis;
end;
theorem ::
NEWTON01:17
Th17: (c
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 implies (c
|^ (m
+ 1))
> ((a
|^ (m
+ 1))
+ (b
|^ (m
+ 1)))
proof
assume
A0: (c
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 ;
consider x be
Nat such that
A0b: c
= (a
+ x) by
A0,
Th6,
NAT_1: 10;
A1: ((a
+ x)
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & x
>
0 by
A0,
A0b,
Lm5d;
A2a: (a
|^ m)
>
0 by
A0,
PREPOWER: 6;
then
A3: ((a
+ x)
|^ m)
> (b
|^ m) by
A0,
A0b,
XREAL_1: 39;
A4: (a
+ x)
> b by
A3,
Lm3a;
A5: (((a
+ x)
|^ m)
* (a
+ x))
>= (((a
|^ m)
+ (b
|^ m))
* (a
+ x)) by
A0,
A0b,
XREAL_1: 66;
A7: (b
|^ m)
>
0 by
A0,
PREPOWER: 6;
A8: ((a
|^ m)
* (a
+ x))
> ((a
|^ m)
* a) by
A1,
NAT_1: 16,
A2a,
XREAL_1: 68;
((b
|^ m)
* (a
+ x))
> ((b
|^ m)
* b) by
A4,
A7,
XREAL_1: 68;
then (((a
|^ m)
* (a
+ x))
+ ((b
|^ m)
* (a
+ x)))
> (((a
|^ m)
* a)
+ ((b
|^ m)
* b)) by
A8,
XREAL_1: 8;
then
A12: (((a
+ x)
|^ m)
* (a
+ x))
> (((a
|^ m)
* a)
+ ((b
|^ m)
* b)) by
A5,
XXREAL_0: 2;
((a
|^ m)
* a)
= (a
|^ (m
+ 1)) & ((b
|^ m)
* b)
= (b
|^ (m
+ 1)) by
NEWTON: 6;
hence thesis by
A0b,
A12,
NEWTON: 6;
end;
theorem ::
NEWTON01:18
Th18: (c
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 & k
>
0 implies (c
|^ (k
+ m))
> ((a
|^ (k
+ m))
+ (b
|^ (k
+ m)))
proof
assume
A0: (c
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) & a
>
0 & b
>
0 & k
>
0 ;
then
consider l such that
A0b: k
= (1
+ l) by
NAT_1: 10,
NAT_1: 14;
defpred
P[
Nat] means (c
|^ (($1
+ m)
+ 1))
> ((a
|^ (($1
+ m)
+ 1))
+ (b
|^ (($1
+ m)
+ 1))) & a
>
0 & b
>
0 ;
A1:
P[
0 ] by
A0,
Th17;
A2:
P[x] implies
P[(x
+ 1)] by
Th17;
for j holds
P[j] from
NAT_1:sch 2(
A1,
A2);
then (c
|^ ((l
+ m)
+ 1))
> ((a
|^ ((l
+ m)
+ 1))
+ (b
|^ ((l
+ m)
+ 1)));
hence thesis by
A0b;
end;
theorem ::
NEWTON01:19
(c
|^ m)
>= ((a
|^ m)
+ (b
|^ m)) implies (c
|^ (k
+ m))
>= ((a
|^ (k
+ m))
+ (b
|^ (k
+ m)))
proof
assume
A0: (c
|^ m)
>= ((a
|^ m)
+ (b
|^ m));
then
A0a: m
<>
0 by
Lm0;
A0c: k
=
0 implies thesis by
A0;
per cases ;
suppose a
=
0 or b
=
0 ;
then
A1: ((a
|^ m)
=
0 or (b
|^ m)
=
0 ) & ((a
|^ (k
+ m))
=
0 or (b
|^ (k
+ m))
=
0 ) by
A0a,
NAT_1: 14,
NEWTON: 11;
then c
>= a & c
>= b by
A0,
A0a,
NAT_1: 14,
PREPOWER: 10;
hence thesis by
A1,
Lm3a;
end;
suppose a
>
0 & b
>
0 ;
hence thesis by
A0,
A0c,
Th18;
end;
end;
Lm28: (c
|^ m)
> ((a
|^ m)
+ (b
|^ m)) & a
>
0 implies (c
|^ (m
+ 1))
> ((a
|^ (m
+ 1))
+ (b
|^ (m
+ 1)))
proof
assume
A1: (c
|^ m)
> ((a
|^ m)
+ (b
|^ m)) & a
>
0 ;
then
A2: m
<>
0 by
Lm0;
per cases ;
suppose b
=
0 ;
then (b
|^ m)
=
0 & (b
|^ (m
+ 1))
=
0 by
A2,
NEWTON: 84;
hence thesis by
A1,
Lm4a;
end;
suppose b
<>
0 ;
hence thesis by
A1,
Th18;
end;
end;
Lm29: (c
|^ m)
> ((a
|^ m)
+ (b
|^ m)) implies (c
|^ (m
+ 1))
> ((a
|^ (m
+ 1))
+ (b
|^ (m
+ 1)))
proof
assume
A1: (c
|^ m)
> ((a
|^ m)
+ (b
|^ m));
then
A2: m
<>
0 by
Lm0;
per cases ;
suppose b
=
0 ;
then (b
|^ m)
=
0 & (b
|^ (m
+ 1))
=
0 by
A2,
NEWTON: 84;
hence thesis by
A1,
Lm4a;
end;
suppose b
<>
0 ;
hence thesis by
A1,
Lm28;
end;
end;
theorem ::
NEWTON01:20
(c
|^ n)
> ((a
|^ n)
+ (b
|^ n)) implies (c
|^ (k
+ n))
> ((a
|^ (k
+ n))
+ (b
|^ (k
+ n)))
proof
assume
AX: (c
|^ n)
> ((a
|^ n)
+ (b
|^ n));
then n
<>
0 by
Lm0;
then
consider m such that
AY: n
= (1
+ m) by
NAT_1: 10,
NAT_1: 14;
defpred
P[
Nat] means (c
|^ (($1
+ m)
+ 1))
> ((a
|^ (($1
+ m)
+ 1))
+ (b
|^ (($1
+ m)
+ 1)));
A1:
P[
0 ] by
AX,
AY;
A2:
P[x] implies
P[(x
+ 1)] by
Lm29;
for j holds
P[j] from
NAT_1:sch 2(
A1,
A2);
then (c
|^ ((k
+ m)
+ 1))
> ((a
|^ ((k
+ m)
+ 1))
+ (b
|^ ((k
+ m)
+ 1)));
hence thesis by
AY;
end;
theorem ::
NEWTON01:21
Th21: ((a1
|^ (m
+ 2))
- (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m))))
proof
((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m))))
= ((((((a1
|^ (m
+ 1))
* a1)
+ ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
- ((b1
|^ (m
+ 1))
* b1))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m))))
.= (((((a1
|^ ((m
+ 1)
+ 1))
+ ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
- ((b1
|^ (m
+ 1))
* b1))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m)))) by
NEWTON: 6
.= (((((a1
|^ (m
+ 2))
+ ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
- (b1
|^ ((m
+ 1)
+ 1)))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m)))) by
NEWTON: 6
.= ((((((a1
|^ (m
+ 2))
+ ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
- (b1
|^ (m
+ 2)))
+ (b1
* (a1
* (a1
|^ m))))
- ((a1
* b1)
* (b1
|^ m)))
.= ((((((a1
|^ (m
+ 2))
+ ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
- (b1
|^ (m
+ 2)))
+ (b1
* (a1
|^ (m
+ 1))))
- (a1
* (b1
* (b1
|^ m)))) by
NEWTON: 6
.= ((((a1
|^ (m
+ 2))
+ ((b1
|^ (m
+ 1))
* a1))
- (b1
|^ (m
+ 2)))
- (a1
* (b1
|^ (m
+ 1)))) by
NEWTON: 6;
hence thesis;
end;
theorem ::
NEWTON01:22
((a1
|^ (m
+ 2))
+ (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
|^ m)
+ (b1
|^ m))))
proof
((((a1
|^ (m
+ 1))
- (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
|^ m)
+ (b1
|^ m))))
= ((((((a1
|^ (m
+ 1))
* a1)
- ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
+ ((b1
|^ (m
+ 1))
* b1))
+ ((a1
* b1)
* ((a1
|^ m)
+ (b1
|^ m))))
.= (((((a1
|^ ((m
+ 1)
+ 1))
- ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
+ ((b1
|^ (m
+ 1))
* b1))
+ ((a1
* b1)
* ((a1
|^ m)
+ (b1
|^ m)))) by
NEWTON: 6
.= (((((a1
|^ (m
+ 2))
- ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
+ (b1
|^ ((m
+ 1)
+ 1)))
+ ((a1
* b1)
* ((a1
|^ m)
+ (b1
|^ m)))) by
NEWTON: 6
.= ((((((a1
|^ (m
+ 2))
- ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
+ (b1
|^ (m
+ 2)))
+ (b1
* (a1
* (a1
|^ m))))
+ ((a1
* b1)
* (b1
|^ m)))
.= ((((((a1
|^ (m
+ 2))
- ((b1
|^ (m
+ 1))
* a1))
- ((a1
|^ (m
+ 1))
* b1))
+ (b1
|^ (m
+ 2)))
+ (b1
* (a1
|^ (m
+ 1))))
+ (a1
* (b1
* (b1
|^ m)))) by
NEWTON: 6
.= ((((a1
|^ (m
+ 2))
- ((b1
|^ (m
+ 1))
* a1))
+ (b1
|^ (m
+ 2)))
+ (a1
* (b1
|^ (m
+ 1)))) by
NEWTON: 6;
hence thesis;
end;
theorem ::
NEWTON01:23
((a
|^ ((2
* m)
+ 2))
- (b
|^ ((2
* m)
+ 2)))
= ((((a
|^ 2)
- (b
|^ 2))
* (((c
* ((a
|^ 2)
+ (b
|^ 2)))
+ (a
|^ (2
* m)))
+ (b
|^ (2
* m))))
/ 2) iff ((a
|^ (2
* m))
- (b
|^ (2
* m)))
= (((a
|^ 2)
- (b
|^ 2))
* c)
proof
set k = (a
|^ 2);
set l = (b
|^ 2);
A1: (a
|^ (2
* m))
= ((a
|^ 2)
|^ m) & (b
|^ (2
* m))
= ((b
|^ 2)
|^ m) by
NEWTON: 9;
A2: (a
|^ ((2
* m)
+ 2))
= (a
|^ (2
* (m
+ 1)))
.= ((a
|^ 2)
|^ (m
+ 1)) by
NEWTON: 9;
(b
|^ ((2
* m)
+ 2))
= (b
|^ (2
* (m
+ 1)))
.= ((b
|^ 2)
|^ (m
+ 1)) by
NEWTON: 9;
hence thesis by
A1,
A2,
Th14;
end;
theorem ::
NEWTON01:24
((a1
|^ ((2
* m)
+ 3))
+ (b1
|^ ((2
* m)
+ 3)))
= ((((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2)))
* (a1
+ b1))
- ((a1
* b1)
* ((a1
|^ ((2
* m)
+ 1))
+ (b1
|^ ((2
* m)
+ 1)))))
proof
((((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2)))
* (a1
+ b1))
- ((a1
* b1)
* ((a1
|^ ((2
* m)
+ 1))
+ (b1
|^ ((2
* m)
+ 1)))))
= ((((a1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2))))
+ (b1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2)))))
- ((a1
* b1)
* (a1
|^ ((2
* m)
+ 1))))
- (a1
* (b1
* (b1
|^ ((2
* m)
+ 1)))))
.= ((((a1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2))))
+ (b1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2)))))
- (b1
* (a1
* (a1
|^ ((2
* m)
+ 1)))))
- (a1
* (b1
|^ (((2
* m)
+ 1)
+ 1)))) by
NEWTON: 6
.= ((((a1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2))))
+ (b1
* ((a1
|^ ((2
* m)
+ 2))
+ (b1
|^ ((2
* m)
+ 2)))))
- (b1
* (a1
|^ (((2
* m)
+ 1)
+ 1))))
- (a1
* (b1
|^ ((2
* m)
+ 2)))) by
NEWTON: 6
.= ((a1
* (a1
|^ ((2
* m)
+ 2)))
+ (b1
* (b1
|^ ((2
* m)
+ 2))))
.= ((a1
|^ (((2
* m)
+ 2)
+ 1))
+ (b1
* (b1
|^ ((2
* m)
+ 2)))) by
NEWTON: 6
.= ((a1
|^ ((2
* m)
+ 3))
+ (b1
|^ (((2
* m)
+ 2)
+ 1))) by
NEWTON: 6;
hence thesis;
end;
theorem ::
NEWTON01:25
((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* k) implies ((a1
|^ (m
+ 2))
- (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
+ ((a1
* b1)
* k))
* (a1
- b1))
proof
assume ((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* k);
hence ((a1
|^ (m
+ 2))
- (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
- b1)
* k))) by
Th21
.= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
+ ((a1
* b1)
* k))
* (a1
- b1));
end;
theorem ::
NEWTON01:26
((a1
|^ (m
+ 2))
- (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
+ ((a1
* b1)
* k))
* (a1
- b1)) & (a1
* b1)
<>
0 implies ((a1
|^ m)
- (b1
|^ m))
= ((a1
- b1)
* k)
proof
assume
A1: ((a1
|^ (m
+ 2))
- (b1
|^ (m
+ 2)))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
+ ((a1
* b1)
* k))
* (a1
- b1)) & (a1
* b1)
<>
0 ;
then
A5: (((k
* (a1
- b1))
* (a1
* b1))
/ (a1
* b1))
= (k
* (a1
- b1)) by
XCMPLX_1: 89;
((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
* (a1
- b1))
+ ((a1
* b1)
* ((a1
|^ m)
- (b1
|^ m))))
= ((((a1
|^ (m
+ 1))
+ (b1
|^ (m
+ 1)))
* (a1
- b1))
+ (((a1
* b1)
* k)
* (a1
- b1))) by
A1,
Th21;
hence thesis by
A1,
XCMPLX_1: 89,
A5;
end;
Lm56a: n
> 1 & b
>
0 & a
> b implies (((a
|^ n)
+ (b
|^ n))
* (a
- b))
< ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
proof
assume
A1: n
> 1 & b
>
0 & a
> b;
A2: (a
|^ (n
+ 1))
= (a
* (a
|^ n)) & (b
|^ (n
+ 1))
= (b
* (b
|^ n)) & (a
|^ (m
+ 1))
= (a
* (a
|^ m)) & (b
|^ (m
+ 1))
= (b
* (b
|^ m)) by
NEWTON: 6;
consider m such that
A3: n
= (1
+ m) by
A1,
NAT_1: 10;
A3a: m
>= 1 by
A3,
A1,
NAT_1: 13;
(a
|^ m)
> (b
|^ m) by
A1,
A3a,
PREPOWER: 10;
then
A3c: ((a
|^ m)
- (b
|^ m))
> ((b
|^ m)
- (b
|^ m)) by
XREAL_1: 9;
(((a
|^ n)
+ (b
|^ n))
* (a
- b))
= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
|^ n)))
- (b
* (a
|^ n))) by
A2
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
|^ (m
+ 1))))
- (b
* (a
* (a
|^ m)))) by
NEWTON: 6,
A3
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
* (b
|^ m))))
- (b
* (a
* (a
|^ m)))) by
NEWTON: 6
.= (((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- ((a
* b)
* ((a
|^ m)
- (b
|^ m))));
hence thesis by
A1,
A3c,
XREAL_1: 44;
end;
Lm57: n
>
0 & a
> b implies (((a
|^ n)
- (b
|^ n))
* (a
+ b))
>= ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
proof
assume
A1: n
>
0 & a
> b;
A2:
0
<= ((a
|^ m)
- (b
|^ m)) by
A1,
Lm3a,
XREAL_1: 48;
A2b: (a
|^ (n
+ 1))
= (a
* (a
|^ n)) & (b
|^ (n
+ 1))
= (b
* (b
|^ n)) & (a
|^ (m
+ 1))
= (a
* (a
|^ m)) & (b
|^ (m
+ 1))
= (b
* (b
|^ m)) by
NEWTON: 6;
consider m such that
A3: n
= (1
+ m) by
A1,
NAT_1: 14,
NAT_1: 10;
A4: (((a
|^ n)
- (b
|^ n))
* (a
+ b))
= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
|^ n)))
+ (b
* (a
|^ n))) by
A2b
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
|^ (m
+ 1))))
+ (b
* (a
* (a
|^ m)))) by
NEWTON: 6,
A3
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
* (b
|^ m))))
+ (b
* (a
* (a
|^ m)))) by
NEWTON: 6
.= (((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ ((a
* b)
* ((a
|^ m)
- (b
|^ m))));
((a
|^ m)
- (b
|^ m))
in
NAT by
A2,
INT_1: 3;
hence thesis by
A4,
XREAL_1: 40;
end;
Lm57d: b
>
0 & a
> b & (((a
|^ n)
- (b
|^ n))
* (a
+ b))
= (((a
|^ n)
+ (b
|^ n))
* (a
- b)) implies n
= 1
proof
assume
A0: b
>
0 & a
> b & (((a
|^ n)
- (b
|^ n))
* (a
+ b))
= (((a
|^ n)
+ (b
|^ n))
* (a
- b));
A1: (a
|^
0 )
= 1 & (b
|^
0 )
= 1 by
NEWTON: 4;
per cases ;
suppose n
=
0 ;
then (
0
* (a
+ b))
= (2
* (a
- b)) by
A0,
A1;
hence thesis by
A0;
end;
suppose
A20: n
>
0 ;
then
A20a: n
>= 1 by
NAT_1: 14;
((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
<= (((a
|^ n)
+ (b
|^ n))
* (a
- b)) by
A0,
A20,
Lm57;
then n
<= 1 by
A0,
Lm56a;
hence thesis by
A20a,
XXREAL_0: 1;
end;
end;
theorem ::
NEWTON01:27
b
>
0 & a
> b implies ((((a
|^ n)
- (b
|^ n))
* (a
+ b))
= (((a
|^ n)
+ (b
|^ n))
* (a
- b)) iff n
= 1) by
Lm57d;
theorem ::
NEWTON01:28
n
> 1 & b
>
0 & a
> b implies (((a
|^ n)
- (b
|^ n))
* (a
+ b))
> ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
proof
assume
A1: n
> 1 & b
>
0 & a
> b;
A2: (a
|^ (n
+ 1))
= (a
* (a
|^ n)) & (b
|^ (n
+ 1))
= (b
* (b
|^ n)) & (a
|^ (m
+ 1))
= (a
* (a
|^ m)) & (b
|^ (m
+ 1))
= (b
* (b
|^ m)) by
NEWTON: 6;
consider m such that
A3: n
= (1
+ m) by
A1,
NAT_1: 10;
A3a: m
>= 1 by
A3,
A1,
NAT_1: 13;
A3b: (a
|^ m)
> (b
|^ m) by
A1,
A3a,
PREPOWER: 10;
A3c: ((a
|^ m)
- (b
|^ m))
> ((b
|^ m)
- (b
|^ m)) by
A3b,
XREAL_1: 9;
(((a
|^ n)
- (b
|^ n))
* (a
+ b))
= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
|^ n)))
+ (b
* (a
|^ n))) by
A2
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
|^ (m
+ 1))))
+ (b
* (a
* (a
|^ m)))) by
NEWTON: 6,
A3
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- (a
* (b
* (b
|^ m))))
+ (b
* (a
* (a
|^ m)))) by
NEWTON: 6
.= (((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ ((a
* b)
* ((a
|^ m)
- (b
|^ m))));
hence thesis by
A1,
A3c,
XREAL_1: 39;
end;
theorem ::
NEWTON01:29
n
>
0 & a
> b implies (((a
|^ n)
+ (b
|^ n))
* (a
- b))
<= ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
proof
assume
A1: n
>
0 & a
> b;
then
A2:
0
<= ((a
|^ m)
- (b
|^ m)) by
Lm3a,
XREAL_1: 48;
A2b: (a
|^ (n
+ 1))
= (a
* (a
|^ n)) & (b
|^ (n
+ 1))
= (b
* (b
|^ n)) & (a
|^ (m
+ 1))
= (a
* (a
|^ m)) & (b
|^ (m
+ 1))
= (b
* (b
|^ m)) by
NEWTON: 6;
consider m such that
A3: n
= (1
+ m) by
A1,
NAT_1: 14,
NAT_1: 10;
A4: (((a
|^ n)
+ (b
|^ n))
* (a
- b))
= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
|^ n)))
- (b
* (a
|^ n))) by
A2b
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
|^ (m
+ 1))))
- (b
* (a
* (a
|^ m)))) by
NEWTON: 6,
A3
.= ((((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (a
* (b
* (b
|^ m))))
- (b
* (a
* (a
|^ m)))) by
NEWTON: 6
.= (((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
- ((a
* b)
* ((a
|^ m)
- (b
|^ m))));
((a
|^ m)
- (b
|^ m))
in
NAT by
A2,
INT_1: 3;
hence thesis by
A4,
XREAL_1: 43;
end;
Lm18b: (a
- b)
divides ((a
|^
0 )
- (b
|^
0 ))
proof
((a
|^
0 )
- (b
|^
0 ))
= (1
- (b
|^
0 )) by
NEWTON: 4
.= (1
- 1) by
NEWTON: 4;
hence thesis by
INT_2: 12;
end;
Lm18f: n
>
0 & (a
- b)
divides ((a
|^ n)
- (b
|^ n)) implies (a
- b)
divides ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
proof
assume
A1: n
>
0 & (a
- b)
divides ((a
|^ n)
- (b
|^ n));
consider q be
Integer such that
A3: ((a
|^ n)
- (b
|^ n))
= ((a
- b)
* q) by
A1;
per cases ;
suppose (a
- b) is
even;
then
A5: (a
+ b) is
even & ((a
|^ n)
+ (b
|^ n)) is
even & ((a
|^ n)
- (b
|^ n)) is
even by
Lm18e;
then
consider l be
Integer such that
A6: (a
+ b)
= (2
* l);
consider k be
Integer such that
A7: ((a
|^ n)
+ (b
|^ n))
= (2
* k) by
A5;
((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
= ((((2
* k)
* (a
- b))
+ ((2
* l)
* ((a
|^ n)
- (b
|^ n))))
/ 2) by
Th13,
A6,
A7
.= ((k
* (a
- b))
+ (l
* ((a
|^ n)
- (b
|^ n))))
.= ((k
* (a
- b))
+ (l
* ((a
- b)
* q))) by
A3
.= ((a
- b)
* (k
+ (l
* q)));
hence thesis;
end;
suppose
A12: (a
- b) is
odd;
then
A13: (a
+ b) is
odd & ((a
|^ n)
+ (b
|^ n)) is
odd & ((a
|^ n)
- (b
|^ n)) is
odd & ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))) is
odd by
A1,
Lm18d;
q is
odd by
A3,
A1,
A12,
Lm18d;
then
consider m be
Integer such that
A18: (2
* m)
= (((a
|^ n)
+ (b
|^ n))
+ ((a
+ b)
* q)) by
A13,
ABIAN: 11;
((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
= (((((a
|^ n)
+ (b
|^ n))
* (a
- b))
+ ((a
+ b)
* ((a
- b)
* q)))
/ 2) by
Th13,
A3
.= (((a
- b)
* (((a
|^ n)
+ (b
|^ n))
+ ((a
+ b)
* q)))
/ 2)
.= (((a
- b)
* (2
* m))
/ 2) by
A18
.= ((a
- b)
* m);
hence thesis;
end;
end;
Lm46: m
>
0 implies (2
* a)
divides ((a
|^ m)
+ (a
|^ m))
proof
assume m
>
0 ;
then a
divides (a
|^ m) by
NAT_3: 3;
then (2
* a)
divides (2
* (a
|^ m)) by
NAT_3: 1;
hence thesis;
end;
theorem ::
NEWTON01:30
Th29: (p
+ q)
divides ((p
* u)
+ (q
* v)) implies (p
+ q)
divides ((p
* (u
+ z))
+ (q
* (v
+ z)))
proof
assume (p
+ q)
divides ((p
* u)
+ (q
* v));
then
consider t be
Integer such that
A2: ((p
+ q)
* t)
= ((p
* u)
+ (q
* v));
((p
* (u
+ z))
+ (q
* (v
+ z)))
= ((p
+ q)
* (t
+ z)) by
A2;
hence thesis;
end;
theorem ::
NEWTON01:31
(p
+ q)
divides ((p
* ((t
* (p
+ q))
+ z))
+ (q
* z))
proof
A1: z
= (((q
* t)
*
0 )
+ z);
((p
* (t
* (p
+ q)))
+ (q
* (t
*
0 )))
= (((p
* t)
* (p
+ q))
+ ((q
* t)
*
0 ));
hence thesis by
A1,
INT_1:def 3,
Th29;
end;
theorem ::
NEWTON01:32
Th31: (p
+ q)
divides (u
- v) implies (p
+ q)
divides ((p
* (u
+ t))
+ (q
* (v
+ t)))
proof
set z = (u
- v);
assume (p
+ q)
divides (u
- v);
then (p
+ q)
divides ((p
* z)
+ (q
*
0 )) by
INT_2: 2;
then (p
+ q)
divides ((p
* (z
+ (v
+ t)))
+ (q
* (
0
+ (v
+ t)))) by
Th29;
hence thesis;
end;
theorem ::
NEWTON01:33
Th32: (a
- b)
divides ((a
|^ n)
- (b
|^ n))
proof
defpred
P[
Nat] means (a
- b)
divides ((a
|^ $1)
- (b
|^ $1));
A1:
P[
0 ] by
Lm18b;
A2:
P[x] implies
P[(x
+ 1)]
proof
x
=
0 or x
>
0 ;
hence thesis by
Lm18f;
end;
for m holds
P[m] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
NEWTON01:34
Th33: ((a
|^ 2)
- (b
|^ 2))
divides ((a
|^ (2
* m))
- (b
|^ (2
* m)))
proof
(a
|^ (2
* m))
= ((a
|^ 2)
|^ m) & (b
|^ (2
* m))
= ((b
|^ 2)
|^ m) by
NEWTON: 9;
hence thesis by
Th32;
end;
theorem ::
NEWTON01:35
Th34: (a
+ b)
divides ((a
|^ ((2
* m)
+ 1))
+ (b
|^ ((2
* m)
+ 1)))
proof
A2: ((a
|^ ((2
* m)
+ 2))
- (b
|^ ((2
* m)
+ 2)))
= ((((a
|^ ((2
* m)
+ 1))
+ (b
|^ ((2
* m)
+ 1)))
* (a
- b))
+ ((a
* b)
* ((a
|^ (2
* m))
- (b
|^ (2
* m))))) by
Th21;
set n = (m
+ 1);
consider t be
Integer such that
A4: ((a
|^ (2
* m))
- (b
|^ (2
* m)))
= (((a
|^ 2)
- (b
|^ 2))
* t) by
Th33,
INT_1:def 3;
consider z be
Integer such that
A4a: ((a
|^ (2
* n))
- (b
|^ (2
* n)))
= (((a
|^ 2)
- (b
|^ 2))
* z) by
Th33,
INT_1:def 3;
A5: ((a
- b)
* ((a
|^ ((2
* m)
+ 1))
+ (b
|^ ((2
* m)
+ 1))))
= (((a
|^ ((2
* m)
+ 2))
- (b
|^ ((2
* m)
+ 2)))
- ((a
* b)
* ((a
|^ (2
* m))
- (b
|^ (2
* m))))) by
A2
.= (((a
|^ (2
* n))
- (b
|^ (2
* n)))
- ((a
* b)
* (((a
|^ 2)
- (b
|^ 2))
* t))) by
A4
.= (((a
|^ 2)
- (b
|^ 2))
* (z
- ((a
* b)
* t))) by
A4a
.= (((a
- b)
* (a
+ b))
* (z
- ((a
* b)
* t))) by
Th1
.= ((a
- b)
* ((a
+ b)
* (z
- ((a
* b)
* t))));
X: (2
* a)
= (a
+ a);
((a
|^ ((2
* m)
+ 1))
+ (b
|^ ((2
* m)
+ 1)))
= ((a
+ b)
* (z
- ((a
* b)
* t))) or (a
- b)
=
0 by
A5,
XCMPLX_1: 5;
hence thesis by
Lm46,
X;
end;
Lm44: (a
+ b)
divides ((a
|^ 2)
- (b
|^ 2))
proof
((a
|^ 2)
- (b
|^ 2))
= ((a
+ b)
* (a
- b)) by
Th1;
hence thesis;
end;
theorem ::
NEWTON01:36
(a
+ b)
divides ((a
|^ (2
* m))
- (b
|^ (2
* m)))
proof
A1: (a
+ b)
divides ((a
|^ 2)
- (b
|^ 2)) by
Lm44;
((a
|^ 2)
- (b
|^ 2))
divides ((a
|^ (2
* m))
- (b
|^ (2
* m))) by
Th33;
hence thesis by
A1,
INT_2: 9;
end;
theorem ::
NEWTON01:37
(a
+ b)
divides ((a
|^ n)
- (b
|^ n)) implies (a
+ b)
divides ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
proof
assume (a
+ b)
divides ((a
|^ n)
- (b
|^ n));
then (a
+ b)
divides ((a
* ((a
|^ n)
+
0 ))
+ (b
* ((b
|^ n)
+
0 ))) by
Th31;
then (a
+ b)
divides ((a
|^ (n
+ 1))
+ (b
* (b
|^ n))) by
NEWTON: 6;
hence thesis by
NEWTON: 6;
end;
theorem ::
NEWTON01:38
(a
+ b)
divides ((a
|^ n)
+ (b
|^ n)) or (a
+ b)
divides ((a
|^ n)
- (b
|^ n))
proof
per cases ;
suppose n is
odd;
then ex k be
Nat st n
= ((2
* k)
+ 1) by
ABIAN: 9;
hence thesis by
Th34;
end;
suppose n is
even;
then
consider m be
Nat such that
A2: n
= (2
* m);
A3: (a
+ b)
divides ((a
|^ 2)
- (b
|^ 2)) by
Lm44;
((a
|^ 2)
- (b
|^ 2))
divides ((a
|^ (2
* m))
- (b
|^ (2
* m))) by
Th33;
hence thesis by
A2,
A3,
INT_2: 9;
end;
end;
theorem ::
NEWTON01:39
a
>= b & ((c
|^ n)
- (b
|^ n))
= (a
|^ n) implies ((c
- b)
gcd (a
|^ n))
= (c
- b) & ((c
- a)
gcd (b
|^ n))
= (c
- a)
proof
assume
A1: a
>= b & ((c
|^ n)
- (b
|^ n))
= (a
|^ n);
A1a: (c
|^ n)
= ((b
|^ n)
+ (a
|^ n)) by
A1;
then
A1c: (c
- b)
>= (a
- b) by
Th6,
XREAL_1: 9;
(a
- b)
>= (b
- b) by
A1,
XREAL_1: 9;
then
A1f: (c
- b)
in
NAT by
A1c,
INT_1: 3;
(c
- a)
>= (a
- a) by
A1a,
Th6,
XREAL_1: 9;
then
A1i: (c
- a)
in
NAT by
INT_1: 3;
(c
- a)
divides ((c
|^ n)
- (a
|^ n)) by
Th32;
hence thesis by
A1,
A1i,
A1f,
Th32,
NEWTON: 49;
end;
theorem ::
NEWTON01:40
(a,b)
are_coprime & (a
+ b)
divides ((a
* c)
+ (b
* d)) implies (a
+ b)
divides (c
- d)
proof
assume
A1: (a,b)
are_coprime & (a
+ b)
divides ((a
* c)
+ (b
* d));
set u = (a
* c);
set v = (
- (b
* d));
A1a: (a
+ b)
divides (u
- v) by
A1;
A2: (a
+ b)
divides ((a
* (u
+
0 ))
+ (b
* (v
+
0 ))) by
A1a,
Th31;
consider t such that
A4: (((a
* a)
* c)
- ((b
* b)
* d))
= ((a
+ b)
* t) by
A2;
A6: ((a
* b)
* (c
- d))
= ((((a
* c)
- (b
* d))
- t)
* (a
+ b)) by
A4;
(a,(a
+ b))
are_coprime & (b,(a
+ b))
are_coprime by
A1,
EULER_1: 7;
then ((a
* b),(a
+ b))
are_coprime by
WSIERP_1: 6;
hence thesis by
A6,
INT_1:def 3,
WSIERP_1: 29;
end;
theorem ::
NEWTON01:41
Th40: ((a
* b),(c
* d))
are_coprime implies (a,c)
are_coprime
proof
assume
A1: ((a
* b),(c
* d))
are_coprime ;
A3: (a
gcd c)
divides (a
* b) by
INT_2: 2,
INT_2: 21;
(a
gcd c)
divides (c
* d) by
INT_2: 2,
INT_2: 21;
hence (a,c)
are_coprime by
A1,
A3,
WSIERP_1: 15,
INT_2: 22;
end;
Lm53: ((a
|^ (k
+ 1)),(b
|^ (m
+ 1)))
are_coprime implies (a,b)
are_coprime
proof
(a
|^ (k
+ 1))
= (a
* (a
|^ k)) & (b
|^ (m
+ 1))
= (b
* (b
|^ m)) by
NEWTON: 6;
hence thesis by
Th40;
end;
Lm58: a
>
0 & b
>
0 & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n) implies ex j, k, l st ((j
|^ n)
+ (k
|^ n))
= (l
|^ n) & (j,k)
are_coprime & a
= ((a
gcd b)
* j) & b
= ((a
gcd b)
* k) & c
= ((a
gcd b)
* l)
proof
set x = (a
gcd b);
assume
A1: a
>
0 & b
>
0 & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n);
then
A1b: n
<>
0 by
Lm0;
x
<>
0 by
A1,
INT_2: 5;
then
A1d: (x
|^ n)
>
0 by
PREPOWER: 6;
consider j,k be
Integer such that
A2: a
= ((a
gcd b)
* j) & b
= ((a
gcd b)
* k) & (j,k)
are_coprime by
A1,
INT_2: 23;
j
>
0 & k
>
0 by
A1,
A2;
then
A2b: j
in
NAT & k
in
NAT by
INT_1: 3;
A3: (a
|^ n)
= ((x
|^ n)
* (j
|^ n)) by
A2,
NEWTON: 7;
A4: (b
|^ n)
= ((x
|^ n)
* (k
|^ n)) by
A2,
NEWTON: 7;
then (c
|^ n)
= ((x
|^ n)
* ((j
|^ n)
+ (k
|^ n))) by
A1,
A3;
then x
divides c by
A1b,
INT_1:def 3,
WSIERP_1: 26;
then
consider l such that
A8: c
= (x
* l) by
NAT_D:def 3;
(((j
|^ n)
+ (k
|^ n))
* (x
|^ n))
= ((l
|^ n)
* (x
|^ n)) by
A1,
A3,
A4,
A8,
NEWTON: 7;
then ((j
|^ n)
+ (k
|^ n))
= (l
|^ n) by
A1d,
XCMPLX_1: 5;
hence thesis by
A2,
A2b,
A8;
end;
Lm59: ((j
|^ (m
+ 1))
+ (k
|^ (m
+ 1)))
= (l
|^ (m
+ 1)) & (j,k)
are_coprime implies (j,l)
are_coprime
proof
set n = (m
+ 1);
assume
A1: ((j
|^ n)
+ (k
|^ n))
= (l
|^ n) & (j,k)
are_coprime ;
then ((j
|^ n)
gcd (k
|^ n))
= 1 by
WSIERP_1: 11,
INT_2:def 3;
then ((l
|^ n),(j
|^ n))
are_coprime by
A1,
EULER_1: 7;
hence thesis by
Lm53;
end;
theorem ::
NEWTON01:42
Th41: a
>
0 & b
>
0 & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n) implies ex j, k, l st ((j
|^ n)
+ (k
|^ n))
= (l
|^ n) & (j,k)
are_coprime & (j,l)
are_coprime & (k,l)
are_coprime & a
= ((a
gcd b)
* j) & b
= ((a
gcd b)
* k) & c
= ((a
gcd b)
* l)
proof
assume
A1: a
>
0 & b
>
0 & ((a
|^ n)
+ (b
|^ n))
= (c
|^ n);
then n
<>
0 by
Lm0;
then
consider m such that
A3: n
= (1
+ m) by
NAT_1: 10,
NAT_1: 14;
consider j, k, l such that
A4: ((j
|^ (m
+ 1))
+ (k
|^ (m
+ 1)))
= (l
|^ (m
+ 1)) & (j,k)
are_coprime & a
= ((a
gcd b)
* j) & b
= ((a
gcd b)
* k) & c
= ((a
gcd b)
* l) by
A1,
A3,
Lm58;
(j,l)
are_coprime & (k,l)
are_coprime by
A4,
Lm59;
hence thesis by
A3,
A4;
end;
Lm60: a
= 1 implies ((a
|^ (n
+ 2))
+ (a
|^ (n
+ 2)))
<> (b
|^ (n
+ 2))
proof
assume
A1: a
= 1;
A5: (2
+
0 )
<= (2
+ n) by
XREAL_1: 6;
assume
A2: not thesis;
(2
+ n)
< (2
|^ (2
+ n)) by
NEWTON: 86;
then (b
|^ (2
+ n))
> (1
|^ (2
+ n)) & (b
|^ (2
+ n))
< (2
|^ (2
+ n)) by
A1,
A5,
A2,
XXREAL_0: 2;
then b
> 1 & b
< (1
+ 1) by
Lm3a;
hence contradiction by
NAT_1: 13;
end;
theorem ::
NEWTON01:43
a
>
0 implies ((a
|^ (n
+ 2))
+ (a
|^ (n
+ 2)))
<> (b
|^ (n
+ 2))
proof
assume
A1: a
>
0 ;
assume not thesis;
then
consider j, k, l such that
A3: ((j
|^ (n
+ 2))
+ (k
|^ (n
+ 2)))
= (l
|^ (n
+ 2)) & (j,k)
are_coprime & (j,l)
are_coprime & (k,l)
are_coprime & a
= ((a
gcd a)
* j) & a
= ((a
gcd a)
* k) & b
= ((a
gcd a)
* l) by
A1,
Th41;
(k
* a)
= (1
* a) & (j
* a)
= (1
* a) by
NAT_D: 32,
A3;
then k
= 1 & j
= 1 by
A1,
XCMPLX_1: 5;
hence contradiction by
A3,
Lm60;
end;
Lm61: (a1
+ (b1
|^ 2))
= (c1
|^ 2) implies ((a1
+ ((b1
+ d1)
|^ 2))
- ((c1
+ d1)
|^ 2))
= ((2
* d1)
* (b1
- c1))
proof
assume
A1: (a1
+ (b1
|^ 2))
= (c1
|^ 2);
((a1
+ ((b1
+ d1)
|^ 2))
- ((c1
+ d1)
|^ 2))
= ((a1
+ (((b1
|^ 2)
+ ((2
* b1)
* d1))
+ (d1
|^ 2)))
- ((c1
+ d1)
|^ 2)) by
Lm10
.= ((((a1
+ (b1
|^ 2))
+ ((2
* b1)
* d1))
+ (d1
|^ 2))
- (((c1
|^ 2)
+ ((2
* c1)
* d1))
+ (d1
|^ 2))) by
Lm10
.= (((2
* b1)
* d1)
- ((2
* c1)
* d1)) by
A1;
hence thesis;
end;
theorem ::
NEWTON01:44
x
>
0 & b
< c & (a
+ (b
|^ 2))
= (c
|^ 2) implies (a
+ ((b
+ x)
|^ 2))
< ((c
+ x)
|^ 2)
proof
assume
A1: x
>
0 & b
< c & (a
+ (b
|^ 2))
= (c
|^ 2);
then
A1a: (b
- c)
< (c
- c) by
XREAL_1: 9;
((a
+ ((b
+ x)
|^ 2))
- ((c
+ x)
|^ 2))
= ((2
* x)
* (b
- c)) by
A1,
Lm61;
then (((a
+ ((b
+ x)
|^ 2))
- ((c
+ x)
|^ 2))
+ ((c
+ x)
|^ 2))
< (
0
+ ((c
+ x)
|^ 2)) by
A1,
A1a,
XREAL_1: 6;
hence thesis;
end;
theorem ::
NEWTON01:45
Th44: q
<
0 & b
< c & ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2) implies ((a
|^ 2)
+ ((b
+ q)
|^ 2))
> ((c
+ q)
|^ 2)
proof
assume
A1: q
<
0 & b
< c & ((a
|^ 2)
+ (b
|^ 2))
= (c
|^ 2);
then
A1a: (b
- c)
< (c
- c) by
XREAL_1: 9;
(((a
|^ 2)
+ ((b
+ q)
|^ 2))
- ((c
+ q)
|^ 2))
= ((2
* q)
* (b
- c)) by
A1,
Lm61;
then ((((a
|^ 2)
+ ((b
+ q)
|^ 2))
- ((c
+ q)
|^ 2))
+ ((c
+ q)
|^ 2))
> (
0
+ ((c
+ q)
|^ 2)) by
A1,
A1a,
XREAL_1: 6;
hence thesis;
end;
theorem ::
NEWTON01:46
x
>
0 & ((a
|^ 2)
+ (b
|^ 2))
= ((b
+ 1)
|^ 2) implies ((a
|^ 2)
+ ((b
- x)
|^ 2))
> (((b
+ 1)
- x)
|^ 2)
proof
A0: (b
+ 1)
> (b
+
0 ) by
XREAL_1: 6;
assume
A1: x
>
0 & ((a
|^ 2)
+ (b
|^ 2))
= ((b
+ 1)
|^ 2);
consider q such that
A2: q
= (
- x);
((a
|^ 2)
+ ((b
+ q)
|^ 2))
> (((b
+ 1)
+ q)
|^ 2) by
A0,
A1,
A2,
Th44;
hence thesis by
A2;
end;
theorem ::
NEWTON01:47
Th46: a
>= 1 & (((a
+ 1)
|^ 2)
+ (((a
+ 1)
+ x)
|^ 2))
<= ((((a
+ 1)
+ x)
+ 1)
|^ 2) implies ((a
|^ 2)
+ ((a
+ x)
|^ 2))
< (((a
+ x)
+ 1)
|^ 2)
proof
A2: (((a
+ x)
+ 1)
|^ 2)
= ((((((a
|^ 2)
+ (x
|^ 2))
+ (1
|^ 2))
+ ((2
* a)
* x))
+ ((2
* a)
* 1))
+ ((2
* x)
* 1)) by
SERIES_4: 1
.= ((((((a
|^ 2)
+ (x
|^ 2))
+ ((2
* a)
* x))
+ (2
* x))
+ (2
* a))
+ 1);
A3: (((a
+ x)
+ 2)
|^ 2)
= ((((((a
|^ 2)
+ (x
|^ 2))
+ (2
|^ 2))
+ ((2
* a)
* x))
+ ((2
* a)
* 2))
+ ((2
* x)
* 2)) by
SERIES_4: 1
.= ((((((((2
* a)
* 2)
+ (2
* x))
+ (2
* x))
+ (2
|^ 2))
+ (a
|^ 2))
+ ((2
* a)
* x))
+ (x
|^ 2));
A4: ((a
+ x)
|^ 2)
= (((a
|^ 2)
+ ((2
* a)
* x))
+ (x
|^ 2)) by
Lm10;
assume
A5: a
>= 1 & (((a
+ 1)
|^ 2)
+ (((a
+ 1)
+ x)
|^ 2))
<= ((((a
+ 1)
+ x)
+ 1)
|^ 2);
then
A5a: ((((a
+ 1)
|^ 2)
+ (((a
+ x)
+ 1)
|^ 2))
- (((a
+ x)
+ 2)
|^ 2))
<= ((((a
+ x)
+ 2)
|^ 2)
- (((a
+ x)
+ 2)
|^ 2)) by
XREAL_1: 9;
(
- ((((a
+ 1)
|^ 2)
+ (((a
+ x)
+ 1)
|^ 2))
- (((a
+ x)
+ 2)
|^ 2)))
= ((((a
+ x)
+ 2)
|^ 2)
- (((a
+ 1)
|^ 2)
+ (((a
+ x)
+ 1)
|^ 2)))
.= ((((((((a
|^ 2)
+ (x
|^ 2))
+ (2
|^ 2))
+ ((2
* a)
* x))
+ ((2
* 2)
* a))
+ (2
* x))
+ (2
* x))
- ((((a
|^ 2)
+ (2
* a))
+ 1)
+ ((((((a
|^ 2)
+ (x
|^ 2))
+ (1
|^ 2))
+ ((2
* a)
* x))
+ ((2
* a)
* 1))
+ ((2
* x)
* 1)))) by
Lm10,
A2,
A3
.= (((((2
|^ 2)
+ (2
* x))
- 1)
- (a
|^ 2))
- (1
* 1))
.= (((((2
* 2)
+ (2
* x))
- 1)
- (a
|^ 2))
- 1) by
WSIERP_1: 1;
then
A6: (((a
|^ 2)
+ ((a
+ x)
|^ 2))
+
0 )
<= (((a
|^ 2)
+ ((a
+ x)
|^ 2))
+ (((4
+ (2
* x))
- (a
|^ 2))
- 2)) by
A5a,
XREAL_1: 6;
A7: (a
+ 1)
> (
0
+ 1) & (a
+ 1)
>= (1
+ 1) by
A5,
XREAL_1: 6;
then (a
+ (a
+ 1))
> (a
+ (1
+
0 )) by
XREAL_1: 6;
then ((2
* a)
+ 1)
> (1
+ 1) by
A7,
XXREAL_0: 2;
then (((((a
|^ 2)
+ (x
|^ 2))
+ ((2
* a)
* x))
+ (2
* x))
+ ((2
* a)
+ 1))
> (((((a
|^ 2)
+ (x
|^ 2))
+ ((2
* a)
* x))
+ (2
* x))
+ 2) by
XREAL_1: 6;
hence thesis by
A2,
A4,
A6,
XXREAL_0: 2;
end;
theorem ::
NEWTON01:48
Th47: a
>= 1 & ((a
|^ 2)
+ ((a
+ x)
|^ 2))
>= (((a
+ x)
+ 1)
|^ 2) implies ((((a
+ l)
+ 1)
|^ 2)
+ ((((a
+ l)
+ 1)
+ x)
|^ 2))
> (((((a
+ l)
+ 1)
+ x)
+ 1)
|^ 2)
proof
assume
A1: a
>= 1 & ((a
|^ 2)
+ ((a
+ x)
|^ 2))
>= (((a
+ x)
+ 1)
|^ 2);
defpred
P[
Nat] means ((((a
+ $1)
+ 1)
|^ 2)
+ ((((a
+ $1)
+ 1)
+ x)
|^ 2))
> (((((a
+ $1)
+ 1)
+ x)
+ 1)
|^ 2);
A2:
P[
0 ] by
A1,
Th46;
A3:
P[k] implies
P[(k
+ 1)]
proof
assume
A4:
P[k];
((a
+ k)
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
hence thesis by
A4,
Th46;
end;
for j holds
P[j] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
Lm120: ((a
|^ 2)
+ (a
|^ 2))
> ((a
+ 1)
|^ 2) implies a
>= 3
proof
L1: ((a
- 1)
|^ 2)
= ((a
+ (
- 1))
|^ 2)
.= (((a
|^ 2)
+ ((2
* a)
* (
- 1)))
+ ((
- 1)
|^ 2)) by
Lm10
.= (((a
|^ 2)
+ ((2
* a)
* (
- 1)))
+ ((
- 1)
* (
- 1))) by
NEWTON: 81;
assume
A1: ((a
|^ 2)
+ (a
|^ 2))
> ((a
+ 1)
|^ 2);
then (a
|^ 2)
>
0 ;
then (a
|^ 2)
> (
0
|^ 2) by
NEWTON: 11;
then (a
- 1)
>= (1
- 1) by
NAT_1: 14,
XREAL_1: 9;
then
A2: (a
- 1)
in
NAT by
INT_1: 3;
((a
+ 1)
|^ 2)
= (((a
|^ 2)
+ ((2
* a)
* 1))
+ (1
|^ 2)) by
Lm10
.= (((a
|^ 2)
+ (2
* a))
+ 1);
then (((a
|^ 2)
+ (a
|^ 2))
- (((a
|^ 2)
+ (2
* a))
- 1))
> ((((a
|^ 2)
+ (2
* a))
+ 1)
- (((a
|^ 2)
+ (2
* a))
- 1)) by
A1,
XREAL_1: 9;
then ((a
- 1)
|^ 2)
> (1
|^ 2) by
L1,
XXREAL_0: 2;
then ((a
- 1)
+ 1)
> (1
+ 1) by
A2,
Lm3a,
XREAL_1: 6;
then a
>= (2
+ 1) by
NAT_1: 13;
hence thesis;
end;
theorem ::
NEWTON01:49
a
>= 3 iff ((a
|^ 2)
+ (a
|^ 2))
> ((a
+ 1)
|^ 2)
proof
a
>= 3 implies ((a
|^ 2)
+ (a
|^ 2))
> ((a
+ 1)
|^ 2)
proof
assume a
>= 3;
then
consider b such that
A2: a
= (3
+ b) by
NAT_1: 10;
defpred
P[
Nat] means (((3
+ $1)
|^ 2)
+ ((3
+ $1)
|^ 2))
> (((3
+ $1)
+ 1)
|^ 2);
A3:
P[
0 ]
proof
(3
|^ 2)
= (3
* 3) & (4
|^ 2)
= (4
* 4) by
NEWTON: 81;
hence thesis;
end;
A4:
P[k] implies
P[(k
+ 1)]
proof
assume
P[k];
then (1
+ (2
+ k))
>= (1
+
0 ) & (((3
+ k)
|^ 2)
+ (((3
+ k)
+
0 )
|^ 2))
> ((((3
+ k)
+
0 )
+ 1)
|^ 2) by
XREAL_1: 6;
then ((((3
+ k)
+ 1)
|^ 2)
+ ((((3
+ k)
+
0 )
+ 1)
|^ 2))
> (((((3
+ k)
+ 1)
+
0 )
+ 1)
|^ 2) by
Th47;
hence thesis;
end;
for m holds
P[m] from
NAT_1:sch 2(
A3,
A4);
hence thesis by
A2;
end;
hence thesis by
Lm120;
end;
theorem ::
NEWTON01:50
((2
|^ (3
+ m))
+ (2
|^ (3
+ m)))
< (3
|^ (3
+ m))
proof
A4: ((2
|^ (2
+ 1))
+ (2
|^ (2
+ 1)))
= (2
* (2
|^ (2
+ 1)))
.= (2
* (2
* (2
|^ 2))) by
NEWTON: 6
.= (2
* ((2
* 2)
* 2)) by
NEWTON: 81;
A5: (3
|^ (2
+ 1))
= (3
* (3
|^ 2)) by
NEWTON: 6
.= ((3
* 3)
* 3) by
NEWTON: 81;
A6: (2
|^ (3
+ m))
= ((2
|^ 3)
* (2
|^ m)) & (3
|^ (3
+ m))
= ((3
|^ 3)
* (3
|^ m)) by
NEWTON: 8;
(2
|^ m)
<= (3
|^ m) by
Lm3a;
then
A7: (((2
|^ 3)
+ (2
|^ 3))
* (2
|^ m))
<= (((2
|^ 3)
+ (2
|^ 3))
* (3
|^ m)) by
XREAL_1: 64;
(3
|^ m)
>
0 by
PREPOWER: 6;
then (((2
|^ 3)
+ (2
|^ 3))
* (3
|^ m))
< ((3
|^ 3)
* (3
|^ m)) by
A4,
A5,
XREAL_1: 68;
hence thesis by
XXREAL_0: 2,
A6,
A7;
end;