rvsum_2.miz
    
    begin
    
    definition
    
      let F be
    complex-valued  
    Relation;
    
      :: original:
    rng
    
      redefine
    
      func
    
    rng F -> 
    Subset of 
    COMPLEX ; 
    
      coherence by
    VALUED_0:def 1;
    
    end
    
    registration
    
      let D be non
    empty  
    set;
    
      let F be
    Function of 
    COMPLEX , D; 
    
      let F1 be
    complex-valued  
    FinSequence;
    
      cluster (F 
    * F1) -> 
    FinSequence-like;
    
      coherence
    
      proof
    
        consider n1 be
    Nat such that 
    
        
    
    A1: ( 
    dom F1) 
    = ( 
    Seg n1) by 
    FINSEQ_1:def 2;
    
        take n1;
    
        (
    dom F) 
    =  
    COMPLEX & ( 
    rng F1) 
    c=  
    COMPLEX by 
    FUNCT_2:def 1;
    
        hence thesis by
    A1,
    RELAT_1: 27;
    
      end;
    
    end
    
    reserve s for
    set, 
    
i,j for
    Nat, 
    
x,x1,x2 for
    Element of 
    COMPLEX , 
    
c,c1,c2,c3 for
    Complex, 
    
F,F1,F2 for
    complex-valued  
    FinSequence, 
    
R,R1,R2 for i
    -element  
    FinSequence of 
    COMPLEX ; 
    
    definition
    
      :: 
    
    RVSUM_2:def1
    
      func
    
    sqrcomplex -> 
    UnOp of 
    COMPLEX means 
    
      :
    
    Def1: for c holds (it 
    . c) 
    = (c 
    ^2 ); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of 
    COMPLEX ) = ($1 
    ^2 ); 
    
        consider G be
    Function of 
    COMPLEX , 
    COMPLEX such that 
    
        
    
    A1: for x be 
    Element of 
    COMPLEX holds (G 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 4;
    
        take G;
    
        let c;
    
        c
    in  
    COMPLEX by 
    XCMPLX_0:def 2;
    
        hence thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let G1,G2 be
    UnOp of 
    COMPLEX such that 
    
        
    
    A2: for c holds (G1 
    . c) 
    = (c 
    ^2 ) and 
    
        
    
    A3: for c holds (G2 
    . c) 
    = (c 
    ^2 ); 
    
        now
    
          let x;
    
          (G1
    . x) 
    = (x 
    ^2 ) by 
    A2;
    
          hence (G1
    . x) 
    = (G2 
    . x) by 
    A3;
    
        end;
    
        hence thesis by
    FUNCT_2: 63;
    
      end;
    
    end
    
    theorem :: 
    
    RVSUM_2:1
    
    
    sqrcomplex  
    is_distributive_wrt  
    multcomplex  
    
    proof
    
      let x1, x2;
    
      
    
      thus (
    sqrcomplex  
    . ( 
    multcomplex  
    . (x1,x2))) 
    = ( 
    sqrcomplex  
    . (x1 
    * x2)) by 
    BINOP_2:def 5
    
      .= ((x1
    * x2) 
    ^2 ) by 
    Def1
    
      .= ((x1
    ^2 ) 
    * (x2 
    ^2 )) 
    
      .= (
    multcomplex  
    . ((x1 
    ^2 ),(x2 
    ^2 ))) by 
    BINOP_2:def 5
    
      .= (
    multcomplex  
    . (( 
    sqrcomplex  
    . x1),(x2 
    ^2 ))) by 
    Def1
    
      .= (
    multcomplex  
    . (( 
    sqrcomplex  
    . x1),( 
    sqrcomplex  
    . x2))) by 
    Def1;
    
    end;
    
    
    
    
    
    Lm1: (( 
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) 
    . c1) 
    = (c 
    * c1) 
    
    proof
    
      reconsider a = c, s = c1 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      thus ((
    multcomplex  
    [;] (c,( 
    id  
    COMPLEX ))) 
    . c1) 
    = ( 
    multcomplex  
    . (a,(( 
    id  
    COMPLEX ) 
    . s))) by 
    FUNCOP_1: 53
    
      .= (
    multcomplex  
    . (a,s)) 
    
      .= (c
    * c1) by 
    BINOP_2:def 5;
    
    end;
    
    theorem :: 
    
    RVSUM_2:2
    
    (c
    multcomplex ) 
    is_distributive_wrt  
    addcomplex  
    
    proof
    
      c
    in  
    COMPLEX by 
    XCMPLX_0:def 2;
    
      hence thesis by
    FINSEQOP: 54,
    SEQ_4: 54;
    
    end;
    
    begin
    
    
    
    
    
    Lm2: F is 
    FinSequence of 
    COMPLEX  
    
    proof
    
      thus (
    rng F) 
    c=  
    COMPLEX ; 
    
    end;
    
    definition
    
      let F1, F2;
    
      :: original:
    +
    
      redefine
    
      :: 
    
    RVSUM_2:def2
    
      func F1
    
    + F2 -> 
    FinSequence of 
    COMPLEX equals ( 
    addcomplex  
    .: (F1,F2)); 
    
      coherence by
    Lm2;
    
      compatibility
    
      proof
    
        reconsider F3 = F1, F4 = F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
        let F be
    FinSequence of 
    COMPLEX ; 
    
        (
    dom  
    addcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    [:(
    rng F3), ( 
    rng F4):] 
    c= ( 
    dom  
    addcomplex ) by 
    ZFMISC_1: 96;
    
        then
    
        
    
    A1: ( 
    dom ( 
    addcomplex  
    .: (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    FUNCOP_1: 69;
    
        
    
        
    
    A2: ( 
    dom (F1 
    + F2)) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    VALUED_1:def 1;
    
        thus F
    = (F1 
    + F2) implies F 
    = ( 
    addcomplex  
    .: (F1,F2)) 
    
        proof
    
          assume
    
          
    
    A3: F 
    = (F1 
    + F2); 
    
          for z be
    set st z 
    in ( 
    dom ( 
    addcomplex  
    .: (F1,F2))) holds (F 
    . z) 
    = ( 
    addcomplex  
    . ((F1 
    . z),(F2 
    . z))) 
    
          proof
    
            let z be
    set;
    
            assume z
    in ( 
    dom ( 
    addcomplex  
    .: (F1,F2))); 
    
            
    
            hence (F
    . z) 
    = ((F1 
    . z) 
    + (F2 
    . z)) by 
    A2,
    A1,
    A3,
    VALUED_1:def 1
    
            .= (
    addcomplex  
    . ((F1 
    . z),(F2 
    . z))) by 
    BINOP_2:def 3;
    
          end;
    
          hence thesis by
    A2,
    A1,
    A3,
    FUNCOP_1: 21;
    
        end;
    
        assume
    
        
    
    A4: F 
    = ( 
    addcomplex  
    .: (F1,F2)); 
    
        now
    
          let c be
    object;
    
          assume c
    in ( 
    dom F); 
    
          
    
          hence (F
    . c) 
    = ( 
    addcomplex  
    . ((F1 
    . c),(F2 
    . c))) by 
    A4,
    FUNCOP_1: 22
    
          .= ((F1
    . c) 
    + (F2 
    . c)) by 
    BINOP_2:def 3;
    
        end;
    
        hence thesis by
    A1,
    A4,
    VALUED_1:def 1;
    
      end;
    
      commutativity
    
      proof
    
        let F be
    FinSequence of 
    COMPLEX ; 
    
        let F1, F2;
    
        assume
    
        
    
    A5: F 
    = ( 
    addcomplex  
    .: (F1,F2)); 
    
        reconsider F1, F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
        
    
        
    
    A6: ( 
    dom  
    addcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A7: 
    [:(
    rng F2), ( 
    rng F1):] 
    c= ( 
    dom  
    addcomplex ) by 
    ZFMISC_1: 96;
    
        
    [:(
    rng F1), ( 
    rng F2):] 
    c= ( 
    dom  
    addcomplex ) by 
    A6,
    ZFMISC_1: 96;
    
        
    
        then
    
        
    
    A8: ( 
    dom ( 
    addcomplex  
    .: (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    FUNCOP_1: 69
    
        .= (
    dom ( 
    addcomplex  
    .: (F2,F1))) by 
    A7,
    FUNCOP_1: 69;
    
        for z be
    set st z 
    in ( 
    dom ( 
    addcomplex  
    .: (F2,F1))) holds (F 
    . z) 
    = ( 
    addcomplex  
    . ((F2 
    . z),(F1 
    . z))) 
    
        proof
    
          let z be
    set;
    
          assume z
    in ( 
    dom ( 
    addcomplex  
    .: (F2,F1))); 
    
          
    
          hence (F
    . z) 
    = ( 
    addcomplex  
    . ((F1 
    . z),(F2 
    . z))) by 
    A5,
    A8,
    FUNCOP_1: 22
    
          .= ((F1
    . z) 
    + (F2 
    . z)) by 
    BINOP_2:def 3
    
          .= (
    addcomplex  
    . ((F2 
    . z),(F1 
    . z))) by 
    BINOP_2:def 3;
    
        end;
    
        hence thesis by
    A5,
    A8,
    FUNCOP_1: 21;
    
      end;
    
    end
    
    definition
    
      let i, R1, R2;
    
      :: original:
    +
    
      redefine
    
      func R1
    
    + R2 -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence by
    FINSEQ_2: 120;
    
    end
    
    theorem :: 
    
    RVSUM_2:3
    
    ((R1
    + R2) 
    . s) 
    = ((R1 
    . s) 
    + (R2 
    . s)) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: not s 
    in ( 
    Seg i); 
    
        then
    
        
    
    A2: not s 
    in ( 
    dom R2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A3: not s 
    in ( 
    dom R1) by 
    A1,
    FINSEQ_2: 124;
    
         not s
    in ( 
    dom (R1 
    + R2)) by 
    A1,
    FINSEQ_2: 124;
    
        
    
        hence ((R1
    + R2) 
    . s) 
    = ( 
    0  
    +  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((R1
    . s) 
    +  
    0 ) by 
    A3,
    FUNCT_1:def 2
    
        .= ((R1
    . s) 
    + (R2 
    . s)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose s
    in ( 
    Seg i); 
    
        then s
    in ( 
    dom (R1 
    + R2)) by 
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    RVSUM_2:4
    
    ((
    <*>  
    COMPLEX ) 
    + F) 
    = ( 
    <*>  
    COMPLEX ) 
    
    proof
    
      F is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      hence thesis by
    FINSEQ_2: 73;
    
    end;
    
    theorem :: 
    
    RVSUM_2:5
    
    (
    <*c1*>
    +  
    <*c2*>)
    =  
    <*(c1
    + c2)*> 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    <*s1*>
    +  
    <*s2*>)
    =  
    <*(
    addcomplex  
    . (s1,s2))*> by 
    FINSEQ_2: 74
    
      .=
    <*(c1
    + c2)*> by 
    BINOP_2:def 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:6
    
    ((i
    |-> c1) 
    + (i 
    |-> c2)) 
    = (i 
    |-> (c1 
    + c2)) 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      ((i
    |-> s1) 
    + (i 
    |-> s2)) 
    = (i 
    |-> ( 
    addcomplex  
    . (s1,s2))) by 
    FINSEQOP: 17
    
      .= (i
    |-> (c1 
    + c2)) by 
    BINOP_2:def 3;
    
      hence thesis;
    
    end;
    
    definition
    
      let F;
    
      :: original:
    -
    
      redefine
    
      :: 
    
    RVSUM_2:def3
    
      func
    
    - F -> 
    FinSequence of 
    COMPLEX equals ( 
    compcomplex  
    * F); 
    
      coherence by
    Lm2;
    
      compatibility
    
      proof
    
        let F1 be
    FinSequence of 
    COMPLEX ; 
    
        
    
        
    
    A1: ( 
    dom ( 
    - F)) 
    = ( 
    dom F) by 
    VALUED_1: 8;
    
        
    
        
    
    A2: ( 
    rng F) 
    c=  
    COMPLEX & ( 
    dom  
    compcomplex ) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A3: ( 
    dom ( 
    compcomplex  
    * F)) 
    = ( 
    dom F) by 
    RELAT_1: 27;
    
        thus F1
    = ( 
    - F) implies F1 
    = ( 
    compcomplex  
    * F) 
    
        proof
    
          assume
    
          
    
    A4: F1 
    = ( 
    - F); 
    
          now
    
            let c be
    object;
    
            assume
    
            
    
    A5: c 
    in ( 
    dom F1); 
    
            
    
            thus (F1
    . c) 
    = ( 
    - (F 
    . c)) by 
    A4,
    VALUED_1: 8
    
            .= (
    compcomplex  
    . (F 
    . c)) by 
    BINOP_2:def 1
    
            .= ((
    compcomplex  
    * F) 
    . c) by 
    A1,
    A4,
    A5,
    FUNCT_1: 13;
    
          end;
    
          hence thesis by
    A3,
    A4,
    FUNCT_1: 2,
    VALUED_1: 8;
    
        end;
    
        assume
    
        
    
    A6: F1 
    = ( 
    compcomplex  
    * F); 
    
        now
    
          let c be
    object;
    
          assume
    
          
    
    A7: c 
    in ( 
    dom F1); 
    
          
    
          thus ((
    - F) 
    . c) 
    = ( 
    - (F 
    . c)) by 
    VALUED_1: 8
    
          .= (
    compcomplex  
    . (F 
    . c)) by 
    BINOP_2:def 1
    
          .= ((
    compcomplex  
    * F) 
    . c) by 
    A6,
    A7,
    FUNCT_1: 12;
    
        end;
    
        hence thesis by
    A1,
    A2,
    A6,
    FUNCT_1: 2,
    RELAT_1: 27;
    
      end;
    
    end
    
    definition
    
      let i, R;
    
      :: original:
    -
    
      redefine
    
      func
    
    - R -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence by
    FINSEQ_2: 113;
    
    end
    
    theorem :: 
    
    RVSUM_2:7
    
    (
    -  
    <*c*>)
    =  
    <*(
    - c)*> 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    -  
    <*s*>)
    =  
    <*(
    compcomplex  
    . s)*> by 
    FINSEQ_2: 35
    
      .=
    <*(
    - c)*> by 
    BINOP_2:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:8
    
    
    
    
    
    Th8: ( 
    - (i 
    |-> c)) 
    = (i 
    |-> ( 
    - c)) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    - (i 
    |-> s)) 
    = (i 
    |-> ( 
    compcomplex  
    . s)) by 
    FINSEQOP: 16
    
      .= (i
    |-> ( 
    - c)) by 
    BINOP_2:def 1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:9
    
    (R1
    + R) 
    = (R2 
    + R) implies R1 
    = R2 
    
    proof
    
      assume (R1
    + R) 
    = (R2 
    + R); 
    
      then (R1
    + (R 
    + ( 
    - R))) 
    = ((R2 
    + R) 
    + ( 
    - R)) by 
    FINSEQOP: 28;
    
      then
    
      
    
    A1: (R1 
    + (R 
    + ( 
    - R))) 
    = (R2 
    + (R 
    + ( 
    - R))) by 
    FINSEQOP: 28;
    
      (R
    + ( 
    - R)) 
    = (i 
    |->  
    0c ) by 
    BINOP_2: 1,
    FINSEQOP: 73,
    SEQ_4: 51,
    SEQ_4: 52;
    
      then R1
    = (R2 
    + (i 
    |->  
    0c )) by 
    A1,
    BINOP_2: 1,
    FINSEQOP: 56;
    
      hence thesis by
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    RVSUM_2:10
    
    
    
    
    
    Th10: ( 
    - (F1 
    + F2)) 
    = (( 
    - F1) 
    + ( 
    - F2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (F1 
    + F2))) 
    = ( 
    dom (F1 
    + F2)) by 
    VALUED_1: 8;
    
      
    
      
    
    A2: ( 
    dom (F1 
    + F2)) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    VALUED_1:def 1;
    
      
    
      
    
    A3: ( 
    dom (( 
    - F1) 
    + ( 
    - F2))) 
    = (( 
    dom ( 
    - F1)) 
    /\ ( 
    dom ( 
    - F2))) by 
    VALUED_1:def 1
    
      .= ((
    dom F1) 
    /\ ( 
    dom ( 
    - F2))) by 
    VALUED_1: 8
    
      .= ((
    dom F1) 
    /\ ( 
    dom F2)) by 
    VALUED_1: 8;
    
      now
    
        let i;
    
        assume
    
        
    
    A4: i 
    in ( 
    dom ( 
    - (F1 
    + F2))); 
    
        
    
        thus ((
    - (F1 
    + F2)) 
    . i) 
    = ( 
    - ((F1 
    + F2) 
    . i)) by 
    VALUED_1: 8
    
        .= (
    - ((F1 
    . i) 
    + (F2 
    . i))) by 
    A1,
    A4,
    VALUED_1:def 1
    
        .= ((
    - (F1 
    . i)) 
    + ( 
    - (F2 
    . i))) 
    
        .= ((
    - (F1 
    . i)) 
    + (( 
    - F2) 
    . i)) by 
    VALUED_1: 8
    
        .= (((
    - F1) 
    . i) 
    + (( 
    - F2) 
    . i)) by 
    VALUED_1: 8
    
        .= (((
    - F1) 
    + ( 
    - F2)) 
    . i) by 
    A1,
    A2,
    A3,
    A4,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FINSEQ_1: 13,
    VALUED_1: 8;
    
    end;
    
    definition
    
      let F1, F2;
    
      :: original:
    -
    
      redefine
    
      :: 
    
    RVSUM_2:def4
    
      func F1
    
    - F2 -> 
    FinSequence of 
    COMPLEX equals ( 
    diffcomplex  
    .: (F1,F2)); 
    
      coherence by
    Lm2;
    
      compatibility
    
      proof
    
        reconsider F3 = F1, F4 = F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
        let F be
    FinSequence of 
    COMPLEX ; 
    
        
    
        
    
    A1: ( 
    dom (F1 
    - F2)) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    VALUED_1: 12;
    
        (
    dom  
    diffcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A2: 
    [:(
    rng F3), ( 
    rng F4):] 
    c= ( 
    dom  
    diffcomplex ) by 
    ZFMISC_1: 96;
    
        then
    
        
    
    A3: ( 
    dom ( 
    diffcomplex  
    .: (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    FUNCOP_1: 69;
    
        thus F
    = (F1 
    - F2) implies F 
    = ( 
    diffcomplex  
    .: (F1,F2)) 
    
        proof
    
          assume
    
          
    
    A4: F 
    = (F1 
    - F2); 
    
          for z be
    set st z 
    in ( 
    dom ( 
    diffcomplex  
    .: (F1,F2))) holds (F 
    . z) 
    = ( 
    diffcomplex  
    . ((F1 
    . z),(F2 
    . z))) 
    
          proof
    
            let z be
    set;
    
            assume z
    in ( 
    dom ( 
    diffcomplex  
    .: (F1,F2))); 
    
            
    
            hence (F
    . z) 
    = ((F1 
    . z) 
    - (F2 
    . z)) by 
    A1,
    A3,
    A4,
    VALUED_1: 13
    
            .= (
    diffcomplex  
    . ((F1 
    . z),(F2 
    . z))) by 
    BINOP_2:def 4;
    
          end;
    
          hence thesis by
    A1,
    A3,
    A4,
    FUNCOP_1: 21;
    
        end;
    
        assume
    
        
    
    A5: F 
    = ( 
    diffcomplex  
    .: (F1,F2)); 
    
        now
    
          let c be
    object;
    
          assume c
    in ( 
    dom F); 
    
          
    
          hence (F
    . c) 
    = ( 
    diffcomplex  
    . ((F1 
    . c),(F2 
    . c))) by 
    A5,
    FUNCOP_1: 22
    
          .= ((F1
    . c) 
    - (F2 
    . c)) by 
    BINOP_2:def 4;
    
        end;
    
        hence thesis by
    A1,
    A2,
    A5,
    FUNCOP_1: 69,
    VALUED_1: 14;
    
      end;
    
    end
    
    definition
    
      let i, R1, R2;
    
      :: original:
    -
    
      redefine
    
      func R1
    
    - R2 -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence by
    FINSEQ_2: 120;
    
    end
    
    theorem :: 
    
    RVSUM_2:11
    
    ((R1
    - R2) 
    . s) 
    = ((R1 
    . s) 
    - (R2 
    . s)) 
    
    proof
    
      per cases ;
    
        suppose
    
        
    
    A1: not s 
    in ( 
    Seg i); 
    
        then
    
        
    
    A2: not s 
    in ( 
    dom R2) by 
    FINSEQ_2: 124;
    
        
    
        
    
    A3: not s 
    in ( 
    dom R1) by 
    A1,
    FINSEQ_2: 124;
    
         not s
    in ( 
    dom (R1 
    - R2)) by 
    A1,
    FINSEQ_2: 124;
    
        
    
        hence ((R1
    - R2) 
    . s) 
    = ( 
    0  
    -  
    0 ) by 
    FUNCT_1:def 2
    
        .= ((R1
    . s) 
    -  
    0 ) by 
    A3,
    FUNCT_1:def 2
    
        .= ((R1
    . s) 
    - (R2 
    . s)) by 
    A2,
    FUNCT_1:def 2;
    
      end;
    
        suppose s
    in ( 
    Seg i); 
    
        then s
    in ( 
    dom (R1 
    - R2)) by 
    FINSEQ_2: 124;
    
        hence thesis by
    VALUED_1: 13;
    
      end;
    
    end;
    
    theorem :: 
    
    RVSUM_2:12
    
    ((
    <*>  
    COMPLEX ) 
    - F) 
    = ( 
    <*>  
    COMPLEX ) & (F 
    - ( 
    <*>  
    COMPLEX )) 
    = ( 
    <*>  
    COMPLEX ) 
    
    proof
    
      F is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      hence thesis by
    FINSEQ_2: 73;
    
    end;
    
    theorem :: 
    
    RVSUM_2:13
    
    (
    <*c1*>
    -  
    <*c2*>)
    =  
    <*(c1
    - c2)*> 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    <*s1*>
    -  
    <*s2*>)
    =  
    <*(
    diffcomplex  
    . (s1,s2))*> by 
    FINSEQ_2: 74
    
      .=
    <*(c1
    - c2)*> by 
    BINOP_2:def 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:14
    
    ((i
    |-> c1) 
    - (i 
    |-> c2)) 
    = (i 
    |-> (c1 
    - c2)) 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      ((i
    |-> s1) 
    - (i 
    |-> s2)) 
    = (i 
    |-> ( 
    diffcomplex  
    . (s1,s2))) by 
    FINSEQOP: 17
    
      .= (i
    |-> (c1 
    - c2)) by 
    BINOP_2:def 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:15
    
    (R
    - (i 
    |->  
    0c )) 
    = R 
    
    proof
    
      
    
      thus (R
    - (i 
    |->  
    0c )) 
    = (R 
    + (i 
    |-> ( 
    -  
    0 ))) by 
    Th8
    
      .= R by
    BINOP_2: 1,
    FINSEQOP: 56;
    
    end;
    
    theorem :: 
    
    RVSUM_2:16
    
    (
    - (F1 
    - F2)) 
    = (F2 
    - F1) 
    
    proof
    
      
    
      thus (
    - (F1 
    - F2)) 
    = (( 
    - F1) 
    + ( 
    - ( 
    - F2))) by 
    Th10
    
      .= (F2
    - F1); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:17
    
    (
    - (F1 
    - F2)) 
    = (( 
    - F1) 
    + F2) 
    
    proof
    
      
    
      thus (
    - (F1 
    - F2)) 
    = (( 
    - F1) 
    + ( 
    - ( 
    - F2))) by 
    Th10
    
      .= ((
    - F1) 
    + F2); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:18
    
    (R1
    - R2) 
    = (i 
    |->  
    0c ) implies R1 
    = R2 
    
    proof
    
      assume (R1
    - R2) 
    = (i 
    |->  
    0c ); 
    
      then R1
    = ( 
    - ( 
    - R2)) by 
    BINOP_2: 1,
    FINSEQOP: 74,
    SEQ_4: 51,
    SEQ_4: 52;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:19
    
    R1
    = ((R1 
    + R) 
    - R) 
    
    proof
    
      
    
      thus R1
    = (R1 
    + (i 
    |->  
    0c )) by 
    BINOP_2: 1,
    FINSEQOP: 56
    
      .= (R1
    + (R 
    - R)) by 
    BINOP_2: 1,
    FINSEQOP: 73,
    SEQ_4: 51,
    SEQ_4: 52
    
      .= ((R1
    + R) 
    - R) by 
    RFUNCT_1: 23;
    
    end;
    
    theorem :: 
    
    RVSUM_2:20
    
    R1
    = ((R1 
    - R) 
    + R) 
    
    proof
    
      
    
      thus R1
    = (R1 
    + (i 
    |->  
    0c )) by 
    BINOP_2: 1,
    FINSEQOP: 56
    
      .= (R1
    + (( 
    - R) 
    + R)) by 
    BINOP_2: 1,
    FINSEQOP: 73,
    SEQ_4: 51,
    SEQ_4: 52
    
      .= ((R1
    - R) 
    + R) by 
    FINSEQOP: 28;
    
    end;
    
    notation
    
      let F, c;
    
      synonym c 
    
    * F for c 
    (#) F; 
    
    end
    
    definition
    
      let F, c;
    
      :: original:
    *
    
      redefine
    
      :: 
    
    RVSUM_2:def5
    
      func c
    
    * F -> 
    FinSequence of 
    COMPLEX equals ((c 
    multcomplex ) 
    * F); 
    
      coherence by
    Lm2;
    
      compatibility
    
      proof
    
        let F1 be
    FinSequence of 
    COMPLEX ; 
    
        
    
        
    
    A1: ( 
    dom (c 
    * F)) 
    = ( 
    dom F) by 
    VALUED_1:def 5;
    
        
    
        
    
    A2: ( 
    rng F) 
    c=  
    COMPLEX & ( 
    dom (c 
    multcomplex )) 
    =  
    COMPLEX by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A3: ( 
    dom ((c 
    multcomplex ) 
    * F)) 
    = ( 
    dom F) by 
    RELAT_1: 27;
    
        thus F1
    = (c 
    * F) implies F1 
    = ((c 
    multcomplex ) 
    * F) 
    
        proof
    
          assume
    
          
    
    A4: F1 
    = (c 
    * F); 
    
          now
    
            let s be
    object;
    
            assume
    
            
    
    A5: s 
    in ( 
    dom F1); 
    
            
    
            hence (F1
    . s) 
    = (c 
    * (F 
    . s)) by 
    A4,
    VALUED_1:def 5
    
            .= ((c
    multcomplex ) 
    . (F 
    . s)) by 
    Lm1
    
            .= (((c
    multcomplex ) 
    * F) 
    . s) by 
    A1,
    A4,
    A5,
    FUNCT_1: 13;
    
          end;
    
          hence thesis by
    A1,
    A3,
    A4,
    FUNCT_1: 2;
    
        end;
    
        assume
    
        
    
    A6: F1 
    = ((c 
    multcomplex ) 
    * F); 
    
        now
    
          let s be
    object;
    
          assume
    
          
    
    A7: s 
    in ( 
    dom F1); 
    
          
    
          thus ((c
    * F) 
    . s) 
    = (c 
    * (F 
    . s)) by 
    VALUED_1: 6
    
          .= ((c
    multcomplex ) 
    . (F 
    . s)) by 
    Lm1
    
          .= (((c
    multcomplex ) 
    * F) 
    . s) by 
    A6,
    A7,
    FUNCT_1: 12;
    
        end;
    
        hence thesis by
    A1,
    A2,
    A6,
    FUNCT_1: 2,
    RELAT_1: 27;
    
      end;
    
    end
    
    definition
    
      let i, R, c;
    
      :: original:
    *
    
      redefine
    
      func c
    
    * R -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence by
    FINSEQ_2: 113;
    
    end
    
    theorem :: 
    
    RVSUM_2:21
    
    (c
    *  
    <*c1*>)
    =  
    <*(c
    * c1)*> 
    
    proof
    
      reconsider s = c, s1 = c1 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (s
    *  
    <*s1*>)
    =  
    <*((
    multcomplex  
    [;] (s,( 
    id  
    COMPLEX ))) 
    . s1)*> by 
    FINSEQ_2: 35
    
      .=
    <*(c
    * c1)*> by 
    Lm1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:22
    
    
    
    
    
    Th22: (c1 
    * (i 
    |-> c2)) 
    = (i 
    |-> (c1 
    * c2)) 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (s1
    * (i 
    |-> s2)) 
    = (i 
    |-> (( 
    multcomplex  
    [;] (s1,( 
    id  
    COMPLEX ))) 
    . s2)) by 
    FINSEQOP: 16
    
      .= (i
    |-> (c1 
    * c2)) by 
    Lm1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:23
    
    ((c1
    + c2) 
    * F) 
    = ((c1 
    * F) 
    + (c2 
    * F)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((c1 
    + c2) 
    * F)) 
    = ( 
    dom F) by 
    VALUED_1:def 5;
    
      
    
      
    
    A2: ( 
    dom ((c1 
    * F) 
    + (c2 
    * F))) 
    = (( 
    dom (c1 
    * F)) 
    /\ ( 
    dom (c2 
    * F))) by 
    VALUED_1:def 1;
    
      
    
      
    
    A3: ( 
    dom (c1 
    * F)) 
    = ( 
    dom F) by 
    VALUED_1:def 5;
    
      
    
      
    
    A4: ( 
    dom (c2 
    * F)) 
    = ( 
    dom F) by 
    VALUED_1:def 5;
    
      now
    
        let i;
    
        assume
    
        
    
    A5: i 
    in ( 
    dom ((c1 
    + c2) 
    * F)); 
    
        
    
        thus (((c1
    + c2) 
    * F) 
    . i) 
    = ((c1 
    + c2) 
    * (F 
    . i)) by 
    VALUED_1: 6
    
        .= ((c1
    * (F 
    . i)) 
    + (c2 
    * (F 
    . i))) 
    
        .= ((c1
    * (F 
    . i)) 
    + ((c2 
    * F) 
    . i)) by 
    VALUED_1: 6
    
        .= (((c1
    * F) 
    . i) 
    + ((c2 
    * F) 
    . i)) by 
    VALUED_1: 6
    
        .= (((c1
    * F) 
    + (c2 
    * F)) 
    . i) by 
    A1,
    A2,
    A3,
    A4,
    A5,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    FINSEQ_1: 13;
    
    end;
    
    theorem :: 
    
    RVSUM_2:24
    
    (
    0c  
    * R) 
    = (i 
    |->  
    0c ) 
    
    proof
    
      
    
      
    
    A1: ( 
    rng R) 
    c=  
    COMPLEX ; 
    
      
    
      thus (
    0c  
    * R) 
    = ( 
    multcomplex  
    [;] ( 
    0c ,(( 
    id  
    COMPLEX ) 
    * R))) by 
    FUNCOP_1: 34
    
      .= (
    multcomplex  
    [;] ( 
    0c ,R)) by 
    A1,
    RELAT_1: 53
    
      .= (i
    |->  
    0c ) by 
    BINOP_2: 1,
    FINSEQOP: 76,
    SEQ_4: 51,
    SEQ_4: 54;
    
    end;
    
    notation
    
      let F1, F2;
    
      synonym 
    
    mlt (F1,F2) for F1 
    (#) F2; 
    
    end
    
    definition
    
      let F1, F2;
    
      :: original:
    mlt
    
      redefine
    
      :: 
    
    RVSUM_2:def6
    
      func
    
    mlt (F1,F2) -> 
    FinSequence of 
    COMPLEX equals ( 
    multcomplex  
    .: (F1,F2)); 
    
      coherence by
    Lm2;
    
      compatibility
    
      proof
    
        reconsider F3 = F1, F4 = F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
        let F be
    FinSequence of 
    COMPLEX ; 
    
        (
    dom  
    multcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    [:(
    rng F3), ( 
    rng F4):] 
    c= ( 
    dom  
    multcomplex ) by 
    ZFMISC_1: 96;
    
        then
    
        
    
    A1: ( 
    dom ( 
    multcomplex  
    .: (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    FUNCOP_1: 69;
    
        
    
        
    
    A2: ( 
    dom ( 
    mlt (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    VALUED_1:def 4;
    
        thus F
    = ( 
    mlt (F1,F2)) implies F 
    = ( 
    multcomplex  
    .: (F1,F2)) 
    
        proof
    
          assume
    
          
    
    A3: F 
    = ( 
    mlt (F1,F2)); 
    
          for z be
    set st z 
    in ( 
    dom ( 
    multcomplex  
    .: (F1,F2))) holds (F 
    . z) 
    = ( 
    multcomplex  
    . ((F1 
    . z),(F2 
    . z))) 
    
          proof
    
            let z be
    set;
    
            assume z
    in ( 
    dom ( 
    multcomplex  
    .: (F1,F2))); 
    
            
    
            thus (F
    . z) 
    = ((F1 
    . z) 
    * (F2 
    . z)) by 
    A3,
    VALUED_1: 5
    
            .= (
    multcomplex  
    . ((F1 
    . z),(F2 
    . z))) by 
    BINOP_2:def 5;
    
          end;
    
          hence thesis by
    A1,
    A2,
    A3,
    FUNCOP_1: 21;
    
        end;
    
        assume
    
        
    
    A4: F 
    = ( 
    multcomplex  
    .: (F1,F2)); 
    
        now
    
          let c be
    object;
    
          assume c
    in ( 
    dom F); 
    
          
    
          hence (F
    . c) 
    = ( 
    multcomplex  
    . ((F1 
    . c),(F2 
    . c))) by 
    A4,
    FUNCOP_1: 22
    
          .= ((F1
    . c) 
    * (F2 
    . c)) by 
    BINOP_2:def 5;
    
        end;
    
        hence thesis by
    A1,
    A4,
    VALUED_1:def 4;
    
      end;
    
      commutativity
    
      proof
    
        let F be
    FinSequence of 
    COMPLEX ; 
    
        let F1, F2;
    
        reconsider F3 = F1, F4 = F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
        
    
        
    
    A5: ( 
    dom  
    multcomplex ) 
    =  
    [:
    COMPLEX , 
    COMPLEX :] by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A6: 
    [:(
    rng F4), ( 
    rng F3):] 
    c= ( 
    dom  
    multcomplex ) by 
    ZFMISC_1: 96;
    
        
    [:(
    rng F3), ( 
    rng F4):] 
    c= ( 
    dom  
    multcomplex ) by 
    A5,
    ZFMISC_1: 96;
    
        
    
        then
    
        
    
    A7: ( 
    dom ( 
    multcomplex  
    .: (F1,F2))) 
    = (( 
    dom F1) 
    /\ ( 
    dom F2)) by 
    FUNCOP_1: 69
    
        .= (
    dom ( 
    multcomplex  
    .: (F2,F1))) by 
    A6,
    FUNCOP_1: 69;
    
        assume
    
        
    
    A8: F 
    = ( 
    multcomplex  
    .: (F1,F2)); 
    
        for z be
    set st z 
    in ( 
    dom ( 
    multcomplex  
    .: (F2,F1))) holds (F 
    . z) 
    = ( 
    multcomplex  
    . ((F2 
    . z),(F1 
    . z))) 
    
        proof
    
          let z be
    set such that 
    
          
    
    A9: z 
    in ( 
    dom ( 
    multcomplex  
    .: (F2,F1))); 
    
          set F1z = (F1
    . z), F2z = (F2 
    . z); 
    
          
    
          thus (F
    . z) 
    = ( 
    multcomplex  
    . ((F1 
    . z),(F2 
    . z))) by 
    A8,
    A7,
    A9,
    FUNCOP_1: 22
    
          .= (F1z
    * F2z) by 
    BINOP_2:def 5
    
          .= (
    multcomplex  
    . ((F2 
    . z),(F1 
    . z))) by 
    BINOP_2:def 5;
    
        end;
    
        hence thesis by
    A8,
    A7,
    FUNCOP_1: 21;
    
      end;
    
    end
    
    definition
    
      let i, R1, R2;
    
      :: original:
    mlt
    
      redefine
    
      func
    
    mlt (R1,R2) -> 
    Element of (i 
    -tuples_on  
    COMPLEX ) ; 
    
      coherence by
    FINSEQ_2: 120;
    
    end
    
    theorem :: 
    
    RVSUM_2:25
    
    (
    mlt (( 
    <*>  
    COMPLEX ),F)) 
    = ( 
    <*>  
    COMPLEX ) 
    
    proof
    
      F is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      hence thesis by
    FINSEQ_2: 73;
    
    end;
    
    theorem :: 
    
    RVSUM_2:26
    
    (
    mlt ( 
    <*c1*>,
    <*c2*>))
    =  
    <*(c1
    * c2)*> 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    mlt ( 
    <*s1*>,
    <*s2*>))
    =  
    <*(
    multcomplex  
    . (s1,s2))*> by 
    FINSEQ_2: 74
    
      .=
    <*(c1
    * c2)*> by 
    BINOP_2:def 5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:27
    
    
    
    
    
    Th27: ( 
    mlt ((i 
    |-> c),R)) 
    = (c 
    * R) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    mlt ((i 
    |-> s),R)) 
    = ( 
    multcomplex  
    [;] (s,R)) by 
    FINSEQOP: 20
    
      .= (c
    * R) by 
    FINSEQOP: 22;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:28
    
    (
    mlt ((i 
    |-> c1),(i 
    |-> c2))) 
    = (i 
    |-> (c1 
    * c2)) 
    
    proof
    
      reconsider s1 = c1, s2 = c2 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    mlt ((i 
    |-> s1),(i 
    |-> s2))) 
    = (s1 
    * (i 
    |-> s2)) by 
    Th27
    
      .= (i
    |-> (c1 
    * c2)) by 
    Th22;
    
      hence thesis;
    
    end;
    
    begin
    
    theorem :: 
    
    RVSUM_2:29
    
    
    
    
    
    Th29: ( 
    Sum ( 
    <*>  
    COMPLEX )) 
    =  
    0c by 
    BINOP_2: 1,
    FINSOP_1: 10;
    
    registration
    
      let f be
    empty  
    FinSequence;
    
      cluster ( 
    Sum f) -> 
    zero;
    
      coherence by
    Th29;
    
    end
    
    theorem :: 
    
    RVSUM_2:30
    
    (
    Sum  
    <*c*>)
    = c 
    
    proof
    
      reconsider c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    Sum  
    <*c*>)
    = c by 
    FINSOP_1: 11;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:31
    
    
    
    
    
    Th31: ( 
    Sum (F 
    ^  
    <*c*>))
    = (( 
    Sum F) 
    + c) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      reconsider F1 = F as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      
    
      thus (
    Sum (F 
    ^  
    <*c*>))
    = ( 
    Sum (F1 
    ^  
    <*s*>))
    
      .= (
    addcomplex  
    . (( 
    addcomplex  
    $$ F1),s)) by 
    FINSOP_1: 4
    
      .= ((
    Sum F1) 
    + c) by 
    BINOP_2:def 3
    
      .= ((
    Sum F) 
    + c); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:32
    
    
    
    
    
    Th32: ( 
    Sum (F1 
    ^ F2)) 
    = (( 
    Sum F1) 
    + ( 
    Sum F2)) 
    
    proof
    
      reconsider F3 = F1, F4 = F2 as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      
    
      thus (
    Sum (F1 
    ^ F2)) 
    = ( 
    Sum (F3 
    ^ F4)) 
    
      .= (
    addcomplex  
    . (( 
    addcomplex  
    $$ F3),( 
    addcomplex  
    $$ F4))) by 
    FINSOP_1: 5
    
      .= ((
    Sum F3) 
    + ( 
    Sum F4)) by 
    BINOP_2:def 3
    
      .= ((
    Sum F1) 
    + ( 
    Sum F2)); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:33
    
    (
    Sum ( 
    <*c*>
    ^ F)) 
    = (c 
    + ( 
    Sum F)) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      thus (
    Sum ( 
    <*c*>
    ^ F)) 
    = (( 
    Sum  
    <*s*>)
    + ( 
    Sum F)) by 
    Th32
    
      .= (c
    + ( 
    Sum F)) by 
    FINSOP_1: 11;
    
    end;
    
    theorem :: 
    
    RVSUM_2:34
    
    
    
    
    
    Th34: ( 
    Sum  
    <*c1, c2*>)
    = (c1 
    + c2) 
    
    proof
    
      reconsider s1 = c1 as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      thus (
    Sum  
    <*c1, c2*>)
    = (( 
    Sum  
    <*s1*>)
    + c2) by 
    Th31
    
      .= (c1
    + c2) by 
    FINSOP_1: 11;
    
    end;
    
    theorem :: 
    
    RVSUM_2:35
    
    (
    Sum  
    <*c1, c2, c3*>)
    = ((c1 
    + c2) 
    + c3) 
    
    proof
    
      
    
      thus (
    Sum  
    <*c1, c2, c3*>)
    = (( 
    Sum  
    <*c1, c2*>)
    + c3) by 
    Th31
    
      .= ((c1
    + c2) 
    + c3) by 
    Th34;
    
    end;
    
    theorem :: 
    
    RVSUM_2:36
    
    
    
    
    
    Th36: ( 
    Sum (i 
    |-> c)) 
    = (i 
    * c) 
    
    proof
    
      reconsider c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      defpred
    
    P[
    Nat] means (
    Sum ($1 
    |-> c)) 
    = ($1 
    * c); 
    
      
    
      
    
    A1: for i st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i such that
    
        
    
    A2: ( 
    Sum (i 
    |-> c)) 
    = (i 
    * c); 
    
        
    
        thus (
    Sum ((i 
    + 1) 
    |-> c)) 
    = ( 
    Sum ((i 
    |-> c) 
    ^  
    <*c*>)) by
    FINSEQ_2: 60
    
        .= ((i
    * c) 
    + (1 
    * c)) by 
    A2,
    Th31
    
        .= ((i
    + 1) 
    * c); 
    
      end;
    
      
    
      
    
    A3: 
    P[
    0 ]; 
    
      for i holds
    P[i] from
    NAT_1:sch 2(
    A3,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:37
    
    (
    Sum (i 
    |->  
    0c )) 
    =  
    0c  
    
    proof
    
      
    
      thus (
    Sum (i 
    |->  
    0c )) 
    = (i 
    *  
    0 ) by 
    Th36
    
      .=
    0c ; 
    
    end;
    
    theorem :: 
    
    RVSUM_2:38
    
    (
    Sum (c 
    * F)) 
    = (c 
    * ( 
    Sum F)) 
    
    proof
    
      reconsider F1 = F as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      set cM = (
    multcomplex  
    [;] (s,( 
    id  
    COMPLEX ))); 
    
      
    
      thus (
    Sum (c 
    * F)) 
    = (cM 
    . ( 
    addcomplex  
    $$ F1)) by 
    SEQ_4: 51,
    SEQ_4: 54,
    SETWOP_2: 30
    
      .= (c
    * ( 
    Sum F1)) by 
    Lm1
    
      .= (c
    * ( 
    Sum F)); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:39
    
    
    
    
    
    Th39: ( 
    Sum ( 
    - F)) 
    = ( 
    - ( 
    Sum F)) 
    
    proof
    
      reconsider F1 = F as
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      
    
      thus (
    Sum ( 
    - F)) 
    = ( 
    compcomplex  
    . ( 
    addcomplex  
    $$ F1)) by 
    SEQ_4: 51,
    SEQ_4: 52,
    SETWOP_2: 31
    
      .= (
    - ( 
    Sum F1)) by 
    BINOP_2:def 1
    
      .= (
    - ( 
    Sum F)); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:40
    
    
    
    
    
    Th40: ( 
    Sum (R1 
    + R2)) 
    = (( 
    Sum R1) 
    + ( 
    Sum R2)) 
    
    proof
    
      reconsider T1 = R1, T2 = R2 as
    Element of (i 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 131;
    
      
    
      thus (
    Sum (R1 
    + R2)) 
    = ( 
    addcomplex  
    . (( 
    addcomplex  
    $$ T1),( 
    addcomplex  
    $$ T2))) by 
    SETWOP_2: 35
    
      .= ((
    Sum R1) 
    + ( 
    Sum R2)) by 
    BINOP_2:def 3;
    
    end;
    
    theorem :: 
    
    RVSUM_2:41
    
    (
    Sum (R1 
    - R2)) 
    = (( 
    Sum R1) 
    - ( 
    Sum R2)) 
    
    proof
    
      
    
      thus (
    Sum (R1 
    - R2)) 
    = (( 
    Sum R1) 
    + ( 
    Sum ( 
    - R2))) by 
    Th40
    
      .= ((
    Sum R1) 
    - ( 
    Sum R2)) by 
    Th39;
    
    end;
    
    begin
    
    
    
    
    
    Lm3: for F be 
    empty  
    FinSequence holds ( 
    Product F) 
    = 1 
    
    proof
    
      (
    Product ( 
    <*>  
    COMPLEX )) 
    = 1 by 
    BINOP_2: 6,
    FINSOP_1: 10;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:42
    
    
    
    
    
    Th42: ( 
    Product ( 
    <*>  
    COMPLEX )) 
    = 1 by 
    Lm3;
    
    registration
    
      let f be
    empty  
    FinSequence;
    
      reduce (1
    * ( 
    Product f)) to 1; 
    
      reducibility by
    Th42;
    
    end
    
    theorem :: 
    
    RVSUM_2:43
    
    (
    Product ( 
    <*c*>
    ^ F)) 
    = (c 
    * ( 
    Product F)) 
    
    proof
    
      
    
      thus (
    Product ( 
    <*c*>
    ^ F)) 
    = (( 
    Product  
    <*c*>)
    * ( 
    Product F)) by 
    RVSUM_1: 97
    
      .= (c
    * ( 
    Product F)); 
    
    end;
    
    theorem :: 
    
    RVSUM_2:44
    
    for R be
    Element of ( 
    0  
    -tuples_on  
    COMPLEX ) holds ( 
    Product R) 
    = 1 by 
    Lm3;
    
    theorem :: 
    
    RVSUM_2:45
    
    (
    Product ((i 
    + j) 
    |-> c)) 
    = (( 
    Product (i 
    |-> c)) 
    * ( 
    Product (j 
    |-> c))) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    Product ((i 
    + j) 
    |-> s)) 
    = ( 
    multcomplex  
    . (( 
    multcomplex  
    $$ (i 
    |-> s)),( 
    multcomplex  
    $$ (j 
    |-> s)))) by 
    SETWOP_2: 26
    
      .= ((
    Product (i 
    |-> s)) 
    * ( 
    Product (j 
    |-> s))) by 
    BINOP_2:def 5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:46
    
    (
    Product ((i 
    * j) 
    |-> c)) 
    = ( 
    Product (j 
    |-> ( 
    Product (i 
    |-> c)))) 
    
    proof
    
      reconsider c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    Product ((i 
    * j) 
    |-> c)) 
    = ( 
    Product (j 
    |-> ( 
    Product (i 
    |-> c)))) by 
    SETWOP_2: 27;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:47
    
    (
    Product (i 
    |-> (c1 
    * c2))) 
    = (( 
    Product (i 
    |-> c1)) 
    * ( 
    Product (i 
    |-> c2))) 
    
    proof
    
      reconsider s1 = c1, s2 = c2, ss = (c1
    * c2) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      (
    multcomplex  
    . (c1,c2)) 
    = (c1 
    * c2) by 
    BINOP_2:def 5;
    
      
    
      then (
    Product (i 
    |-> ss)) 
    = ( 
    multcomplex  
    $$ (i 
    |-> ( 
    multcomplex  
    . (s1,s2)))) 
    
      .= (
    multcomplex  
    . (( 
    multcomplex  
    $$ (i 
    |-> s1)),( 
    multcomplex  
    $$ (i 
    |-> s2)))) by 
    SETWOP_2: 36
    
      .= ((
    Product (i 
    |-> s1)) 
    * ( 
    Product (i 
    |-> s2))) by 
    BINOP_2:def 5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:48
    
    
    
    
    
    Th48: ( 
    Product ( 
    mlt (R1,R2))) 
    = (( 
    Product R1) 
    * ( 
    Product R2)) 
    
    proof
    
      reconsider T1 = R1, T2 = R2 as
    Element of (i 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 131;
    
      
    
      thus (
    Product ( 
    mlt (R1,R2))) 
    = ( 
    multcomplex  
    . (( 
    multcomplex  
    $$ T1),( 
    multcomplex  
    $$ T2))) by 
    SETWOP_2: 35
    
      .= ((
    Product R1) 
    * ( 
    Product R2)) by 
    BINOP_2:def 5;
    
    end;
    
    theorem :: 
    
    RVSUM_2:49
    
    (
    Product (c 
    * R)) 
    = (( 
    Product (i 
    |-> c)) 
    * ( 
    Product R)) 
    
    proof
    
      reconsider s = c as
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
      
    
      thus (
    Product (c 
    * R)) 
    = ( 
    Product ( 
    mlt ((i 
    |-> s),R))) by 
    Th27
    
      .= ((
    Product (i 
    |-> c)) 
    * ( 
    Product R)) by 
    Th48;
    
    end;
    
    begin
    
    theorem :: 
    
    RVSUM_2:50
    
    for x be
    complex-valued  
    FinSequence holds ( 
    len ( 
    - x)) 
    = ( 
    len x) 
    
    proof
    
      let x be
    complex-valued  
    FinSequence;
    
      (
    dom ( 
    - x)) 
    = ( 
    dom x) by 
    VALUED_1: 8;
    
      hence thesis by
    FINSEQ_3: 29;
    
    end;
    
    theorem :: 
    
    RVSUM_2:51
    
    for x1,x2 be
    complex-valued  
    FinSequence st ( 
    len x1) 
    = ( 
    len x2) holds ( 
    len (x1 
    + x2)) 
    = ( 
    len x1) 
    
    proof
    
      let x1,x2 be
    complex-valued  
    FinSequence;
    
      set n = (
    len x1); 
    
      
    
      
    
    A1: x2 is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      x1 is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z1 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume (
    len x1) 
    = ( 
    len x2); 
    
      then
    
      reconsider z2 = x2 as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      (
    dom (z1 
    + z2)) 
    = ( 
    Seg n) by 
    FINSEQ_2: 124;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    RVSUM_2:52
    
    for x1,x2 be
    complex-valued  
    FinSequence st ( 
    len x1) 
    = ( 
    len x2) holds ( 
    len (x1 
    - x2)) 
    = ( 
    len x1) 
    
    proof
    
      let x1,x2 be
    complex-valued  
    FinSequence;
    
      set n = (
    len x1); 
    
      
    
      
    
    A1: x2 is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      x1 is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z1 = x1 as
    Element of (( 
    len x1) 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      assume (
    len x1) 
    = ( 
    len x2); 
    
      then
    
      reconsider z2 = x2 as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      (
    dom (z1 
    - z2)) 
    = ( 
    Seg n) by 
    FINSEQ_2: 124;
    
      hence thesis by
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    RVSUM_2:53
    
    for a be
    Real, x be 
    complex-valued  
    FinSequence holds ( 
    len (a 
    * x)) 
    = ( 
    len x) 
    
    proof
    
      let a be
    Real, x be 
    complex-valued  
    FinSequence;
    
      set n = (
    len x); 
    
      x is
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      then
    
      reconsider z = x as
    Element of (n 
    -tuples_on  
    COMPLEX ) by 
    FINSEQ_2: 92;
    
      (
    len (a 
    * z)) 
    = n by 
    CARD_1:def 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    RVSUM_2:54
    
    for x,y,z be
    complex-valued  
    FinSequence st ( 
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z) holds ( 
    mlt ((x 
    + y),z)) 
    = (( 
    mlt (x,z)) 
    + ( 
    mlt (y,z))) 
    
    proof
    
      let x,y,z be
    complex-valued  
    FinSequence;
    
      
    
      
    
    A1: x is 
    FinSequence of 
    COMPLEX & y is 
    FinSequence of 
    COMPLEX & z is 
    FinSequence of 
    COMPLEX by 
    Lm2;
    
      assume (
    len x) 
    = ( 
    len y) & ( 
    len y) 
    = ( 
    len z); 
    
      then
    
      reconsider x2 = x, y2 = y, z2 = z as
    Element of (( 
    len x) 
    -tuples_on  
    COMPLEX ) by 
    A1,
    FINSEQ_2: 92;
    
      
    
      
    
    A2: ( 
    dom ( 
    mlt ((x 
    + y),z))) 
    = ( 
    Seg ( 
    len ( 
    mlt ((x2 
    + y2),z2)))) by 
    FINSEQ_1:def 3
    
      .= (
    Seg ( 
    len x)) by 
    CARD_1:def 7
    
      .= (
    Seg ( 
    len (( 
    mlt (x2,z2)) 
    + ( 
    mlt (y2,z2))))) by 
    CARD_1:def 7
    
      .= (
    dom (( 
    mlt (x2,z2)) 
    + ( 
    mlt (y2,z2)))) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A3: ( 
    dom ( 
    mlt (x,z))) 
    = ( 
    Seg ( 
    len ( 
    mlt (x2,z2)))) by 
    FINSEQ_1:def 3
    
      .= (
    Seg ( 
    len x)) by 
    CARD_1:def 7
    
      .= (
    Seg ( 
    len (( 
    mlt (x2,z2)) 
    + ( 
    mlt (y2,z2))))) by 
    CARD_1:def 7
    
      .= (
    dom (( 
    mlt (x2,z2)) 
    + ( 
    mlt (y2,z2)))) by 
    FINSEQ_1:def 3;
    
      for i be
    Nat st i 
    in ( 
    dom ( 
    mlt ((x 
    + y),z))) holds (( 
    mlt ((x 
    + y),z)) 
    . i) 
    = ((( 
    mlt (x,z)) 
    + ( 
    mlt (y,z))) 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        assume
    
        
    
    A4: i 
    in ( 
    dom ( 
    mlt ((x 
    + y),z))); 
    
        set a = (x
    . i), b = (y 
    . i), d = ((x 
    + y) 
    . i), e = (z 
    . i); 
    
        (
    len (x2 
    + y2)) 
    = ( 
    len x) by 
    CARD_1:def 7;
    
        
    
        then (
    dom (x2 
    + y2)) 
    = ( 
    Seg ( 
    len x)) by 
    FINSEQ_1:def 3
    
        .= (
    Seg ( 
    len ( 
    mlt (x2,z2)))) by 
    CARD_1:def 7
    
        .= (
    dom ( 
    mlt (x,z))) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A5: d 
    = (a 
    + b) by 
    A2,
    A3,
    A4,
    VALUED_1:def 1;
    
        
    
        thus ((
    mlt ((x 
    + y),z)) 
    . i) 
    = (d 
    * e) by 
    VALUED_1: 5
    
        .= ((a
    * e) 
    + (b 
    * e)) by 
    A5
    
        .= (((
    mlt (x,z)) 
    . i) 
    + (b 
    * e)) by 
    VALUED_1: 5
    
        .= (((
    mlt (x,z)) 
    . i) 
    + (( 
    mlt (y,z)) 
    . i)) by 
    VALUED_1: 5
    
        .= (((
    mlt (x,z)) 
    + ( 
    mlt (y,z))) 
    . i) by 
    A2,
    A4,
    VALUED_1:def 1;
    
      end;
    
      hence thesis by
    A2,
    FINSEQ_1: 13;
    
    end;