polyeq_1.miz
begin
reserve a,a9,a1,a2,a3,b,b9,c,c9,d,d9,h,p,q,x,x1,x2,x3,u,v,y,z for
Real;
definition
let a,b,x be
Complex;
::
POLYEQ_1:def1
func
Polynom (a,b,x) ->
number equals ((a
* x)
+ b);
coherence ;
end
registration
let a,b,x be
Complex;
cluster (
Polynom (a,b,x)) ->
complex;
coherence ;
end
registration
let a,b,x be
Real;
cluster (
Polynom (a,b,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_1:1
for a,b,x be
Complex holds a
<>
0 & (
Polynom (a,b,x))
=
0 implies x
= (
- (b
/ a))
proof
let a,b,x be
Complex;
assume that
A1: a
<>
0 and
A2: (
Polynom (a,b,x))
=
0 ;
((a
" )
* (
- b))
= ((a
" )
* (a
* x)) by
A2
.= (((a
" )
* a)
* x);
then (1
* x)
= ((a
" )
* (
- b)) by
A1,
XCMPLX_0:def 7;
then x
= (
- ((a
" )
* b));
hence thesis by
XCMPLX_0:def 9;
end;
theorem ::
POLYEQ_1:2
for x be
Complex holds (
Polynom (
0 ,
0 ,x))
=
0 ;
theorem ::
POLYEQ_1:3
for b be
Complex holds b
<>
0 implies not ex x be
Complex st (
Polynom (
0 ,b,x))
=
0 ;
definition
let a,b,c,x be
Complex;
::
POLYEQ_1:def2
func
Polynom (a,b,c,x) ->
number equals (((a
* (x
^2 ))
+ (b
* x))
+ c);
coherence ;
end
registration
let a,b,c,x be
Real;
cluster (
Polynom (a,b,c,x)) ->
real;
coherence ;
end
registration
let a,b,c,x be
Complex;
cluster (
Polynom (a,b,c,x)) ->
complex;
coherence ;
end
theorem ::
POLYEQ_1:4
Th4: for a,b,c,a9,b9,c9 be
Complex holds (for x be
Real holds (
Polynom (a,b,c,x))
= (
Polynom (a9,b9,c9,x))) implies a
= a9 & b
= b9 & c
= c9
proof
let a,b,c,a9,b9,c9 be
Complex;
assume
A1: for x be
Real holds (
Polynom (a,b,c,x))
= (
Polynom (a9,b9,c9,x));
then
A2: (
Polynom (a,b,c,(
- 1)))
= (
Polynom (a9,b9,c9,(
- 1)));
(
Polynom (a,b,c,
0 ))
= (
Polynom (a9,b9,c9,
0 )) & (
Polynom (a,b,c,1))
= (
Polynom (a9,b9,c9,1)) by
A1;
hence thesis by
A2;
end;
theorem ::
POLYEQ_1:5
Th5: a
<>
0 & (
delta (a,b,c))
>=
0 implies for x holds (
Polynom (a,b,c,x))
=
0 implies x
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume that
A1: a
<>
0 and
A2: (
delta (a,b,c))
>=
0 ;
now
set e = (a
* c);
let y;
set t = (((a
^2 )
* (y
^2 ))
+ ((a
* b)
* y));
assume (
Polynom (a,b,c,y))
=
0 ;
then (a
* (((a
* (y
^2 ))
+ (b
* y))
+ c))
= (a
*
0 );
then (((a
* (a
* (y
^2 )))
+ (a
* (b
* y)))
+ (a
* c))
=
0 ;
then
A3: ((t
+ ((b
^2 )
/ 4))
- ((b
^2 )
* (4
" )))
= (
- ((4
* e)
* (4
" )));
A4: (
delta (a,b,c))
= ((b
^2 )
- ((4
* a)
* c)) by
QUIN_1:def 1;
A5:
now
assume (((a
* y)
+ (b
/ 2))
- (
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4)))
=
0 ;
then ((a
* y)
+ (b
/ 2))
= ((
sqrt ((b
^2 )
- (4
* (a
* c))))
/ 2) by
A2,
A4,
SQUARE_1: 20,
SQUARE_1: 30;
then (a
* y)
= (
- ((b
* (2
" ))
- ((
sqrt ((b
^2 )
- (4
* (a
* c))))
* (2
" ))))
.= (((
- b)
* (2
" ))
+ ((
sqrt (
delta (a,b,c)))
* (2
" ))) by
A4;
then y
= ((((
- b)
* (2
" ))
+ ((
sqrt (
delta (a,b,c)))
* (2
" )))
/ a) by
A1,
XCMPLX_1: 89
.= ((((
- b)
* (2
" ))
+ ((
sqrt (
delta (a,b,c)))
* (2
" )))
* (a
" )) by
XCMPLX_0:def 9
.= (((
- b)
+ (
sqrt (
delta (a,b,c))))
* ((2
" )
* (a
" )))
.= (((
- b)
+ (
sqrt (
delta (a,b,c))))
* ((2
* a)
" )) by
XCMPLX_1: 204;
hence y
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
XCMPLX_0:def 9;
end;
A6:
now
assume (((a
* y)
+ (b
/ 2))
+ (
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4)))
=
0 ;
then ((a
* y)
+ (b
/ 2))
= (
- (
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4)));
then ((a
* y)
+ (b
/ 2))
= (
- ((
sqrt ((b
^2 )
- (4
* (a
* c))))
/ 2)) by
A2,
A4,
SQUARE_1: 20,
SQUARE_1: 30;
then (a
* y)
= (
- ((b
* (2
" ))
+ ((
sqrt ((b
^2 )
- (4
* (a
* c))))
* (2
" ))))
.= (((
- b)
* (2
" ))
- ((
sqrt (
delta (a,b,c)))
* (2
" ))) by
A4;
then y
= ((((
- b)
* (2
" ))
- ((
sqrt (
delta (a,b,c)))
* (2
" )))
/ a) by
A1,
XCMPLX_1: 89
.= ((((
- b)
* (2
" ))
- ((
sqrt (
delta (a,b,c)))
* (2
" )))
* (a
" )) by
XCMPLX_0:def 9
.= (((
- b)
- (
sqrt (
delta (a,b,c))))
* ((2
" )
* (a
" )))
.= (((
- b)
- (
sqrt (
delta (a,b,c))))
* ((2
* a)
" )) by
XCMPLX_1: 204;
hence y
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
XCMPLX_0:def 9;
end;
(((b
^2 )
- (4
* (a
* c)))
/ 4)
>= (
0
/ 4) by
A2,
A4,
XREAL_1: 72;
then (((a
* y)
+ (b
/ 2))
^2 )
= ((
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4))
^2 ) by
A3,
SQUARE_1:def 2;
then ((((a
* y)
+ (b
/ 2))
- (
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4)))
* (((a
* y)
+ (b
/ 2))
+ (
sqrt (((b
^2 )
- (4
* (a
* c)))
/ 4))))
=
0 ;
hence y
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or y
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a)) by
A5,
A6,
XCMPLX_1: 6;
end;
hence thesis;
end;
theorem ::
POLYEQ_1:6
for a,b,c,x be
Complex holds a
<>
0 & (
delta (a,b,c))
=
0 & (
Polynom (a,b,c,x))
=
0 implies x
= (
- (b
/ (2
* a)))
proof
let a,b,c,x be
Complex;
assume that
A1: a
<>
0 and
A2: (
delta (a,b,c))
=
0 ;
set y = x;
set t = (((a
^2 )
* (y
^2 ))
+ ((a
* b)
* y));
A3: ((b
^2 )
- ((4
* a)
* c))
= (
delta (a,b,c)) by
QUIN_1:def 1;
assume (
Polynom (a,b,c,y))
=
0 ;
then (a
* (((a
* (y
^2 ))
+ (b
* y))
+ c))
=
0 ;
then (t
+ (a
* c))
=
0 ;
then ((((a
* y)
^2 )
+ (2
* (((a
* y)
* b)
* (2
" ))))
+ ((b
/ 2)
^2 ))
=
0 by
A2,
A3;
then (((a
* y)
+ (b
/ 2))
^2 )
=
0 ;
then ((a
* y)
+ (b
/ 2))
=
0 by
XCMPLX_1: 6;
then y
= ((
- (b
* (2
" )))
/ a) by
A1,
XCMPLX_1: 89
.= (((
- 1)
* (b
* (2
" )))
* (a
" )) by
XCMPLX_0:def 9
.= (
- ((b
* ((2
" )
* (a
" )))
* 1))
.= (
- (b
* ((2
* a)
" ))) by
XCMPLX_1: 204;
hence thesis by
XCMPLX_0:def 9;
end;
theorem ::
POLYEQ_1:7
(
delta (a,b,c))
<
0 implies not ex x st (
Polynom (a,b,c,x))
=
0
proof
set e = (a
* c);
assume (
delta (a,b,c))
<
0 ;
then ((b
^2 )
- ((4
* a)
* c))
<
0 by
QUIN_1:def 1;
then
A1: (((b
^2 )
- (4
* (a
* c)))
* (4
" ))
<
0 by
XREAL_1: 132;
given y such that
A2: (
Polynom (a,b,c,y))
=
0 ;
set t = (((a
^2 )
* (y
^2 ))
+ ((a
* b)
* y));
(a
* (((a
* (y
^2 ))
+ (b
* y))
+ c))
= (a
*
0 ) by
A2;
then ((t
+ ((b
^2 )
/ 4))
- (((b
^2 )
* (4
" ))
- ((4
* e)
* (4
" ))))
=
0 ;
then
A3: (((a
* y)
+ (b
/ 2))
^2 )
= (((b
^2 )
- (4
* (a
* c)))
* (4
" ));
then ((a
* y)
+ (b
/ 2))
>
0 by
A1,
XREAL_1: 133;
hence contradiction by
A3,
A1,
XREAL_1: 133;
end;
theorem ::
POLYEQ_1:8
for b,c be
Complex holds b
<>
0 & (for x be
Real holds (
Polynom (
0 ,b,c,x))
=
0 ) implies x
= (
- (c
/ b))
proof
let b,c be
Complex;
assume
A1: b
<>
0 ;
set y = x;
assume for x be
Real holds (
Polynom (
0 ,b,c,x))
=
0 ;
then (
Polynom (
0 ,b,c,y))
=
0 ;
then y
= ((
- c)
/ b) by
A1,
XCMPLX_1: 89
.= (((
- 1)
* c)
* (b
" )) by
XCMPLX_0:def 9
.= ((
- 1)
* (c
* (b
" )))
.= ((
- 1)
* (c
/ b)) by
XCMPLX_0:def 9;
hence thesis;
end;
theorem ::
POLYEQ_1:9
for x be
Complex holds (
Polynom (
0 ,
0 ,
0 ,x))
=
0 ;
theorem ::
POLYEQ_1:10
for c be
Complex holds c
<>
0 implies not ex x be
Complex st (
Polynom (
0 ,
0 ,c,x))
=
0 ;
definition
let a,x,x1,x2 be
Complex;
::
POLYEQ_1:def3
func
Quard (a,x1,x2,x) ->
number equals (a
* ((x
- x1)
* (x
- x2)));
coherence ;
end
registration
let a,x,x1,x2 be
Real;
cluster (
Quard (a,x1,x2,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_1:11
for a,b,c be
Complex holds a
<>
0 & (for x be
Real holds (
Polynom (a,b,c,x))
= (
Quard (a,x1,x2,x))) implies (b
/ a)
= (
- (x1
+ x2)) & (c
/ a)
= (x1
* x2)
proof
let a,b,c be
Complex;
assume
A1: a
<>
0 ;
assume
A2: for x be
Real holds (
Polynom (a,b,c,x))
= (
Quard (a,x1,x2,x));
now
let z be
Real;
set h = (z
- x1), t = (z
- x2);
set e = ((h
* t)
- (z
^2 ));
(
Polynom (a,b,c,z))
= (
Quard (a,x1,x2,z)) by
A2;
then (a
* ((h
* t)
- (z
^2 )))
= ((b
* z)
+ c);
then e
= (((b
* z)
+ c)
/ a) by
A1,
XCMPLX_1: 89
.= ((a
" )
* ((b
* z)
+ c)) by
XCMPLX_0:def 9
.= (((a
" )
* (b
* z))
+ ((a
" )
* c));
then ((((z
* z)
- (z
* x2))
- (x1
* z))
+ (x1
* x2))
= (((z
^2 )
+ (((a
" )
* b)
* z))
+ ((a
" )
* c));
then (((z
^2 )
- ((x1
+ x2)
* z))
+ (x1
* x2))
= (((z
^2 )
+ ((b
/ a)
* z))
+ ((a
" )
* c)) by
XCMPLX_0:def 9
.= (((z
^2 )
+ ((b
/ a)
* z))
+ (c
/ a)) by
XCMPLX_0:def 9;
hence (
Polynom (1,(
- (x1
+ x2)),(x1
* x2),z))
= (
Polynom (1,(b
/ a),(c
/ a),z));
end;
hence thesis by
Th4;
end;
begin
definition
let a,b,c,d,x be
Complex;
::
POLYEQ_1:def4
func
Polynom (a,b,c,d,x) ->
number equals ((((a
* (x
|^ 3))
+ (b
* (x
^2 )))
+ (c
* x))
+ d);
coherence ;
end
registration
let a,b,c,d,x be
Complex;
cluster (
Polynom (a,b,c,d,x)) ->
complex;
coherence ;
end
registration
let a,b,c,d,x be
Real;
cluster (
Polynom (a,b,c,d,x)) ->
real;
coherence ;
end
3
= ((2
* 1)
+ 1);
then
Lm1: 3 is
odd by
ABIAN: 1;
theorem ::
POLYEQ_1:12
Th12: (for x holds (
Polynom (a,b,c,d,x))
= (
Polynom (a9,b9,c9,d9,x))) implies a
= a9 & b
= b9 & c
= c9 & d
= d9
proof
((
- 1)
|^ 3)
= (
- (1
|^ (2
+ 1))) by
Lm1,
POWER: 2
.= (
- ((1
|^ 2)
* 1));
then
A1: (
0
|^ 3)
=
0 & ((
- 1)
|^ 3)
= (
- 1) by
NEWTON: 11;
A2: (2
|^ 3)
= (2
|^ (2
+ 1))
.= ((2
|^ (1
+ 1))
* 2) by
NEWTON: 6
.= (((2
|^ 1)
* 2)
* 2) by
NEWTON: 6
.= ((2
|^ 1)
* (2
* 2));
assume
A3: for x holds (
Polynom (a,b,c,d,x))
= (
Polynom (a9,b9,c9,d9,x));
then
A4: (
Polynom (a,b,c,d,2))
= (
Polynom (a9,b9,c9,d9,2));
(
Polynom (a,b,c,d,1))
= (
Polynom (a9,b9,c9,d9,1)) by
A3;
then ((((a
* 1)
+ (b
* 1))
+ (c
* 1))
+ d)
= (
Polynom (a9,b9,c9,d9,1));
then
A5: (((a
+ b)
+ c)
+ d)
= ((((a9
* 1)
+ (b9
* 1))
+ (c9
* 1))
+ d9)
.= (((a9
+ b9)
+ c9)
+ d9);
(
Polynom (a,b,c,d,
0 ))
= (
Polynom (a9,b9,c9,d9,
0 )) & (
Polynom (a,b,c,d,(
- 1)))
= (
Polynom (a9,b9,c9,d9,(
- 1))) by
A3;
hence thesis by
A5,
A1,
A4,
A2;
end;
definition
let a,x,x1,x2,x3 be
Complex;
::
POLYEQ_1:def5
func
Tri (a,x1,x2,x3,x) ->
number equals (a
* (((x
- x1)
* (x
- x2))
* (x
- x3)));
coherence ;
end
registration
let a,x,x1,x2,x3 be
Real;
cluster (
Tri (a,x1,x2,x3,x)) ->
real;
coherence ;
end
theorem ::
POLYEQ_1:13
a
<>
0 & (for x holds (
Polynom (a,b,c,d,x))
= (
Tri (a,x1,x2,x3,x))) implies (b
/ a)
= (
- ((x1
+ x2)
+ x3)) & (c
/ a)
= (((x1
* x2)
+ (x2
* x3))
+ (x1
* x3)) & (d
/ a)
= (
- ((x1
* x2)
* x3))
proof
assume
A1: a
<>
0 ;
set t3 = (d
/ a);
set t2 = (c
/ a);
set t1 = (b
/ a);
set d9 = (
- ((x1
* x2)
* x3));
set c9 = (((x1
* x2)
+ (x2
* x3))
+ (x1
* x3));
set b9 = (
- ((x1
+ x2)
+ x3));
assume
A2: for x holds (
Polynom (a,b,c,d,x))
= (
Tri (a,x1,x2,x3,x));
now
let x;
set t = ((((a
* (x
|^ 3))
+ (b
* (x
^2 )))
+ (c
* x))
+ d);
set r8 = (((x
- x1)
* (x
- x2))
* (x
- x3));
(x
|^ 3)
= (x
|^ (2
+ 1))
.= ((x
|^ (1
+ 1))
* x) by
NEWTON: 6
.= (((x
|^ 1)
* x)
* x) by
NEWTON: 6;
then
A3: (x
|^ 3)
= ((x
* x)
* x);
(
Polynom (a,b,c,d,x))
= (
Tri (a,x1,x2,x3,x)) by
A2;
then
A4: (t
/ a)
= r8 by
A1,
XCMPLX_1: 89;
((a
" )
* t)
= (((((a
" )
* a)
* (x
|^ 3))
+ (((a
" )
* b)
* (x
^2 )))
+ ((a
" )
* ((c
* x)
+ d)))
.= (((1
* (x
|^ 3))
+ (((a
" )
* b)
* (x
^2 )))
+ ((((a
" )
* c)
* x)
+ ((a
" )
* d))) by
A1,
XCMPLX_0:def 7
.= (((1
* (x
|^ 3))
+ (t1
* (x
^2 )))
+ ((((a
" )
* c)
* x)
+ ((a
" )
* d))) by
XCMPLX_0:def 9
.= (((1
* (x
|^ 3))
+ (t1
* (x
^2 )))
+ ((t2
* x)
+ ((a
" )
* d))) by
XCMPLX_0:def 9
.= (((1
* (x
|^ 3))
+ (t1
* (x
^2 )))
+ ((t2
* x)
+ t3)) by
XCMPLX_0:def 9
.= (
Polynom (1,t1,t2,t3,x));
hence (
Polynom (1,t1,t2,t3,x))
= (
Polynom (1,b9,c9,d9,x)) by
A4,
A3,
XCMPLX_0:def 9;
end;
hence thesis by
Th12;
end;
theorem ::
POLYEQ_1:14
Th14: ((y
+ h)
|^ 3)
= (((y
|^ 3)
+ (((3
* h)
* (y
^2 ))
+ ((3
* (h
^2 ))
* y)))
+ (h
|^ 3))
proof
((y
+ h)
|^ 3)
= ((y
+ h)
|^ (2
+ 1));
then
A1: ((y
+ h)
|^ 3)
= (((y
+ h)
|^ (1
+ 1))
* (y
+ h)) by
NEWTON: 6
.= ((((y
+ h)
|^ 1)
* (y
+ h))
* (y
+ h)) by
NEWTON: 6
.= (((y
+ h)
|^ 1)
* ((y
+ h)
^2 ))
.= (((y
+ h)
to_power 1)
* (((y
^2 )
+ ((2
* y)
* h))
+ (h
^2 ))) by
POWER: 41
.= ((y
+ h)
* (((y
^2 )
+ ((2
* y)
* h))
+ (h
^2 ))) by
POWER: 25
.= (((y
* (y
^2 ))
+ (((3
* h)
* (y
^2 ))
+ (((2
+ 1)
* (h
^2 ))
* y)))
+ (h
* (h
^2 )));
(y
|^ 3)
= (y
|^ (2
+ 1))
.= ((y
|^ (1
+ 1))
* y) by
NEWTON: 6
.= (((y
|^ 1)
* y)
* y) by
NEWTON: 6
.= ((y
|^ 1)
* (y
^2 ));
then
A2: (y
|^ 3)
= ((y
to_power 1)
* (y
^2 )) by
POWER: 41;
(h
|^ 3)
= (h
|^ (2
+ 1))
.= ((h
|^ (1
+ 1))
* h) by
NEWTON: 6
.= (((h
|^ 1)
* h)
* h) by
NEWTON: 6
.= ((h
|^ 1)
* (h
^2 ))
.= ((h
to_power 1)
* (h
^2 )) by
POWER: 41
.= (h
* (h
^2 )) by
POWER: 25;
hence thesis by
A1,
A2,
POWER: 25;
end;
theorem ::
POLYEQ_1:15
Th15: a
<>
0 & (
Polynom (a,b,c,d,x))
=
0 implies for a1, a2, a3, h, y st y
= (x
+ (b
/ (3
* a))) & h
= (
- (b
/ (3
* a))) & a1
= (b
/ a) & a2
= (c
/ a) & a3
= (d
/ a) holds (((y
|^ 3)
+ ((((3
* h)
+ a1)
* (y
^2 ))
+ ((((3
* (h
^2 ))
+ (2
* (a1
* h)))
+ a2)
* y)))
+ (((h
|^ 3)
+ (a1
* (h
^2 )))
+ ((a2
* h)
+ a3)))
=
0
proof
assume
A1: a
<>
0 ;
assume
A2: (
Polynom (a,b,c,d,x))
=
0 ;
let a1, a2, a3, h, y;
assume that
A3: y
= (x
+ (b
/ (3
* a))) & h
= (
- (b
/ (3
* a))) and
A4: a1
= (b
/ a) & a2
= (c
/ a) & a3
= (d
/ a);
0
= ((a
" )
* (((a
* (x
|^ 3))
+ (b
* (x
^2 )))
+ ((c
* x)
+ d))) by
A2
.= (((((a
" )
* a)
* (x
|^ 3))
+ ((a
" )
* (b
* (x
^2 ))))
+ ((a
" )
* ((c
* x)
+ d)))
.= (((1
* (x
|^ 3))
+ ((a
" )
* (b
* (x
^2 ))))
+ ((a
" )
* ((c
* x)
+ d))) by
A1,
XCMPLX_0:def 7
.= ((((x
|^ 3)
+ (((a
" )
* b)
* (x
^2 )))
+ (((a
" )
* c)
* x))
+ ((a
" )
* d))
.= ((((x
|^ 3)
+ ((b
/ a)
* (x
^2 )))
+ (((a
" )
* c)
* x))
+ ((a
" )
* d)) by
XCMPLX_0:def 9
.= ((((x
|^ 3)
+ ((b
/ a)
* (x
^2 )))
+ ((c
/ a)
* x))
+ ((a
" )
* d)) by
XCMPLX_0:def 9
.= ((((x
|^ 3)
+ (a1
* (x
^2 )))
+ (a2
* x))
+ a3) by
A4,
XCMPLX_0:def 9;
then
0
= ((((((y
|^ 3)
+ (((3
* h)
* (y
^2 ))
+ ((3
* (h
^2 ))
* y)))
+ (h
|^ 3))
+ (((a1
* (y
^2 ))
+ ((2
* (a1
* h))
* y))
+ (a1
* (h
^2 ))))
+ (a2
* (y
+ h)))
+ a3) by
A3,
Th14
.= ((((y
|^ 3)
+ (((3
* h)
* (y
^2 ))
+ ((3
* (h
^2 ))
* y)))
+ (((2
* (a1
* h))
* y)
+ (a1
* (y
^2 ))))
+ ((a2
* y)
+ (((h
|^ 3)
+ (a1
* (h
^2 )))
+ ((a2
* h)
+ a3))));
hence thesis;
end;
theorem ::
POLYEQ_1:16
a
<>
0 & (
Polynom (a,b,c,d,x))
=
0 implies for a1, a2, a3, h, y st y
= (x
+ (b
/ (3
* a))) & h
= (
- (b
/ (3
* a))) & a1
= (b
/ a) & a2
= (c
/ a) & a3
= (d
/ a) holds ((((y
|^ 3)
+ (
0
* (y
^2 )))
+ (((((3
* a)
* c)
- (b
^2 ))
/ (3
* (a
^2 )))
* y))
+ ((2
* ((b
/ (3
* a))
|^ 3))
+ ((((3
* a)
* d)
- (b
* c))
/ (3
* (a
^2 )))))
=
0
proof
assume
A1: a
<>
0 ;
then
A2: (3
* a)
<>
0 ;
assume
A3: (
Polynom (a,b,c,d,x))
=
0 ;
let a1, a2, a3, h, y;
assume that
A4: y
= (x
+ (b
/ (3
* a))) and
A5: h
= (
- (b
/ (3
* a))) and
A6: a1
= (b
/ a) and
A7: a2
= (c
/ a) and
A8: a3
= (d
/ a);
set p0 = ((3
* h)
+ a1);
A9: p0
= ((
- (3
* (b
/ (3
* a))))
+ a1) by
A5
.= ((
- (3
* (((3
* a)
" )
* b)))
+ a1) by
XCMPLX_0:def 9
.= ((
- (3
* (((3
" )
* (a
" ))
* b)))
+ a1) by
XCMPLX_1: 204
.= ((
- (((3
* (3
" ))
* (a
" ))
* b))
+ a1)
.= ((
- (b
/ a))
+ a1) by
XCMPLX_0:def 9;
set q2 = (((h
|^ 3)
+ (a1
* (h
^2 )))
+ ((a2
* h)
+ a3));
A10: q2
= ((2
* ((b
/ (3
* a))
|^ 3))
+ ((((3
* a)
* d)
- (b
* c))
/ (3
* (a
^2 ))))
proof
set t = (3
* a);
set a6 = (b
/ t);
A11: (b
/ a)
= ((3
* b)
/ t) by
XCMPLX_1: 91;
A12: (a6
|^ 3)
= (a6
|^ (2
+ 1))
.= ((a6
|^ (1
+ 1))
* a6) by
NEWTON: 6
.= (((a6
|^ 1)
* a6)
* a6) by
NEWTON: 6
.= ((a6
|^ 1)
* (a6
^2 ))
.= ((a6
to_power 1)
* (a6
^2 )) by
POWER: 41;
q2
= ((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((
- ((c
/ a)
* (b
/ t)))
+ (d
/ a))) by
A5,
A6,
A7,
A8
.= ((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((
- ((b
* c)
/ (t
* a)))
+ (d
/ a))) by
XCMPLX_1: 76
.= ((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((
- ((b
* c)
/ (3
* (a
^2 ))))
+ (1
* (d
/ a))))
.= ((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((
- ((b
* c)
/ (3
* (a
^2 ))))
+ ((t
/ t)
* (d
/ a)))) by
A2,
XCMPLX_1: 60
.= (((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((t
/ t)
* (d
/ a)))
- ((b
* c)
/ (3
* (a
^2 ))))
.= (((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((t
* d)
/ (t
* a)))
- ((b
* c)
/ (3
* (a
^2 )))) by
XCMPLX_1: 76
.= (((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((t
* d)
* ((3
* (a
^2 ))
" )))
- ((b
* c)
/ (3
* (a
^2 )))) by
XCMPLX_0:def 9
.= (((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ ((t
* d)
* ((3
* (a
^2 ))
" )))
- ((b
* c)
* ((3
* (a
^2 ))
" ))) by
XCMPLX_0:def 9
.= ((((
- (b
/ t))
|^ 3)
+ ((b
/ a)
* ((
- (b
/ t))
^2 )))
+ (((t
* d)
- (b
* c))
* ((3
* (a
^2 ))
" )))
.= ((((
- (b
/ t))
|^ (2
+ 1))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_0:def 9
.= (((((
- (b
/ t))
|^ (1
+ 1))
* (
- (b
/ t)))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
NEWTON: 6
.= ((((((
- (b
/ t))
|^ 1)
* (
- (b
/ t)))
* (
- (b
/ t)))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
NEWTON: 6
.= (((((
- (b
/ t))
|^ 1)
* ((
- (b
/ t))
^2 ))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 ))))
.= (((((
- (b
/ t))
to_power 1)
* ((
- (b
/ t))
^2 ))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
POWER: 41
.= ((((
- (b
/ t))
* ((b
/ t)
^2 ))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
POWER: 25
.= ((((
- (b
/ t))
* ((b
^2 )
/ (t
^2 )))
+ ((b
/ a)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_1: 76
.= ((((
- (b
/ t))
* ((b
^2 )
/ (t
^2 )))
+ ((b
/ a)
* ((b
^2 )
/ (t
^2 ))))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_1: 76
.= ((((b
/ a)
- (b
/ t))
* ((b
^2 )
/ (t
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 ))))
.= (((((3
* b)
* (t
" ))
- ((1
* b)
/ t))
* ((b
^2 )
/ (t
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
A11,
XCMPLX_0:def 9
.= (((((3
* b)
* (t
" ))
- ((1
* b)
* (t
" )))
* ((b
^2 )
/ (t
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_0:def 9
.= ((2
* ((b
* (t
" ))
* ((b
^2 )
/ (t
^2 ))))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 ))))
.= ((2
* ((b
/ t)
* ((b
^2 )
/ (t
^2 ))))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_0:def 9
.= ((2
* ((b
/ t)
* ((b
/ t)
^2 )))
+ (((t
* d)
- (b
* c))
/ (3
* (a
^2 )))) by
XCMPLX_1: 76;
hence thesis by
A12,
POWER: 25;
end;
set p2 = (((3
* (h
^2 ))
+ (2
* (a1
* h)))
+ a2);
A13: p2
= ((((3
* a)
* c)
- (b
^2 ))
/ (3
* (a
^2 )))
proof
set t = (((3
* a)
" )
* b);
A14: ((3
* a)
/ (3
* a))
= 1 by
A2,
XCMPLX_1: 60;
p2
= (((3
* ((b
/ (3
* a))
^2 ))
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
A5
.= (((3
* ((((3
* a)
" )
* b)
^2 ))
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
XCMPLX_0:def 9
.= (((((3
* ((3
* a)
" ))
* b)
* t)
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2)
.= (((((3
* ((3
" )
* (a
" )))
* b)
* t)
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
XCMPLX_1: 204
.= ((((b
/ a)
* (((3
* a)
" )
* b))
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
XCMPLX_0:def 9
.= ((((b
/ a)
* (b
/ (3
* a)))
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
XCMPLX_0:def 9
.= ((((b
* b)
/ (a
* (3
* a)))
+ (2
* (a1
* (
- (b
/ (3
* a))))))
+ a2) by
XCMPLX_1: 76
.= ((((b
^2 )
/ (3
* (a
^2 )))
- (2
* ((b
/ a)
* (b
/ (3
* a)))))
+ (c
/ a)) by
A6,
A7
.= ((((b
^2 )
/ (3
* (a
^2 )))
- (2
* ((b
* b)
/ (a
* (3
* a)))))
+ (c
/ a)) by
XCMPLX_1: 76
.= ((
- ((b
^2 )
/ (3
* (a
^2 ))))
+ (((3
* a)
/ (3
* a))
* (c
/ a))) by
A14
.= ((
- ((b
^2 )
/ (3
* (a
^2 ))))
+ (((3
* a)
* c)
/ ((3
* a)
* a))) by
XCMPLX_1: 76
.= ((((3
* a)
* c)
/ (3
* (a
^2 )))
- ((b
^2 )
/ (3
* (a
^2 ))))
.= ((((3
* a)
* c)
* ((3
* (a
^2 ))
" ))
- ((b
^2 )
/ (3
* (a
^2 )))) by
XCMPLX_0:def 9
.= ((((3
* a)
* c)
* ((3
* (a
^2 ))
" ))
- ((b
^2 )
* ((3
* (a
^2 ))
" ))) by
XCMPLX_0:def 9
.= ((((3
* a)
* c)
- (b
^2 ))
* ((3
* (a
^2 ))
" ));
hence thesis by
XCMPLX_0:def 9;
end;
(((y
|^ 3)
+ ((p0
* (y
^2 ))
+ (p2
* y)))
+ q2)
=
0 by
A1,
A3,
A4,
A5,
A6,
A7,
A8,
Th15;
hence thesis by
A6,
A9,
A13,
A10;
end;
theorem ::
POLYEQ_1:17
((((y
|^ 3)
+ (
0
* (y
^2 )))
+ (((((3
* a)
* c)
- (b
^2 ))
/ (3
* (a
^2 )))
* y))
+ ((2
* ((b
/ (3
* a))
|^ 3))
+ ((((3
* a)
* d)
- (b
* c))
/ (3
* (a
^2 )))))
=
0 implies for p, q st p
= ((((3
* a)
* c)
- (b
^2 ))
/ (3
* (a
^2 ))) & q
= ((2
* ((b
/ (3
* a))
|^ 3))
+ ((((3
* a)
* d)
- (b
* c))
/ (3
* (a
^2 )))) holds (
Polynom (1,
0 ,p,q,y))
=
0 ;
theorem ::
POLYEQ_1:18
Th18: (
Polynom (1,
0 ,p,q,y))
=
0 implies for u, v st y
= (u
+ v) & (((3
* v)
* u)
+ p)
=
0 holds ((u
|^ 3)
+ (v
|^ 3))
= (
- q) & ((u
|^ 3)
* (v
|^ 3))
= ((
- (p
/ 3))
|^ 3)
proof
assume
A1: (
Polynom (1,
0 ,p,q,y))
=
0 ;
let u, v;
assume that
A2: y
= (u
+ v) and
A3: (((3
* v)
* u)
+ p)
=
0 ;
((u
+ v)
|^ 3)
= (((u
|^ 3)
+ (((3
* v)
* (u
^2 ))
+ ((3
* (v
^2 ))
* u)))
+ (v
|^ 3)) by
Th14
.= (((u
|^ 3)
+ (((3
* v)
* u)
* (u
+ v)))
+ (v
|^ 3));
then
0
= ((((u
|^ 3)
+ (v
|^ 3))
+ ((((3
* v)
* u)
+ p)
* (u
+ v)))
+ q) by
A1,
A2;
hence ((u
|^ 3)
+ (v
|^ 3))
= (
- q) by
A3;
(3
* (v
* u))
= (
- p) by
A3;
hence thesis by
NEWTON: 7;
end;
theorem ::
POLYEQ_1:19
Th19: (
Polynom (1,
0 ,p,q,y))
=
0 implies for u, v st y
= (u
+ v) & (((3
* v)
* u)
+ p)
=
0 holds y
= ((3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
+ (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) or y
= ((3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
+ (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) or y
= ((3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
+ (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))))
proof
set e1 = 1;
assume
A1: (
Polynom (1,
0 ,p,q,y))
=
0 ;
set e3 = ((
- (p
/ 3))
|^ 3);
set e2 = q;
let u, v;
assume that
A2: y
= (u
+ v) and
A3: (((3
* v)
* u)
+ p)
=
0 ;
set z2 = (v
|^ 3);
set z1 = (u
|^ 3);
A4:
now
let z;
thus ((z
- z1)
* (z
- z2))
= (((z
^2 )
- ((z1
+ z2)
* z))
+ (z1
* z2))
.= (((z
^2 )
- ((
- q)
* z))
+ (z1
* z2)) by
A1,
A2,
A3,
Th18
.= (((z
^2 )
+ (q
* z))
+ ((
- (p
/ 3))
|^ 3)) by
A1,
A2,
A3,
Th18;
end;
A5: (z1
+ z2)
= (
- q) by
A1,
A2,
A3,
Th18;
then (e2
^2 )
= ((z1
+ z2)
^2 ) by
SQUARE_1: 3;
then
A6: ((e2
^2 )
- ((4
* e1)
* e3))
= ((
- (
- (((z1
^2 )
+ ((2
* z1)
* z2))
+ (z2
^2 ))))
- (4
* (z1
* z2))) by
A1,
A2,
A3,
Th18
.= ((z1
- z2)
^2 );
then
A7: ((e2
^2 )
- ((4
* e1)
* e3))
>=
0 by
XREAL_1: 63;
then
A8: (
delta (e1,e2,e3))
>=
0 by
QUIN_1:def 1;
((z1
- z1)
* (z1
- z2))
= (
0
* (z1
- z2));
then
A9: (
Polynom (e1,e2,e3,z1))
=
0 by
A4;
((z2
- z1)
* (z2
- z2))
= ((z2
- z1)
*
0 );
then
A10: (
Polynom (e1,e2,e3,z2))
=
0 by
A4;
A11: (z2
* z1)
= ((
- (p
/ 3))
|^ 3) by
A1,
A2,
A3,
Th18;
now
per cases by
A9,
A8,
Th5;
case
A12: z1
= (((
- e2)
+ (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
A13: ((p
/ 3)
|^ 3)
= ((p
/ 3)
|^ (2
+ 1))
.= (((p
/ 3)
|^ (1
+ 1))
* (p
/ 3)) by
NEWTON: 6
.= ((((p
/ 3)
|^ 1)
* (p
/ 3))
* (p
/ 3)) by
NEWTON: 6
.= (((p
/ 3)
|^ 1)
* ((p
/ 3)
^2 ))
.= (((p
/ 3)
to_power 1)
* ((p
/ 3)
^2 )) by
POWER: 41
.= ((p
/ 3)
* ((p
/ 3)
^2 )) by
POWER: 25;
A14: ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
>=
0 by
A6,
XREAL_1: 63;
A15: ((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
|^ (2
+ 1))
.= (((
- (p
/ 3))
|^ (1
+ 1))
* (
- (p
/ 3))) by
NEWTON: 6
.= ((((
- (p
/ 3))
|^ 1)
* (
- (p
/ 3)))
* (
- (p
/ 3))) by
NEWTON: 6
.= (((
- (p
/ 3))
|^ 1)
* ((
- (p
/ 3))
^2 ));
then
A16: ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
to_power 1)
* ((
- (p
/ 3))
^2 )) by
POWER: 41
.= ((
- (p
/ 3))
* ((p
/ 3)
^2 )) by
POWER: 25
.= (
- ((p
/ 3)
* ((p
/ 3)
^2 )));
A17: z1
= (((
- e2)
+ (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
A12,
QUIN_1:def 1
.= (((
- q)
/ 2)
+ ((
sqrt ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3))))
/ (
sqrt 4))) by
SQUARE_1: 20,
XCMPLX_1: 62
.= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A14,
SQUARE_1: 30
.= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
A18:
now
per cases by
XXREAL_0: 1;
case
A19: u
>
0 ;
then
A20: ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A17,
A16,
A13,
PREPOWER: 6;
then u
= (3
-Root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A17,
A16,
A13,
A19,
PREPOWER:def 2;
hence u
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A20,
POWER:def 1;
end;
case
A21: u
=
0 ;
then
A22: ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
=
0 by
A17,
A16,
A13,
NEWTON: 11;
then (3
-Root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
=
0 by
PREPOWER:def 2;
hence u
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A21,
A22,
POWER:def 1;
end;
case u
<
0 ;
then
A23: (
- u)
>
0 by
XREAL_1: 58;
set r = ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
A24: (3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
((
- u)
|^ 3)
= ((
- u)
|^ (2
+ 1))
.= (((
- u)
|^ (1
+ 1))
* (
- u)) by
NEWTON: 6
.= ((((
- u)
|^ 1)
* (
- u))
* (
- u)) by
NEWTON: 6
.= (((
- u)
|^ 1)
* ((
- u)
^2 ));
then ((
- u)
|^ 3)
= (((
- u)
to_power 1)
* ((
- u)
^2 )) by
POWER: 41;
then
A25: ((
- u)
|^ 3)
= ((
- u)
* (u
^2 )) by
POWER: 25
.= (
- (u
* (u
^2 )));
(u
|^ 3)
= (u
|^ (2
+ 1))
.= ((u
|^ (1
+ 1))
* u) by
NEWTON: 6
.= (((u
|^ 1)
* u)
* u) by
NEWTON: 6
.= ((u
|^ 1)
* (u
* u));
then
A26: (u
|^ 3)
= ((u
to_power 1)
* (u
^2 )) by
POWER: 41;
then
A27: ((
- u)
|^ 3)
= (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A17,
A16,
A13,
A25,
POWER: 25;
A28: ((
- u)
|^ 3)
= (
- (u
|^ 3)) by
A25,
A26,
POWER: 25;
then
A29: (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
>
0 by
A17,
A16,
A13,
A23,
PREPOWER: 6;
(
- (u
|^ 3))
>
0 by
A23,
A28,
PREPOWER: 6;
then (
- u)
= (3
-Root (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A17,
A16,
A13,
A23,
A27,
PREPOWER:def 2;
then (
- u)
= (3
-root ((
- 1)
* r)) by
A29,
POWER:def 1;
then (
- u)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
hence u
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A24;
end;
end;
now
per cases by
A8,
A10,
Th5;
case z2
= (((
- e2)
+ (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
then z2
= (((
- e2)
+ (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
QUIN_1:def 1;
then z2
= (((
- q)
/ 2)
+ ((
sqrt ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3))))
/ (
sqrt 4))) by
SQUARE_1: 20,
XCMPLX_1: 62;
then
A30: z2
= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A7,
SQUARE_1: 30
.= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
A31: ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
to_power 1)
* ((
- (p
/ 3))
^2 )) by
A15,
POWER: 41
.= ((
- (p
/ 3))
* ((p
/ 3)
^2 )) by
POWER: 25;
now
per cases by
XXREAL_0: 1;
case
A32: v
>
0 ;
then
A33: ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A13,
A30,
A31,
PREPOWER: 6;
then v
= (3
-Root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A13,
A30,
A31,
A32,
PREPOWER:def 2;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A33,
POWER:def 1;
end;
case
A34: v
=
0 ;
then ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
=
0 by
A13,
A30,
A31,
NEWTON: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A34,
POWER: 5;
end;
case v
<
0 ;
then
A35: (
- v)
>
0 by
XREAL_1: 58;
then
A36: ((
- v)
|^ 3)
>
0 by
PREPOWER: 6;
((
- v)
|^ 3)
= ((
- v)
|^ (2
+ 1));
then ((
- v)
|^ 3)
= (((
- v)
|^ (1
+ 1))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= ((((
- v)
|^ 1)
* (
- v))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= (((
- v)
|^ 1)
* ((
- v)
* (
- v)));
then ((
- v)
|^ 3)
= (((
- v)
to_power 1)
* ((
- v)
^2 )) by
POWER: 41;
then ((
- v)
|^ 3)
= ((
- v)
* ((
- v)
^2 )) by
POWER: 25;
then
A37: ((
- v)
|^ 3)
= (
- (v
* (v
^2 )));
(v
|^ 3)
= (v
|^ (2
+ 1));
then (v
|^ 3)
= ((v
|^ (1
+ 1))
* v) by
NEWTON: 6;
then (v
|^ 3)
= (((v
|^ 1)
* v)
* v) by
NEWTON: 6;
then (v
|^ 3)
= ((v
|^ 1)
* (v
* v));
then
A38: (v
|^ 3)
= ((v
to_power 1)
* (v
^2 )) by
POWER: 41;
then ((
- v)
|^ 3)
= (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A13,
A30,
A31,
A37,
POWER: 25;
then
A39: (
- v)
= (3
-Root (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A35,
A36,
PREPOWER:def 2;
set r = ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
A40: (3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
(
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
>
0 by
A13,
A30,
A31,
A36,
A37,
A38,
POWER: 25;
then (
- v)
= (3
-root ((
- 1)
* r)) by
A39,
POWER:def 1;
then (
- v)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A40;
end;
end;
hence thesis by
A2,
A18;
end;
case z2
= (((
- e2)
- (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
then z2
= (((
- e2)
- (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
QUIN_1:def 1;
then z2
= (((
- q)
/ 2)
- ((
sqrt ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3))))
/ 2));
then
A41: z2
= ((
- (q
/ 2))
- (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A7,
SQUARE_1: 20,
SQUARE_1: 30
.= ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
now
per cases by
XXREAL_0: 1;
case
A42: v
>
0 ;
then ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A16,
A13,
A41,
PREPOWER: 6;
then
A43: v
= (3
-Root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A16,
A13,
A41,
A42,
PREPOWER:def 2;
((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A16,
A13,
A41,
A42,
PREPOWER: 6;
hence v
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A43,
POWER:def 1;
end;
case
A44: v
=
0 ;
then
A45: ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
=
0 by
A16,
A13,
A41,
NEWTON: 11;
hence v
= (3
-Root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A44,
PREPOWER:def 2;
hence v
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A45,
POWER:def 1;
end;
case v
<
0 ;
then
A46: (
- v)
>
0 by
XREAL_1: 58;
set r = ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
A47: (3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
(v
|^ 3)
= (v
|^ (2
+ 1));
then (v
|^ 3)
= ((v
|^ (1
+ 1))
* v) by
NEWTON: 6;
then
A48: (v
|^ 3)
= (((v
|^ 1)
* v)
* v) by
NEWTON: 6;
((
- v)
|^ 3)
= ((
- v)
|^ (2
+ 1));
then ((
- v)
|^ 3)
= (((
- v)
|^ (1
+ 1))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= ((((
- v)
|^ 1)
* (
- v))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= (((
- v)
|^ 1)
* ((
- v)
* (
- v)));
then
A49: ((
- v)
|^ 3)
= (((
- v)
to_power 1)
* ((
- v)
^2 )) by
POWER: 41
.= ((
- v)
* (v
^2 )) by
POWER: 25
.= (
- (v
* (v
^2 )));
((
- v)
|^ 3)
= (
- (v
|^ 3)) by
A49,
A48;
then
A50: (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
>
0 by
A16,
A13,
A41,
A46,
PREPOWER: 6;
((
- v)
|^ 3)
= (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A16,
A13,
A41,
A49,
A48;
then (
- v)
= (3
-Root (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A46,
A50,
PREPOWER:def 2;
then (
- v)
= (3
-root ((
- 1)
* r)) by
A50,
POWER:def 1;
then (
- v)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
hence v
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A47;
end;
end;
hence thesis by
A2,
A18;
end;
end;
hence thesis;
end;
case
A51: z1
= (((
- e2)
- (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
|^ (2
+ 1));
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
|^ (1
+ 1))
* (
- (p
/ 3))) by
NEWTON: 6;
then ((
- (p
/ 3))
|^ 3)
= ((((
- (p
/ 3))
|^ 1)
* (
- (p
/ 3)))
* (
- (p
/ 3))) by
NEWTON: 6;
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
|^ 1)
* ((
- (p
/ 3))
* (
- (p
/ 3))));
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
to_power 1)
* ((
- (p
/ 3))
^2 )) by
POWER: 41;
then ((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
* ((
- (p
/ 3))
^2 )) by
POWER: 25;
then
A52: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
* ((p
/ 3)
^2 )));
z1
= (((
- e2)
- (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
A51,
QUIN_1:def 1;
then
A53: z1
= (((
- q)
* (2
" ))
- ((
sqrt ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3))))
/ 2))
.= ((
- (q
/ 2))
- (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A7,
SQUARE_1: 20,
SQUARE_1: 30
.= ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
hence z1
= ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
- ((
- (p
/ 3))
|^ 3))));
((p
/ 3)
|^ 3)
= ((p
/ 3)
|^ (2
+ 1));
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
|^ (1
+ 1))
* (p
/ 3)) by
NEWTON: 6;
then ((p
/ 3)
|^ 3)
= ((((p
/ 3)
|^ 1)
* (p
/ 3))
* (p
/ 3)) by
NEWTON: 6;
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
|^ 1)
* ((p
/ 3)
* (p
/ 3)));
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
to_power 1)
* ((p
/ 3)
^2 )) by
POWER: 41;
then
A54: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
|^ 3)) by
A52,
POWER: 25;
A55:
now
per cases by
XXREAL_0: 1;
case
A56: u
>
0 ;
then ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A53,
A54,
PREPOWER: 6;
then
A57: u
= (3
-Root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A53,
A54,
A56,
PREPOWER:def 2;
((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A53,
A54,
A56,
PREPOWER: 6;
hence u
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A57,
POWER:def 1;
end;
case
A58: u
=
0 ;
then ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
=
0 by
A53,
A54,
NEWTON: 11;
hence u
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A58,
POWER: 5;
end;
case u
<
0 ;
then
A59: (
- u)
>
0 by
XREAL_1: 58;
then
A60: ((
- u)
|^ 3)
>
0 by
PREPOWER: 6;
((
- u)
|^ 3)
= ((
- u)
|^ (2
+ 1));
then ((
- u)
|^ 3)
= (((
- u)
|^ (1
+ 1))
* (
- u)) by
NEWTON: 6;
then ((
- u)
|^ 3)
= ((((
- u)
|^ 1)
* (
- u))
* (
- u)) by
NEWTON: 6;
then ((
- u)
|^ 3)
= (((
- u)
|^ 1)
* ((
- u)
* (
- u)));
then ((
- u)
|^ 3)
= (((
- u)
to_power 1)
* ((
- u)
^2 )) by
POWER: 41;
then ((
- u)
|^ 3)
= ((
- u)
* ((
- u)
^2 )) by
POWER: 25;
then
A61: ((
- u)
|^ 3)
= (
- (u
* (u
^2 )));
(u
|^ 3)
= (u
|^ (2
+ 1));
then (u
|^ 3)
= ((u
|^ (1
+ 1))
* u) by
NEWTON: 6;
then (u
|^ 3)
= (((u
|^ 1)
* u)
* u) by
NEWTON: 6;
then (u
|^ 3)
= ((u
|^ 1)
* (u
* u));
then
A62: (u
|^ 3)
= ((u
to_power 1)
* (u
^2 )) by
POWER: 41;
then (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
>
0 by
A53,
A54,
A60,
A61,
POWER: 25;
then
A63: (3
-Root (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))))
= (3
-root (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
POWER:def 1;
set r = ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
((
- u)
|^ 3)
= (
- ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A53,
A54,
A61,
A62,
POWER: 25;
then (
- u)
= (3
-root ((
- 1)
* r)) by
A59,
A60,
A63,
PREPOWER:def 2;
then
A64: (
- u)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
(3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
hence u
= (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A64;
end;
end;
now
per cases by
A8,
A10,
Th5;
case
A65: z2
= (((
- e2)
+ (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
|^ (2
+ 1));
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
|^ (1
+ 1))
* (
- (p
/ 3))) by
NEWTON: 6;
then ((
- (p
/ 3))
|^ 3)
= ((((
- (p
/ 3))
|^ 1)
* (
- (p
/ 3)))
* (
- (p
/ 3))) by
NEWTON: 6;
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
|^ 1)
* ((
- (p
/ 3))
* (
- (p
/ 3))));
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
to_power 1)
* ((
- (p
/ 3))
^2 )) by
POWER: 41;
then ((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
* ((
- (p
/ 3))
^2 )) by
POWER: 25;
then
A66: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
* ((p
/ 3)
^2 )));
((p
/ 3)
|^ 3)
= ((p
/ 3)
|^ (2
+ 1));
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
|^ (1
+ 1))
* (p
/ 3)) by
NEWTON: 6;
then ((p
/ 3)
|^ 3)
= ((((p
/ 3)
|^ 1)
* (p
/ 3))
* (p
/ 3)) by
NEWTON: 6;
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
|^ 1)
* ((p
/ 3)
* (p
/ 3)));
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
to_power 1)
* ((p
/ 3)
^2 )) by
POWER: 41;
then
A67: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
|^ 3)) by
A66,
POWER: 25;
z2
= (((
- e2)
+ (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
A65,
QUIN_1:def 1;
then z2
= (((
- q)
/ 2)
+ ((
sqrt ((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3))))
/ (
sqrt 4))) by
SQUARE_1: 20,
XCMPLX_1: 62;
then
A68: z2
= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A7,
SQUARE_1: 30
.= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
now
per cases by
XXREAL_0: 1;
case
A69: v
>
0 ;
then
A70: ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A68,
A67,
PREPOWER: 6;
then v
= (3
-Root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A68,
A67,
A69,
PREPOWER:def 2;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A70,
POWER:def 1;
end;
case
A71: v
=
0 ;
then ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
=
0 by
A68,
A67,
NEWTON: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A71,
POWER: 5;
end;
case v
<
0 ;
then
A72: (
- v)
>
0 by
XREAL_1: 58;
then
A73: ((
- v)
|^ 3)
>
0 by
PREPOWER: 6;
((
- v)
|^ 3)
= ((
- v)
|^ (2
+ 1));
then ((
- v)
|^ 3)
= (((
- v)
|^ (1
+ 1))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= ((((
- v)
|^ 1)
* (
- v))
* (
- v)) by
NEWTON: 6;
then ((
- v)
|^ 3)
= (((
- v)
|^ 1)
* ((
- v)
* (
- v)));
then ((
- v)
|^ 3)
= (((
- v)
to_power 1)
* ((
- v)
^2 )) by
POWER: 41;
then ((
- v)
|^ 3)
= ((
- v)
* ((
- v)
^2 )) by
POWER: 25;
then
A74: ((
- v)
|^ 3)
= (
- (v
* (v
^2 )));
(v
|^ 3)
= (v
|^ (2
+ 1));
then (v
|^ 3)
= ((v
|^ (1
+ 1))
* v) by
NEWTON: 6;
then (v
|^ 3)
= (((v
|^ 1)
* v)
* v) by
NEWTON: 6;
then (v
|^ 3)
= ((v
|^ 1)
* (v
* v));
then
A75: (v
|^ 3)
= ((v
to_power 1)
* (v
^2 )) by
POWER: 41;
then
A76: (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
>
0 by
A68,
A67,
A73,
A74,
POWER: 25;
set r = ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
A77: (3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
(v
|^ 3)
= (v
* (v
^2 )) by
A75,
POWER: 25;
then (
- v)
= (3
-Root (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A68,
A67,
A72,
A73,
A74,
PREPOWER:def 2;
then (
- v)
= (3
-root ((
- 1)
* r)) by
A76,
POWER:def 1;
then (
- v)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A77;
end;
end;
hence thesis by
A2,
A55;
end;
case
A78: z2
= (((
- e2)
- (
sqrt (
delta (e1,e2,e3))))
/ (2
* e1));
(e2
^2 )
= ((z1
+ z2)
^2 ) by
A5,
SQUARE_1: 3;
then
A79: ((e2
^2 )
- ((4
* e1)
* e3))
= ((z1
- z2)
^2 ) by
A11;
((
- (p
/ 3))
|^ 3)
= ((
- (p
/ 3))
|^ (2
+ 1))
.= (((
- (p
/ 3))
|^ (1
+ 1))
* (
- (p
/ 3))) by
NEWTON: 6
.= ((((
- (p
/ 3))
|^ 1)
* (
- (p
/ 3)))
* (
- (p
/ 3))) by
NEWTON: 6
.= (((
- (p
/ 3))
|^ 1)
* ((
- (p
/ 3))
* (
- (p
/ 3))));
then ((
- (p
/ 3))
|^ 3)
= (((
- (p
/ 3))
to_power 1)
* ((
- (p
/ 3))
^2 )) by
POWER: 41
.= ((
- (p
/ 3))
* ((p
/ 3)
^2 )) by
POWER: 25;
then
A80: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
* ((p
/ 3)
^2 )));
((p
/ 3)
|^ 3)
= ((p
/ 3)
|^ (2
+ 1))
.= (((p
/ 3)
|^ (1
+ 1))
* (p
/ 3)) by
NEWTON: 6
.= ((((p
/ 3)
|^ 1)
* (p
/ 3))
* (p
/ 3)) by
NEWTON: 6
.= (((p
/ 3)
|^ 1)
* ((p
/ 3)
^2 ));
then ((p
/ 3)
|^ 3)
= (((p
/ 3)
to_power 1)
* ((p
/ 3)
^2 )) by
POWER: 41;
then
A81: ((
- (p
/ 3))
|^ 3)
= (
- ((p
/ 3)
|^ 3)) by
A80,
POWER: 25;
z2
= (((
- e2)
- (
sqrt ((e2
^2 )
- ((4
* e1)
* e3))))
/ (2
* e1)) by
A78,
QUIN_1:def 1;
then
A82: z2
= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
- (4
* ((
- (p
/ 3))
|^ 3)))
/ 4))) by
A51,
A78,
A79,
SQUARE_1: 17
.= (((
- q)
/ 2)
+ (
sqrt (((q
^2 )
/ 4)
- (1
* ((
- (p
/ 3))
|^ 3)))));
now
per cases by
XXREAL_0: 1;
case
A83: v
>
0 ;
then
A84: ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))
>
0 by
A82,
A81,
PREPOWER: 6;
then v
= (3
-Root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A82,
A81,
A83,
PREPOWER:def 2;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A84,
POWER:def 1;
end;
case
A85: v
=
0 ;
then (v
|^ 3)
=
0 by
NEWTON: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A82,
A81,
A85,
POWER: 5;
end;
case v
<
0 ;
then
A86: (
- v)
>
0 by
XREAL_1: 58;
then
A87: ((
- v)
|^ 3)
>
0 by
PREPOWER: 6;
set r = ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))));
(v
|^ 3)
= (v
|^ (2
+ 1))
.= ((v
|^ (1
+ 1))
* v) by
NEWTON: 6
.= (((v
|^ 1)
* v)
* v) by
NEWTON: 6
.= ((v
|^ 1)
* (v
^2 ));
then
A88: (v
|^ 3)
= ((v
to_power 1)
* (v
^2 )) by
POWER: 41;
((
- v)
|^ 3)
= ((
- v)
|^ (2
+ 1))
.= (((
- v)
|^ (1
+ 1))
* (
- v)) by
NEWTON: 6
.= ((((
- v)
|^ 1)
* (
- v))
* (
- v)) by
NEWTON: 6
.= (((
- v)
|^ 1)
* ((
- v)
^2 ))
.= (((
- v)
to_power 1)
* ((
- v)
^2 )) by
POWER: 41
.= ((
- v)
* (v
^2 )) by
POWER: 25;
then
A89: ((
- v)
|^ 3)
= (
- (v
* (v
^2 )));
then
A90: (
- (v
|^ 3))
>
0 by
A87,
A88,
POWER: 25;
A91: (3
-root (
- 1))
= (
- 1) by
Lm1,
POWER: 8;
((
- v)
|^ 3)
= (
- (v
|^ 3)) by
A89,
A88,
POWER: 25;
then (
- v)
= (3
-Root (
- ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A82,
A81,
A86,
A87,
PREPOWER:def 2;
then (
- v)
= (3
-root ((
- 1)
* r)) by
A82,
A81,
A90,
POWER:def 1;
then (
- v)
= ((3
-root (
- 1))
* (3
-root r)) by
Lm1,
POWER: 11;
hence v
= (3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3))))) by
A91;
end;
end;
hence y
= ((3
-root ((
- (q
/ 2))
+ (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))
+ (3
-root ((
- (q
/ 2))
- (
sqrt (((q
^2 )
/ 4)
+ ((p
/ 3)
|^ 3)))))) by
A2,
A55;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
POLYEQ_1:20
b
<>
0 & (
delta (b,c,d))
>
0 & (
Polynom (
0 ,b,c,d,x))
=
0 implies x
= (((
- c)
+ (
sqrt (
delta (b,c,d))))
/ (2
* b)) or x
= (((
- c)
- (
sqrt (
delta (b,c,d))))
/ (2
* b))
proof
assume
A1: b
<>
0 & (
delta (b,c,d))
>
0 ;
assume (
Polynom (
0 ,b,c,d,x))
=
0 ;
then (
Polynom (b,c,d,x))
=
0 ;
hence thesis by
A1,
Th5;
end;
theorem ::
POLYEQ_1:21
a
<>
0 & p
= (c
/ a) & q
= (d
/ a) & (
Polynom (a,
0 ,c,d,x))
=
0 implies for u, v st x
= (u
+ v) & (((3
* v)
* u)
+ p)
=
0 holds x
= ((3
-root ((
- (d
/ (2
* a)))
+ (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3)))))
+ (3
-root ((
- (d
/ (2
* a)))
- (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3)))))) or x
= ((3
-root ((
- (d
/ (2
* a)))
+ (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3)))))
+ (3
-root ((
- (d
/ (2
* a)))
+ (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3)))))) or x
= ((3
-root ((
- (d
/ (2
* a)))
- (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3)))))
+ (3
-root ((
- (d
/ (2
* a)))
- (
sqrt (((d
^2 )
/ (4
* (a
^2 )))
+ ((c
/ (3
* a))
|^ 3))))))
proof
assume that
A1: a
<>
0 and
A2: p
= (c
/ a) and
A3: q
= (d
/ a);
A4: (p
/ 3)
= (c
/ (3
* a)) & (
- (q
/ 2))
= (
- (d
/ (2
* a))) by
A2,
A3,
XCMPLX_1: 78;
assume (
Polynom (a,
0 ,c,d,x))
=
0 ;
then ((a
" )
* (((a
* (x
|^ 3))
+ (c
* x))
+ d))
=
0 ;
then ((((a
" )
* a)
* (x
|^ 3))
+ ((a
" )
* ((c
* x)
+ d)))
=
0 ;
then ((1
* (x
|^ 3))
+ ((a
" )
* ((c
* x)
+ d)))
=
0 by
A1,
XCMPLX_0:def 7;
then ((x
|^ 3)
+ ((((a
" )
* c)
* x)
+ ((a
" )
* d)))
=
0 ;
then ((x
|^ 3)
+ (((c
/ a)
* x)
+ ((a
" )
* d)))
=
0 by
XCMPLX_0:def 9;
then ((x
|^ 3)
+ (((c
/ a)
* x)
+ (d
/ a)))
=
0 by
XCMPLX_0:def 9;
then
A5: (
Polynom (1,
0 ,p,q,x))
=
0 by
A2,
A3;
((q
^2 )
/ 4)
= (((d
^2 )
/ (a
^2 ))
/ 4) by
A3,
XCMPLX_1: 76;
then
A6: ((q
^2 )
/ 4)
= ((d
^2 )
/ (4
* (a
^2 ))) by
XCMPLX_1: 78;
let u, v;
assume x
= (u
+ v) & (((3
* v)
* u)
+ p)
=
0 ;
hence thesis by
A5,
A4,
A6,
Th19;
end;
theorem ::
POLYEQ_1:22
a
<>
0 & (
delta (a,b,c))
>=
0 & (
Polynom (a,b,c,
0 ,x))
=
0 implies x
=
0 or x
= (((
- b)
+ (
sqrt (
delta (a,b,c))))
/ (2
* a)) or x
= (((
- b)
- (
sqrt (
delta (a,b,c))))
/ (2
* a))
proof
assume
A1: a
<>
0 & (
delta (a,b,c))
>=
0 ;
(x
|^ 3)
= (x
|^ (2
+ 1));
then (x
|^ 3)
= ((x
|^ (1
+ 1))
* x) by
NEWTON: 6;
then
A2: (x
|^ 3)
= (((x
|^ 1)
* x)
* x) by
NEWTON: 6;
A3: (x
|^ 3)
= ((x
^2 )
* x) by
A2;
assume (
Polynom (a,b,c,
0 ,x))
=
0 ;
then ((((a
* (x
^2 ))
+ (b
* x))
+ c)
* x)
=
0 by
A3;
then x
=
0 or (
Polynom (a,b,c,x))
=
0 by
XCMPLX_1: 6;
hence thesis by
A1,
Th5;
end;
theorem ::
POLYEQ_1:23
a
<>
0 & (c
/ a)
<
0 & (
Polynom (a,
0 ,c,
0 ,x))
=
0 implies x
=
0 or x
= (
sqrt (
- (c
/ a))) or x
= (
- (
sqrt (
- (c
/ a))))
proof
assume that
A1: a
<>
0 and
A2: (c
/ a)
<
0 ;
(x
|^ 3)
= (x
|^ (2
+ 1));
then (x
|^ 3)
= ((x
|^ (1
+ 1))
* x) by
NEWTON: 6;
then
A3: (x
|^ 3)
= (((x
|^ 1)
* x)
* x) by
NEWTON: 6;
A4: (x
|^ 3)
= ((x
^2 )
* x) by
A3;
assume (
Polynom (a,
0 ,c,
0 ,x))
=
0 ;
then (((a
* (x
^2 ))
+ c)
* x)
=
0 by
A4;
then
A5: x
=
0 or ((a
* (x
^2 ))
+ c)
=
0 by
XCMPLX_1: 6;
now
per cases by
XXREAL_0: 1;
case
A6: x
>
0 ;
(x
|^ 2)
= (x
|^ (1
+ 1));
then (x
|^ 2)
= ((x
|^ 1)
* x) by
NEWTON: 6;
then (x
|^ 2)
= ((x
to_power 1)
* x) by
POWER: 41;
then
A7: (x
|^ 2)
= (x
* x) by
POWER: 25;
A8: (
- (c
/ a))
>
0 by
A2,
XREAL_1: 58;
(x
^2 )
= ((
- c)
/ a) by
A1,
A5,
A6,
XCMPLX_1: 89;
then (x
^2 )
= ((
- c)
* (a
" )) by
XCMPLX_0:def 9;
then (x
^2 )
= (
- (c
* (a
" )));
then (x
^2 )
= (
- (c
/ a)) by
XCMPLX_0:def 9;
then x
= (2
-Root (
- (c
/ a))) by
A6,
A8,
A7,
PREPOWER:def 2;
hence thesis by
A8,
PREPOWER: 32;
end;
case
A9: x
<
0 ;
((
- x)
|^ 2)
= ((
- x)
|^ (1
+ 1));
then ((
- x)
|^ 2)
= (((
- x)
|^ 1)
* (
- x)) by
NEWTON: 6;
then ((
- x)
|^ 2)
= (((
- x)
to_power 1)
* (
- x)) by
POWER: 41;
then
A10: ((
- x)
|^ 2)
= ((
- x)
* (
- x)) by
POWER: 25;
(x
^2 )
= ((
- c)
/ a) by
A1,
A5,
A9,
XCMPLX_1: 89;
then (x
^2 )
= ((
- c)
* (a
" )) by
XCMPLX_0:def 9;
then (x
^2 )
= (
- (c
* (a
" )));
then
A11: ((
- x)
^2 )
= (
- (c
/ a)) by
XCMPLX_0:def 9;
A12: (
- (c
/ a))
>
0 by
A2,
XREAL_1: 58;
(
- x)
>
0 by
A9,
XREAL_1: 58;
then (
- x)
= (2
-Root (
- (c
/ a))) by
A11,
A12,
A10,
PREPOWER:def 2;
then (
- x)
= (
sqrt (
- (c
/ a))) by
A12,
PREPOWER: 32;
hence thesis;
end;
case x
=
0 ;
hence thesis;
end;
end;
hence thesis;
end;