polyeq_1.miz
    
    begin
    
    reserve a,a9,a1,a2,a3,b,b9,c,c9,d,d9,h,p,q,x,x1,x2,x3,u,v,y,z for
    Real;
    
    definition
    
      let a,b,x be
    Complex;
    
      :: 
    
    POLYEQ_1:def1
    
      func
    
    Polynom (a,b,x) -> 
    number equals ((a 
    * x) 
    + b); 
    
      coherence ;
    
    end
    
    registration
    
      let a,b,x be
    Complex;
    
      cluster ( 
    Polynom (a,b,x)) -> 
    complex;
    
      coherence ;
    
    end
    
    registration
    
      let a,b,x be
    Real;
    
      cluster ( 
    Polynom (a,b,x)) -> 
    real;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_1:1
    
    for a,b,x be
    Complex holds a 
    <>  
    0 & ( 
    Polynom (a,b,x)) 
    =  
    0 implies x 
    = ( 
    - (b 
    / a)) 
    
    proof
    
      let a,b,x be
    Complex;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: ( 
    Polynom (a,b,x)) 
    =  
    0 ; 
    
      ((a
    " ) 
    * ( 
    - b)) 
    = ((a 
    " ) 
    * (a 
    * x)) by 
    A2
    
      .= (((a
    " ) 
    * a) 
    * x); 
    
      then (1
    * x) 
    = ((a 
    " ) 
    * ( 
    - b)) by 
    A1,
    XCMPLX_0:def 7;
    
      then x
    = ( 
    - ((a 
    " ) 
    * b)); 
    
      hence thesis by
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:2
    
    for x be
    Complex holds ( 
    Polynom ( 
    0 , 
    0 ,x)) 
    =  
    0 ; 
    
    theorem :: 
    
    POLYEQ_1:3
    
    for b be
    Complex holds b 
    <>  
    0 implies not ex x be 
    Complex st ( 
    Polynom ( 
    0 ,b,x)) 
    =  
    0 ; 
    
    definition
    
      let a,b,c,x be
    Complex;
    
      :: 
    
    POLYEQ_1:def2
    
      func
    
    Polynom (a,b,c,x) -> 
    number equals (((a 
    * (x 
    ^2 )) 
    + (b 
    * x)) 
    + c); 
    
      coherence ;
    
    end
    
    registration
    
      let a,b,c,x be
    Real;
    
      cluster ( 
    Polynom (a,b,c,x)) -> 
    real;
    
      coherence ;
    
    end
    
    registration
    
      let a,b,c,x be
    Complex;
    
      cluster ( 
    Polynom (a,b,c,x)) -> 
    complex;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_1:4
    
    
    
    
    
    Th4: for a,b,c,a9,b9,c9 be 
    Complex holds (for x be 
    Real holds ( 
    Polynom (a,b,c,x)) 
    = ( 
    Polynom (a9,b9,c9,x))) implies a 
    = a9 & b 
    = b9 & c 
    = c9 
    
    proof
    
      let a,b,c,a9,b9,c9 be
    Complex;
    
      assume
    
      
    
    A1: for x be 
    Real holds ( 
    Polynom (a,b,c,x)) 
    = ( 
    Polynom (a9,b9,c9,x)); 
    
      then
    
      
    
    A2: ( 
    Polynom (a,b,c,( 
    - 1))) 
    = ( 
    Polynom (a9,b9,c9,( 
    - 1))); 
    
      (
    Polynom (a,b,c, 
    0 )) 
    = ( 
    Polynom (a9,b9,c9, 
    0 )) & ( 
    Polynom (a,b,c,1)) 
    = ( 
    Polynom (a9,b9,c9,1)) by 
    A1;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:5
    
    
    
    
    
    Th5: a 
    <>  
    0 & ( 
    delta (a,b,c)) 
    >=  
    0 implies for x holds ( 
    Polynom (a,b,c,x)) 
    =  
    0 implies x 
    = ((( 
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) or x 
    = ((( 
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: ( 
    delta (a,b,c)) 
    >=  
    0 ; 
    
      now
    
        set e = (a
    * c); 
    
        let y;
    
        set t = (((a
    ^2 ) 
    * (y 
    ^2 )) 
    + ((a 
    * b) 
    * y)); 
    
        assume (
    Polynom (a,b,c,y)) 
    =  
    0 ; 
    
        then (a
    * (((a 
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + c)) 
    = (a 
    *  
    0 ); 
    
        then (((a
    * (a 
    * (y 
    ^2 ))) 
    + (a 
    * (b 
    * y))) 
    + (a 
    * c)) 
    =  
    0 ; 
    
        then
    
        
    
    A3: ((t 
    + ((b 
    ^2 ) 
    / 4)) 
    - ((b 
    ^2 ) 
    * (4 
    " ))) 
    = ( 
    - ((4 
    * e) 
    * (4 
    " ))); 
    
        
    
        
    
    A4: ( 
    delta (a,b,c)) 
    = ((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) by 
    QUIN_1:def 1;
    
        
    
    A5: 
    
        now
    
          assume (((a
    * y) 
    + (b 
    / 2)) 
    - ( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4))) 
    =  
    0 ; 
    
          then ((a
    * y) 
    + (b 
    / 2)) 
    = (( 
    sqrt ((b 
    ^2 ) 
    - (4 
    * (a 
    * c)))) 
    / 2) by 
    A2,
    A4,
    SQUARE_1: 20,
    SQUARE_1: 30;
    
          
    
          then (a
    * y) 
    = ( 
    - ((b 
    * (2 
    " )) 
    - (( 
    sqrt ((b 
    ^2 ) 
    - (4 
    * (a 
    * c)))) 
    * (2 
    " )))) 
    
          .= (((
    - b) 
    * (2 
    " )) 
    + (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) by 
    A4;
    
          
    
          then y
    = (((( 
    - b) 
    * (2 
    " )) 
    + (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) 
    / a) by 
    A1,
    XCMPLX_1: 89
    
          .= ((((
    - b) 
    * (2 
    " )) 
    + (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) 
    * (a 
    " )) by 
    XCMPLX_0:def 9
    
          .= (((
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    * ((2 
    " ) 
    * (a 
    " ))) 
    
          .= (((
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    * ((2 
    * a) 
    " )) by 
    XCMPLX_1: 204;
    
          hence y
    = ((( 
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) by 
    XCMPLX_0:def 9;
    
        end;
    
        
    
    A6: 
    
        now
    
          assume (((a
    * y) 
    + (b 
    / 2)) 
    + ( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4))) 
    =  
    0 ; 
    
          then ((a
    * y) 
    + (b 
    / 2)) 
    = ( 
    - ( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4))); 
    
          then ((a
    * y) 
    + (b 
    / 2)) 
    = ( 
    - (( 
    sqrt ((b 
    ^2 ) 
    - (4 
    * (a 
    * c)))) 
    / 2)) by 
    A2,
    A4,
    SQUARE_1: 20,
    SQUARE_1: 30;
    
          
    
          then (a
    * y) 
    = ( 
    - ((b 
    * (2 
    " )) 
    + (( 
    sqrt ((b 
    ^2 ) 
    - (4 
    * (a 
    * c)))) 
    * (2 
    " )))) 
    
          .= (((
    - b) 
    * (2 
    " )) 
    - (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) by 
    A4;
    
          
    
          then y
    = (((( 
    - b) 
    * (2 
    " )) 
    - (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) 
    / a) by 
    A1,
    XCMPLX_1: 89
    
          .= ((((
    - b) 
    * (2 
    " )) 
    - (( 
    sqrt ( 
    delta (a,b,c))) 
    * (2 
    " ))) 
    * (a 
    " )) by 
    XCMPLX_0:def 9
    
          .= (((
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    * ((2 
    " ) 
    * (a 
    " ))) 
    
          .= (((
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    * ((2 
    * a) 
    " )) by 
    XCMPLX_1: 204;
    
          hence y
    = ((( 
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) by 
    XCMPLX_0:def 9;
    
        end;
    
        (((b
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4) 
    >= ( 
    0  
    / 4) by 
    A2,
    A4,
    XREAL_1: 72;
    
        then (((a
    * y) 
    + (b 
    / 2)) 
    ^2 ) 
    = (( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4)) 
    ^2 ) by 
    A3,
    SQUARE_1:def 2;
    
        then ((((a
    * y) 
    + (b 
    / 2)) 
    - ( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4))) 
    * (((a 
    * y) 
    + (b 
    / 2)) 
    + ( 
    sqrt (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    / 4)))) 
    =  
    0 ; 
    
        hence y
    = ((( 
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) or y 
    = ((( 
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) by 
    A5,
    A6,
    XCMPLX_1: 6;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:6
    
    for a,b,c,x be
    Complex holds a 
    <>  
    0 & ( 
    delta (a,b,c)) 
    =  
    0 & ( 
    Polynom (a,b,c,x)) 
    =  
    0 implies x 
    = ( 
    - (b 
    / (2 
    * a))) 
    
    proof
    
      let a,b,c,x be
    Complex;
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: ( 
    delta (a,b,c)) 
    =  
    0 ; 
    
      set y = x;
    
      set t = (((a
    ^2 ) 
    * (y 
    ^2 )) 
    + ((a 
    * b) 
    * y)); 
    
      
    
      
    
    A3: ((b 
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    = ( 
    delta (a,b,c)) by 
    QUIN_1:def 1;
    
      assume (
    Polynom (a,b,c,y)) 
    =  
    0 ; 
    
      then (a
    * (((a 
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + c)) 
    =  
    0 ; 
    
      then (t
    + (a 
    * c)) 
    =  
    0 ; 
    
      then ((((a
    * y) 
    ^2 ) 
    + (2 
    * (((a 
    * y) 
    * b) 
    * (2 
    " )))) 
    + ((b 
    / 2) 
    ^2 )) 
    =  
    0 by 
    A2,
    A3;
    
      then (((a
    * y) 
    + (b 
    / 2)) 
    ^2 ) 
    =  
    0 ; 
    
      then ((a
    * y) 
    + (b 
    / 2)) 
    =  
    0 by 
    XCMPLX_1: 6;
    
      
    
      then y
    = (( 
    - (b 
    * (2 
    " ))) 
    / a) by 
    A1,
    XCMPLX_1: 89
    
      .= (((
    - 1) 
    * (b 
    * (2 
    " ))) 
    * (a 
    " )) by 
    XCMPLX_0:def 9
    
      .= (
    - ((b 
    * ((2 
    " ) 
    * (a 
    " ))) 
    * 1)) 
    
      .= (
    - (b 
    * ((2 
    * a) 
    " ))) by 
    XCMPLX_1: 204;
    
      hence thesis by
    XCMPLX_0:def 9;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:7
    
    (
    delta (a,b,c)) 
    <  
    0 implies not ex x st ( 
    Polynom (a,b,c,x)) 
    =  
    0  
    
    proof
    
      set e = (a
    * c); 
    
      assume (
    delta (a,b,c)) 
    <  
    0 ; 
    
      then ((b
    ^2 ) 
    - ((4 
    * a) 
    * c)) 
    <  
    0 by 
    QUIN_1:def 1;
    
      then
    
      
    
    A1: (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    * (4 
    " )) 
    <  
    0 by 
    XREAL_1: 132;
    
      given y such that
    
      
    
    A2: ( 
    Polynom (a,b,c,y)) 
    =  
    0 ; 
    
      set t = (((a
    ^2 ) 
    * (y 
    ^2 )) 
    + ((a 
    * b) 
    * y)); 
    
      (a
    * (((a 
    * (y 
    ^2 )) 
    + (b 
    * y)) 
    + c)) 
    = (a 
    *  
    0 ) by 
    A2;
    
      then ((t
    + ((b 
    ^2 ) 
    / 4)) 
    - (((b 
    ^2 ) 
    * (4 
    " )) 
    - ((4 
    * e) 
    * (4 
    " )))) 
    =  
    0 ; 
    
      then
    
      
    
    A3: (((a 
    * y) 
    + (b 
    / 2)) 
    ^2 ) 
    = (((b 
    ^2 ) 
    - (4 
    * (a 
    * c))) 
    * (4 
    " )); 
    
      then ((a
    * y) 
    + (b 
    / 2)) 
    >  
    0 by 
    A1,
    XREAL_1: 133;
    
      hence contradiction by
    A3,
    A1,
    XREAL_1: 133;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:8
    
    for b,c be
    Complex holds b 
    <>  
    0 & (for x be 
    Real holds ( 
    Polynom ( 
    0 ,b,c,x)) 
    =  
    0 ) implies x 
    = ( 
    - (c 
    / b)) 
    
    proof
    
      let b,c be
    Complex;
    
      assume
    
      
    
    A1: b 
    <>  
    0 ; 
    
      set y = x;
    
      assume for x be
    Real holds ( 
    Polynom ( 
    0 ,b,c,x)) 
    =  
    0 ; 
    
      then (
    Polynom ( 
    0 ,b,c,y)) 
    =  
    0 ; 
    
      
    
      then y
    = (( 
    - c) 
    / b) by 
    A1,
    XCMPLX_1: 89
    
      .= (((
    - 1) 
    * c) 
    * (b 
    " )) by 
    XCMPLX_0:def 9
    
      .= ((
    - 1) 
    * (c 
    * (b 
    " ))) 
    
      .= ((
    - 1) 
    * (c 
    / b)) by 
    XCMPLX_0:def 9;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:9
    
    for x be
    Complex holds ( 
    Polynom ( 
    0 , 
    0 , 
    0 ,x)) 
    =  
    0 ; 
    
    theorem :: 
    
    POLYEQ_1:10
    
    for c be
    Complex holds c 
    <>  
    0 implies not ex x be 
    Complex st ( 
    Polynom ( 
    0 , 
    0 ,c,x)) 
    =  
    0 ; 
    
    definition
    
      let a,x,x1,x2 be
    Complex;
    
      :: 
    
    POLYEQ_1:def3
    
      func
    
    Quard (a,x1,x2,x) -> 
    number equals (a 
    * ((x 
    - x1) 
    * (x 
    - x2))); 
    
      coherence ;
    
    end
    
    registration
    
      let a,x,x1,x2 be
    Real;
    
      cluster ( 
    Quard (a,x1,x2,x)) -> 
    real;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_1:11
    
    for a,b,c be
    Complex holds a 
    <>  
    0 & (for x be 
    Real holds ( 
    Polynom (a,b,c,x)) 
    = ( 
    Quard (a,x1,x2,x))) implies (b 
    / a) 
    = ( 
    - (x1 
    + x2)) & (c 
    / a) 
    = (x1 
    * x2) 
    
    proof
    
      let a,b,c be
    Complex;
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      assume
    
      
    
    A2: for x be 
    Real holds ( 
    Polynom (a,b,c,x)) 
    = ( 
    Quard (a,x1,x2,x)); 
    
      now
    
        let z be
    Real;
    
        set h = (z
    - x1), t = (z 
    - x2); 
    
        set e = ((h
    * t) 
    - (z 
    ^2 )); 
    
        (
    Polynom (a,b,c,z)) 
    = ( 
    Quard (a,x1,x2,z)) by 
    A2;
    
        then (a
    * ((h 
    * t) 
    - (z 
    ^2 ))) 
    = ((b 
    * z) 
    + c); 
    
        
    
        then e
    = (((b 
    * z) 
    + c) 
    / a) by 
    A1,
    XCMPLX_1: 89
    
        .= ((a
    " ) 
    * ((b 
    * z) 
    + c)) by 
    XCMPLX_0:def 9
    
        .= (((a
    " ) 
    * (b 
    * z)) 
    + ((a 
    " ) 
    * c)); 
    
        then ((((z
    * z) 
    - (z 
    * x2)) 
    - (x1 
    * z)) 
    + (x1 
    * x2)) 
    = (((z 
    ^2 ) 
    + (((a 
    " ) 
    * b) 
    * z)) 
    + ((a 
    " ) 
    * c)); 
    
        
    
        then (((z
    ^2 ) 
    - ((x1 
    + x2) 
    * z)) 
    + (x1 
    * x2)) 
    = (((z 
    ^2 ) 
    + ((b 
    / a) 
    * z)) 
    + ((a 
    " ) 
    * c)) by 
    XCMPLX_0:def 9
    
        .= (((z
    ^2 ) 
    + ((b 
    / a) 
    * z)) 
    + (c 
    / a)) by 
    XCMPLX_0:def 9;
    
        hence (
    Polynom (1,( 
    - (x1 
    + x2)),(x1 
    * x2),z)) 
    = ( 
    Polynom (1,(b 
    / a),(c 
    / a),z)); 
    
      end;
    
      hence thesis by
    Th4;
    
    end;
    
    begin
    
    definition
    
      let a,b,c,d,x be
    Complex;
    
      :: 
    
    POLYEQ_1:def4
    
      func
    
    Polynom (a,b,c,d,x) -> 
    number equals ((((a 
    * (x 
    |^ 3)) 
    + (b 
    * (x 
    ^2 ))) 
    + (c 
    * x)) 
    + d); 
    
      coherence ;
    
    end
    
    registration
    
      let a,b,c,d,x be
    Complex;
    
      cluster ( 
    Polynom (a,b,c,d,x)) -> 
    complex;
    
      coherence ;
    
    end
    
    registration
    
      let a,b,c,d,x be
    Real;
    
      cluster ( 
    Polynom (a,b,c,d,x)) -> 
    real;
    
      coherence ;
    
    end
    
    3
    = ((2 
    * 1) 
    + 1); 
    
    then
    
    
    
    Lm1: 3 is 
    odd by 
    ABIAN: 1;
    
    theorem :: 
    
    POLYEQ_1:12
    
    
    
    
    
    Th12: (for x holds ( 
    Polynom (a,b,c,d,x)) 
    = ( 
    Polynom (a9,b9,c9,d9,x))) implies a 
    = a9 & b 
    = b9 & c 
    = c9 & d 
    = d9 
    
    proof
    
      ((
    - 1) 
    |^ 3) 
    = ( 
    - (1 
    |^ (2 
    + 1))) by 
    Lm1,
    POWER: 2
    
      .= (
    - ((1 
    |^ 2) 
    * 1)); 
    
      then
    
      
    
    A1: ( 
    0  
    |^ 3) 
    =  
    0 & (( 
    - 1) 
    |^ 3) 
    = ( 
    - 1) by 
    NEWTON: 11;
    
      
    
      
    
    A2: (2 
    |^ 3) 
    = (2 
    |^ (2 
    + 1)) 
    
      .= ((2
    |^ (1 
    + 1)) 
    * 2) by 
    NEWTON: 6
    
      .= (((2
    |^ 1) 
    * 2) 
    * 2) by 
    NEWTON: 6
    
      .= ((2
    |^ 1) 
    * (2 
    * 2)); 
    
      assume
    
      
    
    A3: for x holds ( 
    Polynom (a,b,c,d,x)) 
    = ( 
    Polynom (a9,b9,c9,d9,x)); 
    
      then
    
      
    
    A4: ( 
    Polynom (a,b,c,d,2)) 
    = ( 
    Polynom (a9,b9,c9,d9,2)); 
    
      (
    Polynom (a,b,c,d,1)) 
    = ( 
    Polynom (a9,b9,c9,d9,1)) by 
    A3;
    
      then ((((a
    * 1) 
    + (b 
    * 1)) 
    + (c 
    * 1)) 
    + d) 
    = ( 
    Polynom (a9,b9,c9,d9,1)); 
    
      
    
      then
    
      
    
    A5: (((a 
    + b) 
    + c) 
    + d) 
    = ((((a9 
    * 1) 
    + (b9 
    * 1)) 
    + (c9 
    * 1)) 
    + d9) 
    
      .= (((a9
    + b9) 
    + c9) 
    + d9); 
    
      (
    Polynom (a,b,c,d, 
    0 )) 
    = ( 
    Polynom (a9,b9,c9,d9, 
    0 )) & ( 
    Polynom (a,b,c,d,( 
    - 1))) 
    = ( 
    Polynom (a9,b9,c9,d9,( 
    - 1))) by 
    A3;
    
      hence thesis by
    A5,
    A1,
    A4,
    A2;
    
    end;
    
    definition
    
      let a,x,x1,x2,x3 be
    Complex;
    
      :: 
    
    POLYEQ_1:def5
    
      func
    
    Tri (a,x1,x2,x3,x) -> 
    number equals (a 
    * (((x 
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3))); 
    
      coherence ;
    
    end
    
    registration
    
      let a,x,x1,x2,x3 be
    Real;
    
      cluster ( 
    Tri (a,x1,x2,x3,x)) -> 
    real;
    
      coherence ;
    
    end
    
    theorem :: 
    
    POLYEQ_1:13
    
    a
    <>  
    0 & (for x holds ( 
    Polynom (a,b,c,d,x)) 
    = ( 
    Tri (a,x1,x2,x3,x))) implies (b 
    / a) 
    = ( 
    - ((x1 
    + x2) 
    + x3)) & (c 
    / a) 
    = (((x1 
    * x2) 
    + (x2 
    * x3)) 
    + (x1 
    * x3)) & (d 
    / a) 
    = ( 
    - ((x1 
    * x2) 
    * x3)) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      set t3 = (d
    / a); 
    
      set t2 = (c
    / a); 
    
      set t1 = (b
    / a); 
    
      set d9 = (
    - ((x1 
    * x2) 
    * x3)); 
    
      set c9 = (((x1
    * x2) 
    + (x2 
    * x3)) 
    + (x1 
    * x3)); 
    
      set b9 = (
    - ((x1 
    + x2) 
    + x3)); 
    
      assume
    
      
    
    A2: for x holds ( 
    Polynom (a,b,c,d,x)) 
    = ( 
    Tri (a,x1,x2,x3,x)); 
    
      now
    
        let x;
    
        set t = ((((a
    * (x 
    |^ 3)) 
    + (b 
    * (x 
    ^2 ))) 
    + (c 
    * x)) 
    + d); 
    
        set r8 = (((x
    - x1) 
    * (x 
    - x2)) 
    * (x 
    - x3)); 
    
        (x
    |^ 3) 
    = (x 
    |^ (2 
    + 1)) 
    
        .= ((x
    |^ (1 
    + 1)) 
    * x) by 
    NEWTON: 6
    
        .= (((x
    |^ 1) 
    * x) 
    * x) by 
    NEWTON: 6;
    
        then
    
        
    
    A3: (x 
    |^ 3) 
    = ((x 
    * x) 
    * x); 
    
        (
    Polynom (a,b,c,d,x)) 
    = ( 
    Tri (a,x1,x2,x3,x)) by 
    A2;
    
        then
    
        
    
    A4: (t 
    / a) 
    = r8 by 
    A1,
    XCMPLX_1: 89;
    
        ((a
    " ) 
    * t) 
    = (((((a 
    " ) 
    * a) 
    * (x 
    |^ 3)) 
    + (((a 
    " ) 
    * b) 
    * (x 
    ^2 ))) 
    + ((a 
    " ) 
    * ((c 
    * x) 
    + d))) 
    
        .= (((1
    * (x 
    |^ 3)) 
    + (((a 
    " ) 
    * b) 
    * (x 
    ^2 ))) 
    + ((((a 
    " ) 
    * c) 
    * x) 
    + ((a 
    " ) 
    * d))) by 
    A1,
    XCMPLX_0:def 7
    
        .= (((1
    * (x 
    |^ 3)) 
    + (t1 
    * (x 
    ^2 ))) 
    + ((((a 
    " ) 
    * c) 
    * x) 
    + ((a 
    " ) 
    * d))) by 
    XCMPLX_0:def 9
    
        .= (((1
    * (x 
    |^ 3)) 
    + (t1 
    * (x 
    ^2 ))) 
    + ((t2 
    * x) 
    + ((a 
    " ) 
    * d))) by 
    XCMPLX_0:def 9
    
        .= (((1
    * (x 
    |^ 3)) 
    + (t1 
    * (x 
    ^2 ))) 
    + ((t2 
    * x) 
    + t3)) by 
    XCMPLX_0:def 9
    
        .= (
    Polynom (1,t1,t2,t3,x)); 
    
        hence (
    Polynom (1,t1,t2,t3,x)) 
    = ( 
    Polynom (1,b9,c9,d9,x)) by 
    A4,
    A3,
    XCMPLX_0:def 9;
    
      end;
    
      hence thesis by
    Th12;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:14
    
    
    
    
    
    Th14: ((y 
    + h) 
    |^ 3) 
    = (((y 
    |^ 3) 
    + (((3 
    * h) 
    * (y 
    ^2 )) 
    + ((3 
    * (h 
    ^2 )) 
    * y))) 
    + (h 
    |^ 3)) 
    
    proof
    
      ((y
    + h) 
    |^ 3) 
    = ((y 
    + h) 
    |^ (2 
    + 1)); 
    
      
    
      then
    
      
    
    A1: ((y 
    + h) 
    |^ 3) 
    = (((y 
    + h) 
    |^ (1 
    + 1)) 
    * (y 
    + h)) by 
    NEWTON: 6
    
      .= ((((y
    + h) 
    |^ 1) 
    * (y 
    + h)) 
    * (y 
    + h)) by 
    NEWTON: 6
    
      .= (((y
    + h) 
    |^ 1) 
    * ((y 
    + h) 
    ^2 )) 
    
      .= (((y
    + h) 
    to_power 1) 
    * (((y 
    ^2 ) 
    + ((2 
    * y) 
    * h)) 
    + (h 
    ^2 ))) by 
    POWER: 41
    
      .= ((y
    + h) 
    * (((y 
    ^2 ) 
    + ((2 
    * y) 
    * h)) 
    + (h 
    ^2 ))) by 
    POWER: 25
    
      .= (((y
    * (y 
    ^2 )) 
    + (((3 
    * h) 
    * (y 
    ^2 )) 
    + (((2 
    + 1) 
    * (h 
    ^2 )) 
    * y))) 
    + (h 
    * (h 
    ^2 ))); 
    
      (y
    |^ 3) 
    = (y 
    |^ (2 
    + 1)) 
    
      .= ((y
    |^ (1 
    + 1)) 
    * y) by 
    NEWTON: 6
    
      .= (((y
    |^ 1) 
    * y) 
    * y) by 
    NEWTON: 6
    
      .= ((y
    |^ 1) 
    * (y 
    ^2 )); 
    
      then
    
      
    
    A2: (y 
    |^ 3) 
    = ((y 
    to_power 1) 
    * (y 
    ^2 )) by 
    POWER: 41;
    
      (h
    |^ 3) 
    = (h 
    |^ (2 
    + 1)) 
    
      .= ((h
    |^ (1 
    + 1)) 
    * h) by 
    NEWTON: 6
    
      .= (((h
    |^ 1) 
    * h) 
    * h) by 
    NEWTON: 6
    
      .= ((h
    |^ 1) 
    * (h 
    ^2 )) 
    
      .= ((h
    to_power 1) 
    * (h 
    ^2 )) by 
    POWER: 41
    
      .= (h
    * (h 
    ^2 )) by 
    POWER: 25;
    
      hence thesis by
    A1,
    A2,
    POWER: 25;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:15
    
    
    
    
    
    Th15: a 
    <>  
    0 & ( 
    Polynom (a,b,c,d,x)) 
    =  
    0 implies for a1, a2, a3, h, y st y 
    = (x 
    + (b 
    / (3 
    * a))) & h 
    = ( 
    - (b 
    / (3 
    * a))) & a1 
    = (b 
    / a) & a2 
    = (c 
    / a) & a3 
    = (d 
    / a) holds (((y 
    |^ 3) 
    + ((((3 
    * h) 
    + a1) 
    * (y 
    ^2 )) 
    + ((((3 
    * (h 
    ^2 )) 
    + (2 
    * (a1 
    * h))) 
    + a2) 
    * y))) 
    + (((h 
    |^ 3) 
    + (a1 
    * (h 
    ^2 ))) 
    + ((a2 
    * h) 
    + a3))) 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      assume
    
      
    
    A2: ( 
    Polynom (a,b,c,d,x)) 
    =  
    0 ; 
    
      let a1, a2, a3, h, y;
    
      assume that
    
      
    
    A3: y 
    = (x 
    + (b 
    / (3 
    * a))) & h 
    = ( 
    - (b 
    / (3 
    * a))) and 
    
      
    
    A4: a1 
    = (b 
    / a) & a2 
    = (c 
    / a) & a3 
    = (d 
    / a); 
    
      
    0  
    = ((a 
    " ) 
    * (((a 
    * (x 
    |^ 3)) 
    + (b 
    * (x 
    ^2 ))) 
    + ((c 
    * x) 
    + d))) by 
    A2
    
      .= (((((a
    " ) 
    * a) 
    * (x 
    |^ 3)) 
    + ((a 
    " ) 
    * (b 
    * (x 
    ^2 )))) 
    + ((a 
    " ) 
    * ((c 
    * x) 
    + d))) 
    
      .= (((1
    * (x 
    |^ 3)) 
    + ((a 
    " ) 
    * (b 
    * (x 
    ^2 )))) 
    + ((a 
    " ) 
    * ((c 
    * x) 
    + d))) by 
    A1,
    XCMPLX_0:def 7
    
      .= ((((x
    |^ 3) 
    + (((a 
    " ) 
    * b) 
    * (x 
    ^2 ))) 
    + (((a 
    " ) 
    * c) 
    * x)) 
    + ((a 
    " ) 
    * d)) 
    
      .= ((((x
    |^ 3) 
    + ((b 
    / a) 
    * (x 
    ^2 ))) 
    + (((a 
    " ) 
    * c) 
    * x)) 
    + ((a 
    " ) 
    * d)) by 
    XCMPLX_0:def 9
    
      .= ((((x
    |^ 3) 
    + ((b 
    / a) 
    * (x 
    ^2 ))) 
    + ((c 
    / a) 
    * x)) 
    + ((a 
    " ) 
    * d)) by 
    XCMPLX_0:def 9
    
      .= ((((x
    |^ 3) 
    + (a1 
    * (x 
    ^2 ))) 
    + (a2 
    * x)) 
    + a3) by 
    A4,
    XCMPLX_0:def 9;
    
      
    
      then
    0  
    = ((((((y 
    |^ 3) 
    + (((3 
    * h) 
    * (y 
    ^2 )) 
    + ((3 
    * (h 
    ^2 )) 
    * y))) 
    + (h 
    |^ 3)) 
    + (((a1 
    * (y 
    ^2 )) 
    + ((2 
    * (a1 
    * h)) 
    * y)) 
    + (a1 
    * (h 
    ^2 )))) 
    + (a2 
    * (y 
    + h))) 
    + a3) by 
    A3,
    Th14
    
      .= ((((y
    |^ 3) 
    + (((3 
    * h) 
    * (y 
    ^2 )) 
    + ((3 
    * (h 
    ^2 )) 
    * y))) 
    + (((2 
    * (a1 
    * h)) 
    * y) 
    + (a1 
    * (y 
    ^2 )))) 
    + ((a2 
    * y) 
    + (((h 
    |^ 3) 
    + (a1 
    * (h 
    ^2 ))) 
    + ((a2 
    * h) 
    + a3)))); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:16
    
    a
    <>  
    0 & ( 
    Polynom (a,b,c,d,x)) 
    =  
    0 implies for a1, a2, a3, h, y st y 
    = (x 
    + (b 
    / (3 
    * a))) & h 
    = ( 
    - (b 
    / (3 
    * a))) & a1 
    = (b 
    / a) & a2 
    = (c 
    / a) & a3 
    = (d 
    / a) holds ((((y 
    |^ 3) 
    + ( 
    0  
    * (y 
    ^2 ))) 
    + (((((3 
    * a) 
    * c) 
    - (b 
    ^2 )) 
    / (3 
    * (a 
    ^2 ))) 
    * y)) 
    + ((2 
    * ((b 
    / (3 
    * a)) 
    |^ 3)) 
    + ((((3 
    * a) 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 ))))) 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 ; 
    
      then
    
      
    
    A2: (3 
    * a) 
    <>  
    0 ; 
    
      assume
    
      
    
    A3: ( 
    Polynom (a,b,c,d,x)) 
    =  
    0 ; 
    
      let a1, a2, a3, h, y;
    
      assume that
    
      
    
    A4: y 
    = (x 
    + (b 
    / (3 
    * a))) and 
    
      
    
    A5: h 
    = ( 
    - (b 
    / (3 
    * a))) and 
    
      
    
    A6: a1 
    = (b 
    / a) and 
    
      
    
    A7: a2 
    = (c 
    / a) and 
    
      
    
    A8: a3 
    = (d 
    / a); 
    
      set p0 = ((3
    * h) 
    + a1); 
    
      
    
      
    
    A9: p0 
    = (( 
    - (3 
    * (b 
    / (3 
    * a)))) 
    + a1) by 
    A5
    
      .= ((
    - (3 
    * (((3 
    * a) 
    " ) 
    * b))) 
    + a1) by 
    XCMPLX_0:def 9
    
      .= ((
    - (3 
    * (((3 
    " ) 
    * (a 
    " )) 
    * b))) 
    + a1) by 
    XCMPLX_1: 204
    
      .= ((
    - (((3 
    * (3 
    " )) 
    * (a 
    " )) 
    * b)) 
    + a1) 
    
      .= ((
    - (b 
    / a)) 
    + a1) by 
    XCMPLX_0:def 9;
    
      set q2 = (((h
    |^ 3) 
    + (a1 
    * (h 
    ^2 ))) 
    + ((a2 
    * h) 
    + a3)); 
    
      
    
      
    
    A10: q2 
    = ((2 
    * ((b 
    / (3 
    * a)) 
    |^ 3)) 
    + ((((3 
    * a) 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) 
    
      proof
    
        set t = (3
    * a); 
    
        set a6 = (b
    / t); 
    
        
    
        
    
    A11: (b 
    / a) 
    = ((3 
    * b) 
    / t) by 
    XCMPLX_1: 91;
    
        
    
        
    
    A12: (a6 
    |^ 3) 
    = (a6 
    |^ (2 
    + 1)) 
    
        .= ((a6
    |^ (1 
    + 1)) 
    * a6) by 
    NEWTON: 6
    
        .= (((a6
    |^ 1) 
    * a6) 
    * a6) by 
    NEWTON: 6
    
        .= ((a6
    |^ 1) 
    * (a6 
    ^2 )) 
    
        .= ((a6
    to_power 1) 
    * (a6 
    ^2 )) by 
    POWER: 41;
    
        q2
    = (((( 
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + (( 
    - ((c 
    / a) 
    * (b 
    / t))) 
    + (d 
    / a))) by 
    A5,
    A6,
    A7,
    A8
    
        .= ((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + (( 
    - ((b 
    * c) 
    / (t 
    * a))) 
    + (d 
    / a))) by 
    XCMPLX_1: 76
    
        .= ((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + (( 
    - ((b 
    * c) 
    / (3 
    * (a 
    ^2 )))) 
    + (1 
    * (d 
    / a)))) 
    
        .= ((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + (( 
    - ((b 
    * c) 
    / (3 
    * (a 
    ^2 )))) 
    + ((t 
    / t) 
    * (d 
    / a)))) by 
    A2,
    XCMPLX_1: 60
    
        .= (((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + ((t 
    / t) 
    * (d 
    / a))) 
    - ((b 
    * c) 
    / (3 
    * (a 
    ^2 )))) 
    
        .= (((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + ((t 
    * d) 
    / (t 
    * a))) 
    - ((b 
    * c) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_1: 76
    
        .= (((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + ((t 
    * d) 
    * ((3 
    * (a 
    ^2 )) 
    " ))) 
    - ((b 
    * c) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_0:def 9
    
        .= (((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + ((t 
    * d) 
    * ((3 
    * (a 
    ^2 )) 
    " ))) 
    - ((b 
    * c) 
    * ((3 
    * (a 
    ^2 )) 
    " ))) by 
    XCMPLX_0:def 9
    
        .= ((((
    - (b 
    / t)) 
    |^ 3) 
    + ((b 
    / a) 
    * (( 
    - (b 
    / t)) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    * ((3 
    * (a 
    ^2 )) 
    " ))) 
    
        .= ((((
    - (b 
    / t)) 
    |^ (2 
    + 1)) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_0:def 9
    
        .= (((((
    - (b 
    / t)) 
    |^ (1 
    + 1)) 
    * ( 
    - (b 
    / t))) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    NEWTON: 6
    
        .= ((((((
    - (b 
    / t)) 
    |^ 1) 
    * ( 
    - (b 
    / t))) 
    * ( 
    - (b 
    / t))) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    NEWTON: 6
    
        .= (((((
    - (b 
    / t)) 
    |^ 1) 
    * (( 
    - (b 
    / t)) 
    ^2 )) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) 
    
        .= (((((
    - (b 
    / t)) 
    to_power 1) 
    * (( 
    - (b 
    / t)) 
    ^2 )) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    POWER: 41
    
        .= ((((
    - (b 
    / t)) 
    * ((b 
    / t) 
    ^2 )) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    POWER: 25
    
        .= ((((
    - (b 
    / t)) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 ))) 
    + ((b 
    / a) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_1: 76
    
        .= ((((
    - (b 
    / t)) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 ))) 
    + ((b 
    / a) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 )))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_1: 76
    
        .= ((((b
    / a) 
    - (b 
    / t)) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) 
    
        .= (((((3
    * b) 
    * (t 
    " )) 
    - ((1 
    * b) 
    / t)) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    A11,
    XCMPLX_0:def 9
    
        .= (((((3
    * b) 
    * (t 
    " )) 
    - ((1 
    * b) 
    * (t 
    " ))) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_0:def 9
    
        .= ((2
    * ((b 
    * (t 
    " )) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 )))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) 
    
        .= ((2
    * ((b 
    / t) 
    * ((b 
    ^2 ) 
    / (t 
    ^2 )))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_0:def 9
    
        .= ((2
    * ((b 
    / t) 
    * ((b 
    / t) 
    ^2 ))) 
    + (((t 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_1: 76;
    
        hence thesis by
    A12,
    POWER: 25;
    
      end;
    
      set p2 = (((3
    * (h 
    ^2 )) 
    + (2 
    * (a1 
    * h))) 
    + a2); 
    
      
    
      
    
    A13: p2 
    = ((((3 
    * a) 
    * c) 
    - (b 
    ^2 )) 
    / (3 
    * (a 
    ^2 ))) 
    
      proof
    
        set t = (((3
    * a) 
    " ) 
    * b); 
    
        
    
        
    
    A14: ((3 
    * a) 
    / (3 
    * a)) 
    = 1 by 
    A2,
    XCMPLX_1: 60;
    
        p2
    = (((3 
    * ((b 
    / (3 
    * a)) 
    ^2 )) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    A5
    
        .= (((3
    * ((((3 
    * a) 
    " ) 
    * b) 
    ^2 )) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    XCMPLX_0:def 9
    
        .= (((((3
    * ((3 
    * a) 
    " )) 
    * b) 
    * t) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) 
    
        .= (((((3
    * ((3 
    " ) 
    * (a 
    " ))) 
    * b) 
    * t) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    XCMPLX_1: 204
    
        .= ((((b
    / a) 
    * (((3 
    * a) 
    " ) 
    * b)) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    XCMPLX_0:def 9
    
        .= ((((b
    / a) 
    * (b 
    / (3 
    * a))) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    XCMPLX_0:def 9
    
        .= ((((b
    * b) 
    / (a 
    * (3 
    * a))) 
    + (2 
    * (a1 
    * ( 
    - (b 
    / (3 
    * a)))))) 
    + a2) by 
    XCMPLX_1: 76
    
        .= ((((b
    ^2 ) 
    / (3 
    * (a 
    ^2 ))) 
    - (2 
    * ((b 
    / a) 
    * (b 
    / (3 
    * a))))) 
    + (c 
    / a)) by 
    A6,
    A7
    
        .= ((((b
    ^2 ) 
    / (3 
    * (a 
    ^2 ))) 
    - (2 
    * ((b 
    * b) 
    / (a 
    * (3 
    * a))))) 
    + (c 
    / a)) by 
    XCMPLX_1: 76
    
        .= ((
    - ((b 
    ^2 ) 
    / (3 
    * (a 
    ^2 )))) 
    + (((3 
    * a) 
    / (3 
    * a)) 
    * (c 
    / a))) by 
    A14
    
        .= ((
    - ((b 
    ^2 ) 
    / (3 
    * (a 
    ^2 )))) 
    + (((3 
    * a) 
    * c) 
    / ((3 
    * a) 
    * a))) by 
    XCMPLX_1: 76
    
        .= ((((3
    * a) 
    * c) 
    / (3 
    * (a 
    ^2 ))) 
    - ((b 
    ^2 ) 
    / (3 
    * (a 
    ^2 )))) 
    
        .= ((((3
    * a) 
    * c) 
    * ((3 
    * (a 
    ^2 )) 
    " )) 
    - ((b 
    ^2 ) 
    / (3 
    * (a 
    ^2 )))) by 
    XCMPLX_0:def 9
    
        .= ((((3
    * a) 
    * c) 
    * ((3 
    * (a 
    ^2 )) 
    " )) 
    - ((b 
    ^2 ) 
    * ((3 
    * (a 
    ^2 )) 
    " ))) by 
    XCMPLX_0:def 9
    
        .= ((((3
    * a) 
    * c) 
    - (b 
    ^2 )) 
    * ((3 
    * (a 
    ^2 )) 
    " )); 
    
        hence thesis by
    XCMPLX_0:def 9;
    
      end;
    
      (((y
    |^ 3) 
    + ((p0 
    * (y 
    ^2 )) 
    + (p2 
    * y))) 
    + q2) 
    =  
    0 by 
    A1,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    Th15;
    
      hence thesis by
    A6,
    A9,
    A13,
    A10;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:17
    
    ((((y
    |^ 3) 
    + ( 
    0  
    * (y 
    ^2 ))) 
    + (((((3 
    * a) 
    * c) 
    - (b 
    ^2 )) 
    / (3 
    * (a 
    ^2 ))) 
    * y)) 
    + ((2 
    * ((b 
    / (3 
    * a)) 
    |^ 3)) 
    + ((((3 
    * a) 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 ))))) 
    =  
    0 implies for p, q st p 
    = ((((3 
    * a) 
    * c) 
    - (b 
    ^2 )) 
    / (3 
    * (a 
    ^2 ))) & q 
    = ((2 
    * ((b 
    / (3 
    * a)) 
    |^ 3)) 
    + ((((3 
    * a) 
    * d) 
    - (b 
    * c)) 
    / (3 
    * (a 
    ^2 )))) holds ( 
    Polynom (1, 
    0 ,p,q,y)) 
    =  
    0 ; 
    
    theorem :: 
    
    POLYEQ_1:18
    
    
    
    
    
    Th18: ( 
    Polynom (1, 
    0 ,p,q,y)) 
    =  
    0 implies for u, v st y 
    = (u 
    + v) & (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 holds ((u 
    |^ 3) 
    + (v 
    |^ 3)) 
    = ( 
    - q) & ((u 
    |^ 3) 
    * (v 
    |^ 3)) 
    = (( 
    - (p 
    / 3)) 
    |^ 3) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    Polynom (1, 
    0 ,p,q,y)) 
    =  
    0 ; 
    
      let u, v;
    
      assume that
    
      
    
    A2: y 
    = (u 
    + v) and 
    
      
    
    A3: (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 ; 
    
      ((u
    + v) 
    |^ 3) 
    = (((u 
    |^ 3) 
    + (((3 
    * v) 
    * (u 
    ^2 )) 
    + ((3 
    * (v 
    ^2 )) 
    * u))) 
    + (v 
    |^ 3)) by 
    Th14
    
      .= (((u
    |^ 3) 
    + (((3 
    * v) 
    * u) 
    * (u 
    + v))) 
    + (v 
    |^ 3)); 
    
      then
    0  
    = ((((u 
    |^ 3) 
    + (v 
    |^ 3)) 
    + ((((3 
    * v) 
    * u) 
    + p) 
    * (u 
    + v))) 
    + q) by 
    A1,
    A2;
    
      hence ((u
    |^ 3) 
    + (v 
    |^ 3)) 
    = ( 
    - q) by 
    A3;
    
      (3
    * (v 
    * u)) 
    = ( 
    - p) by 
    A3;
    
      hence thesis by
    NEWTON: 7;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:19
    
    
    
    
    
    Th19: ( 
    Polynom (1, 
    0 ,p,q,y)) 
    =  
    0 implies for u, v st y 
    = (u 
    + v) & (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 holds y 
    = ((3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) or y 
    = ((3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) or y 
    = ((3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) 
    
    proof
    
      set e1 = 1;
    
      assume
    
      
    
    A1: ( 
    Polynom (1, 
    0 ,p,q,y)) 
    =  
    0 ; 
    
      set e3 = ((
    - (p 
    / 3)) 
    |^ 3); 
    
      set e2 = q;
    
      let u, v;
    
      assume that
    
      
    
    A2: y 
    = (u 
    + v) and 
    
      
    
    A3: (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 ; 
    
      set z2 = (v
    |^ 3); 
    
      set z1 = (u
    |^ 3); 
    
      
    
    A4: 
    
      now
    
        let z;
    
        
    
        thus ((z
    - z1) 
    * (z 
    - z2)) 
    = (((z 
    ^2 ) 
    - ((z1 
    + z2) 
    * z)) 
    + (z1 
    * z2)) 
    
        .= (((z
    ^2 ) 
    - (( 
    - q) 
    * z)) 
    + (z1 
    * z2)) by 
    A1,
    A2,
    A3,
    Th18
    
        .= (((z
    ^2 ) 
    + (q 
    * z)) 
    + (( 
    - (p 
    / 3)) 
    |^ 3)) by 
    A1,
    A2,
    A3,
    Th18;
    
      end;
    
      
    
      
    
    A5: (z1 
    + z2) 
    = ( 
    - q) by 
    A1,
    A2,
    A3,
    Th18;
    
      then (e2
    ^2 ) 
    = ((z1 
    + z2) 
    ^2 ) by 
    SQUARE_1: 3;
    
      
    
      then
    
      
    
    A6: ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)) 
    = (( 
    - ( 
    - (((z1 
    ^2 ) 
    + ((2 
    * z1) 
    * z2)) 
    + (z2 
    ^2 )))) 
    - (4 
    * (z1 
    * z2))) by 
    A1,
    A2,
    A3,
    Th18
    
      .= ((z1
    - z2) 
    ^2 ); 
    
      then
    
      
    
    A7: ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then
    
      
    
    A8: ( 
    delta (e1,e2,e3)) 
    >=  
    0 by 
    QUIN_1:def 1;
    
      ((z1
    - z1) 
    * (z1 
    - z2)) 
    = ( 
    0  
    * (z1 
    - z2)); 
    
      then
    
      
    
    A9: ( 
    Polynom (e1,e2,e3,z1)) 
    =  
    0 by 
    A4;
    
      ((z2
    - z1) 
    * (z2 
    - z2)) 
    = ((z2 
    - z1) 
    *  
    0 ); 
    
      then
    
      
    
    A10: ( 
    Polynom (e1,e2,e3,z2)) 
    =  
    0 by 
    A4;
    
      
    
      
    
    A11: (z2 
    * z1) 
    = (( 
    - (p 
    / 3)) 
    |^ 3) by 
    A1,
    A2,
    A3,
    Th18;
    
      now
    
        per cases by
    A9,
    A8,
    Th5;
    
          case
    
          
    
    A12: z1 
    = ((( 
    - e2) 
    + ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
          
    
          
    
    A13: ((p 
    / 3) 
    |^ 3) 
    = ((p 
    / 3) 
    |^ (2 
    + 1)) 
    
          .= (((p
    / 3) 
    |^ (1 
    + 1)) 
    * (p 
    / 3)) by 
    NEWTON: 6
    
          .= ((((p
    / 3) 
    |^ 1) 
    * (p 
    / 3)) 
    * (p 
    / 3)) by 
    NEWTON: 6
    
          .= (((p
    / 3) 
    |^ 1) 
    * ((p 
    / 3) 
    ^2 )) 
    
          .= (((p
    / 3) 
    to_power 1) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 41
    
          .= ((p
    / 3) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 25;
    
          
    
          
    
    A14: ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    >=  
    0 by 
    A6,
    XREAL_1: 63;
    
          
    
          
    
    A15: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    |^ (2 
    + 1)) 
    
          .= (((
    - (p 
    / 3)) 
    |^ (1 
    + 1)) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6
    
          .= ((((
    - (p 
    / 3)) 
    |^ 1) 
    * ( 
    - (p 
    / 3))) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6
    
          .= (((
    - (p 
    / 3)) 
    |^ 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )); 
    
          
    
          then
    
          
    
    A16: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    to_power 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 41
    
          .= ((
    - (p 
    / 3)) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 25
    
          .= (
    - ((p 
    / 3) 
    * ((p 
    / 3) 
    ^2 ))); 
    
          
    
          
    
    A17: z1 
    = ((( 
    - e2) 
    + ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    A12,
    QUIN_1:def 1
    
          .= (((
    - q) 
    / 2) 
    + (( 
    sqrt ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3)))) 
    / ( 
    sqrt 4))) by 
    SQUARE_1: 20,
    XCMPLX_1: 62
    
          .= (((
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A14,
    SQUARE_1: 30
    
          .= (((
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
          
    
    A18: 
    
          now
    
            per cases by
    XXREAL_0: 1;
    
              case
    
              
    
    A19: u 
    >  
    0 ; 
    
              then
    
              
    
    A20: (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A17,
    A16,
    A13,
    PREPOWER: 6;
    
              then u
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A17,
    A16,
    A13,
    A19,
    PREPOWER:def 2;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A20,
    POWER:def 1;
    
            end;
    
              case
    
              
    
    A21: u 
    =  
    0 ; 
    
              then
    
              
    
    A22: (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    =  
    0 by 
    A17,
    A16,
    A13,
    NEWTON: 11;
    
              then (3
    -Root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    =  
    0 by 
    PREPOWER:def 2;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A21,
    A22,
    POWER:def 1;
    
            end;
    
              case u
    <  
    0 ; 
    
              then
    
              
    
    A23: ( 
    - u) 
    >  
    0 by 
    XREAL_1: 58;
    
              set r = ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
              
    
              
    
    A24: (3 
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
              ((
    - u) 
    |^ 3) 
    = (( 
    - u) 
    |^ (2 
    + 1)) 
    
              .= (((
    - u) 
    |^ (1 
    + 1)) 
    * ( 
    - u)) by 
    NEWTON: 6
    
              .= ((((
    - u) 
    |^ 1) 
    * ( 
    - u)) 
    * ( 
    - u)) by 
    NEWTON: 6
    
              .= (((
    - u) 
    |^ 1) 
    * (( 
    - u) 
    ^2 )); 
    
              then ((
    - u) 
    |^ 3) 
    = ((( 
    - u) 
    to_power 1) 
    * (( 
    - u) 
    ^2 )) by 
    POWER: 41;
    
              
    
              then
    
              
    
    A25: (( 
    - u) 
    |^ 3) 
    = (( 
    - u) 
    * (u 
    ^2 )) by 
    POWER: 25
    
              .= (
    - (u 
    * (u 
    ^2 ))); 
    
              (u
    |^ 3) 
    = (u 
    |^ (2 
    + 1)) 
    
              .= ((u
    |^ (1 
    + 1)) 
    * u) by 
    NEWTON: 6
    
              .= (((u
    |^ 1) 
    * u) 
    * u) by 
    NEWTON: 6
    
              .= ((u
    |^ 1) 
    * (u 
    * u)); 
    
              then
    
              
    
    A26: (u 
    |^ 3) 
    = ((u 
    to_power 1) 
    * (u 
    ^2 )) by 
    POWER: 41;
    
              then
    
              
    
    A27: (( 
    - u) 
    |^ 3) 
    = ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A17,
    A16,
    A13,
    A25,
    POWER: 25;
    
              
    
              
    
    A28: (( 
    - u) 
    |^ 3) 
    = ( 
    - (u 
    |^ 3)) by 
    A25,
    A26,
    POWER: 25;
    
              then
    
              
    
    A29: ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    >  
    0 by 
    A17,
    A16,
    A13,
    A23,
    PREPOWER: 6;
    
              (
    - (u 
    |^ 3)) 
    >  
    0 by 
    A23,
    A28,
    PREPOWER: 6;
    
              then (
    - u) 
    = (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A17,
    A16,
    A13,
    A23,
    A27,
    PREPOWER:def 2;
    
              then (
    - u) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A29,
    POWER:def 1;
    
              then (
    - u) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A24;
    
            end;
    
          end;
    
          now
    
            per cases by
    A8,
    A10,
    Th5;
    
              case z2
    = ((( 
    - e2) 
    + ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
              then z2
    = ((( 
    - e2) 
    + ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    QUIN_1:def 1;
    
              then z2
    = ((( 
    - q) 
    / 2) 
    + (( 
    sqrt ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3)))) 
    / ( 
    sqrt 4))) by 
    SQUARE_1: 20,
    XCMPLX_1: 62;
    
              
    
              then
    
              
    
    A30: z2 
    = ((( 
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A7,
    SQUARE_1: 30
    
              .= (((
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
              
    
              
    
    A31: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    to_power 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    A15,
    POWER: 41
    
              .= ((
    - (p 
    / 3)) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 25;
    
              now
    
                per cases by
    XXREAL_0: 1;
    
                  case
    
                  
    
    A32: v 
    >  
    0 ; 
    
                  then
    
                  
    
    A33: (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A13,
    A30,
    A31,
    PREPOWER: 6;
    
                  then v
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A13,
    A30,
    A31,
    A32,
    PREPOWER:def 2;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A33,
    POWER:def 1;
    
                end;
    
                  case
    
                  
    
    A34: v 
    =  
    0 ; 
    
                  then ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    =  
    0 by 
    A13,
    A30,
    A31,
    NEWTON: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A34,
    POWER: 5;
    
                end;
    
                  case v
    <  
    0 ; 
    
                  then
    
                  
    
    A35: ( 
    - v) 
    >  
    0 by 
    XREAL_1: 58;
    
                  then
    
                  
    
    A36: (( 
    - v) 
    |^ 3) 
    >  
    0 by 
    PREPOWER: 6;
    
                  ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    |^ (2 
    + 1)); 
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ (1 
    + 1)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = (((( 
    - v) 
    |^ 1) 
    * ( 
    - v)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ 1) 
    * (( 
    - v) 
    * ( 
    - v))); 
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    to_power 1) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 41;
    
                  then ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 25;
    
                  then
    
                  
    
    A37: (( 
    - v) 
    |^ 3) 
    = ( 
    - (v 
    * (v 
    ^2 ))); 
    
                  (v
    |^ 3) 
    = (v 
    |^ (2 
    + 1)); 
    
                  then (v
    |^ 3) 
    = ((v 
    |^ (1 
    + 1)) 
    * v) by 
    NEWTON: 6;
    
                  then (v
    |^ 3) 
    = (((v 
    |^ 1) 
    * v) 
    * v) by 
    NEWTON: 6;
    
                  then (v
    |^ 3) 
    = ((v 
    |^ 1) 
    * (v 
    * v)); 
    
                  then
    
                  
    
    A38: (v 
    |^ 3) 
    = ((v 
    to_power 1) 
    * (v 
    ^2 )) by 
    POWER: 41;
    
                  then ((
    - v) 
    |^ 3) 
    = ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A13,
    A30,
    A31,
    A37,
    POWER: 25;
    
                  then
    
                  
    
    A39: ( 
    - v) 
    = (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A35,
    A36,
    PREPOWER:def 2;
    
                  set r = ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
                  
    
                  
    
    A40: (3 
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
                  (
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    >  
    0 by 
    A13,
    A30,
    A31,
    A36,
    A37,
    A38,
    POWER: 25;
    
                  then (
    - v) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A39,
    POWER:def 1;
    
                  then (
    - v) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A40;
    
                end;
    
              end;
    
              hence thesis by
    A2,
    A18;
    
            end;
    
              case z2
    = ((( 
    - e2) 
    - ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
              then z2
    = ((( 
    - e2) 
    - ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    QUIN_1:def 1;
    
              then z2
    = ((( 
    - q) 
    / 2) 
    - (( 
    sqrt ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3)))) 
    / 2)); 
    
              
    
              then
    
              
    
    A41: z2 
    = (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A7,
    SQUARE_1: 20,
    SQUARE_1: 30
    
              .= ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
              now
    
                per cases by
    XXREAL_0: 1;
    
                  case
    
                  
    
    A42: v 
    >  
    0 ; 
    
                  then ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A16,
    A13,
    A41,
    PREPOWER: 6;
    
                  then
    
                  
    
    A43: v 
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A16,
    A13,
    A41,
    A42,
    PREPOWER:def 2;
    
                  ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A16,
    A13,
    A41,
    A42,
    PREPOWER: 6;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A43,
    POWER:def 1;
    
                end;
    
                  case
    
                  
    
    A44: v 
    =  
    0 ; 
    
                  then
    
                  
    
    A45: (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    =  
    0 by 
    A16,
    A13,
    A41,
    NEWTON: 11;
    
                  hence v
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A44,
    PREPOWER:def 2;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A45,
    POWER:def 1;
    
                end;
    
                  case v
    <  
    0 ; 
    
                  then
    
                  
    
    A46: ( 
    - v) 
    >  
    0 by 
    XREAL_1: 58;
    
                  set r = ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
                  
    
                  
    
    A47: (3 
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
                  (v
    |^ 3) 
    = (v 
    |^ (2 
    + 1)); 
    
                  then (v
    |^ 3) 
    = ((v 
    |^ (1 
    + 1)) 
    * v) by 
    NEWTON: 6;
    
                  then
    
                  
    
    A48: (v 
    |^ 3) 
    = (((v 
    |^ 1) 
    * v) 
    * v) by 
    NEWTON: 6;
    
                  ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    |^ (2 
    + 1)); 
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ (1 
    + 1)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = (((( 
    - v) 
    |^ 1) 
    * ( 
    - v)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ 1) 
    * (( 
    - v) 
    * ( 
    - v))); 
    
                  
    
                  then
    
                  
    
    A49: (( 
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    to_power 1) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 41
    
                  .= ((
    - v) 
    * (v 
    ^2 )) by 
    POWER: 25
    
                  .= (
    - (v 
    * (v 
    ^2 ))); 
    
                  ((
    - v) 
    |^ 3) 
    = ( 
    - (v 
    |^ 3)) by 
    A49,
    A48;
    
                  then
    
                  
    
    A50: ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    >  
    0 by 
    A16,
    A13,
    A41,
    A46,
    PREPOWER: 6;
    
                  ((
    - v) 
    |^ 3) 
    = ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A16,
    A13,
    A41,
    A49,
    A48;
    
                  then (
    - v) 
    = (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A46,
    A50,
    PREPOWER:def 2;
    
                  then (
    - v) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A50,
    POWER:def 1;
    
                  then (
    - v) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A47;
    
                end;
    
              end;
    
              hence thesis by
    A2,
    A18;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
          case
    
          
    
    A51: z1 
    = ((( 
    - e2) 
    - ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
          ((
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    |^ (2 
    + 1)); 
    
          then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    |^ (1 
    + 1)) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6;
    
          then ((
    - (p 
    / 3)) 
    |^ 3) 
    = (((( 
    - (p 
    / 3)) 
    |^ 1) 
    * ( 
    - (p 
    / 3))) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6;
    
          then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    |^ 1) 
    * (( 
    - (p 
    / 3)) 
    * ( 
    - (p 
    / 3)))); 
    
          then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    to_power 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 41;
    
          then ((
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 25;
    
          then
    
          
    
    A52: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    * ((p 
    / 3) 
    ^2 ))); 
    
          z1
    = ((( 
    - e2) 
    - ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    A51,
    QUIN_1:def 1;
    
          
    
          then
    
          
    
    A53: z1 
    = ((( 
    - q) 
    * (2 
    " )) 
    - (( 
    sqrt ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3)))) 
    / 2)) 
    
          .= ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A7,
    SQUARE_1: 20,
    SQUARE_1: 30
    
          .= ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
          hence z1
    = (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (( 
    - (p 
    / 3)) 
    |^ 3)))); 
    
          ((p
    / 3) 
    |^ 3) 
    = ((p 
    / 3) 
    |^ (2 
    + 1)); 
    
          then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    |^ (1 
    + 1)) 
    * (p 
    / 3)) by 
    NEWTON: 6;
    
          then ((p
    / 3) 
    |^ 3) 
    = ((((p 
    / 3) 
    |^ 1) 
    * (p 
    / 3)) 
    * (p 
    / 3)) by 
    NEWTON: 6;
    
          then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    |^ 1) 
    * ((p 
    / 3) 
    * (p 
    / 3))); 
    
          then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    to_power 1) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 41;
    
          then
    
          
    
    A54: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    |^ 3)) by 
    A52,
    POWER: 25;
    
          
    
    A55: 
    
          now
    
            per cases by
    XXREAL_0: 1;
    
              case
    
              
    
    A56: u 
    >  
    0 ; 
    
              then ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A53,
    A54,
    PREPOWER: 6;
    
              then
    
              
    
    A57: u 
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A53,
    A54,
    A56,
    PREPOWER:def 2;
    
              ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A53,
    A54,
    A56,
    PREPOWER: 6;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A57,
    POWER:def 1;
    
            end;
    
              case
    
              
    
    A58: u 
    =  
    0 ; 
    
              then ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    =  
    0 by 
    A53,
    A54,
    NEWTON: 11;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A58,
    POWER: 5;
    
            end;
    
              case u
    <  
    0 ; 
    
              then
    
              
    
    A59: ( 
    - u) 
    >  
    0 by 
    XREAL_1: 58;
    
              then
    
              
    
    A60: (( 
    - u) 
    |^ 3) 
    >  
    0 by 
    PREPOWER: 6;
    
              ((
    - u) 
    |^ 3) 
    = (( 
    - u) 
    |^ (2 
    + 1)); 
    
              then ((
    - u) 
    |^ 3) 
    = ((( 
    - u) 
    |^ (1 
    + 1)) 
    * ( 
    - u)) by 
    NEWTON: 6;
    
              then ((
    - u) 
    |^ 3) 
    = (((( 
    - u) 
    |^ 1) 
    * ( 
    - u)) 
    * ( 
    - u)) by 
    NEWTON: 6;
    
              then ((
    - u) 
    |^ 3) 
    = ((( 
    - u) 
    |^ 1) 
    * (( 
    - u) 
    * ( 
    - u))); 
    
              then ((
    - u) 
    |^ 3) 
    = ((( 
    - u) 
    to_power 1) 
    * (( 
    - u) 
    ^2 )) by 
    POWER: 41;
    
              then ((
    - u) 
    |^ 3) 
    = (( 
    - u) 
    * (( 
    - u) 
    ^2 )) by 
    POWER: 25;
    
              then
    
              
    
    A61: (( 
    - u) 
    |^ 3) 
    = ( 
    - (u 
    * (u 
    ^2 ))); 
    
              (u
    |^ 3) 
    = (u 
    |^ (2 
    + 1)); 
    
              then (u
    |^ 3) 
    = ((u 
    |^ (1 
    + 1)) 
    * u) by 
    NEWTON: 6;
    
              then (u
    |^ 3) 
    = (((u 
    |^ 1) 
    * u) 
    * u) by 
    NEWTON: 6;
    
              then (u
    |^ 3) 
    = ((u 
    |^ 1) 
    * (u 
    * u)); 
    
              then
    
              
    
    A62: (u 
    |^ 3) 
    = ((u 
    to_power 1) 
    * (u 
    ^2 )) by 
    POWER: 41;
    
              then (
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    >  
    0 by 
    A53,
    A54,
    A60,
    A61,
    POWER: 25;
    
              then
    
              
    
    A63: (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) 
    = (3 
    -root ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    POWER:def 1;
    
              set r = ((
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
              ((
    - u) 
    |^ 3) 
    = ( 
    - (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A53,
    A54,
    A61,
    A62,
    POWER: 25;
    
              then (
    - u) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A59,
    A60,
    A63,
    PREPOWER:def 2;
    
              then
    
              
    
    A64: ( 
    - u) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
              (3
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
              hence u
    = (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A64;
    
            end;
    
          end;
    
          now
    
            per cases by
    A8,
    A10,
    Th5;
    
              case
    
              
    
    A65: z2 
    = ((( 
    - e2) 
    + ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
              ((
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    |^ (2 
    + 1)); 
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    |^ (1 
    + 1)) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6;
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = (((( 
    - (p 
    / 3)) 
    |^ 1) 
    * ( 
    - (p 
    / 3))) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6;
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    |^ 1) 
    * (( 
    - (p 
    / 3)) 
    * ( 
    - (p 
    / 3)))); 
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    to_power 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 41;
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 25;
    
              then
    
              
    
    A66: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    * ((p 
    / 3) 
    ^2 ))); 
    
              ((p
    / 3) 
    |^ 3) 
    = ((p 
    / 3) 
    |^ (2 
    + 1)); 
    
              then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    |^ (1 
    + 1)) 
    * (p 
    / 3)) by 
    NEWTON: 6;
    
              then ((p
    / 3) 
    |^ 3) 
    = ((((p 
    / 3) 
    |^ 1) 
    * (p 
    / 3)) 
    * (p 
    / 3)) by 
    NEWTON: 6;
    
              then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    |^ 1) 
    * ((p 
    / 3) 
    * (p 
    / 3))); 
    
              then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    to_power 1) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 41;
    
              then
    
              
    
    A67: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    |^ 3)) by 
    A66,
    POWER: 25;
    
              z2
    = ((( 
    - e2) 
    + ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    A65,
    QUIN_1:def 1;
    
              then z2
    = ((( 
    - q) 
    / 2) 
    + (( 
    sqrt ((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3)))) 
    / ( 
    sqrt 4))) by 
    SQUARE_1: 20,
    XCMPLX_1: 62;
    
              
    
              then
    
              
    
    A68: z2 
    = ((( 
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A7,
    SQUARE_1: 30
    
              .= (((
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
              now
    
                per cases by
    XXREAL_0: 1;
    
                  case
    
                  
    
    A69: v 
    >  
    0 ; 
    
                  then
    
                  
    
    A70: (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A68,
    A67,
    PREPOWER: 6;
    
                  then v
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A68,
    A67,
    A69,
    PREPOWER:def 2;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A70,
    POWER:def 1;
    
                end;
    
                  case
    
                  
    
    A71: v 
    =  
    0 ; 
    
                  then ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    =  
    0 by 
    A68,
    A67,
    NEWTON: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A71,
    POWER: 5;
    
                end;
    
                  case v
    <  
    0 ; 
    
                  then
    
                  
    
    A72: ( 
    - v) 
    >  
    0 by 
    XREAL_1: 58;
    
                  then
    
                  
    
    A73: (( 
    - v) 
    |^ 3) 
    >  
    0 by 
    PREPOWER: 6;
    
                  ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    |^ (2 
    + 1)); 
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ (1 
    + 1)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = (((( 
    - v) 
    |^ 1) 
    * ( 
    - v)) 
    * ( 
    - v)) by 
    NEWTON: 6;
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    |^ 1) 
    * (( 
    - v) 
    * ( 
    - v))); 
    
                  then ((
    - v) 
    |^ 3) 
    = ((( 
    - v) 
    to_power 1) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 41;
    
                  then ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 25;
    
                  then
    
                  
    
    A74: (( 
    - v) 
    |^ 3) 
    = ( 
    - (v 
    * (v 
    ^2 ))); 
    
                  (v
    |^ 3) 
    = (v 
    |^ (2 
    + 1)); 
    
                  then (v
    |^ 3) 
    = ((v 
    |^ (1 
    + 1)) 
    * v) by 
    NEWTON: 6;
    
                  then (v
    |^ 3) 
    = (((v 
    |^ 1) 
    * v) 
    * v) by 
    NEWTON: 6;
    
                  then (v
    |^ 3) 
    = ((v 
    |^ 1) 
    * (v 
    * v)); 
    
                  then
    
                  
    
    A75: (v 
    |^ 3) 
    = ((v 
    to_power 1) 
    * (v 
    ^2 )) by 
    POWER: 41;
    
                  then
    
                  
    
    A76: ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    >  
    0 by 
    A68,
    A67,
    A73,
    A74,
    POWER: 25;
    
                  set r = ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
                  
    
                  
    
    A77: (3 
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
                  (v
    |^ 3) 
    = (v 
    * (v 
    ^2 )) by 
    A75,
    POWER: 25;
    
                  then (
    - v) 
    = (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A68,
    A67,
    A72,
    A73,
    A74,
    PREPOWER:def 2;
    
                  then (
    - v) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A76,
    POWER:def 1;
    
                  then (
    - v) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A77;
    
                end;
    
              end;
    
              hence thesis by
    A2,
    A55;
    
            end;
    
              case
    
              
    
    A78: z2 
    = ((( 
    - e2) 
    - ( 
    sqrt ( 
    delta (e1,e2,e3)))) 
    / (2 
    * e1)); 
    
              (e2
    ^2 ) 
    = ((z1 
    + z2) 
    ^2 ) by 
    A5,
    SQUARE_1: 3;
    
              then
    
              
    
    A79: ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)) 
    = ((z1 
    - z2) 
    ^2 ) by 
    A11;
    
              ((
    - (p 
    / 3)) 
    |^ 3) 
    = (( 
    - (p 
    / 3)) 
    |^ (2 
    + 1)) 
    
              .= (((
    - (p 
    / 3)) 
    |^ (1 
    + 1)) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6
    
              .= ((((
    - (p 
    / 3)) 
    |^ 1) 
    * ( 
    - (p 
    / 3))) 
    * ( 
    - (p 
    / 3))) by 
    NEWTON: 6
    
              .= (((
    - (p 
    / 3)) 
    |^ 1) 
    * (( 
    - (p 
    / 3)) 
    * ( 
    - (p 
    / 3)))); 
    
              
    
              then ((
    - (p 
    / 3)) 
    |^ 3) 
    = ((( 
    - (p 
    / 3)) 
    to_power 1) 
    * (( 
    - (p 
    / 3)) 
    ^2 )) by 
    POWER: 41
    
              .= ((
    - (p 
    / 3)) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 25;
    
              then
    
              
    
    A80: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    * ((p 
    / 3) 
    ^2 ))); 
    
              ((p
    / 3) 
    |^ 3) 
    = ((p 
    / 3) 
    |^ (2 
    + 1)) 
    
              .= (((p
    / 3) 
    |^ (1 
    + 1)) 
    * (p 
    / 3)) by 
    NEWTON: 6
    
              .= ((((p
    / 3) 
    |^ 1) 
    * (p 
    / 3)) 
    * (p 
    / 3)) by 
    NEWTON: 6
    
              .= (((p
    / 3) 
    |^ 1) 
    * ((p 
    / 3) 
    ^2 )); 
    
              then ((p
    / 3) 
    |^ 3) 
    = (((p 
    / 3) 
    to_power 1) 
    * ((p 
    / 3) 
    ^2 )) by 
    POWER: 41;
    
              then
    
              
    
    A81: (( 
    - (p 
    / 3)) 
    |^ 3) 
    = ( 
    - ((p 
    / 3) 
    |^ 3)) by 
    A80,
    POWER: 25;
    
              z2
    = ((( 
    - e2) 
    - ( 
    sqrt ((e2 
    ^2 ) 
    - ((4 
    * e1) 
    * e3)))) 
    / (2 
    * e1)) by 
    A78,
    QUIN_1:def 1;
    
              
    
              then
    
              
    
    A82: z2 
    = ((( 
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    - (4 
    * (( 
    - (p 
    / 3)) 
    |^ 3))) 
    / 4))) by 
    A51,
    A78,
    A79,
    SQUARE_1: 17
    
              .= (((
    - q) 
    / 2) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    - (1 
    * (( 
    - (p 
    / 3)) 
    |^ 3))))); 
    
              now
    
                per cases by
    XXREAL_0: 1;
    
                  case
    
                  
    
    A83: v 
    >  
    0 ; 
    
                  then
    
                  
    
    A84: (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))) 
    >  
    0 by 
    A82,
    A81,
    PREPOWER: 6;
    
                  then v
    = (3 
    -Root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A82,
    A81,
    A83,
    PREPOWER:def 2;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A84,
    POWER:def 1;
    
                end;
    
                  case
    
                  
    
    A85: v 
    =  
    0 ; 
    
                  then (v
    |^ 3) 
    =  
    0 by 
    NEWTON: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A82,
    A81,
    A85,
    POWER: 5;
    
                end;
    
                  case v
    <  
    0 ; 
    
                  then
    
                  
    
    A86: ( 
    - v) 
    >  
    0 by 
    XREAL_1: 58;
    
                  then
    
                  
    
    A87: (( 
    - v) 
    |^ 3) 
    >  
    0 by 
    PREPOWER: 6;
    
                  set r = ((
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))); 
    
                  (v
    |^ 3) 
    = (v 
    |^ (2 
    + 1)) 
    
                  .= ((v
    |^ (1 
    + 1)) 
    * v) by 
    NEWTON: 6
    
                  .= (((v
    |^ 1) 
    * v) 
    * v) by 
    NEWTON: 6
    
                  .= ((v
    |^ 1) 
    * (v 
    ^2 )); 
    
                  then
    
                  
    
    A88: (v 
    |^ 3) 
    = ((v 
    to_power 1) 
    * (v 
    ^2 )) by 
    POWER: 41;
    
                  ((
    - v) 
    |^ 3) 
    = (( 
    - v) 
    |^ (2 
    + 1)) 
    
                  .= (((
    - v) 
    |^ (1 
    + 1)) 
    * ( 
    - v)) by 
    NEWTON: 6
    
                  .= ((((
    - v) 
    |^ 1) 
    * ( 
    - v)) 
    * ( 
    - v)) by 
    NEWTON: 6
    
                  .= (((
    - v) 
    |^ 1) 
    * (( 
    - v) 
    ^2 )) 
    
                  .= (((
    - v) 
    to_power 1) 
    * (( 
    - v) 
    ^2 )) by 
    POWER: 41
    
                  .= ((
    - v) 
    * (v 
    ^2 )) by 
    POWER: 25;
    
                  then
    
                  
    
    A89: (( 
    - v) 
    |^ 3) 
    = ( 
    - (v 
    * (v 
    ^2 ))); 
    
                  then
    
                  
    
    A90: ( 
    - (v 
    |^ 3)) 
    >  
    0 by 
    A87,
    A88,
    POWER: 25;
    
                  
    
                  
    
    A91: (3 
    -root ( 
    - 1)) 
    = ( 
    - 1) by 
    Lm1,
    POWER: 8;
    
                  ((
    - v) 
    |^ 3) 
    = ( 
    - (v 
    |^ 3)) by 
    A89,
    A88,
    POWER: 25;
    
                  then (
    - v) 
    = (3 
    -Root ( 
    - (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A82,
    A81,
    A86,
    A87,
    PREPOWER:def 2;
    
                  then (
    - v) 
    = (3 
    -root (( 
    - 1) 
    * r)) by 
    A82,
    A81,
    A90,
    POWER:def 1;
    
                  then (
    - v) 
    = ((3 
    -root ( 
    - 1)) 
    * (3 
    -root r)) by 
    Lm1,
    POWER: 11;
    
                  hence v
    = (3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) by 
    A91;
    
                end;
    
              end;
    
              hence y
    = ((3 
    -root (( 
    - (q 
    / 2)) 
    + ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (q 
    / 2)) 
    - ( 
    sqrt (((q 
    ^2 ) 
    / 4) 
    + ((p 
    / 3) 
    |^ 3)))))) by 
    A2,
    A55;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:20
    
    b
    <>  
    0 & ( 
    delta (b,c,d)) 
    >  
    0 & ( 
    Polynom ( 
    0 ,b,c,d,x)) 
    =  
    0 implies x 
    = ((( 
    - c) 
    + ( 
    sqrt ( 
    delta (b,c,d)))) 
    / (2 
    * b)) or x 
    = ((( 
    - c) 
    - ( 
    sqrt ( 
    delta (b,c,d)))) 
    / (2 
    * b)) 
    
    proof
    
      assume
    
      
    
    A1: b 
    <>  
    0 & ( 
    delta (b,c,d)) 
    >  
    0 ; 
    
      assume (
    Polynom ( 
    0 ,b,c,d,x)) 
    =  
    0 ; 
    
      then (
    Polynom (b,c,d,x)) 
    =  
    0 ; 
    
      hence thesis by
    A1,
    Th5;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:21
    
    a
    <>  
    0 & p 
    = (c 
    / a) & q 
    = (d 
    / a) & ( 
    Polynom (a, 
    0 ,c,d,x)) 
    =  
    0 implies for u, v st x 
    = (u 
    + v) & (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 holds x 
    = ((3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    + ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    - ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3)))))) or x 
    = ((3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    + ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    + ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3)))))) or x 
    = ((3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    - ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3))))) 
    + (3 
    -root (( 
    - (d 
    / (2 
    * a))) 
    - ( 
    sqrt (((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) 
    + ((c 
    / (3 
    * a)) 
    |^ 3)))))) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: p 
    = (c 
    / a) and 
    
      
    
    A3: q 
    = (d 
    / a); 
    
      
    
      
    
    A4: (p 
    / 3) 
    = (c 
    / (3 
    * a)) & ( 
    - (q 
    / 2)) 
    = ( 
    - (d 
    / (2 
    * a))) by 
    A2,
    A3,
    XCMPLX_1: 78;
    
      assume (
    Polynom (a, 
    0 ,c,d,x)) 
    =  
    0 ; 
    
      then ((a
    " ) 
    * (((a 
    * (x 
    |^ 3)) 
    + (c 
    * x)) 
    + d)) 
    =  
    0 ; 
    
      then ((((a
    " ) 
    * a) 
    * (x 
    |^ 3)) 
    + ((a 
    " ) 
    * ((c 
    * x) 
    + d))) 
    =  
    0 ; 
    
      then ((1
    * (x 
    |^ 3)) 
    + ((a 
    " ) 
    * ((c 
    * x) 
    + d))) 
    =  
    0 by 
    A1,
    XCMPLX_0:def 7;
    
      then ((x
    |^ 3) 
    + ((((a 
    " ) 
    * c) 
    * x) 
    + ((a 
    " ) 
    * d))) 
    =  
    0 ; 
    
      then ((x
    |^ 3) 
    + (((c 
    / a) 
    * x) 
    + ((a 
    " ) 
    * d))) 
    =  
    0 by 
    XCMPLX_0:def 9;
    
      then ((x
    |^ 3) 
    + (((c 
    / a) 
    * x) 
    + (d 
    / a))) 
    =  
    0 by 
    XCMPLX_0:def 9;
    
      then
    
      
    
    A5: ( 
    Polynom (1, 
    0 ,p,q,x)) 
    =  
    0 by 
    A2,
    A3;
    
      ((q
    ^2 ) 
    / 4) 
    = (((d 
    ^2 ) 
    / (a 
    ^2 )) 
    / 4) by 
    A3,
    XCMPLX_1: 76;
    
      then
    
      
    
    A6: ((q 
    ^2 ) 
    / 4) 
    = ((d 
    ^2 ) 
    / (4 
    * (a 
    ^2 ))) by 
    XCMPLX_1: 78;
    
      let u, v;
    
      assume x
    = (u 
    + v) & (((3 
    * v) 
    * u) 
    + p) 
    =  
    0 ; 
    
      hence thesis by
    A5,
    A4,
    A6,
    Th19;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:22
    
    a
    <>  
    0 & ( 
    delta (a,b,c)) 
    >=  
    0 & ( 
    Polynom (a,b,c, 
    0 ,x)) 
    =  
    0 implies x 
    =  
    0 or x 
    = ((( 
    - b) 
    + ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) or x 
    = ((( 
    - b) 
    - ( 
    sqrt ( 
    delta (a,b,c)))) 
    / (2 
    * a)) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <>  
    0 & ( 
    delta (a,b,c)) 
    >=  
    0 ; 
    
      (x
    |^ 3) 
    = (x 
    |^ (2 
    + 1)); 
    
      then (x
    |^ 3) 
    = ((x 
    |^ (1 
    + 1)) 
    * x) by 
    NEWTON: 6;
    
      then
    
      
    
    A2: (x 
    |^ 3) 
    = (((x 
    |^ 1) 
    * x) 
    * x) by 
    NEWTON: 6;
    
      
    
      
    
    A3: (x 
    |^ 3) 
    = ((x 
    ^2 ) 
    * x) by 
    A2;
    
      assume (
    Polynom (a,b,c, 
    0 ,x)) 
    =  
    0 ; 
    
      then ((((a
    * (x 
    ^2 )) 
    + (b 
    * x)) 
    + c) 
    * x) 
    =  
    0 by 
    A3;
    
      then x
    =  
    0 or ( 
    Polynom (a,b,c,x)) 
    =  
    0 by 
    XCMPLX_1: 6;
    
      hence thesis by
    A1,
    Th5;
    
    end;
    
    theorem :: 
    
    POLYEQ_1:23
    
    a
    <>  
    0 & (c 
    / a) 
    <  
    0 & ( 
    Polynom (a, 
    0 ,c, 
    0 ,x)) 
    =  
    0 implies x 
    =  
    0 or x 
    = ( 
    sqrt ( 
    - (c 
    / a))) or x 
    = ( 
    - ( 
    sqrt ( 
    - (c 
    / a)))) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <>  
    0 and 
    
      
    
    A2: (c 
    / a) 
    <  
    0 ; 
    
      (x
    |^ 3) 
    = (x 
    |^ (2 
    + 1)); 
    
      then (x
    |^ 3) 
    = ((x 
    |^ (1 
    + 1)) 
    * x) by 
    NEWTON: 6;
    
      then
    
      
    
    A3: (x 
    |^ 3) 
    = (((x 
    |^ 1) 
    * x) 
    * x) by 
    NEWTON: 6;
    
      
    
      
    
    A4: (x 
    |^ 3) 
    = ((x 
    ^2 ) 
    * x) by 
    A3;
    
      assume (
    Polynom (a, 
    0 ,c, 
    0 ,x)) 
    =  
    0 ; 
    
      then (((a
    * (x 
    ^2 )) 
    + c) 
    * x) 
    =  
    0 by 
    A4;
    
      then
    
      
    
    A5: x 
    =  
    0 or ((a 
    * (x 
    ^2 )) 
    + c) 
    =  
    0 by 
    XCMPLX_1: 6;
    
      now
    
        per cases by
    XXREAL_0: 1;
    
          case
    
          
    
    A6: x 
    >  
    0 ; 
    
          (x
    |^ 2) 
    = (x 
    |^ (1 
    + 1)); 
    
          then (x
    |^ 2) 
    = ((x 
    |^ 1) 
    * x) by 
    NEWTON: 6;
    
          then (x
    |^ 2) 
    = ((x 
    to_power 1) 
    * x) by 
    POWER: 41;
    
          then
    
          
    
    A7: (x 
    |^ 2) 
    = (x 
    * x) by 
    POWER: 25;
    
          
    
          
    
    A8: ( 
    - (c 
    / a)) 
    >  
    0 by 
    A2,
    XREAL_1: 58;
    
          (x
    ^2 ) 
    = (( 
    - c) 
    / a) by 
    A1,
    A5,
    A6,
    XCMPLX_1: 89;
    
          then (x
    ^2 ) 
    = (( 
    - c) 
    * (a 
    " )) by 
    XCMPLX_0:def 9;
    
          then (x
    ^2 ) 
    = ( 
    - (c 
    * (a 
    " ))); 
    
          then (x
    ^2 ) 
    = ( 
    - (c 
    / a)) by 
    XCMPLX_0:def 9;
    
          then x
    = (2 
    -Root ( 
    - (c 
    / a))) by 
    A6,
    A8,
    A7,
    PREPOWER:def 2;
    
          hence thesis by
    A8,
    PREPOWER: 32;
    
        end;
    
          case
    
          
    
    A9: x 
    <  
    0 ; 
    
          ((
    - x) 
    |^ 2) 
    = (( 
    - x) 
    |^ (1 
    + 1)); 
    
          then ((
    - x) 
    |^ 2) 
    = ((( 
    - x) 
    |^ 1) 
    * ( 
    - x)) by 
    NEWTON: 6;
    
          then ((
    - x) 
    |^ 2) 
    = ((( 
    - x) 
    to_power 1) 
    * ( 
    - x)) by 
    POWER: 41;
    
          then
    
          
    
    A10: (( 
    - x) 
    |^ 2) 
    = (( 
    - x) 
    * ( 
    - x)) by 
    POWER: 25;
    
          (x
    ^2 ) 
    = (( 
    - c) 
    / a) by 
    A1,
    A5,
    A9,
    XCMPLX_1: 89;
    
          then (x
    ^2 ) 
    = (( 
    - c) 
    * (a 
    " )) by 
    XCMPLX_0:def 9;
    
          then (x
    ^2 ) 
    = ( 
    - (c 
    * (a 
    " ))); 
    
          then
    
          
    
    A11: (( 
    - x) 
    ^2 ) 
    = ( 
    - (c 
    / a)) by 
    XCMPLX_0:def 9;
    
          
    
          
    
    A12: ( 
    - (c 
    / a)) 
    >  
    0 by 
    A2,
    XREAL_1: 58;
    
          (
    - x) 
    >  
    0 by 
    A9,
    XREAL_1: 58;
    
          then (
    - x) 
    = (2 
    -Root ( 
    - (c 
    / a))) by 
    A11,
    A12,
    A10,
    PREPOWER:def 2;
    
          then (
    - x) 
    = ( 
    sqrt ( 
    - (c 
    / a))) by 
    A12,
    PREPOWER: 32;
    
          hence thesis;
    
        end;
    
          case x
    =  
    0 ; 
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;