power.miz



    begin

    reserve x for set;

    reserve a,b,c,d,e for Real;

    reserve m,n,m1,m2 for Nat;

    reserve k,l for Integer;

    reserve p for Rational;

    theorem :: POWER:1

    

     Th1: n is even implies (( - a) |^ n) = (a |^ n)

    proof

      given m such that

       A1: n = (2 * m);

      

      thus (( - a) |^ n) = ((( - a) |^ (1 + 1)) |^ m) by A1, NEWTON: 9

      .= (((( - a) |^ ( 0 + 1)) * (( - a) |^ ( 0 + 1))) |^ m) by NEWTON: 8

      .= ((((( - a) |^ 0 ) * ( - a)) * (( - a) |^ ( 0 + 1))) |^ m) by NEWTON: 6

      .= ((((( - a) |^ 0 ) * ( - a)) * ((( - a) |^ 0 ) * ( - a))) |^ m) by NEWTON: 6

      .= (((((( - a) GeoSeq ) . 0 ) * ( - a)) * ((( - a) |^ 0 ) * ( - a))) |^ m) by PREPOWER:def 1

      .= (((((( - a) GeoSeq ) . 0 ) * ( - a)) * (((( - a) GeoSeq ) . 0 ) * ( - a))) |^ m) by PREPOWER:def 1

      .= (((((( - a) GeoSeq ) . 0 ) * ( - a)) * (1 * ( - a))) |^ m) by PREPOWER: 3

      .= (((1 * ( - a)) * (1 * ( - a))) |^ m) by PREPOWER: 3

      .= ((a * a) |^ m)

      .= (((((a GeoSeq ) . 0 ) * a) * (1 * a)) |^ m) by PREPOWER: 3

      .= (((((a GeoSeq ) . 0 ) * a) * (((a GeoSeq ) . 0 ) * a)) |^ m) by PREPOWER: 3

      .= (((((a GeoSeq ) . 0 ) * a) * ((a |^ 0 ) * a)) |^ m) by PREPOWER:def 1

      .= ((((a |^ 0 ) * a) * ((a |^ 0 ) * a)) |^ m) by PREPOWER:def 1

      .= ((((a |^ 0 ) * a) * (a |^ ( 0 + 1))) |^ m) by NEWTON: 6

      .= (((a |^ ( 0 + 1)) * (a |^ ( 0 + 1))) |^ m) by NEWTON: 6

      .= ((a |^ (1 + 1)) |^ m) by NEWTON: 8

      .= (a |^ n) by A1, NEWTON: 9;

    end;

    theorem :: POWER:2

    

     Th2: n is odd implies (( - a) |^ n) = ( - (a |^ n))

    proof

      assume n is odd;

      then

      consider m such that

       A1: n = ((2 * m) + 1) by ABIAN: 9;

      

      thus (( - a) |^ n) = ((( - a) |^ (2 * m)) * ( - a)) by A1, NEWTON: 6

      .= ((a |^ (2 * m)) * ( - a)) by Th1

      .= ( - ((a |^ (2 * m)) * a))

      .= ( - (a |^ n)) by A1, NEWTON: 6;

    end;

    theorem :: POWER:3

    

     Th3: a >= 0 or n is even implies (a |^ n) >= 0

    proof

      assume

       A1: a >= 0 or n is even;

       A2:

      now

        let a, n such that

         A3: a >= 0 ;

        now

          per cases by A3;

            suppose a > 0 ;

            hence (a |^ n) >= 0 by PREPOWER: 6;

          end;

            suppose

             A4: a = 0 ;

            now

              per cases by NAT_1: 6;

                suppose

                 A5: n = 0 ;

                (a |^ n) = ((a GeoSeq ) . n) by PREPOWER:def 1

                .= 1 by A5, PREPOWER: 3;

                hence (a |^ n) >= 0 ;

              end;

                suppose ex m be Nat st n = (m + 1);

                then

                consider m be Nat such that

                 A6: n = (m + 1);

                (a |^ n) = ((a |^ m) * a) by A6, NEWTON: 6

                .= 0 by A4;

                hence (a |^ n) >= 0 ;

              end;

            end;

            hence (a |^ n) >= 0 ;

          end;

        end;

        hence (a |^ n) >= 0 ;

      end;

      now

        assume

         A7: n is even;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A2;

          end;

            suppose a < 0 ;

            then (( - a) |^ n) >= 0 by A2;

            hence thesis by A7, Th1;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    definition

      let n be natural Number;

      let a be Real;

      :: POWER:def1

      func n -root a -> Real equals

      : Def1: (n -Root a) if a >= 0 & n >= 1,

( - (n -Root ( - a))) if a < 0 & n is odd;

      consistency ;

      coherence ;

    end

    theorem :: POWER:4

    for n be Nat st n >= 1 & a >= 0 or n is odd holds ((n -root a) |^ n) = a & (n -root (a |^ n)) = a

    proof

      let n be Nat;

      assume

       A1: n >= 1 & a >= 0 or n is odd;

       A2:

      now

        assume that

         A3: n >= 1 and

         A4: a >= 0 ;

        

         A5: (n -root a) = (n -Root a) by A3, A4, Def1;

        now

          per cases by A4;

            suppose a > 0 ;

            hence (a |^ n) >= 0 by PREPOWER: 6;

          end;

            suppose a = 0 ;

            hence (a |^ n) >= 0 ;

          end;

        end;

        then (n -root (a |^ n)) = (n -Root (a |^ n)) by A3, Def1;

        hence thesis by A3, A4, A5, PREPOWER: 19;

      end;

      now

        assume

         A6: n is odd;

        then

         A7: ex m st n = ((2 * m) + 1) by ABIAN: 9;

        

         A8: n >= 1 by A6, ABIAN: 12;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A2, A8;

          end;

            suppose

             A9: a < 0 ;

            then

             A10: ( - a) > 0 by XREAL_1: 58;

            

            thus ((n -root a) |^ n) = (( - (n -Root ( - a))) |^ n) by A7, A9, Def1

            .= ( - ((n -Root ( - a)) |^ n)) by A7, Th2

            .= ( - ( - a)) by A8, A9, PREPOWER: 19

            .= a;

            (( - a) |^ n) > 0 by A10, PREPOWER: 6;

            then ( - (a |^ n)) > 0 by A7, Th2;

            then (a |^ n) < 0 ;

            

            hence (n -root (a |^ n)) = ( - (n -Root ( - (a |^ n)))) by A7, Def1

            .= ( - (n -Root (( - a) |^ n))) by A7, Th2

            .= ( - ( - a)) by A8, A9, PREPOWER: 19

            .= a;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: POWER:5

    

     Th5: for n be Nat st n >= 1 holds (n -root 0 ) = 0

    proof

      let n be Nat;

      assume

       A1: n >= 1;

      

      hence (n -root 0 ) = (n -Root 0 ) by Def1

      .= 0 by A1, PREPOWER:def 2;

    end;

    theorem :: POWER:6

    n >= 1 implies (n -root 1) = 1

    proof

      assume

       A1: n >= 1;

      

      hence (n -root 1) = (n -Root 1) by Def1

      .= 1 by A1, PREPOWER: 20;

    end;

    theorem :: POWER:7

    

     Th7: a >= 0 & n >= 1 implies (n -root a) >= 0

    proof

      assume that

       A1: a >= 0 and

       A2: n >= 1;

      now

        per cases by A1;

          suppose

           A3: a > 0 ;

          (n -root a) = (n -Root a) by A1, A2, Def1;

          hence thesis by A2, A3, PREPOWER:def 2;

        end;

          suppose

           A4: a = 0 ;

          (n -root a) = (n -Root a) by A1, A2, Def1

          .= 0 by A2, A4, PREPOWER:def 2;

          hence thesis;

        end;

      end;

      hence thesis;

    end;

    theorem :: POWER:8

    n is odd implies (n -root ( - 1)) = ( - 1)

    proof

      assume

       A1: n is odd;

      then

       A2: n >= 1 by ABIAN: 12;

      

      thus (n -root ( - 1)) = ( - (n -Root ( - ( - 1)))) by A1, Def1

      .= ( - 1) by A2, PREPOWER: 20;

    end;

    theorem :: POWER:9

    (1 -root a) = a

    proof

      now

        per cases ;

          suppose

           A1: a >= 0 ;

          

          hence (1 -root a) = (1 -Root a) by Def1

          .= a by A1, PREPOWER: 21;

        end;

          suppose

           A2: a < 0 ;

          1 = ((2 * 0 ) + 1);

          

          hence (1 -root a) = ( - (1 -Root ( - a))) by A2, Def1

          .= ( - ( - a)) by A2, PREPOWER: 21

          .= a;

        end;

      end;

      hence thesis;

    end;

    theorem :: POWER:10

    

     Th10: n is odd implies (n -root a) = ( - (n -root ( - a)))

    proof

      assume

       A1: n is odd;

      then

       A2: ex m st n = ((2 * m) + 1) by ABIAN: 9;

      

       A3: n >= 1 by A1, ABIAN: 12;

      now

        per cases ;

          suppose

           A4: a < 0 ;

          

          hence (n -root a) = ( - (n -Root ( - a))) by A2, Def1

          .= ( - (n -root ( - a))) by A3, A4, Def1;

        end;

          suppose

           A5: a = 0 ;

          

          hence (n -root a) = 0 by A3, Th5

          .= ( - (n -root ( - a))) by A3, A5, Th5;

        end;

          suppose

           A6: a > 0 ;

          then ( - a) < ( - 0 ) by XREAL_1: 24;

          

          hence ( - (n -root ( - a))) = ( - ( - (n -Root ( - ( - a))))) by A2, Def1

          .= (n -root a) by A3, A6, Def1;

        end;

      end;

      hence thesis;

    end;

    theorem :: POWER:11

    

     Th11: n >= 1 & a >= 0 & b >= 0 or n is odd implies (n -root (a * b)) = ((n -root a) * (n -root b))

    proof

      assume

       A1: n >= 1 & a >= 0 & b >= 0 or n is odd;

       A2:

      now

        let a, b, n;

        assume that

         A3: n >= 1 and

         A4: a >= 0 and

         A5: b >= 0 ;

        

        thus (n -root (a * b)) = (n -Root (a * b)) by A3, A4, A5, Def1

        .= ((n -Root a) * (n -Root b)) by A3, A4, A5, PREPOWER: 22

        .= ((n -root a) * (n -Root b)) by A3, A4, Def1

        .= ((n -root a) * (n -root b)) by A3, A5, Def1;

      end;

      now

        assume

         A6: n is odd;

        then

         A7: n >= 1 by ABIAN: 12;

        now

          per cases ;

            suppose a >= 0 & b >= 0 ;

            hence thesis by A2, A7;

          end;

            suppose

             A8: a < 0 & b < 0 ;

            

            hence (n -root (a * b)) = (n -Root (( - a) * ( - b))) by A7, Def1

            .= (( - ( - (n -Root ( - a)))) * (n -Root ( - b))) by A7, A8, PREPOWER: 22

            .= (( - (n -root a)) * ( - ( - (n -Root ( - b))))) by A6, A8, Def1

            .= (( - (n -root a)) * ( - (n -root b))) by A6, A8, Def1

            .= ((n -root a) * (n -root b));

          end;

            suppose

             A9: a >= 0 & b < 0 ;

            

            thus (n -root (a * b)) = ( - (n -root ( - (a * b)))) by A6, Th10

            .= ( - (n -root (a * ( - b))))

            .= ( - ((n -root a) * (n -root ( - b)))) by A2, A7, A9

            .= ((n -root a) * ( - (n -root ( - b))))

            .= ((n -root a) * (n -root b)) by A6, Th10;

          end;

            suppose

             A10: a < 0 & b >= 0 ;

            

            thus (n -root (a * b)) = ( - (n -root ( - (a * b)))) by A6, Th10

            .= ( - (n -root (( - a) * b)))

            .= ( - ((n -root ( - a)) * (n -root b))) by A2, A7, A10

            .= (( - (n -root ( - a))) * (n -root b))

            .= ((n -root a) * (n -root b)) by A6, Th10;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: POWER:12

    

     Th12: a > 0 & n >= 1 or a <> 0 & n is odd implies (n -root (1 / a)) = (1 / (n -root a))

    proof

      assume

       A1: a > 0 & n >= 1 or a <> 0 & n is odd;

       A2:

      now

        let a, n;

        assume

         A3: a > 0 & n >= 1;

        

        hence (n -root (1 / a)) = (n -Root (1 / a)) by Def1

        .= (1 / (n -Root a)) by A3, PREPOWER: 23

        .= (1 / (n -root a)) by A3, Def1;

      end;

      now

        assume that

         A4: a <> 0 and

         A5: n is odd;

        

         A6: n >= 1 by A5, ABIAN: 12;

        now

          per cases by A4;

            suppose a > 0 ;

            hence thesis by A2, A6;

          end;

            suppose a < 0 ;

            then

             A7: ( - a) > 0 by XREAL_1: 58;

            

            thus (1 / (n -root a)) = (1 / ( - (n -root ( - a)))) by A5, Th10

            .= ( - (1 / (n -root ( - a)))) by XCMPLX_1: 188

            .= ( - (n -root (1 / ( - a)))) by A2, A6, A7

            .= ( - (n -root ( - (1 / a)))) by XCMPLX_1: 188

            .= (n -root (1 / a)) by A5, Th10;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: POWER:13

    a >= 0 & b > 0 & n >= 1 or b <> 0 & n is odd implies (n -root (a / b)) = ((n -root a) / (n -root b))

    proof

      assume

       A1: a >= 0 & b > 0 & n >= 1 or b <> 0 & n is odd;

      now

        per cases by A1;

          suppose

           A2: a >= 0 & b > 0 & n >= 1;

          

          hence (n -root (a / b)) = (n -Root (a / b)) by Def1

          .= ((n -Root a) / (n -Root b)) by A2, PREPOWER: 24

          .= ((n -root a) / (n -Root b)) by A2, Def1

          .= ((n -root a) / (n -root b)) by A2, Def1;

        end;

          suppose

           A3: b <> 0 & n is odd;

          

          thus (n -root (a / b)) = (n -root (a * (1 / b)))

          .= ((n -root a) * (n -root (1 / b))) by A3, Th11

          .= ((n -root a) * (1 / (n -root b))) by A3, Th12

          .= ((n -root a) / (n -root b));

        end;

      end;

      hence thesis;

    end;

    theorem :: POWER:14

    a >= 0 & n >= 1 & m >= 1 or n is odd & m is odd implies (n -root (m -root a)) = ((n * m) -root a)

    proof

      assume

       A1: a >= 0 & n >= 1 & m >= 1 or n is odd & m is odd;

       A2:

      now

        let a, n, m;

        assume that

         A3: a >= 0 and

         A4: n >= 1 and

         A5: m >= 1;

        

         A6: (n * m) >= 1 by A4, A5, XREAL_1: 159;

        (m -root a) >= 0 by A3, A5, Th7;

        then

         A7: (m -Root a) >= 0 by A3, A5, Def1;

        

        thus (n -root (m -root a)) = (n -root (m -Root a)) by A3, A5, Def1

        .= (n -Root (m -Root a)) by A4, A7, Def1

        .= ((n * m) -Root a) by A3, A4, A5, PREPOWER: 25

        .= ((n * m) -root a) by A3, A6, Def1;

      end;

      now

        assume n is odd;

        then

        consider m1 such that

         A8: n = ((2 * m1) + 1) by ABIAN: 9;

        assume m is odd;

        then

        consider m2 such that

         A9: m = ((2 * m2) + 1) by ABIAN: 9;

        

         A10: n >= ( 0 + 1) by A8, XREAL_1: 6;

        

         A11: m >= ( 0 + 1) by A9, XREAL_1: 6;

        then

         A12: (n * m) >= 1 by A10, XREAL_1: 159;

        

         A13: (n * m) = ((2 * (((m1 * (2 * m2)) + m1) + m2)) + 1) by A8, A9;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A2, A10, A11;

          end;

            suppose

             A14: a < 0 ;

            then (m -root ( - a)) >= 0 by A11, Th7;

            then

             A15: (m -Root ( - a)) >= 0 by A11, A14, Def1;

            

            thus (n -root (m -root a)) = (n -root ( - (m -Root ( - a)))) by A9, A14, Def1

            .= ( - (n -root ( - ( - (m -Root ( - a)))))) by A8, Th10

            .= ( - (n -Root (m -Root ( - a)))) by A10, A15, Def1

            .= ( - ((n * m) -Root ( - a))) by A10, A11, A14, PREPOWER: 25

            .= ( - ((n * m) -root ( - a))) by A12, A14, Def1

            .= ((n * m) -root a) by A13, Th10;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: POWER:15

    a >= 0 & n >= 1 & m >= 1 or n is odd & m is odd implies ((n -root a) * (m -root a)) = ((n * m) -root (a |^ (n + m)))

    proof

      assume

       A1: a >= 0 & n >= 1 & m >= 1 or n is odd & m is odd;

       A2:

      now

        let a, n, m;

        assume that

         A3: a >= 0 and

         A4: n >= 1 and

         A5: m >= 1;

        

         A6: (n * m) >= 1 & (a |^ (n + m)) >= 0 by A3, A4, A5, Th3, XREAL_1: 159;

        

        thus ((n -root a) * (m -root a)) = ((n -root a) * (m -Root a)) by A3, A5, Def1

        .= ((n -Root a) * (m -Root a)) by A3, A4, Def1

        .= ((n * m) -Root (a |^ (n + m))) by A3, A4, A5, PREPOWER: 26

        .= ((n * m) -root (a |^ (n + m))) by A6, Def1;

      end;

      now

        assume n is odd;

        then

        consider m1 such that

         A7: n = ((2 * m1) + 1) by ABIAN: 9;

        assume m is odd;

        then

        consider m2 such that

         A8: m = ((2 * m2) + 1) by ABIAN: 9;

        

         A9: n >= ( 0 + 1) & m >= ( 0 + 1) by A7, A8, XREAL_1: 6;

        then

         A10: (n * m) >= 1 by XREAL_1: 159;

        

         A11: (n + m) = (2 * (m1 + (1 + m2))) by A7, A8;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A2, A9;

          end;

            suppose

             A12: a < 0 ;

            

             A13: (a |^ (n + m)) >= 0 by A11, Th3;

            

            thus ((n -root a) * (m -root a)) = ((n -root a) * ( - (m -Root ( - a)))) by A8, A12, Def1

            .= (( - (n -Root ( - a))) * ( - (m -Root ( - a)))) by A7, A12, Def1

            .= ((n -Root ( - a)) * (m -Root ( - a)))

            .= ((n * m) -Root (( - a) |^ (n + m))) by A9, A12, PREPOWER: 26

            .= ((n * m) -Root (a |^ (n + m))) by A11, Th1

            .= ((n * m) -root (a |^ (n + m))) by A10, A13, Def1;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2;

    end;

    theorem :: POWER:16

    a <= b & ( 0 <= a & n >= 1 or n is odd) implies (n -root a) <= (n -root b)

    proof

      assume that

       A1: a <= b and

       A2: 0 <= a & n >= 1 or n is odd;

       A3:

      now

        let a, b, n;

        assume that

         A4: 0 <= a & n >= 1 and

         A5: a <= b;

        (n -Root a) <= (n -Root b) by A4, A5, PREPOWER: 27;

        then (n -Root a) <= (n -root b) by A4, A5, Def1;

        hence (n -root a) <= (n -root b) by A4, Def1;

      end;

      now

        assume

         A6: n is odd;

        then

         A7: n >= 1 by ABIAN: 12;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A1, A3, A7;

          end;

            suppose

             A8: a < 0 ;

            now

              per cases ;

                suppose b >= 0 ;

                then

                 A9: (n -root b) >= 0 by A7, Th7;

                (n -root ( - a)) >= 0 by A7, A8, Th7;

                then ( - (n -root ( - a))) <= ( - 0 );

                hence thesis by A6, A9, Th10;

              end;

                suppose

                 A10: b < 0 ;

                ( - a) >= ( - b) by A1, XREAL_1: 24;

                then (n -root ( - a)) >= (n -root ( - b)) by A3, A7, A10;

                then ( - (n -root ( - a))) <= ( - (n -root ( - b))) by XREAL_1: 24;

                then (n -root a) <= ( - (n -root ( - b))) by A6, Th10;

                hence thesis by A6, Th10;

              end;

            end;

            hence thesis;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2, A3;

    end;

    theorem :: POWER:17

    a < b & (a >= 0 & n >= 1 or n is odd) implies (n -root a) < (n -root b)

    proof

      assume that

       A1: a < b and

       A2: 0 <= a & n >= 1 or n is odd;

       A3:

      now

        let a, b, n;

        assume that

         A4: 0 <= a & n >= 1 and

         A5: a < b;

        (n -Root a) < (n -Root b) by A4, A5, PREPOWER: 28;

        then (n -Root a) < (n -root b) by A4, A5, Def1;

        hence (n -root a) < (n -root b) by A4, Def1;

      end;

      now

        assume

         A6: n is odd;

        then

         A7: n >= 1 by ABIAN: 12;

        now

          per cases ;

            suppose a >= 0 ;

            hence thesis by A1, A3, A7;

          end;

            suppose

             A8: a < 0 ;

            then

             A9: ( - a) > 0 by XREAL_1: 58;

            now

              per cases ;

                suppose b >= 0 ;

                then

                 A10: (n -root b) >= 0 by A7, Th7;

                (n -Root ( - a)) > 0 by A7, A9, PREPOWER:def 2;

                then ( - (n -Root ( - a))) < ( - 0 ) by XREAL_1: 24;

                hence thesis by A6, A8, A10, Def1;

              end;

                suppose

                 A11: b < 0 ;

                ( - a) > ( - b) by A1, XREAL_1: 24;

                then (n -root ( - a)) > (n -root ( - b)) by A3, A7, A11;

                then ( - (n -root ( - a))) < ( - (n -root ( - b))) by XREAL_1: 24;

                then (n -root a) < ( - (n -root ( - b))) by A6, Th10;

                hence thesis by A6, Th10;

              end;

            end;

            hence thesis;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A1, A2, A3;

    end;

    theorem :: POWER:18

    

     Th18: a >= 1 & n >= 1 implies (n -root a) >= 1 & a >= (n -root a)

    proof

      assume that

       A1: a >= 1 and

       A2: n >= 1;

      (n -Root a) >= 1 & a >= (n -Root a) by A1, A2, PREPOWER: 29;

      hence thesis by A2, Def1;

    end;

    theorem :: POWER:19

    a <= ( - 1) & n is odd implies (n -root a) <= ( - 1) & a <= (n -root a)

    proof

      assume that

       A1: a <= ( - 1) and

       A2: n is odd;

      

       A3: n >= 1 & ( - a) >= 1 by A1, A2, ABIAN: 12, XREAL_1: 25;

      then

       A4: (n -root ( - a)) >= 1 by Th18;

      

       A5: ( - a) >= (n -root ( - a)) by A3, Th18;

      

       A6: ( - (n -root ( - a))) <= ( - 1) by A4, XREAL_1: 24;

      a <= ( - (n -root ( - a))) by A5, XREAL_1: 25;

      hence thesis by A2, A6, Th10;

    end;

    theorem :: POWER:20

    

     Th20: a >= 0 & a < 1 & n >= 1 implies a <= (n -root a) & (n -root a) < 1

    proof

      assume that

       A1: a >= 0 and

       A2: a < 1 and

       A3: n >= 1;

      a <= (n -Root a) & (n -Root a) < 1 by A1, A2, A3, PREPOWER: 30;

      hence thesis by A1, A3, Def1;

    end;

    theorem :: POWER:21

    a > ( - 1) & a <= 0 & n is odd implies a >= (n -root a) & (n -root a) > ( - 1)

    proof

      assume that

       A1: a > ( - 1) and

       A2: a <= 0 ;

      assume n is odd;

      then

       A3: ex m st n = ((2 * m) + 1) by ABIAN: 9;

      then

       A4: n >= 1 & ( - a) < 1 by A1, ABIAN: 12, XREAL_1: 25;

      then

       A5: (n -root ( - a)) < 1 by A2, Th20;

      

       A6: ( - a) <= (n -root ( - a)) by A2, A4, Th20;

      

       A7: ( - (n -root ( - a))) > ( - 1) by A5, XREAL_1: 24;

      a >= ( - (n -root ( - a))) by A6, XREAL_1: 26;

      hence thesis by A3, A7, Th10;

    end;

    theorem :: POWER:22

    

     Th22: a > 0 & n >= 1 implies ((n -root a) - 1) <= ((a - 1) / n)

    proof

      assume

       A1: a > 0 & n >= 1;

      then ((n -Root a) - 1) <= ((a - 1) / n) by PREPOWER: 31;

      hence thesis by A1, Def1;

    end;

    theorem :: POWER:23

    

     Th23: for s be Real_Sequence, a st a > 0 & (for n st n >= 1 holds (s . n) = (n -root a)) holds s is convergent & ( lim s) = 1

    proof

      let s be Real_Sequence, a;

      assume that

       A1: a > 0 and

       A2: for n st n >= 1 holds (s . n) = (n -root a);

      now

        let n be Nat;

        assume

         A3: n >= 1;

        

        hence (s . n) = (n -root a) by A2

        .= (n -Root a) by A1, A3, Def1;

      end;

      hence thesis by A1, PREPOWER: 33;

    end;

    definition

      let a,b be Real;

      :: POWER:def2

      func a to_power b -> Real means

      : Def2: it = (a #R b) if a > 0 ,

it = 0 if a = 0 & b > 0 ,

ex k st k = b & it = (a #Z k) if b is Integer;

      consistency

      proof

        let IT be Real;

        thus a > 0 & a = 0 & b > 0 implies (IT = (a #R b) iff IT = 0 );

        thus a > 0 & b is Integer implies (IT = (a #R b) iff ex k st k = b & IT = (a #Z k))

        proof

          assume

           A1: a > 0 ;

          assume b is Integer;

          then

          reconsider b as Integer;

          (a #R b) = (a #Q b) by A1, PREPOWER: 74

          .= (a #Z b) by A1, PREPOWER: 99;

          hence thesis;

        end;

        a = 0 & b > 0 & b is Integer implies (IT = 0 iff ex k st k = b & IT = (a #Z k))

        proof

          assume

           A2: a = 0 ;

          assume that

           A3: b > 0 and

           A4: b is Integer;

          b in NAT by A3, A4, INT_1: 3;

          then

          reconsider b as Nat;

          (a #Z b) = (a |^ b) by PREPOWER: 36

          .= 0 by A2, A3, NAT_1: 14, NEWTON: 11;

          hence thesis;

        end;

        hence thesis;

      end;

      existence

      proof

        now

          assume b is Integer;

          then

          reconsider k = b as Integer;

          take c = (a #Z k);

          thus ex k st k = b & c = (a #Z k);

        end;

        hence thesis;

      end;

      uniqueness ;

    end

    theorem :: POWER:24

    

     Th24: (a to_power 0 ) = 1

    proof

      

      thus (a to_power 0 ) = (a #Z 0 ) by Def2

      .= 1 by PREPOWER: 34;

    end;

    theorem :: POWER:25

    (a to_power 1) = a

    proof

      

      thus (a to_power 1) = (a #Z 1) by Def2

      .= a by PREPOWER: 35;

    end;

    theorem :: POWER:26

    

     Th26: (1 to_power a) = 1

    proof

      

       A1: (1 #R a) <> 0 by PREPOWER: 81;

      

      thus (1 to_power a) = ((1 / 1) #R a) by Def2

      .= ((1 #R a) / (1 #R a)) by PREPOWER: 80

      .= 1 by A1, XCMPLX_1: 60;

    end;

    theorem :: POWER:27

    

     Th27: a > 0 implies (a to_power (b + c)) = ((a to_power b) * (a to_power c))

    proof

      assume

       A1: a > 0 ;

      then (a #R (b + c)) = ((a #R b) * (a #R c)) by PREPOWER: 75;

      then (a #R (b + c)) = ((a #R b) * (a to_power c)) by A1, Def2;

      then (a #R (b + c)) = ((a to_power b) * (a to_power c)) by A1, Def2;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:28

    

     Th28: a > 0 implies (a to_power ( - c)) = (1 / (a to_power c))

    proof

      assume

       A1: a > 0 ;

      then (a #R ( - c)) = (1 / (a #R c)) by PREPOWER: 76;

      then (a #R ( - c)) = (1 / (a to_power c)) by A1, Def2;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:29

    

     Th29: a > 0 implies (a to_power (b - c)) = ((a to_power b) / (a to_power c))

    proof

      assume

       A1: a > 0 ;

      then (a #R (b - c)) = ((a #R b) / (a #R c)) by PREPOWER: 77;

      then (a #R (b - c)) = ((a #R b) / (a to_power c)) by A1, Def2;

      then (a #R (b - c)) = ((a to_power b) / (a to_power c)) by A1, Def2;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:30

    a > 0 & b > 0 implies ((a * b) to_power c) = ((a to_power c) * (b to_power c))

    proof

      assume that

       A1: a > 0 and

       A2: b > 0 ;

      

       A3: (a * b) > 0 by A1, A2, XREAL_1: 129;

      ((a * b) #R c) = ((a #R c) * (b #R c)) by A1, A2, PREPOWER: 78;

      then ((a * b) #R c) = ((a #R c) * (b to_power c)) by A2, Def2;

      then ((a * b) #R c) = ((a to_power c) * (b to_power c)) by A1, Def2;

      hence thesis by A3, Def2;

    end;

    theorem :: POWER:31

    

     Th31: a > 0 & b > 0 implies ((a / b) to_power c) = ((a to_power c) / (b to_power c))

    proof

      assume that

       A1: a > 0 and

       A2: b > 0 ;

      

       A3: (a / b) > 0 by A1, A2, XREAL_1: 139;

      ((a / b) #R c) = ((a #R c) / (b #R c)) by A1, A2, PREPOWER: 80;

      then ((a / b) #R c) = ((a #R c) / (b to_power c)) by A2, Def2;

      then ((a / b) #R c) = ((a to_power c) / (b to_power c)) by A1, Def2;

      hence thesis by A3, Def2;

    end;

    theorem :: POWER:32

    

     Th32: a > 0 implies ((1 / a) to_power b) = (a to_power ( - b))

    proof

      assume

       A1: a > 0 ;

      

      hence ((1 / a) to_power b) = ((1 / a) #R b) by Def2

      .= (1 / (a #R b)) by A1, PREPOWER: 79

      .= (1 / (a to_power b)) by A1, Def2

      .= (a to_power ( - b)) by A1, Th28;

    end;

    theorem :: POWER:33

    

     Th33: a > 0 implies ((a to_power b) to_power c) = (a to_power (b * c))

    proof

      assume

       A1: a > 0 ;

      then

       A2: (a #R b) > 0 by PREPOWER: 81;

      ((a #R b) #R c) = (a #R (b * c)) by A1, PREPOWER: 91;

      then ((a #R b) #R c) = (a to_power (b * c)) by A1, Def2;

      then ((a #R b) to_power c) = (a to_power (b * c)) by A2, Def2;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:34

    

     Th34: a > 0 implies (a to_power b) > 0

    proof

      assume

       A1: a > 0 ;

      then (a #R b) > 0 by PREPOWER: 81;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:35

    

     Th35: a > 1 & b > 0 implies (a to_power b) > 1

    proof

      assume that

       A1: a > 1 and

       A2: b > 0 ;

      (a #R b) > 1 by A1, A2, PREPOWER: 86;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:36

    

     Th36: a > 1 & b < 0 implies (a to_power b) < 1

    proof

      assume that

       A1: a > 1 and

       A2: b < 0 ;

      (a #R b) < 1 by A1, A2, PREPOWER: 88;

      hence thesis by A1, Def2;

    end;

    theorem :: POWER:37

    a > 0 & a < b & c > 0 implies (a to_power c) < (b to_power c)

    proof

      assume that

       A1: a > 0 and

       A2: a < b and

       A3: c > 0 ;

      

       A4: (a to_power c) > 0 by A1, Th34;

      

       A5: (a to_power c) <> 0 by A1, Th34;

      (a / a) < (b / a) by A1, A2, XREAL_1: 74;

      then 1 < (b / a) by A1, XCMPLX_1: 60;

      then ((b / a) to_power c) > 1 by A3, Th35;

      then ((b to_power c) / (a to_power c)) > 1 by A1, A2, Th31;

      then (((b to_power c) / (a to_power c)) * (a to_power c)) > (1 * (a to_power c)) by A4, XREAL_1: 68;

      hence thesis by A5, XCMPLX_1: 87;

    end;

    theorem :: POWER:38

    a > 0 & a < b & c < 0 implies (a to_power c) > (b to_power c)

    proof

      assume that

       A1: a > 0 and

       A2: a < b and

       A3: c < 0 ;

      

       A4: (a to_power c) > 0 by A1, Th34;

      

       A5: (a to_power c) <> 0 by A1, Th34;

      (a / a) < (b / a) by A1, A2, XREAL_1: 74;

      then 1 < (b / a) by A1, XCMPLX_1: 60;

      then ((b / a) to_power c) < 1 by A3, Th36;

      then ((b to_power c) / (a to_power c)) < 1 by A1, A2, Th31;

      then (((b to_power c) / (a to_power c)) * (a to_power c)) < (1 * (a to_power c)) by A4, XREAL_1: 68;

      hence thesis by A5, XCMPLX_1: 87;

    end;

    theorem :: POWER:39

    

     Th39: a < b & c > 1 implies (c to_power a) < (c to_power b)

    proof

      assume that

       A1: a < b and

       A2: c > 1;

      

       A3: (c to_power a) > 0 by A2, Th34;

      

       A4: (c to_power a) <> 0 by A2, Th34;

      (b - a) > 0 by A1, XREAL_1: 50;

      then (c to_power (b - a)) > 1 by A2, Th35;

      then ((c to_power b) / (c to_power a)) > 1 by A2, Th29;

      then (((c to_power b) / (c to_power a)) * (c to_power a)) > (1 * (c to_power a)) by A3, XREAL_1: 68;

      hence thesis by A4, XCMPLX_1: 87;

    end;

    theorem :: POWER:40

    

     Th40: a < b & c > 0 & c < 1 implies (c to_power a) > (c to_power b)

    proof

      assume that

       A1: a < b and

       A2: c > 0 and

       A3: c < 1;

      

       A4: ((1 / c) to_power a) > 0 by A2, Th34;

      

       A5: ((1 / c) to_power a) <> 0 by A2, Th34;

      

       A6: (c to_power a) > 0 by A2, Th34;

      (c / c) < (1 / c) by A2, A3, XREAL_1: 74;

      then

       A7: 1 < (1 / c) by A2, XCMPLX_1: 60;

      (b - a) > 0 by A1, XREAL_1: 50;

      then ((1 / c) to_power (b - a)) > 1 by A7, Th35;

      then (((1 / c) to_power b) / ((1 / c) to_power a)) > 1 by A2, Th29;

      then ((((1 / c) to_power b) / ((1 / c) to_power a)) * ((1 / c) to_power a)) > (1 * ((1 / c) to_power a)) by A4, XREAL_1: 68;

      then ((1 / c) to_power b) > ((1 / c) to_power a) by A5, XCMPLX_1: 87;

      then ((1 to_power b) / (c to_power b)) > ((1 / c) to_power a) by A2, Th31;

      then (1 / (c to_power b)) > ((1 / c) to_power a) by Th26;

      then (1 / (c to_power b)) > ((1 to_power a) / (c to_power a)) by A2, Th31;

      then (1 / (c to_power b)) > (1 / (c to_power a)) by Th26;

      hence thesis by A6, XREAL_1: 91;

    end;

    registration

      let a be Real, n be Nat;

      identify a |^ n with a to_power n;

      compatibility

      proof

        

        thus (a to_power n) = (a #Z n) by Def2

        .= (a |^ n) by PREPOWER: 36;

      end;

    end

    theorem :: POWER:41

    for n be Nat holds (a to_power n) = (a |^ n);

    theorem :: POWER:42

    

     Th42: k <> 0 implies ( 0 to_power k) = 0

    proof

      ( 0 to_power k) = ( 0 #Z k) by Def2;

      hence thesis by PREPOWER: 100;

    end;

    theorem :: POWER:43

    (a to_power k) = (a #Z k) by Def2;

    theorem :: POWER:44

    

     Th44: a > 0 implies (a to_power p) = (a #Q p)

    proof

      assume

       A1: a > 0 ;

      

      hence (a to_power p) = (a #R p) by Def2

      .= (a #Q p) by A1, PREPOWER: 74;

    end;

    theorem :: POWER:45

    

     Th45: a >= 0 & n >= 1 implies (a to_power (1 / n)) = (n -root a)

    proof

      assume that

       A1: a >= 0 and

       A2: n >= 1;

      reconsider p = (n " ) as Rational;

      now

        per cases by A1;

          suppose a > 0 ;

          

          hence (a to_power (1 / n)) = (a #Q p) by Th44

          .= (n -Root a) by A2, PREPOWER: 50;

        end;

          suppose

           A3: a = 0 ;

          

          hence (a to_power (1 / n)) = 0 by A2, Def2

          .= (n -Root a) by A2, A3, PREPOWER:def 2;

        end;

      end;

      hence thesis by A1, A2, Def1;

    end;

    theorem :: POWER:46

    

     Th46: (a to_power 2) = (a ^2 )

    proof

      now

        per cases ;

          suppose

           A1: a > 0 ;

          

          thus (a to_power 2) = (a to_power (1 + 1))

          .= ((a to_power 1) * (a to_power 1)) by A1, Th27

          .= ((a to_power 1) * a)

          .= (a ^2 );

        end;

          suppose a = 0 ;

          hence thesis by Def2;

        end;

          suppose

           A2: a < 0 ;

          reconsider l = 1 as Integer;

          

          thus (a to_power 2) = (a #Z (l + l)) by Def2

          .= ((a #Z l) * (a #Z l)) by A2, PREPOWER: 44

          .= (a * (a #Z l)) by PREPOWER: 35

          .= (a ^2 ) by PREPOWER: 35;

        end;

      end;

      hence thesis;

    end;

    theorem :: POWER:47

    

     Th47: k is even implies (( - a) to_power k) = (a to_power k)

    proof

      given l such that

       A1: k = (2 * l);

      per cases ;

        suppose a = 0 ;

        hence thesis;

      end;

        suppose a > 0 ;

        

        hence (a to_power k) = ((a to_power 2) to_power l) by A1, Th33

        .= ((a ^2 ) to_power l) by Th46

        .= ((( - a) ^2 ) to_power l)

        .= ((( - a) to_power 2) to_power l) by Th46

        .= ((( - a) #Z 2) to_power l) by Def2

        .= ((( - a) #Z 2) #Z l) by Def2

        .= (( - a) #Z (2 * l)) by PREPOWER: 45

        .= (( - a) to_power k) by A1, Def2;

      end;

        suppose a < 0 ;

        then ( - a) > 0 by XREAL_1: 58;

        

        hence (( - a) to_power k) = ((( - a) to_power 2) to_power l) by A1, Th33

        .= ((( - a) ^2 ) to_power l) by Th46

        .= ((a ^2 ) to_power l)

        .= ((a to_power 2) to_power l) by Th46

        .= ((a #Z 2) to_power l) by Def2

        .= ((a #Z 2) #Z l) by Def2

        .= (a #Z (2 * l)) by PREPOWER: 45

        .= (a to_power k) by A1, Def2;

      end;

    end;

    theorem :: POWER:48

    k is odd implies (( - a) to_power k) = ( - (a to_power k))

    proof

      assume

       A1: k is odd;

      then

      consider l such that

       A2: k = ((2 * l) + 1) by ABIAN: 1;

      per cases ;

        suppose

         A3: a = 0 ;

        k <> 0 by A1;

        then (a to_power k) = 0 by A3, Th42;

        hence thesis by A3;

      end;

        suppose

         A4: a > 0 ;

        then

         A5: ( - a) <> ( - 0 );

        (a to_power k) = ((a to_power (2 * l)) * (a to_power 1)) by A2, A4, Th27

        .= ((a to_power (2 * l)) * a)

        .= ((( - a) to_power (2 * l)) * a) by Th47

        .= ( - ((( - a) to_power (2 * l)) * ( - a)))

        .= ( - ((( - a) #Z (2 * l)) * ( - a))) by Def2

        .= ( - ((( - a) #Z (2 * l)) * (( - a) #Z 1))) by PREPOWER: 35

        .= ( - (( - a) #Z k)) by A2, A5, PREPOWER: 44

        .= ( - (( - a) to_power k)) by Def2;

        hence thesis;

      end;

        suppose

         A6: a < 0 ;

        then ( - a) > 0 by XREAL_1: 58;

        

        hence (( - a) to_power k) = ((( - a) to_power (2 * l)) * (( - a) to_power 1)) by A2, Th27

        .= ((( - a) to_power (2 * l)) * ( - a))

        .= ((a to_power (2 * l)) * ( - a)) by Th47

        .= ( - ((a to_power (2 * l)) * a))

        .= ( - ((a #Z (2 * l)) * a)) by Def2

        .= ( - ((a #Z (2 * l)) * (a #Z 1))) by PREPOWER: 35

        .= ( - (a #Z k)) by A2, A6, PREPOWER: 44

        .= ( - (a to_power k)) by Def2;

      end;

    end;

    theorem :: POWER:49

    ( - 1) < a implies ((1 + a) to_power n) >= (1 + (n * a)) by PREPOWER: 16;

    theorem :: POWER:50

    

     Th50: a > 0 & a <> 1 & c <> d implies (a to_power c) <> (a to_power d)

    proof

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: c <> d;

      now

        per cases by A3, XXREAL_0: 1;

          suppose

           A4: c < d;

          now

            per cases by A2, XXREAL_0: 1;

              suppose a < 1;

              hence thesis by A1, A4, Th40;

            end;

              suppose a > 1;

              hence thesis by A4, Th39;

            end;

          end;

          hence thesis;

        end;

          suppose

           A5: c > d;

          now

            per cases by A2, XXREAL_0: 1;

              suppose a < 1;

              hence thesis by A1, A5, Th40;

            end;

              suppose a > 1;

              hence thesis by A5, Th39;

            end;

          end;

          hence thesis;

        end;

      end;

      hence thesis;

    end;

    definition

      let a,b be Real;

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: b > 0 ;

      :: POWER:def3

      func log (a,b) -> Real means

      : Def3: (a to_power it ) = b;

      existence

      proof

        reconsider a1 = a, b1 = b as Real;

        set X = { c where c be Real : (a to_power c) <= b };

        for x be object holds x in X implies x in REAL

        proof

          let x be object;

          assume x in X;

          then ex c be Real st x = c & (a to_power c) <= b;

          hence thesis by XREAL_0:def 1;

        end;

        then

        reconsider X as Subset of REAL by TARSKI:def 3;

        

         A4: ex d st d in X

        proof

           A5:

          now

            let a,b be Real such that

             A6: a > 1 and

             A7: b > 0 ;

            reconsider a1 = a, b1 = b as Real;

            set e = (a1 - 1);

            consider n be Nat such that

             A8: n > (1 / (b * e)) by SEQ_4: 3;

            e > ( 0 - 1) by A6, XREAL_1: 9;

            then

             A9: ((1 + e) to_power n) >= (1 + (n * e)) by PREPOWER: 16;

            (1 + (n * e)) >= ( 0 + (n * e)) by XREAL_1: 6;

            then

             A10: ((1 + e) to_power n) >= (n * e) by A9, XXREAL_0: 2;

            

             A11: e > (1 - 1) by A6, XREAL_1: 9;

            then (n * e) > ((1 / (b * e)) * e) by A8, XREAL_1: 68;

            then (n * e) >= (1 / b) by A11, XCMPLX_1: 92;

            then (a to_power n) >= (1 / b) by A10, XXREAL_0: 2;

            then (1 / (a to_power n)) <= (1 / (1 / b)) by A7, XREAL_1: 85;

            then (a1 to_power ( - n)) <= b1 by A6, Th28;

            hence ex d st (a to_power d) <= b;

          end;

          now

            per cases by A2, XXREAL_0: 1;

              suppose a > 1;

              hence ex d st (a to_power d) <= b by A3, A5;

            end;

              suppose a < 1;

              then (1 / a) > (1 / 1) by A1, XREAL_1: 88;

              then

              consider d such that

               A12: ((1 / a) to_power d) <= b by A3, A5;

              (a1 to_power ( - d)) <= b1 by A1, A12, Th32;

              hence ex e st (a to_power e) <= b;

            end;

          end;

          then

          consider d such that

           A13: (a to_power d) <= b;

          take d;

          thus thesis by A13;

        end;

        now

          per cases by A2, XXREAL_0: 1;

            suppose

             A14: a > 1;

            

             A15: X is bounded_above

            proof

              consider n be Nat such that

               A16: n > ((b1 - 1) / (a1 - 1)) by SEQ_4: 3;

              (a - 1) > (1 - 1) by A14, XREAL_1: 9;

              then (n * (a - 1)) > (b - 1) by A16, XREAL_1: 77;

              then

               A17: (1 + (n * (a - 1))) > (1 + (b - 1)) by XREAL_1: 6;

              (a - 1) > ( 0 - 1) by A1, XREAL_1: 9;

              then ((1 + (a1 - 1)) to_power n) >= (1 + (n * (a1 - 1))) by PREPOWER: 16;

              then

               A18: (a to_power n) > b by A17, XXREAL_0: 2;

              take n;

              let c be ExtReal;

              assume c in X;

              then

              consider d be Real such that

               A19: d = c & (a to_power d) <= b;

              (a1 to_power d) <= (a1 to_power n) by A18, A19, XXREAL_0: 2;

              hence c <= n by A14, Th39, A19;

            end;

            take d = ( upper_bound X);

            

             A20: not b < (a to_power d)

            proof

              assume (a to_power d) > b;

              then

              consider e be Real such that

               A21: b < e and

               A22: e < (a to_power d) by XREAL_1: 5;

              reconsider e as Real;

              consider n be Nat such that

               A23: n > ((a1 - 1) / ((e / b1) - 1)) by SEQ_4: 3;

              reconsider m = ( max (1,n)) as Element of NAT by ORDINAL1:def 12;

              n <= m by XXREAL_0: 25;

              then

               A24: ((a - 1) / ((e / b) - 1)) < m by A23, XXREAL_0: 2;

              (e / b) > 1 by A3, A21, XREAL_1: 187;

              then ((e / b) - 1) > (1 - 1) by XREAL_1: 9;

              then

               A25: (a - 1) < (m * ((e / b) - 1)) by A24, XREAL_1: 77;

              

               A26: 1 <= m by XXREAL_0: 25;

              then ((a - 1) / m) < ((e / b) - 1) by A25, XREAL_1: 83;

              then

               A27: (((a - 1) / m) + 1) < (((e / b) - 1) + 1) by XREAL_1: 6;

              ((m -root a1) - 1) <= ((a1 - 1) / m) by A1, Th22, XXREAL_0: 25;

              then (((m -root a) - 1) + 1) <= (((a - 1) / m) + 1) by XREAL_1: 6;

              then (m -root a) <= (e / b) by A27, XXREAL_0: 2;

              then (a1 to_power (1 / m)) <= (e / b1) by A1, Th45, XXREAL_0: 25;

              then

               A28: ((a to_power (1 / m)) * b) <= e by A3, XREAL_1: 83;

              consider c be Real such that

               A29: c in X and

               A30: (d - (1 / m)) < c by A4, A15, A26, SEQ_4:def 1;

              reconsider c as Real;

              

               A31: ex g be Real st g = c & (a to_power g) <= b by A29;

              (a1 to_power (1 / m)) >= 0 by A1, Th34;

              then ((a to_power c) * (a to_power (1 / m))) <= ((a to_power (1 / m)) * b) by A31, XREAL_1: 64;

              then ((a to_power c) * (a to_power (1 / m))) <= e by A28, XXREAL_0: 2;

              then

               A32: (a1 to_power (c + (1 / m))) <= e by A1, Th27;

              d < (c + (1 / m)) by A30, XREAL_1: 19;

              then (a1 to_power d) <= (a1 to_power (c + (1 / m))) by A14, Th39;

              hence contradiction by A22, A32, XXREAL_0: 2;

            end;

             not (a to_power d) < b

            proof

              assume (a to_power d) < b;

              then

              consider e be Real such that

               A33: (a to_power d) < e and

               A34: e < b by XREAL_1: 5;

              reconsider e as Real;

              

               A35: (a1 to_power d) > 0 by A1, Th34;

              then (b / e) > 1 by A33, A34, XREAL_1: 187;

              then

               A36: ((b / e) - 1) > (1 - 1) by XREAL_1: 9;

              deffunc F( Nat) = ($1 -root a);

              consider s be Real_Sequence such that

               A37: for n be Nat holds (s . n) = F(n) from SEQ_1:sch 1;

              for n st n >= 1 holds (s . n) = (n -root a1) by A37;

              then s is convergent & ( lim s) = 1 by A1, Th23;

              then

              consider n be Nat such that

               A38: for m be Nat st m >= n holds |.((s . m) - 1).| < ((b / e) - 1) by A36, SEQ_2:def 7;

              reconsider m = ( max (1,n)) as Element of NAT by ORDINAL1:def 12;

               |.((s . m) - 1).| < ((b / e) - 1) by A38, XXREAL_0: 25;

              then

               A39: |.((m -root a) - 1).| < ((b / e) - 1) by A37;

              ((m -root a) - 1) <= |.((m -root a) - 1).| by ABSVALUE: 4;

              then ((m -root a) - 1) < ((b / e) - 1) by A39, XXREAL_0: 2;

              then (m -root a) < (b / e) by XREAL_1: 9;

              then (a1 to_power (1 / m)) < (b1 / e) by A1, Th45, XXREAL_0: 25;

              then ((a to_power d) * (a to_power (1 / m))) < ((b / e) * (a to_power d)) by A35, XREAL_1: 68;

              then

               A40: (a to_power (d + (1 / m))) < ((b * (a to_power d)) / e) by A1, Th27;

              ((a to_power d) / e) < 1 by A33, A35, XREAL_1: 189;

              then (((a to_power d) / e) * b) < (1 * b) by A3, XREAL_1: 68;

              then (a to_power (d + (1 / m))) <= b by A40, XXREAL_0: 2;

              then (d + (1 / m)) in X;

              then m >= 1 & (d + (1 / m)) <= d by A15, SEQ_4:def 1, XXREAL_0: 25;

              hence contradiction by XREAL_1: 29;

            end;

            hence b = (a to_power d) by A20, XXREAL_0: 1;

          end;

            suppose

             A41: a < 1;

            

             A42: X is bounded_below

            proof

              consider n be Nat such that

               A43: n > ((b1 - 1) / ((1 / a1) - 1)) by SEQ_4: 3;

              (1 / a) > (1 / 1) by A1, A41, XREAL_1: 88;

              then ((1 / a) - 1) > (1 - 1) by XREAL_1: 9;

              then (n * ((1 / a) - 1)) > (b - 1) by A43, XREAL_1: 77;

              then

               A44: (1 + (n * ((1 / a) - 1))) > (1 + (b - 1)) by XREAL_1: 6;

              ((1 / a) - 1) > ( 0 - 1) by A1, XREAL_1: 9;

              then ((1 + ((1 / a1) - 1)) to_power n) >= (1 + (n * ((1 / a1) - 1))) by PREPOWER: 16;

              then ((1 / a) to_power n) > b by A44, XXREAL_0: 2;

              then

               A45: (a1 to_power ( - n)) > b1 by A1, Th32;

              take ( - n);

              let c be ExtReal;

              assume c in X;

              then

              consider d be Real such that

               A46: d = c & (a to_power d) <= b;

              (a1 to_power d) <= (a1 to_power ( - n)) by A45, A46, XXREAL_0: 2;

              hence c >= ( - n) by A1, A41, Th40, A46;

            end;

            take d = ( lower_bound X);

            

             A47: not b < (a to_power d)

            proof

              assume (a to_power d) > b;

              then

              consider e be Real such that

               A48: b < e and

               A49: e < (a to_power d) by XREAL_1: 5;

              reconsider e as Real;

              consider n be Nat such that

               A50: n > (((1 / a1) - 1) / ((e / b1) - 1)) by SEQ_4: 3;

              reconsider m = ( max (1,n)) as Element of NAT by ORDINAL1:def 12;

              n <= m by XXREAL_0: 25;

              then

               A51: (((1 / a) - 1) / ((e / b) - 1)) < m by A50, XXREAL_0: 2;

              (e / b) > 1 by A3, A48, XREAL_1: 187;

              then ((e / b) - 1) > (1 - 1) by XREAL_1: 9;

              then

               A52: ((1 / a) - 1) < (m * ((e / b) - 1)) by A51, XREAL_1: 77;

              

               A53: 1 <= m by XXREAL_0: 25;

              then (((1 / a) - 1) / m) < ((e / b) - 1) by A52, XREAL_1: 83;

              then

               A54: ((((1 / a) - 1) / m) + 1) < (((e / b) - 1) + 1) by XREAL_1: 6;

              ((m -root (1 / a1)) - 1) <= (((1 / a1) - 1) / m) by A1, Th22, XXREAL_0: 25;

              then (((m -root (1 / a)) - 1) + 1) <= ((((1 / a) - 1) / m) + 1) by XREAL_1: 6;

              then (m -root (1 / a)) <= (e / b) by A54, XXREAL_0: 2;

              then ((1 / a1) to_power (1 / m)) <= (e / b1) by A1, Th45, XXREAL_0: 25;

              then (((1 / a) to_power (1 / m)) * b) <= e by A3, XREAL_1: 83;

              then

               A55: ((a1 to_power ( - (1 / m))) * b1) <= e by A1, Th32;

              consider c be Real such that

               A56: c in X and

               A57: c < (d + (1 / m)) by A4, A42, A53, SEQ_4:def 2;

              reconsider c as Real;

              

               A58: ex g be Real st g = c & (a to_power g) <= b by A56;

              (a1 to_power ( - (1 / m))) >= 0 by A1, Th34;

              then ((a to_power c) * (a to_power ( - (1 / m)))) <= ((a to_power ( - (1 / m))) * b) by A58, XREAL_1: 64;

              then ((a to_power c) * (a to_power ( - (1 / m)))) <= e by A55, XXREAL_0: 2;

              then

               A59: (a1 to_power (c + ( - (1 / m)))) <= e by A1, Th27;

              d > (c - (1 / m)) by A57, XREAL_1: 19;

              then (a1 to_power d) <= (a1 to_power (c - (1 / m))) by A1, A41, Th40;

              hence contradiction by A49, A59, XXREAL_0: 2;

            end;

             not (a to_power d) < b

            proof

              assume (a to_power d) < b;

              then

              consider e be Real such that

               A60: (a to_power d) < e and

               A61: e < b by XREAL_1: 5;

              reconsider e as Real;

              

               A62: (a1 to_power d) > 0 by A1, Th34;

              then (b / e) > 1 by A60, A61, XREAL_1: 187;

              then

               A63: ((b / e) - 1) > (1 - 1) by XREAL_1: 9;

              deffunc F( Nat) = ($1 -root (1 / a));

              consider s be Real_Sequence such that

               A64: for n be Nat holds (s . n) = F(n) from SEQ_1:sch 1;

              for n st n >= 1 holds (s . n) = (n -root (1 / a1)) by A64;

              then s is convergent & ( lim s) = 1 by A1, Th23;

              then

              consider n be Nat such that

               A65: for m be Nat st m >= n holds |.((s . m) - 1).| < ((b / e) - 1) by A63, SEQ_2:def 7;

              reconsider m = ( max (1,n)) as Element of NAT by ORDINAL1:def 12;

               |.((s . m) - 1).| < ((b / e) - 1) by A65, XXREAL_0: 25;

              then

               A66: |.((m -root (1 / a)) - 1).| < ((b / e) - 1) by A64;

              ((m -root (1 / a)) - 1) <= |.((m -root (1 / a)) - 1).| by ABSVALUE: 4;

              then ((m -root (1 / a)) - 1) < ((b / e) - 1) by A66, XXREAL_0: 2;

              then (m -root (1 / a)) < (b / e) by XREAL_1: 9;

              then ((1 / a1) to_power (1 / m)) < (b1 / e) by A1, Th45, XXREAL_0: 25;

              then ((a to_power d) * ((1 / a) to_power (1 / m))) < ((b / e) * (a to_power d)) by A62, XREAL_1: 68;

              then ((a1 to_power d) * (a1 to_power ( - (1 / m)))) < ((b1 / e) * (a1 to_power d)) by A1, Th32;

              then

               A67: (a to_power (d - (1 / m))) < ((b * (a to_power d)) / e) by A1, Th27;

              ((a to_power d) / e) < 1 by A60, A62, XREAL_1: 189;

              then (((a to_power d) / e) * b) < (1 * b) by A3, XREAL_1: 68;

              then (a to_power (d - (1 / m))) < b by A67, XXREAL_0: 2;

              then (d - (1 / m)) in X;

              then m >= 1 & (d - (1 / m)) >= d by A42, SEQ_4:def 2, XXREAL_0: 25;

              hence contradiction by XREAL_1: 44;

            end;

            hence b = (a to_power d) by A47, XXREAL_0: 1;

          end;

        end;

        hence thesis;

      end;

      uniqueness by A1, A2, Th50;

    end

    theorem :: POWER:51

    a > 0 & a <> 1 implies ( log (a,1)) = 0

    proof

      assume

       A1: a > 0 & a <> 1;

      (a to_power 0 ) = 1 by Th24;

      hence thesis by A1, Def3;

    end;

    theorem :: POWER:52

    a > 0 & a <> 1 implies ( log (a,a)) = 1

    proof

      assume

       A1: a > 0 & a <> 1;

      (a to_power 1) = a;

      hence thesis by A1, Def3;

    end;

    theorem :: POWER:53

    a > 0 & a <> 1 & b > 0 & c > 0 implies (( log (a,b)) + ( log (a,c))) = ( log (a,(b * c)))

    proof

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: b > 0 and

       A4: c > 0 ;

      

       A5: (a to_power (( log (a,b)) + ( log (a,c)))) = ((a to_power ( log (a,b))) * (a to_power ( log (a,c)))) by A1, Th27

      .= (b * (a to_power ( log (a,c)))) by A1, A2, A3, Def3

      .= (b * c) by A1, A2, A4, Def3;

      (b * c) > 0 by A3, A4, XREAL_1: 129;

      hence thesis by A1, A2, A5, Def3;

    end;

    theorem :: POWER:54

    a > 0 & a <> 1 & b > 0 & c > 0 implies (( log (a,b)) - ( log (a,c))) = ( log (a,(b / c)))

    proof

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: b > 0 and

       A4: c > 0 ;

      

       A5: (a to_power (( log (a,b)) - ( log (a,c)))) = ((a to_power ( log (a,b))) / (a to_power ( log (a,c)))) by A1, Th29

      .= (b / (a to_power ( log (a,c)))) by A1, A2, A3, Def3

      .= (b / c) by A1, A2, A4, Def3;

      (b / c) > 0 by A3, A4, XREAL_1: 139;

      hence thesis by A1, A2, A5, Def3;

    end;

    theorem :: POWER:55

    a > 0 & a <> 1 & b > 0 implies ( log (a,(b to_power c))) = (c * ( log (a,b)))

    proof

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: b > 0 ;

      

       A4: (b to_power c) > 0 by A3, Th34;

      (a to_power (c * ( log (a,b)))) = ((a to_power ( log (a,b))) to_power c) by A1, Th33

      .= (b to_power c) by A1, A2, A3, Def3;

      hence thesis by A1, A2, A4, Def3;

    end;

    theorem :: POWER:56

    a > 0 & a <> 1 & b > 0 & b <> 1 & c > 0 implies ( log (a,c)) = (( log (a,b)) * ( log (b,c)))

    proof

      assume that

       A1: a > 0 and

       A2: a <> 1 and

       A3: b > 0 and

       A4: b <> 1 and

       A5: c > 0 ;

      (a to_power (( log (a,b)) * ( log (b,c)))) = ((a to_power ( log (a,b))) to_power ( log (b,c))) by A1, Th33

      .= (b to_power ( log (b,c))) by A1, A2, A3, Def3

      .= c by A3, A4, A5, Def3;

      hence thesis by A1, A2, A5, Def3;

    end;

    theorem :: POWER:57

    a > 1 & b > 0 & c > b implies ( log (a,c)) > ( log (a,b))

    proof

      assume that

       A1: a > 1 and

       A2: b > 0 and

       A3: c > b and

       A4: ( log (a,c)) <= ( log (a,b));

      

       A5: (a to_power ( log (a,b))) = b by A1, A2, Def3;

      

       A6: (a to_power ( log (a,c))) = c by A1, A2, A3, Def3;

      now

        per cases by A4, XXREAL_0: 1;

          suppose ( log (a,c)) < ( log (a,b));

          hence contradiction by A1, A3, A5, A6, Th39;

        end;

          suppose ( log (a,c)) = ( log (a,b));

          hence contradiction by A1, A2, A3, A6, Def3;

        end;

      end;

      hence contradiction;

    end;

    theorem :: POWER:58

    a > 0 & a < 1 & b > 0 & c > b implies ( log (a,c)) < ( log (a,b))

    proof

      assume that

       A1: a > 0 & a < 1 and

       A2: b > 0 and

       A3: c > b and

       A4: ( log (a,c)) >= ( log (a,b));

      

       A5: (a to_power ( log (a,b))) = b by A1, A2, Def3;

      

       A6: (a to_power ( log (a,c))) = c by A1, A2, A3, Def3;

      now

        per cases by A4, XXREAL_0: 1;

          suppose ( log (a,c)) > ( log (a,b));

          hence contradiction by A1, A3, A5, A6, Th40;

        end;

          suppose ( log (a,c)) = ( log (a,b));

          hence contradiction by A1, A2, A3, A6, Def3;

        end;

      end;

      hence contradiction;

    end;

    theorem :: POWER:59

    for s be Real_Sequence st for n be Nat holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds s is convergent

    proof

      let s be Real_Sequence such that

       A1: for n be Nat holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1));

      now

        let n be Nat;

        

         A2: ((1 + (1 / (n + 1))) to_power (n + 1)) > 0 by Th34;

        

         A3: ((s . (n + 1)) / (s . n)) = (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / (s . n)) by A1

        .= ((((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * 1) by A1

        .= ((((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power (n + 1))) * ((1 + (1 / (n + 1))) / (1 + (1 / (n + 1))))) by XCMPLX_1: 60

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * (1 + (1 / (n + 1))))) by XCMPLX_1: 76

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / (((1 + (1 / (n + 1))) to_power (n + 1)) * ((1 + (1 / (n + 1))) to_power 1)))

        .= (((1 + (1 / (n + 1))) * ((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1))) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1))) by Th27

        .= ((1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) to_power ((n + 1) + 1)) / ((1 + (1 / (n + 1))) to_power ((n + 1) + 1))))

        .= ((1 + (1 / (n + 1))) * (((1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1)))) to_power ((n + 1) + 1))) by Th31;

        

         A4: ((1 + (1 / ((n + 1) + 1))) / (1 + (1 / (n + 1)))) = ((((1 * ((n + 1) + 1)) + 1) / ((n + 1) + 1)) / (1 + (1 / (n + 1)))) by XCMPLX_1: 113

        .= (((((n + 1) + 1) + 1) / ((n + 1) + 1)) / (((1 * (n + 1)) + 1) / (n + 1))) by XCMPLX_1: 113

        .= ((((n + (1 + 1)) + 1) * (n + 1)) / ((n + 2) * (n + 2))) by XCMPLX_1: 84

        .= (((((((n * n) + (n * 2)) + (2 * n)) + 3) + 1) - 1) / ((n + 2) * (n + 2)))

        .= ((((n + 2) * (n + 2)) / ((n + 2) * (n + 2))) - (1 / ((n + 2) * (n + 2))))

        .= (1 - (1 / ((n + 2) * (n + 2)))) by XCMPLX_1: 6, XCMPLX_1: 60;

        ((n + 1) + 1) > ( 0 + 1) by XREAL_1: 6;

        then ((n + 2) * (n + 2)) > 1 by XREAL_1: 161;

        then (1 / ((n + 2) * (n + 2))) < 1 by XREAL_1: 212;

        then ( - (1 / ((n + 2) * (n + 2)))) > ( - 1) by XREAL_1: 24;

        then ((1 + ( - (1 / ((n + 2) * (n + 2))))) to_power ((n + 1) + 1)) >= (1 + (((n + 1) + 1) * ( - (1 / ((n + 2) * (n + 2)))))) by PREPOWER: 16;

        then ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - (((n + 2) * 1) / ((n + 2) * (n + 2))));

        then ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - ((((n + 2) / (n + 2)) * 1) / (n + 2))) by XCMPLX_1: 83;

        then ((1 - (1 / ((n + 2) * (n + 2)))) to_power ((n + 1) + 1)) >= (1 - ((1 * 1) / (n + 2))) by XCMPLX_1: 60;

        then ((s . (n + 1)) / (s . n)) >= ((1 + (1 / (n + 1))) * (1 - (1 / (n + 2)))) by A3, A4, XREAL_1: 64;

        then ((s . (n + 1)) / (s . n)) >= ((((1 * (n + 1)) + 1) / (n + 1)) * (1 - (1 / (n + 2)))) by XCMPLX_1: 113;

        then ((s . (n + 1)) / (s . n)) >= (((n + 2) / (n + 1)) * (((1 * (n + 2)) - 1) / (n + 2))) by XCMPLX_1: 127;

        then ((s . (n + 1)) / (s . n)) >= (((n + 1) * (n + 2)) / ((n + 1) * (n + 2))) by XCMPLX_1: 76;

        then

         A5: ((s . (n + 1)) / (s . n)) >= 1 by XCMPLX_1: 6, XCMPLX_1: 60;

        (s . n) > 0 by A1, A2;

        hence (s . (n + 1)) >= (s . n) by A5, XREAL_1: 191;

      end;

      then

       A6: s is non-decreasing by SEQM_3:def 8;

      now

        let n be Nat;

        

         A7: (2 * (n + 1)) > 0 by XREAL_1: 129;

        

         A8: (2 * (n + 1)) <> 0 ;

        

         A9: (s . (n + (n + 1))) = ((1 + (1 / ((2 * n) + (1 + 1)))) to_power (((2 * n) + 1) + 1)) by A1

        .= (((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) to_power 2) by Th33;

        ((2 * (n + 1)) + 1) > ( 0 + 1) by A7, XREAL_1: 6;

        then (1 / ((2 * (n + 1)) + 1)) < 1 by XREAL_1: 212;

        then

         A10: ( - (1 / ((2 * (n + 1)) + 1))) > ( - 1) by XREAL_1: 24;

        then

         A11: (( - (1 / ((2 * (n + 1)) + 1))) + 1) > (( - 1) + 1) by XREAL_1: 6;

        

         A12: ((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) = ((1 / (1 / (1 + (1 / (2 * (n + 1)))))) to_power (n + 1))

        .= ((1 / (1 + (1 / (2 * (n + 1))))) to_power ( - (n + 1))) by Th32

        .= ((1 / (((1 * (2 * (n + 1))) + 1) / (2 * (n + 1)))) to_power ( - (n + 1))) by A8, XCMPLX_1: 113

        .= (((((2 * (n + 1)) + 1) - 1) / ((2 * (n + 1)) + 1)) to_power ( - (n + 1))) by XCMPLX_1: 77

        .= (((((2 * (n + 1)) + 1) / ((2 * (n + 1)) + 1)) - (1 / ((2 * (n + 1)) + 1))) to_power ( - (n + 1)))

        .= ((1 - (1 / ((2 * (n + 1)) + 1))) to_power ( - (n + 1))) by XCMPLX_1: 60

        .= (1 / ((1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1))) by A11, Th28;

        ((1 + ( - (1 / ((2 * (n + 1)) + 1)))) to_power (n + 1)) >= (1 + ((n + 1) * ( - (1 / ((2 * (n + 1)) + 1))))) by A10, PREPOWER: 16;

        then ((1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1)) >= (1 - ((n + 1) / ((2 * (n + 1)) + 1)));

        then

         A13: ((1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1)) >= (((1 * ((2 * (n + 1)) + 1)) - (n + 1)) / ((2 * (n + 1)) + 1)) by XCMPLX_1: 127;

        now

          assume (((2 * (n + 1)) - n) / ((2 * (n + 1)) + 1)) < (1 / 2);

          then (((2 * (n + 1)) - n) * 2) < (((2 * (n + 1)) + 1) * 1) by XREAL_1: 102;

          then ((2 * (n + 1)) + (( - n) + ((2 * (n + 1)) - n))) < ((2 * (n + 1)) + 1);

          hence contradiction by XREAL_1: 6;

        end;

        then ((1 - (1 / ((2 * (n + 1)) + 1))) to_power (n + 1)) >= (1 / 2) by A13, XXREAL_0: 2;

        then

         A14: ((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) <= (1 / (1 / 2)) by A12, XREAL_1: 85;

        ((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) > 0 by Th34;

        then (((1 + (1 / (2 * (n + 1)))) to_power (n + 1)) ^2 ) <= (2 * 2) by A14, XREAL_1: 66;

        then

         A15: (s . (n + (n + 1))) <= (2 * 2) by A9, Th46;

        (s . n) <= (s . (n + (n + 1))) by A6, SEQM_3: 5;

        then (s . n) <= (2 * 2) by A15, XXREAL_0: 2;

        hence (s . n) < ((2 * 2) + 1) by XXREAL_0: 2;

      end;

      then s is bounded_above by SEQ_2:def 3;

      hence thesis by A6;

    end;

    definition

      :: POWER:def4

      func number_e -> Real means for s be Real_Sequence st for n holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds it = ( lim s);

      existence

      proof

        deffunc F( Nat) = ((1 + (1 / ($1 + 1))) to_power ($1 + 1));

        consider s1 be Real_Sequence such that

         A1: for n be Nat holds (s1 . n) = F(n) from SEQ_1:sch 1;

        take ( lim s1);

        let s be Real_Sequence such that

         A2: for n holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1));

        now

          let n be Element of NAT ;

          

          thus (s1 . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) by A1

          .= (s . n) by A2;

        end;

        hence thesis by FUNCT_2: 63;

      end;

      uniqueness

      proof

        let a, b;

        assume that

         A3: for s be Real_Sequence st for n holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds a = ( lim s) and

         A4: for s be Real_Sequence st for n holds (s . n) = ((1 + (1 / (n + 1))) to_power (n + 1)) holds b = ( lim s);

        deffunc F( Nat) = ((1 + (1 / ($1 + 1))) to_power ($1 + 1));

        consider s1 be Real_Sequence such that

         A5: for n be Nat holds (s1 . n) = F(n) from SEQ_1:sch 1;

        

         A6: for n holds (s1 . n) = F(n) by A5;

        ( lim s1) = a by A3, A6;

        hence thesis by A4, A6;

      end;

    end

    theorem :: POWER:60

    

     Th60: (2 to_power 2) = 4

    proof

      

      thus (2 to_power 2) = (2 ^2 ) by Th46

      .= 4;

    end;

    theorem :: POWER:61

    

     Th61: (2 to_power 3) = 8

    proof

      

      thus (2 to_power 3) = (2 to_power (2 + 1))

      .= ((2 to_power 2) * (2 to_power 1)) by Th27

      .= (4 * 2) by Th60

      .= 8;

    end;

    theorem :: POWER:62

    (2 to_power 4) = 16

    proof

      

      thus (2 to_power 4) = (2 to_power (2 + 2))

      .= ((2 to_power 2) * (2 to_power 2)) by Th27

      .= 16 by Th60;

    end;

    theorem :: POWER:63

    (2 to_power 5) = 32

    proof

      

      thus (2 to_power 5) = (2 to_power (3 + 2))

      .= ((2 to_power 3) * (2 to_power 2)) by Th27

      .= 32 by Th60, Th61;

    end;

    theorem :: POWER:64

    (2 to_power 6) = 64

    proof

      

      thus (2 to_power 6) = (2 to_power (3 + 3))

      .= ((2 to_power 3) * (2 to_power 3)) by Th27

      .= 64 by Th61;

    end;