taylor_2.miz
begin
reserve Z for
open
Subset of
REAL ;
theorem ::
TAYLOR_2:1
Th1: for x be
Real, n be
Nat holds
|.(x
|^ n).|
= (
|.x.|
|^ n)
proof
let x be
Real, n be
Nat;
defpred
P[
Nat] means
|.(x
|^ $1).|
= (
|.x.|
|^ $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A2:
P[k];
|.(x
|^ (k
+ 1)).|
=
|.(x
* (x
|^ k)).| by
NEWTON: 6
.= (
|.x.|
*
|.(x
|^ k).|) by
COMPLEX1: 65
.= (
|.x.|
|^ (k
+ 1)) by
A2,
NEWTON: 6;
hence thesis;
end;
|.(x
|^
0 ).|
=
|.1.| by
NEWTON: 4
.= 1 by
ABSVALUE:def 1;
then
A3:
P[
0 ] by
NEWTON: 4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
definition
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , a be
Real;
::
TAYLOR_2:def1
func
Maclaurin (f,Z,a) ->
Real_Sequence equals (
Taylor (f,Z,
0 ,a));
coherence ;
end
theorem ::
TAYLOR_2:2
Th2: for n be
Nat, f be
PartFunc of
REAL ,
REAL , r be
Real st
0
< r &
].(
- r), r.[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(
- r), r.[) holds for x be
Real st x
in
].(
- r), r.[ holds ex s be
Real st
0
< s & s
< 1 & (f
. x)
= (((
Partial_Sums (
Maclaurin (f,
].(
- r), r.[,x)))
. n)
+ (((((
diff (f,
].(
- r), r.[))
. (n
+ 1))
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )))
proof
let n be
Nat, f be
PartFunc of
REAL ,
REAL , r be
Real such that
A1:
0
< r &
].(
- r), r.[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(
- r), r.[);
let x be
Real;
assume x
in
].(
- r), r.[;
then
consider s be
Real such that
A2:
0
< s & s
< 1 & (f
. x)
= (((
Partial_Sums (
Taylor (f,
].(
0
- r), (
0
+ r).[,
0 ,x)))
. n)
+ (((((
diff (f,
].(
0
- r), (
0
+ r).[))
. (n
+ 1))
. (
0
+ (s
* (x
-
0 ))))
* ((x
-
0 )
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
A1,
TAYLOR_1: 33;
take s;
thus thesis by
A2;
end;
theorem ::
TAYLOR_2:3
for n be
Nat, f be
PartFunc of
REAL ,
REAL , x0,r be
Real st
0
< r &
].(x0
- r), (x0
+ r).[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(x0
- r), (x0
+ r).[) holds for x be
Real st x
in
].(x0
- r), (x0
+ r).[ holds ex s be
Real st
0
< s & s
< 1 &
|.((f
. x)
- ((
Partial_Sums (
Taylor (f,
].(x0
- r), (x0
+ r).[,x0,x)))
. n)).|
=
|.(((((
diff (f,
].(x0
- r), (x0
+ r).[))
. (n
+ 1))
. (x0
+ (s
* (x
- x0))))
* ((x
- x0)
|^ (n
+ 1)))
/ ((n
+ 1)
! )).|
proof
let n be
Nat;
let f be
PartFunc of
REAL ,
REAL ;
let x0,r be
Real such that
A1:
0
< r &
].(x0
- r), (x0
+ r).[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(x0
- r), (x0
+ r).[);
let x be
Real;
assume x
in
].(x0
- r), (x0
+ r).[;
then ex s be
Real st
0
< s & s
< 1 & (f
. x)
= (((
Partial_Sums (
Taylor (f,
].(x0
- r), (x0
+ r).[,x0,x)))
. n)
+ (((((
diff (f,
].(x0
- r), (x0
+ r).[))
. (n
+ 1))
. (x0
+ (s
* (x
- x0))))
* ((x
- x0)
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
A1,
TAYLOR_1: 33;
hence thesis;
end;
theorem ::
TAYLOR_2:4
Th4: for n be
Nat, f be
PartFunc of
REAL ,
REAL , r be
Real st
0
< r &
].(
- r), r.[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(
- r), r.[) holds for x be
Real st x
in
].(
- r), r.[ holds ex s be
Real st
0
< s & s
< 1 &
|.((f
. x)
- ((
Partial_Sums (
Maclaurin (f,
].(
- r), r.[,x)))
. n)).|
=
|.(((((
diff (f,
].(
- r), r.[))
. (n
+ 1))
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )).|
proof
let n be
Nat;
let f be
PartFunc of
REAL ,
REAL ;
let r be
Real such that
A1:
0
< r &
].(
- r), r.[
c= (
dom f) & f
is_differentiable_on ((n
+ 1),
].(
- r), r.[);
let x be
Real;
assume x
in
].(
- r), r.[;
then ex s be
Real st
0
< s & s
< 1 & (f
. x)
= (((
Partial_Sums (
Maclaurin (f,
].(
- r), r.[,x)))
. n)
+ (((((
diff (f,
].(
- r), r.[))
. (n
+ 1))
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
A1,
Th2;
hence thesis;
end;
Lm1: for f be
Function of
REAL ,
REAL holds (
dom (f
| Z))
= Z
proof
let f be
Function of
REAL ,
REAL ;
A1: (
dom f)
=
REAL by
FUNCT_2:def 1;
thus (
dom (f
| Z))
= ((
dom f)
/\ Z) by
RELAT_1: 61
.= Z by
A1,
XBOOLE_1: 28;
end;
theorem ::
TAYLOR_2:5
Th5: (
exp_R
`| Z)
= (
exp_R
| Z) & (
dom (
exp_R
| Z))
= Z
proof
A1:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
A2: (
dom (
exp_R
| Z))
= Z by
Lm1;
A3: for x be
Element of
REAL st x
in Z holds ((
exp_R
`| Z)
. x)
= ((
exp_R
| Z)
. x)
proof
let x be
Element of
REAL such that
A4: x
in Z;
thus ((
exp_R
`| Z)
. x)
= (
diff (
exp_R ,x)) by
A1,
A4,
FDIFF_1:def 7
.= (
exp_R
. x) by
TAYLOR_1: 16
.= ((
exp_R
| Z)
. x) by
A2,
A4,
FUNCT_1: 47;
end;
(
dom (
exp_R
`| Z))
= Z by
A1,
FDIFF_1:def 7;
hence thesis by
A2,
A3,
PARTFUN1: 5;
end;
theorem ::
TAYLOR_2:6
Th6: for n be
Nat holds ((
diff (
exp_R ,Z))
. n)
= (
exp_R
| Z)
proof
let n be
Nat;
defpred
P[
Nat] means ((
diff (
exp_R ,Z))
. $1)
= (
exp_R
| Z);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A2:
P[k];
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
((
diff (
exp_R ,Z))
. (k
+ 1))
= (((
diff (
exp_R ,Z))
. k)
`| Z) by
TAYLOR_1:def 5
.= (
exp_R
`| Z) by
A2,
A3,
FDIFF_2: 16
.= (
exp_R
| Z) by
Th5;
hence thesis;
end;
A4:
P[
0 ] by
TAYLOR_1:def 5;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
TAYLOR_2:7
Th7: for n be
Nat, x be
Real st x
in Z holds (((
diff (
exp_R ,Z))
. n)
. x)
= (
exp_R
. x)
proof
let n be
Nat;
let x be
Real;
assume x
in Z;
then
A1: x
in (
dom (
exp_R
| Z)) by
Th5;
(((
diff (
exp_R ,Z))
. n)
. x)
= ((
exp_R
| Z)
. x) by
Th6
.= (
exp_R
. x) by
A1,
FUNCT_1: 47;
hence thesis;
end;
theorem ::
TAYLOR_2:8
for n be
Element of
NAT , r,x be
Real st
0
< r holds ((
Maclaurin (
exp_R ,
].(
- r), r.[,x))
. n)
= ((x
|^ n)
/ (n
! ))
proof
let n be
Element of
NAT ;
A1:
|.(
0
-
0 ).|
=
0 by
ABSVALUE: 2;
let r,x be
Real;
assume r
>
0 ;
then
0
in
].(
0
- r), (
0
+ r).[ by
A1,
RCOMP_1: 1;
then
A2:
0
in (
dom (
exp_R
|
].(
- r), r.[)) by
Th5;
((
Maclaurin (
exp_R ,
].(
- r), r.[,x))
. n)
= (((((
diff (
exp_R ,
].(
- r), r.[))
. n)
.
0 )
* ((x
-
0 )
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= ((((
exp_R
|
].(
- r), r.[)
.
0 )
* (x
|^ n))
/ (n
! )) by
Th6
.= (((
exp_R
.
0 )
* (x
|^ n))
/ (n
! )) by
A2,
FUNCT_1: 47
.= ((x
|^ n)
/ (n
! )) by
SIN_COS2: 13;
hence thesis;
end;
theorem ::
TAYLOR_2:9
for n be
Element of
NAT , r,x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. (n
+ 1))
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )).|
<= ((
|.(
exp_R
. (s
* x)).|
* (
|.x.|
|^ (n
+ 1)))
/ ((n
+ 1)
! ))
proof
let n be
Element of
NAT ;
let r,x,s be
Real such that
A1: x
in
].(
- r), r.[ and
A2:
0
< s and
A3: s
< 1;
A4:
|.((s
* x)
-
0 ).|
= (
|.s.|
*
|.x.|) by
COMPLEX1: 65
.= (s
*
|.x.|) by
A2,
ABSVALUE:def 1;
x
in
].(
0
- r), (
0
+ r).[ by
A1;
then
A5:
|.(x
-
0 ).|
< r by
RCOMP_1: 1;
|.x.|
>=
0 by
COMPLEX1: 46;
then (
|.x.|
* s)
< (r
* 1) by
A2,
A3,
A5,
XREAL_1: 97;
then (s
* x)
in
].(
0
- r), (
0
+ r).[ by
A4,
RCOMP_1: 1;
then
A6: (s
* x)
in (
dom (
exp_R
|
].(
- r), r.[)) by
Th5;
A7:
|.((n
+ 1)
! ).|
= ((n
+ 1)
! ) by
ABSVALUE:def 1;
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. (n
+ 1))
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )).|
=
|.((((
exp_R
|
].(
- r), r.[)
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )).| by
Th6
.=
|.(((
exp_R
. (s
* x))
* (x
|^ (n
+ 1)))
/ ((n
+ 1)
! )).| by
A6,
FUNCT_1: 47
.= (
|.((
exp_R
. (s
* x))
* (x
|^ (n
+ 1))).|
/
|.((n
+ 1)
! ).|) by
COMPLEX1: 67
.= ((
|.(
exp_R
. (s
* x)).|
*
|.(x
|^ (n
+ 1)).|)
/ ((n
+ 1)
! )) by
A7,
COMPLEX1: 65;
hence thesis by
Th1;
end;
theorem ::
TAYLOR_2:10
Th10: for n be
Element of
NAT holds
exp_R
is_differentiable_on (n,Z)
proof
let n be
Element of
NAT ;
let i be
Nat such that i
<= (n
- 1);
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
A1: for x be
Real st x
in Z holds (((
diff (
exp_R ,Z))
. i)
| Z)
is_differentiable_in x
proof
A2: (((
diff (
exp_R ,Z))
. i)
| Z)
= ((
exp_R
| Z)
| Z) by
Th6
.= (
exp_R
| Z) by
FUNCT_1: 51;
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
let x be
Real;
assume x
in Z;
hence thesis by
A2,
A3,
FDIFF_1:def 6;
end;
(
dom ((
diff (
exp_R ,Z))
. i))
= (
dom (
exp_R
| Z)) by
Th6
.= Z by
Th5;
hence thesis by
A1,
FDIFF_1:def 6;
end;
theorem ::
TAYLOR_2:11
Th11: for r be
Real st
0
< r holds ex M,L be
Real st
0
<= M &
0
<= L & for n be
Nat holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((M
* (L
|^ n))
/ (n
! ))
proof
let r be
Real such that
A1: r
>
0 ;
take M = (
exp_R
. r);
take L = r;
now
let n be
Nat;
now
A2: for a,b be
Real st
0
<= a & a
<= b holds for n be
Nat holds
0
<= (a
|^ n) & (a
|^ n)
<= (b
|^ n)
proof
let a,b be
Real such that
A3:
0
<= a and
A4: a
<= b;
defpred
P[
Nat] means
0
<= (a
|^ $1) & (a
|^ $1)
<= (b
|^ $1);
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6:
P[k];
(
0
* a)
<= ((a
|^ k)
* a) by
A3,
A6;
hence (a
|^ (k
+ 1))
>=
0 by
NEWTON: 6;
(b
|^ (k
+ 1))
= ((b
|^ k)
* b) & ((a
|^ k)
* a)
<= ((b
|^ k)
* b) by
A3,
A4,
A6,
NEWTON: 6,
XREAL_1: 66;
hence thesis by
NEWTON: 6;
end;
(b
|^
0 )
= 1 by
NEWTON: 4;
then
A7:
P[
0 ] by
NEWTON: 4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A5);
hence thesis;
end;
let x,s be
Real such that
A8: x
in
].(
- r), r.[ and
A9:
0
< s and
A10: s
< 1;
x
in
].(
0
- r), (
0
+ r).[ by
A8;
then
A11:
|.(x
-
0 ).|
< r by
RCOMP_1: 1;
|.x.|
>=
0 by
COMPLEX1: 46;
then
A12: (
|.x.|
|^ n)
<= (L
|^ n) by
A11,
A2;
|.x.|
>=
0 by
COMPLEX1: 46;
then (s
*
|.x.|)
< (1
* r) by
A9,
A10,
A11,
XREAL_1: 97;
then (
|.s.|
*
|.x.|)
< r by
A9,
ABSVALUE:def 1;
then
|.((s
* x)
-
0 ).|
< r by
COMPLEX1: 65;
then
A13: (s
* x)
in
].(
0
- r), (
0
+ r).[ by
RCOMP_1: 1;
then
A14:
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
=
|.(((
exp_R
. (s
* x))
* (x
|^ n))
/ (n
! )).| by
Th7
.=
|.((
exp_R
. (s
* x))
* ((x
|^ n)
/ (n
! ))).| by
XCMPLX_1: 74
.= (
|.(
exp_R
. (s
* x)).|
*
|.((x
|^ n)
/ (n
! )).|) by
COMPLEX1: 65;
(
exp_R
. (s
* x))
>=
0 by
SIN_COS: 54;
then
A15: r
in ((
[#]
REAL )
/\ (
dom
exp_R )) &
|.(
exp_R
. (s
* x)).|
= (
exp_R
. (s
* x)) by
ABSVALUE:def 1,
TAYLOR_1: 16,
XREAL_0:def 1;
for x0 be
Real holds
0
<= (
diff (
exp_R ,x0)) by
TAYLOR_1: 16;
then
A16: (
exp_R
| (
[#]
REAL )) is
non-decreasing by
FDIFF_2: 39,
TAYLOR_1: 16;
|.((x
|^ n)
/ (n
! )).|
= (
|.(x
|^ n).|
/
|.(n
! ).|) by
COMPLEX1: 67
.= (
|.(x
|^ n).|
/ (n
! )) by
ABSVALUE:def 1
.= ((
|.x.|
|^ n)
/ (n
! )) by
Th1;
then
A17:
|.((x
|^ n)
/ (n
! )).|
<= ((L
|^ n)
/ (n
! )) by
A12,
XREAL_1: 72;
A18:
|.(
exp_R
. (s
* x)).|
>=
0 &
|.((x
|^ n)
/ (n
! )).|
>=
0 by
COMPLEX1: 46;
(s
* x)
in { p where p be
Real : (
- r)
< p & p
< r } by
A13,
RCOMP_1:def 2;
then
consider g be
Real such that
A19: g
= (s
* x) & (
- r)
< g & g
< r;
reconsider g as
Element of
REAL by
XREAL_0:def 1;
g
= (s
* x) & (
- r)
< g & g
< r by
A19;
then
|.(
exp_R
. (s
* x)).|
<= M by
A16,
A15,
RFUNCT_2: 24,
TAYLOR_1: 16;
then
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= (M
* ((L
|^ n)
/ (n
! ))) by
A18,
A17,
A14,
XREAL_1: 66;
hence
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((M
* (L
|^ n))
/ (n
! )) by
XCMPLX_1: 74;
end;
hence for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((M
* (L
|^ n))
/ (n
! ));
end;
hence thesis by
A1,
SIN_COS: 54;
end;
theorem ::
TAYLOR_2:12
Th12: for M,L be
Real st M
>=
0 & L
>=
0 holds for e be
Real st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds ((M
* (L
|^ m))
/ (m
! ))
< e
proof
let M,L be
Real such that
A1: M
>=
0 and
A2: L
>=
0 ;
A3: (L
rExpSeq ) is
summable by
SIN_COS: 45;
then
A4: (M
(#) (L
rExpSeq )) is
convergent by
SEQ_2: 7,
SERIES_1: 4;
(
lim (L
rExpSeq ))
=
0 by
A3,
SERIES_1: 4;
then
A5: (
lim (M
(#) (L
rExpSeq )))
= (M
*
0 ) by
A3,
SEQ_2: 8,
SERIES_1: 4;
let p be
Real;
assume p
>
0 ;
then
consider n be
Nat such that
A6: for m be
Nat st n
<= m holds
|.(((M
(#) (L
rExpSeq ))
. m)
-
0 ).|
< p by
A4,
A5,
SEQ_2:def 7;
take n;
A7: for n be
Element of
NAT holds (M
* ((L
|^ n)
/ (n
! )))
= ((M
(#) (L
rExpSeq ))
. n)
proof
let n be
Element of
NAT ;
(M
* ((L
|^ n)
/ (n
! )))
= (M
* ((L
rExpSeq )
. n)) by
SIN_COS:def 5
.= ((M
(#) (L
rExpSeq ))
. n) by
SEQ_1: 9;
hence thesis;
end;
now
let m be
Nat such that
A8: n
<= m;
A9: m
in
NAT by
ORDINAL1:def 12;
A10: (L
|^ m)
>=
0 & (m
! )
>
0 by
A2,
POWER: 3;
|.(((M
(#) (L
rExpSeq ))
. m)
-
0 ).|
=
|.(M
* ((L
|^ m)
/ (m
! ))).| by
A7,
A9
.= (
|.M.|
*
|.((L
|^ m)
/ (m
! )).|) by
COMPLEX1: 65
.= (M
*
|.((L
|^ m)
/ (m
! )).|) by
A1,
ABSVALUE:def 1
.= (M
* ((L
|^ m)
/ (m
! ))) by
A10,
ABSVALUE:def 1
.= ((M
* (L
|^ m))
/ (m
! )) by
XCMPLX_1: 74;
hence ((M
* (L
|^ m))
/ (m
! ))
< p by
A6,
A8;
end;
hence thesis;
end;
theorem ::
TAYLOR_2:13
Th13: for r,e be
Real st
0
< r &
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e
proof
let r,e be
Real such that
A1:
0
< r and
A2:
0
< e;
consider M,L be
Real such that
A3: M
>=
0 & L
>=
0 and
A4: for n be
Nat holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((M
* (L
|^ n))
/ (n
! )) by
A1,
Th11;
consider n be
Nat such that
A5: for m be
Nat st n
<= m holds ((M
* (L
|^ m))
/ (m
! ))
< e by
A2,
A3,
Th12;
take n;
let m be
Nat;
assume n
<= m;
then
A6: ((M
* (L
|^ m))
/ (m
! ))
< e by
A5;
let x,s be
Real;
assume x
in
].(
- r), r.[ &
0
< s & s
< 1;
then
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
<= ((M
* (L
|^ m))
/ (m
! )) by
A4;
hence thesis by
A6,
XXREAL_0: 2;
end;
theorem ::
TAYLOR_2:14
for r,e be
Real st
0
< r &
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds for x be
Real st x
in
].(
- r), r.[ holds
|.((
exp_R
. x)
- ((
Partial_Sums (
Maclaurin (
exp_R ,
].(
- r), r.[,x)))
. m)).|
< e
proof
let r,e be
Real such that
A1: r
>
0 and
A2: e
>
0 ;
consider n be
Nat such that
A3: for m be
Nat st n
<= m holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e by
A1,
A2,
Th13;
take n;
let m be
Nat such that
A4: n
<= m;
now
m
<= (m
+ 1) by
NAT_1: 11;
then
A5: n
<= (m
+ 1) by
A4,
XXREAL_0: 2;
let x be
Real such that
A6: x
in
].(
- r), r.[;
ex s be
Real st
0
< s & s
< 1 &
|.((
exp_R
. x)
- ((
Partial_Sums (
Maclaurin (
exp_R ,
].(
- r), r.[,x)))
. m)).|
=
|.(((((
diff (
exp_R ,
].(
- r), r.[))
. (m
+ 1))
. (s
* x))
* (x
|^ (m
+ 1)))
/ ((m
+ 1)
! )).| by
A1,
A6,
Th4,
Th10,
SIN_COS: 47;
hence
|.((
exp_R
. x)
- ((
Partial_Sums (
Maclaurin (
exp_R ,
].(
- r), r.[,x)))
. m)).|
< e by
A3,
A6,
A5;
end;
hence thesis;
end;
theorem ::
TAYLOR_2:15
Th15: for x be
Real holds (x
rExpSeq ) is
absolutely_summable
proof
let x be
Real;
for n be
Nat holds
|.((x
rExpSeq )
. n).|
= ((
|.x.|
rExpSeq )
. n)
proof
let n be
Nat;
|.((x
rExpSeq )
. n).|
=
|.((x
|^ n)
/ (n
! )).| by
SIN_COS:def 5
.= (
|.(x
|^ n).|
/
|.(n
! ).|) by
COMPLEX1: 67
.= (
|.(x
|^ n).|
/ (n
! )) by
ABSVALUE:def 1
.= ((
|.x.|
|^ n)
/ (n
! )) by
Th1
.= ((
|.x.|
rExpSeq )
. n) by
SIN_COS:def 5;
hence thesis;
end;
then (
|.x.|
rExpSeq )
=
|.(x
rExpSeq ).| by
SEQ_1: 12;
then
|.(x
rExpSeq ).| is
summable by
SIN_COS: 45;
hence thesis by
SERIES_1:def 4;
end;
theorem ::
TAYLOR_2:16
for r,x be
Real st
0
< r holds (
Maclaurin (
exp_R ,
].(
- r), r.[,x))
= (x
rExpSeq ) & (
Maclaurin (
exp_R ,
].(
- r), r.[,x)) is
absolutely_summable & (
exp_R
. x)
= (
Sum (
Maclaurin (
exp_R ,
].(
- r), r.[,x)))
proof
A1:
|.(
0
-
0 ).|
=
0 by
ABSVALUE: 2;
let r,x be
Real;
assume r
>
0 ;
then
0
in
].(
0
- r), (
0
+ r).[ by
A1,
RCOMP_1: 1;
then
A2:
0
in (
dom (
exp_R
|
].(
- r), r.[)) by
Th5;
now
let t be
object;
assume t
in
NAT ;
then
reconsider n = t as
Element of
NAT ;
thus ((
Maclaurin (
exp_R ,
].(
- r), r.[,x))
. t)
= (((((
diff (
exp_R ,
].(
- r), r.[))
. n)
.
0 )
* ((x
-
0 )
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= ((((
exp_R
|
].(
- r), r.[)
.
0 )
* (x
|^ n))
/ (n
! )) by
Th6
.= (((
exp_R
.
0 )
* (x
|^ n))
/ (n
! )) by
A2,
FUNCT_1: 47
.= ((x
rExpSeq )
. t) by
SIN_COS:def 5,
SIN_COS2: 13;
end;
then (
Maclaurin (
exp_R ,
].(
- r), r.[,x))
= (x
rExpSeq ) by
FUNCT_2: 12;
hence thesis by
Th15,
SIN_COS:def 22;
end;
theorem ::
TAYLOR_2:17
Th17: (
sin
`| Z)
= (
cos
| Z) & (
cos
`| Z)
= ((
-
sin )
| Z) & (
dom (
sin
| Z))
= Z & (
dom (
cos
| Z))
= Z
proof
A1: (
dom (
sin
| Z))
= ((
dom
sin )
/\ Z) by
RELAT_1: 61
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
A2: (
dom (
cos
| Z))
= ((
dom
cos )
/\ Z) by
RELAT_1: 61
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
A3:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
A4: for x be
Element of
REAL st x
in Z holds ((
sin
`| Z)
. x)
= ((
cos
| Z)
. x)
proof
let x be
Element of
REAL such that
A5: x
in Z;
((
sin
`| Z)
. x)
= (
diff (
sin ,x)) by
A3,
A5,
FDIFF_1:def 7
.= (
cos
. x) by
SIN_COS: 64
.= ((
cos
| Z)
. x) by
A2,
A5,
FUNCT_1: 47;
hence thesis;
end;
A6:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A7: (
dom (
cos
`| Z))
= Z by
FDIFF_1:def 7;
A8: (
dom ((
-
sin )
| Z))
= ((
dom ((
- 1)
(#)
sin ))
/\ Z) by
RELAT_1: 61
.= ((
dom
sin )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
A9: for x be
Element of
REAL st x
in Z holds ((
cos
`| Z)
. x)
= (((
-
sin )
| Z)
. x)
proof
let x be
Element of
REAL such that
A10: x
in Z;
x
in (
dom
sin ) by
SIN_COS: 24;
then
A11: x
in (
dom ((
- 1)
(#)
sin )) by
VALUED_1:def 5;
((
cos
`| Z)
. x)
= (
diff (
cos ,x)) by
A6,
A10,
FDIFF_1:def 7
.= (
- (
sin
. x)) by
SIN_COS: 63
.= ((
- 1)
* (
sin
. x))
.= ((
-
sin )
. x) by
A11,
VALUED_1:def 5
.= (((
-
sin )
| Z)
. x) by
A8,
A10,
FUNCT_1: 47;
hence thesis;
end;
(
dom (
sin
`| Z))
= Z by
A3,
FDIFF_1:def 7;
hence thesis by
A8,
A1,
A2,
A4,
A7,
A9,
PARTFUN1: 5;
end;
theorem ::
TAYLOR_2:18
for f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st f
is_differentiable_on Z holds ((
- f)
`| Z)
= (
- (f
`| Z))
proof
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL such that
A1: f
is_differentiable_on Z;
Z is
open
Subset of
REAL by
A1,
FDIFF_1: 10;
then ((
- f)
`| Z)
= ((
- 1)
(#) (f
`| Z)) by
A1,
FDIFF_2: 19
.= (
- (f
`| Z));
hence thesis;
end;
theorem ::
TAYLOR_2:19
Th19: for n be
Nat holds ((
diff (
sin ,Z))
. (2
* n))
= (((
- 1)
|^ n)
(#) (
sin
| Z)) & ((
diff (
sin ,Z))
. ((2
* n)
+ 1))
= (((
- 1)
|^ n)
(#) (
cos
| Z)) & ((
diff (
cos ,Z))
. (2
* n))
= (((
- 1)
|^ n)
(#) (
cos
| Z)) & ((
diff (
cos ,Z))
. ((2
* n)
+ 1))
= (((
- 1)
|^ (n
+ 1))
(#) (
sin
| Z))
proof
let n be
Nat;
A1:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
defpred
P[
Nat] means ((
diff (
sin ,Z))
. (2
* $1))
= (((
- 1)
|^ $1)
(#) (
sin
| Z)) & ((
diff (
sin ,Z))
. ((2
* $1)
+ 1))
= (((
- 1)
|^ $1)
(#) (
cos
| Z)) & ((
diff (
cos ,Z))
. (2
* $1))
= (((
- 1)
|^ $1)
(#) (
cos
| Z)) & ((
diff (
cos ,Z))
. ((2
* $1)
+ 1))
= (((
- 1)
|^ ($1
+ 1))
(#) (
sin
| Z));
A2:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
A3: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A4:
P[k];
A5: (
cos
| Z)
is_differentiable_on Z by
A1,
FDIFF_2: 16;
A6: ((
diff (
sin ,Z))
. (2
* (k
+ 1)))
= ((
diff (
sin ,Z))
. (((2
* k)
+ 1)
+ 1))
.= (((
diff (
sin ,Z))
. ((2
* k)
+ 1))
`| Z) by
TAYLOR_1:def 5
.= (((
- 1)
|^ k)
(#) ((
cos
| Z)
`| Z)) by
A4,
A5,
FDIFF_2: 19
.= (((
- 1)
|^ k)
(#) (
cos
`| Z)) by
A1,
FDIFF_2: 16
.= (((
- 1)
|^ k)
(#) (((
- 1)
(#)
sin )
| Z)) by
Th17
.= (((
- 1)
|^ k)
(#) ((
- 1)
(#) (
sin
| Z))) by
RFUNCT_1: 49
.= ((((
- 1)
|^ k)
* (
- 1))
(#) (
sin
| Z)) by
RFUNCT_1: 17
.= (((
- 1)
|^ (k
+ 1))
(#) (
sin
| Z)) by
NEWTON: 6;
A7: (
sin
| Z)
is_differentiable_on Z by
A2,
FDIFF_2: 16;
A8: ((
diff (
cos ,Z))
. (2
* (k
+ 1)))
= ((
diff (
cos ,Z))
. (((2
* k)
+ 1)
+ 1))
.= (((
diff (
cos ,Z))
. ((2
* k)
+ 1))
`| Z) by
TAYLOR_1:def 5
.= (((
- 1)
|^ (k
+ 1))
(#) ((
sin
| Z)
`| Z)) by
A4,
A7,
FDIFF_2: 19
.= (((
- 1)
|^ (k
+ 1))
(#) (
sin
`| Z)) by
A2,
FDIFF_2: 16
.= (((
- 1)
|^ (k
+ 1))
(#) (
cos
| Z)) by
Th17;
A9: ((
diff (
cos ,Z))
. ((2
* (k
+ 1))
+ 1))
= (((
diff (
cos ,Z))
. (2
* (k
+ 1)))
`| Z) by
TAYLOR_1:def 5
.= (((
- 1)
|^ (k
+ 1))
(#) ((
cos
| Z)
`| Z)) by
A5,
A8,
FDIFF_2: 19
.= (((
- 1)
|^ (k
+ 1))
(#) (
cos
`| Z)) by
A1,
FDIFF_2: 16
.= (((
- 1)
|^ (k
+ 1))
(#) (((
- 1)
(#)
sin )
| Z)) by
Th17
.= (((
- 1)
|^ (k
+ 1))
(#) ((
- 1)
(#) (
sin
| Z))) by
RFUNCT_1: 49
.= ((((
- 1)
|^ (k
+ 1))
* (
- 1))
(#) (
sin
| Z)) by
RFUNCT_1: 17
.= (((
- 1)
|^ ((k
+ 1)
+ 1))
(#) (
sin
| Z)) by
NEWTON: 6;
((
diff (
sin ,Z))
. ((2
* (k
+ 1))
+ 1))
= (((
diff (
sin ,Z))
. (2
* (k
+ 1)))
`| Z) by
TAYLOR_1:def 5
.= (((
- 1)
|^ (k
+ 1))
(#) ((
sin
| Z)
`| Z)) by
A7,
A6,
FDIFF_2: 19
.= (((
- 1)
|^ (k
+ 1))
(#) (
sin
`| Z)) by
A2,
FDIFF_2: 16
.= (((
- 1)
|^ (k
+ 1))
(#) (
cos
| Z)) by
Th17;
hence thesis by
A6,
A8,
A9;
end;
A10: ((
diff (
cos ,Z))
. ((2
*
0 )
+ 1))
= (((
diff (
cos ,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((
cos
| Z)
`| Z) by
TAYLOR_1:def 5
.= (
cos
`| Z) by
A1,
FDIFF_2: 16
.= ((
-
sin )
| Z) by
Th17
.= (1
(#) ((
-
sin )
| Z)) by
RFUNCT_1: 21
.= (((
- 1)
|^
0 )
(#) (((
- 1)
(#)
sin )
| Z)) by
NEWTON: 4
.= (((
- 1)
|^
0 )
(#) ((
- 1)
(#) (
sin
| Z))) by
RFUNCT_1: 49
.= ((((
- 1)
|^
0 )
* (
- 1))
(#) (
sin
| Z)) by
RFUNCT_1: 17
.= (((
- 1)
|^ (
0
+ 1))
(#) (
sin
| Z)) by
NEWTON: 6;
A11: ((
diff (
sin ,Z))
. (2
*
0 ))
= (
sin
| Z) by
TAYLOR_1:def 5
.= (1
(#) (
sin
| Z)) by
RFUNCT_1: 21
.= (((
- 1)
|^
0 )
(#) (
sin
| Z)) by
NEWTON: 4;
A12: ((
diff (
cos ,Z))
. (2
*
0 ))
= (
cos
| Z) by
TAYLOR_1:def 5
.= (1
(#) (
cos
| Z)) by
RFUNCT_1: 21
.= (((
- 1)
|^
0 )
(#) (
cos
| Z)) by
NEWTON: 4;
((
diff (
sin ,Z))
. ((2
*
0 )
+ 1))
= (((
diff (
sin ,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((
sin
| Z)
`| Z) by
TAYLOR_1:def 5
.= (
sin
`| Z) by
A2,
FDIFF_2: 16
.= (
cos
| Z) by
Th17
.= (1
(#) (
cos
| Z)) by
RFUNCT_1: 21
.= (((
- 1)
|^
0 )
(#) (
cos
| Z)) by
NEWTON: 4;
then
A13:
P[
0 ] by
A11,
A12,
A10;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A13,
A3);
hence thesis;
end;
theorem ::
TAYLOR_2:20
Th20: for n be
Nat, r,x be
Real st r
>
0 holds ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. (2
* n))
=
0 & ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
* n)
+ 1))
= ((((
- 1)
|^ n)
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) & ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (2
* n))
= ((((
- 1)
|^ n)
* (x
|^ (2
* n)))
/ ((2
* n)
! )) & ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
* n)
+ 1))
=
0
proof
A1:
|.(
0
-
0 ).|
=
0 by
ABSVALUE: 2;
let n be
Nat, r,x be
Real;
assume r
>
0 ;
then
A2:
0
in
].(
0
- r), (
0
+ r).[ by
A1,
RCOMP_1: 1;
then
A3:
0
in (
dom (
cos
|
].(
- r), r.[)) by
Th17;
A4: (
dom (((
- 1)
|^ n)
(#) (
cos
|
].(
- r), r.[)))
= (
dom (
cos
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A5: ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
* n)
+ 1))
= (((((
diff (
sin ,
].(
- r), r.[))
. ((2
* n)
+ 1))
.
0 )
* ((x
-
0 )
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
TAYLOR_1:def 7
.= ((((((
- 1)
|^ n)
(#) (
cos
|
].(
- r), r.[))
.
0 )
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
Th19
.= (((((
- 1)
|^ n)
* ((
cos
|
].(
- r), r.[)
.
0 ))
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
A2,
A4,
VALUED_1:def 5
.= (((((
- 1)
|^ n)
* (
cos
.
0 ))
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
A3,
FUNCT_1: 47
.= ((((
- 1)
|^ n)
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
SIN_COS: 30;
A6: (
dom (((
- 1)
|^ n)
(#) (
sin
|
].(
- r), r.[)))
= (
dom (
sin
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A7:
0
in (
dom (
sin
|
].(
- r), r.[)) by
A2,
Th17;
A8: ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (2
* n))
= (((((
diff (
cos ,
].(
- r), r.[))
. (2
* n))
.
0 )
* ((x
-
0 )
|^ (2
* n)))
/ ((2
* n)
! )) by
TAYLOR_1:def 7
.= ((((((
- 1)
|^ n)
(#) (
cos
|
].(
- r), r.[))
.
0 )
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
Th19
.= (((((
- 1)
|^ n)
* ((
cos
|
].(
- r), r.[)
.
0 ))
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
A2,
A4,
VALUED_1:def 5
.= (((((
- 1)
|^ n)
* (
cos
.
0 ))
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
A3,
FUNCT_1: 47
.= ((((
- 1)
|^ n)
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
SIN_COS: 30;
A9: (
dom (((
- 1)
|^ (n
+ 1))
(#) (
sin
|
].(
- r), r.[)))
= (
dom (
sin
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A10: ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
* n)
+ 1))
= (((((
diff (
cos ,
].(
- r), r.[))
. ((2
* n)
+ 1))
.
0 )
* ((x
-
0 )
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
TAYLOR_1:def 7
.= ((((((
- 1)
|^ (n
+ 1))
(#) (
sin
|
].(
- r), r.[))
.
0 )
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
Th19
.= (((((
- 1)
|^ (n
+ 1))
* ((
sin
|
].(
- r), r.[)
.
0 ))
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
A2,
A9,
VALUED_1:def 5
.= (((((
- 1)
|^ (n
+ 1))
* (
sin
.
0 ))
* (x
|^ ((2
* n)
+ 1)))
/ (((2
* n)
+ 1)
! )) by
A7,
FUNCT_1: 47
.=
0 by
SIN_COS: 30;
((
Maclaurin (
sin ,
].(
- r), r.[,x))
. (2
* n))
= (((((
diff (
sin ,
].(
- r), r.[))
. (2
* n))
.
0 )
* ((x
-
0 )
|^ (2
* n)))
/ ((2
* n)
! )) by
TAYLOR_1:def 7
.= ((((((
- 1)
|^ n)
(#) (
sin
|
].(
- r), r.[))
.
0 )
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
Th19
.= (((((
- 1)
|^ n)
* ((
sin
|
].(
- r), r.[)
.
0 ))
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
A2,
A6,
VALUED_1:def 5
.= (((((
- 1)
|^ n)
* (
sin
.
0 ))
* (x
|^ (2
* n)))
/ ((2
* n)
! )) by
A7,
FUNCT_1: 47
.=
0 by
SIN_COS: 30;
hence thesis by
A5,
A8,
A10;
end;
theorem ::
TAYLOR_2:21
Th21: for n be
Element of
NAT holds
sin
is_differentiable_on (n,Z) &
cos
is_differentiable_on (n,Z)
proof
let n be
Element of
NAT ;
now
let i be
Nat such that i
<= (n
- 1);
A1:
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A2: i
= (2
* j) by
ABIAN:def 2;
thus (
dom ((
diff (
sin ,Z))
. i))
= (
dom (((
- 1)
|^ j)
(#) (
sin
| Z))) by
A2,
Th19
.= (
dom (
sin
| Z)) by
VALUED_1:def 5
.= Z by
Th17;
end;
suppose i is
odd;
then
consider j be
Nat such that
A3: i
= ((2
* j)
+ 1) by
ABIAN: 9;
thus (
dom ((
diff (
sin ,Z))
. i))
= (
dom (((
- 1)
|^ j)
(#) (
cos
| Z))) by
A3,
Th19
.= (
dom (
cos
| Z)) by
VALUED_1:def 5
.= Z by
Th17;
end;
end;
for x be
Real st x
in Z holds (((
diff (
sin ,Z))
. i)
| Z)
is_differentiable_in x
proof
let x be
Real such that
A4: x
in Z;
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A5: i
= (2
* j) by
ABIAN:def 2;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A6: (
sin
| Z)
is_differentiable_in x by
A4,
FDIFF_1:def 6;
((
diff (
sin ,Z))
. i)
= (((
- 1)
|^ j)
(#) (
sin
| Z)) by
A5,
Th19;
hence ((
diff (
sin ,Z))
. i)
is_differentiable_in x by
A6,
FDIFF_1: 15;
end;
suppose i is
odd;
then
consider j be
Nat such that
A7: i
= ((2
* j)
+ 1) by
ABIAN: 9;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A8: (
cos
| Z)
is_differentiable_in x by
A4,
FDIFF_1:def 6;
((
diff (
sin ,Z))
. i)
= (((
- 1)
|^ j)
(#) (
cos
| Z)) by
A7,
Th19;
hence ((
diff (
sin ,Z))
. i)
is_differentiable_in x by
A8,
FDIFF_1: 15;
end;
end;
hence thesis by
A1,
RELAT_1: 68;
end;
hence ((
diff (
sin ,Z))
. i)
is_differentiable_on Z by
A1,
FDIFF_1:def 6;
end;
hence
sin
is_differentiable_on (n,Z);
now
let i be
Nat such that i
<= (n
- 1);
A9:
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A10: i
= (2
* j) by
ABIAN:def 2;
thus (
dom ((
diff (
cos ,Z))
. i))
= (
dom (((
- 1)
|^ j)
(#) (
cos
| Z))) by
A10,
Th19
.= (
dom (
cos
| Z)) by
VALUED_1:def 5
.= Z by
Th17;
end;
suppose i is
odd;
then
consider j be
Nat such that
A11: i
= ((2
* j)
+ 1) by
ABIAN: 9;
thus (
dom ((
diff (
cos ,Z))
. i))
= (
dom (((
- 1)
|^ (j
+ 1))
(#) (
sin
| Z))) by
A11,
Th19
.= (
dom (
sin
| Z)) by
VALUED_1:def 5
.= Z by
Th17;
end;
end;
for x be
Real st x
in Z holds (((
diff (
cos ,Z))
. i)
| Z)
is_differentiable_in x
proof
let x be
Real such that
A12: x
in Z;
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A13: i
= (2
* j) by
ABIAN:def 2;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A14: (
cos
| Z)
is_differentiable_in x by
A12,
FDIFF_1:def 6;
((
diff (
cos ,Z))
. i)
= (((
- 1)
|^ j)
(#) (
cos
| Z)) by
A13,
Th19;
hence ((
diff (
cos ,Z))
. i)
is_differentiable_in x by
A14,
FDIFF_1: 15;
end;
suppose i is
odd;
then
consider j be
Nat such that
A15: i
= ((2
* j)
+ 1) by
ABIAN: 9;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A16: (
sin
| Z)
is_differentiable_in x by
A12,
FDIFF_1:def 6;
((
diff (
cos ,Z))
. i)
= (((
- 1)
|^ (j
+ 1))
(#) (
sin
| Z)) by
A15,
Th19;
hence ((
diff (
cos ,Z))
. i)
is_differentiable_in x by
A16,
FDIFF_1: 15;
end;
end;
hence thesis by
A9,
RELAT_1: 68;
end;
hence ((
diff (
cos ,Z))
. i)
is_differentiable_on Z by
A9,
FDIFF_1:def 6;
end;
hence thesis;
end;
theorem ::
TAYLOR_2:22
Th22: for r be
Real st r
>
0 holds ex r1,r2 be
Real st r1
>=
0 & r2
>=
0 & for n be
Nat holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! )) &
|.(((((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! ))
proof
let r be
Real such that
A1: r
>
0 ;
take r1 = 1;
take r2 = r;
thus r1
>=
0 & r2
>=
0 by
A1;
let n be
Nat;
let x,s be
Real such that
A2: x
in
].(
- r), r.[ and
A3: s
>
0 and
A4: s
< 1;
x
in
].(
0
- r), (
0
+ r).[ by
A2;
then
A5:
|.(x
-
0 ).|
< r by
RCOMP_1: 1;
A6: ((
|.x.|
|^ n)
/ (n
! ))
<= ((r2
|^ n)
/ (n
! ))
proof
defpred
P[
Nat] means ((
|.x.|
|^ $1)
/ ($1
! ))
<= ((r2
|^ $1)
/ ($1
! ));
A7: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A8:
P[k];
A9: ((
|.x.|
|^ (k
+ 1))
/ ((k
+ 1)
! ))
= (((
|.x.|
|^ k)
*
|.x.|)
/ ((k
+ 1)
! )) by
NEWTON: 6
.= (((
|.x.|
|^ k)
*
|.x.|)
/ ((k
! )
* (k
+ 1))) by
NEWTON: 15
.= ((
|.x.|
|^ k)
* (
|.x.|
/ ((k
! )
* (k
+ 1)))) by
XCMPLX_1: 74
.= ((
|.x.|
|^ k)
* ((
|.x.|
/ (k
! ))
/ (k
+ 1))) by
XCMPLX_1: 78
.= ((
|.x.|
|^ k)
* ((1
/ ((k
! )
/
|.x.|))
/ (k
+ 1))) by
XCMPLX_1: 57
.= ((
|.x.|
|^ k)
* (((1
/ (k
! ))
*
|.x.|)
/ (k
+ 1))) by
XCMPLX_1: 82
.= (((
|.x.|
|^ k)
* ((1
/ (k
! ))
*
|.x.|))
/ (k
+ 1)) by
XCMPLX_1: 74
.= ((((
|.x.|
|^ k)
* (1
/ (k
! )))
*
|.x.|)
/ (k
+ 1))
.= (((((
|.x.|
|^ k)
* 1)
/ (k
! ))
*
|.x.|)
/ (k
+ 1)) by
XCMPLX_1: 74
.= ((((
|.x.|
|^ k)
/ (k
! ))
*
|.x.|)
/ (k
+ 1));
((
|.x.|
|^ k)
/ (k
! ))
= (
|.(x
|^ k).|
/ (k
! )) by
Th1
.= (
|.(x
|^ k).|
/
|.(k
! ).|) by
ABSVALUE:def 1
.=
|.((x
|^ k)
/ (k
! )).| by
COMPLEX1: 67;
then
A10: ((
|.x.|
|^ k)
/ (k
! ))
>=
0 by
COMPLEX1: 46;
A11: ((r2
|^ (k
+ 1))
/ ((k
+ 1)
! ))
= (((r2
|^ k)
* r2)
/ ((k
+ 1)
! )) by
NEWTON: 6
.= (((r2
|^ k)
* r2)
/ ((k
! )
* (k
+ 1))) by
NEWTON: 15
.= ((r2
|^ k)
* (r2
/ ((k
! )
* (k
+ 1)))) by
XCMPLX_1: 74
.= ((r2
|^ k)
* ((r2
/ (k
! ))
/ (k
+ 1))) by
XCMPLX_1: 78
.= ((r2
|^ k)
* ((1
/ ((k
! )
/ r2))
/ (k
+ 1))) by
XCMPLX_1: 57
.= ((r2
|^ k)
* (((1
/ (k
! ))
* r2)
/ (k
+ 1))) by
XCMPLX_1: 82
.= (((r2
|^ k)
* ((1
/ (k
! ))
* r2))
/ (k
+ 1)) by
XCMPLX_1: 74
.= ((((r2
|^ k)
* (1
/ (k
! )))
* r2)
/ (k
+ 1))
.= (((((r2
|^ k)
* 1)
/ (k
! ))
* r2)
/ (k
+ 1)) by
XCMPLX_1: 74
.= ((((r2
|^ k)
/ (k
! ))
* r2)
/ (k
+ 1));
|.x.|
>=
0 by
COMPLEX1: 46;
then (((
|.x.|
|^ k)
/ (k
! ))
*
|.x.|)
<= (((r2
|^ k)
/ (k
! ))
* r2) by
A5,
A8,
A10,
XREAL_1: 66;
hence thesis by
A9,
A11,
XREAL_1: 72;
end;
((
|.x.|
|^
0 )
/ (
0
! ))
= (1
/ (
0
! )) by
NEWTON: 4
.= ((r2
|^
0 )
/ (
0
! )) by
NEWTON: 4;
then
A12:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A12,
A7);
hence thesis;
end;
|.x.|
>=
0 by
COMPLEX1: 46;
then (s
*
|.x.|)
< (1
* r) by
A3,
A4,
A5,
XREAL_1: 97;
then (
|.s.|
*
|.x.|)
< r by
A3,
ABSVALUE:def 1;
then
|.((s
* x)
-
0 ).|
< r by
COMPLEX1: 65;
then
A13: (s
* x)
in
].(
0
- r), (
0
+ r).[ by
RCOMP_1: 1;
A14: for k be
Nat holds
|.((
- 1)
|^ k).|
= 1
proof
let k be
Nat;
per cases ;
suppose k is
even;
then
consider j be
Nat such that
A15: k
= (2
* j) by
ABIAN:def 2;
thus
|.((
- 1)
|^ k).|
=
|.(((
- 1)
|^ (1
+ 1))
|^ j).| by
A15,
NEWTON: 9
.=
|.((((
- 1)
|^ 1)
* (
- 1))
|^ j).| by
NEWTON: 6
.=
|.(((
- 1)
* (
- 1))
|^ j).|
.=
|.1.|
.= 1 by
ABSVALUE:def 1;
end;
suppose k is
odd;
then
consider j be
Nat such that
A16: k
= ((2
* j)
+ 1) by
ABIAN: 9;
thus
|.((
- 1)
|^ k).|
=
|.(((
- 1)
|^ (2
* j))
* (
- 1)).| by
A16,
NEWTON: 6
.=
|.((((
- 1)
|^ (1
+ 1))
|^ j)
* (
- 1)).| by
NEWTON: 9
.=
|.(((((
- 1)
|^ 1)
* (
- 1))
|^ j)
* (
- 1)).| by
NEWTON: 6
.=
|.((((
- 1)
* (
- 1))
|^ j)
* (
- 1)).|
.=
|.(1
* (
- 1)).|
.=
|.1.| by
COMPLEX1: 52
.= 1 by
ABSVALUE:def 1;
end;
end;
A17:
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
<= r1
proof
per cases ;
suppose n is
even;
then
consider k be
Nat such that
A18: n
= (2
* k) by
ABIAN:def 2;
A19: (
dom (((
- 1)
|^ k)
(#) (
sin
|
].(
- r), r.[)))
= (
dom (
sin
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A20: (s
* x)
in (
dom (
sin
|
].(
- r), r.[)) by
A13,
Th17;
A21:
|.(
sin (s
* x)).|
<= 1 by
SIN_COS: 27;
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
=
|.((((
- 1)
|^ k)
(#) (
sin
|
].(
- r), r.[))
. (s
* x)).| by
A18,
Th19
.=
|.(((
- 1)
|^ k)
* ((
sin
|
].(
- r), r.[)
. (s
* x))).| by
A13,
A19,
VALUED_1:def 5
.= (
|.((
- 1)
|^ k).|
*
|.((
sin
|
].(
- r), r.[)
. (s
* x)).|) by
COMPLEX1: 65
.= (1
*
|.((
sin
|
].(
- r), r.[)
. (s
* x)).|) by
A14
.=
|.(
sin
. (s
* x)).| by
A20,
FUNCT_1: 47;
hence thesis by
A21,
SIN_COS:def 17;
end;
suppose n is
odd;
then
consider k be
Nat such that
A22: n
= ((2
* k)
+ 1) by
ABIAN: 9;
A23: (
dom (((
- 1)
|^ k)
(#) (
cos
|
].(
- r), r.[)))
= (
dom (
cos
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A24: (s
* x)
in (
dom (
cos
|
].(
- r), r.[)) by
A13,
Th17;
A25:
|.(
cos (s
* x)).|
<= 1 by
SIN_COS: 27;
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
=
|.((((
- 1)
|^ k)
(#) (
cos
|
].(
- r), r.[))
. (s
* x)).| by
A22,
Th19
.=
|.(((
- 1)
|^ k)
* ((
cos
|
].(
- r), r.[)
. (s
* x))).| by
A13,
A23,
VALUED_1:def 5
.= (
|.((
- 1)
|^ k).|
*
|.((
cos
|
].(
- r), r.[)
. (s
* x)).|) by
COMPLEX1: 65
.= (1
*
|.((
cos
|
].(
- r), r.[)
. (s
* x)).|) by
A14
.=
|.(
cos
. (s
* x)).| by
A24,
FUNCT_1: 47;
hence thesis by
A25,
SIN_COS:def 19;
end;
end;
A26:
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
<= r1
proof
per cases ;
suppose n is
even;
then
consider k be
Nat such that
A27: n
= (2
* k) by
ABIAN:def 2;
A28: (
dom (((
- 1)
|^ k)
(#) (
cos
|
].(
- r), r.[)))
= (
dom (
cos
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A29: (s
* x)
in (
dom (
cos
|
].(
- r), r.[)) by
A13,
Th17;
A30:
|.(
cos (s
* x)).|
<= 1 by
SIN_COS: 27;
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
=
|.((((
- 1)
|^ k)
(#) (
cos
|
].(
- r), r.[))
. (s
* x)).| by
A27,
Th19
.=
|.(((
- 1)
|^ k)
* ((
cos
|
].(
- r), r.[)
. (s
* x))).| by
A13,
A28,
VALUED_1:def 5
.= (
|.((
- 1)
|^ k).|
*
|.((
cos
|
].(
- r), r.[)
. (s
* x)).|) by
COMPLEX1: 65
.= (1
*
|.((
cos
|
].(
- r), r.[)
. (s
* x)).|) by
A14
.=
|.(
cos
. (s
* x)).| by
A29,
FUNCT_1: 47;
hence thesis by
A30,
SIN_COS:def 19;
end;
suppose n is
odd;
then
consider k be
Nat such that
A31: n
= ((2
* k)
+ 1) by
ABIAN: 9;
A32: (
dom (((
- 1)
|^ (k
+ 1))
(#) (
sin
|
].(
- r), r.[)))
= (
dom (
sin
|
].(
- r), r.[)) by
VALUED_1:def 5
.=
].(
- r), r.[ by
Th17;
A33: (s
* x)
in (
dom (
sin
|
].(
- r), r.[)) by
A13,
Th17;
A34:
|.(
sin (s
* x)).|
<= 1 by
SIN_COS: 27;
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
=
|.((((
- 1)
|^ (k
+ 1))
(#) (
sin
|
].(
- r), r.[))
. (s
* x)).| by
A31,
Th19
.=
|.(((
- 1)
|^ (k
+ 1))
* ((
sin
|
].(
- r), r.[)
. (s
* x))).| by
A13,
A32,
VALUED_1:def 5
.= (
|.((
- 1)
|^ (k
+ 1)).|
*
|.((
sin
|
].(
- r), r.[)
. (s
* x)).|) by
COMPLEX1: 65
.= (1
*
|.((
sin
|
].(
- r), r.[)
. (s
* x)).|) by
A14
.=
|.(
sin
. (s
* x)).| by
A33,
FUNCT_1: 47;
hence thesis by
A34,
SIN_COS:def 17;
end;
end;
A35:
|.((x
|^ n)
/ (n
! )).|
= (
|.(x
|^ n).|
/
|.(n
! ).|) by
COMPLEX1: 67
.= (
|.(x
|^ n).|
/ (n
! )) by
ABSVALUE:def 1
.= ((
|.x.|
|^ n)
/ (n
! )) by
Th1;
then
A36: ((
|.x.|
|^ n)
/ (n
! ))
>=
0 by
COMPLEX1: 46;
A37:
|.(((((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
=
|.((((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x))
* ((x
|^ n)
/ (n
! ))).| by
XCMPLX_1: 74
.= (
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
*
|.((x
|^ n)
/ (n
! )).|) by
COMPLEX1: 65
.= ((
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
* (
|.x.|
|^ n))
/ (n
! )) by
A35,
XCMPLX_1: 74;
A38:
|.(((((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
=
|.((((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x))
* ((x
|^ n)
/ (n
! ))).| by
XCMPLX_1: 74
.= (
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
*
|.((x
|^ n)
/ (n
! )).|) by
COMPLEX1: 65
.= ((
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
* (
|.x.|
|^ n))
/ (n
! )) by
A35,
XCMPLX_1: 74;
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
>=
0 by
COMPLEX1: 46;
then
A39: (
|.(((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x)).|
* ((
|.x.|
|^ n)
/ (n
! )))
<= (r1
* ((r2
|^ n)
/ (n
! ))) by
A36,
A26,
A6,
XREAL_1: 66;
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
>=
0 by
COMPLEX1: 46;
then (
|.(((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x)).|
* ((
|.x.|
|^ n)
/ (n
! )))
<= (r1
* ((r2
|^ n)
/ (n
! ))) by
A36,
A17,
A6,
XREAL_1: 66;
hence
|.(((((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! )) &
|.(((((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! )) by
A38,
A37,
A39,
XCMPLX_1: 74;
end;
theorem ::
TAYLOR_2:23
Th23: for r,e be
Real st
0
< r &
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
sin ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e &
|.(((((
diff (
cos ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e
proof
let r,e be
Real such that
A1: r
>
0 and
A2: e
>
0 ;
consider r1,r2 be
Real such that
A3: r1
>=
0 & r2
>=
0 and
A4: for n be
Nat holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
sin ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! )) &
|.(((((
diff (
cos ,
].(
- r), r.[))
. n)
. (s
* x))
* (x
|^ n))
/ (n
! )).|
<= ((r1
* (r2
|^ n))
/ (n
! )) by
A1,
Th22;
consider n be
Nat such that
A5: for m be
Nat st n
<= m holds ((r1
* (r2
|^ m))
/ (m
! ))
< e by
A2,
A3,
Th12;
take n;
let m be
Nat;
assume n
<= m;
then
A6: ((r1
* (r2
|^ m))
/ (m
! ))
< e by
A5;
let x,s be
Real;
assume x
in
].(
- r), r.[ &
0
< s & s
< 1;
then
|.(((((
diff (
sin ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
<= ((r1
* (r2
|^ m))
/ (m
! )) &
|.(((((
diff (
cos ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
<= ((r1
* (r2
|^ m))
/ (m
! )) by
A4;
hence thesis by
A6,
XXREAL_0: 2;
end;
theorem ::
TAYLOR_2:24
for r,e be
Real st
0
< r &
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds for x be
Real st x
in
].(
- r), r.[ holds
|.((
sin
. x)
- ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. m)).|
< e &
|.((
cos
. x)
- ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. m)).|
< e
proof
let r,e be
Real such that
A1: r
>
0 and
A2: e
>
0 ;
consider n be
Nat such that
A3: for m be
Nat st n
<= m holds for x,s be
Real st x
in
].(
- r), r.[ &
0
< s & s
< 1 holds
|.(((((
diff (
sin ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e &
|.(((((
diff (
cos ,
].(
- r), r.[))
. m)
. (s
* x))
* (x
|^ m))
/ (m
! )).|
< e by
A1,
A2,
Th23;
take n;
let m be
Nat such that
A4: n
<= m;
A5:
cos
is_differentiable_on ((m
+ 1),
].(
- r), r.[) & (
dom
cos )
=
REAL by
Th21,
FUNCT_2:def 1;
A6:
sin
is_differentiable_on ((m
+ 1),
].(
- r), r.[) & (
dom
sin )
=
REAL by
Th21,
FUNCT_2:def 1;
now
m
<= (m
+ 1) by
NAT_1: 11;
then
A7: n
<= (m
+ 1) by
A4,
XXREAL_0: 2;
let x be
Real such that
A8: x
in
].(
- r), r.[;
ex s be
Real st
0
< s & s
< 1 &
|.((
sin
. x)
- ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. m)).|
=
|.(((((
diff (
sin ,
].(
- r), r.[))
. (m
+ 1))
. (s
* x))
* (x
|^ (m
+ 1)))
/ ((m
+ 1)
! )).| by
A1,
A6,
A8,
Th4;
hence
|.((
sin
. x)
- ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. m)).|
< e by
A3,
A8,
A7;
ex s be
Real st
0
< s & s
< 1 &
|.((
cos
. x)
- ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. m)).|
=
|.(((((
diff (
cos ,
].(
- r), r.[))
. (m
+ 1))
. (s
* x))
* (x
|^ (m
+ 1)))
/ ((m
+ 1)
! )).| by
A1,
A5,
A8,
Th4;
hence
|.((
cos
. x)
- ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. m)).|
< e by
A3,
A8,
A7;
end;
hence thesis;
end;
theorem ::
TAYLOR_2:25
Th25: for r,x be
Real, m be
Nat st
0
< r holds ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* m)
+ 1))
= ((
Partial_Sums (x
P_sin ))
. m) & ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* m)
+ 1))
= ((
Partial_Sums (x
P_cos ))
. m)
proof
let r,x be
Real, m be
Nat such that
A1: r
>
0 ;
thus ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* m)
+ 1))
= ((
Partial_Sums (x
P_sin ))
. m)
proof
defpred
P[
Nat] means ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* $1)
+ 1))
= ((
Partial_Sums (x
P_sin ))
. $1);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* (k
+ 1))
+ 1))
= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* k)
+ 2))
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
* k)
+ 3))) by
SERIES_1:def 1
.= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* k)
+ 2))
+ ((((
- 1)
|^ (k
+ 1))
* (x
|^ ((2
* (k
+ 1))
+ 1)))
/ (((2
* (k
+ 1))
+ 1)
! ))) by
A1,
Th20
.= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. (((2
* k)
+ 1)
+ 1))
+ ((x
P_sin )
. (k
+ 1))) by
SIN_COS:def 20
.= ((((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* k)
+ 1))
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. (2
* (k
+ 1))))
+ ((x
P_sin )
. (k
+ 1))) by
SERIES_1:def 1
.= ((((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* k)
+ 1))
+
0 )
+ ((x
P_sin )
. (k
+ 1))) by
A1,
Th20
.= ((
Partial_Sums (x
P_sin ))
. (k
+ 1)) by
A3,
SERIES_1:def 1;
hence thesis;
end;
((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
*
0 )
+ 1))
= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. (2
*
0 ))
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
*
0 )
+ 1))) by
SERIES_1:def 1
.= (((
Maclaurin (
sin ,
].(
- r), r.[,x))
. (2
*
0 ))
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
*
0 )
+ 1))) by
SERIES_1:def 1
.= (
0
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. ((2
*
0 )
+ 1))) by
A1,
Th20
.= ((((
- 1)
|^
0 )
* (x
|^ ((2
*
0 )
+ 1)))
/ (((2
*
0 )
+ 1)
! )) by
A1,
Th20
.= ((x
P_sin )
.
0 ) by
SIN_COS:def 20
.= ((
Partial_Sums (x
P_sin ))
.
0 ) by
SERIES_1:def 1;
then
A4:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
defpred
P[
Nat] means ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* $1)
+ 1))
= ((
Partial_Sums (x
P_cos ))
. $1);
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6:
P[k];
((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* (k
+ 1))
+ 1))
= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* k)
+ 2))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
* (k
+ 1))
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* k)
+ 2))
+
0 ) by
A1,
Th20
.= ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (((2
* k)
+ 1)
+ 1))
.= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* k)
+ 1))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
* k)
+ 2))) by
SERIES_1:def 1
.= (((
Partial_Sums (x
P_cos ))
. k)
+ ((((
- 1)
|^ (k
+ 1))
* (x
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))) by
A1,
A6,
Th20
.= (((
Partial_Sums (x
P_cos ))
. k)
+ ((x
P_cos )
. (k
+ 1))) by
SIN_COS:def 21
.= ((
Partial_Sums (x
P_cos ))
. (k
+ 1)) by
SERIES_1:def 1;
hence thesis;
end;
((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
*
0 )
+ 1))
= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
*
0 ))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
*
0 )
+ 1))) by
SERIES_1:def 1
.= (((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (2
*
0 ))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. ((2
*
0 )
+ 1))) by
SERIES_1:def 1
.= (((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (2
*
0 ))
+
0 ) by
A1,
Th20
.= ((((
- 1)
|^
0 )
* (x
|^ (2
*
0 )))
/ ((2
*
0 )
! )) by
A1,
Th20
.= ((x
P_cos )
.
0 ) by
SIN_COS:def 21
.= ((
Partial_Sums (x
P_cos ))
.
0 ) by
SERIES_1:def 1;
then
A7:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A5);
hence thesis;
end;
theorem ::
TAYLOR_2:26
Th26: for r,x be
Real, m be
Nat st
0
< r & m
>
0 holds ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. (2
* m))
= ((
Partial_Sums (x
P_sin ))
. (m
- 1)) & ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
* m))
= ((
Partial_Sums (x
P_cos ))
. m)
proof
let r,x be
Real, m be
Nat such that
A1: r
>
0 and
A2: m
>
0 ;
A3: (m
- 1) is
Element of
NAT by
A2,
NAT_1: 20;
(2
* m)
> (2
*
0 ) by
A2,
XREAL_1: 68;
then
A4: ((2
* m)
- 1) is
Element of
NAT by
NAT_1: 20;
then
A5: ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. (2
* m))
= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* m)
- 1))
+ ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. (((2
* m)
- 1)
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* m)
- 1))
+
0 ) by
A1,
Th20
.= ((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. ((2
* (m
- 1))
+ 1))
.= ((
Partial_Sums (x
P_sin ))
. (m
- 1)) by
A1,
A3,
Th25;
((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
* m))
= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* m)
- 1))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (((2
* m)
- 1)
+ 1))) by
A4,
SERIES_1:def 1
.= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* m)
- 1))
+ ((((
- 1)
|^ m)
* (x
|^ (2
* m)))
/ ((2
* m)
! ))) by
A1,
Th20
.= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* (m
- 1))
+ 1))
+ ((x
P_cos )
. m)) by
SIN_COS:def 21
.= (((
Partial_Sums (x
P_cos ))
. (m
- 1))
+ ((x
P_cos )
. ((m
- 1)
+ 1))) by
A1,
A3,
Th25
.= ((
Partial_Sums (x
P_cos ))
. m) by
A3,
SERIES_1:def 1;
hence thesis by
A5;
end;
theorem ::
TAYLOR_2:27
Th27: for r,x be
Real, m be
Nat st
0
< r holds ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
* m))
= ((
Partial_Sums (x
P_cos ))
. m)
proof
let r,x be
Real, m be
Nat such that
A1: r
>
0 ;
defpred
P[
Nat] means ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
* $1))
= ((
Partial_Sums (x
P_cos ))
. $1);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
P[k];
thus ((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
* (k
+ 1)))
= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* k)
+ 1))
+ ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (((2
* k)
+ 1)
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. ((2
* k)
+ 1))
+ ((((
- 1)
|^ (k
+ 1))
* (x
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))) by
A1,
Th20
.= (((
Partial_Sums (x
P_cos ))
. k)
+ ((((
- 1)
|^ (k
+ 1))
* (x
|^ (2
* (k
+ 1))))
/ ((2
* (k
+ 1))
! ))) by
A1,
Th25
.= (((
Partial_Sums (x
P_cos ))
. k)
+ ((x
P_cos )
. (k
+ 1))) by
SIN_COS:def 21
.= ((
Partial_Sums (x
P_cos ))
. (k
+ 1)) by
SERIES_1:def 1;
end;
((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. (2
*
0 ))
= ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. (2
*
0 )) by
SERIES_1:def 1
.= ((((
- 1)
|^
0 )
* (x
|^ (2
*
0 )))
/ ((2
*
0 )
! )) by
A1,
Th20
.= ((x
P_cos )
.
0 ) by
SIN_COS:def 21
.= ((
Partial_Sums (x
P_cos ))
.
0 ) by
SERIES_1:def 1;
then
A3:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
TAYLOR_2:28
for r,x be
Real st r
>
0 holds (
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x))) is
convergent & (
sin
. x)
= (
Sum (
Maclaurin (
sin ,
].(
- r), r.[,x))) & (
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x))) is
convergent & (
cos
. x)
= (
Sum (
Maclaurin (
cos ,
].(
- r), r.[,x)))
proof
let r,x be
Real such that
A1: r
>
0 ;
set g = (
sin
. x);
(
Sum (x
P_sin ))
= (
sin
. x) by
SIN_COS: 37;
then
A2: (
lim (
Partial_Sums (x
P_sin )))
= (
sin
. x) by
SERIES_1:def 3;
A3: (
Partial_Sums (x
P_sin )) is
convergent by
SIN_COS: 36;
A4: for p be
Real st p
>
0 holds ex n1 be
Nat st for m1 be
Nat st m1
>= n1 holds
|.(((
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x)))
. m1)
- g).|
< p
proof
let p be
Real;
assume p
>
0 ;
then
consider n be
Nat such that
A5: for m be
Nat st n
<= m holds
|.(((
Partial_Sums (x
P_sin ))
. m)
- g).|
< p by
A2,
A3,
SEQ_2:def 7;
reconsider n1 = ((2
* n)
+ 2) as
Nat;
take n1;
let m1 be
Nat such that
A6: m1
>= n1;
per cases ;
suppose m1 is
even;
then
consider j be
Nat such that
A7: m1
= (2
* j) by
ABIAN:def 2;
A8: (((n
+ 1)
* 2)
/ 2)
<= ((j
* 2)
/ 2) by
A6,
A7,
XREAL_1: 72;
then
A9: ((n
+ 1)
- 1)
<= (j
- 1) by
XREAL_1: 9;
(n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then (j
- 1) is
Element of
NAT by
A8,
NAT_1: 20;
then
|.(((
Partial_Sums (x
P_sin ))
. (j
- 1))
- g).|
< p by
A5,
A9;
hence thesis by
A1,
A7,
A8,
Th26;
end;
suppose m1 is
odd;
then
consider j be
Nat such that
A10: m1
= ((2
* j)
+ 1) by
ABIAN: 9;
((n
* 2)
+
0 )
<= ((n
* 2)
+ 1) & (((n
* 2)
+ 2)
- 1)
<= (((2
* j)
+ 1)
- 1) by
A6,
A10,
XREAL_1: 6,
XREAL_1: 9;
then (n
* 2)
<= (j
* 2) by
XXREAL_0: 2;
then ((n
* 2)
/ 2)
<= ((j
* 2)
/ 2) by
XREAL_1: 72;
then
|.(((
Partial_Sums (x
P_sin ))
. j)
- g).|
< p by
A5;
hence thesis by
A1,
A10,
Th25;
end;
end;
then (
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x))) is
convergent by
SEQ_2:def 6;
then
A11: (
lim (
Partial_Sums (
Maclaurin (
sin ,
].(
- r), r.[,x))))
= (
sin
. x) by
A4,
SEQ_2:def 7;
(
Sum (x
P_cos ))
= (
cos
. x) by
SIN_COS: 37;
then
A12: (
lim (
Partial_Sums (x
P_cos )))
= (
cos
. x) by
SERIES_1:def 3;
set g = (
cos
. x);
A13: (
Partial_Sums (x
P_cos )) is
convergent by
SIN_COS: 36;
A14: for p be
Real st p
>
0 holds ex n1 be
Nat st for m1 be
Nat st m1
>= n1 holds
|.(((
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x)))
. m1)
- g).|
< p
proof
let p be
Real;
assume p
>
0 ;
then
consider n be
Nat such that
A15: for m be
Nat st n
<= m holds
|.(((
Partial_Sums (x
P_cos ))
. m)
- g).|
< p by
A12,
A13,
SEQ_2:def 7;
reconsider n1 = ((2
* n)
+ 1) as
Nat;
take n1;
let m1 be
Nat such that
A16: m1
>= n1;
per cases ;
suppose m1 is
even;
then
consider j be
Nat such that
A17: m1
= (2
* j) by
ABIAN:def 2;
((n
* 2)
+ 1)
>= (n
* 2) by
XREAL_1: 29;
then (n
* 2)
<= (j
* 2) by
A16,
A17,
XXREAL_0: 2;
then ((n
* 2)
/ 2)
<= ((j
* 2)
/ 2) by
XREAL_1: 72;
then
|.(((
Partial_Sums (x
P_cos ))
. j)
- g).|
< p by
A15;
hence thesis by
A1,
A17,
Th27;
end;
suppose m1 is
odd;
then
consider j be
Nat such that
A18: m1
= ((2
* j)
+ 1) by
ABIAN: 9;
(((n
* 2)
+ 1)
- 1)
<= (((j
* 2)
+ 1)
- 1) by
A16,
A18,
XREAL_1: 9;
then ((n
* 2)
/ 2)
<= ((j
* 2)
/ 2) by
XREAL_1: 72;
then
|.(((
Partial_Sums (x
P_cos ))
. j)
- g).|
< p by
A15;
hence thesis by
A1,
A18,
Th25;
end;
end;
then (
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x))) is
convergent by
SEQ_2:def 6;
then (
lim (
Partial_Sums (
Maclaurin (
cos ,
].(
- r), r.[,x))))
= (
cos
. x) by
A14,
SEQ_2:def 7;
hence thesis by
A4,
A11,
A14,
SEQ_2:def 6,
SERIES_1:def 3;
end;