prepower.miz
begin
registration
let i be
Integer;
cluster
|.i.| ->
natural;
coherence ;
end
reserve x for
set;
reserve a,b,c for
Real;
reserve m,n,m1,m2 for
Nat;
reserve k,l for
Integer;
reserve p,q for
Rational;
reserve s1,s2 for
Real_Sequence;
theorem ::
PREPOWER:1
Th1: s1 is
convergent & (for n holds (s1
. n)
>= a) implies (
lim s1)
>= a
proof
assume that
A1: s1 is
convergent and
A2: for n holds (s1
. n)
>= a;
set s = (
seq_const a);
A3:
now
let n;
(s1
. n)
>= a by
A2;
hence (s1
. n)
>= (s
. n) by
SEQ_1: 57;
end;
(
lim s)
= (s
.
0 ) by
SEQ_4: 26
.= a by
SEQ_1: 57;
hence thesis by
A1,
A3,
SEQ_2: 18;
end;
theorem ::
PREPOWER:2
Th2: s1 is
convergent & (for n holds (s1
. n)
<= a) implies (
lim s1)
<= a
proof
assume that
A1: s1 is
convergent and
A2: for n holds (s1
. n)
<= a;
set s = (
seq_const a);
A3:
now
let n;
(s1
. n)
<= a by
A2;
hence (s1
. n)
<= (s
. n) by
SEQ_1: 57;
end;
(
lim s)
= (s
.
0 ) by
SEQ_4: 26
.= a by
SEQ_1: 57;
hence thesis by
A1,
A3,
SEQ_2: 18;
end;
definition
let a be
Real;
::
PREPOWER:def1
func a
GeoSeq ->
Real_Sequence means
:
Def1: for m holds (it
. m)
= (a
|^ m);
existence
proof
reconsider a as
Real;
deffunc
F(
Nat) = (
In ((a
|^ $1),
REAL ));
consider f be
Real_Sequence such that
A1: for m be
Element of
NAT holds (f
. m)
=
F(m) from
FUNCT_2:sch 4;
take f;
let m;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
(f
. m)
=
F(m) by
A1;
hence thesis;
end;
uniqueness
proof
let s1, s2 such that
A2: for n holds (s1
. n)
= (a
|^ n) and
A3: for n holds (s2
. n)
= (a
|^ n);
for n be
Element of
NAT holds (s1
. n)
= (s2
. n)
proof
let n be
Element of
NAT ;
thus (s1
. n)
= (a
|^ n) by
A2
.= (s2
. n) by
A3;
end;
hence thesis by
FUNCT_2: 63;
end;
end
theorem ::
PREPOWER:3
Th3: s1
= (a
GeoSeq ) iff (s1
.
0 )
= 1 & for m holds (s1
. (m
+ 1))
= ((s1
. m)
* a)
proof
defpred
P[
Nat] means (s1
. $1)
= ((a
GeoSeq )
. $1);
hereby
assume
A1: s1
= (a
GeoSeq );
hence (s1
.
0 )
= (a
|^
0 ) by
Def1
.= 1 by
NEWTON: 4;
let m;
thus (s1
. (m
+ 1))
= (a
|^ (m
+ 1)) by
A1,
Def1
.= ((a
|^ m)
* a) by
NEWTON: 6
.= ((s1
. m)
* a) by
A1,
Def1;
end;
assume that
A2: (s1
.
0 )
= 1 and
A3: for m holds (s1
. (m
+ 1))
= ((s1
. m)
* a);
A4: for m st
P[m] holds
P[(m
+ 1)]
proof
let m such that
A5: (s1
. m)
= ((a
GeoSeq )
. m);
thus (s1
. (m
+ 1))
= ((s1
. m)
* a) by
A3
.= ((a
|^ m)
* a) by
A5,
Def1
.= (a
|^ (m
+ 1)) by
NEWTON: 6
.= ((a
GeoSeq )
. (m
+ 1)) by
Def1;
end;
(s1
.
0 )
= (a
|^
0 ) by
A2,
NEWTON: 4
.= ((a
GeoSeq )
.
0 ) by
Def1;
then
A6:
P[
0 ];
for m holds
P[m] from
NAT_1:sch 2(
A6,
A4);
then for m be
Element of
NAT holds
P[m];
hence thesis by
FUNCT_2: 63;
end;
theorem ::
PREPOWER:4
for a st a
<>
0 holds for m holds ((a
GeoSeq )
. m)
<>
0
proof
let a such that
A1: a
<>
0 ;
defpred
P[
Nat] means ((a
GeoSeq )
. $1)
<>
0 ;
A2: for n holds
P[n] implies
P[(n
+ 1)]
proof
let n such that
A3: ((a
GeoSeq )
. n)
<>
0 ;
((a
GeoSeq )
. (n
+ 1))
= (((a
GeoSeq )
. n)
* a) by
Th3;
hence thesis by
A1,
A3;
end;
A4:
P[
0 ] by
Th3;
thus for n holds
P[n] from
NAT_1:sch 2(
A4,
A2);
end;
theorem ::
PREPOWER:5
Th5: for a be
Complex holds for n be
natural
Number holds
0
<> a implies
0
<> (a
|^ n)
proof
let a be
Complex;
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
defpred
P[
Nat] means (a
|^ $1)
<>
0 ;
assume
A2:
0
<> a;
A3: for m be
Nat st
P[m] holds
P[(m
+ 1)]
proof
let m be
Nat;
assume (a
|^ m)
<>
0 ;
then ((a
|^ m)
* a)
<>
0 by
A2;
hence thesis by
NEWTON: 6;
end;
A4:
P[
0 ] by
NEWTON: 4;
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A4,
A3);
hence thesis by
A1;
end;
theorem ::
PREPOWER:6
Th6: for n be
natural
Number holds
0
< a implies
0
< (a
|^ n)
proof
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
defpred
P[
Nat] means
0
< (a
|^ $1);
assume
A2:
0
< a;
A3: for m be
Nat st
P[m] holds
P[(m
+ 1)]
proof
let m be
Nat;
assume (a
|^ m)
>
0 ;
then ((a
|^ m)
* a)
> (
0
* a) by
A2;
hence thesis by
NEWTON: 6;
end;
A4:
P[
0 ] by
NEWTON: 4;
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A4,
A3);
hence thesis by
A1;
end;
theorem ::
PREPOWER:7
Th7: for a be
Complex, n be
natural
Number holds ((1
/ a)
|^ n)
= (1
/ (a
|^ n))
proof
let a be
Complex;
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
defpred
P[
Nat] means ((1
/ a)
|^ $1)
= (1
/ (a
|^ $1));
A2: for m be
Nat st
P[m] holds
P[(m
+ 1)]
proof
let m be
Nat;
assume ((1
/ a)
|^ m)
= (1
/ (a
|^ m));
hence ((1
/ a)
|^ (m
+ 1))
= ((1
/ (a
|^ m))
* (1
/ a)) by
NEWTON: 6
.= ((1
* 1)
/ ((a
|^ m)
* a)) by
XCMPLX_1: 76
.= (1
/ (a
|^ (m
+ 1))) by
NEWTON: 6;
end;
((1
/ a)
|^
0 )
= 1 by
NEWTON: 4
.= (1
/ 1)
.= (1
/ (a
|^
0 )) by
NEWTON: 4;
then
A3:
P[
0 ];
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A3,
A2);
hence thesis by
A1;
end;
theorem ::
PREPOWER:8
for a,b be
Complex holds for n be
natural
Number holds ((b
/ a)
|^ n)
= ((b
|^ n)
/ (a
|^ n))
proof
let a,b be
Complex;
let n be
natural
Number;
thus ((b
/ a)
|^ n)
= ((b
* (a
" ))
|^ n)
.= ((b
|^ n)
* ((a
" )
|^ n)) by
NEWTON: 7
.= ((b
|^ n)
* ((1
/ a)
|^ n))
.= ((b
|^ n)
* (1
/ (a
|^ n))) by
Th7
.= (((b
|^ n)
* 1)
/ (a
|^ n))
.= ((b
|^ n)
/ (a
|^ n));
end;
theorem ::
PREPOWER:9
Th9: for n be
natural
Number st
0
< a & a
<= b holds (a
|^ n)
<= (b
|^ n)
proof
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
assume that
A2:
0
< a and
A3: a
<= b;
defpred
P[
Nat] means (a
|^ $1)
<= (b
|^ $1);
A4: for m1 be
Nat st
P[m1] holds
P[(m1
+ 1)]
proof
let m1 be
Nat such that
A5: (a
|^ m1)
<= (b
|^ m1);
(a
|^ m1)
>
0 by
A2,
Th6;
then ((a
|^ m1)
* a)
<= ((b
|^ m1)
* b) by
A2,
A3,
A5,
XREAL_1: 66;
then (a
|^ (m1
+ 1))
<= ((b
|^ m1)
* b) by
NEWTON: 6;
hence thesis by
NEWTON: 6;
end;
A6: (b
|^
0 )
= ((b
GeoSeq )
.
0 ) by
Def1
.= 1 by
Th3;
(a
|^
0 )
= ((a
GeoSeq )
.
0 ) by
Def1
.= 1 by
Th3;
then
A7:
P[
0 ] by
A6;
for m1 be
Nat holds
P[m1] from
NAT_1:sch 2(
A7,
A4);
hence thesis by
A1;
end;
Lm1: for n be
natural
Number holds
0
< a & a
< b & 1
<= n implies (a
|^ n)
< (b
|^ n)
proof
let n be
natural
Number;
assume that
A1:
0
< a and
A2: a
< b and
A3: 1
<= n;
consider m be
Nat such that
A4: n
= (1
+ m) by
A3,
NAT_1: 10;
defpred
P[
Nat] means (a
|^ (1
+ $1))
< (b
|^ (1
+ $1));
A5: for m1 st
P[m1] holds
P[(m1
+ 1)]
proof
let m1;
assume
A6: (a
|^ (1
+ m1))
< (b
|^ (1
+ m1));
(a
|^ (1
+ m1))
>
0 by
A1,
Th6;
then ((a
|^ (1
+ m1))
* a)
< ((b
|^ (1
+ m1))
* b) by
A1,
A2,
A6,
XREAL_1: 97;
then (a
|^ ((1
+ m1)
+ 1))
< ((b
|^ (1
+ m1))
* b) by
NEWTON: 6;
hence thesis by
NEWTON: 6;
end;
A7:
P[
0 ] by
A2;
A8: for m1 holds
P[m1] from
NAT_1:sch 2(
A7,
A5);
thus thesis by
A4,
A8;
end;
theorem ::
PREPOWER:10
Th10: for n be
natural
Number st
0
<= a & a
< b & 1
<= n holds (a
|^ n)
< (b
|^ n)
proof
let n be
natural
Number;
assume that
A1:
0
<= a and
A2: a
< b and
A3: 1
<= n;
per cases by
A1;
suppose a
>
0 ;
hence thesis by
A2,
A3,
Lm1;
end;
suppose
A4: a
=
0 ;
reconsider k = n, k1 = 1 as
Integer;
reconsider m = (k
- k1) as
Element of
NAT by
A3,
INT_1: 5;
(a
|^ n)
= (a
|^ (m
+ 1))
.= ((a
|^ m)
* (a
|^ 1)) by
NEWTON: 8
.= ((a
|^ m)
* ((a
GeoSeq )
. (
0
+ 1))) by
Def1
.= ((a
|^ m)
* (((a
GeoSeq )
.
0 )
*
0 )) by
A4,
Th3
.=
0 ;
hence thesis by
A1,
A2,
Th6;
end;
end;
theorem ::
PREPOWER:11
Th11: for n be
natural
Number holds a
>= 1 implies (a
|^ n)
>= 1
proof
let n be
natural
Number;
assume a
>= 1;
then (a
|^ n)
>= (1
|^ n) by
Th9;
hence thesis by
NEWTON: 10;
end;
theorem ::
PREPOWER:12
Th12: for n be
natural
Number st 1
<= a & 1
<= n holds a
<= (a
|^ n)
proof
let n be
natural
Number;
assume that
A1: 1
<= a and
A2: 1
<= n;
consider m be
Nat such that
A3: n
= (m
+ 1) by
A2,
NAT_1: 6;
defpred
P[
Nat] means a
<= (a
|^ ($1
+ 1));
A4: for m1 st
P[m1] holds
P[(m1
+ 1)]
proof
let m1;
assume a
<= (a
|^ (m1
+ 1));
then (a
* 1)
<= ((a
|^ (m1
+ 1))
* a) by
A1,
XREAL_1: 66;
hence thesis by
NEWTON: 6;
end;
A5:
P[
0 ];
A6: for m1 holds
P[m1] from
NAT_1:sch 2(
A5,
A4);
thus thesis by
A3,
A6;
end;
theorem ::
PREPOWER:13
for n be
Nat st 1
< a & 2
<= n holds a
< (a
|^ n)
proof
let n be
Nat;
assume that
A1: 1
< a and
A2: 2
<= n;
consider m be
Nat such that
A3: n
= (2
+ m) by
A2,
NAT_1: 10;
defpred
P[
Nat] means a
< (a
|^ (2
+ $1));
A4: (a
* a)
> (a
* 1) by
A1,
XREAL_1: 68;
A5: for m1 st
P[m1] holds
P[(m1
+ 1)]
proof
let m1;
assume a
< (a
|^ (2
+ m1));
then ((a
|^ (2
+ m1))
* a)
> (a
* a) by
A1,
XREAL_1: 68;
then (a
|^ ((2
+ m1)
+ 1))
> (a
* a) by
NEWTON: 6;
hence thesis by
A4,
XXREAL_0: 2;
end;
(a
|^ (2
+
0 ))
= ((a
GeoSeq )
. (1
+ 1)) by
Def1
.= (((a
GeoSeq )
. (
0
+ 1))
* a) by
Th3
.= ((((a
GeoSeq )
.
0 )
* a)
* a) by
Th3
.= ((1
* a)
* a) by
Th3
.= (a
* a);
then
A6:
P[
0 ] by
A4;
A7: for m1 holds
P[m1] from
NAT_1:sch 2(
A6,
A5);
thus thesis by
A3,
A7;
end;
theorem ::
PREPOWER:14
Th14: for n be
natural
Number st
0
< a & a
<= 1 & 1
<= n holds (a
|^ n)
<= a
proof
let n be
natural
Number;
assume that
A1:
0
< a and
A2: a
<= 1 and
A3: 1
<= n;
consider m be
Nat such that
A4: n
= (1
+ m) by
A3,
NAT_1: 10;
defpred
P[
Nat] means (a
|^ (1
+ $1))
<= a;
A5: (a
* a)
<= (a
* 1) by
A1,
A2,
XREAL_1: 64;
A6: for m1 st
P[m1] holds
P[(m1
+ 1)]
proof
let m1;
assume (a
|^ (1
+ m1))
<= a;
then ((a
|^ (1
+ m1))
* a)
<= (a
* a) by
A1,
XREAL_1: 64;
then (a
|^ (1
+ (m1
+ 1)))
<= (a
* a) by
NEWTON: 6;
hence thesis by
A5,
XXREAL_0: 2;
end;
A7:
P[
0 ];
A8: for m1 holds
P[m1] from
NAT_1:sch 2(
A7,
A6);
thus thesis by
A4,
A8;
end;
theorem ::
PREPOWER:15
for n be
Nat st
0
< a & a
< 1 & 2
<= n holds (a
|^ n)
< a
proof
let n be
Nat;
assume that
A1:
0
< a and
A2: a
< 1 and
A3: 2
<= n;
consider m be
Nat such that
A4: n
= (2
+ m) by
A3,
NAT_1: 10;
defpred
P[
Nat] means (a
|^ (2
+ $1))
< a;
A5: (a
* a)
< (a
* 1) by
A1,
A2,
XREAL_1: 68;
A6: for m1 st
P[m1] holds
P[(m1
+ 1)]
proof
let m1;
assume (a
|^ (2
+ m1))
< a;
then ((a
|^ (2
+ m1))
* a)
< (a
* a) by
A1,
XREAL_1: 68;
then (a
|^ ((2
+ m1)
+ 1))
< (a
* a) by
NEWTON: 6;
hence thesis by
A5,
XXREAL_0: 2;
end;
(a
|^ (2
+
0 ))
= ((a
GeoSeq )
. (1
+ 1)) by
Def1
.= (((a
GeoSeq )
. (
0
+ 1))
* a) by
Th3
.= ((((a
GeoSeq )
.
0 )
* a)
* a) by
Th3
.= ((1
* a)
* a) by
Th3
.= (a
* a);
then
A7:
P[
0 ] by
A5;
A8: for m1 holds
P[m1] from
NAT_1:sch 2(
A7,
A6);
thus thesis by
A4,
A8;
end;
theorem ::
PREPOWER:16
Th16: for n be
natural
Number holds (
- 1)
< a implies ((1
+ a)
|^ n)
>= (1
+ (n
* a))
proof
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
defpred
P[
Nat] means ((1
+ a)
|^ $1)
>= (1
+ ($1
* a));
assume
A2: (
- 1)
< a;
A3: for m be
Nat st
P[m] holds
P[(m
+ 1)]
proof
A4: ((
- 1)
+ 1)
< (1
+ a) by
A2,
XREAL_1: 6;
let m be
Nat;
assume ((1
+ a)
|^ m)
>= (1
+ (m
* a));
then (((1
+ a)
|^ m)
* (1
+ a))
>= ((1
+ (m
* a))
* (1
+ a)) by
A4,
XREAL_1: 64;
then
A5: ((1
+ a)
|^ (m
+ 1))
>= (((1
+ (1
* a))
+ (m
* a))
+ ((m
* a)
* a)) by
NEWTON: 6;
0
<= (a
* a) by
XREAL_1: 63;
then ((1
+ ((m
+ 1)
* a))
+
0 )
<= ((1
+ ((m
+ 1)
* a))
+ (m
* (a
* a))) by
XREAL_1: 7;
hence thesis by
A5,
XXREAL_0: 2;
end;
((1
+ a)
|^
0 )
= (((1
+ a)
GeoSeq )
.
0 ) by
Def1
.= 1 by
Th3;
then
A6:
P[
0 ];
for m be
Nat holds
P[m] from
NAT_1:sch 2(
A6,
A3);
hence thesis by
A1;
end;
theorem ::
PREPOWER:17
Th17: for n be
natural
Number st
0
< a & a
< 1 holds ((1
+ a)
|^ n)
<= (1
+ ((3
|^ n)
* a))
proof
let n be
natural
Number;
A1: n is
Nat by
TARSKI: 1;
assume that
A2:
0
< a and
A3: a
< 1;
A4: (1
+
0 )
< (1
+ a) by
A2,
XREAL_1: 6;
defpred
P[
Nat] means ((1
+ a)
|^ $1)
<= (1
+ ((3
|^ $1)
* a));
A5: for n be
Nat holds
P[n] implies
P[(n
+ 1)]
proof
let n be
Nat;
assume ((1
+ a)
|^ n)
<= (1
+ ((3
|^ n)
* a));
then
A6: (((1
+ a)
|^ n)
* (1
+ a))
<= ((1
+ ((3
|^ n)
* a))
* (1
+ a)) by
A2,
XREAL_1: 64;
A7: ((1
+ ((3
|^ n)
* a))
+ (((3
|^ n)
+ (3
|^ n))
* a))
= (1
+ (((3
|^ n)
* (1
+ 2))
* a))
.= (1
+ ((3
|^ (n
+ 1))
* a)) by
NEWTON: 6;
A8: 1
<= (3
|^ n)
proof
per cases ;
suppose
A9:
0
= n;
(3
|^ n)
= ((3
GeoSeq )
. n) by
Def1
.= 1 by
A9,
Th3;
hence thesis;
end;
suppose
0
<> n;
then (
0
+ 1)
<= n by
NAT_1: 13;
then (1
|^ n)
< (3
|^ n) by
Lm1;
hence thesis;
end;
end;
then (1
* a)
<= ((3
|^ n)
* a) by
A2,
XREAL_1: 64;
then
A10: (1
+ a)
<= (1
+ ((3
|^ n)
* a)) by
XREAL_1: 7;
(a
* a)
< (1
* a) by
A2,
A3,
XREAL_1: 68;
then ((3
|^ n)
* (a
* a))
< ((3
|^ n)
* a) by
A8,
XREAL_1: 68;
then
A11: (((3
|^ n)
* a)
+ ((3
|^ n)
* (a
* a)))
< (((3
|^ n)
* a)
+ ((3
|^ n)
* a)) by
XREAL_1: 6;
((1
+ ((3
|^ n)
* a))
* (1
+ a))
= ((1
+ a)
+ (((3
|^ n)
* a)
+ ((3
|^ n)
* (a
* a))));
then ((1
+ ((3
|^ n)
* a))
* (1
+ a))
< (1
+ ((3
|^ (n
+ 1))
* a)) by
A10,
A7,
A11,
XREAL_1: 8;
then (((1
+ a)
|^ n)
* (1
+ a))
<= (1
+ ((3
|^ (n
+ 1))
* a)) by
A6,
XXREAL_0: 2;
hence thesis by
NEWTON: 6;
end;
A12: (1
+ ((3
|^
0 )
* a))
= (1
+ (((3
GeoSeq )
.
0 )
* a)) by
Def1
.= (1
+ (1
* a)) by
Th3
.= (1
+ a);
((1
+ a)
|^
0 )
= (((1
+ a)
GeoSeq )
.
0 ) by
Def1
.= 1 by
Th3;
then
A13:
P[
0 ] by
A12,
A4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A13,
A5);
hence thesis by
A1;
end;
theorem ::
PREPOWER:18
Th18: s1 is
convergent & (for n holds (s2
. n)
= ((s1
. n)
|^ m)) implies s2 is
convergent & (
lim s2)
= ((
lim s1)
|^ m)
proof
assume that
A1: s1 is
convergent and
A2: for n holds (s2
. n)
= ((s1
. n)
|^ m);
defpred
P[
Nat] means for s be
Real_Sequence st (for n holds (s
. n)
= ((s1
. n)
|^ $1)) holds s is
convergent & (
lim s)
= ((
lim s1)
|^ $1);
A3:
P[
0 ]
proof
let s be
Real_Sequence;
assume
A4: for n holds (s
. n)
= ((s1
. n)
|^
0 );
reconsider j = 1 as
Element of
REAL by
NUMBERS: 19;
A5:
now
let n be
Nat;
thus (s
. n)
= ((s1
. n)
|^
0 ) by
A4
.= (((s1
. n)
GeoSeq )
.
0 ) by
Def1
.= j by
Th3;
end;
then
A6: s is
constant by
VALUED_0:def 18;
hence s is
convergent;
thus (
lim s)
= (s
.
0 ) by
A6,
SEQ_4: 26
.= 1 by
A5
.= (((
lim s1)
GeoSeq )
.
0 ) by
Th3
.= ((
lim s1)
|^
0 ) by
Def1;
end;
A7: for m1 holds
P[m1] implies
P[(m1
+ 1)]
proof
let m1;
assume
A8: for s be
Real_Sequence st (for n holds (s
. n)
= ((s1
. n)
|^ m1)) holds s is
convergent & (
lim s)
= ((
lim s1)
|^ m1);
deffunc
O(
Nat) = ((s1
. $1)
|^ m1);
let s be
Real_Sequence;
consider s3 be
Real_Sequence such that
A9: for n holds (s3
. n)
=
O(n) from
SEQ_1:sch 1;
assume
A10: for n holds (s
. n)
= ((s1
. n)
|^ (m1
+ 1));
now
let n;
thus (s
. n)
= ((s1
. n)
|^ (m1
+ 1)) by
A10
.= (((s1
. n)
|^ m1)
* (s1
. n)) by
NEWTON: 6
.= ((s3
. n)
* (s1
. n)) by
A9;
end;
then
A11: s
= (s3
(#) s1) by
SEQ_1: 8;
A12: s3 is
convergent by
A8,
A9;
hence s is
convergent by
A1,
A11;
(
lim s3)
= ((
lim s1)
|^ m1) by
A8,
A9;
hence (
lim s)
= (((
lim s1)
|^ m1)
* (
lim s1)) by
A1,
A12,
A11,
SEQ_2: 15
.= ((
lim s1)
|^ (m1
+ 1)) by
NEWTON: 6;
end;
for m1 holds
P[m1] from
NAT_1:sch 2(
A3,
A7);
hence thesis by
A2;
end;
definition
let n be
natural
Number;
let a be
Real;
assume
A1: 1
<= n;
::
PREPOWER:def2
func n
-Root a ->
Real means
:
Def2: (it
|^ n)
= a & it
>
0 if a
>
0 ,
it
=
0 if a
=
0 ;
consistency ;
existence
proof
now
set X = { b where b be
Real :
0
< b & (b
|^ n)
<= a };
for x be
object holds x
in X implies x
in
REAL
proof
let x be
object;
assume x
in X;
then ex b be
Real st x
= b &
0
< b & (b
|^ n)
<= a;
hence thesis by
XREAL_0:def 1;
end;
then
reconsider X as
Subset of
REAL by
TARSKI:def 3;
reconsider a1 = a as
Real;
reconsider j = 1 as
Element of
REAL by
NUMBERS: 19;
A2: j
<= a implies ex c st c
in X
proof
assume
A3: j
<= a;
take j;
(j
|^ n)
<= a by
A3,
NEWTON: 10;
hence thesis;
end;
A4: a
< 1 implies ex c be
Real st c is
UpperBound of X
proof
consider c such that
A5: c
= 1;
assume
A6: a
< 1;
take c;
let b be
ExtReal;
assume b
in X;
then
consider d be
Real such that
A7: d
= b &
0
< d & (d
|^ n)
<= a;
assume not b
<= c;
then (1
|^ n)
< (d
|^ n) by
A1,
A5,
Lm1,
A7;
then 1
< (d
|^ n) by
NEWTON: 10;
hence contradiction by
A6,
A7,
XXREAL_0: 2;
end;
assume
A8: a
>
0 ;
1
<= a implies ex c be
Real st c is
UpperBound of X
proof
assume
A9: 1
<= a;
take a;
let b be
ExtReal;
assume b
in X;
then
consider d be
Real such that
A10: b
= d &
0
< d & (d
|^ n)
<= a;
assume a
< b;
then (a
|^ n)
< (d
|^ n) by
A1,
A8,
Lm1,
A10;
then (a
|^ n)
< a by
A10,
XXREAL_0: 2;
hence contradiction by
A1,
A9,
Th12;
end;
then
A11: X is
bounded_above by
A4;
take d = (
upper_bound X);
A12: a
< 1 implies ex c st c
in X
proof
assume
A13: a
< 1;
reconsider a as
Real;
take a;
(a
|^ n)
<= a by
A1,
A8,
A13,
Th14;
hence thesis by
A8;
end;
A14:
0
< d
proof
consider c such that
A15: c
in X by
A2,
A12;
ex e be
Real st e
= c &
0
< e & (e
|^ n)
<= a by
A15;
hence thesis by
A11,
A15,
SEQ_4:def 1;
end;
A16: not a
< (d
|^ n)
proof
set b = ((d
* (1
- (a
/ (d
|^ n))))
/ (n
+ 1));
assume
A17: a
< (d
|^ n);
then
A18: ((1
/ (n
+ 1))
* (d
|^ n))
> ((1
/ (n
+ 1))
* a) by
XREAL_1: 68;
(a
* ((d
|^ n)
" ))
> (
0
* a) by
A8,
A17;
then (
- (
- (a
/ (d
|^ n))))
>
0 ;
then (
- (a
/ (d
|^ n)))
<
0 ;
then (1
+ (
- (a
/ (d
|^ n))))
< (1
+
0 ) by
XREAL_1: 6;
then
A19: ((1
- (a
/ (d
|^ n)))
* ((n
+ 1)
" ))
< (1
* ((n
+ 1)
" )) by
XREAL_1: 68;
1
< (n
+ 1) by
A1,
NAT_1: 13;
then ((n
+ 1)
" )
< 1 by
XREAL_1: 212;
then ((1
- (a
/ (d
|^ n)))
/ (n
+ 1))
< 1 by
A19,
XXREAL_0: 2;
then
A20: (d
* ((1
- (a
/ (d
|^ n)))
/ (n
+ 1)))
< (d
* 1) by
A14,
XREAL_1: 68;
then (b
/ d)
< (d
/ d) by
A14,
XREAL_1: 74;
then (b
/ d)
< 1 by
A14,
XCMPLX_1: 60;
then (
- 1)
< (
- (b
/ d)) by
XREAL_1: 24;
then
A21: ((1
+ (
- (b
/ d)))
|^ n)
>= (1
+ (n
* (
- (b
/ d)))) by
Th16;
(a
/ (d
|^ n))
< ((d
|^ n)
/ (d
|^ n)) by
A8,
A17,
XREAL_1: 74;
then (
0
+ (a
/ (d
|^ n)))
< 1 by
A8,
A17,
XCMPLX_1: 60;
then
0
< (1
- (a
/ (d
|^ n))) by
XREAL_1: 20;
then (d
*
0 )
< (d
* (1
- (a
/ (d
|^ n)))) by
A14;
then (
0
/ (n
+ 1))
< ((d
* (1
- (a
/ (d
|^ n))))
/ (n
+ 1));
then
consider c be
Real such that
A22: c
in X and
A23: (d
- b)
< c by
A2,
A12,
A11,
SEQ_4:def 1;
0
< (d
- b) by
A20,
XREAL_1: 50;
then
A24: ((d
- b)
|^ n)
< (c
|^ n) by
A1,
A23,
Lm1;
((1
+ (n
* (
- (b
/ d))))
* (d
|^ n))
= ((1
- (n
* (((d
* (1
- (a
/ (d
|^ n))))
/ (n
+ 1))
/ d)))
* (d
|^ n))
.= ((1
- (n
* ((d
* ((1
- (a
/ (d
|^ n)))
/ (n
+ 1)))
/ d)))
* (d
|^ n))
.= ((1
- (n
* ((((1
- (a
/ (d
|^ n)))
/ (n
+ 1))
/ d)
* d)))
* (d
|^ n))
.= ((1
- (n
* ((1
- (a
/ (d
|^ n)))
/ (n
+ 1))))
* (d
|^ n)) by
A14,
XCMPLX_1: 87
.= ((1
- (((1
- (a
/ (d
|^ n)))
* n)
/ (n
+ 1)))
* (d
|^ n))
.= ((1
- ((1
- (a
/ (d
|^ n)))
* (n
/ (n
+ 1))))
* (d
|^ n))
.= (((1
- (n
/ (n
+ 1)))
+ ((a
/ (d
|^ n))
* (n
/ (n
+ 1))))
* (d
|^ n))
.= (((((n
+ 1)
/ (n
+ 1))
- (n
/ (n
+ 1)))
+ ((a
/ (d
|^ n))
* (n
/ (n
+ 1))))
* (d
|^ n)) by
XCMPLX_1: 60
.= (((((n
+ 1)
- n)
/ (n
+ 1))
+ ((a
/ (d
|^ n))
* (n
/ (n
+ 1))))
* (d
|^ n))
.= (((1
/ (n
+ 1))
+ (((n
/ (n
+ 1))
* a)
/ (d
|^ n)))
* (d
|^ n))
.= (((1
/ (n
+ 1))
* (d
|^ n))
+ ((((n
/ (n
+ 1))
* a)
/ (d
|^ n))
* (d
|^ n)))
.= (((1
/ (n
+ 1))
* (d
|^ n))
+ ((n
/ (n
+ 1))
* a)) by
A8,
A17,
XCMPLX_1: 87;
then
A25: ((1
+ (n
* (
- (b
/ d))))
* (d
|^ n))
> (((1
/ (n
+ 1))
* a)
+ ((n
/ (n
+ 1))
* a)) by
A18,
XREAL_1: 6;
((d
- b)
|^ n)
= (((d
- b)
* 1)
|^ n)
.= (((d
- b)
* ((d
" )
* d))
|^ n) by
A14,
XCMPLX_0:def 7
.= ((((d
- b)
* (d
" ))
* d)
|^ n)
.= ((((d
- b)
/ d)
* d)
|^ n)
.= ((((d
/ d)
- (b
/ d))
* d)
|^ n)
.= (((1
- (b
/ d))
* d)
|^ n) by
A14,
XCMPLX_1: 60
.= (((1
+ (
- (b
/ d)))
|^ n)
* (d
|^ n)) by
NEWTON: 7;
then ((d
- b)
|^ n)
>= ((1
+ (n
* (
- (b
/ d))))
* (d
|^ n)) by
A8,
A17,
A21,
XREAL_1: 64;
then ((d
- b)
|^ n)
> (((n
+ 1)
/ (n
+ 1))
* a) by
A25,
XXREAL_0: 2;
then
A26: ((d
- b)
|^ n)
> (1
* a) by
XCMPLX_1: 60;
ex e be
Real st e
= c &
0
< e & (e
|^ n)
<= a by
A22;
hence contradiction by
A24,
A26,
XXREAL_0: 2;
end;
not (d
|^ n)
< a
proof
set b = (
min ((1
/ 2),(((a1
/ (d
|^ n))
- 1)
/ (3
|^ n))));
set c = ((1
+ b)
* d);
A27: (c
|^ n)
= (((1
+ b)
|^ n)
* (d
|^ n)) by
NEWTON: 7;
A28:
0
< (3
|^ n) by
Th6;
((3
|^ n)
* b)
<= ((((a
/ (d
|^ n))
- 1)
/ (3
|^ n))
* (3
|^ n)) by
XREAL_1: 64,
XXREAL_0: 17;
then ((3
|^ n)
* b)
<= ((a
/ (d
|^ n))
- 1) by
A28,
XCMPLX_1: 87;
then
A29: (1
+ ((3
|^ n)
* b))
<= (a
/ (d
|^ n)) by
XREAL_1: 19;
A30: (d
|^ n)
>
0 by
A14,
Th6;
A31: (d
|^ n)
<>
0 by
A14,
Th6;
assume (d
|^ n)
< a;
then ((d
|^ n)
/ (d
|^ n))
< (a
/ (d
|^ n)) by
A30,
XREAL_1: 74;
then 1
< (a
/ (d
|^ n)) by
A31,
XCMPLX_1: 60;
then (1
- 1)
< ((a
/ (d
|^ n))
- 1) by
XREAL_1: 9;
then (((a
/ (d
|^ n))
- 1)
/ (3
|^ n))
> (
0
/ (3
|^ n)) by
A28;
then
A32: b
>
0 by
XXREAL_0: 15;
then (1
+ b)
> (1
+
0 ) by
XREAL_1: 6;
then
A33: ((1
+ b)
* d)
> (1
* d) by
A14,
XREAL_1: 68;
b
<= (1
/ 2) by
XXREAL_0: 17;
then b
< 1 by
XXREAL_0: 2;
then ((1
+ b)
|^ n)
<= (1
+ ((3
|^ n)
* b)) by
A32,
Th17;
then ((1
+ b)
|^ n)
<= (a
/ (d
|^ n)) by
A29,
XXREAL_0: 2;
then (c
|^ n)
<= ((a
/ (d
|^ n))
* (d
|^ n)) by
A30,
A27,
XREAL_1: 64;
then
A34: (c
|^ n)
<= a by
A31,
XCMPLX_1: 87;
((1
+ b)
* d)
> (
0
* d) by
A14,
A32;
then c
in X by
A34;
hence contradiction by
A11,
A33,
SEQ_4:def 1;
end;
hence a
= (d
|^ n) & d
>
0 by
A14,
A16,
XXREAL_0: 1;
end;
hence thesis;
end;
uniqueness
proof
now
let b,c be
Real;
assume that
A35: (b
|^ n)
= a and
A36: b
>
0 and
A37: (c
|^ n)
= a and
A38: c
>
0 and
A39: b
<> c;
per cases by
A39,
XXREAL_0: 1;
suppose b
> c;
hence contradiction by
A1,
A35,
A37,
A38,
Lm1;
end;
suppose c
> b;
hence contradiction by
A1,
A35,
A36,
A37,
Lm1;
end;
end;
hence thesis;
end;
end
registration
let n;
let a be
Real;
cluster (n
-Root a) ->
real;
coherence ;
end
Lm2: for n be
Nat st a
>
0 & n
>= 1 holds ((n
-Root a)
|^ n)
= a & (n
-Root (a
|^ n))
= a
proof
let n be
Nat;
assume that
A1: a
>
0 and
A2: n
>= 1;
thus ((n
-Root a)
|^ n)
= a by
A1,
A2,
Def2;
assume
A3: (n
-Root (a
|^ n))
<> a;
per cases by
A3,
XXREAL_0: 1;
suppose
A4: (n
-Root (a
|^ n))
> a;
(a
|^ n)
>
0 by
A1,
Th6;
hence contradiction by
A1,
A2,
A4,
Def2;
end;
suppose
A5: (n
-Root (a
|^ n))
< a;
(a
|^ n)
>
0 by
A1,
Th6;
hence contradiction by
A1,
A2,
A5,
Def2;
end;
end;
theorem ::
PREPOWER:19
Th19: for n be
Nat st a
>=
0 & n
>= 1 holds ((n
-Root a)
|^ n)
= a & (n
-Root (a
|^ n))
= a
proof
let n be
Nat;
assume that
A1: a
>=
0 and
A2: n
>= 1;
per cases by
A1;
suppose a
>
0 ;
hence thesis by
A2,
Lm2;
end;
suppose
A3: a
=
0 ;
reconsider k = n, k1 = 1 as
Integer;
reconsider m = (k
- k1) as
Element of
NAT by
A2,
INT_1: 5;
A4: (
0
|^ n)
= (
0
|^ (m
+ 1))
.= ((
0
|^ m)
* (
0
|^ 1)) by
NEWTON: 8
.= ((
0
|^ m)
* ((
0
GeoSeq )
. (
0
+ 1))) by
Def1
.= ((
0
|^ m)
* (((
0
GeoSeq )
.
0 )
*
0 )) by
Th3
.=
0 ;
hence ((n
-Root a)
|^ n)
= a by
A2,
A3,
Def2;
thus thesis by
A2,
A3,
A4,
Def2;
end;
end;
theorem ::
PREPOWER:20
Th20: n
>= 1 implies (n
-Root 1)
= 1
proof
A1: (1
|^ n)
= 1;
assume n
>= 1;
hence thesis by
A1,
Def2;
end;
theorem ::
PREPOWER:21
Th21: a
>=
0 implies (1
-Root a)
= a
proof
assume
A1: a
>=
0 ;
(a
|^ 1)
= ((a
GeoSeq )
. (
0
+ 1)) by
Def1
.= (((a
GeoSeq )
.
0 )
* a) by
Th3
.= (1
* a) by
Th3
.= a;
hence thesis by
A1,
Th19;
end;
theorem ::
PREPOWER:22
Th22: a
>=
0 & b
>=
0 & n
>= 1 implies (n
-Root (a
* b))
= ((n
-Root a)
* (n
-Root b))
proof
assume that
A1: a
>=
0 and
A2: b
>=
0 and
A3: n
>= 1 and
A4: (n
-Root (a
* b))
<> ((n
-Root a)
* (n
-Root b));
A5: (((n
-Root a)
* (n
-Root b))
|^ n)
= (((n
-Root a)
|^ n)
* ((n
-Root b)
|^ n)) by
NEWTON: 7
.= (a
* ((n
-Root b)
|^ n)) by
A1,
A3,
Th19
.= (a
* b) by
A2,
A3,
Th19;
per cases by
A1,
A2;
suppose
A6: a
>
0 & b
>
0 ;
then
A7: (n
-Root b)
>
0 by
A3,
Def2;
A8: (n
-Root a)
>
0 by
A3,
A6,
Def2;
(a
* b)
>
0 by
A6;
then
A9: (n
-Root (a
* b))
>
0 by
A3,
Def2;
per cases by
A4,
XXREAL_0: 1;
suppose (n
-Root (a
* b))
< ((n
-Root a)
* (n
-Root b));
hence contradiction by
A3,
A5,
A9,
Th19;
end;
suppose (n
-Root (a
* b))
> ((n
-Root a)
* (n
-Root b));
hence contradiction by
A3,
A5,
A8,
A7,
Th19;
end;
end;
suppose
A10: a
=
0 & b
>
0 ;
then (n
-Root (a
* b))
=
0 by
A3,
Def2;
hence contradiction by
A4,
A10;
end;
suppose
A11: a
>
0 & b
=
0 ;
then (n
-Root (a
* b))
=
0 by
A3,
Def2;
hence contradiction by
A4,
A11;
end;
suppose
A12: a
=
0 & b
=
0 ;
then (n
-Root (a
* b))
=
0 by
A3,
Def2;
hence contradiction by
A4,
A12;
end;
end;
theorem ::
PREPOWER:23
Th23: a
>
0 & n
>= 1 implies (n
-Root (1
/ a))
= (1
/ (n
-Root a))
proof
assume that
A1: a
>
0 and
A2: n
>= 1 and
A3: (n
-Root (1
/ a))
<> (1
/ (n
-Root a));
A4: (n
-Root a)
>
0 by
A1,
A2,
Def2;
A5: ((1
/ (n
-Root a))
|^ n)
= (1
/ ((n
-Root a)
|^ n)) by
Th7
.= (1
/ a) by
A1,
A2,
Lm2;
A6: (n
-Root (1
/ a))
>
0 by
A1,
A2,
Def2;
per cases by
A3,
XXREAL_0: 1;
suppose (n
-Root (1
/ a))
> (1
/ (n
-Root a));
hence contradiction by
A2,
A4,
A5,
Lm2;
end;
suppose (n
-Root (1
/ a))
< (1
/ (n
-Root a));
hence contradiction by
A2,
A5,
A6,
Lm2;
end;
end;
theorem ::
PREPOWER:24
a
>=
0 & b
>
0 & n
>= 1 implies (n
-Root (a
/ b))
= ((n
-Root a)
/ (n
-Root b))
proof
assume that
A1: a
>=
0 and
A2: b
>
0 and
A3: n
>= 1;
thus (n
-Root (a
/ b))
= (n
-Root (a
* (b
" )))
.= ((n
-Root a)
* (n
-Root (b
" ))) by
A1,
A2,
A3,
Th22
.= ((n
-Root a)
* (n
-Root (1
/ b)))
.= ((n
-Root a)
* (1
/ (n
-Root b))) by
A2,
A3,
Th23
.= (((n
-Root a)
* 1)
/ (n
-Root b))
.= ((n
-Root a)
/ (n
-Root b));
end;
theorem ::
PREPOWER:25
Th25: a
>=
0 & n
>= 1 & m
>= 1 implies (n
-Root (m
-Root a))
= ((n
* m)
-Root a)
proof
assume that
A1: a
>=
0 and
A2: n
>= 1 and
A3: m
>= 1 and
A4: (n
-Root (m
-Root a))
<> ((n
* m)
-Root a);
per cases by
A1;
suppose
A5: a
>
0 ;
then
A6: (m
-Root a)
>
0 by
A3,
Def2;
then
A7: (n
-Root (m
-Root a))
>
0 by
A2,
Def2;
A8: ((n
-Root (m
-Root a))
|^ (n
* m))
= (((n
-Root (m
-Root a))
|^ n)
|^ m) by
NEWTON: 9
.= ((m
-Root a)
|^ m) by
A2,
A6,
Lm2
.= a by
A1,
A3,
Th19;
A9: (n
* m)
>= 1 by
A2,
A3,
XREAL_1: 159;
then
A10: ((n
* m)
-Root a)
>
0 by
A5,
Def2;
per cases by
A4,
XXREAL_0: 1;
suppose (n
-Root (m
-Root a))
< ((n
* m)
-Root a);
hence contradiction by
A5,
A8,
A9,
A7,
Def2;
end;
suppose ((n
* m)
-Root a)
< (n
-Root (m
-Root a));
hence contradiction by
A5,
A8,
A9,
A10,
Def2;
end;
end;
suppose
A11: a
=
0 ;
(n
* m)
>= 1 by
A2,
A3,
XREAL_1: 159;
then
A12: ((n
* m)
-Root a)
=
0 by
A11,
Def2;
(m
-Root a)
=
0 by
A3,
A11,
Def2;
hence contradiction by
A2,
A4,
A12,
Def2;
end;
end;
theorem ::
PREPOWER:26
Th26: a
>=
0 & n
>= 1 & m
>= 1 implies ((n
-Root a)
* (m
-Root a))
= ((n
* m)
-Root (a
|^ (n
+ m)))
proof
assume that
A1: a
>=
0 and
A2: n
>= 1 and
A3: m
>= 1 and
A4: ((n
-Root a)
* (m
-Root a))
<> ((n
* m)
-Root (a
|^ (n
+ m)));
A5: (((n
-Root a)
* (m
-Root a))
|^ (n
* m))
= (((n
-Root a)
|^ (n
* m))
* ((m
-Root a)
|^ (n
* m))) by
NEWTON: 7
.= ((((n
-Root a)
|^ n)
|^ m)
* ((m
-Root a)
|^ (n
* m))) by
NEWTON: 9
.= ((a
|^ m)
* ((m
-Root a)
|^ (m
* n))) by
A1,
A2,
Th19
.= ((a
|^ m)
* (((m
-Root a)
|^ m)
|^ n)) by
NEWTON: 9
.= ((a
|^ m)
* (a
|^ n)) by
A1,
A3,
Th19
.= (a
|^ (n
+ m)) by
NEWTON: 8;
A6: (n
* m)
>= 1 by
A2,
A3,
XREAL_1: 159;
per cases by
A1;
suppose
A7: a
>
0 ;
then
A8: (m
-Root a)
>
0 by
A3,
Def2;
(n
-Root a)
>
0 by
A2,
A7,
Def2;
then
A9: ((n
-Root a)
* (m
-Root a))
>
0 by
A8;
A10: (a
|^ (n
+ m))
>
0 by
A7,
Th6;
then
A11: ((n
* m)
-Root (a
|^ (n
+ m)))
>
0 by
A6,
Def2;
per cases by
A4,
XXREAL_0: 1;
suppose ((n
-Root a)
* (m
-Root a))
< ((n
* m)
-Root (a
|^ (n
+ m)));
hence contradiction by
A5,
A6,
A10,
A9,
Def2;
end;
suppose ((n
-Root a)
* (m
-Root a))
> ((n
* m)
-Root (a
|^ (n
+ m)));
hence contradiction by
A5,
A6,
A10,
A11,
Def2;
end;
end;
suppose
A12: a
=
0 ;
reconsider k = n, k1 = 1 as
Integer;
reconsider m1 = (k
- k1) as
Element of
NAT by
A2,
INT_1: 5;
A13: (a
|^ (n
+ m))
= (a
|^ ((m1
+ m)
+ 1))
.= ((a
|^ (m1
+ m))
* a) by
NEWTON: 6
.=
0 by
A12;
(n
-Root a)
=
0 by
A2,
A12,
Def2;
hence contradiction by
A4,
A6,
A13,
Def2;
end;
end;
theorem ::
PREPOWER:27
Th27:
0
<= a & a
<= b & n
>= 1 implies (n
-Root a)
<= (n
-Root b)
proof
assume that
A1: a
>=
0 and
A2: a
<= b and
A3: n
>= 1 and
A4: (n
-Root a)
> (n
-Root b);
A5:
now
per cases by
A1,
A2;
suppose b
>
0 ;
hence (n
-Root b)
>=
0 by
A3,
Def2;
end;
suppose b
=
0 ;
hence (n
-Root b)
>=
0 by
A3,
Def2;
end;
end;
((n
-Root a)
|^ n)
= a by
A1,
A3,
Th19;
then ((n
-Root a)
|^ n)
<= ((n
-Root b)
|^ n) by
A1,
A2,
A3,
Th19;
hence contradiction by
A3,
A4,
A5,
Th10;
end;
theorem ::
PREPOWER:28
Th28: a
>=
0 & a
< b & n
>= 1 implies (n
-Root a)
< (n
-Root b)
proof
assume that
A1: a
>=
0 and
A2: a
< b and
A3: n
>= 1 and
A4: (n
-Root a)
>= (n
-Root b);
((n
-Root a)
|^ n)
= a by
A1,
A3,
Th19;
then
A5: ((n
-Root a)
|^ n)
< ((n
-Root b)
|^ n) by
A1,
A2,
A3,
Lm2;
(n
-Root b)
>
0 by
A1,
A2,
A3,
Def2;
hence contradiction by
A4,
A5,
Th9;
end;
theorem ::
PREPOWER:29
Th29: a
>= 1 & n
>= 1 implies (n
-Root a)
>= 1 & a
>= (n
-Root a)
proof
assume that
A1: a
>= 1 and
A2: n
>= 1;
(n
-Root a)
>= (n
-Root 1) by
A1,
A2,
Th27;
hence (n
-Root a)
>= 1 by
A2,
Th20;
(n
-Root a)
<= (n
-Root (a
|^ n)) by
A1,
A2,
Th12,
Th27;
hence thesis by
A1,
A2,
Lm2;
end;
theorem ::
PREPOWER:30
Th30:
0
<= a & a
< 1 & n
>= 1 implies a
<= (n
-Root a) & (n
-Root a)
< 1
proof
assume that
A1:
0
<= a and
A2: a
< 1 and
A3: n
>= 1;
A4:
now
per cases by
A1;
suppose a
>
0 ;
hence (a
|^ n)
>=
0 by
Th6;
end;
suppose a
=
0 ;
hence (a
|^ n)
>=
0 ;
end;
end;
now
per cases by
A1;
suppose a
>
0 ;
hence (a
|^ n)
<= a by
A2,
A3,
Th14;
end;
suppose a
=
0 ;
hence (a
|^ n)
<= a by
A3,
NEWTON: 11;
end;
end;
then (n
-Root (a
|^ n))
<= (n
-Root a) by
A3,
A4,
Th27;
hence a
<= (n
-Root a) by
A1,
A3,
Th19;
(n
-Root a)
< (n
-Root 1) by
A1,
A2,
A3,
Th28;
hence thesis by
A3,
Th20;
end;
theorem ::
PREPOWER:31
Th31: a
>
0 & n
>= 1 implies ((n
-Root a)
- 1)
<= ((a
- 1)
/ n)
proof
assume that
A1: a
>
0 and
A2: n
>= 1;
(n
-Root a)
>
0 by
A1,
A2,
Def2;
then ((n
-Root a)
- 1)
> (
0
- 1) by
XREAL_1: 9;
then ((1
+ ((n
-Root a)
- 1))
|^ n)
>= (1
+ (n
* ((n
-Root a)
- 1))) by
Th16;
then a
>= (1
+ (n
* ((n
-Root a)
- 1))) by
A1,
A2,
Lm2;
then (a
- 1)
>= (n
* ((n
-Root a)
- 1)) by
XREAL_1: 19;
then ((a
- 1)
/ n)
>= ((n
* ((n
-Root a)
- 1))
/ n) by
XREAL_1: 72;
hence thesis by
A2,
XCMPLX_1: 89;
end;
theorem ::
PREPOWER:32
a
>=
0 implies (2
-Root a)
= (
sqrt a)
proof
assume that
A1: a
>=
0 and
A2: (2
-Root a)
<> (
sqrt a);
A3: (
sqrt a)
>=
0 by
A1,
SQUARE_1:def 2;
((
sqrt a)
|^ 2)
= ((
sqrt a)
^2 ) by
NEWTON: 81
.= a by
A1,
SQUARE_1:def 2;
hence contradiction by
A2,
A3,
Th19;
end;
Lm3: for s be
Real_Sequence, a st a
>= 1 & (for n st n
>= 1 holds (s
. n)
= (n
-Root a)) holds s is
convergent & (
lim s)
= 1
proof
set s2 = (
seq_const 1);
let s be
Real_Sequence;
let a such that
A1: a
>= 1;
deffunc
O(
Nat) = ((a
- 1)
/ ($1
+ 1));
consider s1 be
Real_Sequence such that
A2: for n holds (s1
. n)
=
O(n) from
SEQ_1:sch 1;
set s3 = (s2
+ s1);
A3: s1 is
convergent by
A2,
SEQ_4: 31;
then
A4: s3 is
convergent;
assume
A5: for n st n
>= 1 holds (s
. n)
= (n
-Root a);
A6:
now
let n;
A7: (n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
set b = (((s
^\ 1)
. n)
- 1);
A8: ((s
^\ 1)
. n)
= (s
. (n
+ 1)) by
NAT_1:def 3
.= ((n
+ 1)
-Root a) by
A5,
A7;
then
A9: ((s
^\ 1)
. n)
>= 1 by
A1,
A7,
Th29;
then (((s
^\ 1)
. n)
- 1)
>=
0 by
XREAL_1: 48;
then
A10: (
- 1)
< b;
a
= ((1
+ b)
|^ (n
+ 1)) by
A1,
A7,
A8,
Lm2;
then a
>= (1
+ ((n
+ 1)
* b)) by
A10,
Th16;
then (a
- 1)
>= ((1
+ ((n
+ 1)
* b))
- 1) by
XREAL_1: 9;
then ((a
- 1)
* ((n
+ 1)
" ))
>= (((n
+ 1)
" )
* ((n
+ 1)
* b)) by
XREAL_1: 64;
then ((a
- 1)
* ((n
+ 1)
" ))
>= ((((n
+ 1)
" )
* (n
+ 1))
* b);
then ((a
- 1)
* ((n
+ 1)
" ))
>= (1
* b) by
XCMPLX_0:def 7;
then (((a
- 1)
/ (n
+ 1))
+ 1)
>= ((((s
^\ 1)
. n)
- 1)
+ 1) by
XREAL_1: 6;
then ((s2
. n)
+ ((a
- 1)
/ (n
+ 1)))
>= ((s
^\ 1)
. n) by
SEQ_1: 57;
then ((s2
. n)
+ (s1
. n))
>= ((s
^\ 1)
. n) by
A2;
hence (s2
. n)
<= ((s
^\ 1)
. n) & ((s
^\ 1)
. n)
<= (s3
. n) by
A9,
SEQ_1: 57,
SEQ_1: 7;
end;
(
lim s1)
=
0 by
A2,
SEQ_4: 31;
then
A11: (
lim s3)
= ((s2
.
0 )
+
0 ) by
A3,
SEQ_4: 42
.= 1 by
SEQ_1: 57;
A12: (
lim s2)
= (s2
.
0 ) by
SEQ_4: 26
.= 1 by
SEQ_1: 57;
then
A13: (s
^\ 1) is
convergent by
A4,
A11,
A6,
SEQ_2: 19;
hence s is
convergent by
SEQ_4: 21;
(
lim (s
^\ 1))
= 1 by
A4,
A11,
A12,
A6,
SEQ_2: 20;
hence thesis by
A13,
SEQ_4: 22;
end;
theorem ::
PREPOWER:33
for s be
Real_Sequence st a
>
0 & (for n st n
>= 1 holds (s
. n)
= (n
-Root a)) holds s is
convergent & (
lim s)
= 1
proof
let s be
Real_Sequence;
assume
A1: a
>
0 ;
assume
A2: for n st n
>= 1 holds (s
. n)
= (n
-Root a);
per cases ;
suppose a
>= 1;
hence thesis by
A2,
Lm3;
end;
suppose
A3: a
< 1;
then (a
/ a)
< (1
/ a) by
A1,
XREAL_1: 74;
then
A4: 1
<= (1
/ a) by
A1,
XCMPLX_1: 60;
deffunc
O(
Nat) = ($1
-Root (1
/ a));
consider s1 be
Real_Sequence such that
A5: for n holds (s1
. n)
=
O(n) from
SEQ_1:sch 1;
A6: for n holds n
>= 1 implies (s1
. n)
= (n
-Root (1
/ a)) by
A5;
then
A7: (
lim s1)
= 1 by
A4,
Lm3;
A8: s1 is
convergent by
A4,
A6,
Lm3;
A9:
now
let b be
Real;
assume b
>
0 ;
then
consider m1 such that
A10: for m st m1
<= m holds
|.((s1
. m)
- 1).|
< b by
A8,
A7,
SEQ_2:def 7;
reconsider n = (m1
+ 1) as
Nat;
take n;
let m;
assume
A11: n
<= m;
A12: n
>= (
0
+ 1) by
XREAL_1: 6;
then
A13: 1
<= m by
A11,
XXREAL_0: 2;
then
A14: (m
-Root a)
< 1 by
A1,
A3,
Th30;
A15: (m
-Root a)
<>
0 by
A1,
A13,
Def2;
then
A16:
|.((1
/ (m
-Root a))
- 1).|
=
|.((1
/ (m
-Root a))
- ((m
-Root a)
/ (m
-Root a))).| by
XCMPLX_1: 60
.=
|.((1
- (m
-Root a))
/ (m
-Root a)).|
.=
|.((1
- (m
-Root a))
* ((m
-Root a)
" )).|
.= (
|.(1
- (m
-Root a)).|
*
|.((m
-Root a)
" ).|) by
COMPLEX1: 65;
0
< (m
-Root a) by
A1,
A3,
A13,
Th30;
then ((m
-Root a)
* ((m
-Root a)
" ))
< (1
* ((m
-Root a)
" )) by
A14,
XREAL_1: 68;
then 1
< ((m
-Root a)
" ) by
A15,
XCMPLX_0:def 7;
then
A17: 1
<
|.((m
-Root a)
" ).| by
ABSVALUE:def 1;
0
<> (1
- (m
-Root a)) by
A1,
A3,
A13,
Th30;
then
|.(1
- (m
-Root a)).|
>
0 by
COMPLEX1: 47;
then
A18: (1
*
|.(1
- (m
-Root a)).|)
< (
|.(1
- (m
-Root a)).|
*
|.((m
-Root a)
" ).|) by
A17,
XREAL_1: 68;
m1
<= n by
XREAL_1: 29;
then m1
<= m by
A11,
XXREAL_0: 2;
then
|.((s1
. m)
- 1).|
< b by
A10;
then
|.((m
-Root (1
/ a))
- 1).|
< b by
A5;
then
|.((1
/ (m
-Root a))
- 1).|
< b by
A1,
A13,
Th23;
then
|.(
- ((m
-Root a)
- 1)).|
< b by
A16,
A18,
XXREAL_0: 2;
then
|.((m
-Root a)
- 1).|
< b by
COMPLEX1: 52;
hence
|.((s
. m)
- 1).|
< b by
A2,
A12,
A11,
XXREAL_0: 2;
end;
hence s is
convergent by
SEQ_2:def 6;
hence thesis by
A9,
SEQ_2:def 7;
end;
end;
definition
let a be
Real;
let k be
Integer;
::
PREPOWER:def3
func a
#Z k ->
number equals
:
Def3: (a
|^
|.k.|) if k
>=
0 ,
((a
|^
|.k.|)
" ) if k
<
0 ;
consistency ;
coherence by
TARSKI: 1;
end
registration
let a be
Real;
let k be
Integer;
cluster (a
#Z k) ->
real;
coherence
proof
(a
#Z k)
= (a
|^
|.k.|) or (a
#Z k)
= ((a
|^
|.k.|)
" ) by
Def3;
hence thesis;
end;
end
theorem ::
PREPOWER:34
Th34: (a
#Z
0 )
= 1
proof
thus (a
#Z
0 )
= (a
|^
|.
0 .|) by
Def3
.= (a
|^
0 ) by
ABSVALUE: 2
.= ((a
GeoSeq )
.
0 ) by
Def1
.= 1 by
Th3;
end;
theorem ::
PREPOWER:35
Th35: (a
#Z 1)
= a
proof
thus (a
#Z 1)
= (a
|^
|.1.|) by
Def3
.= (a
|^ (
0
+ 1)) by
ABSVALUE:def 1
.= ((a
GeoSeq )
. (
0
+ 1)) by
Def1
.= (((a
GeoSeq )
.
0 )
* a) by
Th3
.= (1
* a) by
Th3
.= a;
end;
theorem ::
PREPOWER:36
Th36: for n be
Nat holds (a
#Z n)
= (a
|^ n)
proof
let n be
Nat;
thus (a
#Z n)
= (a
|^
|.n.|) by
Def3
.= (a
|^ n) by
ABSVALUE:def 1;
end;
Lm4: (1
" )
= 1;
theorem ::
PREPOWER:37
Th37: (1
#Z k)
= 1
proof
per cases ;
suppose k
>=
0 ;
hence (1
#Z k)
= (1
|^
|.k.|) by
Def3
.= 1;
end;
suppose k
<
0 ;
(1
#Z k)
= ((1
|^
|.k.|)
" ) by
Def3;
hence thesis;
end;
end;
theorem ::
PREPOWER:38
a
<>
0 implies (a
#Z k)
<>
0
proof
assume
A1: a
<>
0 ;
per cases ;
suppose k
>=
0 ;
then (a
#Z k)
= (a
|^
|.k.|) by
Def3;
hence thesis by
A1,
Th5;
end;
suppose k
<
0 ;
then (a
#Z k)
= ((a
|^
|.k.|)
" ) by
Def3;
hence thesis by
A1,
Th5,
XCMPLX_1: 202;
end;
end;
theorem ::
PREPOWER:39
Th39: a
>
0 implies (a
#Z k)
>
0
proof
assume
A1: a
>
0 ;
per cases ;
suppose k
>=
0 ;
then (a
#Z k)
= (a
|^
|.k.|) by
Def3;
hence thesis by
A1,
Th6;
end;
suppose
A2: k
<
0 ;
A3: (a
|^
|.k.|)
>
0 by
A1,
Th6;
(a
#Z k)
= ((a
|^
|.k.|)
" ) by
A2,
Def3;
hence thesis by
A3;
end;
end;
theorem ::
PREPOWER:40
Th40: ((a
* b)
#Z k)
= ((a
#Z k)
* (b
#Z k))
proof
per cases ;
suppose
A1: k
>=
0 ;
hence ((a
* b)
#Z k)
= ((a
* b)
|^
|.k.|) by
Def3
.= ((a
|^
|.k.|)
* (b
|^
|.k.|)) by
NEWTON: 7
.= ((a
#Z k)
* (b
|^
|.k.|)) by
A1,
Def3
.= ((a
#Z k)
* (b
#Z k)) by
A1,
Def3;
end;
suppose
A2: k
<
0 ;
hence ((a
* b)
#Z k)
= (((a
* b)
|^
|.k.|)
" ) by
Def3
.= (((a
|^
|.k.|)
* (b
|^
|.k.|))
" ) by
NEWTON: 7
.= (((a
|^
|.k.|)
" )
* ((b
|^
|.k.|)
" )) by
XCMPLX_1: 204
.= ((a
#Z k)
* ((b
|^
|.k.|)
" )) by
A2,
Def3
.= ((a
#Z k)
* (b
#Z k)) by
A2,
Def3;
end;
end;
theorem ::
PREPOWER:41
Th41: (a
#Z (
- k))
= (1
/ (a
#Z k))
proof
per cases ;
suppose
A1: k
>
0 ;
then (
- k)
< (
-
0 );
hence (a
#Z (
- k))
= ((a
|^
|.(
- k).|)
" ) by
Def3
.= ((a
|^
|.k.|)
" ) by
COMPLEX1: 52
.= (1
/ (a
|^
|.k.|))
.= (1
/ (a
#Z k)) by
A1,
Def3;
end;
suppose
A2: k
=
0 ;
hence (a
#Z (
- k))
= (1
/ 1) by
Th34
.= (1
/ ((a
GeoSeq )
.
0 )) by
Th3
.= (1
/ (a
|^
0 )) by
Def1
.= (1
/ (a
#Z k)) by
A2,
Th36;
end;
suppose
A3: k
<
0 ;
then (a
#Z k)
= ((a
|^
|.k.|)
" ) by
Def3
.= (1
/ (a
|^
|.k.|))
.= (1
/ (a
|^
|.(
- k).|)) by
COMPLEX1: 52
.= (1
/ (a
#Z (
- k))) by
A3,
Def3;
hence thesis;
end;
end;
theorem ::
PREPOWER:42
Th42: ((1
/ a)
#Z k)
= (1
/ (a
#Z k))
proof
per cases ;
suppose
A1: k
>=
0 ;
hence ((1
/ a)
#Z k)
= ((1
/ a)
|^
|.k.|) by
Def3
.= (1
/ (a
|^
|.k.|)) by
Th7
.= (1
/ (a
#Z k)) by
A1,
Def3;
end;
suppose
A2: k
<
0 ;
hence ((1
/ a)
#Z k)
= (((1
/ a)
|^
|.k.|)
" ) by
Def3
.= ((1
/ (a
|^
|.k.|))
" ) by
Th7
.= (((a
|^
|.k.|)
" )
" )
.= ((a
#Z k)
" ) by
A2,
Def3
.= (1
/ (a
#Z k));
end;
end;
theorem ::
PREPOWER:43
Th43: for m,n be
Nat holds a
<>
0 implies (a
#Z (m
- n))
= ((a
|^ m)
/ (a
|^ n))
proof
let m,n be
Nat;
assume
A1: a
<>
0 ;
per cases ;
suppose (m
- n)
>=
0 ;
then
reconsider m1 = (m
- n) as
Element of
NAT by
INT_1: 3;
A2: ((a
#Z (m
- n))
* (a
|^ n))
= ((a
|^ m1)
* (a
|^ n)) by
Th36
.= (a
|^ (m1
+ n)) by
NEWTON: 8
.= (a
|^ m);
(a
|^ n)
<>
0 by
A1,
Th5;
hence thesis by
A2,
XCMPLX_1: 89;
end;
suppose (m
- n)
<
0 ;
then (
- (m
- n))
>
0 ;
then
reconsider m1 = (n
- m) as
Element of
NAT by
INT_1: 3;
A3: (a
#Z (n
- m))
= (a
#Z (
- (m
- n)))
.= (1
/ (a
#Z (m
- n))) by
Th41;
((a
#Z (n
- m))
* (a
|^ m))
= ((a
|^ m1)
* (a
|^ m)) by
Th36
.= (a
|^ (m1
+ m)) by
NEWTON: 8
.= (a
|^ n);
then
A4: ((a
|^ m)
/ (a
#Z (m
- n)))
= (a
|^ n) by
A3;
(a
|^ n)
<>
0 by
A1,
Th5;
hence thesis by
A4,
XCMPLX_1: 54;
end;
end;
theorem ::
PREPOWER:44
Th44: a
<>
0 implies (a
#Z (k
+ l))
= ((a
#Z k)
* (a
#Z l))
proof
assume
A1: a
<>
0 ;
per cases ;
suppose
A2: k
>=
0 & l
>=
0 ;
then
A3: (k
* l)
>=
0 ;
thus (a
#Z (k
+ l))
= (a
|^
|.(k
+ l).|) by
A2,
Def3
.= (a
|^ (
|.k.|
+
|.l.|)) by
A3,
ABSVALUE: 11
.= ((a
|^
|.k.|)
* (a
|^
|.l.|)) by
NEWTON: 8
.= ((a
#Z k)
* (a
|^
|.l.|)) by
A2,
Def3
.= ((a
#Z k)
* (a
#Z l)) by
A2,
Def3;
end;
suppose
A4: k
>=
0 & l
<
0 ;
then
reconsider m = k as
Element of
NAT by
INT_1: 3;
reconsider n = (
- l) as
Element of
NAT by
A4,
INT_1: 3;
(k
+ l)
= (m
- n);
hence (a
#Z (k
+ l))
= ((a
|^ m)
/ (a
|^ n)) by
A1,
Th43
.= ((a
|^ m)
* ((a
|^ n)
" ))
.= ((a
|^
|.k.|)
* ((a
|^ n)
" )) by
ABSVALUE:def 1
.= ((a
|^
|.k.|)
* ((a
|^
|.(
- l).|)
" )) by
ABSVALUE:def 1
.= ((a
|^
|.k.|)
* ((a
|^
|.l.|)
" )) by
COMPLEX1: 52
.= ((a
#Z k)
* ((a
|^
|.l.|)
" )) by
A4,
Def3
.= ((a
#Z k)
* (a
#Z l)) by
A4,
Def3;
end;
suppose
A5: k
<
0 & l
>=
0 ;
then
reconsider m = l as
Element of
NAT by
INT_1: 3;
reconsider n = (
- k) as
Element of
NAT by
A5,
INT_1: 3;
(k
+ l)
= (m
- n);
hence (a
#Z (k
+ l))
= ((a
|^ m)
/ (a
|^ n)) by
A1,
Th43
.= ((a
|^ m)
* ((a
|^ n)
" ))
.= ((a
|^
|.l.|)
* ((a
|^ n)
" )) by
ABSVALUE:def 1
.= ((a
|^
|.l.|)
* ((a
|^
|.(
- k).|)
" )) by
ABSVALUE:def 1
.= ((a
|^
|.l.|)
* ((a
|^
|.k.|)
" )) by
COMPLEX1: 52
.= ((a
#Z l)
* ((a
|^
|.k.|)
" )) by
A5,
Def3
.= ((a
#Z k)
* (a
#Z l)) by
A5,
Def3;
end;
suppose
A6: k
<
0 & l
<
0 ;
then
A7: (k
* l)
>=
0 ;
thus (a
#Z (k
+ l))
= ((a
|^
|.(k
+ l).|)
" ) by
A6,
Def3
.= ((a
|^ (
|.k.|
+
|.l.|))
" ) by
A7,
ABSVALUE: 11
.= (((a
|^
|.k.|)
* (a
|^
|.l.|))
" ) by
NEWTON: 8
.= (((a
|^
|.k.|)
" )
* ((a
|^
|.l.|)
" )) by
XCMPLX_1: 204
.= ((a
#Z k)
* ((a
|^
|.l.|)
" )) by
A6,
Def3
.= ((a
#Z k)
* (a
#Z l)) by
A6,
Def3;
end;
end;
theorem ::
PREPOWER:45
Th45: ((a
#Z k)
#Z l)
= (a
#Z (k
* l))
proof
per cases ;
suppose
A1: (k
* l)
>
0 ;
per cases by
A1,
XREAL_1: 134;
suppose
A2: k
>
0 & l
>
0 ;
hence ((a
#Z k)
#Z l)
= ((a
#Z k)
|^
|.l.|) by
Def3
.= ((a
|^
|.k.|)
|^
|.l.|) by
A2,
Def3
.= (a
|^ (
|.k.|
*
|.l.|)) by
NEWTON: 9
.= (a
|^
|.(k
* l).|) by
COMPLEX1: 65
.= (a
#Z (k
* l)) by
A1,
Def3;
end;
suppose
A3: k
<
0 & l
<
0 ;
hence ((a
#Z k)
#Z l)
= (((a
#Z k)
|^
|.l.|)
" ) by
Def3
.= ((((a
|^
|.k.|)
" )
|^
|.l.|)
" ) by
A3,
Def3
.= (((1
/ (a
|^
|.k.|))
|^
|.l.|)
" )
.= ((1
/ ((a
|^
|.k.|)
|^
|.l.|))
" ) by
Th7
.= ((((a
|^
|.k.|)
|^
|.l.|)
" )
" )
.= (a
|^ (
|.k.|
*
|.l.|)) by
NEWTON: 9
.= (a
|^
|.(k
* l).|) by
COMPLEX1: 65
.= (a
#Z (k
* l)) by
A1,
Def3;
end;
end;
suppose
A4: (k
* l)
<
0 ;
per cases by
A4,
XREAL_1: 133;
suppose
A5: k
<
0 & l
>
0 ;
hence ((a
#Z k)
#Z l)
= ((a
#Z k)
|^
|.l.|) by
Def3
.= (((a
|^
|.k.|)
" )
|^
|.l.|) by
A5,
Def3
.= ((1
/ (a
|^
|.k.|))
|^
|.l.|)
.= (1
/ ((a
|^
|.k.|)
|^
|.l.|)) by
Th7
.= (1
/ (a
|^ (
|.k.|
*
|.l.|))) by
NEWTON: 9
.= (1
/ (a
|^
|.(k
* l).|)) by
COMPLEX1: 65
.= ((a
|^
|.(k
* l).|)
" )
.= (a
#Z (k
* l)) by
A4,
Def3;
end;
suppose
A6: k
>
0 & l
<
0 ;
hence ((a
#Z k)
#Z l)
= (((a
#Z k)
|^
|.l.|)
" ) by
Def3
.= (((a
|^
|.k.|)
|^
|.l.|)
" ) by
A6,
Def3
.= ((a
|^ (
|.k.|
*
|.l.|))
" ) by
NEWTON: 9
.= ((a
|^
|.(k
* l).|)
" ) by
COMPLEX1: 65
.= (a
#Z (k
* l)) by
A4,
Def3;
end;
end;
suppose
A7: (k
* l)
=
0 ;
per cases by
A7;
suppose k
=
0 ;
hence ((a
#Z k)
#Z l)
= (1
#Z l) by
Th34
.= 1 by
Th37
.= (a
#Z (k
* l)) by
A7,
Th34;
end;
suppose l
=
0 ;
hence ((a
#Z k)
#Z l)
= 1 by
Th34
.= (a
#Z (k
* l)) by
A7,
Th34;
end;
end;
end;
theorem ::
PREPOWER:46
Th46: a
>
0 & n
>= 1 implies ((n
-Root a)
#Z k)
= (n
-Root (a
#Z k))
proof
assume that
A1: a
>
0 and
A2: n
>= 1;
A3: (n
-Root a)
>
0 by
A1,
A2,
Def2;
A4: m
>= 1 implies ((n
-Root a)
|^ m)
= (n
-Root (a
|^ m))
proof
assume that
A5: m
>= 1 and
A6: ((n
-Root a)
|^ m)
<> (n
-Root (a
|^ m));
A7: (a
|^ m)
>
0 by
A1,
Th6;
then
A8: (n
-Root (a
|^ m))
>=
0 by
A2,
Def2;
A9: (m
-Root (n
-Root (a
|^ m)))
= ((n
* m)
-Root (a
|^ m)) by
A2,
A5,
A7,
Th25
.= (n
-Root (m
-Root (a
|^ m))) by
A2,
A5,
A7,
Th25
.= (n
-Root a) by
A1,
A5,
Lm2;
A10: (m
-Root ((n
-Root a)
|^ m))
= (n
-Root a) by
A3,
A5,
Lm2;
A11: ((n
-Root a)
|^ m)
>=
0 by
A3,
Th6;
per cases by
A6,
XXREAL_0: 1;
suppose ((n
-Root a)
|^ m)
< (n
-Root (a
|^ m));
hence contradiction by
A5,
A9,
A11,
Lm2;
end;
suppose ((n
-Root a)
|^ m)
> (n
-Root (a
|^ m));
hence contradiction by
A5,
A9,
A10,
A8,
Th28;
end;
end;
per cases ;
suppose
A12: k
>
0 ;
then
|.k.|
>
0 by
ABSVALUE:def 1;
then
A13:
|.k.|
>= (
0
+ 1) by
NAT_1: 13;
thus ((n
-Root a)
#Z k)
= ((n
-Root a)
|^
|.k.|) by
A12,
Def3
.= (n
-Root (a
|^
|.k.|)) by
A4,
A13
.= (n
-Root (a
#Z k)) by
A12,
Def3;
end;
suppose
A14: k
<
0 ;
then
|.k.|
>
0 by
COMPLEX1: 47;
then
A15:
|.k.|
>= (
0
+ 1) by
NAT_1: 13;
A16: (a
|^
|.k.|)
>
0 by
A1,
Th6;
thus ((n
-Root a)
#Z k)
= (((n
-Root a)
|^
|.k.|)
" ) by
A14,
Def3
.= ((n
-Root (a
|^
|.k.|))
" ) by
A4,
A15
.= (1
/ (n
-Root (a
|^
|.k.|)))
.= (n
-Root (1
/ (a
|^
|.k.|))) by
A2,
A16,
Th23
.= (n
-Root ((a
|^
|.k.|)
" ))
.= (n
-Root (a
#Z k)) by
A14,
Def3;
end;
suppose
A17: k
=
0 ;
then (n
-Root (a
#Z k))
= (n
-Root 1) by
Th34
.= 1 by
A2,
Th20;
hence thesis by
A17,
Th34;
end;
end;
definition
let a be
Real;
let p be
Rational;
::
PREPOWER:def4
func a
#Q p ->
number equals ((
denominator p)
-Root (a
#Z (
numerator p)));
coherence by
TARSKI: 1;
end
registration
let a be
Real;
let p be
Rational;
cluster (a
#Q p) ->
real;
coherence ;
end
theorem ::
PREPOWER:47
Th47: p
=
0 implies (a
#Q p)
= 1
proof
reconsider i =
0 as
Integer;
assume that
A1: p
=
0 ;
(
numerator p)
=
0 by
A1,
RAT_1: 14;
hence (a
#Q p)
= (1
-Root (a
#Z i)) by
A1,
RAT_1: 19
.= (1
-Root 1) by
Th34
.= 1 by
Th21;
end;
theorem ::
PREPOWER:48
Th48: a
>
0 & p
= 1 implies (a
#Q p)
= a
proof
assume that
A1: a
>
0 and
A2: p
= 1;
A3: (
denominator p)
= 1 by
A2,
RAT_1: 17;
(
numerator p)
= p by
A2,
RAT_1: 17;
hence (a
#Q p)
= (1
-Root a) by
A2,
A3,
Th35
.= a by
A1,
Th21;
end;
Lm5: a
>=
0 implies (a
#Z k)
>=
0
proof
assume
A1: a
>=
0 ;
per cases by
A1;
suppose
A2: a
=
0 ;
|.k.|
=
0 or
|.k.|
>= 1 by
NAT_1: 14;
then ((
0
|^
|.k.|)
" )
= (
0
" ) or ((
0
|^
|.k.|)
" )
= (1
" ) by
NEWTON: 4,
NEWTON: 11;
hence thesis by
A2,
Def3;
end;
suppose a
>
0 ;
hence thesis by
Th39;
end;
end;
theorem ::
PREPOWER:49
Th49: for n be
Nat st
0
<= a holds (a
#Q n)
= (a
|^ n)
proof
let n be
Nat;
A1: (
denominator n)
= 1 by
RAT_1: 17;
A2: (
numerator n)
= n by
RAT_1: 17;
assume
0
<= a;
hence (a
#Q n)
= (a
#Z n) by
A1,
A2,
Lm5,
Th21
.= (a
|^ n) by
Th36;
end;
theorem ::
PREPOWER:50
Th50: for n be
Nat holds n
>= 1 & p
= (n
" ) implies (a
#Q p)
= (n
-Root a)
proof
let n be
Nat;
assume that
A1: n
>= 1 and
A2: p
= (n
" );
reconsider q = n as
Rational;
A3: p
= (1
/ n) by
A2;
then (
denominator p)
= (
numerator q) by
A1,
RAT_1: 44;
then
A4: (
denominator p)
= n by
RAT_1: 17;
(
numerator p)
= (
denominator q) by
A1,
A3,
RAT_1: 44;
then (
numerator p)
= 1 by
RAT_1: 17;
hence thesis by
A4,
Th35;
end;
theorem ::
PREPOWER:51
Th51: (1
#Q p)
= 1
proof
thus (1
#Q p)
= ((
denominator p)
-Root 1) by
Th37
.= 1 by
Th20,
RAT_1: 11;
end;
theorem ::
PREPOWER:52
Th52: a
>
0 implies (a
#Q p)
>
0
proof
assume a
>
0 ;
then
A1: (a
#Z (
numerator p))
>
0 by
Th39;
(
denominator p)
>= 1 by
RAT_1: 11;
hence thesis by
A1,
Def2;
end;
theorem ::
PREPOWER:53
Th53: a
>
0 implies ((a
#Q p)
* (a
#Q q))
= (a
#Q (p
+ q))
proof
set dp = (
denominator p);
set dq = (
denominator q);
set np = (
numerator p);
set nq = (
numerator q);
A1: dp
>= 1 by
RAT_1: 11;
reconsider ddq = dq as
Integer;
reconsider ddp = dp as
Integer;
A2: (
denominator (p
+ q))
>= 1 by
RAT_1: 11;
A3: dq
>= 1 by
RAT_1: 11;
then
A4: (dp
* dq)
>= 1 by
A1,
XREAL_1: 159;
(p
+ q)
= ((np
/ dp)
+ q) by
RAT_1: 15
.= ((np
/ dp)
+ (nq
/ dq)) by
RAT_1: 15
.= (((np
* dq)
+ (nq
* dp))
/ (dp
* dq)) by
XCMPLX_1: 116;
then
consider n such that
A5: ((np
* dq)
+ (nq
* dp))
= ((
numerator (p
+ q))
* n) and
A6: (dp
* dq)
= ((
denominator (p
+ q))
* n) by
RAT_1: 27;
reconsider k = n as
Integer;
assume
A7: a
>
0 ;
then
A8: (a
#Z (nq
- np))
>=
0 by
Th39;
n
>
0 by
A6;
then
A9: n
>= (
0
+ 1) by
NAT_1: 13;
A10: (a
#Z np)
>
0 by
A7,
Th39;
then
A11: ((a
#Z np)
|^ (dp
+ dq))
>=
0 by
Th6;
A12: (a
#Z (nq
- np))
>
0 by
A7,
Th39;
then
A13: ((a
#Z (nq
- np))
|^ dp)
>=
0 by
Th6;
A14: (a
#Q (p
+ q))
>
0 by
A7,
Th52;
A15: (a
#Z (
numerator (p
+ q)))
>
0 by
A7,
Th39;
thus ((a
#Q p)
* (a
#Q q))
= ((dp
-Root (a
#Z np))
* (dq
-Root (a
#Z (np
+ (nq
- np)))))
.= ((dp
-Root (a
#Z np))
* (dq
-Root ((a
#Z np)
* (a
#Z (nq
- np))))) by
A7,
Th44
.= ((dp
-Root (a
#Z np))
* ((dq
-Root (a
#Z np))
* (dq
-Root (a
#Z (nq
- np))))) by
A10,
A8,
Th22,
RAT_1: 11
.= (((dp
-Root (a
#Z np))
* (dq
-Root (a
#Z np)))
* (dq
-Root (a
#Z (nq
- np))))
.= (((dp
* dq)
-Root ((a
#Z np)
|^ (dp
+ dq)))
* (dq
-Root (a
#Z (nq
- np)))) by
A10,
A3,
A1,
Th26
.= (((dp
* dq)
-Root ((a
#Z np)
|^ (dp
+ dq)))
* (dq
-Root (dp
-Root ((a
#Z (nq
- np))
|^ dp)))) by
A12,
A1,
Lm2
.= (((dp
* dq)
-Root ((a
#Z np)
|^ (dp
+ dq)))
* ((dp
* dq)
-Root ((a
#Z (nq
- np))
|^ dp))) by
A3,
A1,
A13,
Th25
.= ((dp
* dq)
-Root (((a
#Z np)
|^ (dp
+ dq))
* ((a
#Z (nq
- np))
|^ dp))) by
A3,
A1,
A13,
A11,
Th22,
XREAL_1: 159
.= ((dp
* dq)
-Root (((a
#Z np)
#Z (ddp
+ ddq))
* ((a
#Z (nq
- np))
|^ dp))) by
Th36
.= ((dp
* dq)
-Root (((a
#Z np)
#Z (ddp
+ ddq))
* ((a
#Z (nq
- np))
#Z ddp))) by
Th36
.= ((dp
* dq)
-Root ((a
#Z (np
* (ddp
+ ddq)))
* ((a
#Z (nq
- np))
#Z ddp))) by
Th45
.= ((dp
* dq)
-Root ((a
#Z (np
* (ddp
+ ddq)))
* (a
#Z ((nq
- np)
* ddp)))) by
Th45
.= ((dp
* dq)
-Root (a
#Z (((np
* ddp)
+ (np
* ddq))
+ ((nq
- np)
* ddp)))) by
A7,
Th44
.= (((
denominator (p
+ q))
* n)
-Root ((a
#Z (
numerator (p
+ q)))
#Z k)) by
A5,
A6,
Th45
.= ((((
denominator (p
+ q))
* n)
-Root (a
#Z (
numerator (p
+ q))))
#Z k) by
A4,
A6,
A15,
Th46
.= (((n
* (
denominator (p
+ q)))
-Root (a
#Z (
numerator (p
+ q))))
|^ n) by
Th36
.= ((n
-Root (a
#Q (p
+ q)))
|^ n) by
A9,
A2,
A15,
Th25
.= (a
#Q (p
+ q)) by
A9,
A14,
Lm2;
end;
theorem ::
PREPOWER:54
Th54: a
>
0 implies (1
/ (a
#Q p))
= (a
#Q (
- p))
proof
assume a
>
0 ;
then
A1: (a
#Z (
numerator p))
>
0 by
Th39;
thus (a
#Q (
- p))
= ((
denominator (
- p))
-Root (a
#Z (
- (
numerator p)))) by
RAT_1: 43
.= ((
denominator p)
-Root (a
#Z (
- (
numerator p)))) by
RAT_1: 43
.= ((
denominator p)
-Root (1
/ (a
#Z (
numerator p)))) by
Th41
.= (1
/ (a
#Q p)) by
A1,
Th23,
RAT_1: 11;
end;
theorem ::
PREPOWER:55
Th55: a
>
0 implies ((a
#Q p)
/ (a
#Q q))
= (a
#Q (p
- q))
proof
assume
A1: a
>
0 ;
thus (a
#Q (p
- q))
= (a
#Q (p
+ (
- q)))
.= ((a
#Q p)
* (a
#Q (
- q))) by
A1,
Th53
.= ((a
#Q p)
* (1
/ (a
#Q q))) by
A1,
Th54
.= (((a
#Q p)
* 1)
/ (a
#Q q))
.= ((a
#Q p)
/ (a
#Q q));
end;
theorem ::
PREPOWER:56
Th56: a
>
0 & b
>
0 implies ((a
* b)
#Q p)
= ((a
#Q p)
* (b
#Q p))
proof
assume that
A1: a
>
0 and
A2: b
>
0 ;
A3: (a
#Z (
numerator p))
>=
0 by
A1,
Th39;
A4: (b
#Z (
numerator p))
>=
0 by
A2,
Th39;
thus ((a
* b)
#Q p)
= ((
denominator p)
-Root ((a
#Z (
numerator p))
* (b
#Z (
numerator p)))) by
Th40
.= ((a
#Q p)
* (b
#Q p)) by
A3,
A4,
Th22,
RAT_1: 11;
end;
theorem ::
PREPOWER:57
Th57: a
>
0 implies ((1
/ a)
#Q p)
= (1
/ (a
#Q p))
proof
assume
A1: a
>
0 ;
thus ((1
/ a)
#Q p)
= ((
denominator p)
-Root (1
/ (a
#Z (
numerator p)))) by
Th42
.= ((
denominator p)
-Root (a
#Z (
- (
numerator p)))) by
Th41
.= ((
denominator p)
-Root (a
#Z (
numerator (
- p)))) by
RAT_1: 43
.= (a
#Q (
- p)) by
RAT_1: 43
.= (1
/ (a
#Q p)) by
A1,
Th54;
end;
theorem ::
PREPOWER:58
Th58: a
>
0 & b
>
0 implies ((a
/ b)
#Q p)
= ((a
#Q p)
/ (b
#Q p))
proof
assume that
A1: a
>
0 and
A2: b
>
0 ;
thus ((a
/ b)
#Q p)
= ((a
* (1
/ b))
#Q p)
.= ((a
#Q p)
* ((1
/ b)
#Q p)) by
A1,
A2,
Th56
.= ((a
#Q p)
* (1
/ (b
#Q p))) by
A2,
Th57
.= ((a
#Q p)
/ (b
#Q p));
end;
theorem ::
PREPOWER:59
Th59: a
>
0 implies ((a
#Q p)
#Q q)
= (a
#Q (p
* q))
proof
A1: (
denominator p)
>= 1 by
RAT_1: 11;
p
= ((
numerator p)
/ (
denominator p)) by
RAT_1: 15;
then (p
* q)
= (((
numerator p)
/ (
denominator p))
* ((
numerator q)
/ (
denominator q))) by
RAT_1: 15
.= ((((
numerator p)
/ (
denominator p))
* (
numerator q))
/ (
denominator q))
.= (((
numerator p)
* (
numerator q))
/ ((
denominator p)
* (
denominator q))) by
XCMPLX_1: 83;
then
consider n such that
A2: ((
numerator p)
* (
numerator q))
= ((
numerator (p
* q))
* n) and
A3: ((
denominator p)
* (
denominator q))
= ((
denominator (p
* q))
* n) by
RAT_1: 27;
A4: ((
denominator (p
* q))
* n)
>= (
0
+ 1) by
A3,
NAT_1: 13;
n
>
0 by
A3;
then
A5: n
>= (
0
+ 1) by
NAT_1: 13;
reconsider k = n as
Integer;
A6: (
denominator q)
>= 1 by
RAT_1: 11;
A7: (
denominator (p
* q))
>= 1 by
RAT_1: 11;
assume
A8: a
>
0 ;
then
A9: (a
#Z ((
numerator p)
* (
numerator q)))
>=
0 by
Th39;
A10: (a
#Q (p
* q))
>
0 by
A8,
Th52;
A11: (a
#Z (
numerator (p
* q)))
>
0 by
A8,
Th39;
(a
#Z (
numerator p))
>
0 by
A8,
Th39;
hence ((a
#Q p)
#Q q)
= ((
denominator q)
-Root ((
denominator p)
-Root ((a
#Z (
numerator p))
#Z (
numerator q)))) by
Th46,
RAT_1: 11
.= ((
denominator q)
-Root ((
denominator p)
-Root (a
#Z ((
numerator p)
* (
numerator q))))) by
Th45
.= (((
denominator (p
* q))
* n)
-Root (a
#Z ((
numerator (p
* q))
* k))) by
A1,
A6,
A9,
A2,
A3,
Th25
.= (((
denominator (p
* q))
* n)
-Root ((a
#Z (
numerator (p
* q)))
#Z k)) by
Th45
.= ((((
denominator (p
* q))
* n)
-Root (a
#Z (
numerator (p
* q))))
#Z k) by
A11,
A4,
Th46
.= (((n
* (
denominator (p
* q)))
-Root (a
#Z (
numerator (p
* q))))
|^ n) by
Th36
.= ((n
-Root (a
#Q (p
* q)))
|^ n) by
A5,
A7,
A11,
Th25
.= (a
#Q (p
* q)) by
A5,
A10,
Lm2;
end;
theorem ::
PREPOWER:60
Th60: a
>= 1 & p
>=
0 implies (a
#Q p)
>= 1
proof
assume that
A1: a
>= 1 and
A2: p
>=
0 ;
(
numerator p)
>=
0 by
A2,
RAT_1: 37;
then
reconsider n = (
numerator p) as
Element of
NAT by
INT_1: 3;
A3: (a
#Z (
numerator p))
= (a
|^ n) by
Th36;
(a
|^ n)
>= (1
|^ n) by
A1,
Th9;
then
A4: (a
#Z (
numerator p))
>= 1 by
A3;
(
denominator p)
>= 1 by
RAT_1: 11;
hence thesis by
A4,
Th29;
end;
theorem ::
PREPOWER:61
Th61: a
>= 1 & p
<=
0 implies (a
#Q p)
<= 1
proof
assume that
A1: a
>= 1 and
A2: p
<=
0 ;
(a
#Q (
- p))
>= 1 by
A1,
A2,
Th60;
then (1
/ (a
#Q p))
>= 1 by
A1,
Th54;
hence thesis by
XREAL_1: 191;
end;
theorem ::
PREPOWER:62
Th62: a
> 1 & p
>
0 implies (a
#Q p)
> 1
proof
assume that
A1: a
> 1 and
A2: p
>
0 ;
A3: (
numerator p)
>
0 by
A2,
RAT_1: 38;
then
reconsider n = (
numerator p) as
Element of
NAT by
INT_1: 3;
n
>= (
0
+ 1) by
A3,
NAT_1: 13;
then
A4: (a
|^ n)
> (1
|^ n) by
A1,
Lm1;
(a
#Z (
numerator p))
= (a
|^ n) by
Th36;
then (a
#Z (
numerator p))
> 1 by
A4;
then ((
denominator p)
-Root (a
#Z (
numerator p)))
> ((
denominator p)
-Root 1) by
Th28,
RAT_1: 11;
hence thesis by
Th20,
RAT_1: 11;
end;
theorem ::
PREPOWER:63
Th63: a
>= 1 & p
>= q implies (a
#Q p)
>= (a
#Q q)
proof
assume that
A1: a
>= 1 and
A2: p
>= q;
per cases by
A2,
XXREAL_0: 1;
suppose p
= q;
hence thesis;
end;
suppose p
> q;
then
A3: (p
- q)
>=
0 by
XREAL_1: 50;
A4: (a
#Q q)
<>
0 by
A1,
Th52;
A5: ((a
#Q p)
/ (a
#Q q))
= (a
#Q (p
- q)) by
A1,
Th55;
(a
#Q q)
>=
0 by
A1,
Th52;
then (((a
#Q p)
/ (a
#Q q))
* (a
#Q q))
>= (1
* (a
#Q q)) by
A1,
A3,
A5,
Th60,
XREAL_1: 64;
hence thesis by
A4,
XCMPLX_1: 87;
end;
end;
theorem ::
PREPOWER:64
Th64: a
> 1 & p
> q implies (a
#Q p)
> (a
#Q q)
proof
assume that
A1: a
> 1 and
A2: p
> q;
A3: (p
- q)
>
0 by
A2,
XREAL_1: 50;
A4: ((a
#Q p)
/ (a
#Q q))
= (a
#Q (p
- q)) by
A1,
Th55;
A5: (a
#Q q)
<>
0 by
A1,
Th52;
(a
#Q q)
>
0 by
A1,
Th52;
then (((a
#Q p)
/ (a
#Q q))
* (a
#Q q))
> (1
* (a
#Q q)) by
A1,
A3,
A4,
Th62,
XREAL_1: 68;
hence thesis by
A5,
XCMPLX_1: 87;
end;
theorem ::
PREPOWER:65
Th65: a
>
0 & a
< 1 & p
>
0 implies (a
#Q p)
< 1
proof
reconsider q =
0 as
Rational;
assume that
A1: a
>
0 and
A2: a
< 1 and
A3: p
>
0 ;
(1
/ a)
> 1 by
A1,
A2,
Lm4,
XREAL_1: 88;
then ((1
/ a)
#Q p)
> ((1
/ a)
#Q q) by
A3,
Th64;
then ((1
/ a)
#Q p)
> 1 by
Th47;
then (1
/ (a
#Q p))
> 1 by
A1,
Th57;
hence thesis by
XREAL_1: 185;
end;
theorem ::
PREPOWER:66
a
>
0 & a
<= 1 & p
<=
0 implies (a
#Q p)
>= 1
proof
assume that
A1: a
>
0 and
A2: a
<= 1 and
A3: p
<=
0 ;
(1
/ a)
>= 1 by
A1,
A2,
Lm4,
XREAL_1: 85;
then ((1
/ a)
#Q p)
<= 1 by
A3,
Th61;
then
A4: (1
/ (a
#Q p))
<= 1 by
A1,
Th57;
(a
#Q p)
>
0 by
A1,
Th52;
hence thesis by
A4,
XREAL_1: 187;
end;
registration
cluster
RAT
-valued for
Real_Sequence;
existence
proof
take (
seq_const
0 );
thus thesis;
end;
end
definition
::$Canceled
mode
Rational_Sequence is
RAT
-valued
Real_Sequence;
end
theorem ::
PREPOWER:67
Th67: for a be
Real holds ex s be
Rational_Sequence st s is
convergent & (
lim s)
= a & for n holds (s
. n)
<= a
proof
let a be
Real;
deffunc
O(
Nat) = (
[\(($1
+ 1)
* a)/]
/ ($1
+ 1));
consider s be
Real_Sequence such that
A1: for n holds (s
. n)
=
O(n) from
SEQ_1:sch 1;
(
rng s)
c=
RAT
proof
let y be
object;
assume y
in (
rng s);
then
consider n be
Element of
NAT such that
A2: (s
. n)
= y by
FUNCT_2: 113;
(s
. n)
=
O(n) by
A1;
hence thesis by
A2,
RAT_1:def 2;
end;
then
reconsider s as
Rational_Sequence by
RELAT_1:def 19;
deffunc
O(
Nat) = (1
/ ($1
+ 1));
consider s2 be
Real_Sequence such that
A3: for n holds (s2
. n)
=
O(n) from
SEQ_1:sch 1;
reconsider a1 = a as
Element of
REAL by
XREAL_0:def 1;
set s1 = (
seq_const a);
take s;
set s3 = (s1
- s2);
A4: s2 is
convergent by
A3,
SEQ_4: 31;
then
A5: s3 is
convergent;
A6:
now
let n;
((n
+ 1)
* a)
<= (
[\((n
+ 1)
* a)/]
+ 1) by
INT_1: 29;
then (((n
+ 1)
* a)
- 1)
<= ((
[\((n
+ 1)
* a)/]
+ 1)
- 1) by
XREAL_1: 9;
then ((((n
+ 1)
* a)
- 1)
* ((n
+ 1)
" ))
<= (
[\((n
+ 1)
* a)/]
/ (n
+ 1)) by
XREAL_1: 64;
then (((a
/ (n
+ 1))
* (n
+ 1))
- (1
/ (n
+ 1)))
<= (s
. n) by
A1;
then (a
- (1
/ (n
+ 1)))
<= (s
. n) by
XCMPLX_1: 87;
then ((s1
. n)
- (1
/ (n
+ 1)))
<= (s
. n) by
SEQ_1: 57;
then
A7: ((s1
. n)
- (s2
. n))
<= (s
. n) by
A3;
[\((n
+ 1)
* a)/]
<= ((n
+ 1)
* a) by
INT_1:def 6;
then (
[\((n
+ 1)
* a)/]
* ((n
+ 1)
" ))
<= ((a
* (n
+ 1))
* ((n
+ 1)
" )) by
XREAL_1: 64;
then (
[\((n
+ 1)
* a)/]
* ((n
+ 1)
" ))
<= (a
* ((n
+ 1)
* ((n
+ 1)
" )));
then (
[\((n
+ 1)
* a)/]
* ((n
+ 1)
" ))
<= (a
* 1) by
XCMPLX_0:def 7;
then (
[\((n
+ 1)
* a)/]
/ (n
+ 1))
<= (s1
. n) by
SEQ_1: 57;
hence (s3
. n)
<= (s
. n) & (s
. n)
<= (s1
. n) by
A1,
A7,
RFUNCT_2: 1;
end;
(
lim s2)
=
0 by
A3,
SEQ_4: 31;
then
A8: (
lim s3)
= ((s1
.
0 )
-
0 ) by
A4,
SEQ_4: 42
.= a by
SEQ_1: 57;
A9: (
lim s1)
= (s1
.
0 ) by
SEQ_4: 26
.= a by
SEQ_1: 57;
hence s is
convergent by
A5,
A8,
A6,
SEQ_2: 19;
thus (
lim s)
= a by
A5,
A8,
A9,
A6,
SEQ_2: 20;
let n;
(s
. n)
<= (s1
. n) by
A6;
hence thesis by
SEQ_1: 57;
end;
theorem ::
PREPOWER:68
Th68: ex s be
Rational_Sequence st s is
convergent & (
lim s)
= a & for n holds (s
. n)
>= a
proof
deffunc
O(
Nat) = (
[/(($1
+ 1)
* a)\]
/ ($1
+ 1));
consider s be
Real_Sequence such that
A1: for n holds (s
. n)
=
O(n) from
SEQ_1:sch 1;
(
rng s)
c=
RAT
proof
let y be
object;
assume y
in (
rng s);
then
consider n be
Element of
NAT such that
A2: (s
. n)
= y by
FUNCT_2: 113;
(s
. n)
=
O(n) by
A1;
hence thesis by
A2,
RAT_1:def 2;
end;
then
reconsider s as
Rational_Sequence by
RELAT_1:def 19;
deffunc
O(
Nat) = (1
/ ($1
+ 1));
consider s2 be
Real_Sequence such that
A3: for n holds (s2
. n)
=
O(n) from
SEQ_1:sch 1;
take s;
set s1 = (
seq_const a);
set s3 = (s1
+ s2);
A4: s2 is
convergent by
A3,
SEQ_4: 31;
then
A5: s3 is
convergent;
A6:
now
let n;
(((n
+ 1)
* a)
+ 1)
>=
[/((n
+ 1)
* a)\] by
INT_1:def 7;
then ((((n
+ 1)
* a)
+ 1)
* ((n
+ 1)
" ))
>= (
[/((n
+ 1)
* a)\]
/ (n
+ 1)) by
XREAL_1: 64;
then (((a
/ (n
+ 1))
* (n
+ 1))
+ (1
/ (n
+ 1)))
>= (s
. n) by
A1;
then (a
+ (1
/ (n
+ 1)))
>= (s
. n) by
XCMPLX_1: 87;
then ((s1
. n)
+ (1
/ (n
+ 1)))
>= (s
. n) by
SEQ_1: 57;
then
A7: ((s1
. n)
+ (s2
. n))
>= (s
. n) by
A3;
[/((n
+ 1)
* a)\]
>= ((n
+ 1)
* a) by
INT_1:def 7;
then (
[/((n
+ 1)
* a)\]
* ((n
+ 1)
" ))
>= ((a
* (n
+ 1))
* ((n
+ 1)
" )) by
XREAL_1: 64;
then (
[/((n
+ 1)
* a)\]
* ((n
+ 1)
" ))
>= (a
* ((n
+ 1)
* ((n
+ 1)
" )));
then (
[/((n
+ 1)
* a)\]
* ((n
+ 1)
" ))
>= (a
* 1) by
XCMPLX_0:def 7;
then (
[/((n
+ 1)
* a)\]
/ (n
+ 1))
>= (s1
. n) by
SEQ_1: 57;
hence (s1
. n)
<= (s
. n) & (s
. n)
<= (s3
. n) by
A1,
A7,
SEQ_1: 7;
end;
(
lim s2)
=
0 by
A3,
SEQ_4: 31;
then
A8: (
lim s3)
= ((s1
.
0 )
+
0 ) by
A4,
SEQ_4: 42
.= a by
SEQ_1: 57;
A9: (
lim s1)
= (s1
.
0 ) by
SEQ_4: 26
.= a by
SEQ_1: 57;
hence s is
convergent by
A5,
A8,
A6,
SEQ_2: 19;
thus (
lim s)
= a by
A5,
A8,
A9,
A6,
SEQ_2: 20;
let n;
(s
. n)
>= (s1
. n) by
A6;
hence thesis by
SEQ_1: 57;
end;
definition
let a be
Real;
let s be
Rational_Sequence;
::
PREPOWER:def6
func a
#Q s ->
Real_Sequence means
:
Def5: for n holds (it
. n)
= (a
#Q (s
. n));
existence
proof
deffunc
O(
Nat) = (a
#Q (s
. $1));
consider s1 be
Real_Sequence such that
A1: for n holds (s1
. n)
=
O(n) from
SEQ_1:sch 1;
take s1;
thus thesis by
A1;
end;
uniqueness
proof
let s1,s2 be
Real_Sequence;
assume that
A2: for n holds (s1
. n)
= (a
#Q (s
. n)) and
A3: for n holds (s2
. n)
= (a
#Q (s
. n));
now
let n be
Element of
NAT ;
thus (s1
. n)
= (a
#Q (s
. n)) by
A2
.= (s2
. n) by
A3;
end;
hence thesis by
FUNCT_2: 63;
end;
end
Lm6: for s be
Rational_Sequence, a st s is
convergent & a
>= 1 holds (a
#Q s) is
convergent
proof
let s be
Rational_Sequence;
let a;
assume that
A1: s is
convergent and
A2: a
>= 1;
s is
bounded by
A1;
then
consider d be
Real such that
0
< d and
A3: for n holds
|.(s
. n).|
< d by
SEQ_2: 3;
consider m2 such that
A4: d
< m2 by
SEQ_4: 3;
reconsider m2 as
Rational;
now
A5: (a
#Q m2)
>=
0 by
A2,
Th52;
let c be
Real;
assume
A6: c
>
0 ;
consider m1 such that
A7: (((a
#Q m2)
* (a
- 1))
/ c)
< m1 by
SEQ_4: 3;
(m1
+ 1)
>= m1 by
XREAL_1: 29;
then (((a
#Q m2)
* (a
- 1))
/ c)
< (m1
+ 1) by
A7,
XXREAL_0: 2;
then ((((a
#Q m2)
* (a
- 1))
/ c)
* c)
< (c
* (m1
+ 1)) by
A6,
XREAL_1: 68;
then ((a
#Q m2)
* (a
- 1))
< (c
* (m1
+ 1)) by
A6,
XCMPLX_1: 87;
then (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< (((m1
+ 1)
* c)
/ (m1
+ 1)) by
XREAL_1: 74;
then (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< ((c
/ (m1
+ 1))
* (m1
+ 1));
then
A8: (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< c by
XCMPLX_1: 87;
consider n such that
A9: for m st n
<= m holds
|.((s
. m)
- (s
. n)).|
< ((m1
+ 1)
" ) by
A1,
SEQ_4: 41;
take n;
let m;
assume m
>= n;
then
A10:
|.((s
. m)
- (s
. n)).|
<= ((m1
+ 1)
" ) by
A9;
A11: (m1
+ 1)
>= (
0
+ 1) by
NAT_1: 13;
then (((m1
+ 1)
-Root a)
- 1)
<= ((a
- 1)
/ (m1
+ 1)) by
A2,
Th31;
then
A12: ((a
#Q m2)
* (((m1
+ 1)
-Root a)
- 1))
<= ((a
#Q m2)
* ((a
- 1)
/ (m1
+ 1))) by
A5,
XREAL_1: 64;
A13: (a
#Q (s
. n))
<>
0 by
A2,
Th52;
A14:
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
=
|.(((a
#Q (s
. m))
- (a
#Q (s
. n)))
* 1).|
.=
|.(((a
#Q (s
. m))
- (a
#Q (s
. n)))
* ((a
#Q (s
. n))
/ (a
#Q (s
. n)))).| by
A13,
XCMPLX_1: 60
.=
|.(((a
#Q (s
. n))
* ((a
#Q (s
. m))
- (a
#Q (s
. n))))
/ (a
#Q (s
. n))).|
.=
|.((a
#Q (s
. n))
* (((a
#Q (s
. m))
- (a
#Q (s
. n)))
/ (a
#Q (s
. n)))).|
.= (
|.(a
#Q (s
. n)).|
*
|.(((a
#Q (s
. m))
- (a
#Q (s
. n)))
/ (a
#Q (s
. n))).|) by
COMPLEX1: 65
.= (
|.(a
#Q (s
. n)).|
*
|.(((a
#Q (s
. m))
/ (a
#Q (s
. n)))
- ((a
#Q (s
. n))
/ (a
#Q (s
. n)))).|)
.= (
|.(a
#Q (s
. n)).|
*
|.(((a
#Q (s
. m))
/ (a
#Q (s
. n)))
- 1).|) by
A13,
XCMPLX_1: 60
.= (
|.(a
#Q (s
. n)).|
*
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|) by
A2,
Th55;
A15: (s
. n)
<=
|.(s
. n).| by
ABSVALUE: 4;
reconsider m3 = ((m1
+ 1)
" ) as
Rational;
A16:
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|
>=
0 by
COMPLEX1: 46;
A17: (a
#Q ((s
. m)
- (s
. n)))
<>
0 by
A2,
Th52;
((s
. m)
- (s
. n))
<=
|.((s
. m)
- (s
. n)).| by
ABSVALUE: 4;
then ((s
. m)
- (s
. n))
<= ((m1
+ 1)
" ) by
A10,
XXREAL_0: 2;
then (a
#Q ((s
. m)
- (s
. n)))
<= (a
#Q m3) by
A2,
Th63;
then (a
#Q ((s
. m)
- (s
. n)))
<= ((m1
+ 1)
-Root a) by
A11,
Th50;
then
A18: ((a
#Q ((s
. m)
- (s
. n)))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
A19: (a
#Q ((s
. m)
- (s
. n)))
>
0 by
A2,
Th52;
A20:
now
per cases ;
suppose ((s
. m)
- (s
. n))
>=
0 ;
then (a
#Q ((s
. m)
- (s
. n)))
>= 1 by
A2,
Th60;
then ((a
#Q ((s
. m)
- (s
. n)))
- 1)
>=
0 by
XREAL_1: 48;
hence
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A18,
ABSVALUE:def 1;
end;
suppose
A21: ((s
. m)
- (s
. n))
<
0 ;
A22: (
- ((s
. m)
- (s
. n)))
<=
|.(
- ((s
. m)
- (s
. n))).| by
ABSVALUE: 4;
|.((s
. m)
- (s
. n)).|
=
|.(
- ((s
. m)
- (s
. n))).| by
COMPLEX1: 52;
then (
- ((s
. m)
- (s
. n)))
<= m3 by
A10,
A22,
XXREAL_0: 2;
then (a
#Q (
- ((s
. m)
- (s
. n))))
<= (a
#Q m3) by
A2,
Th63;
then (a
#Q (
- ((s
. m)
- (s
. n))))
<= ((m1
+ 1)
-Root a) by
A11,
Th50;
then
A23: ((a
#Q (
- ((s
. m)
- (s
. n))))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
(a
#Q (
- ((s
. m)
- (s
. n))))
>= 1 by
A2,
A21,
Th60;
then ((a
#Q (
- ((s
. m)
- (s
. n))))
- 1)
>=
0 by
XREAL_1: 48;
then
A24:
|.((a
#Q (
- ((s
. m)
- (s
. n))))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A23,
ABSVALUE:def 1;
(a
#Q ((s
. m)
- (s
. n)))
<= 1 by
A2,
A21,
Th61;
then
A25:
|.(a
#Q ((s
. m)
- (s
. n))).|
<= 1 by
A19,
ABSVALUE:def 1;
|.((a
#Q (
- ((s
. m)
- (s
. n))))
- 1).|
>=
0 by
COMPLEX1: 46;
then
A26: (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.((a
#Q (
- ((s
. m)
- (s
. n))))
- 1).|)
<= (1
*
|.((a
#Q (
- ((s
. m)
- (s
. n))))
- 1).|) by
A25,
XREAL_1: 64;
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|
=
|.(((a
#Q ((s
. m)
- (s
. n)))
- 1)
* 1).|
.=
|.(((a
#Q ((s
. m)
- (s
. n)))
- 1)
* ((a
#Q ((s
. m)
- (s
. n)))
/ (a
#Q ((s
. m)
- (s
. n))))).| by
A17,
XCMPLX_1: 60
.=
|.(((a
#Q ((s
. m)
- (s
. n)))
* ((a
#Q ((s
. m)
- (s
. n)))
- 1))
/ (a
#Q ((s
. m)
- (s
. n)))).|
.=
|.((a
#Q ((s
. m)
- (s
. n)))
* (((a
#Q ((s
. m)
- (s
. n)))
- 1)
/ (a
#Q ((s
. m)
- (s
. n))))).|
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.(((a
#Q ((s
. m)
- (s
. n)))
- 1)
/ (a
#Q ((s
. m)
- (s
. n)))).|) by
COMPLEX1: 65
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.(((a
#Q ((s
. m)
- (s
. n)))
/ (a
#Q ((s
. m)
- (s
. n))))
- (1
/ (a
#Q ((s
. m)
- (s
. n))))).|)
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.(1
- (1
/ (a
#Q ((s
. m)
- (s
. n))))).|) by
A17,
XCMPLX_1: 60
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.(1
- (a
#Q (
- ((s
. m)
- (s
. n))))).|) by
A2,
Th54
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.(
- (1
- (a
#Q (
- ((s
. m)
- (s
. n)))))).|) by
COMPLEX1: 52
.= (
|.(a
#Q ((s
. m)
- (s
. n))).|
*
|.((a
#Q (
- ((s
. m)
- (s
. n))))
- 1).|);
hence
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A24,
A26,
XXREAL_0: 2;
end;
end;
A27: (a
#Q (s
. n))
>
0 by
A2,
Th52;
|.(s
. n).|
<= m2 by
A3,
A4,
XXREAL_0: 2;
then (s
. n)
<= m2 by
A15,
XXREAL_0: 2;
then (a
#Q (s
. n))
<= (a
#Q m2) by
A2,
Th63;
then
A28:
|.(a
#Q (s
. n)).|
<= (a
#Q m2) by
A27,
ABSVALUE:def 1;
|.(a
#Q (s
. n)).|
>=
0 by
A27,
ABSVALUE:def 1;
then (
|.(a
#Q (s
. n)).|
*
|.((a
#Q ((s
. m)
- (s
. n)))
- 1).|)
<= ((a
#Q m2)
* (((m1
+ 1)
-Root a)
- 1)) by
A20,
A16,
A28,
XREAL_1: 66;
then
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
<= (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1)) by
A14,
A12,
XXREAL_0: 2;
then
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
< c by
A8,
XXREAL_0: 2;
then
|.(((a
#Q s)
. m)
- (a
#Q (s
. n))).|
< c by
Def5;
hence
|.(((a
#Q s)
. m)
- ((a
#Q s)
. n)).|
< c by
Def5;
end;
hence thesis by
SEQ_4: 41;
end;
theorem ::
PREPOWER:69
Th69: for s be
Rational_Sequence st s is
convergent & a
>
0 holds (a
#Q s) is
convergent
proof
let s be
Rational_Sequence;
assume that
A1: s is
convergent and
A2: a
>
0 ;
per cases ;
suppose a
>= 1;
hence thesis by
A1,
Lm6;
end;
suppose
A3: a
< 1;
then (a
/ a)
< (1
/ a) by
A2,
XREAL_1: 74;
then 1
< (1
/ a) by
A2,
XCMPLX_1: 60;
then
A4: ((1
/ a)
#Q s) is
convergent by
A1,
Lm6;
s is
bounded by
A1;
then
consider d be
Real such that
0
< d and
A5: for n holds
|.(s
. n).|
< d by
SEQ_2: 3;
reconsider d as
Real;
consider m1 such that
A6: (2
* d)
< m1 by
SEQ_4: 3;
reconsider m1 as
Rational;
A7: (a
#Q m1)
>
0 by
A2,
Th52;
now
let c be
Real;
assume
A8: c
>
0 ;
then (c
* (a
#Q m1))
>
0 by
A7;
then
consider n such that
A9: for m st n
<= m holds
|.((((1
/ a)
#Q s)
. m)
- (((1
/ a)
#Q s)
. n)).|
< (c
* (a
#Q m1)) by
A4,
SEQ_4: 41;
take n;
let m;
assume m
>= n;
then
A10:
|.((((1
/ a)
#Q s)
. m)
- (((1
/ a)
#Q s)
. n)).|
< (c
* (a
#Q m1)) by
A9;
A11: (a
#Q (s
. m))
<>
0 by
A2,
Th52;
A12: (a
#Q ((s
. m)
+ (s
. n)))
>
0 by
A2,
Th52;
|.(s
. m).|
< d by
A5;
then
A13: (
|.(s
. m).|
+
|.(s
. n).|)
< (d
+ d) by
A5,
XREAL_1: 8;
|.((s
. m)
+ (s
. n)).|
<= (
|.(s
. m).|
+
|.(s
. n).|) by
COMPLEX1: 56;
then
|.((s
. m)
+ (s
. n)).|
< (d
+ d) by
A13,
XXREAL_0: 2;
then
|.((s
. m)
+ (s
. n)).|
< m1 by
A6,
XXREAL_0: 2;
then
A14:
|.(
- ((s
. m)
+ (s
. n))).|
< m1 by
COMPLEX1: 52;
(
- ((s
. m)
+ (s
. n)))
<=
|.(
- ((s
. m)
+ (s
. n))).| by
ABSVALUE: 4;
then (
- ((s
. m)
+ (s
. n)))
< m1 by
A14,
XXREAL_0: 2;
then
A15: (m1
- (
- ((s
. m)
+ (s
. n))))
>
0 by
XREAL_1: 50;
A16: (a
#Q (s
. n))
<>
0 by
A2,
Th52;
|.((((1
/ a)
#Q s)
. m)
- (((1
/ a)
#Q s)
. n)).|
=
|.(((1
/ a)
#Q (s
. m))
- (((1
/ a)
#Q s)
. n)).| by
Def5
.=
|.(((1
/ a)
#Q (s
. m))
- ((1
/ a)
#Q (s
. n))).| by
Def5
.=
|.((1
/ (a
#Q (s
. m)))
- ((1
/ a)
#Q (s
. n))).| by
A2,
Th57
.=
|.((1
/ (a
#Q (s
. m)))
- (1
/ (a
#Q (s
. n)))).| by
A2,
Th57
.=
|.(((a
#Q (s
. m))
" )
- (1
/ (a
#Q (s
. n)))).|
.=
|.(((a
#Q (s
. m))
" )
- ((a
#Q (s
. n))
" )).|
.= (
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
/ (
|.(a
#Q (s
. m)).|
*
|.(a
#Q (s
. n)).|)) by
A11,
A16,
SEQ_2: 2
.= (
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
/
|.((a
#Q (s
. m))
* (a
#Q (s
. n))).|) by
COMPLEX1: 65
.= (
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
/
|.(a
#Q ((s
. m)
+ (s
. n))).|) by
A2,
Th53
.= (
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
/ (a
#Q ((s
. m)
+ (s
. n)))) by
A12,
ABSVALUE:def 1;
then
A17: ((
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
/ (a
#Q ((s
. m)
+ (s
. n))))
* (a
#Q ((s
. m)
+ (s
. n))))
< ((c
* (a
#Q m1))
* (a
#Q ((s
. m)
+ (s
. n)))) by
A10,
A12,
XREAL_1: 68;
(a
#Q ((s
. m)
+ (s
. n)))
<>
0 by
A2,
Th52;
then
A18:
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
< ((c
* (a
#Q m1))
* (a
#Q ((s
. m)
+ (s
. n)))) by
A17,
XCMPLX_1: 87;
((a
#Q m1)
* (a
#Q ((s
. m)
+ (s
. n))))
= (a
#Q (m1
+ ((s
. m)
+ (s
. n)))) by
A2,
Th53;
then (c
* ((a
#Q m1)
* (a
#Q ((s
. m)
+ (s
. n)))))
< (1
* c) by
A2,
A3,
A8,
A15,
Th65,
XREAL_1: 68;
then
|.((a
#Q (s
. m))
- (a
#Q (s
. n))).|
< c by
A18,
XXREAL_0: 2;
then
|.(((a
#Q s)
. m)
- (a
#Q (s
. n))).|
< c by
Def5;
hence
|.(((a
#Q s)
. m)
- ((a
#Q s)
. n)).|
< c by
Def5;
end;
hence thesis by
SEQ_4: 41;
end;
end;
Lm7: for s1,s2 be
Rational_Sequence, a st s1 is
convergent & s2 is
convergent & (
lim s1)
= (
lim s2) & a
>= 1 holds (
lim (a
#Q s1))
= (
lim (a
#Q s2))
proof
let s1,s2 be
Rational_Sequence;
let a;
assume that
A1: s1 is
convergent and
A2: s2 is
convergent and
A3: (
lim s1)
= (
lim s2) and
A4: a
>= 1;
A5: (s1
- s2) is
convergent by
A1,
A2;
A6: (a
#Q s2) is
convergent by
A2,
A4,
Th69;
A7:
now
let n be
Element of
NAT ;
thus ((((a
#Q s1)
- (a
#Q s2))
+ (a
#Q s2))
. n)
= ((((a
#Q s1)
- (a
#Q s2))
. n)
+ ((a
#Q s2)
. n)) by
SEQ_1: 7
.= ((((a
#Q s1)
. n)
- ((a
#Q s2)
. n))
+ ((a
#Q s2)
. n)) by
RFUNCT_2: 1
.= ((a
#Q s1)
. n);
end;
s2 is
bounded by
A2;
then
consider d be
Real such that
0
< d and
A8: for n holds
|.(s2
. n).|
< d by
SEQ_2: 3;
consider m2 such that
A9: d
< m2 by
SEQ_4: 3;
reconsider m2 as
Rational;
A10: (
lim (s1
- s2))
= ((
lim s1)
- (
lim s2)) by
A1,
A2,
SEQ_2: 12
.=
0 by
A3;
A11:
now
A12: (a
#Q m2)
>=
0 by
A4,
Th52;
let c be
Real;
assume
A13: c
>
0 ;
consider m1 such that
A14: (((a
#Q m2)
* (a
- 1))
/ c)
< m1 by
SEQ_4: 3;
(m1
+ 1)
>= m1 by
XREAL_1: 29;
then (((a
#Q m2)
* (a
- 1))
/ c)
< (m1
+ 1) by
A14,
XXREAL_0: 2;
then ((((a
#Q m2)
* (a
- 1))
/ c)
* c)
< (c
* (m1
+ 1)) by
A13,
XREAL_1: 68;
then ((a
#Q m2)
* (a
- 1))
< (c
* (m1
+ 1)) by
A13,
XCMPLX_1: 87;
then (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< (((m1
+ 1)
* c)
/ (m1
+ 1)) by
XREAL_1: 74;
then (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< ((c
/ (m1
+ 1))
* (m1
+ 1));
then
A15: (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1))
< c by
XCMPLX_1: 87;
consider n such that
A16: for m st n
<= m holds
|.(((s1
- s2)
. m)
-
0 ).|
< ((m1
+ 1)
" ) by
A5,
A10,
SEQ_2:def 7;
take n;
let m;
assume m
>= n;
then
|.(((s1
- s2)
. m)
-
0 ).|
< ((m1
+ 1)
" ) by
A16;
then
A17:
|.((s1
. m)
- (s2
. m)).|
<= ((m1
+ 1)
" ) by
RFUNCT_2: 1;
A18: (m1
+ 1)
>= (
0
+ 1) by
NAT_1: 13;
then (((m1
+ 1)
-Root a)
- 1)
<= ((a
- 1)
/ (m1
+ 1)) by
A4,
Th31;
then
A19: ((a
#Q m2)
* (((m1
+ 1)
-Root a)
- 1))
<= ((a
#Q m2)
* ((a
- 1)
/ (m1
+ 1))) by
A12,
XREAL_1: 64;
A20: (a
#Q (s2
. m))
<>
0 by
A4,
Th52;
A21:
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
=
|.(((a
#Q (s1
. m))
- (a
#Q (s2
. m)))
* 1).|
.=
|.(((a
#Q (s1
. m))
- (a
#Q (s2
. m)))
* ((a
#Q (s2
. m))
/ (a
#Q (s2
. m)))).| by
A20,
XCMPLX_1: 60
.=
|.(((a
#Q (s2
. m))
* ((a
#Q (s1
. m))
- (a
#Q (s2
. m))))
/ (a
#Q (s2
. m))).|
.=
|.((a
#Q (s2
. m))
* (((a
#Q (s1
. m))
- (a
#Q (s2
. m)))
/ (a
#Q (s2
. m)))).|
.= (
|.(a
#Q (s2
. m)).|
*
|.(((a
#Q (s1
. m))
- (a
#Q (s2
. m)))
/ (a
#Q (s2
. m))).|) by
COMPLEX1: 65
.= (
|.(a
#Q (s2
. m)).|
*
|.(((a
#Q (s1
. m))
/ (a
#Q (s2
. m)))
- ((a
#Q (s2
. m))
/ (a
#Q (s2
. m)))).|)
.= (
|.(a
#Q (s2
. m)).|
*
|.(((a
#Q (s1
. m))
/ (a
#Q (s2
. m)))
- 1).|) by
A20,
XCMPLX_1: 60
.= (
|.(a
#Q (s2
. m)).|
*
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|) by
A4,
Th55;
A22: (s2
. m)
<=
|.(s2
. m).| by
ABSVALUE: 4;
reconsider m3 = ((m1
+ 1)
" ) as
Rational;
A23:
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|
>=
0 by
COMPLEX1: 46;
A24: (a
#Q ((s1
. m)
- (s2
. m)))
<>
0 by
A4,
Th52;
((s1
. m)
- (s2
. m))
<=
|.((s1
. m)
- (s2
. m)).| by
ABSVALUE: 4;
then ((s1
. m)
- (s2
. m))
<= ((m1
+ 1)
" ) by
A17,
XXREAL_0: 2;
then (a
#Q ((s1
. m)
- (s2
. m)))
<= (a
#Q m3) by
A4,
Th63;
then (a
#Q ((s1
. m)
- (s2
. m)))
<= ((m1
+ 1)
-Root a) by
A18,
Th50;
then
A25: ((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
A26: (a
#Q ((s1
. m)
- (s2
. m)))
>
0 by
A4,
Th52;
A27:
now
per cases ;
suppose ((s1
. m)
- (s2
. m))
>=
0 ;
then (a
#Q ((s1
. m)
- (s2
. m)))
>= 1 by
A4,
Th60;
then ((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
>=
0 by
XREAL_1: 48;
hence
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A25,
ABSVALUE:def 1;
end;
suppose
A28: ((s1
. m)
- (s2
. m))
<
0 ;
A29: (
- ((s1
. m)
- (s2
. m)))
<=
|.(
- ((s1
. m)
- (s2
. m))).| by
ABSVALUE: 4;
|.((s1
. m)
- (s2
. m)).|
=
|.(
- ((s1
. m)
- (s2
. m))).| by
COMPLEX1: 52;
then (
- ((s1
. m)
- (s2
. m)))
<= m3 by
A17,
A29,
XXREAL_0: 2;
then (a
#Q (
- ((s1
. m)
- (s2
. m))))
<= (a
#Q m3) by
A4,
Th63;
then (a
#Q (
- ((s1
. m)
- (s2
. m))))
<= ((m1
+ 1)
-Root a) by
A18,
Th50;
then
A30: ((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
(a
#Q (
- ((s1
. m)
- (s2
. m))))
>= 1 by
A4,
A28,
Th60;
then ((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1)
>=
0 by
XREAL_1: 48;
then
A31:
|.((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A30,
ABSVALUE:def 1;
(a
#Q ((s1
. m)
- (s2
. m)))
<= 1 by
A4,
A28,
Th61;
then
A32:
|.(a
#Q ((s1
. m)
- (s2
. m))).|
<= 1 by
A26,
ABSVALUE:def 1;
|.((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1).|
>=
0 by
COMPLEX1: 46;
then
A33: (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1).|)
<= (1
*
|.((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1).|) by
A32,
XREAL_1: 64;
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|
=
|.(((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
* 1).|
.=
|.(((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
* ((a
#Q ((s1
. m)
- (s2
. m)))
/ (a
#Q ((s1
. m)
- (s2
. m))))).| by
A24,
XCMPLX_1: 60
.=
|.(((a
#Q ((s1
. m)
- (s2
. m)))
* ((a
#Q ((s1
. m)
- (s2
. m)))
- 1))
/ (a
#Q ((s1
. m)
- (s2
. m)))).|
.=
|.((a
#Q ((s1
. m)
- (s2
. m)))
* (((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
/ (a
#Q ((s1
. m)
- (s2
. m))))).|
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.(((a
#Q ((s1
. m)
- (s2
. m)))
- 1)
/ (a
#Q ((s1
. m)
- (s2
. m)))).|) by
COMPLEX1: 65
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.(((a
#Q ((s1
. m)
- (s2
. m)))
/ (a
#Q ((s1
. m)
- (s2
. m))))
- (1
/ (a
#Q ((s1
. m)
- (s2
. m))))).|)
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.(1
- (1
/ (a
#Q ((s1
. m)
- (s2
. m))))).|) by
A24,
XCMPLX_1: 60
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.(1
- (a
#Q (
- ((s1
. m)
- (s2
. m))))).|) by
A4,
Th54
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.(
- (1
- (a
#Q (
- ((s1
. m)
- (s2
. m)))))).|) by
COMPLEX1: 52
.= (
|.(a
#Q ((s1
. m)
- (s2
. m))).|
*
|.((a
#Q (
- ((s1
. m)
- (s2
. m))))
- 1).|);
hence
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A31,
A33,
XXREAL_0: 2;
end;
end;
A34: (a
#Q (s2
. m))
>
0 by
A4,
Th52;
|.(s2
. m).|
<= m2 by
A8,
A9,
XXREAL_0: 2;
then (s2
. m)
<= m2 by
A22,
XXREAL_0: 2;
then (a
#Q (s2
. m))
<= (a
#Q m2) by
A4,
Th63;
then
A35:
|.(a
#Q (s2
. m)).|
<= (a
#Q m2) by
A34,
ABSVALUE:def 1;
|.(a
#Q (s2
. m)).|
>=
0 by
A34,
ABSVALUE:def 1;
then (
|.(a
#Q (s2
. m)).|
*
|.((a
#Q ((s1
. m)
- (s2
. m)))
- 1).|)
<= ((a
#Q m2)
* (((m1
+ 1)
-Root a)
- 1)) by
A27,
A23,
A35,
XREAL_1: 66;
then
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
<= (((a
#Q m2)
* (a
- 1))
/ (m1
+ 1)) by
A21,
A19,
XXREAL_0: 2;
then
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
< c by
A15,
XXREAL_0: 2;
then
|.(((a
#Q s1)
. m)
- (a
#Q (s2
. m))).|
< c by
Def5;
then
|.(((a
#Q s1)
. m)
- ((a
#Q s2)
. m)).|
< c by
Def5;
hence
|.((((a
#Q s1)
- (a
#Q s2))
. m)
-
0 ).|
< c by
RFUNCT_2: 1;
end;
then
A36: ((a
#Q s1)
- (a
#Q s2)) is
convergent by
SEQ_2:def 6;
then (
lim ((a
#Q s1)
- (a
#Q s2)))
=
0 by
A11,
SEQ_2:def 7;
then (
lim (((a
#Q s1)
- (a
#Q s2))
+ (a
#Q s2)))
= (
0
+ (
lim (a
#Q s2))) by
A36,
A6,
SEQ_2: 6
.= (
lim (a
#Q s2));
hence thesis by
A7,
FUNCT_2: 63;
end;
theorem ::
PREPOWER:70
Th70: for s1,s2 be
Rational_Sequence, a st s1 is
convergent & s2 is
convergent & (
lim s1)
= (
lim s2) & a
>
0 holds (a
#Q s1) is
convergent & (a
#Q s2) is
convergent & (
lim (a
#Q s1))
= (
lim (a
#Q s2))
proof
let s1,s2 be
Rational_Sequence;
let a;
assume that
A1: s1 is
convergent and
A2: s2 is
convergent and
A3: (
lim s1)
= (
lim s2) and
A4: a
>
0 ;
thus
A5: (a
#Q s1) is
convergent by
A1,
A4,
Th69;
s2 is
bounded by
A2;
then
consider e be
Real such that
0
< e and
A6: for n holds
|.(s2
. n).|
< e by
SEQ_2: 3;
s1 is
bounded by
A1;
then
consider d be
Real such that
0
< d and
A7: for n holds
|.(s1
. n).|
< d by
SEQ_2: 3;
consider m1 such that
A8: (d
+ e)
< m1 by
SEQ_4: 3;
thus
A9: (a
#Q s2) is
convergent by
A2,
A4,
Th69;
reconsider m1 as
Rational;
A10: (a
#Q m1)
>
0 by
A4,
Th52;
per cases ;
suppose a
>= 1;
hence thesis by
A1,
A2,
A3,
Lm7;
end;
suppose
A11: a
< 1;
then (a
/ a)
< (1
/ a) by
A4,
XREAL_1: 74;
then 1
< (1
/ a) by
A4,
XCMPLX_1: 60;
then
A12: (
lim ((1
/ a)
#Q s1))
= (
lim ((1
/ a)
#Q s2)) by
A1,
A2,
A3,
Lm7;
A13: ((1
/ a)
#Q s2) is
convergent by
A2,
A4,
Th69;
A14: ((1
/ a)
#Q s1) is
convergent by
A1,
A4,
Th69;
then
A15: (((1
/ a)
#Q s1)
- ((1
/ a)
#Q s2)) is
convergent by
A13;
A16: (
lim (((1
/ a)
#Q s1)
- ((1
/ a)
#Q s2)))
= ((
lim ((1
/ a)
#Q s1))
- (
lim ((1
/ a)
#Q s2))) by
A14,
A13,
SEQ_2: 12
.=
0 by
A12;
A17:
now
let c be
Real;
assume
A18: c
>
0 ;
then (c
* (a
#Q m1))
>
0 by
A10;
then
consider n such that
A19: for m st n
<= m holds
|.(((((1
/ a)
#Q s1)
- ((1
/ a)
#Q s2))
. m)
-
0 ).|
< (c
* (a
#Q m1)) by
A15,
A16,
SEQ_2:def 7;
take n;
let m;
assume m
>= n;
then
|.(((((1
/ a)
#Q s1)
- ((1
/ a)
#Q s2))
. m)
-
0 ).|
< (c
* (a
#Q m1)) by
A19;
then
A20:
|.((((1
/ a)
#Q s1)
. m)
- (((1
/ a)
#Q s2)
. m)).|
< (c
* (a
#Q m1)) by
RFUNCT_2: 1;
A21: (a
#Q (s1
. m))
<>
0 by
A4,
Th52;
|.(s1
. m).|
< d by
A7;
then
A22: (
|.(s1
. m).|
+
|.(s2
. m).|)
< (d
+ e) by
A6,
XREAL_1: 8;
|.((s1
. m)
+ (s2
. m)).|
<= (
|.(s1
. m).|
+
|.(s2
. m).|) by
COMPLEX1: 56;
then
|.((s1
. m)
+ (s2
. m)).|
< (d
+ e) by
A22,
XXREAL_0: 2;
then
|.((s1
. m)
+ (s2
. m)).|
< m1 by
A8,
XXREAL_0: 2;
then
A23:
|.(
- ((s1
. m)
+ (s2
. m))).|
< m1 by
COMPLEX1: 52;
(
- ((s1
. m)
+ (s2
. m)))
<=
|.(
- ((s1
. m)
+ (s2
. m))).| by
ABSVALUE: 4;
then (
- ((s1
. m)
+ (s2
. m)))
< m1 by
A23,
XXREAL_0: 2;
then
A24: (m1
- (
- ((s1
. m)
+ (s2
. m))))
>
0 by
XREAL_1: 50;
A25: (a
#Q (s2
. m))
<>
0 by
A4,
Th52;
A26: (a
#Q ((s1
. m)
+ (s2
. m)))
>
0 by
A4,
Th52;
|.((((1
/ a)
#Q s1)
. m)
- (((1
/ a)
#Q s2)
. m)).|
=
|.(((1
/ a)
#Q (s1
. m))
- (((1
/ a)
#Q s2)
. m)).| by
Def5
.=
|.(((1
/ a)
#Q (s1
. m))
- ((1
/ a)
#Q (s2
. m))).| by
Def5
.=
|.((1
/ (a
#Q (s1
. m)))
- ((1
/ a)
#Q (s2
. m))).| by
A4,
Th57
.=
|.((1
/ (a
#Q (s1
. m)))
- (1
/ (a
#Q (s2
. m)))).| by
A4,
Th57
.=
|.(((a
#Q (s1
. m))
" )
- (1
/ (a
#Q (s2
. m)))).|
.=
|.(((a
#Q (s1
. m))
" )
- ((a
#Q (s2
. m))
" )).|
.= (
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
/ (
|.(a
#Q (s1
. m)).|
*
|.(a
#Q (s2
. m)).|)) by
A21,
A25,
SEQ_2: 2
.= (
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
/
|.((a
#Q (s1
. m))
* (a
#Q (s2
. m))).|) by
COMPLEX1: 65
.= (
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
/
|.(a
#Q ((s1
. m)
+ (s2
. m))).|) by
A4,
Th53
.= (
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
/ (a
#Q ((s1
. m)
+ (s2
. m)))) by
A26,
ABSVALUE:def 1;
then
A27: ((
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
/ (a
#Q ((s1
. m)
+ (s2
. m))))
* (a
#Q ((s1
. m)
+ (s2
. m))))
< ((c
* (a
#Q m1))
* (a
#Q ((s1
. m)
+ (s2
. m)))) by
A20,
A26,
XREAL_1: 68;
(a
#Q ((s1
. m)
+ (s2
. m)))
<>
0 by
A4,
Th52;
then
A28:
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
< ((c
* (a
#Q m1))
* (a
#Q ((s1
. m)
+ (s2
. m)))) by
A27,
XCMPLX_1: 87;
((a
#Q m1)
* (a
#Q ((s1
. m)
+ (s2
. m))))
= (a
#Q (m1
+ ((s1
. m)
+ (s2
. m)))) by
A4,
Th53;
then (c
* ((a
#Q m1)
* (a
#Q ((s1
. m)
+ (s2
. m)))))
< (1
* c) by
A4,
A11,
A18,
A24,
Th65,
XREAL_1: 68;
then
|.((a
#Q (s1
. m))
- (a
#Q (s2
. m))).|
< c by
A28,
XXREAL_0: 2;
then
|.(((a
#Q s1)
. m)
- (a
#Q (s2
. m))).|
< c by
Def5;
then
|.(((a
#Q s1)
. m)
- ((a
#Q s2)
. m)).|
< c by
Def5;
hence
|.((((a
#Q s1)
- (a
#Q s2))
. m)
-
0 ).|
< c by
RFUNCT_2: 1;
end;
then ((a
#Q s1)
- (a
#Q s2)) is
convergent by
SEQ_2:def 6;
then (
lim ((a
#Q s1)
- (a
#Q s2)))
=
0 by
A17,
SEQ_2:def 7;
then
0
= ((
lim (a
#Q s1))
- (
lim (a
#Q s2))) by
A5,
A9,
SEQ_2: 12;
hence thesis;
end;
end;
definition
let a,b be
Real;
assume
A1: a
>
0 ;
::
PREPOWER:def7
func a
#R b ->
Real means
:
Def6: ex s be
Rational_Sequence st s is
convergent & (
lim s)
= b & (a
#Q s) is
convergent & (
lim (a
#Q s))
= it ;
existence
proof
consider s be
Rational_Sequence such that
A2: s is
convergent and
A3: (
lim s)
= b and for n holds (s
. n)
<= b by
Th67;
take IT = (
lim (a
#Q s));
thus thesis by
A1,
A2,
A3,
Th69;
end;
uniqueness by
A1,
Th70;
end
theorem ::
PREPOWER:71
Th71: a
>
0 implies (a
#R
0 )
= 1
proof
set s = (
seq_const
0 );
reconsider s as
Rational_Sequence;
assume
A1: a
>
0 ;
(s
.
0 )
=
0 ;
then
A2: (
lim s)
=
0 by
SEQ_4: 26;
reconsider j = 1 as
Element of
REAL by
NUMBERS: 19;
A3:
now
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((a
#Q s)
. n)
= (a
#Q (s
. nn)) by
Def5
.= j by
Th47;
end;
then
A4: (a
#Q s) is
constant by
VALUED_0:def 18;
((a
#Q s)
.
0 )
= 1 by
A3;
then (
lim (a
#Q s))
= 1 by
A4,
SEQ_4: 26;
hence thesis by
A1,
A2,
A4,
Def6;
end;
theorem ::
PREPOWER:72
a
>
0 implies (a
#R 1)
= a
proof
set s = (
seq_const 1);
reconsider s as
Rational_Sequence;
(s
.
0 )
= 1 by
SEQ_1: 57;
then
A1: (
lim s)
= 1 by
SEQ_4: 26;
assume
A2: a
>
0 ;
A3:
now
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((a
#Q s)
. n)
= (a
#Q (s
. nn)) by
Def5
.= a by
A2,
Th48,
SEQ_1: 57;
end;
a
in
REAL by
XREAL_0:def 1;
then
A4: (a
#Q s) is
constant by
A3,
VALUED_0:def 18;
((a
#Q s)
.
0 )
= a by
A3;
then (
lim (a
#Q s))
= a by
A4,
SEQ_4: 26;
hence thesis by
A2,
A1,
A4,
Def6;
end;
theorem ::
PREPOWER:73
Th73: (1
#R a)
= 1
proof
consider s be
Rational_Sequence such that
A1: s is
convergent and
A2: a
= (
lim s) and for n holds (s
. n)
<= a by
Th67;
reconsider j = 1 as
Element of
REAL by
NUMBERS: 19;
A3:
now
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((j
#Q s)
. n)
= (j
#Q (s
. nn)) by
Def5
.= j by
Th51;
end;
then (j
#Q s) is
constant by
VALUED_0:def 18;
then
A4: (
lim (1
#Q s))
= ((1
#Q s)
.
0 ) by
SEQ_4: 26
.= 1 by
A3;
(1
#Q s) is
convergent by
A1,
Th69;
hence thesis by
A1,
A2,
A4,
Def6;
end;
theorem ::
PREPOWER:74
Th74: a
>
0 implies (a
#R p)
= (a
#Q p)
proof
assume
A1: a
>
0 ;
set s = (
seq_const p);
A2: (
lim s)
= (s
.
0 ) by
SEQ_4: 26
.= p by
FUNCOP_1: 7;
reconsider s as
Rational_Sequence;
A3:
now
let n be
Nat;
reconsider nn = n as
Element of
NAT by
ORDINAL1:def 12;
thus ((a
#Q s)
. n)
= (a
#Q (s
. nn)) by
Def5
.= (a
#Q p) by
FUNCOP_1: 7;
end;
(a
#Q p)
in
REAL by
XREAL_0:def 1;
then
A4: (a
#Q s) is
constant by
A3,
VALUED_0:def 18;
then (
lim (a
#Q s))
= ((a
#Q s)
.
0 ) by
SEQ_4: 26
.= (a
#Q p) by
A3;
hence thesis by
A1,
A2,
A4,
Def6;
end;
theorem ::
PREPOWER:75
Th75: a
>
0 implies (a
#R (b
+ c))
= ((a
#R b)
* (a
#R c))
proof
consider sb be
Rational_Sequence such that
A1: sb is
convergent and
A2: b
= (
lim sb) and for n holds (sb
. n)
<= b by
Th67;
consider sc be
Rational_Sequence such that
A3: sc is
convergent and
A4: c
= (
lim sc) and for n holds (sc
. n)
<= c by
Th67;
assume
A5: a
>
0 ;
then
A6: (a
#Q sb) is
convergent by
A1,
Th69;
A7: (a
#Q sc) is
convergent by
A5,
A3,
Th69;
reconsider s = (sb
+ sc) as
Rational_Sequence;
A8: (
lim s)
= (b
+ c) by
A1,
A2,
A3,
A4,
SEQ_2: 6;
A9:
now
let n;
thus ((a
#Q s)
. n)
= (a
#Q (s
. n)) by
Def5
.= (a
#Q ((sb
. n)
+ (sc
. n))) by
SEQ_1: 7
.= ((a
#Q (sb
. n))
* (a
#Q (sc
. n))) by
A5,
Th53
.= ((a
#Q (sb
. n))
* ((a
#Q sc)
. n)) by
Def5
.= (((a
#Q sb)
. n)
* ((a
#Q sc)
. n)) by
Def5;
end;
A10: s is
convergent by
A1,
A3;
then (a
#Q s) is
convergent by
A5,
Th69;
hence (a
#R (b
+ c))
= (
lim (a
#Q s)) by
A5,
A10,
A8,
Def6
.= (
lim ((a
#Q sb)
(#) (a
#Q sc))) by
A9,
SEQ_1: 8
.= ((
lim (a
#Q sb))
* (
lim (a
#Q sc))) by
A6,
A7,
SEQ_2: 15
.= ((a
#R b)
* (
lim (a
#Q sc))) by
A5,
A1,
A2,
A6,
Def6
.= ((a
#R b)
* (a
#R c)) by
A5,
A3,
A4,
A7,
Def6;
end;
Lm8: a
>
0 implies (a
#R b)
>=
0
proof
consider s be
Rational_Sequence such that
A1: s is
convergent and
A2: b
= (
lim s) and for n holds (s
. n)
<= b by
Th67;
assume
A3: a
>
0 ;
A4:
now
let n;
((a
#Q s)
. n)
= (a
#Q (s
. n)) by
Def5;
hence ((a
#Q s)
. n)
>=
0 by
A3,
Th52;
end;
(a
#Q s) is
convergent by
A3,
A1,
Th69;
then (a
#R b)
= (
lim (a
#Q s)) by
A3,
A1,
A2,
Def6;
hence thesis by
A3,
A1,
A4,
Th69,
SEQ_2: 17;
end;
Lm9: a
>
0 implies (a
#R b)
<>
0
proof
assume
A1: a
>
0 ;
assume (a
#R b)
=
0 ;
then
0
= ((a
#R b)
* (a
#R (
- b)))
.= (a
#R (b
+ (
- b))) by
A1,
Th75
.= 1 by
A1,
Th71;
hence contradiction;
end;
theorem ::
PREPOWER:76
Th76: a
>
0 implies (a
#R (
- c))
= (1
/ (a
#R c))
proof
assume
A1: a
>
0 ;
then 1
= (a
#R (c
+ (
- c))) by
Th71
.= ((a
#R (
- c))
* (a
#R c)) by
A1,
Th75;
then (1
/ (a
#R c))
= ((a
#R (
- c))
* ((a
#R c)
/ (a
#R c))) by
XCMPLX_1: 74
.= ((a
#R (
- c))
* 1) by
A1,
Lm9,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
PREPOWER:77
Th77: a
>
0 implies (a
#R (b
- c))
= ((a
#R b)
/ (a
#R c))
proof
assume
A1: a
>
0 ;
thus (a
#R (b
- c))
= (a
#R (b
+ (
- c)))
.= ((a
#R b)
* (a
#R (
- c))) by
A1,
Th75
.= ((a
#R b)
* (1
/ (a
#R c))) by
A1,
Th76
.= ((a
#R b)
* (1
* ((a
#R c)
" )))
.= ((a
#R b)
/ (a
#R c));
end;
theorem ::
PREPOWER:78
Th78: a
>
0 & b
>
0 implies ((a
* b)
#R c)
= ((a
#R c)
* (b
#R c))
proof
assume that
A1: a
>
0 and
A2: b
>
0 ;
A3: (a
* b)
>
0 by
A1,
A2;
consider s1 be
Rational_Sequence such that
A4: s1 is
convergent and
A5: c
= (
lim s1) and for n holds (s1
. n)
>= c by
Th68;
A6: (a
#Q s1) is
convergent by
A1,
A4,
Th69;
A7: (b
#Q s1) is
convergent by
A2,
A4,
Th69;
now
let n;
thus (((a
* b)
#Q s1)
. n)
= ((a
* b)
#Q (s1
. n)) by
Def5
.= ((a
#Q (s1
. n))
* (b
#Q (s1
. n))) by
A1,
A2,
Th56
.= (((a
#Q s1)
. n)
* (b
#Q (s1
. n))) by
Def5
.= (((a
#Q s1)
. n)
* ((b
#Q s1)
. n)) by
Def5;
end;
then
A8: ((a
* b)
#Q s1)
= ((a
#Q s1)
(#) (b
#Q s1)) by
SEQ_1: 8;
then ((a
* b)
#Q s1) is
convergent by
A6,
A7;
hence ((a
* b)
#R c)
= (
lim ((a
* b)
#Q s1)) by
A3,
A4,
A5,
Def6
.= ((
lim (a
#Q s1))
* (
lim (b
#Q s1))) by
A6,
A7,
A8,
SEQ_2: 15
.= ((a
#R c)
* (
lim (b
#Q s1))) by
A1,
A4,
A5,
A6,
Def6
.= ((a
#R c)
* (b
#R c)) by
A2,
A4,
A5,
A7,
Def6;
end;
theorem ::
PREPOWER:79
Th79: a
>
0 implies ((1
/ a)
#R c)
= (1
/ (a
#R c))
proof
assume
A1: a
>
0 ;
1
= (1
#R c) by
Th73
.= (((1
/ a)
* a)
#R c) by
A1,
XCMPLX_1: 106
.= (((1
/ a)
#R c)
* (a
#R c)) by
A1,
Th78;
then (1
/ (a
#R c))
= (((1
/ a)
#R c)
* ((a
#R c)
/ (a
#R c))) by
XCMPLX_1: 74
.= (((1
/ a)
#R c)
* 1) by
A1,
Lm9,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
PREPOWER:80
a
>
0 & b
>
0 implies ((a
/ b)
#R c)
= ((a
#R c)
/ (b
#R c))
proof
assume that
A1: a
>
0 and
A2: b
>
0 ;
thus ((a
/ b)
#R c)
= ((a
* (b
" ))
#R c)
.= ((a
#R c)
* ((b
" )
#R c)) by
A1,
A2,
Th78
.= ((a
#R c)
* ((1
/ b)
#R c))
.= ((a
#R c)
* (1
/ (b
#R c))) by
A2,
Th79
.= (((a
#R c)
* 1)
/ (b
#R c))
.= ((a
#R c)
/ (b
#R c));
end;
theorem ::
PREPOWER:81
Th81: a
>
0 implies (a
#R b)
>
0
proof
assume
A1: a
>
0 ;
then (a
#R b)
<>
0 by
Lm9;
hence thesis by
A1,
Lm8;
end;
theorem ::
PREPOWER:82
Th82: a
>= 1 & c
>= b implies (a
#R c)
>= (a
#R b)
proof
assume that
A1: a
>= 1 and
A2: c
>= b;
consider s1 be
Rational_Sequence such that
A3: s1 is
convergent and
A4: c
= (
lim s1) and
A5: for n holds (s1
. n)
>= c by
Th68;
A6: (a
#Q s1) is
convergent by
A1,
A3,
Th69;
consider s2 be
Rational_Sequence such that
A7: s2 is
convergent and
A8: b
= (
lim s2) and
A9: for n holds (s2
. n)
<= b by
Th67;
A10: (a
#Q s2) is
convergent by
A1,
A7,
Th69;
now
let n;
(s1
. n)
>= c by
A5;
then
A11: (s1
. n)
>= b by
A2,
XXREAL_0: 2;
(s2
. n)
<= b by
A9;
then (s1
. n)
>= (s2
. n) by
A11,
XXREAL_0: 2;
then (a
#Q (s1
. n))
>= (a
#Q (s2
. n)) by
A1,
Th63;
then (a
#Q (s1
. n))
>= ((a
#Q s2)
. n) by
Def5;
hence ((a
#Q s1)
. n)
>= ((a
#Q s2)
. n) by
Def5;
end;
then (
lim (a
#Q s1))
>= (
lim (a
#Q s2)) by
A6,
A10,
SEQ_2: 18;
then (a
#R c)
>= (
lim (a
#Q s2)) by
A1,
A3,
A4,
A6,
Def6;
hence thesis by
A1,
A7,
A8,
A10,
Def6;
end;
theorem ::
PREPOWER:83
Th83: a
> 1 & c
> b implies (a
#R c)
> (a
#R b)
proof
assume that
A1: a
> 1 and
A2: c
> b;
consider p such that
A3: b
< p and
A4: p
< c by
A2,
RAT_1: 7;
consider q such that
A5: b
< q and
A6: q
< p by
A3,
RAT_1: 7;
consider s2 be
Rational_Sequence such that
A7: s2 is
convergent and
A8: b
= (
lim s2) and
A9: for n holds (s2
. n)
<= b by
Th67;
A10: (a
#Q q)
< (a
#Q p) by
A1,
A6,
Th64;
now
let n;
(s2
. n)
<= b by
A9;
then (s2
. n)
<= q by
A5,
XXREAL_0: 2;
then (a
#Q (s2
. n))
<= (a
#Q q) by
A1,
Th63;
hence ((a
#Q s2)
. n)
<= (a
#Q q) by
Def5;
end;
then
A11: (
lim (a
#Q s2))
<= (a
#Q q) by
A1,
A7,
Th2,
Th69;
(a
#Q s2) is
convergent by
A1,
A7,
Th69;
then (a
#R b)
<= (a
#Q q) by
A1,
A7,
A8,
A11,
Def6;
then
A12: (a
#R b)
< (a
#Q p) by
A10,
XXREAL_0: 2;
consider s1 be
Rational_Sequence such that
A13: s1 is
convergent and
A14: c
= (
lim s1) and
A15: for n holds (s1
. n)
>= c by
Th68;
now
let n;
(s1
. n)
>= c by
A15;
then (s1
. n)
>= p by
A4,
XXREAL_0: 2;
then (a
#Q (s1
. n))
>= (a
#Q p) by
A1,
Th63;
hence ((a
#Q s1)
. n)
>= (a
#Q p) by
Def5;
end;
then
A16: (
lim (a
#Q s1))
>= (a
#Q p) by
A1,
A13,
Th1,
Th69;
(a
#Q s1) is
convergent by
A1,
A13,
Th69;
then (a
#R c)
>= (a
#Q p) by
A1,
A13,
A14,
A16,
Def6;
hence thesis by
A12,
XXREAL_0: 2;
end;
theorem ::
PREPOWER:84
Th84: a
>
0 & a
<= 1 & c
>= b implies (a
#R c)
<= (a
#R b)
proof
assume that
A1: a
>
0 and
A2: a
<= 1 and
A3: c
>= b;
(1
/ a)
>= 1 by
A1,
A2,
Lm4,
XREAL_1: 85;
then ((1
/ a)
#R c)
>= ((1
/ a)
#R b) by
A3,
Th82;
then (1
/ (a
#R c))
>= ((1
/ a)
#R b) by
A1,
Th79;
then
A4: (1
/ (a
#R c))
>= (1
/ (a
#R b)) by
A1,
Th79;
(a
#R b)
>
0 by
A1,
Th81;
hence thesis by
A4,
XREAL_1: 89;
end;
theorem ::
PREPOWER:85
Th85: a
>= 1 & b
>=
0 implies (a
#R b)
>= 1
proof
assume that
A1: a
>= 1 and
A2: b
>=
0 ;
consider s be
Rational_Sequence such that
A3: s is
convergent and
A4: b
= (
lim s) and
A5: for n holds (s
. n)
>= b by
Th68;
A6:
now
let n;
A7: ((a
#Q s)
. n)
= (a
#Q (s
. n)) by
Def5;
(s
. n)
>= b by
A5;
hence ((a
#Q s)
. n)
>= 1 by
A1,
A2,
A7,
Th60;
end;
(a
#Q s) is
convergent by
A1,
A3,
Th69;
then (a
#R b)
= (
lim (a
#Q s)) by
A1,
A3,
A4,
Def6;
hence thesis by
A1,
A3,
A6,
Th1,
Th69;
end;
theorem ::
PREPOWER:86
Th86: a
> 1 & b
>
0 implies (a
#R b)
> 1
proof
assume that
A1: a
> 1 and
A2: b
>
0 ;
(a
#R b)
> (a
#R
0 ) by
A1,
A2,
Th83;
hence thesis by
A1,
Th71;
end;
theorem ::
PREPOWER:87
Th87: a
>= 1 & b
<=
0 implies (a
#R b)
<= 1
proof
assume that
A1: a
>= 1 and
A2: b
<=
0 ;
(a
#R (
- b))
>= 1 by
A1,
A2,
Th85;
then (1
/ (a
#R b))
>= 1 by
A1,
Th76;
then (1
/ (1
/ (a
#R b)))
<= 1 by
XREAL_1: 211;
hence thesis;
end;
theorem ::
PREPOWER:88
a
> 1 & b
<
0 implies (a
#R b)
< 1
proof
assume that
A1: a
> 1 and
A2: b
<
0 ;
(
- b)
>
0 by
A2;
then (a
#R (
- b))
> 1 by
A1,
Th86;
then (1
/ (a
#R b))
> 1 by
A1,
Th76;
then (1
/ (1
/ (a
#R b)))
< 1 by
XREAL_1: 212;
hence thesis;
end;
Lm10: s1 is
convergent & s2 is
convergent & (
lim s1)
>
0 & p
>=
0 & (for n holds (s1
. n)
>
0 & (s2
. n)
= ((s1
. n)
#Q p)) implies (
lim s2)
= ((
lim s1)
#Q p)
proof
assume that
A1: s1 is
convergent and
A2: s2 is
convergent and
A3: (
lim s1)
>
0 and
A4: p
>=
0 and
A5: for n holds (s1
. n)
>
0 & (s2
. n)
= ((s1
. n)
#Q p);
reconsider ls = (
lim s1) as
Element of
REAL by
XREAL_0:def 1;
set s = (
seq_const (
lim s1));
consider m0 be
Nat such that
A6: p
< m0 by
SEQ_4: 3;
A7: (
lim s)
= (s
.
0 ) by
SEQ_4: 26
.= (
lim s1) by
FUNCOP_1: 7;
then
A8: (s1
/" s) is
convergent by
A1,
A3,
SEQ_2: 23;
deffunc
O(
Nat) = (((s
/" s1)
. $1)
|^ m0);
consider s3 be
Real_Sequence such that
A9: for n holds (s3
. n)
=
O(n) from
SEQ_1:sch 1;
for n holds (s1
. n)
<>
0 by
A5;
then
A10: s1 is
non-zero by
SEQ_1: 5;
then
A11: (s
/" s1) is
convergent by
A1,
A3,
SEQ_2: 23;
then
A12: s3 is
convergent by
A9,
Th18;
reconsider q = m0 as
Rational;
deffunc
O(
Nat) = (((s1
/" s)
. $1)
|^ m0);
consider s4 be
Real_Sequence such that
A13: for n holds (s4
. n)
=
O(n) from
SEQ_1:sch 1;
(
lim (s
/" s1))
= ((
lim s)
/ (
lim s1)) by
A1,
A3,
A10,
SEQ_2: 24
.= 1 by
A3,
A7,
XCMPLX_1: 60;
then (
lim s3)
= (1
|^ m0) by
A11,
A9,
Th18;
then
A14: (
lim s3)
= 1;
(
lim (s1
/" s))
= ((
lim s1)
/ (
lim s)) by
A1,
A3,
A7,
SEQ_2: 24
.= 1 by
A3,
A7,
XCMPLX_1: 60;
then (
lim s4)
= (1
|^ m0) by
A8,
A13,
Th18;
then
A15: (
lim s4)
= 1;
s2 is
bounded by
A2;
then
consider d be
Real such that
A16: d
>
0 and
A17: for n holds
|.(s2
. n).|
< d by
SEQ_2: 3;
A18: s4 is
convergent by
A8,
A13,
Th18;
now
let c be
Real;
assume
A19: c
>
0 ;
then (c
/ d)
>
0 by
A16;
then
consider m1 such that
A20: for m st m
>= m1 holds
|.((s3
. m)
- 1).|
< (c
/ d) by
A12,
A14,
SEQ_2:def 7;
A21: ((
lim s1)
#Q p)
>
0 by
A3,
Th52;
then
A22:
|.((
lim s1)
#Q p).|
>
0 by
ABSVALUE:def 1;
then (c
/
|.((
lim s1)
#Q p).|)
>
0 by
A19;
then
consider m2 such that
A23: for m st m
>= m2 holds
|.((s4
. m)
- 1).|
< (c
/
|.((
lim s1)
#Q p).|) by
A18,
A15,
SEQ_2:def 7;
take n = (m1
+ m2);
let m such that
A24: m
>= n;
m2
<= n by
NAT_1: 11;
then
A25: m
>= m2 by
A24,
XXREAL_0: 2;
m1
<= n by
NAT_1: 11;
then
A26: m
>= m1 by
A24,
XXREAL_0: 2;
now
per cases ;
suppose
A27: (s1
. m)
>= (
lim s1);
m
in
NAT by
ORDINAL1:def 12;
then
A28: ((s1
. m)
/ (
lim s1))
= ((s1
. m)
/ (s
. m)) by
FUNCOP_1: 7
.= ((s1
. m)
* ((s
. m)
" ))
.= ((s1
. m)
* ((s
" )
. m)) by
VALUED_1: 10
.= ((s1
/" s)
. m) by
SEQ_1: 8;
((s1
. m)
* ((
lim s1)
" ))
>= ((
lim s1)
* ((
lim s1)
" )) by
A3,
A27,
XREAL_1: 64;
then
A29: ((s1
/" s)
. m)
>= 1 by
A3,
A28,
XCMPLX_0:def 7;
then (((s1
/" s)
. m)
#Q p)
<= (((s1
/" s)
. m)
#Q q) by
A6,
Th63;
then (((s1
/" s)
. m)
#Q p)
<= (((s1
/" s)
. m)
|^ m0) by
A29,
Th49;
then
A30: ((((s1
/" s)
. m)
#Q p)
- 1)
<= ((((s1
/" s)
. m)
|^ m0)
- 1) by
XREAL_1: 9;
(((s1
/" s)
. m)
#Q p)
>= 1 by
A4,
A29,
Th60;
then ((((s1
/" s)
. m)
#Q p)
- 1)
>= (1
- 1) by
XREAL_1: 9;
then
A31: ((((s1
/" s)
. m)
#Q p)
- 1)
=
|.((((s1
/" s)
. m)
#Q p)
- 1).| by
ABSVALUE:def 1;
A32: ((
lim s1)
#Q p)
<>
0 by
A3,
Th52;
A33:
|.((s4
. m)
- 1).|
< (c
/
|.((
lim s1)
#Q p).|) by
A23,
A25;
A34: (s1
. m)
>
0 by
A5;
(((s1
/" s)
. m)
|^ m0)
>= 1 by
A29,
Th11;
then ((((s1
/" s)
. m)
|^ m0)
- 1)
>= (1
- 1) by
XREAL_1: 9;
then
|.((((s1
/" s)
. m)
#Q p)
- 1).|
<=
|.((((s1
/" s)
. m)
|^ m0)
- 1).| by
A30,
A31,
ABSVALUE:def 1;
then
|.((((s1
/" s)
. m)
#Q p)
- 1).|
<=
|.((s4
. m)
- 1).| by
A13;
then
A35:
|.((((s1
/" s)
. m)
#Q p)
- 1).|
< (c
/
|.((
lim s1)
#Q p).|) by
A33,
XXREAL_0: 2;
A36:
|.((
lim s1)
#Q p).|
<>
0 by
A21,
ABSVALUE:def 1;
|.((s2
. m)
- ((
lim s1)
#Q p)).|
=
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
* 1).| by
A5
.=
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
* (((
lim s1)
#Q p)
/ ((
lim s1)
#Q p))).| by
A32,
XCMPLX_1: 60
.=
|.((((
lim s1)
#Q p)
* (((s1
. m)
#Q p)
- ((
lim s1)
#Q p)))
/ ((
lim s1)
#Q p)).|
.=
|.(((
lim s1)
#Q p)
* ((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
/ ((
lim s1)
#Q p))).|
.= (
|.((
lim s1)
#Q p).|
*
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
/ ((
lim s1)
#Q p)).|) by
COMPLEX1: 65
.= (
|.((
lim s1)
#Q p).|
*
|.((((s1
. m)
#Q p)
/ ((
lim s1)
#Q p))
- (((
lim s1)
#Q p)
/ ((
lim s1)
#Q p))).|)
.= (
|.((
lim s1)
#Q p).|
*
|.((((s1
. m)
#Q p)
/ ((
lim s1)
#Q p))
- 1).|) by
A32,
XCMPLX_1: 60
.= (
|.((
lim s1)
#Q p).|
*
|.((((s1
. m)
/ (
lim s1))
#Q p)
- 1).|) by
A3,
A34,
Th58;
then
|.((s2
. m)
- ((
lim s1)
#Q p)).|
< (
|.((
lim s1)
#Q p).|
* (c
/
|.((
lim s1)
#Q p).|)) by
A22,
A28,
A35,
XREAL_1: 68;
hence
|.((s2
. m)
- ((
lim s1)
#Q p)).|
< c by
A36,
XCMPLX_1: 87;
end;
suppose
A37: (s1
. m)
<= (
lim s1);
A38: m
in
NAT by
ORDINAL1:def 12;
A39: ((
lim s1)
/ (s1
. m))
= ((s
. m)
/ (s1
. m)) by
FUNCOP_1: 7,
A38
.= ((s
. m)
* ((s1
. m)
" ))
.= ((s
. m)
* ((s1
" )
. m)) by
VALUED_1: 10
.= ((s
/" s1)
. m) by
SEQ_1: 8;
A40: (s1
. m)
<>
0 by
A5;
A41: (s1
. m)
>
0 by
A5;
then ((s1
. m)
* ((s1
. m)
" ))
<= ((
lim s1)
* ((s1
. m)
" )) by
A37,
XREAL_1: 64;
then
A42: ((s
/" s1)
. m)
>= 1 by
A40,
A39,
XCMPLX_0:def 7;
then (((s
/" s1)
. m)
#Q p)
<= (((s
/" s1)
. m)
#Q q) by
A6,
Th63;
then (((s
/" s1)
. m)
#Q p)
<= (((s
/" s1)
. m)
|^ m0) by
A42,
Th49;
then
A43: ((((s
/" s1)
. m)
#Q p)
- 1)
<= ((((s
/" s1)
. m)
|^ m0)
- 1) by
XREAL_1: 9;
((s1
. m)
#Q p)
>
0 by
A5,
Th52;
then
A44:
|.((s1
. m)
#Q p).|
>
0 by
ABSVALUE:def 1;
A45:
|.((s3
. m)
- 1).|
< (c
/ d) by
A20,
A26;
(((s
/" s1)
. m)
#Q p)
>= 1 by
A4,
A42,
Th60;
then ((((s
/" s1)
. m)
#Q p)
- 1)
>= (1
- 1) by
XREAL_1: 9;
then
A46: ((((s
/" s1)
. m)
#Q p)
- 1)
=
|.((((s
/" s1)
. m)
#Q p)
- 1).| by
ABSVALUE:def 1;
(((s
/" s1)
. m)
|^ m0)
>= 1 by
A42,
Th11;
then ((((s
/" s1)
. m)
|^ m0)
- 1)
>= (1
- 1) by
XREAL_1: 9;
then
|.((((s
/" s1)
. m)
#Q p)
- 1).|
<=
|.((((s
/" s1)
. m)
|^ m0)
- 1).| by
A43,
A46,
ABSVALUE:def 1;
then
|.((((s
/" s1)
. m)
#Q p)
- 1).|
<=
|.((s3
. m)
- 1).| by
A9;
then
A47:
|.((((s
/" s1)
. m)
#Q p)
- 1).|
< (c
/ d) by
A45,
XXREAL_0: 2;
|.(s2
. m).|
< d by
A17;
then
|.((s1
. m)
#Q p).|
< d by
A5;
then (
|.((s1
. m)
#Q p).|
/ d)
< (d
/ d) by
A16,
XREAL_1: 74;
then (
|.((s1
. m)
#Q p).|
/ d)
< 1 by
A16,
XCMPLX_1: 60;
then
A48: (c
* (
|.((s1
. m)
#Q p).|
/ d))
< (c
* 1) by
A19,
XREAL_1: 68;
A49: ((s1
. m)
#Q p)
<>
0 by
A5,
Th52;
|.((s2
. m)
- ((
lim s1)
#Q p)).|
=
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
* 1).| by
A5
.=
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
* (((s1
. m)
#Q p)
/ ((s1
. m)
#Q p))).| by
A49,
XCMPLX_1: 60
.=
|.((((s1
. m)
#Q p)
* (((s1
. m)
#Q p)
- ((
lim s1)
#Q p)))
/ ((s1
. m)
#Q p)).|
.=
|.(((s1
. m)
#Q p)
* ((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
/ ((s1
. m)
#Q p))).|
.= (
|.((s1
. m)
#Q p).|
*
|.((((s1
. m)
#Q p)
- ((
lim s1)
#Q p))
/ ((s1
. m)
#Q p)).|) by
COMPLEX1: 65
.= (
|.((s1
. m)
#Q p).|
*
|.((((s1
. m)
#Q p)
/ ((s1
. m)
#Q p))
- (((
lim s1)
#Q p)
/ ((s1
. m)
#Q p))).|)
.= (
|.((s1
. m)
#Q p).|
*
|.(1
- (((
lim s1)
#Q p)
/ ((s1
. m)
#Q p))).|) by
A49,
XCMPLX_1: 60
.= (
|.((s1
. m)
#Q p).|
*
|.(
- (1
- (((
lim s1)
#Q p)
/ ((s1
. m)
#Q p)))).|) by
COMPLEX1: 52
.= (
|.((s1
. m)
#Q p).|
*
|.((((
lim s1)
#Q p)
/ ((s1
. m)
#Q p))
- 1).|)
.= (
|.((s1
. m)
#Q p).|
*
|.((((
lim s1)
/ (s1
. m))
#Q p)
- 1).|) by
A3,
A41,
Th58;
then
|.((s2
. m)
- ((
lim s1)
#Q p)).|
< (
|.((s1
. m)
#Q p).|
* (c
/ d)) by
A44,
A39,
A47,
XREAL_1: 68;
hence
|.((s2
. m)
- ((
lim s1)
#Q p)).|
< c by
A48,
XXREAL_0: 2;
end;
end;
hence
|.((s2
. m)
- ((
lim s1)
#Q p)).|
< c;
end;
hence thesis by
A2,
SEQ_2:def 7;
end;
theorem ::
PREPOWER:89
Th89: s1 is
convergent & s2 is
convergent & (
lim s1)
>
0 & (for n holds (s1
. n)
>
0 & (s2
. n)
= ((s1
. n)
#Q p)) implies (
lim s2)
= ((
lim s1)
#Q p)
proof
assume that
A1: s1 is
convergent and
A2: s2 is
convergent and
A3: (
lim s1)
>
0 and
A4: for n holds (s1
. n)
>
0 & (s2
. n)
= ((s1
. n)
#Q p);
per cases ;
suppose p
>=
0 ;
hence thesis by
A1,
A2,
A3,
A4,
Lm10;
end;
suppose
A5: p
<=
0 ;
s1 is
bounded by
A1;
then
consider d be
Real such that
A6: d
>
0 and
A7: for n holds
|.(s1
. n).|
< d by
SEQ_2: 3;
reconsider d as
Real;
A8: (d
#Q p)
>
0 by
A6,
Th52;
A9:
now
assume (
lim s2)
=
0 ;
then
consider n such that
A10: for m st m
>= n holds
|.((s2
. m)
-
0 ).|
< (d
#Q p) by
A2,
A8,
SEQ_2:def 7;
now
let m;
A11: (s1
. m)
>
0 by
A4;
A12: (s1
. m)
<>
0 by
A4;
A13: ((s1
. m)
#Q p)
>
0 by
A4,
Th52;
|.(s1
. m).|
< d by
A7;
then (s1
. m)
< d by
A11,
ABSVALUE:def 1;
then ((s1
. m)
/ (s1
. m))
< (d
/ (s1
. m)) by
A11,
XREAL_1: 74;
then 1
<= (d
/ (s1
. m)) by
A12,
XCMPLX_1: 60;
then ((d
/ (s1
. m))
#Q p)
<= 1 by
A5,
Th61;
then ((d
#Q p)
/ ((s1
. m)
#Q p))
<= 1 by
A6,
A11,
Th58;
then
A14: (((d
#Q p)
/ ((s1
. m)
#Q p))
* ((s1
. m)
#Q p))
<= (1
* ((s1
. m)
#Q p)) by
A13,
XREAL_1: 64;
A15: ((s1
. m)
#Q p)
<>
0 by
A4,
Th52;
assume m
>= n;
then
|.((s2
. m)
-
0 ).|
< (d
#Q p) by
A10;
then
|.((s1
. m)
#Q p).|
< (d
#Q p) by
A4;
then ((s1
. m)
#Q p)
< (d
#Q p) by
A13,
ABSVALUE:def 1;
hence contradiction by
A15,
A14,
XCMPLX_1: 87;
end;
hence contradiction;
end;
now
let n;
((s1
. n)
#Q p)
<>
0 by
A4,
Th52;
hence (s2
. n)
<>
0 by
A4;
end;
then
A16: s2 is
non-zero by
SEQ_1: 5;
then
A17: (
lim (s2
" ))
= ((
lim s2)
" ) by
A2,
A9,
SEQ_2: 22;
deffunc
O(
Nat) = ((s2
. $1)
" );
consider s be
Real_Sequence such that
A18: for n holds (s
. n)
=
O(n) from
SEQ_1:sch 1;
A19:
now
let n;
(s
. n)
= ((s2
. n)
" ) by
A18
.= (((s1
. n)
#Q p)
" ) by
A4
.= (1
/ ((s1
. n)
#Q p))
.= ((s1
. n)
#Q (
- p)) by
A4,
Th54;
hence (s1
. n)
>
0 & (s
. n)
= ((s1
. n)
#Q (
- p)) by
A4;
end;
A20: (
dom s2)
=
NAT by
FUNCT_2:def 1;
A21: (
dom s)
=
NAT by
FUNCT_2:def 1;
for n be
object st n
in (
dom s) holds (s
. n)
= ((s2
. n)
" ) by
A18;
then
A22: s
= (s2
" ) by
A21,
A20,
VALUED_1:def 7;
(s2
" ) is
convergent by
A2,
A16,
A9,
SEQ_2: 21;
then ((
lim s2)
" )
= ((
lim s1)
#Q (
- p)) by
A1,
A3,
A5,
A17,
A22,
A19,
Lm10;
then (1
/ (
lim s2))
= (1
/ ((
lim s1)
#Q p)) by
A3,
Th54;
hence thesis by
XCMPLX_1: 59;
end;
end;
Lm11: a
>
0 implies ((a
#R b)
#Q p)
= (a
#R (b
* p))
proof
consider s1 be
Rational_Sequence such that
A1: s1 is
convergent and
A2: b
= (
lim s1) and for n holds (s1
. n)
>= b by
Th68;
reconsider s2 = (p
(#) s1) as
Rational_Sequence;
assume
A3: a
>
0 ;
A4:
now
let n;
A5: (a
#Q (s1
. n))
>
0 by
A3,
Th52;
(((a
#Q s1)
. n)
#Q p)
= ((a
#Q (s1
. n))
#Q p) by
Def5
.= (a
#Q (p
* (s1
. n))) by
A3,
Th59
.= (a
#Q (s2
. n)) by
SEQ_1: 9
.= ((a
#Q s2)
. n) by
Def5;
hence ((a
#Q s1)
. n)
>
0 & (((a
#Q s1)
. n)
#Q p)
= ((a
#Q s2)
. n) by
A5,
Def5;
end;
A6: s2 is
convergent by
A1;
then
A7: (a
#Q s2) is
convergent by
A3,
Th69;
(
lim s2)
= (b
* p) by
A1,
A2,
SEQ_2: 8;
then
A8: (a
#R (b
* p))
= (
lim (a
#Q s2)) by
A3,
A6,
A7,
Def6;
A9: (a
#Q s1) is
convergent by
A3,
A1,
Th69;
then (a
#R b)
= (
lim (a
#Q s1)) by
A3,
A1,
A2,
Def6;
hence thesis by
A3,
A9,
A7,
A8,
A4,
Th81,
Th89;
end;
Lm12: a
>= 1 & s1 is
convergent & s2 is
convergent & (for n holds (s2
. n)
= (a
#R (s1
. n))) implies (
lim s2)
= (a
#R (
lim s1))
proof
assume that
A1: a
>= 1 and
A2: s1 is
convergent and
A3: s2 is
convergent and
A4: for n holds (s2
. n)
= (a
#R (s1
. n));
set d = (
|.(
lim s1).|
+ 1);
A5:
|.(
lim s1).|
< (
|.(
lim s1).|
+ 1) by
XREAL_1: 29;
now
(
lim s1)
<=
|.(
lim s1).| by
ABSVALUE: 4;
then (
lim s1)
<= d by
A5,
XXREAL_0: 2;
then
A6: (a
#R (
lim s1))
<= (a
#R d) by
A1,
Th82;
(a
#R (
lim s1))
>
0 by
A1,
Th81;
then
A7:
|.(a
#R (
lim s1)).|
<= (a
#R d) by
A6,
ABSVALUE:def 1;
A8: (a
#R d)
>=
0 by
A1,
Th81;
let c be
Real;
assume
A9: c
>
0 ;
consider m1 such that
A10: (((a
#R d)
* (a
- 1))
/ c)
< m1 by
SEQ_4: 3;
(m1
+ 1)
>= m1 by
XREAL_1: 29;
then (((a
#R d)
* (a
- 1))
/ c)
< (m1
+ 1) by
A10,
XXREAL_0: 2;
then ((((a
#R d)
* (a
- 1))
/ c)
* c)
< (c
* (m1
+ 1)) by
A9,
XREAL_1: 68;
then ((a
#R d)
* (a
- 1))
< (c
* (m1
+ 1)) by
A9,
XCMPLX_1: 87;
then (((a
#R d)
* (a
- 1))
/ (m1
+ 1))
< (((m1
+ 1)
* c)
/ (m1
+ 1)) by
XREAL_1: 74;
then (((a
#R d)
* (a
- 1))
/ (m1
+ 1))
< ((c
/ (m1
+ 1))
* (m1
+ 1));
then
A11: (((a
#R d)
* (a
- 1))
/ (m1
+ 1))
< c by
XCMPLX_1: 87;
reconsider m3 = ((m1
+ 1)
" ) as
Rational;
A12:
|.(a
#R (
lim s1)).|
>=
0 by
COMPLEX1: 46;
consider n such that
A13: for m st n
<= m holds
|.((s1
. m)
- (
lim s1)).|
< ((m1
+ 1)
" ) by
A2,
SEQ_2:def 7;
take n;
let m;
assume m
>= n;
then
A14:
|.((s1
. m)
- (
lim s1)).|
<= ((m1
+ 1)
" ) by
A13;
A15: (m1
+ 1)
>= (
0
+ 1) by
NAT_1: 13;
then (((m1
+ 1)
-Root a)
- 1)
<= ((a
- 1)
/ (m1
+ 1)) by
A1,
Th31;
then
A16: ((a
#R d)
* (((m1
+ 1)
-Root a)
- 1))
<= ((a
#R d)
* ((a
- 1)
/ (m1
+ 1))) by
A8,
XREAL_1: 64;
((s1
. m)
- (
lim s1))
<=
|.((s1
. m)
- (
lim s1)).| by
ABSVALUE: 4;
then ((s1
. m)
- (
lim s1))
<= ((m1
+ 1)
" ) by
A14,
XXREAL_0: 2;
then (a
#R ((s1
. m)
- (
lim s1)))
<= (a
#R m3) by
A1,
Th82;
then (a
#R ((s1
. m)
- (
lim s1)))
<= (a
#Q m3) by
A1,
Th74;
then (a
#R ((s1
. m)
- (
lim s1)))
<= ((m1
+ 1)
-Root a) by
A15,
Th50;
then
A17: ((a
#R ((s1
. m)
- (
lim s1)))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
A18: (a
#R ((s1
. m)
- (
lim s1)))
<>
0 by
A1,
Th81;
A19: (a
#R ((s1
. m)
- (
lim s1)))
>
0 by
A1,
Th81;
A20:
now
per cases ;
suppose ((s1
. m)
- (
lim s1))
>=
0 ;
then (a
#R ((s1
. m)
- (
lim s1)))
>= 1 by
A1,
Th85;
then ((a
#R ((s1
. m)
- (
lim s1)))
- 1)
>=
0 by
XREAL_1: 48;
hence
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A17,
ABSVALUE:def 1;
end;
suppose
A21: ((s1
. m)
- (
lim s1))
<
0 ;
A22: (
- ((s1
. m)
- (
lim s1)))
<=
|.(
- ((s1
. m)
- (
lim s1))).| by
ABSVALUE: 4;
|.((s1
. m)
- (
lim s1)).|
=
|.(
- ((s1
. m)
- (
lim s1))).| by
COMPLEX1: 52;
then (
- ((s1
. m)
- (
lim s1)))
<= m3 by
A14,
A22,
XXREAL_0: 2;
then (a
#R (
- ((s1
. m)
- (
lim s1))))
<= (a
#R m3) by
A1,
Th82;
then (a
#R (
- ((s1
. m)
- (
lim s1))))
<= (a
#Q m3) by
A1,
Th74;
then (a
#R (
- ((s1
. m)
- (
lim s1))))
<= ((m1
+ 1)
-Root a) by
A15,
Th50;
then
A23: ((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1)
<= (((m1
+ 1)
-Root a)
- 1) by
XREAL_1: 9;
(a
#R (
- ((s1
. m)
- (
lim s1))))
>= 1 by
A1,
A21,
Th85;
then ((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1)
>=
0 by
XREAL_1: 48;
then
A24:
|.((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A23,
ABSVALUE:def 1;
(a
#R ((s1
. m)
- (
lim s1)))
<= 1 by
A1,
A21,
Th87;
then
A25:
|.(a
#R ((s1
. m)
- (
lim s1))).|
<= 1 by
A19,
ABSVALUE:def 1;
|.((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1).|
>=
0 by
COMPLEX1: 46;
then
A26: (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1).|)
<= (1
*
|.((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1).|) by
A25,
XREAL_1: 64;
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|
=
|.(((a
#R ((s1
. m)
- (
lim s1)))
- 1)
* 1).|
.=
|.(((a
#R ((s1
. m)
- (
lim s1)))
- 1)
* ((a
#R ((s1
. m)
- (
lim s1)))
/ (a
#R ((s1
. m)
- (
lim s1))))).| by
A18,
XCMPLX_1: 60
.=
|.(((a
#R ((s1
. m)
- (
lim s1)))
* ((a
#R ((s1
. m)
- (
lim s1)))
- 1))
/ (a
#R ((s1
. m)
- (
lim s1)))).|
.=
|.((a
#R ((s1
. m)
- (
lim s1)))
* (((a
#R ((s1
. m)
- (
lim s1)))
- 1)
/ (a
#R ((s1
. m)
- (
lim s1))))).|
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.(((a
#R ((s1
. m)
- (
lim s1)))
- 1)
/ (a
#R ((s1
. m)
- (
lim s1)))).|) by
COMPLEX1: 65
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.(((a
#R ((s1
. m)
- (
lim s1)))
/ (a
#R ((s1
. m)
- (
lim s1))))
- (1
/ (a
#R ((s1
. m)
- (
lim s1))))).|)
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.(1
- (1
/ (a
#R ((s1
. m)
- (
lim s1))))).|) by
A18,
XCMPLX_1: 60
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.(1
- (a
#R (
- ((s1
. m)
- (
lim s1))))).|) by
A1,
Th76
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.(
- (1
- (a
#R (
- ((s1
. m)
- (
lim s1)))))).|) by
COMPLEX1: 52
.= (
|.(a
#R ((s1
. m)
- (
lim s1))).|
*
|.((a
#R (
- ((s1
. m)
- (
lim s1))))
- 1).|);
hence
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|
<= (((m1
+ 1)
-Root a)
- 1) by
A24,
A26,
XXREAL_0: 2;
end;
end;
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|
>=
0 by
COMPLEX1: 46;
then
A27: (
|.(a
#R (
lim s1)).|
*
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|)
<= ((a
#R d)
* (((m1
+ 1)
-Root a)
- 1)) by
A20,
A12,
A7,
XREAL_1: 66;
|.((a
#R (s1
. m))
- (a
#R (
lim s1))).|
=
|.(((a
#R (s1
. m))
- (a
#R (
lim s1)))
* 1).|
.=
|.(((a
#R (s1
. m))
- (a
#R (
lim s1)))
* ((a
#R (
lim s1))
/ (a
#R (
lim s1)))).| by
A1,
Lm9,
XCMPLX_1: 60
.=
|.(((a
#R (
lim s1))
* ((a
#R (s1
. m))
- (a
#R (
lim s1))))
/ (a
#R (
lim s1))).|
.=
|.((a
#R (
lim s1))
* (((a
#R (s1
. m))
- (a
#R (
lim s1)))
/ (a
#R (
lim s1)))).|
.= (
|.(a
#R (
lim s1)).|
*
|.(((a
#R (s1
. m))
- (a
#R (
lim s1)))
/ (a
#R (
lim s1))).|) by
COMPLEX1: 65
.= (
|.(a
#R (
lim s1)).|
*
|.(((a
#R (s1
. m))
/ (a
#R (
lim s1)))
- ((a
#R (
lim s1))
/ (a
#R (
lim s1)))).|)
.= (
|.(a
#R (
lim s1)).|
*
|.(((a
#R (s1
. m))
/ (a
#R (
lim s1)))
- 1).|) by
A1,
Lm9,
XCMPLX_1: 60
.= (
|.(a
#R (
lim s1)).|
*
|.((a
#R ((s1
. m)
- (
lim s1)))
- 1).|) by
A1,
Th77;
then
|.((a
#R (s1
. m))
- (a
#R (
lim s1))).|
<= (((a
#R d)
* (a
- 1))
/ (m1
+ 1)) by
A27,
A16,
XXREAL_0: 2;
then
|.((a
#R (s1
. m))
- (a
#R (
lim s1))).|
< c by
A11,
XXREAL_0: 2;
hence
|.((s2
. m)
- (a
#R (
lim s1))).|
< c by
A4;
end;
hence thesis by
A3,
SEQ_2:def 7;
end;
theorem ::
PREPOWER:90
Th90: a
>
0 & s1 is
convergent & s2 is
convergent & (for n holds (s2
. n)
= (a
#R (s1
. n))) implies (
lim s2)
= (a
#R (
lim s1))
proof
assume that
A1: a
>
0 and
A2: s1 is
convergent and
A3: s2 is
convergent and
A4: for n holds (s2
. n)
= (a
#R (s1
. n));
per cases ;
suppose a
>= 1;
hence thesis by
A2,
A3,
A4,
Lm12;
end;
suppose
A5: a
< 1;
A6:
now
assume
A7: (
lim s2)
=
0 ;
(a
#R ((
lim s1)
+ 1))
>
0 by
A1,
Th81;
then
consider n such that
A8: for m st m
>= n holds
|.((s2
. m)
-
0 ).|
< (a
#R ((
lim s1)
+ 1)) by
A3,
A7,
SEQ_2:def 7;
consider n1 be
Nat such that
A9: for m st m
>= n1 holds
|.((s1
. m)
- (
lim s1)).|
< 1 by
A2,
SEQ_2:def 7;
now
let m such that
A10: m
>= (n
+ n1);
(n
+ n1)
>= n1 by
NAT_1: 12;
then m
>= n1 by
A10,
XXREAL_0: 2;
then
A11:
|.((s1
. m)
- (
lim s1)).|
< 1 by
A9;
((s1
. m)
- (
lim s1))
<=
|.((s1
. m)
- (
lim s1)).| by
ABSVALUE: 4;
then ((s1
. m)
- (
lim s1))
< 1 by
A11,
XXREAL_0: 2;
then
A12: (((s1
. m)
- (
lim s1))
+ (
lim s1))
< ((
lim s1)
+ 1) by
XREAL_1: 6;
(n
+ n1)
>= n by
NAT_1: 12;
then m
>= n by
A10,
XXREAL_0: 2;
then
|.((s2
. m)
-
0 ).|
< (a
#R ((
lim s1)
+ 1)) by
A8;
then
A13:
|.(a
#R (s1
. m)).|
< (a
#R ((
lim s1)
+ 1)) by
A4;
(a
#R (s1
. m))
>
0 by
A1,
Th81;
then (a
#R (s1
. m))
< (a
#R ((
lim s1)
+ 1)) by
A13,
ABSVALUE:def 1;
hence contradiction by
A1,
A5,
A12,
Th84;
end;
hence contradiction;
end;
A14:
now
let n;
thus ((s2
" )
. n)
= ((s2
. n)
" ) by
VALUED_1: 10
.= ((a
#R (s1
. n))
" ) by
A4
.= (1
/ (a
#R (s1
. n)))
.= ((1
/ a)
#R (s1
. n)) by
A1,
Th79;
end;
(a
* (1
/ a))
<= (1
* (1
/ a)) by
A1,
A5,
XREAL_1: 64;
then
A15: 1
<= (1
/ a) by
A1,
XCMPLX_1: 106;
A16: (a
#R (
lim s1))
<>
0 by
A1,
Th81;
now
let n;
(s2
. n)
= (a
#R (s1
. n)) by
A4;
hence (s2
. n)
<>
0 by
A1,
Th81;
end;
then
A17: s2 is
non-zero by
SEQ_1: 5;
then
A18: (
lim (s2
" ))
= ((
lim s2)
" ) by
A3,
A6,
SEQ_2: 22;
(s2
" ) is
convergent by
A3,
A6,
A17,
SEQ_2: 21;
then ((
lim s2)
" )
= ((1
/ a)
#R (
lim s1)) by
A2,
A15,
A18,
A14,
Lm12
.= (1
/ (a
#R (
lim s1))) by
A1,
Th79;
then 1
= ((1
/ (a
#R (
lim s1)))
* (
lim s2)) by
A6,
XCMPLX_0:def 7;
then (a
#R (
lim s1))
= ((a
#R (
lim s1))
* ((1
/ (a
#R (
lim s1)))
* (
lim s2)))
.= (((a
#R (
lim s1))
* (1
/ (a
#R (
lim s1))))
* (
lim s2))
.= (1
* (
lim s2)) by
A16,
XCMPLX_1: 106;
hence thesis;
end;
end;
theorem ::
PREPOWER:91
a
>
0 implies ((a
#R b)
#R c)
= (a
#R (b
* c))
proof
consider s be
Rational_Sequence such that
A1: s is
convergent and
A2: c
= (
lim s) and for n holds (s
. n)
<= c by
Th67;
A3: (
lim (b
(#) s))
= (b
* c) by
A1,
A2,
SEQ_2: 8;
A4: (b
(#) s) is
convergent by
A1;
assume
A5: a
>
0 ;
then
A6: ((a
#R b)
#Q s) is
convergent by
A1,
Th69,
Th81;
A7:
now
let n;
thus (((a
#R b)
#Q s)
. n)
= ((a
#R b)
#Q (s
. n)) by
Def5
.= (a
#R (b
* (s
. n))) by
A5,
Lm11
.= (a
#R ((b
(#) s)
. n)) by
SEQ_1: 9;
end;
(a
#R b)
>
0 by
A5,
Th81;
then ((a
#R b)
#R c)
= (
lim ((a
#R b)
#Q s)) by
A1,
A2,
A6,
Def6;
hence thesis by
A5,
A6,
A4,
A3,
A7,
Th90;
end;
begin
reserve r,u for
Real,
k for
Nat;
theorem ::
PREPOWER:92
r
>
0 & u
>
0 implies ex k be
Nat st (u
/ (2
|^ k))
<= r
proof
defpred
P[
Nat] means $1
<= (2
|^ $1);
assume that
A1: r
>
0 and
A2: u
>
0 ;
set t = (1
/ r);
reconsider t as
Real;
consider n such that
A3: (u
* t)
< n by
SEQ_4: 3;
A4:
0
< (u
* t) by
A1,
A2;
then
A5: (u
/ (u
* t))
> (u
/ n) by
A2,
A3,
XREAL_1: 76;
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume k
<= (2
|^ k);
then
A7: ((2
|^ k)
+ 1)
>= (k
+ 1) by
XREAL_1: 7;
(2
|^ k)
>= 1 by
Th11;
then
A8: ((2
|^ k)
+ (2
|^ k))
>= ((2
|^ k)
+ 1) by
XREAL_1: 7;
(2
|^ (k
+ 1))
= ((2
|^ k)
* (2
|^ 1)) by
NEWTON: 8
.= ((2
|^ k)
* 2)
.= ((2
|^ k)
+ (2
|^ k));
hence thesis by
A8,
A7,
XXREAL_0: 2;
end;
take n;
A9: r
= (1
/ t)
.= ((u
* 1)
/ (u
* t)) by
A2,
XCMPLX_1: 91
.= (u
/ (u
* t));
A10:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A10,
A6);
then (u
/ n)
>= (u
/ (2
|^ n)) by
A2,
A3,
A4,
XREAL_1: 118;
hence thesis by
A9,
A5,
XXREAL_0: 2;
end;
theorem ::
PREPOWER:93
k
>= n & r
>= 1 implies (r
|^ k)
>= (r
|^ n)
proof
assume that
A1: k
>= n and
A2: r
>= 1;
consider m be
Nat such that
A3: k
= (n
+ m) by
A1,
NAT_1: 10;
A4: (r
|^ k)
= ((r
|^ n)
* (r
|^ m)) by
A3,
NEWTON: 8;
(r
|^ n)
>= 1 by
A2,
Th11;
hence thesis by
A2,
A4,
Th11,
XREAL_1: 151;
end;
theorem ::
PREPOWER:94
Th94: for n,m,l be
Nat st n
divides m & n
divides l holds n
divides (m
- l)
proof
let n,m,l be
Nat;
assume that
A1: n
divides m and
A2: n
divides l;
A3: (
- l)
= (
- (n
* (l
div n))) by
A2,
NAT_D: 3
.= (n
* (
- (l
div n)));
m
= (n
* (m
div n)) by
A1,
NAT_D: 3;
then (m
- l)
= (n
* ((m
div n)
+ (
- (l
div n)))) by
A3;
hence thesis by
INT_1:def 3;
end;
theorem ::
PREPOWER:95
m
divides n iff m
divides n qua
Integer;
theorem ::
PREPOWER:96
Th96: (m
gcd n)
= (m
gcd
|.(n
- m).|)
proof
set x = (m
gcd n), y = (m
gcd
|.(n
- m).|);
A1: x
divides m by
NAT_D:def 5;
A2: x
divides n by
NAT_D:def 5;
A3: y
divides m by
NAT_D:def 5;
per cases ;
suppose (n
- m)
>=
0 ;
then
reconsider nm = (n
- m) as
Element of
NAT by
INT_1: 3;
A4:
|.(n
- m).|
= nm by
ABSVALUE:def 1;
then y
divides nm by
NAT_D:def 5;
then y
divides (nm
+ m) by
A3,
NAT_D: 8;
then
A5: y
divides x by
A3,
NAT_D:def 5;
x
divides (n
- m) by
A1,
A2,
Th94;
then x
divides y by
A1,
A4,
NAT_D:def 5;
hence thesis by
A5,
NAT_D: 5;
end;
suppose
A6: (n
- m)
<
0 ;
reconsider nn = n as
Integer;
A7:
|.(n
- m).|
= (
- (n
- m)) by
A6,
ABSVALUE:def 1
.= (m
- n);
then
reconsider mn = (m
- n) as
Element of
NAT ;
y
divides mn by
A7,
NAT_D:def 5;
then y
divides (mn
- m) by
A3,
Th94;
then y
divides nn by
INT_2: 10;
then
A8: y
divides x by
A3,
NAT_D:def 5;
x
divides (m
- n) by
A1,
A2,
Th94;
then x
divides y by
A1,
A7,
NAT_D:def 5;
hence thesis by
A8,
NAT_D: 5;
end;
end;
theorem ::
PREPOWER:97
for a,b be
Integer st a
>=
0 & b
>=
0 holds (a
gcd b)
= (a
gcd (b
- a))
proof
let a,b be
Integer;
assume that
A1: a
>=
0 and
A2: b
>=
0 ;
thus (a
gcd b)
= (
|.a.|
gcd
|.b.|) by
INT_2: 34
.= (
|.a.|
gcd
|.(
|.b.|
-
|.a.|).|) by
Th96
.= (
|.a.|
gcd
|.(b
-
|.a.|).|) by
A2,
ABSVALUE:def 1
.= (
|.a.|
gcd
|.(b
- a).|) by
A1,
ABSVALUE:def 1
.= (a
gcd (b
- a)) by
INT_2: 34;
end;
theorem ::
PREPOWER:98
a
>=
0 implies (a
#Z l)
>=
0 by
Lm5;
theorem ::
PREPOWER:99
a
>
0 implies (a
#Q l)
= (a
#Z l)
proof
assume a
>
0 ;
then (a
#Z l)
>
0 by
Th39;
then
A1: (a
#Z l)
= ((1
-Root (a
#Z l))
|^ 1) by
Def2;
(
denominator l)
= 1 by
RAT_1: 17;
hence (a
#Q l)
= (1
-Root (a
#Z l)) by
RAT_1: 17
.= (a
#Z l) by
A1;
end;
theorem ::
PREPOWER:100
l
<>
0 implies (
0
#Z l)
=
0
proof
assume
A1: l
<>
0 ;
per cases by
A1;
suppose
A2: l
>
0 ;
then
reconsider l as
Element of
NAT by
INT_1: 3;
l
>= (
0
+ 1) by
A2,
NAT_1: 13;
then
A3: (
0
|^ l)
=
0 by
NEWTON: 11;
|.l.|
= l by
ABSVALUE:def 1;
hence thesis by
A3,
Def3;
end;
suppose
A4: l
<
0 ;
then
reconsider k = (
- l) as
Element of
NAT by
INT_1: 3;
k
> (
-
0 ) by
A4;
then k
>= (
0
+ 1) by
NAT_1: 13;
then
A5: (
0
|^ k)
=
0 by
NEWTON: 11;
|.l.|
= k by
A4,
ABSVALUE:def 1;
then ((
0
|^
|.l.|)
" )
=
0 by
A5;
hence thesis by
A4,
Def3;
end;
end;