series_4.miz
begin
reserve n for
Nat,
a,b,c,d for
Real,
s for
Real_Sequence;
Lm1: 4
= (2
|^ 2) & ((a
+ b)
|^ 2)
= (((a
|^ 2)
+ ((2
* a)
* b))
+ (b
|^ 2))
proof
A1: ((a
+ b)
|^ (1
+ 1))
= (((a
+ b)
|^ 1)
* (a
+ b)) by
NEWTON: 6
.= ((a
+ b)
* (a
+ b))
.= (((a
* a)
+ (a
* b))
+ ((a
* b)
+ (b
* b)))
.= (((a
* a)
+ (a
* b))
+ ((a
* b)
+ (b
|^ 2))) by
WSIERP_1: 1
.= (((a
|^ 2)
+ (a
* b))
+ ((a
* b)
+ (b
|^ 2))) by
WSIERP_1: 1
.= (((a
|^ 2)
+ (2
* (a
* b)))
+ (b
|^ 2));
(2
|^ 2)
= (2
* 2) by
WSIERP_1: 1
.= 4;
hence thesis by
A1;
end;
Lm2: ((((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))
|^ 2)
= ((((1
/ 4)
|^ (n
+ 1))
+ (4
|^ (n
+ 1)))
+ 2)
proof
((((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))
|^ (1
+ 1))
= (((((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))
|^ 1)
* (((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))) by
NEWTON: 6
.= ((((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))
* (((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1))))
.= (((((1
/ 2)
|^ (n
+ 1))
* ((1
/ 2)
|^ (n
+ 1)))
+ (((1
/ 2)
|^ (n
+ 1))
* (2
|^ (n
+ 1))))
+ (((2
|^ (n
+ 1))
* ((1
/ 2)
|^ (n
+ 1)))
+ ((2
|^ (n
+ 1))
* (2
|^ (n
+ 1)))))
.= (((((1
/ 2)
* (1
/ 2))
|^ (n
+ 1))
+ (((1
/ 2)
|^ (n
+ 1))
* (2
|^ (n
+ 1))))
+ (((2
|^ (n
+ 1))
* ((1
/ 2)
|^ (n
+ 1)))
+ ((2
|^ (n
+ 1))
* (2
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 2)
* 1)
/ 2)
|^ (n
+ 1))
+ (((1
/ 2)
* 2)
|^ (n
+ 1)))
+ (((2
|^ (n
+ 1))
* ((1
/ 2)
|^ (n
+ 1)))
+ ((2
|^ (n
+ 1))
* (2
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 2)
* 1)
/ 2)
|^ (n
+ 1))
+ (((1
/ 2)
* 2)
|^ (n
+ 1)))
+ (((2
* (1
/ 2))
|^ (n
+ 1))
+ ((2
|^ (n
+ 1))
* (2
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 2)
* 1)
/ 2)
|^ (n
+ 1))
+ (((1
/ 2)
* 2)
|^ (n
+ 1)))
+ (((2
* (1
/ 2))
|^ (n
+ 1))
+ ((2
* 2)
|^ (n
+ 1)))) by
NEWTON: 7
.= ((((1
/ 4)
|^ (n
+ 1))
+ 1)
+ ((1
|^ (n
+ 1))
+ (4
|^ (n
+ 1))))
.= ((((1
/ 4)
|^ (n
+ 1))
+ 1)
+ (1
+ (4
|^ (n
+ 1))))
.= ((((1
/ 4)
|^ (n
+ 1))
+ 2)
+ (4
|^ (n
+ 1)));
hence thesis;
end;
Lm3: ((((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))
|^ 2)
= ((((1
/ 9)
|^ (n
+ 1))
+ (9
|^ (n
+ 1)))
+ 2)
proof
((((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))
|^ (1
+ 1))
= (((((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))
|^ 1)
* (((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))) by
NEWTON: 6
.= ((((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))
* (((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1))))
.= (((((1
/ 3)
|^ (n
+ 1))
* ((1
/ 3)
|^ (n
+ 1)))
+ (((1
/ 3)
|^ (n
+ 1))
* (3
|^ (n
+ 1))))
+ (((3
|^ (n
+ 1))
* ((1
/ 3)
|^ (n
+ 1)))
+ ((3
|^ (n
+ 1))
* (3
|^ (n
+ 1)))))
.= (((((1
/ 3)
* (1
/ 3))
|^ (n
+ 1))
+ (((1
/ 3)
|^ (n
+ 1))
* (3
|^ (n
+ 1))))
+ (((3
|^ (n
+ 1))
* ((1
/ 3)
|^ (n
+ 1)))
+ ((3
|^ (n
+ 1))
* (3
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 3)
* 1)
/ 3)
|^ (n
+ 1))
+ (((1
/ 3)
* 3)
|^ (n
+ 1)))
+ (((3
|^ (n
+ 1))
* ((1
/ 3)
|^ (n
+ 1)))
+ ((3
|^ (n
+ 1))
* (3
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 3)
* 1)
/ 3)
|^ (n
+ 1))
+ (((1
/ 3)
* 3)
|^ (n
+ 1)))
+ (((3
* (1
/ 3))
|^ (n
+ 1))
+ ((3
|^ (n
+ 1))
* (3
|^ (n
+ 1))))) by
NEWTON: 7
.= ((((((1
/ 3)
* 1)
/ 3)
|^ (n
+ 1))
+ (((1
/ 3)
* 3)
|^ (n
+ 1)))
+ (((3
* (1
/ 3))
|^ (n
+ 1))
+ ((3
* 3)
|^ (n
+ 1)))) by
NEWTON: 7
.= ((((1
/ 9)
|^ (n
+ 1))
+ 1)
+ ((1
|^ (n
+ 1))
+ (9
|^ (n
+ 1))))
.= ((((1
/ 9)
|^ (n
+ 1))
+ 1)
+ (1
+ (9
|^ (n
+ 1))))
.= ((((1
/ 9)
|^ (n
+ 1))
+ 2)
+ (9
|^ (n
+ 1)));
hence thesis;
end;
Lm4: ((a
- b)
* (a
+ b))
= ((a
|^ 2)
- (b
|^ 2))
proof
((a
- b)
* (a
+ b))
= ((a
* a)
- (b
* b))
.= ((a
|^ 2)
- (b
* b)) by
WSIERP_1: 1
.= ((a
|^ 2)
- (b
|^ 2)) by
WSIERP_1: 1;
hence thesis;
end;
Lm5: ((a
- b)
|^ 2)
= (((a
|^ 2)
- ((2
* a)
* b))
+ (b
|^ 2))
proof
((a
- b)
|^ (1
+ 1))
= (((a
- b)
|^ 1)
* (a
- b)) by
NEWTON: 6
.= ((a
- b)
* (a
- b))
.= (((a
* a)
- (a
* b))
- ((a
* b)
- (b
* b)))
.= (((a
* a)
- (a
* b))
- ((a
* b)
- (b
|^ 2))) by
WSIERP_1: 1
.= (((a
|^ 2)
- (a
* b))
- ((a
* b)
- (b
|^ 2))) by
WSIERP_1: 1
.= (((a
|^ 2)
- (2
* (a
* b)))
+ (b
|^ 2));
hence thesis;
end;
Lm6: a
<> 1 implies (((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1)))
= (((a
* (1
- (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
- (((n
+ 1)
* (a
|^ (n
+ 2)))
/ (1
- a)))
proof
assume a
<> 1;
then
A1: (1
- a)
<>
0 ;
then (((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1)))
= (((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- (((1
- a)
* (n
* (a
|^ (n
+ 1))))
/ ((1
- a)
* (1
- a))))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1))) by
XCMPLX_1: 91
.= (((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- (((1
- a)
* (n
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2)))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1))) by
WSIERP_1: 1
.= (((((a
- (a
* (a
|^ n)))
- ((n
* (a
|^ (n
+ 1)))
- ((n
* (a
|^ (n
+ 1)))
* a)))
/ ((1
- a)
|^ 2))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1))) by
XCMPLX_1: 120
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* 1))
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* (((1
- a)
/ (1
- a))
* 1))) by
A1,
XCMPLX_1: 60
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* (((1
- a)
/ (1
- a))
* ((1
- a)
/ (1
- a))))) by
A1,
XCMPLX_1: 60
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* (((1
- a)
* (1
- a))
/ ((1
- a)
* (1
- a))))) by
XCMPLX_1: 76
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* ((((1
- a)
|^ 1)
* (1
- a))
/ ((1
- a)
* (1
- a)))))
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* (((1
- a)
|^ (1
+ 1))
/ ((1
- a)
* (1
- a))))) by
NEWTON: 6
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* ((((1
|^ 2)
- ((2
* 1)
* a))
+ (a
|^ 2))
/ ((1
- a)
* (1
- a))))) by
Lm5
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* ((((1
|^ 2)
- ((2
* 1)
* a))
+ (a
|^ 2))
/ ((1
- a)
|^ 2)))) by
WSIERP_1: 1
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ (((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* (((1
- (2
* a))
+ (a
|^ 2))
/ ((1
- a)
|^ 2))))
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
+ ((((n
* (a
|^ (n
+ 1)))
+ (a
|^ (n
+ 1)))
* ((1
- (2
* a))
+ (a
|^ 2)))
/ ((1
- a)
|^ 2))) by
XCMPLX_1: 74
.= (((((a
- (a
* (a
|^ n)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
+ (((((n
* (a
|^ (n
+ 1)))
* 1)
- (((n
* (a
|^ (n
+ 1)))
* 2)
* a))
+ ((n
* (a
|^ (n
+ 1)))
* (a
|^ 2)))
+ ((((a
|^ (n
+ 1))
* 1)
- (((a
|^ (n
+ 1))
* 2)
* a))
+ ((a
|^ (n
+ 1))
* (a
|^ 2)))))
/ ((1
- a)
|^ 2)) by
XCMPLX_1: 62
.= (((((a
- (a
|^ (n
+ 1)))
- (n
* (a
|^ (n
+ 1))))
+ ((a
* n)
* (a
|^ (n
+ 1))))
+ ((((n
* (a
|^ (n
+ 1)))
- (((n
* (a
|^ (n
+ 1)))
* 2)
* a))
+ ((n
* (a
|^ (n
+ 1)))
* (a
|^ 2)))
+ (((a
|^ (n
+ 1))
- (((a
|^ (n
+ 1))
* 2)
* a))
+ ((a
|^ (n
+ 1))
* (a
|^ 2)))))
/ ((1
- a)
|^ 2)) by
NEWTON: 6
.= (((a
- ((a
|^ (n
+ 1))
* a))
- (((n
+ 1)
* (a
|^ (n
+ 1)))
* (a
- (a
|^ 2))))
/ ((1
- a)
|^ 2))
.= (((a
- ((a
|^ (n
+ 1))
* a))
- (((n
+ 1)
* (a
|^ (n
+ 1)))
* (a
- (a
* a))))
/ ((1
- a)
|^ 2)) by
WSIERP_1: 1
.= (((a
- ((a
|^ (n
+ 1))
* a))
/ ((1
- a)
|^ 2))
- (((((n
+ 1)
* (a
|^ (n
+ 1)))
* a)
* (1
- a))
/ ((1
- a)
|^ 2))) by
XCMPLX_1: 120
.= (((a
- ((a
|^ (n
+ 1))
* a))
/ ((1
- a)
|^ 2))
- (((((n
+ 1)
* (a
|^ (n
+ 1)))
* a)
* (1
- a))
/ ((1
- a)
* (1
- a)))) by
WSIERP_1: 1
.= (((a
- ((a
|^ (n
+ 1))
* a))
/ ((1
- a)
|^ 2))
- ((((((n
+ 1)
* (a
|^ (n
+ 1)))
* a)
/ (1
- a))
* (1
- a))
/ (1
- a))) by
XCMPLX_1: 83
.= (((a
* (1
- (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
- (((n
+ 1)
* ((a
|^ (n
+ 1))
* a))
/ (1
- a))) by
A1,
XCMPLX_1: 87
.= (((a
* (1
- (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
- (((n
+ 1)
* (a
|^ ((n
+ 1)
+ 1)))
/ (1
- a))) by
NEWTON: 6
.= (((a
* (1
- (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
- (((n
+ 1)
* (a
|^ (n
+ 2)))
/ (1
- a)));
hence thesis;
end;
Lm7: (1
/ ((2
-Root (n
+ 2))
+ (2
-Root (n
+ 1))))
= ((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
proof
((n
+ 1)
+ 1)
> (n
+ 1) by
NAT_1: 13;
then (2
-Root (n
+ 2))
> (2
-Root (n
+ 1)) by
PREPOWER: 28;
then ((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
> ((2
-Root (n
+ 1))
- (2
-Root (n
+ 1))) by
XREAL_1: 9;
then ((1
/ ((2
-Root (n
+ 2))
+ (2
-Root (n
+ 1))))
* 1)
= ((1
* ((2
-Root (n
+ 2))
- (2
-Root (n
+ 1))))
/ (((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
* ((2
-Root (n
+ 2))
+ (2
-Root (n
+ 1))))) by
XCMPLX_1: 91
.= (((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
/ (((2
-Root (n
+ 2))
|^ 2)
- ((2
-Root (n
+ 1))
|^ 2))) by
Lm4
.= (((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
/ ((n
+ 2)
- ((2
-Root (n
+ 1))
|^ 2))) by
PREPOWER: 19
.= (((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))
/ ((n
+ 2)
- (n
+ 1))) by
PREPOWER: 19
.= ((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)));
hence thesis;
end;
theorem ::
SERIES_4:1
Th1: (((a
+ b)
+ c)
|^ 2)
= ((((((a
|^ 2)
+ (b
|^ 2))
+ (c
|^ 2))
+ ((2
* a)
* b))
+ ((2
* a)
* c))
+ ((2
* b)
* c))
proof
(((a
+ b)
+ c)
|^ (1
+ 1))
= ((((a
+ b)
+ c)
|^ 1)
* ((a
+ b)
+ c)) by
NEWTON: 6
.= (((a
+ b)
+ c)
* ((a
+ b)
+ c))
.= (((((a
* a)
+ (a
* b))
+ (a
* c))
+ (((a
* b)
+ (b
* b))
+ (b
* c)))
+ (((a
* c)
+ (c
* b))
+ (c
* c)))
.= (((((a
* a)
+ (a
* b))
+ (a
* c))
+ (((a
* b)
+ (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
+ (c
* b))
+ (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
+ (a
* b))
+ (a
* c))
+ (((a
* b)
+ (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
+ (c
* b))
+ (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
+ (a
* b))
+ (a
* c))
+ (((a
* b)
+ (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
+ (c
* b))
+ (c
|^ 2))) by
WSIERP_1: 1
.= ((((((a
|^ 2)
+ (c
|^ 2))
+ ((2
* a)
* b))
+ ((2
* a)
* c))
+ ((2
* b)
* c))
+ (b
|^ 2));
hence thesis;
end;
theorem ::
SERIES_4:2
Th2: ((a
+ b)
|^ 3)
= ((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((3
* (b
|^ 2))
* a))
+ (b
|^ 3))
proof
((a
+ b)
|^ (2
+ 1))
= (((a
+ b)
|^ 2)
* (a
+ b)) by
NEWTON: 6
.= ((((a
|^ 2)
+ ((2
* a)
* b))
+ (b
|^ 2))
* (a
+ b)) by
Lm1
.= (((((a
|^ 2)
* a)
+ ((a
|^ 2)
* b))
+ ((((2
* a)
* b)
* a)
+ (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
+ ((b
|^ 2)
* b)))
.= (((((a
|^ 2)
* a)
+ ((a
|^ 2)
* b))
+ ((((2
* a)
* b)
* a)
+ (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
+ (b
|^ (2
+ 1)))) by
NEWTON: 6
.= ((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ (((2
* (a
* a))
* b)
+ (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
+ (b
|^ 3))) by
NEWTON: 6
.= ((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ (((2
* ((a
|^ 1)
* a))
* b)
+ (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
+ (b
|^ 3)))
.= ((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ (((2
* (a
|^ (1
+ 1)))
* b)
+ (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
+ (b
|^ 3))) by
NEWTON: 6
.= ((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((2
* (b
* b))
* a))
+ (((b
|^ 2)
* a)
+ (b
|^ 3)))
.= ((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((2
* ((b
|^ 1)
* b))
* a))
+ (((b
|^ 2)
* a)
+ (b
|^ 3)))
.= ((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((2
* (b
|^ (1
+ 1)))
* a))
+ (((b
|^ 2)
* a)
+ (b
|^ 3))) by
NEWTON: 6
.= ((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((3
* (b
|^ 2))
* a))
+ (b
|^ 3));
hence thesis;
end;
theorem ::
SERIES_4:3
(((a
- b)
+ c)
|^ 2)
= ((((((a
|^ 2)
+ (b
|^ 2))
+ (c
|^ 2))
- ((2
* a)
* b))
+ ((2
* a)
* c))
- ((2
* b)
* c))
proof
(((a
- b)
+ c)
|^ (1
+ 1))
= ((((a
- b)
+ c)
|^ 1)
* ((a
- b)
+ c)) by
NEWTON: 6
.= (((a
- b)
+ c)
* ((a
- b)
+ c))
.= (((((a
* a)
- (a
* b))
+ (a
* c))
- (((a
* b)
- (b
* b))
+ (b
* c)))
+ (((a
* c)
- (c
* b))
+ (c
* c)))
.= (((((a
* a)
- (a
* b))
+ (a
* c))
- (((a
* b)
- (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
- (c
* b))
+ (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
- (a
* b))
+ (a
* c))
- (((a
* b)
- (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
- (c
* b))
+ (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
- (a
* b))
+ (a
* c))
- (((a
* b)
- (b
|^ 2))
+ (b
* c)))
+ (((a
* c)
- (c
* b))
+ (c
|^ 2))) by
WSIERP_1: 1
.= ((((((a
|^ 2)
+ (c
|^ 2))
- ((2
* a)
* b))
+ ((2
* a)
* c))
- ((2
* b)
* c))
+ (b
|^ 2));
hence thesis;
end;
theorem ::
SERIES_4:4
(((a
- b)
- c)
|^ 2)
= ((((((a
|^ 2)
+ (b
|^ 2))
+ (c
|^ 2))
- ((2
* a)
* b))
- ((2
* a)
* c))
+ ((2
* b)
* c))
proof
(((a
- b)
- c)
|^ (1
+ 1))
= ((((a
- b)
- c)
|^ 1)
* ((a
- b)
- c)) by
NEWTON: 6
.= (((a
- b)
- c)
* ((a
- b)
- c))
.= (((((a
* a)
- (a
* b))
- (a
* c))
- (((a
* b)
- (b
* b))
- (b
* c)))
- (((a
* c)
- (c
* b))
- (c
* c)))
.= (((((a
* a)
- (a
* b))
- (a
* c))
- (((a
* b)
- (b
|^ 2))
- (b
* c)))
- (((a
* c)
- (c
* b))
- (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
- (a
* b))
- (a
* c))
- (((a
* b)
- (b
|^ 2))
- (b
* c)))
- (((a
* c)
- (c
* b))
- (c
* c))) by
WSIERP_1: 1
.= (((((a
|^ 2)
- (a
* b))
- (a
* c))
- (((a
* b)
- (b
|^ 2))
- (b
* c)))
- (((a
* c)
- (c
* b))
- (c
|^ 2))) by
WSIERP_1: 1
.= ((((((a
|^ 2)
+ (c
|^ 2))
- ((2
* a)
* b))
- ((2
* a)
* c))
+ ((2
* b)
* c))
+ (b
|^ 2));
hence thesis;
end;
theorem ::
SERIES_4:5
((a
- b)
|^ 3)
= ((((a
|^ 3)
- ((3
* (a
|^ 2))
* b))
+ ((3
* (b
|^ 2))
* a))
- (b
|^ 3))
proof
((a
- b)
|^ (2
+ 1))
= (((a
- b)
|^ 2)
* (a
- b)) by
NEWTON: 6
.= ((((a
|^ 2)
- ((2
* a)
* b))
+ (b
|^ 2))
* (a
- b)) by
Lm5
.= (((((a
|^ 2)
* a)
- ((a
|^ 2)
* b))
- ((((2
* a)
* b)
* a)
- (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
- ((b
|^ 2)
* b)))
.= (((((a
|^ 2)
* a)
- ((a
|^ 2)
* b))
- ((((2
* a)
* b)
* a)
- (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
- (b
|^ (2
+ 1)))) by
NEWTON: 6
.= ((((a
|^ 3)
- ((a
|^ 2)
* b))
- (((2
* (a
* a))
* b)
- (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
- (b
|^ 3))) by
NEWTON: 6
.= ((((a
|^ 3)
- ((a
|^ 2)
* b))
- (((2
* ((a
|^ 1)
* a))
* b)
- (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
- (b
|^ 3)))
.= ((((a
|^ 3)
- ((a
|^ 2)
* b))
- (((2
* (a
|^ (1
+ 1)))
* b)
- (((2
* a)
* b)
* b)))
+ (((b
|^ 2)
* a)
- (b
|^ 3))) by
NEWTON: 6
.= (((((a
|^ 3)
- ((3
* (a
|^ 2))
* b))
+ ((2
* (b
* b))
* a))
+ ((b
|^ 2)
* a))
- (b
|^ 3))
.= (((((a
|^ 3)
- ((3
* (a
|^ 2))
* b))
+ ((2
* ((b
|^ 1)
* b))
* a))
+ ((b
|^ 2)
* a))
- (b
|^ 3))
.= (((((a
|^ 3)
- ((3
* (a
|^ 2))
* b))
+ ((2
* (b
|^ (1
+ 1)))
* a))
+ ((b
|^ 2)
* a))
- (b
|^ 3)) by
NEWTON: 6
.= ((((a
|^ 3)
- ((3
* (a
|^ 2))
* b))
+ ((3
* (b
|^ 2))
* a))
- (b
|^ 3));
hence thesis;
end;
theorem ::
SERIES_4:6
((a
+ b)
|^ 4)
= (((((a
|^ 4)
+ ((4
* (a
|^ 3))
* b))
+ ((6
* (a
|^ 2))
* (b
|^ 2)))
+ ((4
* (b
|^ 3))
* a))
+ (b
|^ 4))
proof
((a
+ b)
|^ (3
+ 1))
= (((a
+ b)
|^ 3)
* (a
+ b)) by
NEWTON: 6
.= (((((a
|^ 3)
+ ((3
* (a
|^ 2))
* b))
+ ((3
* (b
|^ 2))
* a))
+ (b
|^ 3))
* (a
+ b)) by
Th2
.= ((((((a
|^ 3)
* a)
+ ((a
|^ 3)
* b))
+ ((((3
* (a
|^ 2))
* b)
* a)
+ (((3
* (a
|^ 2))
* b)
* b)))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ ((b
|^ 3)
* b)))
.= ((((((a
|^ 3)
* a)
+ ((a
|^ 3)
* b))
+ ((((3
* (a
|^ 2))
* b)
* a)
+ (((3
* (a
|^ 2))
* b)
* b)))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ (3
+ 1)))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* ((a
|^ 2)
* a))
* b)
+ (((3
* (a
|^ 2))
* b)
* b)))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ (2
+ 1)))
* b)
+ (((3
* (a
|^ 2))
* b)
* b)))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
* b))))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4)))
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* ((b
|^ 1)
* b))))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4)))
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
|^ (1
+ 1)))))
+ ((((3
* (b
|^ 2))
* a)
* a)
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
|^ 2))))
+ (((3
* (b
|^ 2))
* (a
* a))
+ (((3
* (b
|^ 2))
* a)
* b)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4)))
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
|^ 2))))
+ (((3
* (b
|^ 2))
* ((a
|^ 1)
* a))
+ (((3
* (b
|^ 2))
* b)
* a)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4)))
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
|^ 2))))
+ (((3
* (b
|^ 2))
* (a
|^ (1
+ 1)))
+ ((3
* ((b
|^ 2)
* b))
* a)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((a
|^ 3)
* b))
+ (((3
* (a
|^ 3))
* b)
+ ((3
* (a
|^ 2))
* (b
|^ 2))))
+ (((3
* (b
|^ 2))
* (a
|^ 2))
+ ((3
* (b
|^ (2
+ 1)))
* a)))
+ (((b
|^ 3)
* a)
+ (b
|^ 4))) by
NEWTON: 6
.= (((((a
|^ 4)
+ ((4
* (a
|^ 3))
* b))
+ ((6
* (a
|^ 2))
* (b
|^ 2)))
+ ((4
* (b
|^ 3))
* a))
+ (b
|^ 4));
hence thesis;
end;
theorem ::
SERIES_4:7
((((a
+ b)
+ c)
+ d)
|^ 2)
= (((((((a
|^ 2)
+ (b
|^ 2))
+ (c
|^ 2))
+ (d
|^ 2))
+ ((((2
* a)
* b)
+ ((2
* a)
* c))
+ ((2
* a)
* d)))
+ (((2
* b)
* c)
+ ((2
* b)
* d)))
+ ((2
* c)
* d))
proof
((((a
+ b)
+ c)
+ d)
|^ (1
+ 1))
= (((((a
+ b)
+ c)
+ d)
|^ 1)
* (((a
+ b)
+ c)
+ d)) by
NEWTON: 6
.= ((((a
+ b)
+ c)
+ d)
* (((a
+ b)
+ c)
+ d))
.= (((((((a
* a)
+ (a
* b))
+ (a
* c))
+ (a
* d))
+ ((((a
* b)
+ (b
* b))
+ (b
* c))
+ (b
* d)))
+ ((((a
* c)
+ (c
* b))
+ (c
* c))
+ (c
* d)))
+ ((((a
* d)
+ (d
* b))
+ (d
* c))
+ (d
* d)))
.= (((((((a
* a)
+ (a
* b))
+ (a
* c))
+ (a
* d))
+ ((((a
* b)
+ (b
|^ 2))
+ (b
* c))
+ (b
* d)))
+ ((((a
* c)
+ (c
* b))
+ (c
* c))
+ (c
* d)))
+ ((((a
* d)
+ (d
* b))
+ (d
* c))
+ (d
* d))) by
WSIERP_1: 1
.= (((((((a
|^ 2)
+ (a
* b))
+ (a
* c))
+ (a
* d))
+ ((((a
* b)
+ (b
|^ 2))
+ (b
* c))
+ (b
* d)))
+ ((((a
* c)
+ (c
* b))
+ (c
* c))
+ (c
* d)))
+ ((((a
* d)
+ (d
* b))
+ (d
* c))
+ (d
* d))) by
WSIERP_1: 1
.= (((((((a
|^ 2)
+ (a
* b))
+ (a
* c))
+ (a
* d))
+ ((((a
* b)
+ (b
|^ 2))
+ (b
* c))
+ (b
* d)))
+ ((((a
* c)
+ (c
* b))
+ (c
|^ 2))
+ (c
* d)))
+ ((((a
* d)
+ (d
* b))
+ (d
* c))
+ (d
* d))) by
WSIERP_1: 1
.= (((((((a
|^ 2)
+ (a
* b))
+ (a
* c))
+ (a
* d))
+ ((((a
* b)
+ (b
|^ 2))
+ (b
* c))
+ (b
* d)))
+ ((((a
* c)
+ (c
* b))
+ (c
|^ 2))
+ (c
* d)))
+ ((((a
* d)
+ (d
* b))
+ (d
* c))
+ (d
|^ 2))) by
WSIERP_1: 1
.= (((((((a
|^ 2)
+ (c
|^ 2))
+ (b
|^ 2))
+ (d
|^ 2))
+ ((((2
* a)
* b)
+ ((2
* a)
* c))
+ ((2
* a)
* d)))
+ (((2
* b)
* c)
+ ((2
* b)
* d)))
+ ((2
* c)
* d));
hence thesis;
end;
theorem ::
SERIES_4:8
(((a
+ b)
+ c)
|^ 3)
= (((((((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
+ (((3
* (a
|^ 2))
* b)
+ ((3
* (a
|^ 2))
* c)))
+ (((3
* (b
|^ 2))
* a)
+ ((3
* (b
|^ 2))
* c)))
+ (((3
* (c
|^ 2))
* a)
+ ((3
* (c
|^ 2))
* b)))
+ (((6
* a)
* b)
* c))
proof
(((a
+ b)
+ c)
|^ (2
+ 1))
= ((((a
+ b)
+ c)
|^ 2)
* ((a
+ b)
+ c)) by
NEWTON: 6
.= (((((((a
|^ 2)
+ (b
|^ 2))
+ (c
|^ 2))
+ ((2
* a)
* b))
+ ((2
* a)
* c))
+ ((2
* b)
* c))
* ((a
+ b)
+ c)) by
Th1
.= (((((((((a
|^ 2)
* a)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ ((b
|^ 2)
* b))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ ((c
|^ 2)
* c)))
+ (((((2
* a)
* b)
* a)
+ (((2
* a)
* b)
* b))
+ (((2
* a)
* b)
* c)))
+ (((((2
* a)
* c)
* a)
+ (((2
* a)
* c)
* b))
+ (((2
* a)
* c)
* c)))
+ (((((2
* b)
* c)
* a)
+ (((2
* b)
* c)
* b))
+ (((2
* b)
* c)
* c)))
.= ((((((((a
|^ (2
+ 1))
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ ((b
|^ 2)
* b))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ ((c
|^ 2)
* c)))
+ (((((2
* a)
* b)
* a)
+ (((2
* a)
* b)
* b))
+ (((2
* a)
* b)
* c)))
+ (((((2
* a)
* c)
* a)
+ (((2
* a)
* c)
* b))
+ (((2
* a)
* c)
* c)))
+ (((((2
* b)
* c)
* a)
+ (((2
* b)
* c)
* b))
+ (((2
* b)
* c)
* c))) by
NEWTON: 6
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ (2
+ 1)))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ ((c
|^ 2)
* c)))
+ (((((2
* a)
* b)
* a)
+ (((2
* a)
* b)
* b))
+ (((2
* a)
* b)
* c)))
+ (((((2
* a)
* c)
* a)
+ (((2
* a)
* c)
* b))
+ (((2
* a)
* c)
* c)))
+ (((((2
* b)
* c)
* a)
+ (((2
* b)
* c)
* b))
+ (((2
* b)
* c)
* c))) by
NEWTON: 6
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
* a))
* b)
+ ((2
* a)
* (b
* b)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
* a))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c)))) by
NEWTON: 6
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* ((a
|^ 1)
* a))
* b)
+ ((2
* a)
* (b
* b)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
* a))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c))))
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ (1
+ 1)))
* b)
+ ((2
* a)
* (b
* b)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
* a))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c)))) by
NEWTON: 6
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* ((b
|^ 1)
* b)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
* a))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c))))
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* (b
|^ (1
+ 1))))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
* a))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c)))) by
NEWTON: 6
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* (b
|^ 2)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
|^ 2))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
* c))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c)))) by
WSIERP_1: 1
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* (b
|^ 2)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
|^ 2))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
|^ 2))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
* c)))) by
WSIERP_1: 1
.= ((((((((a
|^ 3)
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ ((((b
|^ 2)
* a)
+ (b
|^ 3))
+ ((b
|^ 2)
* c)))
+ ((((c
|^ 2)
* a)
+ ((c
|^ 2)
* b))
+ (c
|^ 3)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* (b
|^ 2)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
|^ 2))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
|^ 2))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
* b))
* c))
+ ((2
* b)
* (c
|^ 2)))) by
WSIERP_1: 1
.= ((((((((((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
+ ((a
|^ 2)
* b))
+ ((a
|^ 2)
* c))
+ (((b
|^ 2)
* a)
+ ((b
|^ 2)
* c)))
+ (((c
|^ 2)
* a)
+ ((c
|^ 2)
* b)))
+ ((((2
* (a
|^ 2))
* b)
+ ((2
* a)
* (b
|^ 2)))
+ (((2
* a)
* b)
* c)))
+ ((((2
* (a
|^ 2))
* c)
+ (((2
* a)
* c)
* b))
+ ((2
* a)
* (c
|^ 2))))
+ (((((2
* b)
* c)
* a)
+ ((2
* (b
|^ 2))
* c))
+ ((2
* (c
|^ 2))
* b))) by
WSIERP_1: 1
.= (((((((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
+ (((3
* (a
|^ 2))
* b)
+ ((3
* (a
|^ 2))
* c)))
+ (((3
* (b
|^ 2))
* a)
+ ((3
* (b
|^ 2))
* c)))
+ (((3
* (c
|^ 2))
* a)
+ ((3
* (c
|^ 2))
* b)))
+ (((6
* a)
* b)
* c));
hence thesis;
end;
theorem ::
SERIES_4:9
a
<>
0 implies ((((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1)))
|^ 2)
= ((((1
/ a)
|^ ((2
* n)
+ 2))
+ (a
|^ ((2
* n)
+ 2)))
+ 2)
proof
assume
A1: a
<>
0 ;
((((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1)))
|^ (1
+ 1))
= (((((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1)))
|^ 1)
* (((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1)))) by
NEWTON: 6
.= ((((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1)))
* (((1
/ a)
|^ (n
+ 1))
+ (a
|^ (n
+ 1))))
.= (((((1
/ a)
|^ (n
+ 1))
* ((1
/ a)
|^ (n
+ 1)))
+ (((1
/ a)
|^ (n
+ 1))
* (a
|^ (n
+ 1))))
+ (((a
|^ (n
+ 1))
* ((1
/ a)
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
* (a
|^ (n
+ 1)))))
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (((1
/ a)
|^ (n
+ 1))
* (a
|^ (n
+ 1))))
+ (((a
|^ (n
+ 1))
* ((1
/ a)
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
* (a
|^ (n
+ 1))))) by
NEWTON: 7
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (((1
/ a)
* a)
|^ (n
+ 1)))
+ (((a
|^ (n
+ 1))
* ((1
/ a)
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
* (a
|^ (n
+ 1))))) by
NEWTON: 7
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (((1
/ a)
* a)
|^ (n
+ 1)))
+ (((a
* (1
/ a))
|^ (n
+ 1))
+ ((a
|^ (n
+ 1))
* (a
|^ (n
+ 1))))) by
NEWTON: 7
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (((1
/ a)
* a)
|^ (n
+ 1)))
+ (((a
* (1
/ a))
|^ (n
+ 1))
+ ((a
* a)
|^ (n
+ 1)))) by
NEWTON: 7
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (1
|^ (n
+ 1)))
+ ((((1
/ a)
* a)
|^ (n
+ 1))
+ ((a
* a)
|^ (n
+ 1)))) by
A1,
XCMPLX_1: 106
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (1
|^ (n
+ 1)))
+ ((1
|^ (n
+ 1))
+ ((a
* a)
|^ (n
+ 1)))) by
A1,
XCMPLX_1: 106
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ 1)
+ ((1
|^ (n
+ 1))
+ ((a
* a)
|^ (n
+ 1))))
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ 1)
+ (1
+ ((a
* a)
|^ (n
+ 1))))
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ ((a
* a)
|^ (n
+ 1)))
+ 2)
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ ((a
|^ 2)
|^ (n
+ 1)))
+ 2) by
WSIERP_1: 1
.= (((((1
/ a)
* (1
/ a))
|^ (n
+ 1))
+ (a
|^ (2
* (n
+ 1))))
+ 2) by
NEWTON: 9
.= (((((1
/ a)
|^ 2)
|^ (n
+ 1))
+ (a
|^ ((2
* n)
+ 2)))
+ 2) by
WSIERP_1: 1
.= ((((1
/ a)
|^ (2
* (n
+ 1)))
+ (a
|^ ((2
* n)
+ 2)))
+ 2) by
NEWTON: 9
.= ((((1
/ a)
|^ ((2
* n)
+ 2))
+ (a
|^ ((2
* n)
+ 2)))
+ 2);
hence thesis;
end;
theorem ::
SERIES_4:10
(a
<> 1 & for n holds (s
. n)
= (a
|^ n)) implies ((
Partial_Sums s)
. n)
= ((1
- (a
|^ (n
+ 1)))
/ (1
- a))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((1
- (a
|^ ($1
+ 1)))
/ (1
- a));
assume a
<> 1;
then
A1: (1
- a)
<>
0 ;
assume
A2: for n holds (s
. n)
= (a
|^ n);
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((1
- (a
|^ (n
+ 1)))
/ (1
- a));
hence ((
Partial_Sums s)
. (n
+ 1))
= (((1
- (a
|^ (n
+ 1)))
/ (1
- a))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((1
- (a
|^ (n
+ 1)))
/ (1
- a))
+ ((a
|^ (n
+ 1))
* 1)) by
A2
.= (((1
- (a
|^ (n
+ 1)))
/ (1
- a))
+ ((a
|^ (n
+ 1))
* ((1
- a)
/ (1
- a)))) by
A1,
XCMPLX_1: 60
.= (((1
- (a
|^ (n
+ 1)))
/ (1
- a))
+ (((a
|^ (n
+ 1))
* (1
- a))
/ (1
- a))) by
XCMPLX_1: 74
.= (((1
- (a
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
- ((a
|^ (n
+ 1))
* a)))
/ (1
- a)) by
XCMPLX_1: 62
.= (((1
- (a
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
- (a
|^ ((n
+ 1)
+ 1))))
/ (1
- a)) by
NEWTON: 6
.= ((1
- (a
|^ ((n
+ 1)
+ 1)))
/ (1
- a));
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (a
|^
0 ) by
A2
.= 1 by
NEWTON: 4
.= ((1
- a)
/ (1
- a)) by
A1,
XCMPLX_1: 60
.= ((1
- (a
|^ (
0
+ 1)))
/ (1
- a));
then
A4:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A4,
A3);
hence thesis;
end;
theorem ::
SERIES_4:11
(a
<> 1 & a
<>
0 & for n holds (s
. n)
= ((1
/ a)
|^ n)) implies for n holds ((
Partial_Sums s)
. n)
= ((((1
/ a)
|^ n)
- a)
/ (1
- a))
proof
assume that
A1: a
<> 1 and
A2: a
<>
0 ;
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((((1
/ a)
|^ $1)
- a)
/ (1
- a));
assume
A3: for n holds (s
. n)
= ((1
/ a)
|^ n);
A4: (1
- a)
<>
0 by
A1;
A5: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((((1
/ a)
|^ n)
- a)
/ (1
- a));
hence ((
Partial_Sums s)
. (n
+ 1))
= (((((1
/ a)
|^ n)
- a)
/ (1
- a))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((((1
/ a)
|^ n)
- a)
/ (1
- a))
+ (((1
/ a)
|^ (n
+ 1))
* 1)) by
A3
.= (((((1
/ a)
|^ n)
- a)
/ (1
- a))
+ (((1
/ a)
|^ (n
+ 1))
* ((1
- a)
/ (1
- a)))) by
A4,
XCMPLX_1: 60
.= (((((1
/ a)
|^ n)
- a)
/ (1
- a))
+ ((((1
/ a)
|^ (n
+ 1))
* (1
- a))
/ (1
- a))) by
XCMPLX_1: 74
.= (((((1
/ a)
|^ n)
- a)
+ ((((1
/ a)
|^ (n
+ 1))
* 1)
- (((1
/ a)
|^ (n
+ 1))
* a)))
/ (1
- a)) by
XCMPLX_1: 62
.= ((((((1
/ a)
|^ n)
- a)
+ ((1
/ a)
|^ (n
+ 1)))
- (((1
/ a)
|^ (n
+ 1))
* a))
/ (1
- a))
.= ((((((1
/ a)
|^ n)
- a)
+ ((1
/ a)
|^ (n
+ 1)))
- ((((1
/ a)
|^ n)
* (1
/ a))
* a))
/ (1
- a)) by
NEWTON: 6
.= ((((((1
/ a)
|^ n)
- a)
+ ((1
/ a)
|^ (n
+ 1)))
- (((1
/ a)
|^ n)
* ((1
/ a)
* a)))
/ (1
- a))
.= ((((((1
/ a)
|^ n)
- a)
+ ((1
/ a)
|^ (n
+ 1)))
- (((1
/ a)
|^ n)
* 1))
/ (1
- a)) by
A2,
XCMPLX_1: 106
.= ((((1
/ a)
|^ (n
+ 1))
- a)
/ (1
- a));
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((1
/ a)
|^
0 ) by
A3
.= 1 by
NEWTON: 4
.= ((1
- a)
/ (1
- a)) by
A4,
XCMPLX_1: 60
.= ((((1
/ a)
|^
0 )
- a)
/ (1
- a)) by
NEWTON: 4;
then
A6:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A6,
A5);
hence thesis;
end;
theorem ::
SERIES_4:12
(for n holds (s
. n)
= (((10
|^ n)
+ (2
* n))
+ 1)) implies ((
Partial_Sums s)
. n)
= ((((10
|^ (n
+ 1))
/ 9)
- (1
/ 9))
+ ((n
+ 1)
|^ 2))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((((10
|^ ($1
+ 1))
/ 9)
- (1
/ 9))
+ (($1
+ 1)
|^ 2));
assume
A1: for n holds (s
. n)
= (((10
|^ n)
+ (2
* n))
+ 1);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((((10
|^ (n
+ 1))
/ 9)
- (1
/ 9))
+ ((n
+ 1)
|^ 2));
then ((
Partial_Sums s)
. (n
+ 1))
= (((((10
|^ (n
+ 1))
/ 9)
- (1
/ 9))
+ ((n
+ 1)
|^ 2))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((((10
|^ (n
+ 1))
/ 9)
- (1
/ 9))
+ ((n
+ 1)
|^ 2))
+ (((10
|^ (n
+ 1))
+ (2
* (n
+ 1)))
+ 1)) by
A1
.= (((((10
|^ (n
+ 1))
* 10)
/ 9)
- (1
/ 9))
+ ((((n
+ 1)
|^ 2)
+ (2
* n))
+ 3))
.= (((((10
|^ (n
+ 1))
* 10)
/ 9)
- (1
/ 9))
+ (((((n
|^ 2)
+ ((2
* n)
* 1))
+ (1
|^ 2))
+ (2
* n))
+ 3)) by
Lm1
.= (((((10
|^ (n
+ 1))
* 10)
/ 9)
- (1
/ 9))
+ (((((n
|^ 2)
+ (2
* n))
+ 1)
+ (2
* n))
+ 3))
.= (((((10
|^ (n
+ 1))
* 10)
/ 9)
- (1
/ 9))
+ (((n
|^ 2)
+ ((2
* n)
* 2))
+ (2
|^ 2))) by
Lm1
.= (((((10
|^ (n
+ 1))
* 10)
/ 9)
- (1
/ 9))
+ ((n
+ 2)
|^ 2)) by
Lm1
.= ((((10
|^ ((n
+ 1)
+ 1))
/ 9)
- (1
/ 9))
+ ((n
+ 2)
|^ 2)) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (((10
|^
0 )
+ (2
*
0 ))
+ 1) by
A1
.= (((10
/ 9)
- (1
/ 9))
+ 1) by
NEWTON: 4
.= ((((10
|^ (
0
+ 1))
/ 9)
- (1
/ 9))
+ 1)
.= ((((10
|^ (
0
+ 1))
/ 9)
- (1
/ 9))
+ ((
0
+ 1)
|^ 2));
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:13
(for n holds (s
. n)
= (((2
* n)
- 1)
+ ((1
/ 2)
|^ n))) implies ((
Partial_Sums s)
. n)
= (((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((($1
|^ 2)
+ 1)
- ((1
/ 2)
|^ $1));
assume
A1: for n holds (s
. n)
= (((2
* n)
- 1)
+ ((1
/ 2)
|^ n));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n));
then ((
Partial_Sums s)
. (n
+ 1))
= ((((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n))
+ (((2
* (n
+ 1))
- 1)
+ ((1
/ 2)
|^ (n
+ 1)))) by
A1
.= ((((((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n))
+ ((1
/ 2)
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
- 1)
.= ((((((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ n))
+ (((1
/ 2)
|^ n)
* (1
/ 2)))
+ (2
* (n
+ 1)))
- 1) by
NEWTON: 6
.= (((((n
|^ 2)
+ 1)
- (((1
/ 2)
|^ n)
* (1
/ 2)))
+ (2
* (n
+ 1)))
- 1)
.= (((((n
|^ 2)
+ 1)
- ((1
/ 2)
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
- 1) by
NEWTON: 6
.= (((((n
|^ 2)
+ (2
* n))
+ 1)
+ 1)
- ((1
/ 2)
|^ (n
+ 1)))
.= (((((n
|^ 2)
+ ((2
* n)
* 1))
+ (1
|^ 2))
+ 1)
- ((1
/ 2)
|^ (n
+ 1)))
.= ((((n
+ 1)
|^ 2)
+ 1)
- ((1
/ 2)
|^ (n
+ 1))) by
Lm1;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (((2
*
0 )
- 1)
+ ((1
/ 2)
|^
0 )) by
A1
.= ((
- 1)
+ 1) by
NEWTON: 4
.= ((1
- 1)
+ (
0
|^ 2)) by
NEWTON: 11
.= ((1
- ((1
/ 2)
|^
0 ))
+ (
0
|^ 2)) by
NEWTON: 4;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:14
(for n holds (s
. n)
= (n
* ((1
/ 2)
|^ n))) implies ((
Partial_Sums s)
. n)
= (2
- ((2
+ n)
* ((1
/ 2)
|^ n)))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (2
- ((2
+ $1)
* ((1
/ 2)
|^ $1)));
assume
A1: for n holds (s
. n)
= (n
* ((1
/ 2)
|^ n));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (2
- ((2
+ n)
* ((1
/ 2)
|^ n)));
then ((
Partial_Sums s)
. (n
+ 1))
= ((2
- ((2
+ n)
* ((1
/ 2)
|^ n)))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((2
- ((2
+ n)
* ((1
/ 2)
|^ n)))
+ ((n
+ 1)
* ((1
/ 2)
|^ (n
+ 1)))) by
A1
.= ((((2
- (2
* ((1
/ 2)
|^ n)))
- (n
* ((1
/ 2)
|^ n)))
+ (n
* ((1
/ 2)
|^ (n
+ 1))))
+ (1
* ((1
/ 2)
|^ (n
+ 1))))
.= ((((2
- (((4
* 1)
/ 2)
* ((1
/ 2)
|^ n)))
- (n
* ((1
/ 2)
|^ n)))
+ (n
* (((1
/ 2)
|^ n)
* (1
/ 2))))
+ (1
* ((1
/ 2)
|^ (n
+ 1)))) by
NEWTON: 6
.= ((((2
- (4
* (((1
/ 2)
|^ n)
* (1
/ 2))))
- (n
* ((1
/ 2)
|^ n)))
+ ((n
* ((1
/ 2)
|^ n))
* (1
/ 2)))
+ (1
* ((1
/ 2)
|^ (n
+ 1))))
.= ((((2
- (4
* ((1
/ 2)
|^ (n
+ 1))))
- (n
* ((1
/ 2)
|^ n)))
+ ((n
* ((1
/ 2)
|^ n))
* (1
/ 2)))
+ (1
* ((1
/ 2)
|^ (n
+ 1)))) by
NEWTON: 6
.= ((2
- (3
* ((1
/ 2)
|^ (n
+ 1))))
- (n
* (((1
/ 2)
|^ n)
* (1
/ 2))))
.= ((2
- (3
* ((1
/ 2)
|^ (n
+ 1))))
- (n
* ((1
/ 2)
|^ (n
+ 1)))) by
NEWTON: 6
.= (2
- ((3
+ n)
* ((1
/ 2)
|^ (n
+ 1))));
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (
0
* ((1
/ 2)
|^
0 )) by
A1
.= (2
- ((2
+
0 )
* 1))
.= (2
- ((2
+
0 )
* ((1
/ 2)
|^
0 ))) by
NEWTON: 4;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:15
(for n holds (s
. n)
= ((((1
/ 2)
|^ n)
+ (2
|^ n))
|^ 2)) implies for n holds ((
Partial_Sums s)
. n)
= ((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (2
* n))
+ 3)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((((
- (((1
/ 4)
|^ $1)
/ 3))
+ ((4
|^ ($1
+ 1))
/ 3))
+ (2
* $1))
+ 3);
assume
A1: for n holds (s
. n)
= ((((1
/ 2)
|^ n)
+ (2
|^ n))
|^ 2);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (2
* n))
+ 3);
then ((
Partial_Sums s)
. (n
+ 1))
= (((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (2
* n))
+ 3)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (2
* n))
+ 3)
+ ((((1
/ 2)
|^ (n
+ 1))
+ (2
|^ (n
+ 1)))
|^ 2)) by
A1
.= (((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (2
* n))
+ 3)
+ ((((1
/ 4)
|^ (n
+ 1))
+ (4
|^ (n
+ 1)))
+ 2)) by
Lm2
.= ((((((
- (((1
/ 4)
|^ n)
/ 3))
+ ((1
/ 4)
|^ (n
+ 1)))
+ ((4
|^ (n
+ 1))
/ 3))
+ (4
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3)
.= ((((((
- (((1
/ 4)
|^ n)
/ 3))
+ (((1
/ 4)
|^ n)
* (1
/ 4)))
+ ((4
|^ (n
+ 1))
/ 3))
+ (4
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6
.= (((((
- ((((1
/ 4)
|^ n)
* (1
/ 4))
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (4
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3)
.= (((((
- (((1
/ 4)
|^ (n
+ 1))
/ 3))
+ ((4
|^ (n
+ 1))
/ 3))
+ (4
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6
.= ((((
- (((1
/ 4)
|^ (n
+ 1))
/ 3))
+ (((4
|^ (n
+ 1))
* 4)
/ 3))
+ (2
* (n
+ 1)))
+ 3)
.= ((((
- (((1
/ 4)
|^ (n
+ 1))
/ 3))
+ ((4
|^ ((n
+ 1)
+ 1))
/ 3))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((((1
/ 2)
|^
0 )
+ (2
|^
0 ))
|^ 2) by
A1
.= ((1
+ (2
|^
0 ))
|^ 2) by
NEWTON: 4
.= ((1
+ 1)
|^ 2) by
NEWTON: 4
.= ((((
- (1
/ 3))
+ (4
/ 3))
+ (2
*
0 ))
+ 3) by
Lm1
.= ((((
- (((1
/ 4)
|^
0 )
/ 3))
+ (4
/ 3))
+ (2
*
0 ))
+ 3) by
NEWTON: 4
.= ((((
- (((1
/ 4)
|^
0 )
/ 3))
+ ((4
|^ (
0
+ 1))
/ 3))
+ (2
*
0 ))
+ 3);
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:16
(for n holds (s
. n)
= ((((1
/ 3)
|^ n)
+ (3
|^ n))
|^ 2)) implies for n holds ((
Partial_Sums s)
. n)
= ((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (2
* n))
+ 3)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((((
- (((1
/ 9)
|^ $1)
/ 8))
+ ((9
|^ ($1
+ 1))
/ 8))
+ (2
* $1))
+ 3);
assume
A1: for n holds (s
. n)
= ((((1
/ 3)
|^ n)
+ (3
|^ n))
|^ 2);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (2
* n))
+ 3);
then ((
Partial_Sums s)
. (n
+ 1))
= (((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (2
* n))
+ 3)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (2
* n))
+ 3)
+ ((((1
/ 3)
|^ (n
+ 1))
+ (3
|^ (n
+ 1)))
|^ 2)) by
A1
.= (((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (2
* n))
+ 3)
+ ((((1
/ 9)
|^ (n
+ 1))
+ (9
|^ (n
+ 1)))
+ 2)) by
Lm3
.= ((((((
- (((1
/ 9)
|^ n)
/ 8))
+ ((1
/ 9)
|^ (n
+ 1)))
+ ((9
|^ (n
+ 1))
/ 8))
+ (9
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3)
.= ((((((
- (((1
/ 9)
|^ n)
/ 8))
+ (((1
/ 9)
|^ n)
* (1
/ 9)))
+ ((9
|^ (n
+ 1))
/ 8))
+ (9
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6
.= (((((
- ((((1
/ 9)
|^ n)
* (1
/ 9))
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (9
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3)
.= (((((
- (((1
/ 9)
|^ (n
+ 1))
/ 8))
+ ((9
|^ (n
+ 1))
/ 8))
+ (9
|^ (n
+ 1)))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6
.= ((((
- (((1
/ 9)
|^ (n
+ 1))
/ 8))
+ (((9
|^ (n
+ 1))
* 9)
/ 8))
+ (2
* (n
+ 1)))
+ 3)
.= ((((
- (((1
/ 9)
|^ (n
+ 1))
/ 8))
+ ((9
|^ ((n
+ 1)
+ 1))
/ 8))
+ (2
* (n
+ 1)))
+ 3) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((((1
/ 3)
|^
0 )
+ (3
|^
0 ))
|^ 2) by
A1
.= ((1
+ (3
|^
0 ))
|^ 2) by
NEWTON: 4
.= ((1
+ 1)
|^ 2) by
NEWTON: 4
.= ((((
- (1
/ 8))
+ (9
/ 8))
+ (2
*
0 ))
+ 3) by
Lm1
.= ((((
- (((1
/ 9)
|^
0 )
/ 8))
+ (9
/ 8))
+ (2
*
0 ))
+ 3) by
NEWTON: 4
.= ((((
- (((1
/ 9)
|^
0 )
/ 8))
+ ((9
|^ (
0
+ 1))
/ 8))
+ (2
*
0 ))
+ 3);
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:17
(for n holds (s
. n)
= (n
* (2
|^ n))) implies for n holds ((
Partial_Sums s)
. n)
= (((n
* (2
|^ (n
+ 1)))
- (2
|^ (n
+ 1)))
+ 2)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((($1
* (2
|^ ($1
+ 1)))
- (2
|^ ($1
+ 1)))
+ 2);
assume
A1: for n holds (s
. n)
= (n
* (2
|^ n));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (((n
* (2
|^ (n
+ 1)))
- (2
|^ (n
+ 1)))
+ 2);
then ((
Partial_Sums s)
. (n
+ 1))
= ((((n
* (2
|^ (n
+ 1)))
- (2
|^ (n
+ 1)))
+ 2)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((((n
* (2
|^ (n
+ 1)))
- (2
|^ (n
+ 1)))
+ 2)
+ ((n
+ 1)
* (2
|^ (n
+ 1)))) by
A1
.= ((n
* ((2
|^ (n
+ 1))
* 2))
+ 2)
.= ((n
* (2
|^ ((n
+ 1)
+ 1)))
+ 2) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (
0
* (2
|^
0 )) by
A1
.= (((
0
* (2
|^ (
0
+ 1)))
- 2)
+ 2)
.= (((
0
* (2
|^ (
0
+ 1)))
- (2
|^ (
0
+ 1)))
+ 2);
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:18
(for n holds (s
. n)
= (((2
* n)
+ 1)
* (3
|^ n))) implies for n holds ((
Partial_Sums s)
. n)
= ((n
* (3
|^ (n
+ 1)))
+ 1)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (($1
* (3
|^ ($1
+ 1)))
+ 1);
assume
A1: for n holds (s
. n)
= (((2
* n)
+ 1)
* (3
|^ n));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= ((n
* (3
|^ (n
+ 1)))
+ 1);
then ((
Partial_Sums s)
. (n
+ 1))
= (((n
* (3
|^ (n
+ 1)))
+ 1)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((n
* (3
|^ (n
+ 1)))
+ 1)
+ (((2
* (n
+ 1))
+ 1)
* (3
|^ (n
+ 1)))) by
A1
.= (((n
+ 1)
* ((3
|^ (n
+ 1))
* 3))
+ 1)
.= (((n
+ 1)
* (3
|^ ((n
+ 1)
+ 1)))
+ 1) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (((2
*
0 )
+ 1)
* (3
|^
0 )) by
A1
.= ((
0
* (3
|^ (
0
+ 1)))
+ 1) by
NEWTON: 4;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:19
(a
<> 1 & for n holds (s
. n)
= (n
* (a
|^ n))) implies for n holds ((
Partial_Sums s)
. n)
= (((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
proof
assume that
A1: a
<> 1 and
A2: for n holds (s
. n)
= (n
* (a
|^ n));
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (((a
* (1
- (a
|^ $1)))
/ ((1
- a)
|^ 2))
- (($1
* (a
|^ ($1
+ 1)))
/ (1
- a)));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)));
then ((
Partial_Sums s)
. (n
+ 1))
= ((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
+ ((n
+ 1)
* (a
|^ (n
+ 1)))) by
A2
.= (((((a
* (1
- (a
|^ n)))
/ ((1
- a)
|^ 2))
- ((n
* (a
|^ (n
+ 1)))
/ (1
- a)))
+ (n
* (a
|^ (n
+ 1))))
+ (a
|^ (n
+ 1)))
.= (((a
* (1
- (a
|^ (n
+ 1))))
/ ((1
- a)
|^ 2))
- (((n
+ 1)
* (a
|^ (n
+ 2)))
/ (1
- a))) by
A1,
Lm6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (
0
* (a
|^
0 )) by
A2
.= ((((1
- 1)
* a)
/ ((1
- a)
|^ 2))
- ((
0
* (a
|^ (
0
+ 1)))
/ (1
- a)))
.= ((((1
- (a
|^
0 ))
* a)
/ ((1
- a)
|^ 2))
- ((
0
* (a
|^ (
0
+ 1)))
/ (1
- a))) by
NEWTON: 4;
then
A4:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A4,
A3);
hence thesis;
end;
theorem ::
SERIES_4:20
(for n holds (s
. n)
= (1
/ ((2
-Root (n
+ 1))
+ (2
-Root n)))) implies ((
Partial_Sums s)
. n)
= (2
-Root (n
+ 1))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (2
-Root ($1
+ 1));
assume
A1: for n holds (s
. n)
= (1
/ ((2
-Root (n
+ 1))
+ (2
-Root n)));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (2
-Root (n
+ 1));
then ((
Partial_Sums s)
. (n
+ 1))
= ((2
-Root (n
+ 1))
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((2
-Root (n
+ 1))
+ (1
/ ((2
-Root ((n
+ 1)
+ 1))
+ (2
-Root (n
+ 1))))) by
A1
.= ((2
-Root (n
+ 1))
+ ((2
-Root (n
+ 2))
- (2
-Root (n
+ 1)))) by
Lm7
.= (2
-Root (n
+ 2));
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= (1
/ ((2
-Root (
0
+ 1))
+ (2
-Root
0 ))) by
A1
.= (1
/ ((2
-Root (
0
+ 1))
+
0 )) by
PREPOWER:def 2
.= (1
/ 1) by
PREPOWER: 20
.= (2
-Root (
0
+ 1)) by
PREPOWER: 20;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:21
(for n holds (s
. n)
= ((2
|^ n)
+ ((1
/ 2)
|^ n))) implies for n holds ((
Partial_Sums s)
. n)
= (((2
|^ (n
+ 1))
- ((1
/ 2)
|^ n))
+ 1)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (((2
|^ ($1
+ 1))
- ((1
/ 2)
|^ $1))
+ 1);
assume
A1: for n holds (s
. n)
= ((2
|^ n)
+ ((1
/ 2)
|^ n));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums s)
. n)
= (((2
|^ (n
+ 1))
- ((1
/ 2)
|^ n))
+ 1);
then ((
Partial_Sums s)
. (n
+ 1))
= ((((2
|^ (n
+ 1))
- ((1
/ 2)
|^ n))
+ 1)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= ((((2
|^ (n
+ 1))
- ((1
/ 2)
|^ n))
+ 1)
+ ((2
|^ (n
+ 1))
+ ((1
/ 2)
|^ (n
+ 1)))) by
A1
.= (((((
- ((1
/ 2)
|^ n))
+ 1)
+ ((1
/ 2)
|^ (n
+ 1)))
+ (2
|^ (n
+ 1)))
+ (2
|^ (n
+ 1)))
.= (((((
- ((1
/ 2)
|^ n))
+ 1)
+ (((1
/ 2)
|^ n)
* (1
/ 2)))
+ (2
|^ (n
+ 1)))
+ (2
|^ (n
+ 1))) by
NEWTON: 6
.= ((((
- (((1
/ 2)
|^ n)
* (1
/ 2)))
+ 1)
+ (2
|^ (n
+ 1)))
+ (2
|^ (n
+ 1)))
.= ((((
- ((1
/ 2)
|^ (n
+ 1)))
+ 1)
+ (2
|^ (n
+ 1)))
+ (2
|^ (n
+ 1))) by
NEWTON: 6
.= (((
- ((1
/ 2)
|^ (n
+ 1)))
+ 1)
+ ((2
|^ (n
+ 1))
* 2))
.= (((
- ((1
/ 2)
|^ (n
+ 1)))
+ 1)
+ (2
|^ ((n
+ 1)
+ 1))) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((2
|^
0 )
+ ((1
/ 2)
|^
0 )) by
A1
.= (1
+ ((1
/ 2)
|^
0 )) by
NEWTON: 4
.= ((2
- 1)
+ 1) by
NEWTON: 4
.= (((2
|^ (
0
+ 1))
- 1)
+ 1)
.= (((2
|^ (
0
+ 1))
- ((1
/ 2)
|^
0 ))
+ 1) by
NEWTON: 4;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:22
(for n holds (s
. n)
= (((n
! )
* n)
+ (n
/ ((n
+ 1)
! )))) implies for n st n
>= 1 holds ((
Partial_Sums s)
. n)
= (((n
+ 1)
! )
- (1
/ ((n
+ 1)
! )))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= ((($1
+ 1)
! )
- (1
/ (($1
+ 1)
! )));
assume
A1: for n holds (s
. n)
= (((n
! )
* n)
+ (n
/ ((n
+ 1)
! )));
then
A2: (s
.
0 )
= (((
0
! )
*
0 )
+ (
0
/ ((
0
+ 1)
! )))
.=
0 ;
A3: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A4: ((
Partial_Sums s)
. n)
= (((n
+ 1)
! )
- (1
/ ((n
+ 1)
! )));
((
Partial_Sums s)
. (n
+ 1))
= ((((n
+ 1)
! )
- (1
/ ((n
+ 1)
! )))
+ (s
. (n
+ 1))) by
A4,
SERIES_1:def 1
.= ((((n
+ 1)
! )
- (1
/ ((n
+ 1)
! )))
+ ((((n
+ 1)
! )
* (n
+ 1))
+ ((n
+ 1)
/ (((n
+ 1)
+ 1)
! )))) by
A1
.= (((((n
+ 1)
! )
+ (((n
+ 1)
! )
* (n
+ 1)))
- (1
/ ((n
+ 1)
! )))
+ ((n
+ 1)
/ (((n
+ 1)
+ 1)
! )))
.= (((((n
+ 1)
! )
* ((n
+ 1)
+ 1))
- ((1
* (n
+ 2))
/ (((n
+ 1)
! )
* ((n
+ 1)
+ 1))))
+ ((n
+ 1)
/ ((n
+ 2)
! ))) by
XCMPLX_1: 91
.= (((((n
+ 1)
! )
* ((n
+ 1)
+ 1))
- ((1
* (n
+ 2))
/ (((n
+ 1)
+ 1)
! )))
+ ((n
+ 1)
/ ((n
+ 2)
! ))) by
NEWTON: 15
.= ((((n
+ 1)
! )
* ((n
+ 1)
+ 1))
- (((n
+ 2)
/ (((n
+ 1)
+ 1)
! ))
- ((n
+ 1)
/ ((n
+ 2)
! ))))
.= ((((n
+ 1)
! )
* ((n
+ 1)
+ 1))
- (((n
+ 2)
- (n
+ 1))
/ ((n
+ 2)
! ))) by
XCMPLX_1: 120
.= ((((n
+ 1)
+ 1)
! )
- (1
/ (((n
+ 1)
+ 1)
! ))) by
NEWTON: 15;
hence thesis;
end;
((
Partial_Sums s)
. (1
+
0 ))
= (((
Partial_Sums s)
.
0 )
+ (s
. (1
+
0 ))) by
SERIES_1:def 1
.= (
0
+ (s
. 1)) by
A2,
SERIES_1:def 1
.= (((1
! )
* 1)
+ (1
/ ((1
+ 1)
! ))) by
A1
.= (((((1
+ 1)
! )
- 1)
+ 1)
- (1
/ ((1
+ 1)
! ))) by
NEWTON: 13,
NEWTON: 14;
then
A5:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A5,
A3);
hence thesis;
end;
theorem ::
SERIES_4:23
(a
<> 1 & for n st n
>= 1 holds (s
. n)
= ((a
/ (a
- 1))
|^ n) & (s
.
0 )
=
0 ) implies for n st n
>= 1 holds ((
Partial_Sums s)
. n)
= (a
* (((a
/ (a
- 1))
|^ n)
- 1))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (a
* (((a
/ (a
- 1))
|^ $1)
- 1));
assume a
<> 1;
then
A1: (a
- 1)
<>
0 ;
assume
A2: for n st n
>= 1 holds (s
. n)
= ((a
/ (a
- 1))
|^ n) & (s
.
0 )
=
0 ;
A3: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A4: ((
Partial_Sums s)
. n)
= (a
* (((a
/ (a
- 1))
|^ n)
- 1));
A5: (n
+ 1)
>= 1 by
NAT_1: 11;
((
Partial_Sums s)
. (n
+ 1))
= ((a
* (((a
/ (a
- 1))
|^ n)
- 1))
+ (s
. (n
+ 1))) by
A4,
SERIES_1:def 1
.= (((a
* ((a
/ (a
- 1))
|^ n))
- a)
+ ((a
/ (a
- 1))
|^ (n
+ 1))) by
A2,
A5
.= (((a
* ((a
/ (a
- 1))
|^ n))
+ ((a
/ (a
- 1))
|^ (n
+ 1)))
- a)
.= (((a
* ((a
/ (a
- 1))
|^ n))
+ (((a
/ (a
- 1))
|^ n)
* (a
/ (a
- 1))))
- a) by
NEWTON: 6
.= ((((a
/ (a
- 1))
|^ n)
* ((a
* 1)
+ (a
/ (a
- 1))))
- a)
.= ((((a
/ (a
- 1))
|^ n)
* ((a
* 1)
+ (a
* (1
/ (a
- 1)))))
- a) by
XCMPLX_1: 99
.= ((((a
/ (a
- 1))
|^ n)
* (a
* (1
+ (1
/ (a
- 1)))))
- a)
.= ((((a
/ (a
- 1))
|^ n)
* (a
* (((a
- 1)
/ (a
- 1))
+ (1
/ (a
- 1)))))
- a) by
A1,
XCMPLX_1: 60
.= ((((a
/ (a
- 1))
|^ n)
* (a
* (((a
- 1)
+ 1)
/ (a
- 1))))
- a) by
XCMPLX_1: 62
.= ((a
* (((a
/ (a
- 1))
|^ n)
* (a
/ (a
- 1))))
- a)
.= ((a
* ((a
/ (a
- 1))
|^ (n
+ 1)))
- a) by
NEWTON: 6
.= (a
* (((a
/ (a
- 1))
|^ (n
+ 1))
- 1));
hence thesis;
end;
((
Partial_Sums s)
. (
0
+ 1))
= (((
Partial_Sums s)
.
0 )
+ (s
. (
0
+ 1))) by
SERIES_1:def 1
.= ((s
.
0 )
+ (s
. 1)) by
SERIES_1:def 1
.= (
0
+ (s
. 1)) by
A2
.= (
0
+ ((a
/ (a
- 1))
|^ 1)) by
A2
.= (((a
/ (a
- 1))
+ a)
- a)
.= (((a
* (1
/ (a
- 1)))
+ (a
* 1))
- a) by
XCMPLX_1: 99
.= (((a
* (1
/ (a
- 1)))
+ (a
* ((a
- 1)
/ (a
- 1))))
- a) by
A1,
XCMPLX_1: 60
.= ((a
* ((1
/ (a
- 1))
+ ((a
- 1)
/ (a
- 1))))
- a)
.= ((a
* ((1
+ (a
- 1))
/ (a
- 1)))
- a) by
XCMPLX_1: 62
.= (a
* ((a
/ (a
- 1))
- 1))
.= (a
* (((a
/ (a
- 1))
|^ 1)
- 1));
then
A6:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A6,
A3);
hence thesis;
end;
theorem ::
SERIES_4:24
(for n st n
>= 1 holds (s
. n)
= ((2
|^ n)
* (((3
* n)
- 1)
/ 4)) & (s
.
0 )
=
0 ) implies for n st n
>= 1 holds ((
Partial_Sums s)
. n)
= (((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ 2)
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
= (((2
|^ $1)
* (((3
* $1)
- 4)
/ 2))
+ 2);
assume
A1: for n st n
>= 1 holds (s
. n)
= ((2
|^ n)
* (((3
* n)
- 1)
/ 4)) & (s
.
0 )
=
0 ;
A2: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A3: ((
Partial_Sums s)
. n)
= (((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ 2);
A4: (n
+ 1)
>= 1 by
NAT_1: 11;
((
Partial_Sums s)
. (n
+ 1))
= ((((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ 2)
+ (s
. (n
+ 1))) by
A3,
SERIES_1:def 1
.= ((((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ 2)
+ ((2
|^ (n
+ 1))
* (((3
* (n
+ 1))
- 1)
/ 4))) by
A1,
A4
.= ((((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ ((2
|^ (n
+ 1))
* (((3
* n)
+ 2)
/ 4)))
+ 2)
.= ((((2
|^ n)
* (((3
* n)
- 4)
/ 2))
+ (((2
|^ n)
* 2)
* (((3
* n)
+ 2)
/ 4)))
+ 2) by
NEWTON: 6
.= ((((2
|^ n)
* 2)
* (((3
* n)
- 1)
/ 2))
+ 2)
.= (((2
|^ (n
+ 1))
* (((3
* (n
+ 1))
- 4)
/ 2))
+ 2) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Sums s)
. (1
+
0 ))
= (((
Partial_Sums s)
.
0 )
+ (s
. (1
+
0 ))) by
SERIES_1:def 1
.= ((s
.
0 )
+ (s
. 1)) by
SERIES_1:def 1
.= (
0
+ (s
. 1)) by
A1
.= ((2
|^ 1)
* (((3
* 1)
- 1)
/ 4)) by
A1
.= (2
* (1
/ 2))
.= ((((3
- 4)
/ 2)
* 2)
+ 2)
.= ((((3
- 4)
/ 2)
* (2
|^ 1))
+ 2)
.= ((((2
|^ 1)
* ((3
* 1)
- 4))
/ 2)
+ 2);
then
A5:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_4:25
(for n holds (s
. n)
= ((n
+ 1)
/ (n
+ 2))) implies ((
Partial_Product s)
. n)
= (1
/ (n
+ 2))
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= (1
/ ($1
+ 2));
assume
A1: for n holds (s
. n)
= ((n
+ 1)
/ (n
+ 2));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Product s)
. n)
= (1
/ (n
+ 2));
then ((
Partial_Product s)
. (n
+ 1))
= ((1
/ (n
+ 2))
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= ((1
/ (n
+ 2))
* (((n
+ 1)
+ 1)
/ ((n
+ 1)
+ 2))) by
A1
.= (((1
/ (n
+ 2))
* (n
+ 2))
/ ((n
+ 1)
+ 2)) by
XCMPLX_1: 74
.= (1
/ ((n
+ 1)
+ 2)) by
XCMPLX_1: 106;
hence thesis;
end;
((
Partial_Product s)
.
0 )
= (s
.
0 ) by
SERIES_3:def 1
.= ((
0
+ 1)
/ (
0
+ 2)) by
A1
.= (1
/ (
0
+ 2));
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:26
(for n holds (s
. n)
= (1
/ (n
+ 1))) implies ((
Partial_Product s)
. n)
= (1
/ ((n
+ 1)
! ))
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= (1
/ (($1
+ 1)
! ));
assume
A1: for n holds (s
. n)
= (1
/ (n
+ 1));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Product s)
. n)
= (1
/ ((n
+ 1)
! ));
then ((
Partial_Product s)
. (n
+ 1))
= ((1
/ ((n
+ 1)
! ))
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= ((1
/ ((n
+ 1)
! ))
* (1
/ ((n
+ 1)
+ 1))) by
A1
.= (((1
/ ((n
+ 1)
! ))
* 1)
/ ((n
+ 1)
+ 1)) by
XCMPLX_1: 74
.= (1
/ (((n
+ 1)
! )
* ((n
+ 1)
+ 1))) by
XCMPLX_1: 78
.= (1
/ ((n
+ 2)
! )) by
NEWTON: 15;
hence thesis;
end;
((
Partial_Product s)
.
0 )
= (s
.
0 ) by
SERIES_3:def 1
.= (1
/ ((
0
+ 1)
! )) by
A1,
NEWTON: 13;
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_4:27
(for n st n
>= 1 holds (s
. n)
= n & (s
.
0 )
= 1) implies for n st n
>= 1 holds ((
Partial_Product s)
. n)
= (n
! )
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= ($1
! );
assume
A1: for n st n
>= 1 holds (s
. n)
= n & (s
.
0 )
= 1;
A2: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A3: ((
Partial_Product s)
. n)
= (n
! );
A4: (n
+ 1)
>= 1 by
NAT_1: 11;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= ((n
! )
* (n
+ 1)) by
A1,
A3,
A4
.= ((n
+ 1)
! ) by
NEWTON: 15;
hence thesis;
end;
((
Partial_Product s)
. (1
+
0 ))
= (((
Partial_Product s)
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= ((s
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= (1
* (s
. 1)) by
A1
.= (1
! ) by
A1,
NEWTON: 13;
then
A5:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_4:28
(for n st n
>= 1 holds (s
. n)
= (a
/ n) & (s
.
0 )
= 1) implies for n st n
>= 1 holds ((
Partial_Product s)
. n)
= ((a
|^ n)
/ (n
! ))
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= ((a
|^ $1)
/ ($1
! ));
assume
A1: for n st n
>= 1 holds (s
. n)
= (a
/ n) & (s
.
0 )
= 1;
A2: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A3: ((
Partial_Product s)
. n)
= ((a
|^ n)
/ (n
! ));
A4: (n
+ 1)
>= 1 by
NAT_1: 11;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= (((a
|^ n)
/ (n
! ))
* (a
/ (n
+ 1))) by
A1,
A3,
A4
.= (((a
|^ n)
* a)
/ ((n
! )
* (n
+ 1))) by
XCMPLX_1: 76
.= ((a
|^ (n
+ 1))
/ ((n
! )
* (n
+ 1))) by
NEWTON: 6
.= ((a
|^ (n
+ 1))
/ ((n
+ 1)
! )) by
NEWTON: 15;
hence thesis;
end;
((
Partial_Product s)
. (1
+
0 ))
= (((
Partial_Product s)
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= ((s
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= (1
* (s
. 1)) by
A1
.= ((1
* a)
/ 1) by
A1
.= ((a
|^ 1)
/ (1
! )) by
NEWTON: 13;
then
A5:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_4:29
(for n st n
>= 1 holds (s
. n)
= a & (s
.
0 )
= 1) implies for n st n
>= 1 holds ((
Partial_Product s)
. n)
= (a
|^ n)
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= (a
|^ $1);
assume
A1: for n st n
>= 1 holds (s
. n)
= a & (s
.
0 )
= 1;
A2: for n be
Nat st n
>= 1 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that n
>= 1 and
A3: ((
Partial_Product s)
. n)
= (a
|^ n);
A4: (n
+ 1)
>= 1 by
NAT_1: 11;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= ((a
|^ n)
* a) by
A1,
A3,
A4
.= (a
|^ (n
+ 1)) by
NEWTON: 6;
hence thesis;
end;
((
Partial_Product s)
. (1
+
0 ))
= (((
Partial_Product s)
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= ((s
.
0 )
* (s
. (1
+
0 ))) by
SERIES_3:def 1
.= (1
* (s
. 1)) by
A1
.= (1
* a) by
A1
.= (a
|^ 1);
then
A5:
X[1];
for n be
Nat st n
>= 1 holds
X[n] from
NAT_1:sch 8(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_4:30
(for n st n
>= 2 holds (s
. n)
= (1
- (1
/ (n
|^ 2))) & (s
.
0 )
= 1 & (s
. 1)
= 1) implies for n st n
>= 2 holds ((
Partial_Product s)
. n)
= ((n
+ 1)
/ (2
* n))
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
= (($1
+ 1)
/ (2
* $1));
assume
A1: for n st n
>= 2 holds (s
. n)
= (1
- (1
/ (n
|^ 2))) & (s
.
0 )
= 1 & (s
. 1)
= 1;
A2: for n be
Nat st n
>= 2 &
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume that
A3: n
>= 2 and
A4: ((
Partial_Product s)
. n)
= ((n
+ 1)
/ (2
* n));
A5: (n
+ 1)
> (1
+ 1) by
A3,
NAT_1: 13;
((n
+ 1)
* (n
+ 1))
<>
0 ;
then
A6: ((n
+ 1)
|^ 2)
<>
0 by
WSIERP_1: 1;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
SERIES_3:def 1
.= (((n
+ 1)
/ (2
* n))
* (1
- (1
/ ((n
+ 1)
|^ 2)))) by
A1,
A4,
A5
.= (((n
+ 1)
/ (2
* n))
* ((((n
+ 1)
|^ 2)
/ ((n
+ 1)
|^ 2))
- (1
/ ((n
+ 1)
|^ 2)))) by
A6,
XCMPLX_1: 60
.= (((n
+ 1)
/ (2
* n))
* ((((n
+ 1)
|^ 2)
- 1)
/ ((n
+ 1)
|^ 2))) by
XCMPLX_1: 120
.= (((n
+ 1)
/ (2
* n))
* ((((n
+ 1)
|^ 2)
- (1
|^ 2))
/ ((n
+ 1)
|^ 2)))
.= (((n
+ 1)
/ (2
* n))
* ((((n
+ 1)
- 1)
* ((n
+ 1)
+ 1))
/ ((n
+ 1)
|^ 2))) by
Lm4
.= (((n
+ 1)
* (n
* (n
+ 2)))
/ ((2
* n)
* ((n
+ 1)
|^ 2))) by
XCMPLX_1: 76
.= ((((n
+ 1)
* n)
* (n
+ 2))
/ ((2
* n)
* ((n
+ 1)
* (n
+ 1)))) by
WSIERP_1: 1
.= ((((n
+ 1)
* n)
* (n
+ 2))
/ ((n
* (n
+ 1))
* (2
* (n
+ 1))))
.= ((((n
+ 1)
* n)
/ (n
* (n
+ 1)))
* ((n
+ 2)
/ (2
* (n
+ 1)))) by
XCMPLX_1: 76
.= ((((n
+ 1)
/ (n
+ 1))
* (n
/ n))
* ((n
+ 2)
/ (2
* (n
+ 1)))) by
XCMPLX_1: 76
.= ((1
* (n
/ n))
* ((n
+ 2)
/ (2
* (n
+ 1)))) by
XCMPLX_1: 60
.= ((1
* 1)
* ((n
+ 2)
/ (2
* (n
+ 1)))) by
A3,
XCMPLX_1: 60
.= ((n
+ 2)
/ (2
* (n
+ 1)));
hence thesis;
end;
((
Partial_Product s)
. (1
+ 1))
= (((
Partial_Product s)
. (1
+
0 ))
* (s
. 2)) by
SERIES_3:def 1
.= ((((
Partial_Product s)
.
0 )
* (s
. 1))
* (s
. 2)) by
SERIES_3:def 1
.= (((s
.
0 )
* (s
. 1))
* (s
. 2)) by
SERIES_3:def 1
.= ((1
* (s
. 1))
* (s
. 2)) by
A1
.= ((1
* 1)
* (s
. 2)) by
A1
.= (1
- (1
/ 4)) by
A1,
Lm1
.= ((2
+ 1)
/ (2
* 2));
then
A7:
X[2];
for n be
Nat st n
>= 2 holds
X[n] from
NAT_1:sch 8(
A7,
A2);
hence thesis;
end;