rmod_4.miz
    
    begin
    
    reserve R for
    Ring, 
    
V for
    RightMod of R, 
    
a,b for
    Scalar of R, 
    
x,y for
    set, 
    
p,q,r for
    FinSequence, 
    
i,k for
    Nat, 
    
u,v,v1,v2,v3,w for
    Vector of V, 
    
F,G,H for
    FinSequence of V, 
    
A,B for
    Subset of V, 
    
f for
    Function of V, R, 
    
S,T for
    finite  
    Subset of V; 
    
    
    
    
    
    Lm1: ( 
    len F) 
    = (( 
    len G) 
    + 1) & G 
    = (F 
    | ( 
    Seg ( 
    len G))) & v 
    = (F 
    . ( 
    len F)) implies ( 
    Sum F) 
    = (( 
    Sum G) 
    + v) 
    
    proof
    
      (
    len F) 
    = (( 
    len G) 
    + 1) & G 
    = (F 
    | ( 
    dom G)) & v 
    = (F 
    . ( 
    len F)) implies ( 
    Sum F) 
    = (( 
    Sum G) 
    + v) by 
    RLVECT_1: 38;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    RMOD_4:1
    
    
    
    
    
    Th1: ( 
    len F) 
    = ( 
    len G) & (for k, v st k 
    in ( 
    dom F) & v 
    = (G 
    . k) holds (F 
    . k) 
    = (v 
    * a)) implies ( 
    Sum F) 
    = (( 
    Sum G) 
    * a) 
    
    proof
    
      defpred
    
    P[
    Nat] means for H,I be
    FinSequence of V st ( 
    len H) 
    = ( 
    len I) & ( 
    len H) 
    = $1 & (for k, v st k 
    in ( 
    dom H) & v 
    = (I 
    . k) holds (H 
    . k) 
    = (v 
    * a)) holds ( 
    Sum H) 
    = (( 
    Sum I) 
    * a); 
    
      now
    
        let n be
    Nat;
    
        assume
    
        
    
    A1: for H,I be 
    FinSequence of V st ( 
    len H) 
    = ( 
    len I) & ( 
    len H) 
    = n & for k, v st k 
    in ( 
    dom H) & v 
    = (I 
    . k) holds (H 
    . k) 
    = (v 
    * a) holds ( 
    Sum H) 
    = (( 
    Sum I) 
    * a); 
    
        let H,I be
    FinSequence of V; 
    
        assume that
    
        
    
    A2: ( 
    len H) 
    = ( 
    len I) and 
    
        
    
    A3: ( 
    len H) 
    = (n 
    + 1) and 
    
        
    
    A4: for k, v st k 
    in ( 
    dom H) & v 
    = (I 
    . k) holds (H 
    . k) 
    = (v 
    * a); 
    
        reconsider p = (H
    | ( 
    Seg n)), q = (I 
    | ( 
    Seg n)) as 
    FinSequence of V by 
    FINSEQ_1: 18;
    
        
    
        
    
    A5: n 
    <= (n 
    + 1) by 
    NAT_1: 12;
    
        then
    
        
    
    A6: ( 
    len p) 
    = n by 
    A3,
    FINSEQ_1: 17;
    
        
    
        
    
    A7: ( 
    len q) 
    = n by 
    A2,
    A3,
    A5,
    FINSEQ_1: 17;
    
        
    
    A8: 
    
        now
    
          (
    len p) 
    <= ( 
    len H) by 
    A3,
    A5,
    FINSEQ_1: 17;
    
          then
    
          
    
    A9: ( 
    dom p) 
    c= ( 
    dom H) by 
    FINSEQ_3: 30;
    
          let k, v;
    
          assume that
    
          
    
    A10: k 
    in ( 
    dom p) and 
    
          
    
    A11: v 
    = (q 
    . k); 
    
          (
    dom p) 
    = ( 
    dom q) by 
    A6,
    A7,
    FINSEQ_3: 29;
    
          then (I
    . k) 
    = (q 
    . k) by 
    A10,
    FUNCT_1: 47;
    
          then (H
    . k) 
    = (v 
    * a) by 
    A4,
    A10,
    A11,
    A9;
    
          hence (p
    . k) 
    = (v 
    * a) by 
    A10,
    FUNCT_1: 47;
    
        end;
    
        
    
        
    
    A12: (n 
    + 1) 
    in ( 
    Seg (n 
    + 1)) by 
    FINSEQ_1: 4;
    
        then (n
    + 1) 
    in ( 
    dom H) & (n 
    + 1) 
    in ( 
    dom I) by 
    A2,
    A3,
    FINSEQ_1:def 3;
    
        then
    
        reconsider v1 = (H
    . (n 
    + 1)), v2 = (I 
    . (n 
    + 1)) as 
    Vector of V by 
    FINSEQ_2: 11;
    
        (n
    + 1) 
    in ( 
    dom H) by 
    A3,
    A12,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A13: v1 
    = (v2 
    * a) by 
    A4;
    
        
    
        thus (
    Sum H) 
    = (( 
    Sum p) 
    + v1) by 
    A3,
    A6,
    Lm1
    
        .= (((
    Sum q) 
    * a) 
    + (v2 
    * a)) by 
    A1,
    A6,
    A7,
    A8,
    A13
    
        .= (((
    Sum q) 
    + v2) 
    * a) by 
    VECTSP_2:def 9
    
        .= ((
    Sum I) 
    * a) by 
    A2,
    A3,
    A7,
    Lm1;
    
      end;
    
      then
    
      
    
    A14: for i be 
    Nat st 
    P[i] holds
    P[(i
    + 1)]; 
    
      now
    
        let H,I be
    FinSequence of V; 
    
        assume that
    
        
    
    A15: ( 
    len H) 
    = ( 
    len I) and 
    
        
    
    A16: ( 
    len H) 
    =  
    0 and for k, v st k 
    in ( 
    dom H) & v 
    = (I 
    . k) holds (H 
    . k) 
    = (v 
    * a); 
    
        H
    = ( 
    <*> the 
    carrier of V) by 
    A16;
    
        then
    
        
    
    A17: ( 
    Sum H) 
    = ( 
    0. V) by 
    RLVECT_1: 43;
    
        I
    = ( 
    <*> the 
    carrier of V) by 
    A15,
    A16;
    
        then (
    Sum I) 
    = ( 
    0. V) by 
    RLVECT_1: 43;
    
        hence (
    Sum H) 
    = (( 
    Sum I) 
    * a) by 
    A17,
    VECTSP_2: 32;
    
      end;
    
      then
    
      
    
    A18: 
    P[
    0 ]; 
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A18,
    A14);
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm2: ( 
    len F) 
    = ( 
    len G) & (for k st k 
    in ( 
    dom F) holds (G 
    . k) 
    = ((F 
    /. k) 
    * a)) implies ( 
    Sum G) 
    = (( 
    Sum F) 
    * a) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    len F) 
    = ( 
    len G) and 
    
      
    
    A2: for k st k 
    in ( 
    dom F) holds (G 
    . k) 
    = ((F 
    /. k) 
    * a); 
    
      now
    
        let k, v;
    
        assume that
    
        
    
    A3: k 
    in ( 
    dom G) and 
    
        
    
    A4: v 
    = (F 
    . k); 
    
        
    
        
    
    A5: k 
    in ( 
    dom F) by 
    A1,
    A3,
    FINSEQ_3: 29;
    
        then v
    = (F 
    /. k) by 
    A4,
    PARTFUN1:def 6;
    
        hence (G
    . k) 
    = (v 
    * a) by 
    A2,
    A5;
    
      end;
    
      hence thesis by
    A1,
    Th1;
    
    end;
    
    theorem :: 
    
    RMOD_4:2
    
    ((
    Sum ( 
    <*> the 
    carrier of V)) 
    * a) 
    = ( 
    0. V) 
    
    proof
    
      
    
      thus ((
    Sum ( 
    <*> the 
    carrier of V)) 
    * a) 
    = (( 
    0. V) 
    * a) by 
    RLVECT_1: 43
    
      .= (
    0. V) by 
    VECTSP_2: 32;
    
    end;
    
    theorem :: 
    
    RMOD_4:3
    
    ((
    Sum  
    <*v, u*>)
    * a) 
    = ((v 
    * a) 
    + (u 
    * a)) 
    
    proof
    
      
    
      thus ((
    Sum  
    <*v, u*>)
    * a) 
    = ((v 
    + u) 
    * a) by 
    RLVECT_1: 45
    
      .= ((v
    * a) 
    + (u 
    * a)) by 
    VECTSP_2:def 9;
    
    end;
    
    theorem :: 
    
    RMOD_4:4
    
    ((
    Sum  
    <*v, u, w*>)
    * a) 
    = (((v 
    * a) 
    + (u 
    * a)) 
    + (w 
    * a)) 
    
    proof
    
      
    
      thus ((
    Sum  
    <*v, u, w*>)
    * a) 
    = (((v 
    + u) 
    + w) 
    * a) by 
    RLVECT_1: 46
    
      .= (((v
    + u) 
    * a) 
    + (w 
    * a)) by 
    VECTSP_2:def 9
    
      .= (((v
    * a) 
    + (u 
    * a)) 
    + (w 
    * a)) by 
    VECTSP_2:def 9;
    
    end;
    
    definition
    
      let R, V, T;
    
      :: 
    
    RMOD_4:def1
    
      func
    
    Sum (T) -> 
    Vector of V means 
    
      :
    
    Def1: ex F st ( 
    rng F) 
    = T & F is 
    one-to-one & it 
    = ( 
    Sum F); 
    
      existence
    
      proof
    
        consider p such that
    
        
    
    A1: ( 
    rng p) 
    = T and 
    
        
    
    A2: p is 
    one-to-one by 
    FINSEQ_4: 58;
    
        reconsider p as
    FinSequence of V by 
    A1,
    FINSEQ_1:def 4;
    
        take (
    Sum p); 
    
        take p;
    
        thus thesis by
    A1,
    A2;
    
      end;
    
      uniqueness by
    RLVECT_1: 42;
    
    end
    
    theorem :: 
    
    RMOD_4:5
    
    
    
    
    
    Th5: ( 
    Sum ( 
    {} V)) 
    = ( 
    0. V) 
    
    proof
    
      (
    Sum ( 
    <*> the 
    carrier of V)) 
    = ( 
    0. V) by 
    RLVECT_1: 43;
    
      hence thesis by
    Def1,
    RELAT_1: 38;
    
    end;
    
    theorem :: 
    
    RMOD_4:6
    
    (
    Sum  
    {v})
    = v 
    
    proof
    
      
    
      
    
    A1: ( 
    Sum  
    <*v*>)
    = v by 
    RLVECT_1: 44;
    
      (
    rng  
    <*v*>)
    =  
    {v} &
    <*v*> is
    one-to-one by 
    FINSEQ_1: 39,
    FINSEQ_3: 93;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    RMOD_4:7
    
    v1
    <> v2 implies ( 
    Sum  
    {v1, v2})
    = (v1 
    + v2) 
    
    proof
    
      assume v1
    <> v2; 
    
      then
    
      
    
    A1: 
    <*v1, v2*> is
    one-to-one by 
    FINSEQ_3: 94;
    
      (
    rng  
    <*v1, v2*>)
    =  
    {v1, v2} & (
    Sum  
    <*v1, v2*>)
    = (v1 
    + v2) by 
    FINSEQ_2: 127,
    RLVECT_1: 45;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    RMOD_4:8
    
    v1
    <> v2 & v2 
    <> v3 & v1 
    <> v3 implies ( 
    Sum  
    {v1, v2, v3})
    = ((v1 
    + v2) 
    + v3) 
    
    proof
    
      assume v1
    <> v2 & v2 
    <> v3 & v1 
    <> v3; 
    
      then
    
      
    
    A1: 
    <*v1, v2, v3*> is
    one-to-one by 
    FINSEQ_3: 95;
    
      (
    rng  
    <*v1, v2, v3*>)
    =  
    {v1, v2, v3} & (
    Sum  
    <*v1, v2, v3*>)
    = ((v1 
    + v2) 
    + v3) by 
    FINSEQ_2: 128,
    RLVECT_1: 46;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    RMOD_4:9
    
    
    
    
    
    Th9: T 
    misses S implies ( 
    Sum (T 
    \/ S)) 
    = (( 
    Sum T) 
    + ( 
    Sum S)) 
    
    proof
    
      consider F such that
    
      
    
    A1: ( 
    rng F) 
    = (T 
    \/ S) and 
    
      
    
    A2: F is 
    one-to-one & ( 
    Sum (T 
    \/ S)) 
    = ( 
    Sum F) by 
    Def1;
    
      consider G such that
    
      
    
    A3: ( 
    rng G) 
    = T and 
    
      
    
    A4: G is 
    one-to-one and 
    
      
    
    A5: ( 
    Sum T) 
    = ( 
    Sum G) by 
    Def1;
    
      consider H such that
    
      
    
    A6: ( 
    rng H) 
    = S and 
    
      
    
    A7: H is 
    one-to-one and 
    
      
    
    A8: ( 
    Sum S) 
    = ( 
    Sum H) by 
    Def1;
    
      set I = (G
    ^ H); 
    
      assume T
    misses S; 
    
      then
    
      
    
    A9: I is 
    one-to-one by 
    A3,
    A4,
    A6,
    A7,
    FINSEQ_3: 91;
    
      (
    rng I) 
    = ( 
    rng F) by 
    A1,
    A3,
    A6,
    FINSEQ_1: 31;
    
      
    
      hence (
    Sum (T 
    \/ S)) 
    = ( 
    Sum I) by 
    A2,
    A9,
    RLVECT_1: 42
    
      .= ((
    Sum T) 
    + ( 
    Sum S)) by 
    A5,
    A8,
    RLVECT_1: 41;
    
    end;
    
    theorem :: 
    
    RMOD_4:10
    
    
    
    
    
    Th10: ( 
    Sum (T 
    \/ S)) 
    = ((( 
    Sum T) 
    + ( 
    Sum S)) 
    - ( 
    Sum (T 
    /\ S))) 
    
    proof
    
      set A = (S
    \ T); 
    
      set B = (T
    \ S); 
    
      set Z = (A
    \/ B); 
    
      set I = (T
    /\ S); 
    
      
    
      
    
    A1: (A 
    \/ I) 
    = S by 
    XBOOLE_1: 51;
    
      
    
      
    
    A2: (B 
    \/ I) 
    = T by 
    XBOOLE_1: 51;
    
      
    
      
    
    A3: Z 
    = (T 
    \+\ S); 
    
      then (Z
    \/ I) 
    = (T 
    \/ S) by 
    XBOOLE_1: 93;
    
      
    
      then ((
    Sum (T 
    \/ S)) 
    + ( 
    Sum I)) 
    = ((( 
    Sum Z) 
    + ( 
    Sum I)) 
    + ( 
    Sum I)) by 
    A3,
    Th9,
    XBOOLE_1: 103
    
      .= ((((
    Sum A) 
    + ( 
    Sum B)) 
    + ( 
    Sum I)) 
    + ( 
    Sum I)) by 
    Th9,
    XBOOLE_1: 82
    
      .= (((
    Sum A) 
    + (( 
    Sum I) 
    + ( 
    Sum B))) 
    + ( 
    Sum I)) by 
    RLVECT_1:def 3
    
      .= (((
    Sum A) 
    + ( 
    Sum I)) 
    + (( 
    Sum B) 
    + ( 
    Sum I))) by 
    RLVECT_1:def 3
    
      .= ((
    Sum S) 
    + (( 
    Sum B) 
    + ( 
    Sum I))) by 
    A1,
    Th9,
    XBOOLE_1: 89
    
      .= ((
    Sum T) 
    + ( 
    Sum S)) by 
    A2,
    Th9,
    XBOOLE_1: 89;
    
      hence thesis by
    RLSUB_2: 61;
    
    end;
    
    theorem :: 
    
    RMOD_4:11
    
    (
    Sum (T 
    /\ S)) 
    = ((( 
    Sum T) 
    + ( 
    Sum S)) 
    - ( 
    Sum (T 
    \/ S))) 
    
    proof
    
      (
    Sum (T 
    \/ S)) 
    = ((( 
    Sum T) 
    + ( 
    Sum S)) 
    - ( 
    Sum (T 
    /\ S))) by 
    Th10;
    
      then ((
    Sum T) 
    + ( 
    Sum S)) 
    = (( 
    Sum (T 
    /\ S)) 
    + ( 
    Sum (T 
    \/ S))) by 
    RLSUB_2: 61;
    
      hence thesis by
    RLSUB_2: 61;
    
    end;
    
    theorem :: 
    
    RMOD_4:12
    
    
    
    
    
    Th12: ( 
    Sum (T 
    \ S)) 
    = (( 
    Sum (T 
    \/ S)) 
    - ( 
    Sum S)) 
    
    proof
    
      (T
    \ S) 
    misses S by 
    XBOOLE_1: 79;
    
      then
    
      
    
    A1: ((T 
    \ S) 
    /\ S) 
    = ( 
    {} V); 
    
      ((T
    \ S) 
    \/ S) 
    = (T 
    \/ S) by 
    XBOOLE_1: 39;
    
      then (
    Sum (T 
    \/ S)) 
    = ((( 
    Sum (T 
    \ S)) 
    + ( 
    Sum S)) 
    - ( 
    Sum ((T 
    \ S) 
    /\ S))) by 
    Th10;
    
      
    
      then (
    Sum (T 
    \/ S)) 
    = ((( 
    Sum (T 
    \ S)) 
    + ( 
    Sum S)) 
    - ( 
    0. V)) by 
    A1,
    Th5
    
      .= ((
    Sum (T 
    \ S)) 
    + ( 
    Sum S)) by 
    VECTSP_1: 18;
    
      hence thesis by
    RLSUB_2: 61;
    
    end;
    
    theorem :: 
    
    RMOD_4:13
    
    
    
    
    
    Th13: ( 
    Sum (T 
    \ S)) 
    = (( 
    Sum T) 
    - ( 
    Sum (T 
    /\ S))) 
    
    proof
    
      (T
    \ (T 
    /\ S)) 
    = (T 
    \ S) by 
    XBOOLE_1: 47;
    
      then (
    Sum (T 
    \ S)) 
    = (( 
    Sum (T 
    \/ (T 
    /\ S))) 
    - ( 
    Sum (T 
    /\ S))) by 
    Th12;
    
      hence thesis by
    XBOOLE_1: 22;
    
    end;
    
    theorem :: 
    
    RMOD_4:14
    
    (
    Sum (T 
    \+\ S)) 
    = (( 
    Sum (T 
    \/ S)) 
    - ( 
    Sum (T 
    /\ S))) 
    
    proof
    
      (T
    \+\ S) 
    = ((T 
    \/ S) 
    \ (T 
    /\ S)) by 
    XBOOLE_1: 101;
    
      
    
      hence (
    Sum (T 
    \+\ S)) 
    = (( 
    Sum (T 
    \/ S)) 
    - ( 
    Sum ((T 
    \/ S) 
    /\ (T 
    /\ S)))) by 
    Th13
    
      .= ((
    Sum (T 
    \/ S)) 
    - ( 
    Sum (((T 
    \/ S) 
    /\ T) 
    /\ S))) by 
    XBOOLE_1: 16
    
      .= ((
    Sum (T 
    \/ S)) 
    - ( 
    Sum (T 
    /\ S))) by 
    XBOOLE_1: 21;
    
    end;
    
    theorem :: 
    
    RMOD_4:15
    
    (
    Sum (T 
    \+\ S)) 
    = (( 
    Sum (T 
    \ S)) 
    + ( 
    Sum (S 
    \ T))) by 
    Th9,
    XBOOLE_1: 82;
    
    definition
    
      let R, V;
    
      :: 
    
    RMOD_4:def2
    
      mode
    
    Linear_Combination of V -> 
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) means 
    
      :
    
    Def2: ex T st for v st not v 
    in T holds (it 
    . v) 
    = ( 
    0. R); 
    
      existence
    
      proof
    
        (
    {} V) 
    =  
    {} ; 
    
        then
    
        reconsider P =
    {} as 
    finite  
    Subset of V; 
    
        reconsider f = (the
    carrier of V 
    --> ( 
    0. R)) as 
    Function of V, R; 
    
        reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        take f;
    
        take P;
    
        thus thesis by
    FUNCOP_1: 7;
    
      end;
    
    end
    
    reserve L,L1,L2,L3 for
    Linear_Combination of V; 
    
    definition
    
      let R, V, L;
    
      :: 
    
    RMOD_4:def3
    
      func
    
    Carrier (L) -> 
    finite  
    Subset of V equals { v : (L 
    . v) 
    <> ( 
    0. R) }; 
    
      coherence
    
      proof
    
        set A = { v : (L
    . v) 
    <> ( 
    0. R) }; 
    
        consider T such that
    
        
    
    A1: for v st not v 
    in T holds (L 
    . v) 
    = ( 
    0. R) by 
    Def2;
    
        A
    c= T 
    
        proof
    
          let x be
    object;
    
          assume x
    in A; 
    
          then ex v st x
    = v & (L 
    . v) 
    <> ( 
    0. R); 
    
          hence thesis by
    A1;
    
        end;
    
        hence thesis by
    XBOOLE_1: 1;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:16
    
    x
    in ( 
    Carrier L) iff ex v st x 
    = v & (L 
    . v) 
    <> ( 
    0. R); 
    
    theorem :: 
    
    RMOD_4:17
    
    (L
    . v) 
    = ( 
    0. R) iff not v 
    in ( 
    Carrier L) 
    
    proof
    
      thus (L
    . v) 
    = ( 
    0. R) implies not v 
    in ( 
    Carrier L) 
    
      proof
    
        assume
    
        
    
    A1: (L 
    . v) 
    = ( 
    0. R); 
    
        assume not thesis;
    
        then ex u st u
    = v & (L 
    . u) 
    <> ( 
    0. R); 
    
        hence thesis by
    A1;
    
      end;
    
      assume not v
    in ( 
    Carrier L); 
    
      hence thesis;
    
    end;
    
    definition
    
      let R, V;
    
      :: 
    
    RMOD_4:def4
    
      func
    
    ZeroLC (V) -> 
    Linear_Combination of V means 
    
      :
    
    Def4: ( 
    Carrier it ) 
    =  
    {} ; 
    
      existence
    
      proof
    
        reconsider f = (the
    carrier of V 
    --> ( 
    0. R)) as 
    Function of V, R; 
    
        reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        f is
    Linear_Combination of V 
    
        proof
    
          reconsider T = (
    {} V) as 
    finite
    empty  
    Subset of V; 
    
          take T;
    
          thus thesis by
    FUNCOP_1: 7;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V; 
    
        take f;
    
        set C = { v : (f
    . v) 
    <> ( 
    0. R) }; 
    
        now
    
          set x = the
    Element of C; 
    
          assume C
    <>  
    {} ; 
    
          then x
    in C; 
    
          then ex v st x
    = v & (f 
    . v) 
    <> ( 
    0. R); 
    
          hence contradiction by
    FUNCOP_1: 7;
    
        end;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let L,L9 be
    Linear_Combination of V; 
    
        assume that
    
        
    
    A1: ( 
    Carrier L) 
    =  
    {} and 
    
        
    
    A2: ( 
    Carrier L9) 
    =  
    {} ; 
    
        now
    
          let x be
    object;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider v = x as
    Element of V; 
    
          
    
    A3: 
    
          now
    
            assume (L9
    . v) 
    <> ( 
    0. R); 
    
            then v
    in { u : (L9 
    . u) 
    <> ( 
    0. R) }; 
    
            hence contradiction by
    A2;
    
          end;
    
          now
    
            assume (L
    . v) 
    <> ( 
    0. R); 
    
            then v
    in { u : (L 
    . u) 
    <> ( 
    0. R) }; 
    
            hence contradiction by
    A1;
    
          end;
    
          hence (L
    . x) 
    = (L9 
    . x) by 
    A3;
    
        end;
    
        hence L
    = L9 by 
    FUNCT_2: 12;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:18
    
    
    
    
    
    Th18: (( 
    ZeroLC V) 
    . v) 
    = ( 
    0. R) 
    
    proof
    
      (
    Carrier ( 
    ZeroLC V)) 
    =  
    {} & not v 
    in  
    {} by 
    Def4;
    
      hence thesis;
    
    end;
    
    definition
    
      let R, V, A;
    
      :: 
    
    RMOD_4:def5
    
      mode
    
    Linear_Combination of A -> 
    Linear_Combination of V means 
    
      :
    
    Def5: ( 
    Carrier it ) 
    c= A; 
    
      existence
    
      proof
    
        take L = (
    ZeroLC V); 
    
        (
    Carrier L) 
    =  
    {} by 
    Def4;
    
        hence thesis;
    
      end;
    
    end
    
    reserve l for
    Linear_Combination of A; 
    
    theorem :: 
    
    RMOD_4:19
    
    
    
    
    
    Th19: A 
    c= B implies l is 
    Linear_Combination of B 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= B; 
    
      (
    Carrier l) 
    c= A by 
    Def5;
    
      then (
    Carrier l) 
    c= B by 
    A1;
    
      hence thesis by
    Def5;
    
    end;
    
    theorem :: 
    
    RMOD_4:20
    
    
    
    
    
    Th20: ( 
    ZeroLC V) is 
    Linear_Combination of A 
    
    proof
    
      (
    Carrier ( 
    ZeroLC V)) 
    =  
    {} & 
    {}  
    c= A by 
    Def4;
    
      hence thesis by
    Def5;
    
    end;
    
    theorem :: 
    
    RMOD_4:21
    
    
    
    
    
    Th21: for l be 
    Linear_Combination of ( 
    {} the 
    carrier of V) holds l 
    = ( 
    ZeroLC V) 
    
    proof
    
      let l be
    Linear_Combination of ( 
    {} the 
    carrier of V); 
    
      (
    Carrier l) 
    c=  
    {} by 
    Def5;
    
      then (
    Carrier l) 
    =  
    {} ; 
    
      hence thesis by
    Def4;
    
    end;
    
    theorem :: 
    
    RMOD_4:22
    
    L is
    Linear_Combination of ( 
    Carrier L) by 
    Def5;
    
    definition
    
      let R, V, F, f;
    
      :: 
    
    RMOD_4:def6
    
      func f
    
    (#) F -> 
    FinSequence of V means 
    
      :
    
    Def6: ( 
    len it ) 
    = ( 
    len F) & for i be 
    Nat st i 
    in ( 
    dom it ) holds (it 
    . i) 
    = ((F 
    /. i) 
    * (f 
    . (F 
    /. i))); 
    
      existence
    
      proof
    
        deffunc
    
    Q(
    Nat) = ((F
    /. $1) 
    * (f 
    . (F 
    /. $1))); 
    
        consider G be
    FinSequence such that 
    
        
    
    A1: ( 
    len G) 
    = ( 
    len F) and 
    
        
    
    A2: for n be 
    Nat st n 
    in ( 
    dom G) holds (G 
    . n) 
    =  
    Q(n) from
    FINSEQ_1:sch 2;
    
        (
    rng G) 
    c= the 
    carrier of V 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng G); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A3: y 
    in ( 
    dom G) and 
    
          
    
    A4: (G 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
          y
    in ( 
    Seg ( 
    len F)) by 
    A1,
    A3,
    FINSEQ_1:def 3;
    
          then
    
          reconsider y as
    Element of 
    NAT ; 
    
          (G
    . y) 
    = ((F 
    /. y) 
    * (f 
    . (F 
    /. y))) by 
    A2,
    A3;
    
          hence thesis by
    A4;
    
        end;
    
        then
    
        reconsider G as
    FinSequence of V by 
    FINSEQ_1:def 4;
    
        take G;
    
        thus thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let H1,H2 be
    FinSequence of V; 
    
        assume that
    
        
    
    A5: ( 
    len H1) 
    = ( 
    len F) and 
    
        
    
    A6: for i st i 
    in ( 
    dom H1) holds (H1 
    . i) 
    = ((F 
    /. i) 
    * (f 
    . (F 
    /. i))) and 
    
        
    
    A7: ( 
    len H2) 
    = ( 
    len F) and 
    
        
    
    A8: for i st i 
    in ( 
    dom H2) holds (H2 
    . i) 
    = ((F 
    /. i) 
    * (f 
    . (F 
    /. i))); 
    
        now
    
          let k be
    Nat;
    
          assume 1
    <= k & k 
    <= ( 
    len H1); 
    
          then
    
          
    
    A9: k 
    in ( 
    Seg ( 
    len H1)) by 
    FINSEQ_1: 1;
    
          then k
    in ( 
    dom H1) by 
    FINSEQ_1:def 3;
    
          then
    
          
    
    A10: (H1 
    . k) 
    = ((F 
    /. k) 
    * (f 
    . (F 
    /. k))) by 
    A6;
    
          k
    in ( 
    dom H2) by 
    A5,
    A7,
    A9,
    FINSEQ_1:def 3;
    
          hence (H1
    . k) 
    = (H2 
    . k) by 
    A8,
    A10;
    
        end;
    
        hence thesis by
    A5,
    A7,
    FINSEQ_1: 14;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:23
    
    
    
    
    
    Th23: i 
    in ( 
    dom F) & v 
    = (F 
    . i) implies ((f 
    (#) F) 
    . i) 
    = (v 
    * (f 
    . v)) 
    
    proof
    
      assume that
    
      
    
    A1: i 
    in ( 
    dom F) and 
    
      
    
    A2: v 
    = (F 
    . i); 
    
      
    
      
    
    A3: (F 
    /. i) 
    = (F 
    . i) by 
    A1,
    PARTFUN1:def 6;
    
      (
    len (f 
    (#) F)) 
    = ( 
    len F) by 
    Def6;
    
      then i
    in ( 
    dom (f 
    (#) F)) by 
    A1,
    FINSEQ_3: 29;
    
      hence thesis by
    A2,
    A3,
    Def6;
    
    end;
    
    theorem :: 
    
    RMOD_4:24
    
    (f
    (#) ( 
    <*> the 
    carrier of V)) 
    = ( 
    <*> the 
    carrier of V) 
    
    proof
    
      (
    len (f 
    (#) ( 
    <*> the 
    carrier of V))) 
    = ( 
    len ( 
    <*> the 
    carrier of V)) by 
    Def6
    
      .=
    0 ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:25
    
    
    
    
    
    Th25: (f 
    (#)  
    <*v*>)
    =  
    <*(v
    * (f 
    . v))*> 
    
    proof
    
      
    
      
    
    A1: 1 
    in  
    {1} by
    TARSKI:def 1;
    
      
    
      
    
    A2: ( 
    len (f 
    (#)  
    <*v*>))
    = ( 
    len  
    <*v*>) by
    Def6
    
      .= 1 by
    FINSEQ_1: 40;
    
      then (
    dom (f 
    (#)  
    <*v*>))
    =  
    {1} by
    FINSEQ_1: 2,
    FINSEQ_1:def 3;
    
      
    
      then ((f
    (#)  
    <*v*>)
    . 1) 
    = (( 
    <*v*>
    /. 1) 
    * (f 
    . ( 
    <*v*>
    /. 1))) by 
    A1,
    Def6
    
      .= (v
    * (f 
    . ( 
    <*v*>
    /. 1))) by 
    FINSEQ_4: 16
    
      .= (v
    * (f 
    . v)) by 
    FINSEQ_4: 16;
    
      hence thesis by
    A2,
    FINSEQ_1: 40;
    
    end;
    
    theorem :: 
    
    RMOD_4:26
    
    
    
    
    
    Th26: (f 
    (#)  
    <*v1, v2*>)
    =  
    <*(v1
    * (f 
    . v1)), (v2 
    * (f 
    . v2))*> 
    
    proof
    
      
    
      
    
    A1: ( 
    len (f 
    (#)  
    <*v1, v2*>))
    = ( 
    len  
    <*v1, v2*>) by
    Def6
    
      .= 2 by
    FINSEQ_1: 44;
    
      then
    
      
    
    A2: ( 
    dom (f 
    (#)  
    <*v1, v2*>))
    =  
    {1, 2} by
    FINSEQ_1: 2,
    FINSEQ_1:def 3;
    
      2
    in  
    {1, 2} by
    TARSKI:def 2;
    
      
    
      then
    
      
    
    A3: ((f 
    (#)  
    <*v1, v2*>)
    . 2) 
    = (( 
    <*v1, v2*>
    /. 2) 
    * (f 
    . ( 
    <*v1, v2*>
    /. 2))) by 
    A2,
    Def6
    
      .= (v2
    * (f 
    . ( 
    <*v1, v2*>
    /. 2))) by 
    FINSEQ_4: 17
    
      .= (v2
    * (f 
    . v2)) by 
    FINSEQ_4: 17;
    
      1
    in  
    {1, 2} by
    TARSKI:def 2;
    
      
    
      then ((f
    (#)  
    <*v1, v2*>)
    . 1) 
    = (( 
    <*v1, v2*>
    /. 1) 
    * (f 
    . ( 
    <*v1, v2*>
    /. 1))) by 
    A2,
    Def6
    
      .= (v1
    * (f 
    . ( 
    <*v1, v2*>
    /. 1))) by 
    FINSEQ_4: 17
    
      .= (v1
    * (f 
    . v1)) by 
    FINSEQ_4: 17;
    
      hence thesis by
    A1,
    A3,
    FINSEQ_1: 44;
    
    end;
    
    theorem :: 
    
    RMOD_4:27
    
    (f
    (#)  
    <*v1, v2, v3*>)
    =  
    <*(v1
    * (f 
    . v1)), (v2 
    * (f 
    . v2)), (v3 
    * (f 
    . v3))*> 
    
    proof
    
      
    
      
    
    A1: ( 
    len (f 
    (#)  
    <*v1, v2, v3*>))
    = ( 
    len  
    <*v1, v2, v3*>) by
    Def6
    
      .= 3 by
    FINSEQ_1: 45;
    
      then
    
      
    
    A2: ( 
    dom (f 
    (#)  
    <*v1, v2, v3*>))
    =  
    {1, 2, 3} by
    FINSEQ_1:def 3,
    FINSEQ_3: 1;
    
      3
    in  
    {1, 2, 3} by
    ENUMSET1:def 1;
    
      
    
      then
    
      
    
    A3: ((f 
    (#)  
    <*v1, v2, v3*>)
    . 3) 
    = (( 
    <*v1, v2, v3*>
    /. 3) 
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 3))) by 
    A2,
    Def6
    
      .= (v3
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 3))) by 
    FINSEQ_4: 18
    
      .= (v3
    * (f 
    . v3)) by 
    FINSEQ_4: 18;
    
      2
    in  
    {1, 2, 3} by
    ENUMSET1:def 1;
    
      
    
      then
    
      
    
    A4: ((f 
    (#)  
    <*v1, v2, v3*>)
    . 2) 
    = (( 
    <*v1, v2, v3*>
    /. 2) 
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 2))) by 
    A2,
    Def6
    
      .= (v2
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 2))) by 
    FINSEQ_4: 18
    
      .= (v2
    * (f 
    . v2)) by 
    FINSEQ_4: 18;
    
      1
    in  
    {1, 2, 3} by
    ENUMSET1:def 1;
    
      
    
      then ((f
    (#)  
    <*v1, v2, v3*>)
    . 1) 
    = (( 
    <*v1, v2, v3*>
    /. 1) 
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 1))) by 
    A2,
    Def6
    
      .= (v1
    * (f 
    . ( 
    <*v1, v2, v3*>
    /. 1))) by 
    FINSEQ_4: 18
    
      .= (v1
    * (f 
    . v1)) by 
    FINSEQ_4: 18;
    
      hence thesis by
    A1,
    A4,
    A3,
    FINSEQ_1: 45;
    
    end;
    
    theorem :: 
    
    RMOD_4:28
    
    
    
    
    
    Th28: (f 
    (#) (F 
    ^ G)) 
    = ((f 
    (#) F) 
    ^ (f 
    (#) G)) 
    
    proof
    
      set H = ((f
    (#) F) 
    ^ (f 
    (#) G)); 
    
      set I = (F
    ^ G); 
    
      
    
      
    
    A1: ( 
    len F) 
    = ( 
    len (f 
    (#) F)) by 
    Def6;
    
      
    
      
    
    A2: ( 
    len H) 
    = (( 
    len (f 
    (#) F)) 
    + ( 
    len (f 
    (#) G))) by 
    FINSEQ_1: 22
    
      .= ((
    len F) 
    + ( 
    len (f 
    (#) G))) by 
    Def6
    
      .= ((
    len F) 
    + ( 
    len G)) by 
    Def6
    
      .= (
    len I) by 
    FINSEQ_1: 22;
    
      
    
      
    
    A3: ( 
    len G) 
    = ( 
    len (f 
    (#) G)) by 
    Def6;
    
      now
    
        let k be
    Nat;
    
        assume
    
        
    
    A4: k 
    in ( 
    dom H); 
    
        now
    
          per cases by
    A4,
    FINSEQ_1: 25;
    
            suppose
    
            
    
    A5: k 
    in ( 
    dom (f 
    (#) F)); 
    
            then
    
            
    
    A6: k 
    in ( 
    dom F) by 
    A1,
    FINSEQ_3: 29;
    
            then
    
            
    
    A7: k 
    in ( 
    dom (F 
    ^ G)) by 
    FINSEQ_3: 22;
    
            
    
            
    
    A8: (F 
    /. k) 
    = (F 
    . k) by 
    A6,
    PARTFUN1:def 6
    
            .= ((F
    ^ G) 
    . k) by 
    A6,
    FINSEQ_1:def 7
    
            .= ((F
    ^ G) 
    /. k) by 
    A7,
    PARTFUN1:def 6;
    
            
    
            thus (H
    . k) 
    = ((f 
    (#) F) 
    . k) by 
    A5,
    FINSEQ_1:def 7
    
            .= ((I
    /. k) 
    * (f 
    . (I 
    /. k))) by 
    A5,
    A8,
    Def6;
    
          end;
    
            suppose
    
            
    
    A9: ex n be 
    Nat st n 
    in ( 
    dom (f 
    (#) G)) & k 
    = (( 
    len (f 
    (#) F)) 
    + n); 
    
            
    
            
    
    A10: k 
    in ( 
    dom I) by 
    A2,
    A4,
    FINSEQ_3: 29;
    
            consider n be
    Nat such that 
    
            
    
    A11: n 
    in ( 
    dom (f 
    (#) G)) and 
    
            
    
    A12: k 
    = (( 
    len (f 
    (#) F)) 
    + n) by 
    A9;
    
            
    
            
    
    A13: n 
    in ( 
    dom G) by 
    A3,
    A11,
    FINSEQ_3: 29;
    
            
    
            then
    
            
    
    A14: (G 
    /. n) 
    = (G 
    . n) by 
    PARTFUN1:def 6
    
            .= ((F
    ^ G) 
    . k) by 
    A1,
    A12,
    A13,
    FINSEQ_1:def 7
    
            .= ((F
    ^ G) 
    /. k) by 
    A10,
    PARTFUN1:def 6;
    
            
    
            thus (H
    . k) 
    = ((f 
    (#) G) 
    . n) by 
    A11,
    A12,
    FINSEQ_1:def 7
    
            .= ((I
    /. k) 
    * (f 
    . (I 
    /. k))) by 
    A11,
    A14,
    Def6;
    
          end;
    
        end;
    
        hence (H
    . k) 
    = ((I 
    /. k) 
    * (f 
    . (I 
    /. k))); 
    
      end;
    
      hence thesis by
    A2,
    Def6;
    
    end;
    
    definition
    
      let R, V, L;
    
      :: 
    
    RMOD_4:def7
    
      func
    
    Sum (L) -> 
    Vector of V means 
    
      :
    
    Def7: ex F st F is 
    one-to-one & ( 
    rng F) 
    = ( 
    Carrier L) & it 
    = ( 
    Sum (L 
    (#) F)); 
    
      existence
    
      proof
    
        consider F be
    FinSequence such that 
    
        
    
    A1: ( 
    rng F) 
    = ( 
    Carrier L) and 
    
        
    
    A2: F is 
    one-to-one by 
    FINSEQ_4: 58;
    
        reconsider F as
    FinSequence of V by 
    A1,
    FINSEQ_1:def 4;
    
        take (
    Sum (L 
    (#) F)); 
    
        take F;
    
        thus F is
    one-to-one & ( 
    rng F) 
    = ( 
    Carrier L) by 
    A1,
    A2;
    
        thus thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let v1, v2;
    
        given F1 be
    FinSequence of V such that 
    
        
    
    A3: F1 is 
    one-to-one and 
    
        
    
    A4: ( 
    rng F1) 
    = ( 
    Carrier L) and 
    
        
    
    A5: v1 
    = ( 
    Sum (L 
    (#) F1)); 
    
        given F2 be
    FinSequence of V such that 
    
        
    
    A6: F2 is 
    one-to-one and 
    
        
    
    A7: ( 
    rng F2) 
    = ( 
    Carrier L) and 
    
        
    
    A8: v2 
    = ( 
    Sum (L 
    (#) F2)); 
    
        defpred
    
    P[
    object, 
    object] means
    {$2}
    = (F1 
    "  
    {(F2
    . $1)}); 
    
        
    
        
    
    A9: ( 
    len F1) 
    = ( 
    len F2) by 
    A3,
    A4,
    A6,
    A7,
    FINSEQ_1: 48;
    
        
    
        
    
    A10: ( 
    dom F1) 
    = ( 
    Seg ( 
    len F1)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A11: ( 
    dom F2) 
    = ( 
    Seg ( 
    len F2)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A12: for x be 
    object st x 
    in ( 
    dom F1) holds ex y be 
    object st y 
    in ( 
    dom F1) & 
    P[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    dom F1); 
    
          then (F2
    . x) 
    in ( 
    rng F1) by 
    A4,
    A7,
    A9,
    A10,
    A11,
    FUNCT_1:def 3;
    
          then
    
          consider y be
    object such that 
    
          
    
    A13: (F1 
    "  
    {(F2
    . x)}) 
    =  
    {y} by
    A3,
    FUNCT_1: 74;
    
          take y;
    
          y
    in (F1 
    "  
    {(F2
    . x)}) by 
    A13,
    TARSKI:def 1;
    
          hence y
    in ( 
    dom F1) by 
    FUNCT_1:def 7;
    
          thus thesis by
    A13;
    
        end;
    
        consider f be
    Function of ( 
    dom F1), ( 
    dom F1) such that 
    
        
    
    A14: for x be 
    object st x 
    in ( 
    dom F1) holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 1(
    A12);
    
        
    
        
    
    A15: ( 
    rng f) 
    = ( 
    dom F1) 
    
        proof
    
          thus (
    rng f) 
    c= ( 
    dom F1) by 
    RELAT_1:def 19;
    
          let y be
    object;
    
          assume
    
          
    
    A16: y 
    in ( 
    dom F1); 
    
          then (F1
    . y) 
    in ( 
    rng F2) by 
    A4,
    A7,
    FUNCT_1:def 3;
    
          then
    
          consider x be
    object such that 
    
          
    
    A17: x 
    in ( 
    dom F2) and 
    
          
    
    A18: (F2 
    . x) 
    = (F1 
    . y) by 
    FUNCT_1:def 3;
    
          (F1
    "  
    {(F2
    . x)}) 
    = (F1 
    " ( 
    Im (F1,y))) by 
    A16,
    A18,
    FUNCT_1: 59;
    
          then (F1
    "  
    {(F2
    . x)}) 
    c=  
    {y} by
    A3,
    FUNCT_1: 82;
    
          then
    {(f
    . x)} 
    c=  
    {y} by
    A9,
    A10,
    A11,
    A14,
    A17;
    
          then
    
          
    
    A19: (f 
    . x) 
    = y by 
    ZFMISC_1: 18;
    
          x
    in ( 
    dom f) by 
    A9,
    A10,
    A11,
    A17,
    FUNCT_2:def 1;
    
          hence thesis by
    A19,
    FUNCT_1:def 3;
    
        end;
    
        set G1 = (L
    (#) F1); 
    
        
    
        
    
    A20: ( 
    len G1) 
    = ( 
    len F1) by 
    Def6;
    
        
    
        
    
    A21: ( 
    dom F1) 
    =  
    {} implies ( 
    dom F1) 
    =  
    {} ; 
    
        
    
        
    
    A22: f is 
    one-to-one
    
        proof
    
          let y1,y2 be
    object;
    
          assume that
    
          
    
    A23: y1 
    in ( 
    dom f) and 
    
          
    
    A24: y2 
    in ( 
    dom f) and 
    
          
    
    A25: (f 
    . y1) 
    = (f 
    . y2); 
    
          
    
          
    
    A26: y2 
    in ( 
    dom F1) by 
    A21,
    A24,
    FUNCT_2:def 1;
    
          then
    
          
    
    A27: (F1 
    "  
    {(F2
    . y2)}) 
    =  
    {(f
    . y2)} by 
    A14;
    
          
    
          
    
    A28: y1 
    in ( 
    dom F1) by 
    A21,
    A23,
    FUNCT_2:def 1;
    
          then (F2
    . y1) 
    in ( 
    rng F1) by 
    A4,
    A7,
    A9,
    A10,
    A11,
    FUNCT_1:def 3;
    
          then
    
          
    
    A29: 
    {(F2
    . y1)} 
    c= ( 
    rng F1) by 
    ZFMISC_1: 31;
    
          (F2
    . y2) 
    in ( 
    rng F1) by 
    A4,
    A7,
    A9,
    A10,
    A11,
    A26,
    FUNCT_1:def 3;
    
          then
    
          
    
    A30: 
    {(F2
    . y2)} 
    c= ( 
    rng F1) by 
    ZFMISC_1: 31;
    
          (F1
    "  
    {(F2
    . y1)}) 
    =  
    {(f
    . y1)} by 
    A14,
    A28;
    
          then
    {(F2
    . y1)} 
    =  
    {(F2
    . y2)} by 
    A25,
    A27,
    A29,
    A30,
    FUNCT_1: 91;
    
          then
    
          
    
    A31: (F2 
    . y1) 
    = (F2 
    . y2) by 
    ZFMISC_1: 3;
    
          y1
    in ( 
    dom F2) & y2 
    in ( 
    dom F2) by 
    A9,
    A10,
    A11,
    A21,
    A23,
    A24,
    FUNCT_2:def 1;
    
          hence thesis by
    A6,
    A31;
    
        end;
    
        set G2 = (L
    (#) F2); 
    
        
    
        
    
    A32: ( 
    dom G2) 
    = ( 
    Seg ( 
    len G2)) by 
    FINSEQ_1:def 3;
    
        reconsider f as
    Permutation of ( 
    dom F1) by 
    A15,
    A22,
    FUNCT_2: 57;
    
        (
    dom F1) 
    = ( 
    Seg ( 
    len F1)) & ( 
    dom G1) 
    = ( 
    Seg ( 
    len G1)) by 
    FINSEQ_1:def 3;
    
        then
    
        reconsider f as
    Permutation of ( 
    dom G1) by 
    A20;
    
        
    
        
    
    A33: ( 
    len G2) 
    = ( 
    len F2) by 
    Def6;
    
        
    
        
    
    A34: ( 
    dom G1) 
    = ( 
    Seg ( 
    len G1)) by 
    FINSEQ_1:def 3;
    
        now
    
          let i be
    Nat;
    
          assume
    
          
    
    A35: i 
    in ( 
    dom G2); 
    
          then
    
          
    
    A36: (G2 
    . i) 
    = ((F2 
    /. i) 
    * (L 
    . (F2 
    /. i))) & (F2 
    . i) 
    = (F2 
    /. i) by 
    A33,
    A11,
    A32,
    Def6,
    PARTFUN1:def 6;
    
          i
    in ( 
    dom F2) by 
    A33,
    A35,
    FINSEQ_3: 29;
    
          then
    
          reconsider u = (F2
    . i) as 
    Vector of V by 
    FINSEQ_2: 11;
    
          i
    in ( 
    dom f) by 
    A9,
    A20,
    A33,
    A34,
    A32,
    A35,
    FUNCT_2:def 1;
    
          then
    
          
    
    A37: (f 
    . i) 
    in ( 
    dom F1) by 
    A15,
    FUNCT_1:def 3;
    
          then
    
          reconsider m = (f
    . i) as 
    Element of 
    NAT by 
    A10;
    
          reconsider v = (F1
    . m) as 
    Vector of V by 
    A37,
    FINSEQ_2: 11;
    
          
    {(F1
    . (f 
    . i))} 
    = ( 
    Im (F1,(f 
    . i))) by 
    A37,
    FUNCT_1: 59
    
          .= (F1
    .: (F1 
    "  
    {(F2
    . i)})) by 
    A9,
    A33,
    A10,
    A32,
    A14,
    A35;
    
          then
    
          
    
    A38: u 
    = v by 
    FUNCT_1: 75,
    ZFMISC_1: 18;
    
          (F1
    . m) 
    = (F1 
    /. m) by 
    A37,
    PARTFUN1:def 6;
    
          hence (G2
    . i) 
    = (G1 
    . (f 
    . i)) by 
    A20,
    A10,
    A34,
    A37,
    A38,
    A36,
    Def6;
    
        end;
    
        hence thesis by
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A20,
    A33,
    FINSEQ_1: 48,
    RLVECT_2: 6;
    
      end;
    
    end
    
    
    
    
    
    Lm3: ( 
    Sum ( 
    ZeroLC V)) 
    = ( 
    0. V) 
    
    proof
    
      consider F such that F is
    one-to-one and 
    
      
    
    A1: ( 
    rng F) 
    = ( 
    Carrier ( 
    ZeroLC V)) and 
    
      
    
    A2: ( 
    Sum ( 
    ZeroLC V)) 
    = ( 
    Sum (( 
    ZeroLC V) 
    (#) F)) by 
    Def7;
    
      (
    Carrier ( 
    ZeroLC V)) 
    =  
    {} by 
    Def4;
    
      then F
    =  
    {} by 
    A1,
    RELAT_1: 41;
    
      then (
    len F) 
    =  
    0 ; 
    
      then (
    len (( 
    ZeroLC V) 
    (#) F)) 
    =  
    0 by 
    Def6;
    
      hence thesis by
    A2,
    RLVECT_1: 75;
    
    end;
    
    theorem :: 
    
    RMOD_4:29
    
    
    
    
    
    Th29: ( 
    0. R) 
    <> ( 
    1_ R) implies (A 
    <>  
    {} & A is 
    linearly-closed iff for l holds ( 
    Sum l) 
    in A) 
    
    proof
    
      assume
    
      
    
    A1: ( 
    0. R) 
    <> ( 
    1_ R); 
    
      thus A
    <>  
    {} & A is 
    linearly-closed implies for l holds ( 
    Sum l) 
    in A 
    
      proof
    
        defpred
    
    P[
    Nat] means for l st (
    card ( 
    Carrier l)) 
    = $1 holds ( 
    Sum l) 
    in A; 
    
        assume that
    
        
    
    A2: A 
    <>  
    {} and 
    
        
    
    A3: A is 
    linearly-closed;
    
        now
    
          let l;
    
          assume (
    card ( 
    Carrier l)) 
    =  
    0 ; 
    
          then (
    Carrier l) 
    =  
    {} ; 
    
          then l
    = ( 
    ZeroLC V) by 
    Def4;
    
          then (
    Sum l) 
    = ( 
    0. V) by 
    Lm3;
    
          hence (
    Sum l) 
    in A by 
    A2,
    A3,
    RMOD_2: 1;
    
        end;
    
        then
    
        
    
    A4: 
    P[
    0 ]; 
    
        now
    
          let k be
    Nat;
    
          assume
    
          
    
    A5: for l st ( 
    card ( 
    Carrier l)) 
    = k holds ( 
    Sum l) 
    in A; 
    
          let l;
    
          deffunc
    
    Q(
    Element of V) = (l 
    . $1); 
    
          consider F such that
    
          
    
    A6: F is 
    one-to-one and 
    
          
    
    A7: ( 
    rng F) 
    = ( 
    Carrier l) and 
    
          
    
    A8: ( 
    Sum l) 
    = ( 
    Sum (l 
    (#) F)) by 
    Def7;
    
          reconsider G = (F
    | ( 
    Seg k)) as 
    FinSequence of V by 
    FINSEQ_1: 18;
    
          assume
    
          
    
    A9: ( 
    card ( 
    Carrier l)) 
    = (k 
    + 1); 
    
          then
    
          
    
    A10: ( 
    len F) 
    = (k 
    + 1) by 
    A6,
    A7,
    FINSEQ_4: 62;
    
          then
    
          
    
    A11: ( 
    len (l 
    (#) F)) 
    = (k 
    + 1) by 
    Def6;
    
          
    
          
    
    A12: (k 
    + 1) 
    in ( 
    Seg (k 
    + 1)) by 
    FINSEQ_1: 4;
    
          then
    
          
    
    A13: (k 
    + 1) 
    in ( 
    dom F) by 
    A10,
    FINSEQ_1:def 3;
    
          (k
    + 1) 
    in ( 
    dom F) by 
    A10,
    A12,
    FINSEQ_1:def 3;
    
          then
    
          reconsider v = (F
    . (k 
    + 1)) as 
    Vector of V by 
    FINSEQ_2: 11;
    
          consider f be
    Function of V, R such that 
    
          
    
    A14: (f 
    . v) 
    = ( 
    0. R) and 
    
          
    
    A15: for u be 
    Element of V st u 
    <> v holds (f 
    . u) 
    =  
    Q(u) from
    FUNCT_2:sch 6;
    
          reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
          
    
          
    
    A16: v 
    in ( 
    Carrier l) by 
    A7,
    A13,
    FUNCT_1:def 3;
    
          now
    
            let u;
    
            assume
    
            
    
    A17: not u 
    in ( 
    Carrier l); 
    
            
    
            hence (f
    . u) 
    = (l 
    . u) by 
    A16,
    A15
    
            .= (
    0. R) by 
    A17;
    
          end;
    
          then
    
          reconsider f as
    Linear_Combination of V by 
    Def2;
    
          
    
          
    
    A18: (A 
    \  
    {v})
    c= A by 
    XBOOLE_1: 36;
    
          
    
          
    
    A19: ( 
    Carrier l) 
    c= A by 
    Def5;
    
          then
    
          
    
    A20: (v 
    * (l 
    . v)) 
    in A by 
    A3,
    A16;
    
          
    
          
    
    A21: ( 
    Carrier f) 
    = (( 
    Carrier l) 
    \  
    {v})
    
          proof
    
            thus (
    Carrier f) 
    c= (( 
    Carrier l) 
    \  
    {v})
    
            proof
    
              let x be
    object;
    
              assume x
    in ( 
    Carrier f); 
    
              then
    
              consider u such that
    
              
    
    A22: u 
    = x and 
    
              
    
    A23: (f 
    . u) 
    <> ( 
    0. R); 
    
              (f
    . u) 
    = (l 
    . u) by 
    A14,
    A15,
    A23;
    
              then
    
              
    
    A24: x 
    in ( 
    Carrier l) by 
    A22,
    A23;
    
               not x
    in  
    {v} by
    A14,
    A22,
    A23,
    TARSKI:def 1;
    
              hence thesis by
    A24,
    XBOOLE_0:def 5;
    
            end;
    
            let x be
    object;
    
            assume
    
            
    
    A25: x 
    in (( 
    Carrier l) 
    \  
    {v});
    
            then x
    in ( 
    Carrier l) by 
    XBOOLE_0:def 5;
    
            then
    
            consider u such that
    
            
    
    A26: x 
    = u and 
    
            
    
    A27: (l 
    . u) 
    <> ( 
    0. R); 
    
             not x
    in  
    {v} by
    A25,
    XBOOLE_0:def 5;
    
            then x
    <> v by 
    TARSKI:def 1;
    
            then (l
    . u) 
    = (f 
    . u) by 
    A15,
    A26;
    
            hence thesis by
    A26,
    A27;
    
          end;
    
          then (
    Carrier f) 
    c= (A 
    \  
    {v}) by
    A19,
    XBOOLE_1: 33;
    
          then (
    Carrier f) 
    c= A by 
    A18;
    
          then
    
          reconsider f as
    Linear_Combination of A by 
    Def5;
    
          
    
          
    
    A28: ( 
    len G) 
    = k by 
    A10,
    FINSEQ_3: 53;
    
          then
    
          
    
    A29: ( 
    len (f 
    (#) G)) 
    = k by 
    Def6;
    
          
    
          
    
    A30: ( 
    rng G) 
    = ( 
    Carrier f) 
    
          proof
    
            thus (
    rng G) 
    c= ( 
    Carrier f) 
    
            proof
    
              let x be
    object;
    
              assume x
    in ( 
    rng G); 
    
              then
    
              consider y be
    object such that 
    
              
    
    A31: y 
    in ( 
    dom G) and 
    
              
    
    A32: (G 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
              reconsider y as
    Nat by 
    A31,
    FINSEQ_3: 23;
    
              
    
              
    
    A33: ( 
    dom G) 
    c= ( 
    dom F) & (G 
    . y) 
    = (F 
    . y) by 
    A31,
    FUNCT_1: 47,
    RELAT_1: 60;
    
              now
    
                assume x
    = v; 
    
                then
    
                
    
    A34: (k 
    + 1) 
    = y by 
    A6,
    A13,
    A31,
    A32,
    A33;
    
                y
    <= k by 
    A28,
    A31,
    FINSEQ_3: 25;
    
                hence contradiction by
    A34,
    XREAL_1: 29;
    
              end;
    
              then
    
              
    
    A35: not x 
    in  
    {v} by
    TARSKI:def 1;
    
              x
    in ( 
    rng F) by 
    A31,
    A32,
    A33,
    FUNCT_1:def 3;
    
              hence thesis by
    A7,
    A21,
    A35,
    XBOOLE_0:def 5;
    
            end;
    
            let x be
    object;
    
            assume
    
            
    
    A36: x 
    in ( 
    Carrier f); 
    
            then x
    in ( 
    rng F) by 
    A7,
    A21,
    XBOOLE_0:def 5;
    
            then
    
            consider y be
    object such that 
    
            
    
    A37: y 
    in ( 
    dom F) and 
    
            
    
    A38: (F 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
            reconsider y as
    Element of 
    NAT by 
    A37,
    FINSEQ_3: 23;
    
            now
    
              assume not y
    in ( 
    Seg k); 
    
              then y
    in (( 
    dom F) 
    \ ( 
    Seg k)) by 
    A37,
    XBOOLE_0:def 5;
    
              then y
    in (( 
    Seg (k 
    + 1)) 
    \ ( 
    Seg k)) by 
    A10,
    FINSEQ_1:def 3;
    
              then y
    in  
    {(k
    + 1)} by 
    FINSEQ_3: 15;
    
              then y
    = (k 
    + 1) by 
    TARSKI:def 1;
    
              then not v
    in  
    {v} by
    A21,
    A36,
    A38,
    XBOOLE_0:def 5;
    
              hence contradiction by
    TARSKI:def 1;
    
            end;
    
            then y
    in (( 
    dom F) 
    /\ ( 
    Seg k)) by 
    A37,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A39: y 
    in ( 
    dom G) by 
    RELAT_1: 61;
    
            then (G
    . y) 
    = (F 
    . y) by 
    FUNCT_1: 47;
    
            hence thesis by
    A38,
    A39,
    FUNCT_1:def 3;
    
          end;
    
          ((
    Seg (k 
    + 1)) 
    /\ ( 
    Seg k)) 
    = ( 
    Seg k) by 
    FINSEQ_1: 7,
    NAT_1: 12
    
          .= (
    dom (f 
    (#) G)) by 
    A29,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A40: ( 
    dom (f 
    (#) G)) 
    = (( 
    dom (l 
    (#) F)) 
    /\ ( 
    Seg k)) by 
    A11,
    FINSEQ_1:def 3;
    
          now
    
            let x be
    object;
    
            
    
            
    
    A41: ( 
    rng F) 
    c= the 
    carrier of V by 
    FINSEQ_1:def 4;
    
            assume
    
            
    
    A42: x 
    in ( 
    dom (f 
    (#) G)); 
    
            then
    
            reconsider n = x as
    Nat by 
    FINSEQ_3: 23;
    
            n
    in ( 
    dom (l 
    (#) F)) by 
    A40,
    A42,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A43: n 
    in ( 
    dom F) by 
    A10,
    A11,
    FINSEQ_3: 29;
    
            then (F
    . n) 
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
            then
    
            reconsider w = (F
    . n) as 
    Vector of V by 
    A41;
    
            
    
            
    
    A44: n 
    in ( 
    dom G) by 
    A28,
    A29,
    A42,
    FINSEQ_3: 29;
    
            then
    
            
    
    A45: (G 
    . n) 
    in ( 
    rng G) by 
    FUNCT_1:def 3;
    
            (
    rng G) 
    c= the 
    carrier of V by 
    FINSEQ_1:def 4;
    
            then
    
            reconsider u = (G
    . n) as 
    Vector of V by 
    A45;
    
             not u
    in  
    {v} by
    A21,
    A30,
    A45,
    XBOOLE_0:def 5;
    
            then
    
            
    
    A46: u 
    <> v by 
    TARSKI:def 1;
    
            
    
            
    
    A47: ((f 
    (#) G) 
    . n) 
    = (u 
    * (f 
    . u)) by 
    A44,
    Th23
    
            .= (u
    * (l 
    . u)) by 
    A15,
    A46;
    
            w
    = u by 
    A44,
    FUNCT_1: 47;
    
            hence ((f
    (#) G) 
    . x) 
    = ((l 
    (#) F) 
    . x) by 
    A47,
    A43,
    Th23;
    
          end;
    
          then (f
    (#) G) 
    = ((l 
    (#) F) 
    | ( 
    Seg k)) by 
    A40,
    FUNCT_1: 46;
    
          then
    
          
    
    A48: (f 
    (#) G) 
    = ((l 
    (#) F) 
    | ( 
    dom (f 
    (#) G))) by 
    A29,
    FINSEQ_1:def 3;
    
          v
    in ( 
    rng F) by 
    A13,
    FUNCT_1:def 3;
    
          then
    {v}
    c= ( 
    Carrier l) by 
    A7,
    ZFMISC_1: 31;
    
          
    
          then (
    card ( 
    Carrier f)) 
    = ((k 
    + 1) 
    - ( 
    card  
    {v})) by
    A9,
    A21,
    CARD_2: 44
    
          .= ((k
    + 1) 
    - 1) by 
    CARD_1: 30
    
          .= k by
    XCMPLX_1: 26;
    
          then
    
          
    
    A49: ( 
    Sum f) 
    in A by 
    A5;
    
          G is
    one-to-one by 
    A6,
    FUNCT_1: 52;
    
          then
    
          
    
    A50: ( 
    Sum (f 
    (#) G)) 
    = ( 
    Sum f) by 
    A30,
    Def7;
    
          ((l
    (#) F) 
    . ( 
    len F)) 
    = (v 
    * (l 
    . v)) by 
    A10,
    A13,
    Th23;
    
          then (
    Sum (l 
    (#) F)) 
    = (( 
    Sum (f 
    (#) G)) 
    + (v 
    * (l 
    . v))) by 
    A10,
    A11,
    A29,
    A48,
    RLVECT_1: 38;
    
          hence (
    Sum l) 
    in A by 
    A3,
    A8,
    A20,
    A50,
    A49;
    
        end;
    
        then
    
        
    
    A51: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)]; 
    
        let l;
    
        
    
        
    
    A52: ( 
    card ( 
    Carrier l)) 
    = ( 
    card ( 
    Carrier l)); 
    
        for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A51);
    
        hence thesis by
    A52;
    
      end;
    
      assume
    
      
    
    A53: for l holds ( 
    Sum l) 
    in A; 
    
      hence A
    <>  
    {} ; 
    
      (
    ZeroLC V) is 
    Linear_Combination of A & ( 
    Sum ( 
    ZeroLC V)) 
    = ( 
    0. V) by 
    Lm3,
    Th20;
    
      then
    
      
    
    A54: ( 
    0. V) 
    in A by 
    A53;
    
      
    
      
    
    A55: for a, v st v 
    in A holds (v 
    * a) 
    in A 
    
      proof
    
        let a, v;
    
        assume
    
        
    
    A56: v 
    in A; 
    
        now
    
          per cases ;
    
            suppose a
    = ( 
    0. R); 
    
            hence thesis by
    A54,
    VECTSP_2: 32;
    
          end;
    
            suppose
    
            
    
    A57: a 
    <> ( 
    0. R); 
    
            deffunc
    
    F(
    Element of V) = ( 
    0. R); 
    
            consider f such that
    
            
    
    A58: (f 
    . v) 
    = a and 
    
            
    
    A59: for u be 
    Element of V st u 
    <> v holds (f 
    . u) 
    =  
    F(u) from
    FUNCT_2:sch 6;
    
            reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
            now
    
              let u;
    
              assume not u
    in  
    {v};
    
              then u
    <> v by 
    TARSKI:def 1;
    
              hence (f
    . u) 
    = ( 
    0. R) by 
    A59;
    
            end;
    
            then
    
            reconsider f as
    Linear_Combination of V by 
    Def2;
    
            
    
            
    
    A60: ( 
    Carrier f) 
    =  
    {v}
    
            proof
    
              thus (
    Carrier f) 
    c=  
    {v}
    
              proof
    
                let x be
    object;
    
                assume x
    in ( 
    Carrier f); 
    
                then
    
                consider u such that
    
                
    
    A61: x 
    = u and 
    
                
    
    A62: (f 
    . u) 
    <> ( 
    0. R); 
    
                u
    = v by 
    A59,
    A62;
    
                hence thesis by
    A61,
    TARSKI:def 1;
    
              end;
    
              let x be
    object;
    
              assume x
    in  
    {v};
    
              then x
    = v by 
    TARSKI:def 1;
    
              hence thesis by
    A57,
    A58;
    
            end;
    
            
    {v}
    c= A by 
    A56,
    ZFMISC_1: 31;
    
            then
    
            reconsider f as
    Linear_Combination of A by 
    A60,
    Def5;
    
            consider F such that
    
            
    
    A63: F is 
    one-to-one & ( 
    rng F) 
    = ( 
    Carrier f) and 
    
            
    
    A64: ( 
    Sum (f 
    (#) F)) 
    = ( 
    Sum f) by 
    Def7;
    
            F
    =  
    <*v*> by
    A60,
    A63,
    FINSEQ_3: 97;
    
            then (f
    (#) F) 
    =  
    <*(v
    * (f 
    . v))*> by 
    Th25;
    
            then (
    Sum f) 
    = (v 
    * a) by 
    A58,
    A64,
    RLVECT_1: 44;
    
            hence thesis by
    A53;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      thus for v, u st v
    in A & u 
    in A holds (v 
    + u) 
    in A 
    
      proof
    
        let v, u;
    
        assume that
    
        
    
    A65: v 
    in A and 
    
        
    
    A66: u 
    in A; 
    
        now
    
          per cases ;
    
            suppose u
    = v; 
    
            
    
            then (v
    + u) 
    = ((v 
    * ( 
    1_ R)) 
    + v) by 
    VECTSP_2:def 9
    
            .= ((v
    * ( 
    1_ R)) 
    + (v 
    * ( 
    1_ R))) by 
    VECTSP_2:def 9
    
            .= (v
    * (( 
    1_ R) 
    + ( 
    1_ R))) by 
    VECTSP_2:def 9;
    
            hence thesis by
    A55,
    A65;
    
          end;
    
            suppose
    
            
    
    A67: v 
    <> u; 
    
            deffunc
    
    F(
    Element of V) = ( 
    0. R); 
    
            consider f such that
    
            
    
    A68: (f 
    . v) 
    = ( 
    1_ R) & (f 
    . u) 
    = ( 
    1_ R) and 
    
            
    
    A69: for w be 
    Element of V st w 
    <> v & w 
    <> u holds (f 
    . w) 
    =  
    F(w) from
    FUNCT_2:sch 7(
    A67);
    
            reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
            now
    
              let w;
    
              assume not w
    in  
    {v, u};
    
              then w
    <> v & w 
    <> u by 
    TARSKI:def 2;
    
              hence (f
    . w) 
    = ( 
    0. R) by 
    A69;
    
            end;
    
            then
    
            reconsider f as
    Linear_Combination of V by 
    Def2;
    
            
    
            
    
    A70: ( 
    Carrier f) 
    =  
    {v, u}
    
            proof
    
              thus (
    Carrier f) 
    c=  
    {v, u}
    
              proof
    
                let x be
    object;
    
                assume x
    in ( 
    Carrier f); 
    
                then ex w st x
    = w & (f 
    . w) 
    <> ( 
    0. R); 
    
                then x
    = v or x 
    = u by 
    A69;
    
                hence thesis by
    TARSKI:def 2;
    
              end;
    
              let x be
    object;
    
              assume x
    in  
    {v, u};
    
              then x
    = v or x 
    = u by 
    TARSKI:def 2;
    
              hence thesis by
    A1,
    A68;
    
            end;
    
            then
    
            
    
    A71: ( 
    Carrier f) 
    c= A by 
    A65,
    A66,
    ZFMISC_1: 32;
    
            
    
            
    
    A72: (u 
    * ( 
    1_ R)) 
    = u & (v 
    * ( 
    1_ R)) 
    = v by 
    VECTSP_2:def 9;
    
            reconsider f as
    Linear_Combination of A by 
    A71,
    Def5;
    
            consider F such that
    
            
    
    A73: F is 
    one-to-one & ( 
    rng F) 
    = ( 
    Carrier f) and 
    
            
    
    A74: ( 
    Sum (f 
    (#) F)) 
    = ( 
    Sum f) by 
    Def7;
    
            F
    =  
    <*v, u*> or F
    =  
    <*u, v*> by
    A67,
    A70,
    A73,
    FINSEQ_3: 99;
    
            then (f
    (#) F) 
    =  
    <*(v
    * ( 
    1_ R)), (u 
    * ( 
    1_ R))*> or (f 
    (#) F) 
    =  
    <*(u
    * ( 
    1_ R)), (v 
    * ( 
    1_ R))*> by 
    A68,
    Th26;
    
            then (
    Sum f) 
    = (v 
    + u) by 
    A74,
    A72,
    RLVECT_1: 45;
    
            hence thesis by
    A53;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      thus thesis by
    A55;
    
    end;
    
    theorem :: 
    
    RMOD_4:30
    
    (
    Sum ( 
    ZeroLC V)) 
    = ( 
    0. V) by 
    Lm3;
    
    theorem :: 
    
    RMOD_4:31
    
    
    
    
    
    Th31: for l be 
    Linear_Combination of ( 
    {} the 
    carrier of V) holds ( 
    Sum l) 
    = ( 
    0. V) 
    
    proof
    
      let l be
    Linear_Combination of ( 
    {} the 
    carrier of V); 
    
      l
    = ( 
    ZeroLC V) by 
    Th21;
    
      hence thesis by
    Lm3;
    
    end;
    
    theorem :: 
    
    RMOD_4:32
    
    
    
    
    
    Th32: for l be 
    Linear_Combination of 
    {v} holds (
    Sum l) 
    = (v 
    * (l 
    . v)) 
    
    proof
    
      let l be
    Linear_Combination of 
    {v};
    
      
    
      
    
    A1: ( 
    Carrier l) 
    c=  
    {v} by
    Def5;
    
      now
    
        per cases by
    A1,
    ZFMISC_1: 33;
    
          suppose (
    Carrier l) 
    =  
    {} ; 
    
          then
    
          
    
    A2: l 
    = ( 
    ZeroLC V) by 
    Def4;
    
          
    
          hence (
    Sum l) 
    = ( 
    0. V) by 
    Lm3
    
          .= (v
    * ( 
    0. R)) by 
    VECTSP_2: 32
    
          .= (v
    * (l 
    . v)) by 
    A2,
    Th18;
    
        end;
    
          suppose (
    Carrier l) 
    =  
    {v};
    
          then
    
          consider F such that
    
          
    
    A3: F is 
    one-to-one & ( 
    rng F) 
    =  
    {v} and
    
          
    
    A4: ( 
    Sum l) 
    = ( 
    Sum (l 
    (#) F)) by 
    Def7;
    
          F
    =  
    <*v*> by
    A3,
    FINSEQ_3: 97;
    
          then (l
    (#) F) 
    =  
    <*(v
    * (l 
    . v))*> by 
    Th25;
    
          hence thesis by
    A4,
    RLVECT_1: 44;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:33
    
    
    
    
    
    Th33: v1 
    <> v2 implies for l be 
    Linear_Combination of 
    {v1, v2} holds (
    Sum l) 
    = ((v1 
    * (l 
    . v1)) 
    + (v2 
    * (l 
    . v2))) 
    
    proof
    
      assume
    
      
    
    A1: v1 
    <> v2; 
    
      let l be
    Linear_Combination of 
    {v1, v2};
    
      
    
      
    
    A2: ( 
    Carrier l) 
    c=  
    {v1, v2} by
    Def5;
    
      now
    
        per cases by
    A2,
    ZFMISC_1: 36;
    
          suppose (
    Carrier l) 
    =  
    {} ; 
    
          then
    
          
    
    A3: l 
    = ( 
    ZeroLC V) by 
    Def4;
    
          
    
          hence (
    Sum l) 
    = ( 
    0. V) by 
    Lm3
    
          .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1:def 4
    
          .= ((v1
    * ( 
    0. R)) 
    + ( 
    0. V)) by 
    VECTSP_2: 32
    
          .= ((v1
    * ( 
    0. R)) 
    + (v2 
    * ( 
    0. R))) by 
    VECTSP_2: 32
    
          .= ((v1
    * (l 
    . v1)) 
    + (v2 
    * ( 
    0. R))) by 
    A3,
    Th18
    
          .= ((v1
    * (l 
    . v1)) 
    + (v2 
    * (l 
    . v2))) by 
    A3,
    Th18;
    
        end;
    
          suppose
    
          
    
    A4: ( 
    Carrier l) 
    =  
    {v1};
    
          then
    
          reconsider L = l as
    Linear_Combination of 
    {v1} by
    Def5;
    
          
    
          
    
    A5: not v2 
    in ( 
    Carrier l) by 
    A1,
    A4,
    TARSKI:def 1;
    
          
    
          thus (
    Sum l) 
    = ( 
    Sum L) 
    
          .= (v1
    * (l 
    . v1)) by 
    Th32
    
          .= ((v1
    * (l 
    . v1)) 
    + ( 
    0. V)) by 
    RLVECT_1:def 4
    
          .= ((v1
    * (l 
    . v1)) 
    + (v2 
    * ( 
    0. R))) by 
    VECTSP_2: 32
    
          .= ((v1
    * (l 
    . v1)) 
    + (v2 
    * (l 
    . v2))) by 
    A5;
    
        end;
    
          suppose
    
          
    
    A6: ( 
    Carrier l) 
    =  
    {v2};
    
          then
    
          reconsider L = l as
    Linear_Combination of 
    {v2} by
    Def5;
    
          
    
          
    
    A7: not v1 
    in ( 
    Carrier l) by 
    A1,
    A6,
    TARSKI:def 1;
    
          
    
          thus (
    Sum l) 
    = ( 
    Sum L) 
    
          .= (v2
    * (l 
    . v2)) by 
    Th32
    
          .= ((
    0. V) 
    + (v2 
    * (l 
    . v2))) by 
    RLVECT_1:def 4
    
          .= ((v1
    * ( 
    0. R)) 
    + (v2 
    * (l 
    . v2))) by 
    VECTSP_2: 32
    
          .= ((v1
    * (l 
    . v1)) 
    + (v2 
    * (l 
    . v2))) by 
    A7;
    
        end;
    
          suppose (
    Carrier l) 
    =  
    {v1, v2};
    
          then
    
          consider F such that
    
          
    
    A8: F is 
    one-to-one & ( 
    rng F) 
    =  
    {v1, v2} and
    
          
    
    A9: ( 
    Sum l) 
    = ( 
    Sum (l 
    (#) F)) by 
    Def7;
    
          F
    =  
    <*v1, v2*> or F
    =  
    <*v2, v1*> by
    A1,
    A8,
    FINSEQ_3: 99;
    
          then (l
    (#) F) 
    =  
    <*(v1
    * (l 
    . v1)), (v2 
    * (l 
    . v2))*> or (l 
    (#) F) 
    =  
    <*(v2
    * (l 
    . v2)), (v1 
    * (l 
    . v1))*> by 
    Th26;
    
          hence thesis by
    A9,
    RLVECT_1: 45;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:34
    
    (
    Carrier L) 
    =  
    {} implies ( 
    Sum L) 
    = ( 
    0. V) 
    
    proof
    
      assume (
    Carrier L) 
    =  
    {} ; 
    
      then L
    = ( 
    ZeroLC V) by 
    Def4;
    
      hence thesis by
    Lm3;
    
    end;
    
    theorem :: 
    
    RMOD_4:35
    
    
    
    
    
    Th35: ( 
    Carrier L) 
    =  
    {v} implies (
    Sum L) 
    = (v 
    * (L 
    . v)) 
    
    proof
    
      assume (
    Carrier L) 
    =  
    {v};
    
      then L is
    Linear_Combination of 
    {v} by
    Def5;
    
      hence thesis by
    Th32;
    
    end;
    
    theorem :: 
    
    RMOD_4:36
    
    (
    Carrier L) 
    =  
    {v1, v2} & v1
    <> v2 implies ( 
    Sum L) 
    = ((v1 
    * (L 
    . v1)) 
    + (v2 
    * (L 
    . v2))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    Carrier L) 
    =  
    {v1, v2} and
    
      
    
    A2: v1 
    <> v2; 
    
      L is
    Linear_Combination of 
    {v1, v2} by
    A1,
    Def5;
    
      hence thesis by
    A2,
    Th33;
    
    end;
    
    definition
    
      let R, V, L1, L2;
    
      :: original:
    =
    
      redefine
    
      :: 
    
    RMOD_4:def8
    
      pred L1
    
    = L2 means for v holds (L1 
    . v) 
    = (L2 
    . v); 
    
      compatibility by
    FUNCT_2: 63;
    
    end
    
    definition
    
      let R, V, L1, L2;
    
      :: 
    
    RMOD_4:def9
    
      func L1
    
    + L2 -> 
    Linear_Combination of V means 
    
      :
    
    Def9: for v holds (it 
    . v) 
    = ((L1 
    . v) 
    + (L2 
    . v)); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of V) = ((L1 
    . $1) 
    + (L2 
    . $1)); 
    
        consider f be
    Function of V, R such that 
    
        
    
    A1: for v be 
    Element of V holds (f 
    . v) 
    =  
    F(v) from
    FUNCT_2:sch 4;
    
        reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        now
    
          let v;
    
          assume
    
          
    
    A2: not v 
    in (( 
    Carrier L1) 
    \/ ( 
    Carrier L2)); 
    
          then not v
    in ( 
    Carrier L2) by 
    XBOOLE_0:def 3;
    
          then
    
          
    
    A3: (L2 
    . v) 
    = ( 
    0. R); 
    
           not v
    in ( 
    Carrier L1) by 
    A2,
    XBOOLE_0:def 3;
    
          then (L1
    . v) 
    = ( 
    0. R); 
    
          
    
          hence (f
    . v) 
    = (( 
    0. R) 
    + ( 
    0. R)) by 
    A1,
    A3
    
          .= (
    0. R) by 
    RLVECT_1: 4;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    Def2;
    
        take f;
    
        let v;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let M,N be
    Linear_Combination of V; 
    
        assume
    
        
    
    A4: for v holds (M 
    . v) 
    = ((L1 
    . v) 
    + (L2 
    . v)); 
    
        assume
    
        
    
    A5: for v holds (N 
    . v) 
    = ((L1 
    . v) 
    + (L2 
    . v)); 
    
        let v;
    
        
    
        thus (M
    . v) 
    = ((L1 
    . v) 
    + (L2 
    . v)) by 
    A4
    
        .= (N
    . v) by 
    A5;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:37
    
    
    
    
    
    Th37: ( 
    Carrier (L1 
    + L2)) 
    c= (( 
    Carrier L1) 
    \/ ( 
    Carrier L2)) 
    
    proof
    
      let x be
    object;
    
      assume x
    in ( 
    Carrier (L1 
    + L2)); 
    
      then
    
      consider u such that
    
      
    
    A1: x 
    = u and 
    
      
    
    A2: ((L1 
    + L2) 
    . u) 
    <> ( 
    0. R); 
    
      ((L1
    + L2) 
    . u) 
    = ((L1 
    . u) 
    + (L2 
    . u)) by 
    Def9;
    
      then (L1
    . u) 
    <> ( 
    0. R) or (L2 
    . u) 
    <> ( 
    0. R) by 
    A2,
    RLVECT_1: 4;
    
      then x
    in { v1 : (L1 
    . v1) 
    <> ( 
    0. R) } or x 
    in { v2 : (L2 
    . v2) 
    <> ( 
    0. R) } by 
    A1;
    
      hence thesis by
    XBOOLE_0:def 3;
    
    end;
    
    theorem :: 
    
    RMOD_4:38
    
    
    
    
    
    Th38: L1 is 
    Linear_Combination of A & L2 is 
    Linear_Combination of A implies (L1 
    + L2) is 
    Linear_Combination of A 
    
    proof
    
      assume L1 is
    Linear_Combination of A & L2 is 
    Linear_Combination of A; 
    
      then (
    Carrier L1) 
    c= A & ( 
    Carrier L2) 
    c= A by 
    Def5;
    
      then
    
      
    
    A1: (( 
    Carrier L1) 
    \/ ( 
    Carrier L2)) 
    c= A by 
    XBOOLE_1: 8;
    
      (
    Carrier (L1 
    + L2)) 
    c= (( 
    Carrier L1) 
    \/ ( 
    Carrier L2)) by 
    Th37;
    
      hence (
    Carrier (L1 
    + L2)) 
    c= A by 
    A1;
    
    end;
    
    theorem :: 
    
    RMOD_4:39
    
    
    
    
    
    Th39: for R be 
    comRing holds for V be 
    RightMod of R holds for L1,L2 be 
    Linear_Combination of V holds (L1 
    + L2) 
    = (L2 
    + L1) 
    
    proof
    
      let R be
    comRing;
    
      let V be
    RightMod of R; 
    
      let L1,L2 be
    Linear_Combination of V; 
    
      let v be
    Vector of V; 
    
      
    
      thus ((L1
    + L2) 
    . v) 
    = ((L2 
    . v) 
    + (L1 
    . v)) by 
    Def9
    
      .= ((L2
    + L1) 
    . v) by 
    Def9;
    
    end;
    
    theorem :: 
    
    RMOD_4:40
    
    (L1
    + (L2 
    + L3)) 
    = ((L1 
    + L2) 
    + L3) 
    
    proof
    
      let v;
    
      
    
      thus ((L1
    + (L2 
    + L3)) 
    . v) 
    = ((L1 
    . v) 
    + ((L2 
    + L3) 
    . v)) by 
    Def9
    
      .= ((L1
    . v) 
    + ((L2 
    . v) 
    + (L3 
    . v))) by 
    Def9
    
      .= (((L1
    . v) 
    + (L2 
    . v)) 
    + (L3 
    . v)) by 
    RLVECT_1:def 3
    
      .= (((L1
    + L2) 
    . v) 
    + (L3 
    . v)) by 
    Def9
    
      .= (((L1
    + L2) 
    + L3) 
    . v) by 
    Def9;
    
    end;
    
    theorem :: 
    
    RMOD_4:41
    
    for R be
    comRing holds for V be 
    RightMod of R holds for L be 
    Linear_Combination of V holds (L 
    + ( 
    ZeroLC V)) 
    = L & (( 
    ZeroLC V) 
    + L) 
    = L 
    
    proof
    
      let R be
    comRing;
    
      let V be
    RightMod of R; 
    
      let L be
    Linear_Combination of V; 
    
      thus (L
    + ( 
    ZeroLC V)) 
    = L 
    
      proof
    
        let v be
    Vector of V; 
    
        
    
        thus ((L
    + ( 
    ZeroLC V)) 
    . v) 
    = ((L 
    . v) 
    + (( 
    ZeroLC V) 
    . v)) by 
    Def9
    
        .= ((L
    . v) 
    + ( 
    0. R)) by 
    Th18
    
        .= (L
    . v) by 
    RLVECT_1: 4;
    
      end;
    
      hence thesis by
    Th39;
    
    end;
    
    definition
    
      let R, V, a, L;
    
      :: 
    
    RMOD_4:def10
    
      func L
    
    * a -> 
    Linear_Combination of V means 
    
      :
    
    Def10: for v holds (it 
    . v) 
    = ((L 
    . v) 
    * a); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of V) = ((L 
    . $1) 
    * a); 
    
        consider f be
    Function of V, R such that 
    
        
    
    A1: for v be 
    Element of V holds (f 
    . v) 
    =  
    F(v) from
    FUNCT_2:sch 4;
    
        reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        now
    
          let v;
    
          assume not v
    in ( 
    Carrier L); 
    
          then (L
    . v) 
    = ( 
    0. R); 
    
          
    
          hence (f
    . v) 
    = (( 
    0. R) 
    * a) by 
    A1
    
          .= (
    0. R); 
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    Def2;
    
        take f;
    
        let v;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let L1, L2;
    
        assume
    
        
    
    A2: for v holds (L1 
    . v) 
    = ((L 
    . v) 
    * a); 
    
        assume
    
        
    
    A3: for v holds (L2 
    . v) 
    = ((L 
    . v) 
    * a); 
    
        let v;
    
        
    
        thus (L1
    . v) 
    = ((L 
    . v) 
    * a) by 
    A2
    
        .= (L2
    . v) by 
    A3;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:42
    
    
    
    
    
    Th42: ( 
    Carrier (L 
    * a)) 
    c= ( 
    Carrier L) 
    
    proof
    
      set T = { u : ((L
    * a) 
    . u) 
    <> ( 
    0. R) }; 
    
      set S = { v : (L
    . v) 
    <> ( 
    0. R) }; 
    
      T
    c= S 
    
      proof
    
        let x be
    object;
    
        assume x
    in T; 
    
        then
    
        consider u such that
    
        
    
    A1: x 
    = u and 
    
        
    
    A2: ((L 
    * a) 
    . u) 
    <> ( 
    0. R); 
    
        ((L
    * a) 
    . u) 
    = ((L 
    . u) 
    * a) by 
    Def10;
    
        then (L
    . u) 
    <> ( 
    0. R) by 
    A2;
    
        hence thesis by
    A1;
    
      end;
    
      hence thesis;
    
    end;
    
    reserve RR for
    domRing;
    
    reserve VV for
    RightMod of RR; 
    
    reserve LL for
    Linear_Combination of VV; 
    
    reserve aa for
    Scalar of RR; 
    
    reserve uu,vv for
    Vector of VV; 
    
    theorem :: 
    
    RMOD_4:43
    
    
    
    
    
    Th43: aa 
    <> ( 
    0. RR) implies ( 
    Carrier (LL 
    * aa)) 
    = ( 
    Carrier LL) 
    
    proof
    
      set T = { uu : ((LL
    * aa) 
    . uu) 
    <> ( 
    0. RR) }; 
    
      set S = { vv : (LL
    . vv) 
    <> ( 
    0. RR) }; 
    
      assume
    
      
    
    A1: aa 
    <> ( 
    0. RR); 
    
      T
    = S 
    
      proof
    
        thus T
    c= S 
    
        proof
    
          let x be
    object;
    
          assume x
    in T; 
    
          then
    
          consider uu such that
    
          
    
    A2: x 
    = uu and 
    
          
    
    A3: ((LL 
    * aa) 
    . uu) 
    <> ( 
    0. RR); 
    
          ((LL
    * aa) 
    . uu) 
    = ((LL 
    . uu) 
    * aa) by 
    Def10;
    
          then (LL
    . uu) 
    <> ( 
    0. RR) by 
    A3;
    
          hence thesis by
    A2;
    
        end;
    
        let x be
    object;
    
        assume x
    in S; 
    
        then
    
        consider vv such that
    
        
    
    A4: x 
    = vv and 
    
        
    
    A5: (LL 
    . vv) 
    <> ( 
    0. RR); 
    
        ((LL
    * aa) 
    . vv) 
    = ((LL 
    . vv) 
    * aa) by 
    Def10;
    
        then ((LL
    * aa) 
    . vv) 
    <> ( 
    0. RR) by 
    A1,
    A5,
    VECTSP_2:def 1;
    
        hence thesis by
    A4;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:44
    
    
    
    
    
    Th44: (L 
    * ( 
    0. R)) 
    = ( 
    ZeroLC V) 
    
    proof
    
      let v;
    
      
    
      thus ((L
    * ( 
    0. R)) 
    . v) 
    = ((L 
    . v) 
    * ( 
    0. R)) by 
    Def10
    
      .= (
    0. R) 
    
      .= ((
    ZeroLC V) 
    . v) by 
    Th18;
    
    end;
    
    theorem :: 
    
    RMOD_4:45
    
    
    
    
    
    Th45: L is 
    Linear_Combination of A implies (L 
    * a) is 
    Linear_Combination of A 
    
    proof
    
      assume L is
    Linear_Combination of A; 
    
      then
    
      
    
    A1: ( 
    Carrier L) 
    c= A by 
    Def5;
    
      (
    Carrier (L 
    * a)) 
    c= ( 
    Carrier L) by 
    Th42;
    
      then (
    Carrier (L 
    * a)) 
    c= A by 
    A1;
    
      hence thesis by
    Def5;
    
    end;
    
    theorem :: 
    
    RMOD_4:46
    
    (L
    * (a 
    + b)) 
    = ((L 
    * a) 
    + (L 
    * b)) 
    
    proof
    
      let v;
    
      
    
      thus ((L
    * (a 
    + b)) 
    . v) 
    = ((L 
    . v) 
    * (a 
    + b)) by 
    Def10
    
      .= (((L
    . v) 
    * a) 
    + ((L 
    . v) 
    * b)) by 
    VECTSP_1:def 7
    
      .= (((L
    * a) 
    . v) 
    + ((L 
    . v) 
    * b)) by 
    Def10
    
      .= (((L
    * a) 
    . v) 
    + ((L 
    * b) 
    . v)) by 
    Def10
    
      .= (((L
    * a) 
    + (L 
    * b)) 
    . v) by 
    Def9;
    
    end;
    
    theorem :: 
    
    RMOD_4:47
    
    ((L1
    + L2) 
    * a) 
    = ((L1 
    * a) 
    + (L2 
    * a)) 
    
    proof
    
      let v;
    
      
    
      thus (((L1
    + L2) 
    * a) 
    . v) 
    = (((L1 
    + L2) 
    . v) 
    * a) by 
    Def10
    
      .= (((L1
    . v) 
    + (L2 
    . v)) 
    * a) by 
    Def9
    
      .= (((L1
    . v) 
    * a) 
    + ((L2 
    . v) 
    * a)) by 
    VECTSP_1:def 7
    
      .= (((L1
    * a) 
    . v) 
    + ((L2 
    . v) 
    * a)) by 
    Def10
    
      .= (((L1
    * a) 
    . v) 
    + ((L2 
    * a) 
    . v)) by 
    Def10
    
      .= (((L1
    * a) 
    + (L2 
    * a)) 
    . v) by 
    Def9;
    
    end;
    
    theorem :: 
    
    RMOD_4:48
    
    
    
    
    
    Th48: ((L 
    * b) 
    * a) 
    = (L 
    * (b 
    * a)) 
    
    proof
    
      let v;
    
      
    
      thus (((L
    * b) 
    * a) 
    . v) 
    = (((L 
    * b) 
    . v) 
    * a) by 
    Def10
    
      .= (((L
    . v) 
    * b) 
    * a) by 
    Def10
    
      .= ((L
    . v) 
    * (b 
    * a)) by 
    GROUP_1:def 3
    
      .= ((L
    * (b 
    * a)) 
    . v) by 
    Def10;
    
    end;
    
    theorem :: 
    
    RMOD_4:49
    
    (L
    * ( 
    1_ R)) 
    = L 
    
    proof
    
      let v;
    
      
    
      thus ((L
    * ( 
    1_ R)) 
    . v) 
    = ((L 
    . v) 
    * ( 
    1_ R)) by 
    Def10
    
      .= (L
    . v); 
    
    end;
    
    definition
    
      let R, V, L;
    
      :: 
    
    RMOD_4:def11
    
      func
    
    - L -> 
    Linear_Combination of V equals (L 
    * ( 
    - ( 
    1_ R))); 
    
      correctness ;
    
      involutiveness
    
      proof
    
        let L,L9 be
    Linear_Combination of V; 
    
        assume
    
        
    
    A1: L 
    = (L9 
    * ( 
    - ( 
    1_ R))); 
    
        let v;
    
        
    
        thus (L9
    . v) 
    = ((L9 
    . v) 
    * ( 
    1_ R)) 
    
        .= ((L9
    . v) 
    * (( 
    1_ R) 
    * ( 
    1_ R))) 
    
        .= ((L9
    . v) 
    * (( 
    - ( 
    1_ R)) 
    * ( 
    - ( 
    1_ R)))) by 
    VECTSP_1: 10
    
        .= ((L9
    * (( 
    - ( 
    1_ R)) 
    * ( 
    - ( 
    1_ R)))) 
    . v) by 
    Def10
    
        .= ((L
    * ( 
    - ( 
    1_ R))) 
    . v) by 
    A1,
    Th48;
    
      end;
    
    end
    
    theorem :: 
    
    RMOD_4:50
    
    
    
    
    
    Th50: (( 
    - L) 
    . v) 
    = ( 
    - (L 
    . v)) 
    
    proof
    
      
    
      thus ((
    - L) 
    . v) 
    = ((L 
    . v) 
    * ( 
    - ( 
    1_ R))) by 
    Def10
    
      .= (
    - (L 
    . v)) by 
    VECTSP_2: 28;
    
    end;
    
    theorem :: 
    
    RMOD_4:51
    
    (L1
    + L2) 
    = ( 
    ZeroLC V) implies L2 
    = ( 
    - L1) 
    
    proof
    
      assume
    
      
    
    A1: (L1 
    + L2) 
    = ( 
    ZeroLC V); 
    
      let v;
    
      ((L1
    . v) 
    + (L2 
    . v)) 
    = (( 
    ZeroLC V) 
    . v) by 
    A1,
    Def9
    
      .= (
    0. R) by 
    Th18;
    
      
    
      hence (L2
    . v) 
    = ( 
    - (L1 
    . v)) by 
    RLVECT_1: 6
    
      .= ((
    - L1) 
    . v) by 
    Th50;
    
    end;
    
    theorem :: 
    
    RMOD_4:52
    
    
    
    
    
    Th52: ( 
    Carrier ( 
    - L)) 
    = ( 
    Carrier L) 
    
    proof
    
      set a = (
    - ( 
    1_ R)); 
    
      (
    Carrier (L 
    * a)) 
    = ( 
    Carrier L) 
    
      proof
    
        set S = { v : (L
    . v) 
    <> ( 
    0. R) }; 
    
        set T = { u : ((L
    * a) 
    . u) 
    <> ( 
    0. R) }; 
    
        T
    = S 
    
        proof
    
          thus T
    c= S 
    
          proof
    
            let x be
    object;
    
            assume x
    in T; 
    
            then
    
            consider u such that
    
            
    
    A1: x 
    = u and 
    
            
    
    A2: ((L 
    * a) 
    . u) 
    <> ( 
    0. R); 
    
            ((L
    * a) 
    . u) 
    = ((L 
    . u) 
    * a) by 
    Def10;
    
            then (L
    . u) 
    <> ( 
    0. R) by 
    A2;
    
            hence thesis by
    A1;
    
          end;
    
          let x be
    object;
    
          assume x
    in S; 
    
          then
    
          consider v such that
    
          
    
    A3: x 
    = v and 
    
          
    
    A4: (L 
    . v) 
    <> ( 
    0. R); 
    
          ((L
    * a) 
    . v) 
    = ((L 
    . v) 
    * a) by 
    Def10
    
          .= (
    - (L 
    . v)) by 
    VECTSP_2: 28;
    
          then ((L
    * a) 
    . v) 
    <> ( 
    0. R) by 
    A4,
    VECTSP_2: 3;
    
          hence thesis by
    A3;
    
        end;
    
        hence thesis;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:53
    
    L is
    Linear_Combination of A implies ( 
    - L) is 
    Linear_Combination of A by 
    Th45;
    
    definition
    
      let R, V, L1, L2;
    
      :: 
    
    RMOD_4:def12
    
      func L1
    
    - L2 -> 
    Linear_Combination of V equals (L1 
    + ( 
    - L2)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    RMOD_4:54
    
    
    
    
    
    Th54: ((L1 
    - L2) 
    . v) 
    = ((L1 
    . v) 
    - (L2 
    . v)) 
    
    proof
    
      
    
      thus ((L1
    - L2) 
    . v) 
    = ((L1 
    . v) 
    + (( 
    - L2) 
    . v)) by 
    Def9
    
      .= ((L1
    . v) 
    + ( 
    - (L2 
    . v))) by 
    Th50
    
      .= ((L1
    . v) 
    - (L2 
    . v)) by 
    RLVECT_1:def 11;
    
    end;
    
    theorem :: 
    
    RMOD_4:55
    
    (
    Carrier (L1 
    - L2)) 
    c= (( 
    Carrier L1) 
    \/ ( 
    Carrier L2)) 
    
    proof
    
      (
    Carrier (L1 
    - L2)) 
    c= (( 
    Carrier L1) 
    \/ ( 
    Carrier ( 
    - L2))) by 
    Th37;
    
      hence thesis by
    Th52;
    
    end;
    
    theorem :: 
    
    RMOD_4:56
    
    L1 is
    Linear_Combination of A & L2 is 
    Linear_Combination of A implies (L1 
    - L2) is 
    Linear_Combination of A 
    
    proof
    
      assume that
    
      
    
    A1: L1 is 
    Linear_Combination of A and 
    
      
    
    A2: L2 is 
    Linear_Combination of A; 
    
      (
    - L2) is 
    Linear_Combination of A by 
    A2,
    Th45;
    
      hence thesis by
    A1,
    Th38;
    
    end;
    
    theorem :: 
    
    RMOD_4:57
    
    (L
    - L) 
    = ( 
    ZeroLC V) 
    
    proof
    
      let v;
    
      
    
      thus ((L
    - L) 
    . v) 
    = ((L 
    . v) 
    - (L 
    . v)) by 
    Th54
    
      .= (
    0. R) by 
    RLVECT_1: 15
    
      .= ((
    ZeroLC V) 
    . v) by 
    Th18;
    
    end;
    
    theorem :: 
    
    RMOD_4:58
    
    
    
    
    
    Th58: ( 
    Sum (L1 
    + L2)) 
    = (( 
    Sum L1) 
    + ( 
    Sum L2)) 
    
    proof
    
      set A = (((
    Carrier (L1 
    + L2)) 
    \/ ( 
    Carrier L1)) 
    \/ ( 
    Carrier L2)); 
    
      set C1 = (A
    \ ( 
    Carrier L1)); 
    
      consider p such that
    
      
    
    A1: ( 
    rng p) 
    = C1 and 
    
      
    
    A2: p is 
    one-to-one by 
    FINSEQ_4: 58;
    
      reconsider p as
    FinSequence of V by 
    A1,
    FINSEQ_1:def 4;
    
      
    
      
    
    A3: A 
    = (( 
    Carrier L1) 
    \/ (( 
    Carrier (L1 
    + L2)) 
    \/ ( 
    Carrier L2))) by 
    XBOOLE_1: 4;
    
      set C3 = (A
    \ ( 
    Carrier (L1 
    + L2))); 
    
      consider r such that
    
      
    
    A4: ( 
    rng r) 
    = C3 and 
    
      
    
    A5: r is 
    one-to-one by 
    FINSEQ_4: 58;
    
      reconsider r as
    FinSequence of V by 
    A4,
    FINSEQ_1:def 4;
    
      
    
      
    
    A6: A 
    = (( 
    Carrier (L1 
    + L2)) 
    \/ (( 
    Carrier L1) 
    \/ ( 
    Carrier L2))) by 
    XBOOLE_1: 4;
    
      set C2 = (A
    \ ( 
    Carrier L2)); 
    
      consider q such that
    
      
    
    A7: ( 
    rng q) 
    = C2 and 
    
      
    
    A8: q is 
    one-to-one by 
    FINSEQ_4: 58;
    
      reconsider q as
    FinSequence of V by 
    A7,
    FINSEQ_1:def 4;
    
      consider F such that
    
      
    
    A9: F is 
    one-to-one and 
    
      
    
    A10: ( 
    rng F) 
    = ( 
    Carrier (L1 
    + L2)) and 
    
      
    
    A11: ( 
    Sum ((L1 
    + L2) 
    (#) F)) 
    = ( 
    Sum (L1 
    + L2)) by 
    Def7;
    
      set FF = (F
    ^ r); 
    
      consider G such that
    
      
    
    A12: G is 
    one-to-one and 
    
      
    
    A13: ( 
    rng G) 
    = ( 
    Carrier L1) and 
    
      
    
    A14: ( 
    Sum (L1 
    (#) G)) 
    = ( 
    Sum L1) by 
    Def7;
    
      (
    rng FF) 
    = (( 
    rng F) 
    \/ ( 
    rng r)) by 
    FINSEQ_1: 31;
    
      then (
    rng FF) 
    = (( 
    Carrier (L1 
    + L2)) 
    \/ A) by 
    A10,
    A4,
    XBOOLE_1: 39;
    
      then
    
      
    
    A15: ( 
    rng FF) 
    = A by 
    A6,
    XBOOLE_1: 7,
    XBOOLE_1: 12;
    
      set GG = (G
    ^ p); 
    
      (
    rng GG) 
    = (( 
    rng G) 
    \/ ( 
    rng p)) by 
    FINSEQ_1: 31;
    
      then (
    rng GG) 
    = (( 
    Carrier L1) 
    \/ A) by 
    A13,
    A1,
    XBOOLE_1: 39;
    
      then
    
      
    
    A16: ( 
    rng GG) 
    = A by 
    A3,
    XBOOLE_1: 7,
    XBOOLE_1: 12;
    
      (
    rng F) 
    misses ( 
    rng r) 
    
      proof
    
        set x = the
    Element of (( 
    rng F) 
    /\ ( 
    rng r)); 
    
        assume not thesis;
    
        then ((
    rng F) 
    /\ ( 
    rng r)) 
    <>  
    {} ; 
    
        then x
    in ( 
    Carrier (L1 
    + L2)) & x 
    in C3 by 
    A10,
    A4,
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 5;
    
      end;
    
      then
    
      
    
    A17: FF is 
    one-to-one by 
    A9,
    A5,
    FINSEQ_3: 91;
    
      (
    rng G) 
    misses ( 
    rng p) 
    
      proof
    
        set x = the
    Element of (( 
    rng G) 
    /\ ( 
    rng p)); 
    
        assume not thesis;
    
        then ((
    rng G) 
    /\ ( 
    rng p)) 
    <>  
    {} ; 
    
        then x
    in ( 
    Carrier L1) & x 
    in C1 by 
    A13,
    A1,
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 5;
    
      end;
    
      then
    
      
    
    A18: GG is 
    one-to-one by 
    A12,
    A2,
    FINSEQ_3: 91;
    
      then
    
      
    
    A19: ( 
    len GG) 
    = ( 
    len FF) by 
    A17,
    A16,
    A15,
    FINSEQ_1: 48;
    
      deffunc
    
    Q(
    Nat) = (FF
    <- (GG 
    . $1)); 
    
      consider P be
    FinSequence such that 
    
      
    
    A20: ( 
    len P) 
    = ( 
    len FF) and 
    
      
    
    A21: for k be 
    Nat st k 
    in ( 
    dom P) holds (P 
    . k) 
    =  
    Q(k) from
    FINSEQ_1:sch 2;
    
      
    
      
    
    A22: ( 
    dom P) 
    = ( 
    Seg ( 
    len FF)) by 
    A20,
    FINSEQ_1:def 3;
    
      
    
    A23: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A24: x 
    in ( 
    dom GG); 
    
        then
    
        reconsider n = x as
    Nat by 
    FINSEQ_3: 23;
    
        (GG
    . n) 
    in ( 
    rng FF) by 
    A16,
    A15,
    A24,
    FUNCT_1:def 3;
    
        then
    
        
    
    A25: FF 
    just_once_values (GG 
    . n) by 
    A17,
    FINSEQ_4: 8;
    
        n
    in ( 
    Seg ( 
    len FF)) by 
    A19,
    A24,
    FINSEQ_1:def 3;
    
        
    
        then (FF
    . (P 
    . n)) 
    = (FF 
    . (FF 
    <- (GG 
    . n))) by 
    A21,
    A22
    
        .= (GG
    . n) by 
    A25,
    FINSEQ_4:def 3;
    
        hence (GG
    . x) 
    = (FF 
    . (P 
    . x)); 
    
      end;
    
      
    
      
    
    A26: ( 
    dom GG) 
    = ( 
    dom FF) by 
    A19,
    FINSEQ_3: 29;
    
      
    
      
    
    A27: ( 
    rng P) 
    c= ( 
    dom FF) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng P); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A28: y 
    in ( 
    dom P) and 
    
        
    
    A29: (P 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
        reconsider y as
    Nat by 
    A28,
    FINSEQ_3: 23;
    
        y
    in ( 
    dom FF) by 
    A20,
    A28,
    FINSEQ_3: 29;
    
        then (GG
    . y) 
    in ( 
    rng FF) by 
    A16,
    A15,
    A26,
    FUNCT_1:def 3;
    
        then
    
        
    
    A30: FF 
    just_once_values (GG 
    . y) by 
    A17,
    FINSEQ_4: 8;
    
        (P
    . y) 
    = (FF 
    <- (GG 
    . y)) by 
    A21,
    A28;
    
        hence thesis by
    A29,
    A30,
    FINSEQ_4:def 3;
    
      end;
    
      now
    
        let x be
    object;
    
        thus x
    in ( 
    dom GG) implies x 
    in ( 
    dom P) & (P 
    . x) 
    in ( 
    dom FF) 
    
        proof
    
          assume x
    in ( 
    dom GG); 
    
          hence x
    in ( 
    dom P) by 
    A19,
    A20,
    FINSEQ_3: 29;
    
          then (P
    . x) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A27;
    
        end;
    
        assume that
    
        
    
    A31: x 
    in ( 
    dom P) and (P 
    . x) 
    in ( 
    dom FF); 
    
        x
    in ( 
    Seg ( 
    len P)) by 
    A31,
    FINSEQ_1:def 3;
    
        hence x
    in ( 
    dom GG) by 
    A19,
    A20,
    FINSEQ_1:def 3;
    
      end;
    
      then
    
      
    
    A32: GG 
    = (FF 
    * P) by 
    A23,
    FUNCT_1: 10;
    
      (
    dom FF) 
    c= ( 
    rng P) 
    
      proof
    
        set f = ((FF
    " ) 
    * GG); 
    
        let x be
    object;
    
        assume
    
        
    
    A33: x 
    in ( 
    dom FF); 
    
        (
    dom (FF 
    " )) 
    = ( 
    rng GG) by 
    A17,
    A16,
    A15,
    FUNCT_1: 33;
    
        
    
        then
    
        
    
    A34: ( 
    rng f) 
    = ( 
    rng (FF 
    " )) by 
    RELAT_1: 28
    
        .= (
    dom FF) by 
    A17,
    FUNCT_1: 33;
    
        f
    = (((FF 
    " ) 
    * FF) 
    * P) by 
    A32,
    RELAT_1: 36
    
        .= ((
    id ( 
    dom FF)) 
    * P) by 
    A17,
    FUNCT_1: 39
    
        .= P by
    A27,
    RELAT_1: 53;
    
        hence thesis by
    A33,
    A34;
    
      end;
    
      then
    
      
    
    A35: ( 
    dom FF) 
    = ( 
    rng P) by 
    A27;
    
      
    
      
    
    A36: ( 
    len r) 
    = ( 
    len ((L1 
    + L2) 
    (#) r)) by 
    Def6;
    
      now
    
        let k;
    
        assume
    
        
    
    A37: k 
    in ( 
    dom r); 
    
        then (r
    /. k) 
    = (r 
    . k) by 
    PARTFUN1:def 6;
    
        then (r
    /. k) 
    in C3 by 
    A4,
    A37,
    FUNCT_1:def 3;
    
        then
    
        
    
    A38: not (r 
    /. k) 
    in ( 
    Carrier (L1 
    + L2)) by 
    XBOOLE_0:def 5;
    
        k
    in ( 
    dom ((L1 
    + L2) 
    (#) r)) by 
    A36,
    A37,
    FINSEQ_3: 29;
    
        then (((L1
    + L2) 
    (#) r) 
    . k) 
    = ((r 
    /. k) 
    * ((L1 
    + L2) 
    . (r 
    /. k))) by 
    Def6;
    
        hence (((L1
    + L2) 
    (#) r) 
    . k) 
    = ((r 
    /. k) 
    * ( 
    0. R)) by 
    A38;
    
      end;
    
      
    
      then
    
      
    
    A39: ( 
    Sum ((L1 
    + L2) 
    (#) r)) 
    = (( 
    Sum r) 
    * ( 
    0. R)) by 
    A36,
    Lm2
    
      .= (
    0. V) by 
    VECTSP_2: 32;
    
      
    
      
    
    A40: ( 
    len p) 
    = ( 
    len (L1 
    (#) p)) by 
    Def6;
    
      now
    
        let k;
    
        assume
    
        
    
    A41: k 
    in ( 
    dom p); 
    
        then (p
    /. k) 
    = (p 
    . k) by 
    PARTFUN1:def 6;
    
        then (p
    /. k) 
    in C1 by 
    A1,
    A41,
    FUNCT_1:def 3;
    
        then
    
        
    
    A42: not (p 
    /. k) 
    in ( 
    Carrier L1) by 
    XBOOLE_0:def 5;
    
        k
    in ( 
    dom (L1 
    (#) p)) by 
    A40,
    A41,
    FINSEQ_3: 29;
    
        then ((L1
    (#) p) 
    . k) 
    = ((p 
    /. k) 
    * (L1 
    . (p 
    /. k))) by 
    Def6;
    
        hence ((L1
    (#) p) 
    . k) 
    = ((p 
    /. k) 
    * ( 
    0. R)) by 
    A42;
    
      end;
    
      
    
      then
    
      
    
    A43: ( 
    Sum (L1 
    (#) p)) 
    = (( 
    Sum p) 
    * ( 
    0. R)) by 
    A40,
    Lm2
    
      .= (
    0. V) by 
    VECTSP_2: 32;
    
      set f = ((L1
    + L2) 
    (#) FF); 
    
      consider H such that
    
      
    
    A44: H is 
    one-to-one and 
    
      
    
    A45: ( 
    rng H) 
    = ( 
    Carrier L2) and 
    
      
    
    A46: ( 
    Sum (L2 
    (#) H)) 
    = ( 
    Sum L2) by 
    Def7;
    
      set HH = (H
    ^ q); 
    
      (
    rng H) 
    misses ( 
    rng q) 
    
      proof
    
        set x = the
    Element of (( 
    rng H) 
    /\ ( 
    rng q)); 
    
        assume not thesis;
    
        then ((
    rng H) 
    /\ ( 
    rng q)) 
    <>  
    {} ; 
    
        then x
    in ( 
    Carrier L2) & x 
    in C2 by 
    A45,
    A7,
    XBOOLE_0:def 4;
    
        hence thesis by
    XBOOLE_0:def 5;
    
      end;
    
      then
    
      
    
    A47: HH is 
    one-to-one by 
    A44,
    A8,
    FINSEQ_3: 91;
    
      
    
      
    
    A48: ( 
    len q) 
    = ( 
    len (L2 
    (#) q)) by 
    Def6;
    
      now
    
        let k;
    
        assume
    
        
    
    A49: k 
    in ( 
    dom q); 
    
        then (q
    /. k) 
    = (q 
    . k) by 
    PARTFUN1:def 6;
    
        then (q
    /. k) 
    in C2 by 
    A7,
    A49,
    FUNCT_1:def 3;
    
        then
    
        
    
    A50: not (q 
    /. k) 
    in ( 
    Carrier L2) by 
    XBOOLE_0:def 5;
    
        k
    in ( 
    dom (L2 
    (#) q)) by 
    A48,
    A49,
    FINSEQ_3: 29;
    
        then ((L2
    (#) q) 
    . k) 
    = ((q 
    /. k) 
    * (L2 
    . (q 
    /. k))) by 
    Def6;
    
        hence ((L2
    (#) q) 
    . k) 
    = ((q 
    /. k) 
    * ( 
    0. R)) by 
    A50;
    
      end;
    
      
    
      then
    
      
    
    A51: ( 
    Sum (L2 
    (#) q)) 
    = (( 
    Sum q) 
    * ( 
    0. R)) by 
    A48,
    Lm2
    
      .= (
    0. V) by 
    VECTSP_2: 32;
    
      set g = (L1
    (#) GG); 
    
      
    
      
    
    A52: ( 
    len g) 
    = ( 
    len GG) by 
    Def6;
    
      then
    
      
    
    A53: ( 
    Seg ( 
    len GG)) 
    = ( 
    dom g) by 
    FINSEQ_1:def 3;
    
      (
    rng HH) 
    = (( 
    rng H) 
    \/ ( 
    rng q)) by 
    FINSEQ_1: 31;
    
      then (
    rng HH) 
    = (( 
    Carrier L2) 
    \/ A) by 
    A45,
    A7,
    XBOOLE_1: 39;
    
      then
    
      
    
    A54: ( 
    rng HH) 
    = A by 
    XBOOLE_1: 7,
    XBOOLE_1: 12;
    
      then
    
      
    
    A55: ( 
    len GG) 
    = ( 
    len HH) by 
    A47,
    A18,
    A16,
    FINSEQ_1: 48;
    
      deffunc
    
    Q(
    Nat) = (HH
    <- (GG 
    . $1)); 
    
      consider R be
    FinSequence such that 
    
      
    
    A56: ( 
    len R) 
    = ( 
    len HH) and 
    
      
    
    A57: for k be 
    Nat st k 
    in ( 
    dom R) holds (R 
    . k) 
    =  
    Q(k) from
    FINSEQ_1:sch 2;
    
      
    
      
    
    A58: ( 
    dom R) 
    = ( 
    Seg ( 
    len HH)) by 
    A56,
    FINSEQ_1:def 3;
    
      
    
    A59: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A60: x 
    in ( 
    dom GG); 
    
        then
    
        reconsider n = x as
    Nat by 
    FINSEQ_3: 23;
    
        (GG
    . n) 
    in ( 
    rng HH) by 
    A16,
    A54,
    A60,
    FUNCT_1:def 3;
    
        then
    
        
    
    A61: HH 
    just_once_values (GG 
    . n) by 
    A47,
    FINSEQ_4: 8;
    
        n
    in ( 
    Seg ( 
    len HH)) by 
    A55,
    A60,
    FINSEQ_1:def 3;
    
        
    
        then (HH
    . (R 
    . n)) 
    = (HH 
    . (HH 
    <- (GG 
    . n))) by 
    A57,
    A58
    
        .= (GG
    . n) by 
    A61,
    FINSEQ_4:def 3;
    
        hence (GG
    . x) 
    = (HH 
    . (R 
    . x)); 
    
      end;
    
      
    
      
    
    A62: ( 
    dom GG) 
    = ( 
    dom HH) by 
    A55,
    FINSEQ_3: 29;
    
      
    
      
    
    A63: ( 
    rng R) 
    c= ( 
    dom HH) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng R); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A64: y 
    in ( 
    dom R) and 
    
        
    
    A65: (R 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
        reconsider y as
    Nat by 
    A64,
    FINSEQ_3: 23;
    
        y
    in ( 
    dom HH) by 
    A56,
    A64,
    FINSEQ_3: 29;
    
        then (GG
    . y) 
    in ( 
    rng HH) by 
    A16,
    A54,
    A62,
    FUNCT_1:def 3;
    
        then
    
        
    
    A66: HH 
    just_once_values (GG 
    . y) by 
    A47,
    FINSEQ_4: 8;
    
        (R
    . y) 
    = (HH 
    <- (GG 
    . y)) by 
    A57,
    A64;
    
        hence thesis by
    A65,
    A66,
    FINSEQ_4:def 3;
    
      end;
    
      now
    
        let x be
    object;
    
        thus x
    in ( 
    dom GG) implies x 
    in ( 
    dom R) & (R 
    . x) 
    in ( 
    dom HH) 
    
        proof
    
          assume x
    in ( 
    dom GG); 
    
          then x
    in ( 
    Seg ( 
    len R)) by 
    A55,
    A56,
    FINSEQ_1:def 3;
    
          hence x
    in ( 
    dom R) by 
    FINSEQ_1:def 3;
    
          then (R
    . x) 
    in ( 
    rng R) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A63;
    
        end;
    
        assume that
    
        
    
    A67: x 
    in ( 
    dom R) and (R 
    . x) 
    in ( 
    dom HH); 
    
        x
    in ( 
    Seg ( 
    len R)) by 
    A67,
    FINSEQ_1:def 3;
    
        hence x
    in ( 
    dom GG) by 
    A55,
    A56,
    FINSEQ_1:def 3;
    
      end;
    
      then
    
      
    
    A68: GG 
    = (HH 
    * R) by 
    A59,
    FUNCT_1: 10;
    
      (
    dom HH) 
    c= ( 
    rng R) 
    
      proof
    
        set f = ((HH
    " ) 
    * GG); 
    
        let x be
    object;
    
        assume
    
        
    
    A69: x 
    in ( 
    dom HH); 
    
        (
    dom (HH 
    " )) 
    = ( 
    rng GG) by 
    A47,
    A16,
    A54,
    FUNCT_1: 33;
    
        
    
        then
    
        
    
    A70: ( 
    rng f) 
    = ( 
    rng (HH 
    " )) by 
    RELAT_1: 28
    
        .= (
    dom HH) by 
    A47,
    FUNCT_1: 33;
    
        f
    = (((HH 
    " ) 
    * HH) 
    * R) by 
    A68,
    RELAT_1: 36
    
        .= ((
    id ( 
    dom HH)) 
    * R) by 
    A47,
    FUNCT_1: 39
    
        .= R by
    A63,
    RELAT_1: 53;
    
        hence thesis by
    A69,
    A70;
    
      end;
    
      then
    
      
    
    A71: ( 
    dom HH) 
    = ( 
    rng R) by 
    A63;
    
      
    
      
    
    A72: ( 
    Sum g) 
    = ( 
    Sum ((L1 
    (#) G) 
    ^ (L1 
    (#) p))) by 
    Th28
    
      .= ((
    Sum (L1 
    (#) G)) 
    + ( 
    0. V)) by 
    A43,
    RLVECT_1: 41
    
      .= (
    Sum (L1 
    (#) G)) by 
    RLVECT_1:def 4;
    
      set h = (L2
    (#) HH); 
    
      
    
      
    
    A73: ( 
    Sum h) 
    = ( 
    Sum ((L2 
    (#) H) 
    ^ (L2 
    (#) q))) by 
    Th28
    
      .= ((
    Sum (L2 
    (#) H)) 
    + ( 
    0. V)) by 
    A51,
    RLVECT_1: 41
    
      .= (
    Sum (L2 
    (#) H)) by 
    RLVECT_1:def 4;
    
      
    
      
    
    A74: ( 
    Sum f) 
    = ( 
    Sum (((L1 
    + L2) 
    (#) F) 
    ^ ((L1 
    + L2) 
    (#) r))) by 
    Th28
    
      .= ((
    Sum ((L1 
    + L2) 
    (#) F)) 
    + ( 
    0. V)) by 
    A39,
    RLVECT_1: 41
    
      .= (
    Sum ((L1 
    + L2) 
    (#) F)) by 
    RLVECT_1:def 4;
    
      
    
      
    
    A75: ( 
    dom P) 
    = ( 
    dom FF) by 
    A20,
    FINSEQ_3: 29;
    
      then
    
      
    
    A76: P is 
    one-to-one by 
    A35,
    FINSEQ_4: 60;
    
      
    
      
    
    A77: ( 
    dom R) 
    = ( 
    dom HH) by 
    A56,
    FINSEQ_3: 29;
    
      then
    
      
    
    A78: R is 
    one-to-one by 
    A71,
    FINSEQ_4: 60;
    
      reconsider R as
    Function of ( 
    dom HH), ( 
    dom HH) by 
    A63,
    A77,
    FUNCT_2: 2;
    
      
    
      
    
    A79: ( 
    len h) 
    = ( 
    len HH) by 
    Def6;
    
      then
    
      
    
    A80: ( 
    dom h) 
    = ( 
    dom HH) by 
    FINSEQ_3: 29;
    
      then
    
      reconsider R as
    Function of ( 
    dom h), ( 
    dom h); 
    
      reconsider Hp = (h
    * R) as 
    FinSequence of V by 
    FINSEQ_2: 47;
    
      reconsider R as
    Permutation of ( 
    dom h) by 
    A71,
    A78,
    A80,
    FUNCT_2: 57;
    
      
    
      
    
    A81: Hp 
    = (h 
    * R); 
    
      then
    
      
    
    A82: ( 
    len Hp) 
    = ( 
    len GG) by 
    A55,
    A79,
    FINSEQ_2: 44;
    
      reconsider P as
    Function of ( 
    dom FF), ( 
    dom FF) by 
    A27,
    A75,
    FUNCT_2: 2;
    
      
    
      
    
    A83: ( 
    len f) 
    = ( 
    len FF) by 
    Def6;
    
      then
    
      
    
    A84: ( 
    dom f) 
    = ( 
    dom FF) by 
    FINSEQ_3: 29;
    
      then
    
      reconsider P as
    Function of ( 
    dom f), ( 
    dom f); 
    
      reconsider Fp = (f
    * P) as 
    FinSequence of V by 
    FINSEQ_2: 47;
    
      reconsider P as
    Permutation of ( 
    dom f) by 
    A35,
    A76,
    A84,
    FUNCT_2: 57;
    
      
    
      
    
    A85: Fp 
    = (f 
    * P); 
    
      then
    
      
    
    A86: ( 
    Sum Fp) 
    = ( 
    Sum f) by 
    RLVECT_2: 7;
    
      deffunc
    
    Q(
    Nat) = ((g
    /. $1) 
    + (Hp 
    /. $1)); 
    
      consider I be
    FinSequence such that 
    
      
    
    A87: ( 
    len I) 
    = ( 
    len GG) and 
    
      
    
    A88: for k be 
    Nat st k 
    in ( 
    dom I) holds (I 
    . k) 
    =  
    Q(k) from
    FINSEQ_1:sch 2;
    
      
    
      
    
    A89: ( 
    dom I) 
    = ( 
    Seg ( 
    len GG)) by 
    A87,
    FINSEQ_1:def 3;
    
      then
    
      
    
    A90: for k be 
    Nat st k 
    in ( 
    Seg ( 
    len GG)) holds (I 
    . k) 
    =  
    Q(k) by
    A88;
    
      (
    rng I) 
    c= the 
    carrier of V 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng I); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A91: y 
    in ( 
    dom I) and 
    
        
    
    A92: (I 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
        reconsider y as
    Nat by 
    A91,
    FINSEQ_3: 23;
    
        (I
    . y) 
    = ((g 
    /. y) 
    + (Hp 
    /. y)) by 
    A88,
    A91;
    
        hence thesis by
    A92;
    
      end;
    
      then
    
      reconsider I as
    FinSequence of V by 
    FINSEQ_1:def 4;
    
      
    
      
    
    A93: ( 
    len Fp) 
    = ( 
    len I) by 
    A19,
    A83,
    A85,
    A87,
    FINSEQ_2: 44;
    
      
    
    A94: 
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A95: x 
    in ( 
    Seg ( 
    len I)); 
    
        then
    
        reconsider k = x as
    Element of 
    NAT ; 
    
        
    
        
    
    A96: x 
    in ( 
    dom HH) by 
    A55,
    A87,
    A95,
    FINSEQ_1:def 3;
    
        then (R
    . k) 
    in ( 
    dom R) by 
    A71,
    A77,
    FUNCT_1:def 3;
    
        then
    
        reconsider j = (R
    . k) as 
    Nat by 
    FINSEQ_3: 23;
    
        
    
        
    
    A97: x 
    in ( 
    dom GG) by 
    A87,
    A95,
    FINSEQ_1:def 3;
    
        
    
        then
    
        
    
    A98: (HH 
    . j) 
    = (GG 
    . k) by 
    A59
    
        .= (GG
    /. k) by 
    A97,
    PARTFUN1:def 6;
    
        (P
    . k) 
    in ( 
    dom P) by 
    A26,
    A62,
    A35,
    A75,
    A96,
    FUNCT_1:def 3;
    
        then
    
        reconsider l = (P
    . k) as 
    Nat by 
    FINSEQ_3: 23;
    
        set v = (GG
    /. k); 
    
        
    
        
    
    A99: x 
    in ( 
    dom Fp) by 
    A93,
    A95,
    FINSEQ_1:def 3;
    
        
    
        
    
    A100: (FF 
    . l) 
    = (GG 
    . k) by 
    A23,
    A97
    
        .= (GG
    /. k) by 
    A97,
    PARTFUN1:def 6;
    
        (P
    . k) 
    in ( 
    dom FF) by 
    A26,
    A62,
    A35,
    A75,
    A96,
    FUNCT_1:def 3;
    
        
    
        then
    
        
    
    A101: (f 
    . l) 
    = (v 
    * ((L1 
    + L2) 
    . v)) by 
    A100,
    Th23
    
        .= (v
    * ((L1 
    . v) 
    + (L2 
    . v))) by 
    Def9
    
        .= ((v
    * (L1 
    . v)) 
    + (v 
    * (L2 
    . v))) by 
    VECTSP_2:def 9;
    
        
    
        
    
    A102: x 
    in ( 
    dom Hp) by 
    A87,
    A82,
    A95,
    FINSEQ_1:def 3;
    
        
    
        then
    
        
    
    A103: (Hp 
    /. k) 
    = ((h 
    * R) 
    . k) by 
    PARTFUN1:def 6
    
        .= (h
    . (R 
    . k)) by 
    A102,
    FUNCT_1: 12;
    
        (R
    . k) 
    in ( 
    dom HH) by 
    A71,
    A77,
    A96,
    FUNCT_1:def 3;
    
        then
    
        
    
    A104: (h 
    . j) 
    = (v 
    * (L2 
    . v)) by 
    A98,
    Th23;
    
        
    
        
    
    A105: x 
    in ( 
    dom g) by 
    A87,
    A52,
    A95,
    FINSEQ_1:def 3;
    
        
    
        then (g
    /. k) 
    = (g 
    . k) by 
    PARTFUN1:def 6
    
        .= (v
    * (L1 
    . v)) by 
    A105,
    Def6;
    
        
    
        hence (I
    . x) 
    = ((v 
    * (L1 
    . v)) 
    + (v 
    * (L2 
    . v))) by 
    A87,
    A88,
    A89,
    A95,
    A103,
    A104
    
        .= (Fp
    . x) by 
    A99,
    A101,
    FUNCT_1: 12;
    
      end;
    
      (
    dom I) 
    = ( 
    Seg ( 
    len I)) & ( 
    dom Fp) 
    = ( 
    Seg ( 
    len I)) by 
    A93,
    FINSEQ_1:def 3;
    
      then
    
      
    
    A106: I 
    = Fp by 
    A94;
    
      (
    Sum Hp) 
    = ( 
    Sum h) by 
    A81,
    RLVECT_2: 7;
    
      hence thesis by
    A11,
    A14,
    A46,
    A72,
    A73,
    A74,
    A86,
    A87,
    A90,
    A82,
    A52,
    A106,
    A53,
    RLVECT_2: 2;
    
    end;
    
    reserve R for
    domRing;
    
    reserve V for
    RightMod of R; 
    
    reserve L,L1,L2 for
    Linear_Combination of V; 
    
    reserve a for
    Scalar of R; 
    
    theorem :: 
    
    RMOD_4:59
    
    
    
    
    
    Th59: ( 
    Sum (L 
    * a)) 
    = (( 
    Sum L) 
    * a) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: a 
    <> ( 
    0. R); 
    
        set l = (L
    * a); 
    
        
    
        
    
    A2: ( 
    Carrier l) 
    = ( 
    Carrier L) by 
    A1,
    Th43;
    
        consider G be
    FinSequence of V such that 
    
        
    
    A3: G is 
    one-to-one and 
    
        
    
    A4: ( 
    rng G) 
    = ( 
    Carrier L) and 
    
        
    
    A5: ( 
    Sum L) 
    = ( 
    Sum (L 
    (#) G)) by 
    Def7;
    
        set g = (L
    (#) G); 
    
        consider F be
    FinSequence of V such that 
    
        
    
    A6: F is 
    one-to-one and 
    
        
    
    A7: ( 
    rng F) 
    = ( 
    Carrier (L 
    * a)) and 
    
        
    
    A8: ( 
    Sum (L 
    * a)) 
    = ( 
    Sum ((L 
    * a) 
    (#) F)) by 
    Def7;
    
        
    
        
    
    A9: ( 
    len G) 
    = ( 
    len F) by 
    A1,
    A6,
    A7,
    A3,
    A4,
    Th43,
    FINSEQ_1: 48;
    
        set f = ((L
    * a) 
    (#) F); 
    
        deffunc
    
    Q(
    Nat) = (F
    <- (G 
    . $1)); 
    
        consider P be
    FinSequence such that 
    
        
    
    A10: ( 
    len P) 
    = ( 
    len F) and 
    
        
    
    A11: for k be 
    Nat st k 
    in ( 
    dom P) holds (P 
    . k) 
    =  
    Q(k) from
    FINSEQ_1:sch 2;
    
        
    
        
    
    A12: ( 
    dom P) 
    = ( 
    Seg ( 
    len F)) by 
    A10,
    FINSEQ_1:def 3;
    
        
    
    A13: 
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A14: x 
    in ( 
    dom G); 
    
          then
    
          reconsider n = x as
    Nat by 
    FINSEQ_3: 23;
    
          (G
    . n) 
    in ( 
    rng F) by 
    A7,
    A4,
    A2,
    A14,
    FUNCT_1:def 3;
    
          then
    
          
    
    A15: F 
    just_once_values (G 
    . n) by 
    A6,
    FINSEQ_4: 8;
    
          n
    in ( 
    Seg ( 
    len F)) by 
    A9,
    A14,
    FINSEQ_1:def 3;
    
          
    
          then (F
    . (P 
    . n)) 
    = (F 
    . (F 
    <- (G 
    . n))) by 
    A11,
    A12
    
          .= (G
    . n) by 
    A15,
    FINSEQ_4:def 3;
    
          hence (G
    . x) 
    = (F 
    . (P 
    . x)); 
    
        end;
    
        
    
        
    
    A16: ( 
    rng P) 
    c= ( 
    dom F) 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    rng P); 
    
          then
    
          consider y be
    object such that 
    
          
    
    A17: y 
    in ( 
    dom P) and 
    
          
    
    A18: (P 
    . y) 
    = x by 
    FUNCT_1:def 3;
    
          reconsider y as
    Nat by 
    A17,
    FINSEQ_3: 23;
    
          y
    in ( 
    dom G) by 
    A10,
    A9,
    A17,
    FINSEQ_3: 29;
    
          then (G
    . y) 
    in ( 
    rng F) by 
    A7,
    A4,
    A2,
    FUNCT_1:def 3;
    
          then
    
          
    
    A19: F 
    just_once_values (G 
    . y) by 
    A6,
    FINSEQ_4: 8;
    
          (P
    . y) 
    = (F 
    <- (G 
    . y)) by 
    A11,
    A17;
    
          hence thesis by
    A18,
    A19,
    FINSEQ_4:def 3;
    
        end;
    
        now
    
          let x be
    object;
    
          thus x
    in ( 
    dom G) implies x 
    in ( 
    dom P) & (P 
    . x) 
    in ( 
    dom F) 
    
          proof
    
            assume x
    in ( 
    dom G); 
    
            then x
    in ( 
    Seg ( 
    len P)) by 
    A10,
    A9,
    FINSEQ_1:def 3;
    
            hence x
    in ( 
    dom P) by 
    FINSEQ_1:def 3;
    
            then (P
    . x) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
            hence thesis by
    A16;
    
          end;
    
          assume that
    
          
    
    A20: x 
    in ( 
    dom P) and (P 
    . x) 
    in ( 
    dom F); 
    
          x
    in ( 
    Seg ( 
    len P)) by 
    A20,
    FINSEQ_1:def 3;
    
          hence x
    in ( 
    dom G) by 
    A10,
    A9,
    FINSEQ_1:def 3;
    
        end;
    
        then
    
        
    
    A21: G 
    = (F 
    * P) by 
    A13,
    FUNCT_1: 10;
    
        (
    dom F) 
    c= ( 
    rng P) 
    
        proof
    
          set f = ((F
    " ) 
    * G); 
    
          let x be
    object;
    
          assume
    
          
    
    A22: x 
    in ( 
    dom F); 
    
          (
    dom (F 
    " )) 
    = ( 
    rng G) by 
    A6,
    A7,
    A4,
    A2,
    FUNCT_1: 33;
    
          
    
          then
    
          
    
    A23: ( 
    rng f) 
    = ( 
    rng (F 
    " )) by 
    RELAT_1: 28
    
          .= (
    dom F) by 
    A6,
    FUNCT_1: 33;
    
          f
    = (((F 
    " ) 
    * F) 
    * P) by 
    A21,
    RELAT_1: 36
    
          .= ((
    id ( 
    dom F)) 
    * P) by 
    A6,
    FUNCT_1: 39
    
          .= P by
    A16,
    RELAT_1: 53;
    
          hence thesis by
    A22,
    A23;
    
        end;
    
        then
    
        
    
    A24: ( 
    dom F) 
    = ( 
    rng P) by 
    A16;
    
        
    
        
    
    A25: ( 
    dom P) 
    = ( 
    dom F) by 
    A10,
    FINSEQ_3: 29;
    
        then
    
        
    
    A26: P is 
    one-to-one by 
    A24,
    FINSEQ_4: 60;
    
        reconsider P as
    Function of ( 
    dom F), ( 
    dom F) by 
    A16,
    A25,
    FUNCT_2: 2;
    
        
    
        
    
    A27: ( 
    len f) 
    = ( 
    len F) by 
    Def6;
    
        then
    
        
    
    A28: ( 
    dom f) 
    = ( 
    dom F) by 
    FINSEQ_3: 29;
    
        then
    
        reconsider P as
    Function of ( 
    dom f), ( 
    dom f); 
    
        reconsider Fp = (f
    * P) as 
    FinSequence of V by 
    FINSEQ_2: 47;
    
        reconsider P as
    Permutation of ( 
    dom f) by 
    A24,
    A26,
    A28,
    FUNCT_2: 57;
    
        
    
        
    
    A29: Fp 
    = (f 
    * P); 
    
        then
    
        
    
    A30: ( 
    len Fp) 
    = ( 
    len f) by 
    FINSEQ_2: 44;
    
        then
    
        
    
    A31: ( 
    len Fp) 
    = ( 
    len g) by 
    A9,
    A27,
    Def6;
    
        
    
    A32: 
    
        now
    
          let k;
    
          let v be
    Vector of V; 
    
          assume that
    
          
    
    A33: k 
    in ( 
    dom Fp) and 
    
          
    
    A34: v 
    = (g 
    . k); 
    
          
    
          
    
    A35: k 
    in ( 
    Seg ( 
    len g)) by 
    A31,
    A33,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A36: k 
    in ( 
    dom P) by 
    A10,
    A27,
    A30,
    A31,
    FINSEQ_1:def 3;
    
          
    
          
    
    A37: k 
    in ( 
    dom G) by 
    A9,
    A27,
    A30,
    A31,
    A35,
    FINSEQ_1:def 3;
    
          then (G
    . k) 
    in ( 
    rng G) by 
    FUNCT_1:def 3;
    
          then F
    just_once_values (G 
    . k) by 
    A6,
    A7,
    A4,
    A2,
    FINSEQ_4: 8;
    
          then
    
          
    
    A38: (F 
    <- (G 
    . k)) 
    in ( 
    dom F) by 
    FINSEQ_4:def 3;
    
          then
    
          reconsider i = (F
    <- (G 
    . k)) as 
    Nat by 
    FINSEQ_3: 23;
    
          
    
          
    
    A39: (G 
    /. k) 
    = (G 
    . k) by 
    A37,
    PARTFUN1:def 6
    
          .= (F
    . (P 
    . k)) by 
    A21,
    A36,
    FUNCT_1: 13
    
          .= (F
    . i) by 
    A11,
    A12,
    A27,
    A30,
    A31,
    A35
    
          .= (F
    /. i) by 
    A38,
    PARTFUN1:def 6;
    
          
    
          
    
    A40: k 
    in ( 
    dom g) by 
    A35,
    FINSEQ_1:def 3;
    
          i
    in ( 
    Seg ( 
    len f)) by 
    A27,
    A38,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A41: i 
    in ( 
    dom f) by 
    FINSEQ_1:def 3;
    
          
    
          thus (Fp
    . k) 
    = (f 
    . (P 
    . k)) by 
    A36,
    FUNCT_1: 13
    
          .= (f
    . (F 
    <- (G 
    . k))) by 
    A11,
    A12,
    A27,
    A30,
    A31,
    A35
    
          .= ((F
    /. i) 
    * (l 
    . (F 
    /. i))) by 
    A41,
    Def6
    
          .= ((F
    /. i) 
    * ((L 
    . (F 
    /. i)) 
    * a)) by 
    Def10
    
          .= (((F
    /. i) 
    * (L 
    . (F 
    /. i))) 
    * a) by 
    VECTSP_2:def 9
    
          .= (v
    * a) by 
    A34,
    A40,
    A39,
    Def6;
    
        end;
    
        (
    Sum Fp) 
    = ( 
    Sum f) by 
    A29,
    RLVECT_2: 7;
    
        hence thesis by
    A8,
    A5,
    A31,
    A32,
    Th1;
    
      end;
    
        suppose
    
        
    
    A42: a 
    = ( 
    0. R); 
    
        
    
        hence (
    Sum (L 
    * a)) 
    = ( 
    Sum ( 
    ZeroLC V)) by 
    Th44
    
        .= (
    0. V) by 
    Lm3
    
        .= ((
    Sum L) 
    * a) by 
    A42,
    VECTSP_2: 32;
    
      end;
    
    end;
    
    theorem :: 
    
    RMOD_4:60
    
    
    
    
    
    Th60: ( 
    Sum ( 
    - L)) 
    = ( 
    - ( 
    Sum L)) 
    
    proof
    
      
    
      thus (
    Sum ( 
    - L)) 
    = (( 
    Sum L) 
    * ( 
    - ( 
    1_ R))) by 
    Th59
    
      .= (
    - ( 
    Sum L)) by 
    VECTSP_2: 32;
    
    end;
    
    theorem :: 
    
    RMOD_4:61
    
    (
    Sum (L1 
    - L2)) 
    = (( 
    Sum L1) 
    - ( 
    Sum L2)) 
    
    proof
    
      
    
      thus (
    Sum (L1 
    - L2)) 
    = (( 
    Sum L1) 
    + ( 
    Sum ( 
    - L2))) by 
    Th58
    
      .= ((
    Sum L1) 
    + ( 
    - ( 
    Sum L2))) by 
    Th60
    
      .= ((
    Sum L1) 
    - ( 
    Sum L2)) by 
    RLVECT_1:def 11;
    
    end;
    
    begin
    
    reserve x for
    set;
    
    reserve R for
    Ring;
    
    reserve V for
    RightMod of R; 
    
    reserve v,v1,v2 for
    Vector of V; 
    
    reserve A,B for
    Subset of V; 
    
    definition
    
      let R, V;
    
      let IT be
    Subset of V; 
    
      :: 
    
    RMOD_4:def13
    
      attr IT is
    
    linearly-independent means for l be 
    Linear_Combination of IT st ( 
    Sum l) 
    = ( 
    0. V) holds ( 
    Carrier l) 
    =  
    {} ; 
    
    end
    
    notation
    
      let R, V;
    
      let IT be
    Subset of V; 
    
      antonym IT is 
    
    linearly-dependent for IT is 
    linearly-independent;
    
    end
    
    theorem :: 
    
    RMOD_4:62
    
    A
    c= B & B is 
    linearly-independent implies A is 
    linearly-independent
    
    proof
    
      assume that
    
      
    
    A1: A 
    c= B and 
    
      
    
    A2: B is 
    linearly-independent;
    
      let l be
    Linear_Combination of A; 
    
      reconsider L = l as
    Linear_Combination of B by 
    A1,
    Th19;
    
      assume (
    Sum l) 
    = ( 
    0. V); 
    
      then (
    Carrier L) 
    =  
    {} by 
    A2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:63
    
    
    
    
    
    Th63: ( 
    0. R) 
    <> ( 
    1_ R) & A is 
    linearly-independent implies not ( 
    0. V) 
    in A 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    0. R) 
    <> ( 
    1_ R) and 
    
      
    
    A2: A is 
    linearly-independent and 
    
      
    
    A3: ( 
    0. V) 
    in A; 
    
      deffunc
    
    F(
    Element of V) = ( 
    0. R); 
    
      consider f be
    Function of the 
    carrier of V, the 
    carrier of R such that 
    
      
    
    A4: (f 
    . ( 
    0. V)) 
    = ( 
    1_ R) and 
    
      
    
    A5: for v be 
    Element of V st v 
    <> ( 
    0. V) holds (f 
    . v) 
    =  
    F(v) from
    FUNCT_2:sch 6;
    
      reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
      ex T be
    finite  
    Subset of V st for v st not v 
    in T holds (f 
    . v) 
    = ( 
    0. R) 
    
      proof
    
        take T =
    {(
    0. V)}; 
    
        let v;
    
        assume not v
    in T; 
    
        then v
    <> ( 
    0. V) by 
    TARSKI:def 1;
    
        hence thesis by
    A5;
    
      end;
    
      then
    
      reconsider f as
    Linear_Combination of V by 
    Def2;
    
      
    
      
    
    A6: ( 
    Carrier f) 
    =  
    {(
    0. V)} 
    
      proof
    
        thus (
    Carrier f) 
    c=  
    {(
    0. V)} 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    Carrier f); 
    
          then
    
          consider v such that
    
          
    
    A7: v 
    = x and 
    
          
    
    A8: (f 
    . v) 
    <> ( 
    0. R); 
    
          v
    = ( 
    0. V) by 
    A5,
    A8;
    
          hence thesis by
    A7,
    TARSKI:def 1;
    
        end;
    
        let x be
    object;
    
        assume x
    in  
    {(
    0. V)}; 
    
        then x
    = ( 
    0. V) by 
    TARSKI:def 1;
    
        hence thesis by
    A1,
    A4;
    
      end;
    
      then (
    Carrier f) 
    c= A by 
    A3,
    ZFMISC_1: 31;
    
      then
    
      reconsider f as
    Linear_Combination of A by 
    Def5;
    
      (
    Sum f) 
    = (( 
    0. V) 
    * (f 
    . ( 
    0. V))) by 
    A6,
    Th35
    
      .= (
    0. V) by 
    VECTSP_2: 32;
    
      hence contradiction by
    A2,
    A6;
    
    end;
    
    theorem :: 
    
    RMOD_4:64
    
    (
    {} the 
    carrier of V) is 
    linearly-independent
    
    proof
    
      let l be
    Linear_Combination of ( 
    {} the 
    carrier of V); 
    
      (
    Carrier l) 
    c=  
    {} by 
    Def5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RMOD_4:65
    
    
    
    
    
    Th65: ( 
    0. R) 
    <> ( 
    1_ R) & 
    {v1, v2} is
    linearly-independent implies v1 
    <> ( 
    0. V) & v2 
    <> ( 
    0. V) 
    
    proof
    
      
    
      
    
    A1: v1 
    in  
    {v1, v2} & v2
    in  
    {v1, v2} by
    TARSKI:def 2;
    
      assume (
    0. R) 
    <> ( 
    1_ R) & 
    {v1, v2} is
    linearly-independent;
    
      hence thesis by
    A1,
    Th63;
    
    end;
    
    theorem :: 
    
    RMOD_4:66
    
    (
    0. R) 
    <> ( 
    1_ R) implies 
    {v, (
    0. V)} is 
    linearly-dependent & 
    {(
    0. V), v} is 
    linearly-dependent by 
    Th65;
    
    reserve R for
    domRing;
    
    reserve V for
    RightMod of R; 
    
    reserve v,u for
    Vector of V; 
    
    reserve A,B for
    Subset of V; 
    
    reserve l for
    Linear_Combination of A; 
    
    reserve f,g for
    Function of the 
    carrier of V, the 
    carrier of R; 
    
    definition
    
      let R, V, A;
    
      :: 
    
    RMOD_4:def14
    
      func
    
    Lin (A) -> 
    strict  
    Submodule of V means 
    
      :
    
    Def14: the 
    carrier of it 
    = the set of all ( 
    Sum l); 
    
      existence
    
      proof
    
        set A1 = the set of all (
    Sum l); 
    
        reconsider l = (
    ZeroLC V) as 
    Linear_Combination of A by 
    Th20;
    
        A1
    c= the 
    carrier of V 
    
        proof
    
          let x be
    object;
    
          assume x
    in A1; 
    
          then ex l st x
    = ( 
    Sum l); 
    
          hence thesis;
    
        end;
    
        then
    
        reconsider A1 as
    Subset of V; 
    
        
    
        
    
    A1: A1 is 
    linearly-closed
    
        proof
    
          thus for v, u st v
    in A1 & u 
    in A1 holds (v 
    + u) 
    in A1 
    
          proof
    
            let v, u;
    
            assume that
    
            
    
    A2: v 
    in A1 and 
    
            
    
    A3: u 
    in A1; 
    
            consider l1 be
    Linear_Combination of A such that 
    
            
    
    A4: v 
    = ( 
    Sum l1) by 
    A2;
    
            consider l2 be
    Linear_Combination of A such that 
    
            
    
    A5: u 
    = ( 
    Sum l2) by 
    A3;
    
            reconsider f = (l1
    + l2) as 
    Linear_Combination of A by 
    Th38;
    
            (v
    + u) 
    = ( 
    Sum f) by 
    A4,
    A5,
    Th58;
    
            hence thesis;
    
          end;
    
          let a be
    Scalar of R, v; 
    
          assume v
    in A1; 
    
          then
    
          consider l such that
    
          
    
    A6: v 
    = ( 
    Sum l); 
    
          reconsider f = (l
    * a) as 
    Linear_Combination of A by 
    Th45;
    
          (v
    * a) 
    = ( 
    Sum f) by 
    A6,
    Th59;
    
          hence thesis;
    
        end;
    
        (
    Sum l) 
    = ( 
    0. V) by 
    Lm3;
    
        then (
    0. V) 
    in A1; 
    
        hence thesis by
    A1,
    RMOD_2: 34;
    
      end;
    
      uniqueness by
    RMOD_2: 29;
    
    end
    
    theorem :: 
    
    RMOD_4:67
    
    
    
    
    
    Th67: x 
    in ( 
    Lin A) iff ex l st x 
    = ( 
    Sum l) 
    
    proof
    
      thus x
    in ( 
    Lin A) implies ex l st x 
    = ( 
    Sum l) 
    
      proof
    
        assume x
    in ( 
    Lin A); 
    
        then x
    in the 
    carrier of ( 
    Lin A) by 
    STRUCT_0:def 5;
    
        then x
    in the set of all ( 
    Sum l) by 
    Def14;
    
        hence thesis;
    
      end;
    
      given k be
    Linear_Combination of A such that 
    
      
    
    A1: x 
    = ( 
    Sum k); 
    
      x
    in the set of all ( 
    Sum l) by 
    A1;
    
      then x
    in the 
    carrier of ( 
    Lin A) by 
    Def14;
    
      hence thesis by
    STRUCT_0:def 5;
    
    end;
    
    theorem :: 
    
    RMOD_4:68
    
    
    
    
    
    Th68: x 
    in A implies x 
    in ( 
    Lin A) 
    
    proof
    
      deffunc
    
    F(
    Element of V) = ( 
    0. R); 
    
      assume
    
      
    
    A1: x 
    in A; 
    
      then
    
      reconsider v = x as
    Vector of V; 
    
      consider f be
    Function of the 
    carrier of V, the 
    carrier of R such that 
    
      
    
    A2: (f 
    . v) 
    = ( 
    1_ R) and 
    
      
    
    A3: for u st u 
    <> v holds (f 
    . u) 
    =  
    F(u) from
    FUNCT_2:sch 6;
    
      reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
      ex T be
    finite  
    Subset of V st for u st not u 
    in T holds (f 
    . u) 
    = ( 
    0. R) 
    
      proof
    
        take T =
    {v};
    
        let u;
    
        assume not u
    in T; 
    
        then u
    <> v by 
    TARSKI:def 1;
    
        hence thesis by
    A3;
    
      end;
    
      then
    
      reconsider f as
    Linear_Combination of V by 
    Def2;
    
      
    
      
    
    A4: ( 
    Carrier f) 
    c=  
    {v}
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Carrier f); 
    
        then
    
        consider u such that
    
        
    
    A5: x 
    = u and 
    
        
    
    A6: (f 
    . u) 
    <> ( 
    0. R); 
    
        u
    = v by 
    A3,
    A6;
    
        hence thesis by
    A5,
    TARSKI:def 1;
    
      end;
    
      then
    
      reconsider f as
    Linear_Combination of 
    {v} by
    Def5;
    
      
    
      
    
    A7: ( 
    Sum f) 
    = (v 
    * ( 
    1_ R)) by 
    A2,
    Th32
    
      .= v by
    VECTSP_2:def 9;
    
      
    {v}
    c= A by 
    A1,
    ZFMISC_1: 31;
    
      then (
    Carrier f) 
    c= A by 
    A4;
    
      then
    
      reconsider f as
    Linear_Combination of A by 
    Def5;
    
      (
    Sum f) 
    = v by 
    A7;
    
      hence thesis by
    Th67;
    
    end;
    
    theorem :: 
    
    RMOD_4:69
    
    (
    Lin ( 
    {} the 
    carrier of V)) 
    = ( 
    (0). V) 
    
    proof
    
      set A = (
    Lin ( 
    {} the 
    carrier of V)); 
    
      now
    
        let v;
    
        thus v
    in A implies v 
    in ( 
    (0). V) 
    
        proof
    
          assume v
    in A; 
    
          then
    
          
    
    A1: v 
    in the 
    carrier of A by 
    STRUCT_0:def 5;
    
          the
    carrier of A 
    = the set of all ( 
    Sum l0) where l0 be 
    Linear_Combination of ( 
    {} the 
    carrier of V) by 
    Def14;
    
          then ex l0 be
    Linear_Combination of ( 
    {} the 
    carrier of V) st v 
    = ( 
    Sum l0) by 
    A1;
    
          then v
    = ( 
    0. V) by 
    Th31;
    
          hence thesis by
    RMOD_2: 35;
    
        end;
    
        assume v
    in ( 
    (0). V); 
    
        then v
    = ( 
    0. V) by 
    RMOD_2: 35;
    
        hence v
    in A by 
    RMOD_2: 17;
    
      end;
    
      hence thesis by
    RMOD_2: 30;
    
    end;
    
    theorem :: 
    
    RMOD_4:70
    
    (
    Lin A) 
    = ( 
    (0). V) implies A 
    =  
    {} or A 
    =  
    {(
    0. V)} 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    Lin A) 
    = ( 
    (0). V) and 
    
      
    
    A2: A 
    <>  
    {} ; 
    
      thus A
    c=  
    {(
    0. V)} 
    
      proof
    
        let x be
    object;
    
        assume x
    in A; 
    
        then x
    in ( 
    Lin A) by 
    Th68;
    
        then x
    = ( 
    0. V) by 
    A1,
    RMOD_2: 35;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      set y = the
    Element of A; 
    
      let x be
    object;
    
      assume x
    in  
    {(
    0. V)}; 
    
      then
    
      
    
    A3: x 
    = ( 
    0. V) by 
    TARSKI:def 1;
    
      y
    in A & y 
    in ( 
    Lin A) by 
    A2,
    Th68;
    
      hence thesis by
    A1,
    A3,
    RMOD_2: 35;
    
    end;
    
    theorem :: 
    
    RMOD_4:71
    
    
    
    
    
    Th71: for W be 
    strict  
    Submodule of V st ( 
    0. R) 
    <> ( 
    1_ R) & A 
    = the 
    carrier of W holds ( 
    Lin A) 
    = W 
    
    proof
    
      let W be
    strict  
    Submodule of V; 
    
      assume that
    
      
    
    A1: ( 
    0. R) 
    <> ( 
    1_ R) and 
    
      
    
    A2: A 
    = the 
    carrier of W; 
    
      now
    
        let v;
    
        thus v
    in ( 
    Lin A) implies v 
    in W 
    
        proof
    
          assume v
    in ( 
    Lin A); 
    
          then
    
          
    
    A3: ex l st v 
    = ( 
    Sum l) by 
    Th67;
    
          A is
    linearly-closed by 
    A2,
    RMOD_2: 33;
    
          then v
    in the 
    carrier of W by 
    A1,
    A2,
    A3,
    Th29;
    
          hence thesis by
    STRUCT_0:def 5;
    
        end;
    
        v
    in W iff v 
    in the 
    carrier of W by 
    STRUCT_0:def 5;
    
        hence v
    in W implies v 
    in ( 
    Lin A) by 
    A2,
    Th68;
    
      end;
    
      hence thesis by
    RMOD_2: 30;
    
    end;
    
    theorem :: 
    
    RMOD_4:72
    
    for V be
    strict  
    RightMod of R, A be 
    Subset of V st ( 
    0. R) 
    <> ( 
    1_ R) & A 
    = the 
    carrier of V holds ( 
    Lin A) 
    = V 
    
    proof
    
      let V be
    strict  
    RightMod of R, A be 
    Subset of V such that 
    
      
    
    A1: ( 
    0. R) 
    <> ( 
    1_ R); 
    
      assume
    
      
    
    A2: A 
    = the 
    carrier of V; 
    
      (
    (Omega). V) 
    = V; 
    
      hence thesis by
    A1,
    A2,
    Th71;
    
    end;
    
    theorem :: 
    
    RMOD_4:73
    
    
    
    
    
    Th73: A 
    c= B implies ( 
    Lin A) is 
    Submodule of ( 
    Lin B) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= B; 
    
      now
    
        let v;
    
        assume v
    in ( 
    Lin A); 
    
        then
    
        consider l such that
    
        
    
    A2: v 
    = ( 
    Sum l) by 
    Th67;
    
        reconsider l as
    Linear_Combination of B by 
    A1,
    Th19;
    
        (
    Sum l) 
    = v by 
    A2;
    
        hence v
    in ( 
    Lin B) by 
    Th67;
    
      end;
    
      hence thesis by
    RMOD_2: 28;
    
    end;
    
    theorem :: 
    
    RMOD_4:74
    
    for V be
    strict  
    RightMod of R, A,B be 
    Subset of V st ( 
    Lin A) 
    = V & A 
    c= B holds ( 
    Lin B) 
    = V 
    
    proof
    
      let V be
    strict  
    RightMod of R, A,B be 
    Subset of V; 
    
      assume (
    Lin A) 
    = V & A 
    c= B; 
    
      then V is
    Submodule of ( 
    Lin B) by 
    Th73;
    
      hence thesis by
    RMOD_2: 25;
    
    end;
    
    theorem :: 
    
    RMOD_4:75
    
    (
    Lin (A 
    \/ B)) 
    = (( 
    Lin A) 
    + ( 
    Lin B)) 
    
    proof
    
      now
    
        deffunc
    
    G(
    object) = (
    0. R); 
    
        let v;
    
        assume v
    in ( 
    Lin (A 
    \/ B)); 
    
        then
    
        consider l be
    Linear_Combination of (A 
    \/ B) such that 
    
        
    
    A1: v 
    = ( 
    Sum l) by 
    Th67;
    
        deffunc
    
    F(
    object) = (l
    . $1); 
    
        set D = ((
    Carrier l) 
    \ A); 
    
        set C = ((
    Carrier l) 
    /\ A); 
    
        defpred
    
    P[
    object] means $1
    in C; 
    
        defpred
    
    C[
    object] means $1
    in D; 
    
        now
    
          let x;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          (f
    . v) 
    in the 
    carrier of R; 
    
          hence x
    in C implies (l 
    . x) 
    in the 
    carrier of R; 
    
          assume not x
    in C; 
    
          thus (
    0. R) 
    in the 
    carrier of R; 
    
        end;
    
        then
    
        
    
    A2: for x be 
    object st x 
    in the 
    carrier of V holds ( 
    P[x] implies
    F(x)
    in the 
    carrier of R) & ( not 
    P[x] implies
    G(x)
    in the 
    carrier of R); 
    
        consider f be
    Function of the 
    carrier of V, the 
    carrier of R such that 
    
        
    
    A3: for x be 
    object st x 
    in the 
    carrier of V holds ( 
    P[x] implies (f
    . x) 
    =  
    F(x)) & ( not
    P[x] implies (f
    . x) 
    =  
    G(x)) from
    FUNCT_2:sch 5(
    A2);
    
        reconsider C as
    finite  
    Subset of V; 
    
        reconsider f as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        for u holds not u
    in C implies (f 
    . u) 
    = ( 
    0. R) by 
    A3;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    Def2;
    
        
    
        
    
    A4: ( 
    Carrier f) 
    c= C 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    Carrier f); 
    
          then
    
          
    
    A5: ex u st x 
    = u & (f 
    . u) 
    <> ( 
    0. R); 
    
          assume not x
    in C; 
    
          hence thesis by
    A3,
    A5;
    
        end;
    
        C
    c= A by 
    XBOOLE_1: 17;
    
        then (
    Carrier f) 
    c= A by 
    A4;
    
        then
    
        reconsider f as
    Linear_Combination of A by 
    Def5;
    
        now
    
          let x;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          (g
    . v) 
    in the 
    carrier of R; 
    
          hence x
    in D implies (l 
    . x) 
    in the 
    carrier of R; 
    
          assume not x
    in D; 
    
          thus (
    0. R) 
    in the 
    carrier of R; 
    
        end;
    
        then
    
        
    
    A6: for x be 
    object st x 
    in the 
    carrier of V holds ( 
    C[x] implies
    F(x)
    in the 
    carrier of R) & ( not 
    C[x] implies
    G(x)
    in the 
    carrier of R); 
    
        consider g be
    Function of the 
    carrier of V, the 
    carrier of R such that 
    
        
    
    A7: for x be 
    object st x 
    in the 
    carrier of V holds ( 
    C[x] implies (g
    . x) 
    =  
    F(x)) & ( not
    C[x] implies (g
    . x) 
    =  
    G(x)) from
    FUNCT_2:sch 5(
    A6);
    
        reconsider D as
    finite  
    Subset of V; 
    
        reconsider g as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of R)) by 
    FUNCT_2: 8;
    
        for u holds not u
    in D implies (g 
    . u) 
    = ( 
    0. R) by 
    A7;
    
        then
    
        reconsider g as
    Linear_Combination of V by 
    Def2;
    
        
    
        
    
    A8: D 
    c= B 
    
        proof
    
          let x be
    object;
    
          assume x
    in D; 
    
          then
    
          
    
    A9: x 
    in ( 
    Carrier l) & not x 
    in A by 
    XBOOLE_0:def 5;
    
          (
    Carrier l) 
    c= (A 
    \/ B) by 
    Def5;
    
          hence thesis by
    A9,
    XBOOLE_0:def 3;
    
        end;
    
        (
    Carrier g) 
    c= D 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    Carrier g); 
    
          then
    
          
    
    A10: ex u st x 
    = u & (g 
    . u) 
    <> ( 
    0. R); 
    
          assume not x
    in D; 
    
          hence thesis by
    A7,
    A10;
    
        end;
    
        then (
    Carrier g) 
    c= B by 
    A8;
    
        then
    
        reconsider g as
    Linear_Combination of B by 
    Def5;
    
        l
    = (f 
    + g) 
    
        proof
    
          let v;
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A11: v 
    in C; 
    
              
    
    A12: 
    
              now
    
                assume v
    in D; 
    
                then not v
    in A by 
    XBOOLE_0:def 5;
    
                hence contradiction by
    A11,
    XBOOLE_0:def 4;
    
              end;
    
              
    
              thus ((f
    + g) 
    . v) 
    = ((f 
    . v) 
    + (g 
    . v)) by 
    Def9
    
              .= ((l
    . v) 
    + (g 
    . v)) by 
    A3,
    A11
    
              .= ((l
    . v) 
    + ( 
    0. R)) by 
    A7,
    A12
    
              .= (l
    . v) by 
    RLVECT_1: 4;
    
            end;
    
              suppose
    
              
    
    A13: not v 
    in C; 
    
              now
    
                per cases ;
    
                  suppose
    
                  
    
    A14: v 
    in ( 
    Carrier l); 
    
                  
    
    A15: 
    
                  now
    
                    assume not v
    in D; 
    
                    then not v
    in ( 
    Carrier l) or v 
    in A by 
    XBOOLE_0:def 5;
    
                    hence contradiction by
    A13,
    A14,
    XBOOLE_0:def 4;
    
                  end;
    
                  
    
                  thus ((f
    + g) 
    . v) 
    = ((f 
    . v) 
    + (g 
    . v)) by 
    Def9
    
                  .= ((
    0. R) 
    + (g 
    . v)) by 
    A3,
    A13
    
                  .= (g
    . v) by 
    RLVECT_1: 4
    
                  .= (l
    . v) by 
    A7,
    A15;
    
                end;
    
                  suppose
    
                  
    
    A16: not v 
    in ( 
    Carrier l); 
    
                  then
    
                  
    
    A17: not v 
    in D by 
    XBOOLE_0:def 5;
    
                  
    
                  
    
    A18: not v 
    in C by 
    A16,
    XBOOLE_0:def 4;
    
                  
    
                  thus ((f
    + g) 
    . v) 
    = ((f 
    . v) 
    + (g 
    . v)) by 
    Def9
    
                  .= ((
    0. R) 
    + (g 
    . v)) by 
    A3,
    A18
    
                  .= ((
    0. R) 
    + ( 
    0. R)) by 
    A7,
    A17
    
                  .= (
    0. R) by 
    RLVECT_1: 4
    
                  .= (l
    . v) by 
    A16;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        then
    
        
    
    A19: v 
    = (( 
    Sum f) 
    + ( 
    Sum g)) by 
    A1,
    Th58;
    
        (
    Sum f) 
    in ( 
    Lin A) & ( 
    Sum g) 
    in ( 
    Lin B) by 
    Th67;
    
        hence v
    in (( 
    Lin A) 
    + ( 
    Lin B)) by 
    A19,
    RMOD_3: 1;
    
      end;
    
      then
    
      
    
    A20: ( 
    Lin (A 
    \/ B)) is 
    Submodule of (( 
    Lin A) 
    + ( 
    Lin B)) by 
    RMOD_2: 28;
    
      (
    Lin A) is 
    Submodule of ( 
    Lin (A 
    \/ B)) & ( 
    Lin B) is 
    Submodule of ( 
    Lin (A 
    \/ B)) by 
    Th73,
    XBOOLE_1: 7;
    
      then ((
    Lin A) 
    + ( 
    Lin B)) is 
    Submodule of ( 
    Lin (A 
    \/ B)) by 
    RMOD_3: 35;
    
      hence thesis by
    A20,
    RMOD_2: 25;
    
    end;
    
    theorem :: 
    
    RMOD_4:76
    
    (
    Lin (A 
    /\ B)) is 
    Submodule of (( 
    Lin A) 
    /\ ( 
    Lin B)) 
    
    proof
    
      (
    Lin (A 
    /\ B)) is 
    Submodule of ( 
    Lin A) & ( 
    Lin (A 
    /\ B)) is 
    Submodule of ( 
    Lin B) by 
    Th73,
    XBOOLE_1: 17;
    
      hence thesis by
    RMOD_3: 20;
    
    end;