series_2.miz



    begin

    reserve n for Nat,

a,b for Real,

s for Real_Sequence;

    theorem :: SERIES_2:1

    

     Th1: |.(( - 1) |^ n).| = 1

    proof

      per cases ;

        suppose

         A1: n is even;

        (( - 1) |^ n) = (( - 1) to_power n) by POWER: 41

        .= (1 to_power n) by A1, POWER: 47

        .= 1 by POWER: 26;

        hence thesis by ABSVALUE:def 1;

      end;

        suppose

         A2: n is odd;

        (( - 1) |^ n) = (( - 1) to_power n) by POWER: 41

        .= ( - (1 to_power n)) by A2, POWER: 48

        .= ( - 1) by POWER: 26;

        then |.(( - 1) |^ n).| = ( - ( - 1)) by ABSVALUE:def 1;

        hence thesis;

      end;

    end;

    

     Lm1: (a |^ 3) = ((a * a) * a)

    proof

      (a |^ (2 + 1)) = ((a |^ 2) * a) by NEWTON: 6;

      hence thesis by WSIERP_1: 1;

    end;

    

     Lm2: (a |^ 3) = ((a |^ 2) * a)

    proof

      (a |^ (2 + 1)) = ((a |^ 2) * a) by NEWTON: 6;

      hence thesis;

    end;

    

     Lm3: 4 = (2 |^ 2) & ((a + b) |^ 2) = (((a |^ 2) + ((2 * a) * b)) + (b |^ 2))

    proof

      

       A1: ((a + b) |^ (1 + 1)) = (((a + b) |^ 1) * (a + b)) by NEWTON: 6

      .= ((a + b) * (a + b))

      .= (((a * a) + (a * b)) + ((a * b) + (b * b)))

      .= (((a * a) + (a * b)) + ((a * b) + (b |^ 2))) by WSIERP_1: 1

      .= (((a |^ 2) + (a * b)) + ((a * b) + (b |^ 2))) by WSIERP_1: 1

      .= (((a |^ 2) + (2 * (a * b))) + (b |^ 2));

      (2 |^ 2) = (2 * 2) by WSIERP_1: 1

      .= 4;

      hence thesis by A1;

    end;

    

     Lm4: ((a + 1) |^ 3) = ((((a |^ 3) + (3 * (a |^ 2))) + (3 * a)) + 1)

    proof

      ((a + 1) |^ 3) = (((a + 1) |^ 2) * (a + 1)) by Lm2

      .= ((((a |^ 2) + ((2 * a) * 1)) + (1 |^ 2)) * (a + 1)) by Lm3

      .= ((((a |^ 2) + (2 * a)) + 1) * (a + 1))

      .= (((((a |^ 2) * a) + ((a |^ 2) * 1)) + (((2 * a) * a) + (2 * a))) + ((1 * a) + (1 * 1)))

      .= (((((a |^ 2) * a) + ((a |^ 2) * 1)) + (((2 * a) * a) + ((2 * a) * 1))) + (((1 |^ 2) * a) + 1))

      .= ((((a |^ (2 + 1)) + (a |^ 2)) + (((2 * a) * a) + (2 * a))) + (((1 |^ 2) * a) + 1)) by NEWTON: 6

      .= ((((a |^ 3) + (a |^ 2)) + ((2 * (a * a)) + (2 * a))) + ((1 * a) + 1))

      .= ((((a |^ 3) + (a |^ 2)) + ((2 * ((a |^ 1) * a)) + (2 * a))) + (a + 1))

      .= ((((a |^ 3) + (a |^ 2)) + ((2 * (a |^ (1 + 1))) + (2 * a))) + (a + 1)) by NEWTON: 6

      .= (((((a |^ 3) + (a |^ 2)) + (2 * (a |^ 2))) + (2 * a)) + (a + 1));

      hence thesis;

    end;

    

     Lm5: (((n * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30)) = (((n + 2) * ((2 * (n + 1)) + 1)) * (((3 * ((n + 1) |^ 2)) + (3 * (n + 1))) - 1))

    proof

      (((n + 2) * ((2 * (n + 1)) + 1)) * (((3 * ((n + 1) |^ 2)) + (3 * (n + 1))) - 1)) = (((n + 2) * ((2 * n) + 3)) * (((3 * (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) + ((3 * n) + 3)) - 1)) by Lm3

      .= ((((n * (2 * n)) + (2 * (2 * n))) + ((n * 3) + (2 * 3))) * ((((3 * (((n |^ 2) + (2 * n)) + (1 |^ 2))) + (3 * n)) + 3) - 1))

      .= ((((n * (2 * n)) + (2 * (2 * n))) + ((n * 3) + (2 * 3))) * ((((3 * (((n |^ 2) + (2 * n)) + 1)) + (3 * n)) + 3) - 1))

      .= (((((n * n) * 2) + ((2 * 2) * n)) + ((n * 3) + 6)) * (((((((n |^ 2) * 3) + (6 * n)) + 3) + (3 * n)) + 3) - 1))

      .= ((((2 * (n |^ 2)) + (4 * n)) + ((n * 3) + 6)) * ((((((3 * (n |^ 2)) + (6 * n)) + 3) + (3 * n)) + 3) - 1)) by WSIERP_1: 1

      .= ((((((2 * ((n |^ 2) * (n |^ 2))) * 3) + (((2 * (n |^ 2)) * n) * 9)) + (10 * (n |^ 2))) + (((((7 * n) * (n |^ 2)) * 3) + (((7 * n) * n) * 9)) + (35 * n))) + ((((6 * 3) * (n |^ 2)) + ((6 * 9) * n)) + 30))

      .= ((((((2 * (n |^ (2 + 2))) * 3) + ((2 * ((n |^ 2) * n)) * 9)) + (10 * (n |^ 2))) + ((((7 * (n * (n |^ 2))) * 3) + ((7 * (n * n)) * 9)) + (35 * n))) + (((18 * (n |^ 2)) + (54 * n)) + 30)) by NEWTON: 8

      .= ((((((2 * (n |^ 4)) * 3) + ((2 * (n |^ (2 + 1))) * 9)) + (10 * (n |^ 2))) + ((((7 * (n * (n |^ 2))) * 3) + ((7 * (n * n)) * 9)) + (35 * n))) + (((18 * (n |^ 2)) + (54 * n)) + 30)) by NEWTON: 6

      .= (((((6 * (n |^ 4)) + ((2 * (n |^ 3)) * 9)) + (10 * (n |^ 2))) + ((((7 * (n |^ (2 + 1))) * 3) + ((7 * (n * n)) * 9)) + (35 * n))) + (((18 * (n |^ 2)) + (54 * n)) + 30)) by NEWTON: 6;

      

      then

       A1: (((n + 2) * ((2 * (n + 1)) + 1)) * (((3 * ((n + 1) |^ 2)) + (3 * (n + 1))) - 1)) = (((((6 * (n |^ 4)) + (18 * (n |^ 3))) + (10 * (n |^ 2))) + ((((7 * (n |^ 3)) * 3) + ((7 * (n |^ 2)) * 9)) + (35 * n))) + (((18 * (n |^ 2)) + (54 * n)) + 30)) by WSIERP_1: 1

      .= (((((6 * (n |^ 4)) + (39 * (n |^ 3))) + ((73 + 18) * (n |^ 2))) + (89 * n)) + 30);

      (((n * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30)) = ((((2 * (n * n)) + n) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30))

      .= ((((2 * ((n |^ 1) * n)) + n) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30))

      .= ((((2 * (n |^ (1 + 1))) + n) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30)) by NEWTON: 6

      .= ((((((2 * ((n |^ 2) * (n |^ 2))) * 3) + ((n * (n |^ 2)) * 3)) + (((2 * ((n |^ 2) * n)) * 3) + ((n * n) * 3))) - ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 3) * 30))

      .= ((((((2 * (n |^ (2 + 2))) * 3) + ((n * (n |^ 2)) * 3)) + (((2 * ((n |^ 2) * n)) * 3) + ((n * n) * 3))) - ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 3) * 30)) by NEWTON: 8

      .= ((((((2 * (n |^ 4)) * 3) + ((n * (n |^ 2)) * 3)) + (((2 * (n |^ (2 + 1))) * 3) + ((n * n) * 3))) - ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 3) * 30)) by NEWTON: 6

      .= ((((((2 * (n |^ 4)) * 3) + ((n * (n |^ 2)) * 3)) + (((2 * (n |^ 3)) * 3) + ((n |^ 2) * 3))) - ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 3) * 30)) by WSIERP_1: 1

      .= (((((6 * (n |^ 4)) + ((n |^ (2 + 1)) * 3)) + ((6 * (n |^ 3)) + ((n |^ 2) * 3))) - ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 3) * 30)) by NEWTON: 6

      .= (((((6 * (n |^ 4)) + (9 * (n |^ 3))) + (1 * (n |^ 2))) - n) + (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * 30)) by Lm4

      .= (((((6 * (n |^ 4)) + (39 * (n |^ 3))) + (91 * (n |^ 2))) + ((90 - 1) * n)) + 30);

      hence thesis by A1;

    end;

    

     Lm6: for n be Real holds ((n + 1) |^ 4) = (((((n |^ 4) + (4 * (n |^ 3))) + (6 * (n |^ 2))) + (4 * n)) + 1) & ((n + 1) |^ 5) = ((((((n |^ 5) + (5 * (n |^ 4))) + (10 * (n |^ 3))) + (10 * (n |^ 2))) + (5 * n)) + 1)

    proof

      let n be Real;

      

       A1: ((n + 1) |^ (3 + 1)) = (((n + 1) |^ 3) * (n + 1)) by NEWTON: 6

      .= (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * (n + 1)) by Lm4

      .= ((((((n |^ 3) * n) + (n |^ 3)) + ((3 * ((n |^ 2) * n)) + (3 * (n |^ 2)))) + ((3 * (n * n)) + (3 * n))) + (n + 1))

      .= (((((n |^ (3 + 1)) + (n |^ 3)) + ((3 * ((n |^ 2) * n)) + (3 * (n |^ 2)))) + ((3 * (n * n)) + (3 * n))) + (n + 1)) by NEWTON: 6

      .= (((((n |^ (3 + 1)) + (n |^ 3)) + ((3 * (n |^ (2 + 1))) + (3 * (n |^ 2)))) + ((3 * (n * n)) + (3 * n))) + (n + 1)) by NEWTON: 6

      .= (((((n |^ 4) + (n |^ 3)) + ((3 * (n |^ 3)) + (3 * (n |^ 2)))) + ((3 * (n |^ 2)) + (3 * n))) + (n + 1)) by WSIERP_1: 1;

      ((n + 1) |^ (3 + 2)) = (((n + 1) |^ 3) * ((n + 1) |^ 2)) by NEWTON: 8

      .= (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * ((n + 1) |^ 2)) by Lm4

      .= (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) by Lm3

      .= (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * (((n |^ 2) + (2 * n)) + 1))

      .= (((((((n |^ 3) * (n |^ 2)) + ((2 * n) * (n |^ 3))) + ((n |^ 3) * 1)) + ((((3 * (n |^ 2)) * (n |^ 2)) + ((2 * n) * (3 * (n |^ 2)))) + ((3 * (n |^ 2)) * 1))) + ((((3 * n) * (n |^ 2)) + ((3 * n) * (2 * n))) + ((3 * n) * 1))) + (((n |^ 2) + (2 * n)) + 1))

      .= ((((((n |^ (3 + 2)) + (2 * (n * (n |^ 3)))) + (n |^ 3)) + (((3 * ((n |^ 2) * (n |^ 2))) + ((2 * (n * (n |^ 2))) * 3)) + (3 * (n |^ 2)))) + (((3 * (n * (n |^ 2))) + ((3 * (n * n)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 8

      .= ((((((n |^ (3 + 2)) + (2 * (n * (n |^ 3)))) + (n |^ 3)) + (((3 * (n |^ (2 + 2))) + ((2 * (n * (n |^ 2))) * 3)) + (3 * (n |^ 2)))) + (((3 * (n * (n |^ 2))) + ((3 * (n * n)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 8

      .= ((((((n |^ (3 + 2)) + (2 * (n |^ (3 + 1)))) + (n |^ 3)) + (((3 * (n |^ (2 + 2))) + ((2 * (n * (n |^ 2))) * 3)) + (3 * (n |^ 2)))) + (((3 * (n * (n |^ 2))) + ((3 * (n * n)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((n |^ (3 + 2)) + (2 * (n |^ (3 + 1)))) + (n |^ 3)) + (((3 * (n |^ (2 + 2))) + ((2 * (n |^ (2 + 1))) * 3)) + (3 * (n |^ 2)))) + (((3 * (n * (n |^ 2))) + ((3 * (n * n)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((n |^ 5) + (2 * (n |^ 4))) + (n |^ 3)) + (((3 * (n |^ 4)) + ((2 * (n |^ 3)) * 3)) + (3 * (n |^ 2)))) + (((3 * (n |^ 3)) + ((3 * (n * n)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((n |^ 5) + (2 * (n |^ 4))) + (n |^ 3)) + (((3 * (n |^ 4)) + (6 * (n |^ 3))) + (3 * (n |^ 2)))) + (((3 * (n |^ 3)) + ((3 * (n |^ 2)) * 2)) + (3 * n))) + (((n |^ 2) + (2 * n)) + 1)) by WSIERP_1: 1;

      hence thesis by A1;

    end;

    theorem :: SERIES_2:2

    for n be Real holds ((n + 1) |^ 3) = ((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) & ((n + 1) |^ 4) = (((((n |^ 4) + (4 * (n |^ 3))) + (6 * (n |^ 2))) + (4 * n)) + 1) & ((n + 1) |^ 5) = ((((((n |^ 5) + (5 * (n |^ 4))) + (10 * (n |^ 3))) + (10 * (n |^ 2))) + (5 * n)) + 1) by Lm4, Lm6;

    

     Lm7: for n holds (1 - (1 / (n + 2))) = ((n + 1) / (n + 2)) & (1 / ((n + 1) ! )) = ((n + 2) / (((n + 1) ! ) * (n + 2)))

    proof

      let n;

      n >= 0 by NAT_1: 2;

      then (n + 1) > 0 by NAT_1: 13;

      then

       A1: ((n + 1) + 1) > 0 by NAT_1: 13;

      then

       A2: (1 / ((n + 1) ! )) = ((1 * (n + 2)) / (((n + 1) ! ) * (n + 2))) by XCMPLX_1: 91;

      ((n + 1) / (n + 2)) = (((n + 2) - 1) / (n + 2))

      .= (((n + 2) / (n + 2)) - (1 / (n + 2))) by XCMPLX_1: 120

      .= (1 - (1 / (n + 2))) by A1, XCMPLX_1: 60;

      hence thesis by A2;

    end;

    

     Lm8: ((1 / (n + 1)) - (2 / ((n + 1) * (n + 3)))) = (1 / (n + 3))

    proof

      n >= 0 by NAT_1: 2;

      then

       A1: (n + 1) > 0 by NAT_1: 13;

      then ((n + 1) + 1) > 0 by NAT_1: 13;

      then ((n + 2) + 1) > 0 by NAT_1: 13;

      

      then ((1 / (n + 1)) - (2 / ((n + 1) * (n + 3)))) = (((1 * (n + 3)) / ((n + 1) * (n + 3))) - (2 / ((n + 1) * (n + 3)))) by XCMPLX_1: 91

      .= (((n + 3) - 2) / ((n + 1) * (n + 3))) by XCMPLX_1: 120

      .= (((n + 1) * 1) / ((n + 1) * (n + 3)))

      .= (1 / (n + 3)) by A1, XCMPLX_1: 91;

      hence thesis;

    end;

    

     Lm9: ((1 / (n + 1)) - (3 / ((n + 1) * (n + 4)))) = (1 / (n + 4))

    proof

      n >= 0 by NAT_1: 2;

      then

       A1: (n + 1) > 0 by NAT_1: 13;

      then ((n + 1) + 1) > 0 by NAT_1: 13;

      then ((n + 2) + 1) > 0 by NAT_1: 13;

      then ((n + 3) + 1) > 0 by NAT_1: 13;

      

      then ((1 / (n + 1)) - (3 / ((n + 1) * (n + 4)))) = (((1 * (n + 4)) / ((n + 1) * (n + 4))) - (3 / ((n + 1) * (n + 4)))) by XCMPLX_1: 91

      .= (((n + 4) - 3) / ((n + 1) * (n + 4))) by XCMPLX_1: 120

      .= (((n + 1) * 1) / ((n + 1) * (n + 4)))

      .= (1 / (n + 4)) by A1, XCMPLX_1: 91;

      hence thesis;

    end;

    

     Lm10: (((n |^ 2) + (3 * n)) + 2) = ((n + 1) * (n + 2))

    proof

      ((n + 1) * (n + 2)) = (((n * n) + ((2 * n) + (1 * n))) + 2)

      .= ((((n |^ 1) * n) + ((2 + 1) * n)) + 2)

      .= (((n |^ (1 + 1)) + ((2 + 1) * n)) + 2) by NEWTON: 6;

      hence thesis;

    end;

    

     Lm11: ((((n * (4 * (n |^ 2))) + (11 * n)) + (12 * (n |^ 2))) + 3) = ((n + 1) * ((4 * ((n + 1) |^ 2)) - 1))

    proof

      ((n + 1) * ((4 * ((n + 1) |^ 2)) - 1)) = ((n + 1) * ((4 * (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) - 1)) by Lm3

      .= ((n + 1) * ((4 * (((n |^ 2) + (2 * n)) + 1)) - 1))

      .= ((((n * (4 * (n |^ 2))) + (4 * (n |^ 2))) + ((8 * (n * n)) + (8 * n))) + ((3 * n) + (3 * 1)))

      .= ((((n * (4 * (n |^ 2))) + (4 * (n |^ 2))) + ((8 * (n |^ 2)) + (8 * n))) + ((3 * n) + (3 * 1))) by WSIERP_1: 1

      .= ((((n * (4 * (n |^ 2))) + ((4 * (n |^ 2)) + (8 * (n |^ 2)))) + ((8 * n) + (3 * n))) + 3);

      hence thesis;

    end;

    

     Lm12: (((n + 1) |^ 2) * ((2 * ((n + 1) |^ 2)) - 1)) = (((((((n |^ 2) * (n |^ 2)) * 2) + ((12 - 1) * (n |^ 2))) + (8 * (n |^ 3))) + (6 * n)) + 1)

    proof

      (((n + 1) |^ 2) * ((2 * ((n + 1) |^ 2)) - 1)) = ((((n + 1) |^ 2) * (2 * ((n + 1) |^ 2))) - (((n + 1) |^ 2) * 1))

      .= (((((n + 1) |^ 2) * ((n + 1) |^ 2)) * 2) - (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) by Lm3

      .= (((((n + 1) |^ 2) * ((n + 1) |^ 2)) * 2) - (((n |^ 2) + (2 * n)) + 1))

      .= (((((n + 1) |^ 2) * (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) * 2) - (((n |^ 2) + (2 * n)) + 1)) by Lm3

      .= ((((((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2)) * (((n |^ 2) + (2 * n)) + (1 |^ 2))) * 2) - (((n |^ 2) + (2 * n)) + 1)) by Lm3

      .= ((((((n |^ 2) + (2 * n)) + (1 |^ 2)) * (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1))

      .= ((((((n |^ 2) + (2 * n)) + 1) * (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1))

      .= ((((((((n |^ 2) * (n |^ 2)) + ((2 * n) * (n |^ 2))) + (n |^ 2)) + ((((2 * n) * (n |^ 2)) + (((2 * n) * n) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1))

      .= ((((((((n |^ 2) * (n |^ 2)) + (2 * (n |^ (2 + 1)))) + (n |^ 2)) + (((2 * (n * (n |^ 2))) + ((2 * (n * n)) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((((n |^ 2) * (n |^ 2)) + (2 * (n |^ (2 + 1)))) + (n |^ 2)) + (((2 * (n |^ (2 + 1))) + ((2 * (n * n)) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((((n |^ 2) * (n |^ 2)) + (2 * (n |^ 3))) + (n |^ 2)) + (((2 * (n |^ 3)) + ((2 * ((n |^ 1) * n)) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1))

      .= ((((((((n |^ 2) * (n |^ 2)) + (2 * (n |^ 3))) + (n |^ 2)) + (((2 * (n |^ 3)) + ((2 * (n |^ (1 + 1))) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1)) by NEWTON: 6

      .= ((((((((n |^ 2) * (n |^ 2)) + (2 * (n |^ 3))) + (n |^ 2)) + (((2 * (n |^ 3)) + ((2 * (n |^ 2)) * 2)) + (2 * n))) + (((n |^ 2) + (2 * n)) + 1)) * 2) - (((n |^ 2) + (2 * n)) + 1));

      hence thesis;

    end;

    

     Lm13: ((n + 2) * ((((n + 1) |^ 2) + (n + 1)) - 1)) = ((((n |^ 3) + (5 * (n |^ 2))) + (7 * n)) + 2)

    proof

      ((n + 2) * ((((n + 1) |^ 2) + (n + 1)) - 1)) = ((n + 2) * (((((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2)) + (n + 1)) - 1)) by Lm3

      .= ((n + 2) * (((((n |^ 2) + ((2 * n) * 1)) + 1) + (n + 1)) - 1))

      .= ((((((n * (n |^ 2)) + (2 * (n |^ 2))) + (3 * (n * n))) + (6 * n)) + n) + 2)

      .= ((((((n * (n |^ 2)) + (2 * (n |^ 2))) + (3 * (n |^ 2))) + (6 * n)) + n) + 2) by WSIERP_1: 1

      .= ((((((n |^ (2 + 1)) + (2 * (n |^ 2))) + (3 * (n |^ 2))) + (6 * n)) + n) + 2) by NEWTON: 6

      .= ((((n |^ (2 + 1)) + ((2 + 3) * (n |^ 2))) + ((6 + 1) * n)) + 2);

      hence thesis;

    end;

    

     Lm14: (for n holds (s . n) = ((a * n) + b)) implies for n holds (( Partial_Sums s) . n) = (((((a * (n + 1)) * n) / 2) + (n * b)) + b)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((((a * ($1 + 1)) * $1) / 2) + ($1 * b)) + b);

      assume

       A1: for n holds (s . n) = ((a * n) + b);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((((a * (n + 1)) * n) / 2) + (n * b)) + b);

        

        then (( Partial_Sums s) . (n + 1)) = ((((((a * (n + 1)) * n) / 2) + (n * b)) + b) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((((a * (n + 1)) * n) / 2) + (n * b)) + b) + ((a * (n + 1)) + b)) by A1

        .= (((((a * (n + 1)) * (n + 2)) / 2) + ((n + 1) * b)) + b);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (((((a * ( 0 + 1)) * 0 ) / 2) + ( 0 * b)) + b) by A1;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:3

    (for n holds (s . n) = n) implies for n holds (( Partial_Sums s) . n) = ((n * (n + 1)) / 2)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (($1 * ($1 + 1)) / 2);

      assume

       A1: for n holds (s . n) = n;

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((n * (n + 1)) / 2);

        

        then (( Partial_Sums s) . (n + 1)) = (((n * (n + 1)) / 2) + (s . (n + 1))) by SERIES_1:def 1

        .= (((n * (n + 1)) / 2) + (n + 1)) by A1

        .= (((n * (n + 1)) + ((n + 1) * 2)) / 2);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (( 0 * ( 0 + 1)) / 2) by A1;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:4

    (for n holds (s . n) = (2 * n)) implies for n holds (( Partial_Sums s) . n) = (n * (n + 1))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ($1 * ($1 + 1));

      assume

       A1: for n holds (s . n) = (2 * n);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (n * (n + 1));

        

        then (( Partial_Sums s) . (n + 1)) = ((n * (n + 1)) + (s . (n + 1))) by SERIES_1:def 1

        .= ((n * (n + 1)) + (2 * (n + 1))) by A1

        .= ((n + 2) * (n + 1));

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (2 * 0 ) by A1

      .= ( 0 * ( 0 + 1));

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:5

    (for n holds (s . n) = ((2 * n) + 1)) implies for n holds (( Partial_Sums s) . n) = ((n + 1) |^ 2)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (($1 + 1) |^ 2);

      assume

       A1: for n holds (s . n) = ((2 * n) + 1);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((n + 1) |^ 2);

        

        then (( Partial_Sums s) . (n + 1)) = (((n + 1) |^ 2) + (s . (n + 1))) by SERIES_1:def 1

        .= (((n + 1) |^ 2) + ((2 * (n + 1)) + 1)) by A1

        .= ((((n + 1) |^ 2) + (2 * n)) + 3)

        .= (((((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2)) + (2 * n)) + 3) by Lm3

        .= (((((n |^ 2) + (2 * n)) + 1) + (2 * n)) + 3)

        .= (((n |^ 2) + ((2 * n) * 2)) + (2 |^ 2)) by Lm3

        .= ((n + 2) |^ 2) by Lm3;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((2 * 0 ) + 1) by A1

      .= (( 0 + 1) |^ 2);

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:6

    (for n holds (s . n) = (n * (n + 1))) implies for n holds (( Partial_Sums s) . n) = (((n * (n + 1)) * (n + 2)) / 3)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((($1 * ($1 + 1)) * ($1 + 2)) / 3);

      assume

       A1: for n holds (s . n) = (n * (n + 1));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((n * (n + 1)) * (n + 2)) / 3);

        

        then (( Partial_Sums s) . (n + 1)) = ((((n * (n + 1)) * (n + 2)) / 3) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((n * (n + 1)) * (n + 2)) / 3) + ((n + 1) * ((n + 1) + 1))) by A1

        .= ((((n + 1) * (n + 2)) * (n + 3)) / 3);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((( 0 * ( 0 + 1)) * ( 0 + 2)) / 3) by A1;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:7

    (for n holds (s . n) = ((n * (n + 1)) * (n + 2))) implies for n holds (( Partial_Sums s) . n) = ((((n * (n + 1)) * (n + 2)) * (n + 3)) / 4)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 * ($1 + 1)) * ($1 + 2)) * ($1 + 3)) / 4);

      assume

       A1: for n holds (s . n) = ((n * (n + 1)) * (n + 2));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n * (n + 1)) * (n + 2)) * (n + 3)) / 4);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n * (n + 1)) * (n + 2)) * (n + 3)) / 4) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n * (n + 1)) * (n + 2)) * (n + 3)) / 4) + (((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2))) by A1

        .= (((((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2)) * ((n + 1) + 3)) / 4);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (((( 0 * ( 0 + 1)) * ( 0 + 2)) * ( 0 + 3)) / 4) by A1;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:8

    (for n holds (s . n) = (((n * (n + 1)) * (n + 2)) * (n + 3))) implies for n holds (( Partial_Sums s) . n) = (((((n * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)) / 5)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((((($1 * ($1 + 1)) * ($1 + 2)) * ($1 + 3)) * ($1 + 4)) / 5);

      assume

       A1: for n holds (s . n) = (((n * (n + 1)) * (n + 2)) * (n + 3));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((((n * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)) / 5);

        

        then (( Partial_Sums s) . (n + 1)) = ((((((n * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)) / 5) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((((n * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)) / 5) + ((((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2)) * ((n + 1) + 3))) by A1

        .= ((((((n + 1) * (n + 2)) * (n + 3)) * (n + 4)) * (n + 5)) / 5);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((((( 0 * ( 0 + 1)) * ( 0 + 2)) * ( 0 + 3)) * ( 0 + 4)) / 4) by A1;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:9

    (for n holds (s . n) = (1 / (n * (n + 1)))) implies for n holds (( Partial_Sums s) . n) = (1 - (1 / (n + 1)))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (1 - (1 / ($1 + 1)));

      assume

       A1: for n holds (s . n) = (1 / (n * (n + 1)));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        

         A3: (n + 1) <> 0 by NAT_1: 5;

        assume (( Partial_Sums s) . n) = (1 - (1 / (n + 1)));

        

        then (( Partial_Sums s) . (n + 1)) = ((1 - (1 / (n + 1))) + (s . (n + 1))) by SERIES_1:def 1

        .= ((1 - (1 / (n + 1))) + (1 / ((n + 1) * ((n + 1) + 1)))) by A1

        .= (1 - ((1 / (n + 1)) - (1 / ((n + 1) * (n + 2)))))

        .= (1 - ((1 * (1 / (n + 1))) - ((1 / (n + 1)) * (1 / (n + 2))))) by XCMPLX_1: 102

        .= (1 - ((1 / (n + 1)) * (1 - (1 / (n + 2)))))

        .= (1 - ((1 / (n + 1)) * (((1 * (n + 2)) - 1) / (n + 2)))) by Lm7

        .= (1 - (((1 / (n + 1)) * (n + 1)) / (n + 2))) by XCMPLX_1: 74

        .= (1 - (1 / (n + 2))) by A3, XCMPLX_1: 87;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (1 / ( 0 * ( 0 + 1))) by A1

      .= (1 - (1 / 1)) by XCMPLX_1: 49;

      then

       A4: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A4, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:10

    (for n holds (s . n) = (1 / ((n * (n + 1)) * (n + 2)))) implies for n holds (( Partial_Sums s) . n) = ((1 / 4) - (1 / ((2 * (n + 1)) * (n + 2))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 4) - (1 / ((2 * ($1 + 1)) * ($1 + 2))));

      assume

       A1: for n holds (s . n) = (1 / ((n * (n + 1)) * (n + 2)));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((1 / 4) - (1 / ((2 * (n + 1)) * (n + 2))));

        

        then (( Partial_Sums s) . (n + 1)) = (((1 / 4) - (1 / ((2 * (n + 1)) * (n + 2)))) + (s . (n + 1))) by SERIES_1:def 1

        .= (((1 / 4) - (1 / ((2 * (n + 1)) * (n + 2)))) + (1 / (((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2)))) by A1

        .= ((1 / 4) - ((1 / ((2 * (n + 1)) * (n + 2))) - (1 / (((n + 1) * (n + 2)) * (n + 3)))))

        .= ((1 / 4) - ((1 / ((2 * (n + 2)) * (n + 1))) - ((1 * 2) / ((((n + 2) * (n + 1)) * (n + 3)) * 2)))) by XCMPLX_1: 91

        .= ((1 / 4) - ((1 / ((2 * (n + 2)) * (n + 1))) - ((1 * 2) / (((n + 2) * 2) * ((n + 1) * (n + 3))))))

        .= ((1 / 4) - ((1 / ((2 * (n + 2)) * (n + 1))) - ((1 / ((n + 2) * 2)) * (2 / ((n + 1) * (n + 3)))))) by XCMPLX_1: 76

        .= ((1 / 4) - (((1 / (2 * (n + 2))) * (1 / (n + 1))) - ((1 / (2 * (n + 2))) * (2 / ((n + 1) * (n + 3)))))) by XCMPLX_1: 102

        .= ((1 / 4) - ((1 / (2 * (n + 2))) * ((1 / (n + 1)) - (2 / ((n + 1) * (n + 3))))))

        .= ((1 / 4) - ((1 / (2 * (n + 2))) * (1 / (n + 3)))) by Lm8

        .= ((1 / 4) - (1 / ((2 * ((n + 1) + 1)) * ((n + 1) + 2)))) by XCMPLX_1: 102;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (1 / (( 0 * ( 0 + 1)) * ( 0 + 2))) by A1

      .= ((1 / 4) - (1 / ((2 * ( 0 + 1)) * ( 0 + 2)))) by XCMPLX_1: 49;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:11

    (for n holds (s . n) = (1 / (((n * (n + 1)) * (n + 2)) * (n + 3)))) implies for n holds (( Partial_Sums s) . n) = ((1 / 18) - (1 / (((3 * (n + 1)) * (n + 2)) * (n + 3))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 18) - (1 / (((3 * ($1 + 1)) * ($1 + 2)) * ($1 + 3))));

      assume

       A1: for n holds (s . n) = (1 / (((n * (n + 1)) * (n + 2)) * (n + 3)));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((1 / 18) - (1 / (((3 * (n + 1)) * (n + 2)) * (n + 3))));

        

        then (( Partial_Sums s) . (n + 1)) = (((1 / 18) - (1 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + (s . (n + 1))) by SERIES_1:def 1

        .= (((1 / 18) - (1 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + (1 / ((((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2)) * ((n + 1) + 3)))) by A1

        .= ((1 / 18) - ((1 / (((3 * (n + 1)) * (n + 2)) * (n + 3))) - (1 / ((((n + 1) * (n + 2)) * (n + 3)) * (n + 4)))))

        .= ((1 / 18) - ((1 / (((3 * (n + 1)) * (n + 2)) * (n + 3))) - ((1 * 3) / (((((n + 1) * (n + 2)) * (n + 3)) * (n + 4)) * 3)))) by XCMPLX_1: 91

        .= ((1 / 18) - ((1 / (((3 * (n + 2)) * (n + 3)) * (n + 1))) - ((1 * 3) / (((3 * (n + 2)) * (n + 3)) * ((n + 1) * (n + 4))))))

        .= ((1 / 18) - ((1 / (((3 * (n + 2)) * (n + 3)) * (n + 1))) - ((1 / ((3 * (n + 2)) * (n + 3))) * (3 / ((n + 1) * (n + 4)))))) by XCMPLX_1: 76

        .= ((1 / 18) - (((1 / ((3 * (n + 2)) * (n + 3))) * (1 / (n + 1))) - ((1 / ((3 * (n + 2)) * (n + 3))) * (3 / ((n + 1) * (n + 4)))))) by XCMPLX_1: 102

        .= ((1 / 18) - ((1 / ((3 * (n + 2)) * (n + 3))) * ((1 / (n + 1)) - (3 / ((n + 1) * (n + 4))))))

        .= ((1 / 18) - ((1 / ((3 * (n + 2)) * (n + 3))) * (1 / (n + 4)))) by Lm9

        .= ((1 / 18) - (1 / (((3 * ((n + 1) + 1)) * ((n + 1) + 2)) * ((n + 1) + 3)))) by XCMPLX_1: 102;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (1 / ((( 0 * ( 0 + 1)) * ( 0 + 2)) * ( 0 + 3))) by A1

      .= ((1 / 18) - (1 / (((3 * ( 0 + 1)) * ( 0 + 2)) * ( 0 + 3)))) by XCMPLX_1: 49;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:12

    (for n holds (s . n) = (n |^ 2)) implies for n holds (( Partial_Sums s) . n) = (((n * (n + 1)) * ((2 * n) + 1)) / 6)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((($1 * ($1 + 1)) * ((2 * $1) + 1)) / 6);

      assume

       A1: for n holds (s . n) = (n |^ 2);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((n * (n + 1)) * ((2 * n) + 1)) / 6);

        

        then (( Partial_Sums s) . (n + 1)) = ((((n * (n + 1)) * ((2 * n) + 1)) / 6) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((n * (n + 1)) * ((2 * n) + 1)) / 6) + ((n + 1) |^ 2)) by A1

        .= ((((n * (n + 1)) * ((2 * n) + 1)) + (((n + 1) |^ 2) * 6)) / 6)

        .= (((((n + 1) * n) * ((2 * n) + 1)) + (((n + 1) * (n + 1)) * 6)) / 6) by WSIERP_1: 1;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 2) by A1

      .= ((( 0 * ( 0 + 1)) * ((2 * 0 ) + 1)) / 6) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:13

    (for n holds (s . n) = ((( - 1) |^ (n + 1)) * (n |^ 2))) implies for n holds (( Partial_Sums s) . n) = ((((( - 1) |^ (n + 1)) * n) * (n + 1)) / 2)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((((( - 1) |^ ($1 + 1)) * $1) * ($1 + 1)) / 2);

      assume

       A1: for n holds (s . n) = ((( - 1) |^ (n + 1)) * (n |^ 2));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((( - 1) |^ (n + 1)) * n) * (n + 1)) / 2);

        

        then (( Partial_Sums s) . (n + 1)) = (((((( - 1) |^ (n + 1)) * n) * (n + 1)) / 2) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((( - 1) |^ (n + 1)) * n) * (n + 1)) / 2) + ((( - 1) |^ ((n + 1) + 1)) * ((n + 1) |^ 2))) by A1

        .= (((((( - 1) |^ (n + 1)) * n) * (n + 1)) + (((( - 1) |^ ((n + 1) + 1)) * ((n + 1) |^ 2)) * 2)) / 2)

        .= (((((( - 1) |^ (n + 1)) * n) * (n + 1)) + ((((( - 1) |^ (n + 1)) * ( - 1)) * ((n + 1) |^ 2)) * 2)) / 2) by NEWTON: 6

        .= ((((( - 1) |^ (n + 1)) * ( - 1)) * ((( - 1) * (n * (n + 1))) + (((n + 1) |^ 2) * 2))) / 2)

        .= (((( - 1) |^ ((n + 1) + 1)) * ((( - 1) * (n * (n + 1))) + (((n + 1) |^ 2) * 2))) / 2) by NEWTON: 6

        .= (((( - 1) |^ (n + 2)) * ((((( - 1) * n) * n) + ((( - 1) * n) * 1)) + ((((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2)) * 2))) / 2) by Lm3

        .= (((( - 1) |^ (n + 2)) * ((((( - 1) * n) * n) + ((( - 1) * n) * 1)) + ((((n |^ 2) + (2 * n)) + 1) * 2))) / 2)

        .= (((( - 1) |^ (n + 2)) * (((( - 1) * (n * n)) + (( - 1) * n)) + (((2 * (n |^ 2)) + ((2 * n) * 2)) + (1 * 2)))) / 2)

        .= (((( - 1) |^ (n + 2)) * (((( - 1) * ((n |^ 1) * n)) + (( - 1) * n)) + (((2 * (n |^ 2)) + ((2 * n) * 2)) + (1 * 2)))) / 2)

        .= (((( - 1) |^ (n + 2)) * (((( - 1) * (n |^ (1 + 1))) + (( - 1) * n)) + (((2 * (n |^ 2)) + ((2 * n) * 2)) + (1 * 2)))) / 2) by NEWTON: 6

        .= (((( - 1) |^ (n + 2)) * (((1 * (n |^ 2)) + (3 * n)) + 2)) / 2)

        .= (((( - 1) |^ (n + 2)) * ((n + 1) * (n + 2))) / 2) by Lm10

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * (n + 2)) / 2);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((( - 1) |^ ( 0 + 1)) * ( 0 |^ 2)) by A1

      .= ((((( - 1) |^ ( 0 + 1)) * 0 ) * ( 0 + 1)) / 2) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:14

    (for n st n >= 1 holds (s . n) = (((2 * n) - 1) |^ 2) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((n * ((4 * (n |^ 2)) - 1)) / 3)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (($1 * ((4 * ($1 |^ 2)) - 1)) / 3);

      assume

       A1: for n st n >= 1 holds (s . n) = (((2 * n) - 1) |^ 2) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = ((n * ((4 * (n |^ 2)) - 1)) / 3);

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        (( Partial_Sums s) . (n + 1)) = (((n * ((4 * (n |^ 2)) - 1)) / 3) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= (((n * ((4 * (n |^ 2)) - 1)) / 3) + (((2 * (n + 1)) - 1) |^ 2)) by A1, A4

        .= (((n * ((4 * (n |^ 2)) - 1)) + ((((2 * n) + 1) |^ 2) * 3)) / 3)

        .= (((n * ((4 * (n |^ 2)) - 1)) + (((((2 * n) |^ 2) + ((2 * (2 * n)) * 1)) + (1 |^ 2)) * 3)) / 3) by Lm3

        .= (((((n * 4) * (n |^ 2)) - (n * 1)) + (((((2 * n) |^ 2) * 3) + ((2 * (2 * n)) * 3)) + ((1 |^ 2) * 3))) / 3)

        .= ((((n * (4 * (n |^ 2))) - n) + (((((2 |^ 2) * (n |^ 2)) * 3) + (((2 * 2) * n) * 3)) + ((1 |^ 2) * 3))) / 3) by NEWTON: 7

        .= ((((n * (4 * (n |^ 2))) - n) + (((((2 |^ 2) * (n |^ 2)) * 3) + ((4 * n) * 3)) + (1 * 3))) / 3)

        .= ((((n * (4 * (n |^ 2))) - n) + (((((2 * 2) * (n |^ 2)) * 3) + (12 * n)) + 3)) / 3) by WSIERP_1: 1

        .= (((((n * (4 * (n |^ 2))) + ((12 - 1) * n)) + (12 * (n |^ 2))) + 3) / 3)

        .= (((n + 1) * ((4 * ((n + 1) |^ 2)) - 1)) / 3) by Lm11;

        hence thesis;

      end;

      (( Partial_Sums s) . ( 0 + 1)) = ((( Partial_Sums s) . 0 ) + (s . ( 0 + 1))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= ( 0 + (((2 * 1) - 1) |^ 2)) by A1

      .= ((1 * ((4 * (1 * 1)) - 1)) / 3)

      .= ((1 * ((4 * (1 |^ 2)) - 1)) / 3);

      then

       A5: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:15

    (for n holds (s . n) = (n |^ 3)) implies for n holds (( Partial_Sums s) . n) = (((n |^ 2) * ((n + 1) |^ 2)) / 4)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((($1 |^ 2) * (($1 + 1) |^ 2)) / 4);

      assume

       A1: for n holds (s . n) = (n |^ 3);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((n |^ 2) * ((n + 1) |^ 2)) / 4);

        

        then (( Partial_Sums s) . (n + 1)) = ((((n |^ 2) * ((n + 1) |^ 2)) / 4) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((n |^ 2) * ((n + 1) |^ 2)) / 4) + ((n + 1) |^ 3)) by A1

        .= ((((n |^ 2) * ((n + 1) |^ 2)) + (((n + 1) |^ 3) * 4)) / 4)

        .= ((((n |^ 2) * ((n + 1) |^ 2)) + ((((n + 1) |^ 2) * (n + 1)) * 4)) / 4) by Lm2

        .= ((((n + 1) |^ 2) * ((n |^ 2) + (((2 * 2) * n) + 4))) / 4)

        .= ((((n + 1) |^ 2) * ((n + 2) |^ 2)) / 4) by Lm3;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 3) by A1

      .= (( 0 * (( 0 + 1) |^ 2)) / 4) by NEWTON: 11

      .= ((( 0 |^ 2) * (( 0 + 1) |^ 2)) / 4) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:16

    (for n st n >= 1 holds (s . n) = (((2 * n) - 1) |^ 3) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((n |^ 2) * ((2 * (n |^ 2)) - 1))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (($1 |^ 2) * ((2 * ($1 |^ 2)) - 1));

      assume

       A1: for n st n >= 1 holds (s . n) = (((2 * n) - 1) |^ 3) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = ((n |^ 2) * ((2 * (n |^ 2)) - 1));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        (( Partial_Sums s) . (n + 1)) = (((n |^ 2) * ((2 * (n |^ 2)) - 1)) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= (((n |^ 2) * ((2 * (n |^ 2)) - 1)) + (((2 * (n + 1)) - 1) |^ 3)) by A1, A4

        .= (((n |^ 2) * ((2 * (n |^ 2)) - 1)) + (((2 * n) + 1) |^ 3))

        .= (((n |^ 2) * ((2 * (n |^ 2)) - 1)) + (((((2 * n) |^ 3) + (3 * ((2 * n) |^ 2))) + (3 * (2 * n))) + 1)) by Lm4

        .= ((((((((n |^ 2) * 2) * (n |^ 2)) - (n |^ 2)) + ((2 * n) |^ 3)) + (3 * ((2 * n) |^ 2))) + ((3 * 2) * n)) + 1)

        .= ((((((((n |^ 2) * 2) * (n |^ 2)) - (n |^ 2)) + ((2 * n) |^ 3)) + (3 * ((2 |^ 2) * (n |^ 2)))) + (6 * n)) + 1) by NEWTON: 7

        .= ((((((((n |^ 2) * 2) * (n |^ 2)) - (n |^ 2)) + ((2 |^ 3) * (n |^ 3))) + (3 * ((2 |^ 2) * (n |^ 2)))) + (6 * n)) + 1) by NEWTON: 7

        .= ((((((((n |^ 2) * 2) * (n |^ 2)) - (n |^ 2)) + ((2 |^ 3) * (n |^ 3))) + (3 * ((2 * 2) * (n |^ 2)))) + (6 * n)) + 1) by WSIERP_1: 1

        .= ((((((((n |^ 2) * 2) * (n |^ 2)) - (n |^ 2)) + (((2 * 2) * 2) * (n |^ 3))) + (3 * ((2 * 2) * (n |^ 2)))) + (6 * n)) + 1) by Lm1

        .= (((((((n |^ 2) * (n |^ 2)) * 2) + ((12 - 1) * (n |^ 2))) + (8 * (n |^ 3))) + (6 * n)) + 1)

        .= (((n + 1) |^ 2) * ((2 * ((n + 1) |^ 2)) - 1)) by Lm12;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((s . 1) + 0 ) by A1

      .= (((2 * 1) - 1) |^ 3) by A1

      .= (1 |^ (2 + 1))

      .= ((1 |^ 2) * ((2 * (1 * 1)) - 1))

      .= ((1 |^ 2) * ((2 * (1 |^ 2)) - 1));

      then

       A5: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:17

    (for n holds (s . n) = (n |^ 4)) implies for n holds (( Partial_Sums s) . n) = ((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) / 30)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 * ($1 + 1)) * ((2 * $1) + 1)) * (((3 * ($1 |^ 2)) + (3 * $1)) - 1)) / 30);

      assume

       A1: for n holds (s . n) = (n |^ 4);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) / 30);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) / 30) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) / 30) + ((n + 1) |^ 4)) by A1

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ (3 + 1)) * 30)) / 30)

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + ((((n + 1) |^ 3) * (n + 1)) * 30)) / 30) by NEWTON: 6

        .= (((n + 1) * (((n * ((2 * n) + 1)) * (((3 * (n |^ 2)) + (3 * n)) - 1)) + (((n + 1) |^ 3) * 30))) / 30)

        .= (((n + 1) * (((n + 2) * ((2 * (n + 1)) + 1)) * (((3 * ((n + 1) |^ 2)) + (3 * (n + 1))) - 1))) / 30) by Lm5;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 4) by A1

      .= (((( 0 * ( 0 + 1)) * ((2 * 0 ) + 1)) * (((3 * ( 0 |^ 2)) + (3 * 0 )) - 1)) / 30) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:18

    (for n holds (s . n) = ((( - 1) |^ (n + 1)) * (n |^ 4))) implies for n holds (( Partial_Sums s) . n) = (((((( - 1) |^ (n + 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) / 2)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((((( - 1) |^ ($1 + 1)) * $1) * ($1 + 1)) * ((($1 |^ 2) + $1) - 1)) / 2);

      assume

       A1: for n holds (s . n) = ((( - 1) |^ (n + 1)) * (n |^ 4));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((((( - 1) |^ (n + 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) / 2);

        

        then (( Partial_Sums s) . (n + 1)) = ((((((( - 1) |^ (n + 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) / 2) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((((( - 1) |^ (n + 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) / 2) + ((( - 1) |^ ((n + 1) + 1)) * ((n + 1) |^ 4))) by A1

        .= ((((((((( - 1) |^ (n + 1)) * ( - 1)) * ( - 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) + (((( - 1) |^ (n + 2)) * ((n + 1) |^ 4)) * 2)) / 2)

        .= (((((((( - 1) |^ ((n + 1) + 1)) * ( - 1)) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) + (((( - 1) |^ (n + 2)) * ((n + 1) |^ 4)) * 2)) / 2) by NEWTON: 6

        .= (((( - 1) |^ (n + 2)) * ((((( - 1) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) + (((n + 1) |^ (3 + 1)) * 2))) / 2)

        .= (((( - 1) |^ (n + 2)) * ((((( - 1) * n) * (n + 1)) * (((n |^ 2) + n) - 1)) + ((((n + 1) |^ 3) * (n + 1)) * 2))) / 2) by NEWTON: 6

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((( - 1) * (((n * (n |^ 2)) + (n * n)) - (n * 1))) + (((n + 1) |^ 3) * 2))) / 2)

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((( - 1) * (((n |^ (2 + 1)) + (n * n)) - (n * 1))) + (((n + 1) |^ 3) * 2))) / 2) by NEWTON: 6

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((( - 1) * (((n |^ 3) + (n |^ 2)) - n)) + (((n + 1) |^ 3) * 2))) / 2) by WSIERP_1: 1

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((( - 1) * (((n |^ 3) + (n |^ 2)) - n)) + (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * 2))) / 2) by Lm4

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((((n |^ 3) + (5 * (n |^ 2))) + (7 * n)) + 2)) / 2)

        .= ((((( - 1) |^ (n + 2)) * (n + 1)) * ((n + 2) * ((((n + 1) |^ 2) + (n + 1)) - 1))) / 2) by Lm13

        .= (((((( - 1) |^ (n + 2)) * (n + 1)) * (n + 2)) * ((((n + 1) |^ 2) + (n + 1)) - 1)) / 2);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((( - 1) |^ ( 0 + 1)) * ( 0 |^ 4)) by A1

      .= (((((( - 1) |^ ( 0 + 1)) * 0 ) * ( 0 + 1)) * ((( 0 |^ 2) + 0 ) - 1)) / 2) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    

     Lm15: (((n |^ 2) * (((2 * (n |^ 2)) + (2 * n)) - 1)) + (((n + 1) |^ 3) * 12)) = (((n + 2) |^ 2) * (((2 * ((n + 1) |^ 2)) + (2 * (n + 1))) - 1))

    proof

      

       A1: (((n |^ 2) * (((2 * (n |^ 2)) + (2 * n)) - 1)) + (((n + 1) |^ 3) * 12)) = ((((2 * ((n |^ 2) * (n |^ 2))) + (2 * (n * (n |^ 2)))) - (n |^ 2)) + (((n + 1) |^ 3) * 12))

      .= ((((2 * (n |^ (2 + 2))) + (2 * (n * (n |^ 2)))) - (n |^ 2)) + (((n + 1) |^ 3) * 12)) by NEWTON: 8

      .= ((((2 * (n |^ (2 + 2))) + (2 * (n |^ (2 + 1)))) - (n |^ 2)) + (((n + 1) |^ 3) * 12)) by NEWTON: 6

      .= ((((2 * (n |^ 4)) + (2 * (n |^ 3))) - (n |^ 2)) + (((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1) * 12)) by Lm4

      .= (((((((2 * (n |^ 4)) + (2 * (n |^ 3))) - (n |^ 2)) + ((n |^ 3) * 12)) + (36 * (n |^ 2))) + (36 * n)) + 12);

      (((n + 2) |^ 2) * (((2 * ((n + 1) |^ 2)) + (2 * (n + 1))) - 1)) = (((n + 2) |^ 2) * (((2 * (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) + (2 * (n + 1))) - 1)) by Lm3

      .= ((((n |^ 2) + ((2 * n) * 2)) + (2 |^ 2)) * (((((2 * (n |^ 2)) + ((2 * n) * 2)) + (2 * (1 |^ 2))) + ((2 * n) + (2 * 1))) - 1)) by Lm3

      .= ((((n |^ 2) + ((2 * n) * 2)) + (2 |^ 2)) * (((((2 * (n |^ 2)) + (4 * n)) + (2 * 1)) + ((2 * n) + 2)) - 1))

      .= ((((n |^ 2) + (4 * n)) + (2 * 2)) * ((((((2 * (n |^ 2)) + (4 * n)) + 2) + (2 * n)) + 2) - 1)) by WSIERP_1: 1

      .= (((((2 * ((n |^ 2) * (n |^ 2))) + (6 * (n * (n |^ 2)))) + ((n |^ 2) * 3)) + ((4 * n) * (((2 * (n |^ 2)) + (6 * n)) + 3))) + ((((2 * (n |^ 2)) * 4) + (24 * n)) + 12))

      .= (((((2 * (n |^ (2 + 2))) + (6 * (n * (n |^ 2)))) + ((n |^ 2) * 3)) + ((4 * n) * (((2 * (n |^ 2)) + (6 * n)) + 3))) + ((((2 * (n |^ 2)) * 4) + (24 * n)) + 12)) by NEWTON: 8

      .= (((((2 * (n |^ (2 + 2))) + (6 * (n |^ (2 + 1)))) + ((n |^ 2) * 3)) + ((4 * n) * (((2 * (n |^ 2)) + (6 * n)) + 3))) + ((((2 * (n |^ 2)) * 4) + (24 * n)) + 12)) by NEWTON: 6

      .= (((((2 * (n |^ 4)) + (6 * (n |^ 3))) + ((n |^ 2) * 3)) + ((((4 * (n * (n |^ 2))) * 2) + ((4 * (n * n)) * 6)) + ((4 * n) * 3))) + (((8 * (n |^ 2)) + (24 * n)) + 12))

      .= (((((2 * (n |^ 4)) + (6 * (n |^ 3))) + ((n |^ 2) * 3)) + ((((4 * (n |^ (2 + 1))) * 2) + (24 * (n * n))) + ((4 * n) * 3))) + (((8 * (n |^ 2)) + (24 * n)) + 12)) by NEWTON: 6

      .= (((((2 * (n |^ 4)) + (6 * (n |^ 3))) + ((n |^ 2) * 3)) + ((((4 * (n |^ 3)) * 2) + (24 * (n |^ 2))) + (12 * n))) + (((8 * (n |^ 2)) + (24 * n)) + 12)) by WSIERP_1: 1

      .= (((((((2 * (n |^ 4)) + (14 * (n |^ 3))) + (27 * (n |^ 2))) + (12 * n)) + (8 * (n |^ 2))) + (24 * n)) + 12);

      hence thesis by A1;

    end;

    theorem :: SERIES_2:19

    (for n holds (s . n) = (n |^ 5)) implies for n holds (( Partial_Sums s) . n) = ((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) / 12)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 |^ 2) * (($1 + 1) |^ 2)) * (((2 * ($1 |^ 2)) + (2 * $1)) - 1)) / 12);

      assume

       A1: for n holds (s . n) = (n |^ 5);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) / 12);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) / 12) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) / 12) + ((n + 1) |^ 5)) by A1

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) + (((n + 1) |^ (3 + 2)) * 12)) / 12)

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((2 * (n |^ 2)) + (2 * n)) - 1)) + ((((n + 1) |^ 3) * ((n + 1) |^ 2)) * 12)) / 12) by NEWTON: 8

        .= ((((n + 1) |^ 2) * (((n |^ 2) * (((2 * (n |^ 2)) + (2 * n)) - 1)) + (((n + 1) |^ 3) * 12))) / 12)

        .= ((((n + 1) |^ 2) * (((n + 2) |^ 2) * (((2 * ((n + 1) |^ 2)) + (2 * (n + 1))) - 1))) / 12) by Lm15

        .= (((((n + 1) |^ 2) * ((n + 2) |^ 2)) * (((2 * ((n + 1) |^ 2)) + (2 * (n + 1))) - 1)) / 12);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 5) by A1

      .= ((( 0 * (( 0 + 1) |^ 2)) * (((2 * ( 0 |^ 2)) + (2 * 0 )) - 1)) / 12) by NEWTON: 11

      .= (((( 0 |^ 2) * (( 0 + 1) |^ 2)) * (((2 * ( 0 |^ 2)) + (2 * 0 )) - 1)) / 12) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    

     Lm16: (((n + 2) * ((2 * (n + 1)) + 1)) * ((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (3 * (n + 1))) + 1)) = (((((((6 * (n |^ 6)) + (57 * (n |^ 5))) + (216 * (n |^ 4))) + (414 * (n |^ 3))) + (419 * (n |^ 2))) + (211 * n)) + 42)

    proof

      (((n + 2) * ((2 * (n + 1)) + 1)) * ((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (3 * (n + 1))) + 1)) = (((n + 2) * ((2 * n) + 3)) * ((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (3 * n)) - 2))

      .= (((n + 2) * ((2 * n) + 3)) * ((((3 * (((((n |^ 4) + (4 * (n |^ 3))) + (6 * (n |^ 2))) + (4 * n)) + 1)) + (6 * ((n + 1) |^ 3))) - (3 * n)) - 2)) by Lm6

      .= (((n + 2) * ((2 * n) + 3)) * ((((((((3 * (n |^ 4)) + (12 * (n |^ 3))) + (18 * (n |^ 2))) + (12 * n)) + 3) + (6 * ((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1))) - (3 * n)) - 2)) by Lm4

      .= ((((2 * (n * n)) + (3 * n)) + ((4 * n) + 6)) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (36 * (n |^ 2))) + (27 * n)) + 7))

      .= ((((2 * (n |^ 2)) + (3 * n)) + ((4 * n) + 6)) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (36 * (n |^ 2))) + (27 * n)) + 7)) by WSIERP_1: 1

      .= ((((((3 * (n |^ 4)) * (((2 * (n |^ 2)) + (7 * n)) + 6)) + ((18 * (n |^ 3)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((27 * (n * (n |^ 2))) * 2) + ((27 * (n * n)) * 7)) + (162 * n))) + (((14 * (n |^ 2)) + (49 * n)) + 42))

      .= ((((((3 * (n |^ 4)) * (((2 * (n |^ 2)) + (7 * n)) + 6)) + ((18 * (n |^ 3)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((27 * (n |^ (2 + 1))) * 2) + ((27 * (n * n)) * 7)) + (162 * n))) + (((14 * (n |^ 2)) + (49 * n)) + 42)) by NEWTON: 6

      .= ((((((3 * (n |^ 4)) * (((2 * (n |^ 2)) + (7 * n)) + 6)) + ((18 * (n |^ 3)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + (((54 * (n |^ 3)) + ((27 * (n |^ 2)) * 7)) + (162 * n))) + (((14 * (n |^ 2)) + (49 * n)) + 42)) by WSIERP_1: 1

      .= (((((((3 * ((n |^ 4) * (n |^ 2))) * 2) + ((3 * ((n |^ 4) * n)) * 7)) + (18 * (n |^ 4))) + ((((18 * ((n |^ 3) * (n |^ 2))) * 2) + ((18 * ((n |^ 3) * n)) * 7)) + (108 * (n |^ 3)))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42))

      .= (((((((3 * (n |^ (4 + 2))) * 2) + ((3 * ((n |^ 4) * n)) * 7)) + (18 * (n |^ 4))) + ((((18 * ((n |^ 3) * (n |^ 2))) * 2) + ((18 * ((n |^ 3) * n)) * 7)) + (108 * (n |^ 3)))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 8

      .= ((((((6 * (n |^ (4 + 2))) + ((3 * (n |^ (4 + 1))) * 7)) + (18 * (n |^ 4))) + (((36 * ((n |^ 3) * (n |^ 2))) + (126 * ((n |^ 3) * n))) + (108 * (n |^ 3)))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 6

      .= ((((((6 * (n |^ (4 + 2))) + (21 * (n |^ (4 + 1)))) + (18 * (n |^ 4))) + (((36 * ((n |^ 3) * (n |^ 2))) + (126 * (n |^ (3 + 1)))) + (108 * (n |^ 3)))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 6

      .= ((((((6 * (n |^ (4 + 2))) + (21 * (n |^ (4 + 1)))) + (18 * (n |^ 4))) + (((36 * (n |^ (3 + 2))) + (126 * (n |^ (3 + 1)))) + (108 * (n |^ 3)))) + ((36 * (n |^ 2)) * (((2 * (n |^ 2)) + (7 * n)) + 6))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 8

      .= ((((((6 * (n |^ 6)) + (21 * (n |^ 5))) + (18 * (n |^ 4))) + (((36 * (n |^ 5)) + (126 * (n |^ 4))) + (108 * (n |^ 3)))) + ((((36 * ((n |^ 2) * (n |^ 2))) * 2) + ((36 * ((n |^ 2) * n)) * 7)) + (216 * (n |^ 2)))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42))

      .= ((((((6 * (n |^ 6)) + (21 * (n |^ 5))) + (18 * (n |^ 4))) + (((36 * (n |^ 5)) + (126 * (n |^ 4))) + (108 * (n |^ 3)))) + ((((36 * (n |^ (2 + 2))) * 2) + (252 * ((n |^ 2) * n))) + (216 * (n |^ 2)))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 8

      .= ((((((6 * (n |^ 6)) + (21 * (n |^ 5))) + (18 * (n |^ 4))) + (((36 * (n |^ 5)) + (126 * (n |^ 4))) + (108 * (n |^ 3)))) + (((72 * (n |^ (2 + 2))) + (252 * (n |^ (2 + 1)))) + (216 * (n |^ 2)))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42)) by NEWTON: 6

      .= ((((((6 * (n |^ 6)) + (21 * (n |^ 5))) + (18 * (n |^ 4))) + (((36 * (n |^ 5)) + (126 * (n |^ 4))) + (108 * (n |^ 3)))) + (((72 * (n |^ 4)) + (252 * (n |^ 3))) + (216 * (n |^ 2)))) + ((((54 * (n |^ 3)) + (203 * (n |^ 2))) + (211 * n)) + 42));

      hence thesis;

    end;

    theorem :: SERIES_2:20

    (for n holds (s . n) = (n |^ 6)) implies for n holds (( Partial_Sums s) . n) = ((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) / 42)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 * ($1 + 1)) * ((2 * $1) + 1)) * ((((3 * ($1 |^ 4)) + (6 * ($1 |^ 3))) - (3 * $1)) + 1)) / 42);

      assume

       A1: for n holds (s . n) = (n |^ 6);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) / 42);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) / 42) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) / 42) + ((n + 1) |^ 6)) by A1

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) + (((n + 1) |^ (5 + 1)) * 42)) / 42)

        .= (((((n * (n + 1)) * ((2 * n) + 1)) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) + ((((n + 1) |^ 5) * (n + 1)) * 42)) / 42) by NEWTON: 6

        .= (((n + 1) * ((((2 * (n * n)) + n) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) + (((n + 1) |^ 5) * 42))) / 42)

        .= (((n + 1) * ((((2 * (n |^ 2)) + n) * ((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (3 * n)) + 1)) + (((n + 1) |^ 5) * 42))) / 42) by WSIERP_1: 1

        .= (((n + 1) * (((((((3 * ((n |^ 4) * (n |^ 2))) * 2) + (3 * ((n |^ 4) * n))) + (((6 * ((n |^ 3) * (n |^ 2))) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n * (n |^ 2))) * 2) + (3 * (n * n)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42)

        .= (((n + 1) * (((((((3 * (n |^ (4 + 2))) * 2) + (3 * ((n |^ 4) * n))) + (((6 * ((n |^ 3) * (n |^ 2))) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n * (n |^ 2))) * 2) + (3 * (n * n)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by NEWTON: 8

        .= (((n + 1) * (((((((3 * (n |^ (4 + 2))) * 2) + (3 * ((n |^ 4) * n))) + (((6 * (n |^ (3 + 2))) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n * (n |^ 2))) * 2) + (3 * (n * n)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by NEWTON: 8

        .= (((n + 1) * (((((((3 * (n |^ (4 + 2))) * 2) + (3 * (n |^ (4 + 1)))) + (((6 * (n |^ (3 + 2))) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n * (n |^ 2))) * 2) + (3 * (n * n)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by NEWTON: 6

        .= (((n + 1) * (((((((3 * (n |^ (4 + 2))) * 2) + (3 * (n |^ (4 + 1)))) + (((6 * (n |^ (3 + 2))) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n |^ (2 + 1))) * 2) + (3 * (n * n)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by NEWTON: 6

        .= (((n + 1) * (((((((3 * (n |^ 6)) * 2) + (3 * (n |^ 5))) + (((6 * (n |^ 5)) * 2) + (6 * ((n |^ 3) * n)))) - (((3 * (n |^ 3)) * 2) + (3 * (n |^ 2)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by WSIERP_1: 1

        .= (((n + 1) * ((((((6 * (n |^ 6)) + (3 * (n |^ 5))) + ((12 * (n |^ 5)) + (6 * (n |^ (3 + 1))))) - ((6 * (n |^ 3)) + (3 * (n |^ 2)))) + ((2 * (n |^ 2)) + n)) + (((n + 1) |^ 5) * 42))) / 42) by NEWTON: 6

        .= (((n + 1) * (((((((6 * (n |^ 6)) + (6 * (n |^ 4))) + (15 * (n |^ 5))) - (6 * (n |^ 3))) - (1 * (n |^ 2))) + n) + (((((((n |^ 5) + (5 * (n |^ 4))) + (10 * (n |^ 3))) + (10 * (n |^ 2))) + (5 * n)) + 1) * 42))) / 42) by Lm6

        .= (((n + 1) * (((((((6 * (n |^ 6)) + (57 * (n |^ 5))) + (216 * (n |^ 4))) + (414 * (n |^ 3))) + (419 * (n |^ 2))) + (211 * n)) + 42)) / 42)

        .= (((n + 1) * (((n + 2) * ((2 * (n + 1)) + 1)) * ((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (3 * (n + 1))) + 1))) / 42) by Lm16

        .= (((((n + 1) * ((n + 1) + 1)) * ((2 * (n + 1)) + 1)) * ((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (3 * (n + 1))) + 1)) / 42);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 6) by A1

      .= (((( 0 * ( 0 + 1)) * ((2 * 0 ) + 1)) * ((((3 * ( 0 |^ 4)) + (6 * ( 0 |^ 3))) - (3 * 0 )) + 1)) / 42) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    

     Lm17: (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - ((n + 1) |^ 2)) - (4 * (n + 1))) + 2)) = (((n |^ 2) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) + (((n + 1) |^ 5) * 24))

    proof

      

       A1: (((n |^ 2) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) + (((n + 1) |^ 5) * 24)) = ((((((3 * ((n |^ 4) * (n |^ 2))) + (6 * ((n |^ 3) * (n |^ 2)))) - ((n |^ 2) * (n |^ 2))) - (4 * (n * (n |^ 2)))) + ((n |^ 2) * 2)) + (((n + 1) |^ 5) * 24))

      .= ((((((3 * (n |^ (4 + 2))) + (6 * ((n |^ 3) * (n |^ 2)))) - ((n |^ 2) * (n |^ 2))) - (4 * (n * (n |^ 2)))) + ((n |^ 2) * 2)) + (((n + 1) |^ 5) * 24)) by NEWTON: 8

      .= ((((((3 * (n |^ (4 + 2))) + (6 * (n |^ (3 + 2)))) - ((n |^ 2) * (n |^ 2))) - (4 * (n * (n |^ 2)))) + ((n |^ 2) * 2)) + (((n + 1) |^ 5) * 24)) by NEWTON: 8

      .= ((((((3 * (n |^ (4 + 2))) + (6 * (n |^ (3 + 2)))) - (n |^ (2 + 2))) - (4 * (n * (n |^ 2)))) + ((n |^ 2) * 2)) + (((n + 1) |^ 5) * 24)) by NEWTON: 8

      .= ((((((3 * (n |^ (4 + 2))) + (6 * (n |^ (3 + 2)))) - (n |^ (2 + 2))) - (4 * (n |^ (2 + 1)))) + ((n |^ 2) * 2)) + (((n + 1) |^ 5) * 24)) by NEWTON: 6

      .= ((((((3 * (n |^ 6)) + (6 * (n |^ 5))) - (n |^ 4)) - (4 * (n |^ 3))) + ((n |^ 2) * 2)) + (((((((n |^ 5) + (5 * (n |^ 4))) + (10 * (n |^ 3))) + (10 * (n |^ 2))) + (5 * n)) + 1) * 24)) by Lm6

      .= (((((((3 * (n |^ 6)) + (30 * (n |^ 5))) + (119 * (n |^ 4))) + (236 * (n |^ 3))) + ((n |^ 2) * 242)) + (120 * n)) + 24);

      (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - ((n + 1) |^ 2)) - (4 * (n + 1))) + 2)) = (((n + 2) |^ 2) * ((((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - ((n + 1) |^ 2)) - (4 * n)) - 4) + 2))

      .= (((n + 2) |^ 2) * ((((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) - (4 * n)) - 4) + 2)) by Lm3

      .= (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - (((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2))) - (4 * n)) - 2))

      .= (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1))) - (((n |^ 2) + (2 * n)) + (1 |^ 2))) - (4 * n)) - 2)) by Lm4

      .= (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((((n |^ 3) + (3 * (n |^ 2))) + (3 * n)) + 1))) - (((n |^ 2) + (2 * n)) + 1)) - (4 * n)) - 2))

      .= (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * (n |^ 3))) + ((18 - 1) * (n |^ 2))) + (((18 - 2) - 4) * n)) + 3))

      .= (((n + 2) |^ 2) * (((((3 * (((((n |^ 4) + (4 * (n |^ 3))) + (6 * (n |^ 2))) + (4 * n)) + 1)) + (6 * (n |^ 3))) + (17 * (n |^ 2))) + (12 * n)) + 3)) by Lm6

      .= ((((n |^ 2) + ((2 * n) * 2)) + (2 * 2)) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6)) by Lm3

      .= (((((((3 * ((n |^ 4) * (n |^ 2))) + (18 * ((n |^ 3) * (n |^ 2)))) + (35 * ((n |^ 2) * (n |^ 2)))) + (24 * (n * (n |^ 2)))) + ((n |^ 2) * 6)) + ((4 * n) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24))

      .= (((((((3 * (n |^ (4 + 2))) + (18 * ((n |^ 3) * (n |^ 2)))) + (35 * ((n |^ 2) * (n |^ 2)))) + (24 * (n * (n |^ 2)))) + ((n |^ 2) * 6)) + ((4 * n) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 8

      .= (((((((3 * (n |^ (4 + 2))) + (18 * (n |^ (3 + 2)))) + (35 * ((n |^ 2) * (n |^ 2)))) + (24 * (n * (n |^ 2)))) + ((n |^ 2) * 6)) + ((4 * n) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 8

      .= (((((((3 * (n |^ (4 + 2))) + (18 * (n |^ (3 + 2)))) + (35 * (n |^ (2 + 2)))) + (24 * (n * (n |^ 2)))) + ((n |^ 2) * 6)) + ((4 * n) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 8

      .= (((((((3 * (n |^ (4 + 2))) + (18 * (n |^ (3 + 2)))) + (35 * (n |^ (2 + 2)))) + (24 * (n |^ (2 + 1)))) + ((n |^ 2) * 6)) + ((4 * n) * (((((3 * (n |^ 4)) + (18 * (n |^ 3))) + (35 * (n |^ 2))) + (24 * n)) + 6))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 6

      .= (((((((3 * (n |^ 6)) + (18 * (n |^ 5))) + (35 * (n |^ 4))) + (24 * (n |^ 3))) + ((n |^ 2) * 6)) + (((((12 * ((n |^ 4) * n)) + (72 * ((n |^ 3) * n))) + (140 * ((n |^ 2) * n))) + (96 * (n * n))) + (24 * n))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24))

      .= (((((((3 * (n |^ 6)) + (18 * (n |^ 5))) + (35 * (n |^ 4))) + (24 * (n |^ 3))) + ((n |^ 2) * 6)) + (((((12 * (n |^ (4 + 1))) + (72 * ((n |^ 3) * n))) + (140 * ((n |^ 2) * n))) + (96 * (n * n))) + (24 * n))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 6

      .= (((((((3 * (n |^ 6)) + (18 * (n |^ 5))) + (35 * (n |^ 4))) + (24 * (n |^ 3))) + ((n |^ 2) * 6)) + (((((12 * (n |^ (4 + 1))) + (72 * (n |^ (3 + 1)))) + (140 * ((n |^ 2) * n))) + (96 * (n * n))) + (24 * n))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 6

      .= (((((((3 * (n |^ 6)) + (18 * (n |^ 5))) + (35 * (n |^ 4))) + (24 * (n |^ 3))) + ((n |^ 2) * 6)) + (((((12 * (n |^ (4 + 1))) + (72 * (n |^ (3 + 1)))) + (140 * (n |^ (2 + 1)))) + (96 * (n * n))) + (24 * n))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by NEWTON: 6

      .= (((((((3 * (n |^ 6)) + (18 * (n |^ 5))) + (35 * (n |^ 4))) + (24 * (n |^ 3))) + ((n |^ 2) * 6)) + (((((12 * (n |^ 5)) + (72 * (n |^ 4))) + (140 * (n |^ 3))) + (96 * (n |^ 2))) + (24 * n))) + (((((12 * (n |^ 4)) + (72 * (n |^ 3))) + (140 * (n |^ 2))) + (96 * n)) + 24)) by WSIERP_1: 1

      .= (((((((3 * (n |^ 6)) + (30 * (n |^ 5))) + (119 * (n |^ 4))) + (236 * (n |^ 3))) + (242 * (n |^ 2))) + (120 * n)) + 24);

      hence thesis by A1;

    end;

    

     Lm18: ((2 |^ (n + 2)) + (( - 1) |^ (n + 2))) > 0

    proof

      

       A1: (( - 1) |^ (n + 2)) = |.(( - 1) |^ (n + 2)).| or ( - (( - 1) |^ (n + 2))) = |.(( - 1) |^ (n + 2)).| by ABSVALUE: 1;

      

       A2: |.(( - 1) |^ (n + 2)).| = 1 by Th1;

      (n + 2) >= 2 by NAT_1: 11;

      then (n + 2) > 0 by XXREAL_0: 2;

      then (2 |^ (n + 2)) > 1 by PEPIN: 25;

      then

       A3: ((2 |^ (n + 2)) + (( - 1) |^ (n + 2))) > (1 + (( - 1) |^ (n + 2))) by XREAL_1: 8;

      per cases by A2, A1;

        suppose (( - 1) |^ (n + 2)) = ( - 1);

        hence thesis by A3;

      end;

        suppose (( - 1) |^ (n + 2)) = 1;

        hence thesis by A3, XXREAL_0: 2;

      end;

    end;

    

     Lm19: ((2 |^ (n + 3)) + (( - 1) |^ (n + 3))) > 0

    proof

      

       A1: (( - 1) |^ (n + 3)) = |.(( - 1) |^ (n + 3)).| or ( - (( - 1) |^ (n + 3))) = |.(( - 1) |^ (n + 3)).| by ABSVALUE: 1;

      

       A2: |.(( - 1) |^ (n + 3)).| = 1 by Th1;

      (n + 3) >= 3 by NAT_1: 11;

      then (n + 3) > 0 by XXREAL_0: 2;

      then (2 |^ (n + 3)) > 1 by PEPIN: 25;

      then

       A3: ((2 |^ (n + 3)) + (( - 1) |^ (n + 3))) > (1 + (( - 1) |^ (n + 3))) by XREAL_1: 8;

      per cases by A2, A1;

        suppose (( - 1) |^ (n + 3)) = ( - 1);

        hence thesis by A3;

      end;

        suppose (( - 1) |^ (n + 3)) = 1;

        hence thesis by A3, XXREAL_0: 2;

      end;

    end;

    theorem :: SERIES_2:21

    (for n holds (s . n) = (n |^ 7)) implies for n holds (( Partial_Sums s) . n) = ((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) / 24)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 |^ 2) * (($1 + 1) |^ 2)) * (((((3 * ($1 |^ 4)) + (6 * ($1 |^ 3))) - ($1 |^ 2)) - (4 * $1)) + 2)) / 24);

      assume

       A1: for n holds (s . n) = (n |^ 7);

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) / 24);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) / 24) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) / 24) + ((n + 1) |^ 7)) by A1

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) + (((n + 1) |^ (5 + 2)) * 24)) / 24)

        .= (((((n |^ 2) * ((n + 1) |^ 2)) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) + ((((n + 1) |^ 5) * ((n + 1) |^ 2)) * 24)) / 24) by NEWTON: 8

        .= ((((n + 1) |^ 2) * (((n |^ 2) * (((((3 * (n |^ 4)) + (6 * (n |^ 3))) - (n |^ 2)) - (4 * n)) + 2)) + (((n + 1) |^ 5) * 24))) / 24)

        .= ((((n + 1) |^ 2) * (((n + 2) |^ 2) * (((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - ((n + 1) |^ 2)) - (4 * (n + 1))) + 2))) / 24) by Lm17

        .= (((((n + 1) |^ 2) * (((n + 1) + 1) |^ 2)) * (((((3 * ((n + 1) |^ 4)) + (6 * ((n + 1) |^ 3))) - ((n + 1) |^ 2)) - (4 * (n + 1))) + 2)) / 24);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 |^ 7) by A1

      .= ((( 0 * (( 0 + 1) |^ 2)) * (((((3 * ( 0 |^ 4)) + (6 * ( 0 |^ 3))) - ( 0 |^ 2)) - (4 * 0 )) + 2)) / 24) by NEWTON: 11

      .= (((( 0 |^ 2) * (( 0 + 1) |^ 2)) * (((((3 * ( 0 |^ 4)) + (6 * ( 0 |^ 3))) - ( 0 |^ 2)) - (4 * 0 )) + 2)) / 24) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:22

    (for n holds (s . n) = (n * ((n + 1) |^ 2))) implies for n holds (( Partial_Sums s) . n) = ((((n * (n + 1)) * (n + 2)) * ((3 * n) + 5)) / 12)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((($1 * ($1 + 1)) * ($1 + 2)) * ((3 * $1) + 5)) / 12);

      assume

       A1: for n holds (s . n) = (n * ((n + 1) |^ 2));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = ((((n * (n + 1)) * (n + 2)) * ((3 * n) + 5)) / 12);

        

        then (( Partial_Sums s) . (n + 1)) = (((((n * (n + 1)) * (n + 2)) * ((3 * n) + 5)) / 12) + (s . (n + 1))) by SERIES_1:def 1

        .= (((((n * (n + 1)) * (n + 2)) * ((3 * n) + 5)) / 12) + ((n + 1) * (((n + 1) + 1) |^ 2))) by A1

        .= (((n + 1) * (((n * (n + 2)) * ((3 * n) + 5)) + (((n + 2) |^ 2) * 12))) / 12)

        .= (((n + 1) * (((n * (n + 2)) * ((3 * n) + 5)) + (((n + 2) * (n + 2)) * 12))) / 12) by WSIERP_1: 1

        .= (((((n + 1) * (n + 2)) * (n + 3)) * ((3 * (n + 1)) + 5)) / 12);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ( 0 * (( 0 + 1) |^ 2)) by A1

      .= (((( 0 * ( 0 + 1)) * ( 0 + 2)) * ((3 * 0 ) + 5)) / 12);

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:23

    (for n holds (s . n) = ((n * ((n + 1) |^ 2)) * (n + 2))) implies for n holds (( Partial_Sums s) . n) = (((((n * (n + 1)) * (n + 2)) * (n + 3)) * ((2 * n) + 3)) / 10)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((((($1 * ($1 + 1)) * ($1 + 2)) * ($1 + 3)) * ((2 * $1) + 3)) / 10);

      assume

       A1: for n holds (s . n) = ((n * ((n + 1) |^ 2)) * (n + 2));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((((n * (n + 1)) * (n + 2)) * (n + 3)) * ((2 * n) + 3)) / 10);

        

        then (( Partial_Sums s) . (n + 1)) = ((((((n * (n + 1)) * (n + 2)) * (n + 3)) * ((2 * n) + 3)) / 10) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((((n * (n + 1)) * (n + 2)) * (n + 3)) * ((2 * n) + 3)) / 10) + (((n + 1) * (((n + 1) + 1) |^ 2)) * ((n + 1) + 2))) by A1

        .= ((((((n * (n + 1)) * (n + 2)) * (n + 3)) * ((2 * n) + 3)) / 10) + (((((n + 1) * ((n + 2) * (n + 2))) * (n + 3)) * 10) / 10)) by WSIERP_1: 1

        .= ((((((n + 1) * (n + 2)) * (n + 3)) * (n + 4)) * ((2 * (n + 1)) + 3)) / 10);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (( 0 * (( 0 + 1) |^ 2)) * ( 0 + 2)) by A1

      .= ((((( 0 * ( 0 + 1)) * ( 0 + 2)) * ( 0 + 3)) * ((2 * 0 ) + 3)) / 10);

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:24

    (for n holds (s . n) = ((n * (n + 1)) * (2 |^ n))) implies for n holds (( Partial_Sums s) . n) = (((2 |^ (n + 1)) * (((n |^ 2) - n) + 2)) - 4)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((2 |^ ($1 + 1)) * ((($1 |^ 2) - $1) + 2)) - 4);

      assume

       A1: for n holds (s . n) = ((n * (n + 1)) * (2 |^ n));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        assume (( Partial_Sums s) . n) = (((2 |^ (n + 1)) * (((n |^ 2) - n) + 2)) - 4);

        

        then (( Partial_Sums s) . (n + 1)) = ((((2 |^ (n + 1)) * (((n |^ 2) - n) + 2)) - 4) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((2 |^ (n + 1)) * (((n |^ 2) - n) + 2)) - 4) + (((n + 1) * ((n + 1) + 1)) * (2 |^ (n + 1)))) by A1

        .= (((((2 |^ (n + 1)) * 2) * ((((n |^ 2) - n) + 2) + ((n + 1) * (n + 2)))) / 2) - 4)

        .= ((((2 |^ ((n + 1) + 1)) * ((((n |^ 2) - n) + 2) + ((n + 1) * (n + 2)))) / 2) - 4) by NEWTON: 6

        .= ((((2 |^ (n + 2)) * (((((((n |^ 2) - n) + 2) + (n * n)) + (1 * n)) + (n * 2)) + 2)) / 2) - 4)

        .= ((((2 |^ (n + 2)) * (((((((n |^ 2) - n) + 2) + (n |^ 2)) + (1 * n)) + (n * 2)) + 2)) / 2) - 4) by WSIERP_1: 1

        .= (((2 |^ (n + 2)) * ((((((n |^ 2) + (2 * n)) + 1) - 1) - n) + 2)) - 4)

        .= (((2 |^ (n + 2)) * ((((((n |^ 2) + ((2 * n) * 1)) + (1 |^ 2)) - 1) - n) + 2)) - 4)

        .= (((2 |^ (n + 2)) * (((((n + 1) |^ 2) - 1) - n) + 2)) - 4) by Lm3

        .= (((2 |^ (n + 2)) * ((((n + 1) |^ 2) - (1 + n)) + 2)) - 4);

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (( 0 * ( 0 + 1)) * (2 |^ 0 )) by A1

      .= ((2 * 2) - 4)

      .= (((2 |^ ( 0 + 1)) * (( 0 - 0 ) + 2)) - 4)

      .= (((2 |^ ( 0 + 1)) * ((( 0 |^ 2) - 0 ) + 2)) - 4) by NEWTON: 11;

      then

       A3: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:25

    (for n st n >= 1 holds (s . n) = (1 / ((n - 1) * (n + 1))) & (s . 0 ) = 0 ) implies for n st n >= 2 holds (( Partial_Sums s) . n) = (((3 / 4) - (1 / (2 * n))) - (1 / (2 * (n + 1))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((3 / 4) - (1 / (2 * $1))) - (1 / (2 * ($1 + 1))));

      assume

       A1: for n st n >= 1 holds (s . n) = (1 / ((n - 1) * (n + 1))) & (s . 0 ) = 0 ;

      

      then

       A2: (s . 1) = (1 / ((1 - 1) * (1 + 1)))

      .= 0 by XCMPLX_1: 49;

      

       A3: for n be Nat st n >= 2 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that

         A4: n >= 2 and

         A5: (( Partial_Sums s) . n) = (((3 / 4) - (1 / (2 * n))) - (1 / (2 * (n + 1))));

        

         A6: n > 0 by A4, XXREAL_0: 2;

        then

         A7: (n + 1) > 1 by XREAL_1: 29;

        

         A8: (n + 2) >= n by NAT_1: 11;

        (( Partial_Sums s) . (n + 1)) = ((((3 / 4) - (1 / (2 * n))) - (1 / (2 * (n + 1)))) + (s . (n + 1))) by A5, SERIES_1:def 1

        .= ((((3 / 4) - (1 / (2 * n))) - (1 / (2 * (n + 1)))) + (1 / (((n + 1) - 1) * ((n + 1) + 1)))) by A1, A7

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + ((1 / (n * (n + 2))) - (1 / (2 * n))))

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + ((1 / (n * (n + 2))) - ((1 / 2) * (1 / n)))) by XCMPLX_1: 102

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + (((1 / n) * (1 / (n + 2))) - ((1 / 2) * (1 / n)))) by XCMPLX_1: 102

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + (((1 / (n + 2)) - (1 / 2)) * (1 / n)))

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + ((((1 * 2) - (1 * (n + 2))) / ((n + 2) * 2)) * (1 / n))) by A6, A8, XCMPLX_1: 130

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + ((( - n) / n) * (1 / ((n + 2) * 2)))) by XCMPLX_1: 85

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + (( - 1) * (1 / ((n + 2) * 2)))) by A6, XCMPLX_1: 197

        .= (((3 / 4) - (1 / (2 * (n + 1)))) + ( - (1 / (2 * ((n + 1) + 1)))));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 1)) = ((( Partial_Sums s) . (1 + 0 )) + (s . 2)) by SERIES_1:def 1

      .= (((( Partial_Sums s) . 0 ) + (s . 1)) + (s . 2)) by SERIES_1:def 1

      .= (((s . 0 ) + (s . 1)) + (s . 2)) by SERIES_1:def 1

      .= (( 0 + (s . 1)) + (s . 2)) by A1

      .= (1 / ((2 - 1) * (2 + 1))) by A1, A2

      .= (((3 / 4) - (1 / (2 * 2))) - (1 / (2 * (2 + 1))));

      then

       A9: X[2];

      for n be Nat st n >= 2 holds X[n] from NAT_1:sch 8( A9, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:26

    (for n st n >= 1 holds (s . n) = (1 / (((2 * n) - 1) * ((2 * n) + 1))) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (n / ((2 * n) + 1))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ($1 / ((2 * $1) + 1));

      assume

       A1: for n st n >= 1 holds (s . n) = (1 / (((2 * n) - 1) * ((2 * n) + 1))) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = (n / ((2 * n) + 1));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        ((2 * n) + 1) >= 1 by NAT_1: 11;

        then

         A5: ((2 * n) + 1) > 0 by XXREAL_0: 2;

        ((2 * n) + 3) >= 3 by NAT_1: 11;

        then

         A6: ((2 * n) + 3) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((n / ((2 * n) + 1)) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= ((n / ((2 * n) + 1)) + (1 / (((2 * (n + 1)) - 1) * ((2 * (n + 1)) + 1)))) by A1, A4

        .= ((n / ((2 * n) + 1)) + ((1 / ((2 * n) + 1)) * (1 / ((2 * n) + 3)))) by XCMPLX_1: 102

        .= ((n * (1 / ((2 * n) + 1))) + ((1 / ((2 * n) + 1)) * (1 / ((2 * n) + 3)))) by XCMPLX_1: 99

        .= ((n + (1 / ((2 * n) + 3))) * (1 / ((2 * n) + 1)))

        .= ((((n * ((2 * n) + 3)) + 1) / ((2 * n) + 3)) * (1 / ((2 * n) + 1))) by A6, XCMPLX_1: 113

        .= ((((n + 1) * ((2 * n) + 1)) / ((2 * n) + 3)) * (1 / ((2 * n) + 1)))

        .= ((((2 * n) + 1) * ((n + 1) / ((2 * n) + 3))) * (1 / ((2 * n) + 1))) by XCMPLX_1: 74

        .= ((n + 1) / ((2 * (n + 1)) + 1)) by A5, XCMPLX_1: 107;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= (1 / (((2 * 1) - 1) * ((2 * 1) + 1))) by A1

      .= (1 / ((2 * 1) + 1));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:27

    (for n st n >= 1 holds (s . n) = (1 / (((3 * n) - 2) * ((3 * n) + 1))) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (n / ((3 * n) + 1))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ($1 / ((3 * $1) + 1));

      assume

       A1: for n st n >= 1 holds (s . n) = (1 / (((3 * n) - 2) * ((3 * n) + 1))) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = (n / ((3 * n) + 1));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        ((3 * n) + 1) >= 1 by NAT_1: 11;

        then

         A5: ((3 * n) + 1) > 0 by XXREAL_0: 2;

        ((3 * n) + 4) >= 4 by NAT_1: 11;

        then

         A6: ((3 * n) + 4) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((n / ((3 * n) + 1)) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= ((n / ((3 * n) + 1)) + (1 / (((3 * (n + 1)) - 2) * ((3 * (n + 1)) + 1)))) by A1, A4

        .= ((n / ((3 * n) + 1)) + ((1 / ((3 * n) + 1)) * (1 / ((3 * n) + 4)))) by XCMPLX_1: 102

        .= ((n * (1 / ((3 * n) + 1))) + ((1 / ((3 * n) + 1)) * (1 / ((3 * n) + 4)))) by XCMPLX_1: 99

        .= ((n + (1 / ((3 * n) + 4))) * (1 / ((3 * n) + 1)))

        .= ((((n * ((3 * n) + 4)) + 1) / ((3 * n) + 4)) * (1 / ((3 * n) + 1))) by A6, XCMPLX_1: 113

        .= ((((n + 1) * ((3 * n) + 1)) / ((3 * n) + 4)) * (1 / ((3 * n) + 1)))

        .= ((((3 * n) + 1) * ((n + 1) / ((3 * n) + 4))) * (1 / ((3 * n) + 1))) by XCMPLX_1: 74

        .= ((n + 1) / ((3 * (n + 1)) + 1)) by A5, XCMPLX_1: 107;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= (1 / (((3 * 1) - 2) * ((3 * 1) + 1))) by A1

      .= (1 / ((3 * 1) + 1));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:28

    (for n st n >= 1 holds (s . n) = (1 / ((((2 * n) - 1) * ((2 * n) + 1)) * ((2 * n) + 3))) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((1 / 12) - (1 / ((4 * ((2 * n) + 1)) * ((2 * n) + 3))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 12) - (1 / ((4 * ((2 * $1) + 1)) * ((2 * $1) + 3))));

      assume

       A1: for n st n >= 1 holds (s . n) = (1 / ((((2 * n) - 1) * ((2 * n) + 1)) * ((2 * n) + 3))) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = ((1 / 12) - (1 / ((4 * ((2 * n) + 1)) * ((2 * n) + 3))));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        ((2 * n) + 1) >= 1 by NAT_1: 11;

        then

         A5: ((2 * n) + 1) > 0 by XXREAL_0: 2;

        ((2 * n) + 5) >= 5 by NAT_1: 11;

        then

         A6: ((2 * n) + 5) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = (((1 / 12) - (1 / ((4 * ((2 * n) + 1)) * ((2 * n) + 3)))) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= (((1 / 12) - (1 / ((4 * ((2 * n) + 1)) * ((2 * n) + 3)))) + (1 / ((((2 * (n + 1)) - 1) * ((2 * (n + 1)) + 1)) * ((2 * (n + 1)) + 3)))) by A1, A4

        .= (((1 / 12) - (1 / (4 * (((2 * n) + 1) * ((2 * n) + 3))))) + (1 / ((((2 * n) + 1) * ((2 * n) + 3)) * ((2 * n) + 5))))

        .= (((1 / 12) - ((1 / 4) * (1 / (((2 * n) + 1) * ((2 * n) + 3))))) + (1 / ((((2 * n) + 1) * ((2 * n) + 3)) * ((2 * n) + 5)))) by XCMPLX_1: 102

        .= (((1 / 12) - ((1 / 4) * (1 / (((2 * n) + 1) * ((2 * n) + 3))))) + ((1 / (((2 * n) + 1) * ((2 * n) + 3))) * (1 / ((2 * n) + 5)))) by XCMPLX_1: 102

        .= ((1 / 12) - ((1 / (((2 * n) + 1) * ((2 * n) + 3))) * ((1 / 4) - (1 / ((2 * n) + 5)))))

        .= ((1 / 12) - ((1 / (((2 * n) + 1) * ((2 * n) + 3))) * (((1 * ((2 * n) + 5)) - (1 * 4)) / (4 * ((2 * n) + 5))))) by A6, XCMPLX_1: 130

        .= ((1 / 12) - (((1 / ((2 * n) + 1)) * (1 / ((2 * n) + 3))) * (((2 * n) + 1) / (4 * ((2 * n) + 5))))) by XCMPLX_1: 102

        .= ((1 / 12) - ((((1 / ((2 * n) + 1)) * (1 / ((2 * n) + 3))) * ((2 * n) + 1)) / (4 * ((2 * n) + 5)))) by XCMPLX_1: 74

        .= ((1 / 12) - ((1 / ((2 * n) + 3)) / (4 * ((2 * n) + 5)))) by A5, XCMPLX_1: 109

        .= ((1 / 12) - (1 / (((2 * n) + 3) * (4 * ((2 * n) + 5))))) by XCMPLX_1: 78

        .= ((1 / 12) - (1 / ((4 * ((2 * (n + 1)) + 1)) * ((2 * (n + 1)) + 3))));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= (1 / ((((2 * 1) - 1) * ((2 * 1) + 1)) * ((2 * 1) + 3))) by A1

      .= ((1 / 12) - (1 / ((4 * ((2 * 1) + 1)) * ((2 * 1) + 3))));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:29

    (for n st n >= 1 holds (s . n) = (1 / ((((3 * n) - 2) * ((3 * n) + 1)) * ((3 * n) + 4))) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((1 / 24) - (1 / ((6 * ((3 * n) + 1)) * ((3 * n) + 4))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 24) - (1 / ((6 * ((3 * $1) + 1)) * ((3 * $1) + 4))));

      assume

       A1: for n st n >= 1 holds (s . n) = (1 / ((((3 * n) - 2) * ((3 * n) + 1)) * ((3 * n) + 4))) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = ((1 / 24) - (1 / ((6 * ((3 * n) + 1)) * ((3 * n) + 4))));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        ((3 * n) + 1) >= 1 by NAT_1: 11;

        then

         A5: ((3 * n) + 1) > 0 by XXREAL_0: 2;

        ((3 * n) + 7) >= 7 by NAT_1: 11;

        then

         A6: ((3 * n) + 7) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = (((1 / 24) - (1 / ((6 * ((3 * n) + 1)) * ((3 * n) + 4)))) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= (((1 / 24) - (1 / ((6 * ((3 * n) + 1)) * ((3 * n) + 4)))) + (1 / ((((3 * (n + 1)) - 2) * ((3 * (n + 1)) + 1)) * ((3 * (n + 1)) + 4)))) by A1, A4

        .= (((1 / 24) - (1 / (6 * (((3 * n) + 1) * ((3 * n) + 4))))) + (1 / ((((3 * n) + 1) * ((3 * n) + 4)) * ((3 * n) + 7))))

        .= (((1 / 24) - ((1 / 6) * (1 / (((3 * n) + 1) * ((3 * n) + 4))))) + (1 / ((((3 * n) + 1) * ((3 * n) + 4)) * ((3 * n) + 7)))) by XCMPLX_1: 102

        .= (((1 / 24) - ((1 / 6) * (1 / (((3 * n) + 1) * ((3 * n) + 4))))) + ((1 / (((3 * n) + 1) * ((3 * n) + 4))) * (1 / ((3 * n) + 7)))) by XCMPLX_1: 102

        .= ((1 / 24) - ((1 / (((3 * n) + 1) * ((3 * n) + 4))) * ((1 / 6) - (1 / ((3 * n) + 7)))))

        .= ((1 / 24) - ((1 / (((3 * n) + 1) * ((3 * n) + 4))) * (((1 * ((3 * n) + 7)) - (1 * 6)) / (6 * ((3 * n) + 7))))) by A6, XCMPLX_1: 130

        .= ((1 / 24) - (((1 / ((3 * n) + 4)) * (1 / ((3 * n) + 1))) * (((3 * n) + 1) / (6 * ((3 * n) + 7))))) by XCMPLX_1: 102

        .= ((1 / 24) - ((((1 / ((3 * n) + 4)) * (1 / ((3 * n) + 1))) * ((3 * n) + 1)) / (6 * ((3 * n) + 7)))) by XCMPLX_1: 74

        .= ((1 / 24) - ((1 / ((3 * n) + 4)) / (6 * ((3 * n) + 7)))) by A5, XCMPLX_1: 109

        .= ((1 / 24) - (1 / (((3 * n) + 4) * (6 * ((3 * n) + 7))))) by XCMPLX_1: 78

        .= ((1 / 24) - (1 / ((6 * ((3 * (n + 1)) + 1)) * ((3 * (n + 1)) + 4))));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= (1 / ((((3 * 1) - 2) * ((3 * 1) + 1)) * ((3 * 1) + 4))) by A1

      .= ((1 / 24) - (1 / ((6 * ((3 * 1) + 1)) * ((3 * 1) + 4))));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:30

    (for n holds (s . n) = (((2 * n) - 1) / ((n * (n + 1)) * (n + 2)))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (((3 / 4) - (2 / (n + 2))) + (1 / ((2 * (n + 1)) * (n + 2))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((3 / 4) - (2 / ($1 + 2))) + (1 / ((2 * ($1 + 1)) * ($1 + 2))));

      assume

       A1: for n holds (s . n) = (((2 * n) - 1) / ((n * (n + 1)) * (n + 2)));

      

      then

       A2: (s . 0 ) = (((2 * 0 ) - 1) / (( 0 * ( 0 + 1)) * ( 0 + 2)))

      .= 0 by XCMPLX_1: 49;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (((3 / 4) - (2 / (n + 2))) + (1 / ((2 * (n + 1)) * (n + 2))));

        (n + 1) >= (1 + 0 ) by NAT_1: 11;

        then

         A5: (n + 1) > 0 by NAT_1: 13;

        (n + 2) >= 2 by NAT_1: 11;

        then (n + 2) > 0 by XXREAL_0: 2;

        then

         A6: ((n + 1) * (n + 2)) > 0 by A5, XREAL_1: 129;

        (n + 3) >= 3 by NAT_1: 11;

        then

         A7: (n + 3) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((((3 / 4) - (2 / (n + 2))) + (1 / ((2 * (n + 1)) * (n + 2)))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((((3 / 4) - (2 / (n + 2))) + (1 / ((2 * (n + 1)) * (n + 2)))) + (((2 * (n + 1)) - 1) / (((n + 1) * ((n + 1) + 1)) * ((n + 1) + 2)))) by A1

        .= (((3 / 4) - ((2 / (n + 2)) - (1 / (2 * ((n + 1) * (n + 2)))))) + (((2 * n) + 1) / (((n + 1) * (n + 2)) * (n + 3))))

        .= (((3 / 4) - (((2 * (n + 1)) / ((n + 2) * (n + 1))) - (1 / (2 * ((n + 1) * (n + 2)))))) + (((2 * n) + 1) / (((n + 1) * (n + 2)) * (n + 3)))) by A5, XCMPLX_1: 91

        .= (((3 / 4) - ((((2 * (n + 1)) * 2) / ((2 * (n + 2)) * (n + 1))) - (1 / (2 * ((n + 1) * (n + 2)))))) + (((2 * n) + 1) / (((n + 1) * (n + 2)) * (n + 3)))) by XCMPLX_1: 91

        .= (((3 / 4) - (((4 * (n + 1)) - 1) / (2 * ((n + 2) * (n + 1))))) + (((2 * n) + 1) / (((n + 1) * (n + 2)) * (n + 3)))) by XCMPLX_1: 120

        .= (((3 / 4) - ((((4 * n) + 3) * (n + 3)) / ((2 * ((n + 2) * (n + 1))) * (n + 3)))) + (((2 * n) + 1) / (((n + 1) * (n + 2)) * (n + 3)))) by A7, XCMPLX_1: 91

        .= (((3 / 4) - ((((4 * n) + 3) * (n + 3)) / ((2 * ((n + 2) * (n + 1))) * (n + 3)))) + ((((2 * n) + 1) * 2) / ((((n + 1) * (n + 2)) * (n + 3)) * 2))) by XCMPLX_1: 91

        .= ((3 / 4) - (((((4 * n) + 3) * (n + 3)) / ((2 * ((n + 2) * (n + 1))) * (n + 3))) - ((((2 * n) + 1) * 2) / ((((n + 1) * (n + 2)) * (n + 3)) * 2))))

        .= ((3 / 4) - (((((4 * n) + 3) * (n + 3)) - (((2 * n) + 1) * 2)) / ((2 * ((n + 2) * (n + 1))) * (n + 3)))) by XCMPLX_1: 120

        .= ((3 / 4) - ((((4 * (n + 1)) * (n + 2)) - (n + 1)) / ((2 * ((n + 2) * (n + 1))) * (n + 3))))

        .= ((3 / 4) - (((4 * ((n + 1) * (n + 2))) / ((2 * (n + 3)) * ((n + 2) * (n + 1)))) - ((n + 1) / ((2 * ((n + 2) * (n + 1))) * (n + 3))))) by XCMPLX_1: 120

        .= ((3 / 4) - ((4 / (2 * (n + 3))) - ((1 * (n + 1)) / (((2 * (n + 2)) * (n + 3)) * (n + 1))))) by A6, XCMPLX_1: 91

        .= ((3 / 4) - (((2 * 2) / ((n + 3) * 2)) - (1 / ((2 * (n + 2)) * (n + 3))))) by A5, XCMPLX_1: 91

        .= ((3 / 4) - ((2 / ((n + 1) + 2)) - (1 / ((2 * ((n + 1) + 1)) * ((n + 1) + 2))))) by XCMPLX_1: 91;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= (((2 * 1) - 1) / ((1 * (1 + 1)) * (1 + 2))) by A1, A2

      .= (((3 / 4) - (2 / (1 + 2))) + (1 / ((2 * (1 + 1)) * (1 + 2))));

      then

       A8: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A8, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:31

    (for n holds (s . n) = ((n + 2) / ((n * (n + 1)) * (n + 3)))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((((29 / 36) - (1 / (n + 3))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((((29 / 36) - (1 / ($1 + 3))) - (3 / ((2 * ($1 + 2)) * ($1 + 3)))) - (4 / (((3 * ($1 + 1)) * ($1 + 2)) * ($1 + 3))));

      assume

       A1: for n holds (s . n) = ((n + 2) / ((n * (n + 1)) * (n + 3)));

      

      then

       A2: (s . 0 ) = (( 0 + 2) / (( 0 * ( 0 + 1)) * ( 0 + 3)))

      .= 0 by XCMPLX_1: 49;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = ((((29 / 36) - (1 / (n + 3))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3))));

        (n + 4) >= 4 by NAT_1: 11;

        then

         A5: (n + 4) > 0 by XXREAL_0: 2;

        (n + 1) >= (1 + 0 ) by NAT_1: 11;

        then

         A6: (n + 1) > 0 by NAT_1: 13;

        then

         A7: (2 * (n + 1)) > 0 by XREAL_1: 129;

        (n + 2) >= 2 by NAT_1: 11;

        then

         A8: (n + 2) > 0 by XXREAL_0: 2;

        then

         A9: ((n + 1) * (n + 2)) > 0 by A6, XREAL_1: 129;

        then

         A10: (((n + 1) * (n + 2)) * 3) > 0 by XREAL_1: 129;

        (n + 3) >= 3 by NAT_1: 11;

        then

         A11: (n + 3) > 0 by XXREAL_0: 2;

        then (((n + 1) * (n + 2)) * (n + 3)) > 0 by A9, XREAL_1: 129;

        then

         A12: ((((n + 1) * (n + 2)) * (n + 3)) * 6) > 0 by XREAL_1: 129;

        (( Partial_Sums s) . (n + 1)) = (((((29 / 36) - (1 / (n + 3))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= (((((29 / 36) - (1 / (n + 3))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + (((n + 1) + 2) / (((n + 1) * ((n + 1) + 1)) * ((n + 1) + 3)))) by A1

        .= (((((29 / 36) - ((1 * (n + 2)) / ((n + 3) * (n + 2)))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by A8, XCMPLX_1: 91

        .= (((((29 / 36) - (((n + 2) * 2) / (((n + 2) * (n + 3)) * 2))) - (3 / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by XCMPLX_1: 91

        .= ((((29 / 36) - ((((n + 2) * 2) / (((n + 2) * (n + 3)) * 2)) + (3 / ((2 * (n + 2)) * (n + 3))))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4))))

        .= ((((29 / 36) - ((((n + 2) * 2) + 3) / ((2 * (n + 2)) * (n + 3)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by XCMPLX_1: 62

        .= ((((29 / 36) - ((((n * 2) + 7) * (n + 1)) / (((2 * (n + 2)) * (n + 3)) * (n + 1)))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by A6, XCMPLX_1: 91

        .= ((((29 / 36) - (((((n * 2) + 7) * (n + 1)) * 3) / ((((2 * (n + 2)) * (n + 3)) * (n + 1)) * 3))) - (4 / (((3 * (n + 1)) * (n + 2)) * (n + 3)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by XCMPLX_1: 91

        .= ((((29 / 36) - (((((n * 2) + 7) * (n + 1)) * 3) / ((((2 * (n + 2)) * (n + 3)) * (n + 1)) * 3))) - ((4 * 2) / ((((3 * (n + 1)) * (n + 2)) * (n + 3)) * 2))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by XCMPLX_1: 91

        .= (((29 / 36) - ((((((n * 2) + 7) * (n + 1)) * 3) / (((6 * (n + 2)) * (n + 3)) * (n + 1))) + (8 / (((6 * (n + 1)) * (n + 2)) * (n + 3))))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4))))

        .= (((29 / 36) - (((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) / ((((6 * (n + 2)) * (n + 3)) * (n + 1)) * (n + 4))) + (8 / (((6 * (n + 1)) * (n + 2)) * (n + 3))))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by A5, XCMPLX_1: 91

        .= (((29 / 36) - (((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))) + ((8 * (n + 4)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by A5, XCMPLX_1: 91

        .= (((29 / 36) - (((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) + (8 * (n + 4))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)))) + ((n + 3) / (((n + 1) * (n + 2)) * (n + 4)))) by XCMPLX_1: 62

        .= (((29 / 36) - (((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) + (8 * (n + 4))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)))) + (((n + 3) * 6) / ((((n + 1) * (n + 2)) * (n + 4)) * 6))) by XCMPLX_1: 91

        .= (((29 / 36) - (((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) + (8 * (n + 4))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)))) + ((((n + 3) * 6) * (n + 3)) / (((((n + 1) * (n + 2)) * (n + 4)) * 6) * (n + 3)))) by A11, XCMPLX_1: 91

        .= ((29 / 36) - ((((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) + (8 * (n + 4))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))) - ((((n + 3) * 6) * (n + 3)) / (((((n + 1) * (n + 2)) * (n + 4)) * 6) * (n + 3)))))

        .= ((29 / 36) - ((((((((n * 2) + 7) * (n + 1)) * 3) * (n + 4)) + (8 * (n + 4))) - (((n + 3) * 6) * (n + 3))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)))) by XCMPLX_1: 120

        .= ((29 / 36) - ((((((6 * (n + 1)) * (n + 2)) * (n + 3)) + ((9 * (n + 1)) * (n + 2))) + (8 * (n + 1))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))))

        .= ((29 / 36) - ((((((6 * (n + 1)) * (n + 2)) * (n + 3)) + ((9 * (n + 1)) * (n + 2))) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))) + ((8 * (n + 1)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))))) by XCMPLX_1: 62

        .= ((29 / 36) - ((((1 * (((6 * (n + 1)) * (n + 2)) * (n + 3))) / ((n + 4) * (((6 * (n + 1)) * (n + 2)) * (n + 3)))) + (((9 * (n + 1)) * (n + 2)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4)))) + ((8 * (n + 1)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))))) by XCMPLX_1: 62

        .= ((29 / 36) - (((1 / (n + 4)) + ((3 * ((3 * (n + 1)) * (n + 2))) / (((2 * (n + 3)) * (n + 4)) * ((3 * (n + 1)) * (n + 2))))) + ((8 * (n + 1)) / ((((6 * (n + 1)) * (n + 2)) * (n + 3)) * (n + 4))))) by A12, XCMPLX_1: 91

        .= ((29 / 36) - (((1 / (n + 4)) + (3 / ((2 * (n + 3)) * (n + 4)))) + ((4 * (2 * (n + 1))) / ((((3 * (n + 2)) * (n + 3)) * (n + 4)) * (2 * (n + 1)))))) by A10, XCMPLX_1: 91

        .= ((29 / 36) - (((1 / (n + 4)) + (3 / ((2 * (n + 3)) * (n + 4)))) + (4 / (((3 * (n + 2)) * (n + 3)) * (n + 4))))) by A7, XCMPLX_1: 91

        .= ((((29 / 36) - (1 / ((n + 1) + 3))) - (3 / ((2 * ((n + 1) + 2)) * ((n + 1) + 3)))) - (4 / (((3 * ((n + 1) + 1)) * ((n + 1) + 2)) * ((n + 1) + 3))));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((1 + 2) / ((1 * (1 + 1)) * (1 + 3))) by A1, A2

      .= ((((29 / 36) - (1 / (1 + 3))) - (3 / ((2 * (1 + 2)) * (1 + 3)))) - (4 / (((3 * (1 + 1)) * (1 + 2)) * (1 + 3))));

      then

       A13: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A13, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:32

    (for n holds (s . n) = (((n + 1) * (2 |^ n)) / ((n + 2) * (n + 3)))) implies for n holds (( Partial_Sums s) . n) = (((2 |^ (n + 1)) / (n + 3)) - (1 / 2))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (((2 |^ ($1 + 1)) / ($1 + 3)) - (1 / 2));

      assume

       A1: for n holds (s . n) = (((n + 1) * (2 |^ n)) / ((n + 2) * (n + 3)));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        (n + 3) >= 3 by NAT_1: 11;

        then

         A3: (n + 3) > 0 by XXREAL_0: 2;

        (n + 4) >= 4 by NAT_1: 11;

        then

         A4: (n + 4) > 0 by XXREAL_0: 2;

        assume (( Partial_Sums s) . n) = (((2 |^ (n + 1)) / (n + 3)) - (1 / 2));

        

        then (( Partial_Sums s) . (n + 1)) = ((((2 |^ (n + 1)) / (n + 3)) - (1 / 2)) + (s . (n + 1))) by SERIES_1:def 1

        .= ((((2 |^ (n + 1)) / (n + 3)) - (1 / 2)) + ((((n + 1) + 1) * (2 |^ (n + 1))) / (((n + 1) + 2) * ((n + 1) + 3)))) by A1

        .= ((((2 |^ (n + 1)) / (n + 3)) + (((n + 2) * (2 |^ (n + 1))) / ((n + 3) * (n + 4)))) - (1 / 2))

        .= (((((2 |^ (n + 1)) * (n + 4)) / ((n + 3) * (n + 4))) + (((n + 2) * (2 |^ (n + 1))) / ((n + 3) * (n + 4)))) - (1 / 2)) by A4, XCMPLX_1: 91

        .= (((((2 |^ (n + 1)) * (n + 4)) + ((n + 2) * (2 |^ (n + 1)))) / ((n + 3) * (n + 4))) - (1 / 2)) by XCMPLX_1: 62

        .= (((((2 |^ (n + 1)) * 2) * (n + 3)) / ((n + 4) * (n + 3))) - (1 / 2))

        .= ((((2 |^ (n + 1)) * 2) / (n + 4)) - (1 / 2)) by A3, XCMPLX_1: 91

        .= (((2 |^ ((n + 1) + 1)) / ((n + 1) + 3)) - (1 / 2)) by NEWTON: 6;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= ((( 0 + 1) * (2 |^ 0 )) / (( 0 + 2) * ( 0 + 3))) by A1

      .= ((1 * 1) / 6) by NEWTON: 4

      .= ((2 / 3) - (1 / 2))

      .= (((2 |^ ( 0 + 1)) / ( 0 + 3)) - (1 / 2));

      then

       A5: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:33

    (for n holds (s . n) = (((n |^ 2) * (4 |^ n)) / ((n + 1) * (n + 2)))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((2 / 3) + (((n - 1) * (4 |^ (n + 1))) / (3 * (n + 2))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((2 / 3) + ((($1 - 1) * (4 |^ ($1 + 1))) / (3 * ($1 + 2))));

      assume

       A1: for n holds (s . n) = (((n |^ 2) * (4 |^ n)) / ((n + 1) * (n + 2)));

      

      then

       A2: (s . 0 ) = ((( 0 |^ 2) * (4 |^ 0 )) / (( 0 + 1) * ( 0 + 2)))

      .= (( 0 * (4 |^ 0 )) / (1 * 2)) by NEWTON: 11

      .= 0 ;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = ((2 / 3) + (((n - 1) * (4 |^ (n + 1))) / (3 * (n + 2))));

        (n + 2) >= 2 by NAT_1: 11;

        then

         A5: (n + 2) > 0 by XXREAL_0: 2;

        (n + 3) >= 3 by NAT_1: 11;

        then

         A6: (n + 3) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = (((2 / 3) + (((n - 1) * (4 |^ (n + 1))) / (3 * (n + 2)))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= (((2 / 3) + (((n - 1) * (4 |^ (n + 1))) / (3 * (n + 2)))) + ((((n + 1) |^ 2) * (4 |^ (n + 1))) / (((n + 1) + 1) * ((n + 1) + 2)))) by A1

        .= (((2 / 3) + ((((n - 1) * (4 |^ (n + 1))) * (n + 3)) / ((3 * (n + 2)) * (n + 3)))) + ((((n + 1) |^ 2) * (4 |^ (n + 1))) / ((n + 2) * (n + 3)))) by A6, XCMPLX_1: 91

        .= (((2 / 3) + ((((n - 1) * (4 |^ (n + 1))) * (n + 3)) / ((3 * (n + 2)) * (n + 3)))) + (((((n + 1) |^ 2) * (4 |^ (n + 1))) * 3) / (((n + 2) * (n + 3)) * 3))) by XCMPLX_1: 91

        .= ((2 / 3) + (((((n - 1) * (4 |^ (n + 1))) * (n + 3)) / ((3 * (n + 2)) * (n + 3))) + (((((n + 1) |^ 2) * (4 |^ (n + 1))) * 3) / ((3 * (n + 2)) * (n + 3)))))

        .= ((2 / 3) + (((((n - 1) * (4 |^ (n + 1))) * (n + 3)) + ((((n + 1) |^ 2) * (4 |^ (n + 1))) * 3)) / ((3 * (n + 2)) * (n + 3)))) by XCMPLX_1: 62

        .= ((2 / 3) + (((((n - 1) * (n + 3)) + (((n + 1) |^ 2) * 3)) * (4 |^ (n + 1))) / ((3 * (n + 2)) * (n + 3))))

        .= ((2 / 3) + (((((n - 1) * (n + 3)) + (((n + 1) * (n + 1)) * 3)) * (4 |^ (n + 1))) / ((3 * (n + 2)) * (n + 3)))) by WSIERP_1: 1

        .= ((2 / 3) + ((((4 * (4 |^ (n + 1))) * n) * (n + 2)) / ((3 * (n + 3)) * (n + 2))))

        .= ((2 / 3) + ((((4 |^ (n + 1)) * 4) * n) / (3 * (n + 3)))) by A5, XCMPLX_1: 91

        .= ((2 / 3) + ((((n + 1) - 1) * (4 |^ ((n + 1) + 1))) / (3 * ((n + 1) + 2)))) by NEWTON: 6;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= (((1 |^ 2) * (4 |^ 1)) / ((1 + 1) * (1 + 2))) by A1, A2

      .= ((1 * (4 |^ 1)) / ((1 + 1) * (1 + 2)))

      .= ((1 * 4) / ((1 + 1) * (1 + 2)))

      .= ((2 / 3) + (((1 - 1) * (4 |^ (1 + 1))) / (3 * (1 + 2))));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:34

    (for n holds (s . n) = ((n + 2) / ((n * (n + 1)) * (2 |^ n)))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) * (2 |^ n))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (1 - (1 / (($1 + 1) * (2 |^ $1))));

      assume

       A1: for n holds (s . n) = ((n + 2) / ((n * (n + 1)) * (2 |^ n)));

      

      then

       A2: (s . 0 ) = (( 0 + 2) / (( 0 * ( 0 + 1)) * (2 |^ 0 )))

      .= 0 by XCMPLX_1: 49;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) * (2 |^ n))));

        (n + 1) >= (1 + 0 ) by NAT_1: 11;

        then

         A5: (n + 1) > 0 by NAT_1: 13;

        (n + 2) >= 2 by NAT_1: 11;

        then

         A6: (n + 2) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((1 - (1 / ((n + 1) * (2 |^ n)))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((1 - (1 / ((n + 1) * (2 |^ n)))) + (((n + 1) + 2) / (((n + 1) * ((n + 1) + 1)) * (2 |^ (n + 1))))) by A1

        .= (1 - ((1 / ((n + 1) * (2 |^ n))) - ((n + 3) / (((n + 1) * (n + 2)) * (2 |^ (n + 1))))))

        .= (1 - (((1 * 2) / (((n + 1) * (2 |^ n)) * 2)) - ((n + 3) / (((n + 1) * (n + 2)) * (2 |^ (n + 1)))))) by XCMPLX_1: 91

        .= (1 - (((1 * 2) / ((n + 1) * ((2 |^ n) * 2))) - ((n + 3) / (((n + 1) * (n + 2)) * (2 |^ (n + 1))))))

        .= (1 - (((1 * 2) / ((n + 1) * (2 |^ (n + 1)))) - ((n + 3) / (((n + 1) * (n + 2)) * (2 |^ (n + 1)))))) by NEWTON: 6

        .= (1 - (((2 * (n + 2)) / (((n + 1) * (2 |^ (n + 1))) * (n + 2))) - ((n + 3) / (((n + 1) * (n + 2)) * (2 |^ (n + 1)))))) by A6, XCMPLX_1: 91

        .= (1 - (((2 * (n + 2)) - (n + 3)) / (((n + 1) * (n + 2)) * (2 |^ (n + 1))))) by XCMPLX_1: 120

        .= (1 - ((1 * (n + 1)) / (((n + 2) * (2 |^ (n + 1))) * (n + 1))))

        .= (1 - (1 / (((n + 1) + 1) * (2 |^ (n + 1))))) by A5, XCMPLX_1: 91;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((1 + 2) / ((1 * (1 + 1)) * (2 |^ 1))) by A1, A2

      .= ((1 + 2) / ((1 * (1 + 1)) * 2))

      .= (1 - (1 / ((1 + 1) * 2)))

      .= (1 - (1 / ((1 + 1) * (2 |^ 1))));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:35

    (for n holds (s . n) = (((2 * n) + 3) / ((n * (n + 1)) * (3 |^ n)))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) * (3 |^ n))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (1 - (1 / (($1 + 1) * (3 |^ $1))));

      assume

       A1: for n holds (s . n) = (((2 * n) + 3) / ((n * (n + 1)) * (3 |^ n)));

      

      then

       A2: (s . 0 ) = (((2 * 0 ) + 3) / (( 0 * ( 0 + 1)) * (3 |^ 0 )))

      .= 0 by XCMPLX_1: 49;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) * (3 |^ n))));

        (n + 1) >= (1 + 0 ) by NAT_1: 11;

        then

         A5: (n + 1) > 0 by NAT_1: 13;

        (n + 2) >= 2 by NAT_1: 11;

        then

         A6: (n + 2) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((1 - (1 / ((n + 1) * (3 |^ n)))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((1 - (1 / ((n + 1) * (3 |^ n)))) + (((2 * (n + 1)) + 3) / (((n + 1) * ((n + 1) + 1)) * (3 |^ (n + 1))))) by A1

        .= ((1 - ((1 * 3) / (((n + 1) * (3 |^ n)) * 3))) + (((2 * n) + 5) / (((n + 1) * (n + 2)) * (3 |^ (n + 1))))) by XCMPLX_1: 91

        .= ((1 - (3 / ((n + 1) * ((3 |^ n) * 3)))) + (((2 * n) + 5) / (((n + 1) * (n + 2)) * (3 |^ (n + 1)))))

        .= ((1 - (3 / ((n + 1) * (3 |^ (n + 1))))) + (((2 * n) + 5) / (((n + 1) * (n + 2)) * (3 |^ (n + 1))))) by NEWTON: 6

        .= ((1 - ((3 * (n + 2)) / (((n + 1) * (3 |^ (n + 1))) * (n + 2)))) + (((2 * n) + 5) / (((n + 1) * (n + 2)) * (3 |^ (n + 1))))) by A6, XCMPLX_1: 91

        .= (1 - (((3 * (n + 2)) / (((n + 1) * (3 |^ (n + 1))) * (n + 2))) - (((2 * n) + 5) / (((n + 1) * (n + 2)) * (3 |^ (n + 1))))))

        .= (1 - (((3 * (n + 2)) - ((2 * n) + 5)) / (((n + 1) * (n + 2)) * (3 |^ (n + 1))))) by XCMPLX_1: 120

        .= (1 - ((1 * (n + 1)) / (((n + 2) * (3 |^ (n + 1))) * (n + 1))))

        .= (1 - (1 / (((n + 1) + 1) * (3 |^ (n + 1))))) by A5, XCMPLX_1: 91;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= (((2 * 1) + 3) / ((1 * (1 + 1)) * (3 |^ 1))) by A1, A2

      .= (((2 * 1) + 3) / ((1 * (1 + 1)) * 3))

      .= (1 - (1 / ((1 + 1) * 3)))

      .= (1 - (1 / ((1 + 1) * (3 |^ 1))));

      then

       A7: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A7, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:36

    (for n holds (s . n) = (((( - 1) |^ n) * (2 |^ (n + 1))) / (((2 |^ (n + 1)) + (( - 1) |^ (n + 1))) * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)))))) implies for n holds (( Partial_Sums s) . n) = ((1 / 3) + ((( - 1) |^ (n + 2)) / (3 * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2))))))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 3) + ((( - 1) |^ ($1 + 2)) / (3 * ((2 |^ ($1 + 2)) + (( - 1) |^ ($1 + 2))))));

      assume

       A1: for n holds (s . n) = (((( - 1) |^ n) * (2 |^ (n + 1))) / (((2 |^ (n + 1)) + (( - 1) |^ (n + 1))) * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)))));

      

       A2: for n st X[n] holds X[(n + 1)]

      proof

        let n;

        set b = ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)));

        set p = ((2 |^ (n + 3)) + (( - 1) |^ (n + 3)));

        

         A3: b > 0 by Lm18;

        assume (( Partial_Sums s) . n) = ((1 / 3) + ((( - 1) |^ (n + 2)) / (3 * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2))))));

        

        then

         A4: (( Partial_Sums s) . (n + 1)) = (((1 / 3) + ((( - 1) |^ (n + 2)) / (3 * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)))))) + (s . (n + 1))) by SERIES_1:def 1

        .= (((1 / 3) + ((( - 1) |^ (n + 2)) / (3 * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)))))) + (((( - 1) |^ (n + 1)) * (2 |^ ((n + 1) + 1))) / (((2 |^ ((n + 1) + 1)) + (( - 1) |^ ((n + 1) + 1))) * ((2 |^ ((n + 1) + 2)) + (( - 1) |^ ((n + 1) + 2)))))) by A1

        .= (((1 / 3) + ((( - 1) |^ (n + 2)) / (3 * ((2 |^ (n + 2)) + (( - 1) |^ (n + 2)))))) + (((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) / (((2 |^ (n + 2)) + (( - 1) |^ (n + 2))) * ((2 |^ (n + 3)) + (( - 1) |^ (n + 3))))));

        p > 0 by Lm19;

        

        then (( Partial_Sums s) . (n + 1)) = (((1 / 3) + (((( - 1) |^ (n + 2)) * p) / ((3 * b) * p))) + (((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) / (b * p))) by A4, XCMPLX_1: 91

        .= (((1 / 3) + (((( - 1) |^ (n + 2)) * p) / ((3 * b) * p))) + ((((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) * 3) / ((b * p) * 3))) by XCMPLX_1: 91

        .= ((1 / 3) + ((((( - 1) |^ (n + 2)) * p) / ((3 * b) * p)) + ((((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) * 3) / ((3 * b) * p))))

        .= ((1 / 3) + ((((((( - 1) |^ (n + 2)) * ( - 1)) / ( - 1)) * p) + (((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p))) by XCMPLX_1: 62

        .= ((1 / 3) + (((((( - 1) |^ ((n + 2) + 1)) / ( - 1)) * p) + (((( - 1) |^ (n + 1)) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p))) by NEWTON: 6

        .= ((1 / 3) + (((((( - 1) |^ (n + 3)) / ( - 1)) * p) + (((((( - 1) |^ (n + 1)) * ( - 1)) / ( - 1)) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p)))

        .= ((1 / 3) + (((((( - 1) |^ (n + 3)) / ( - 1)) * p) + ((((( - 1) |^ ((n + 1) + 1)) / ( - 1)) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p))) by NEWTON: 6

        .= ((1 / 3) + (((((( - 1) |^ (n + 3)) / ( - 1)) * p) + (((((( - 1) |^ (n + 2)) * ( - 1)) / (( - 1) * ( - 1))) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p)))

        .= ((1 / 3) + (((((( - 1) |^ (n + 3)) / ( - 1)) * p) + ((((( - 1) |^ ((n + 2) + 1)) / (( - 1) * ( - 1))) * (2 |^ (n + 2))) * 3)) / ((3 * b) * p))) by NEWTON: 6

        .= ((1 / 3) + (((( - 1) |^ (n + 3)) * ((((2 |^ (n + 2)) + ((2 |^ (n + 2)) * 2)) - (2 |^ (n + 3))) - (( - 1) |^ (n + 3)))) / ((3 * b) * p)))

        .= ((1 / 3) + (((( - 1) |^ (n + 3)) * ((((2 |^ (n + 2)) + (2 |^ ((n + 2) + 1))) - (2 |^ (n + 3))) - (( - 1) |^ (n + 3)))) / ((3 * b) * p))) by NEWTON: 6

        .= ((1 / 3) + (((( - 1) |^ (n + 3)) * ((2 |^ (n + 2)) - ((( - 1) |^ (n + 2)) * ( - 1)))) / ((3 * b) * p))) by NEWTON: 6

        .= ((1 / 3) + (((( - 1) |^ (n + 3)) * b) / ((3 * p) * b)))

        .= ((1 / 3) + ((( - 1) |^ ((n + 2) + 1)) / (3 * ((2 |^ ((n + 2) + 1)) + (( - 1) |^ ((n + 2) + 1)))))) by A3, XCMPLX_1: 91;

        hence thesis;

      end;

      (( Partial_Sums s) . 0 ) = (s . 0 ) by SERIES_1:def 1

      .= (((( - 1) |^ 0 ) * (2 |^ ( 0 + 1))) / (((2 |^ ( 0 + 1)) + (( - 1) |^ ( 0 + 1))) * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2))))) by A1

      .= ((1 * (2 |^ ( 0 + 1))) / (((2 |^ ( 0 + 1)) + (( - 1) |^ ( 0 + 1))) * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2))))) by NEWTON: 4

      .= ((1 * 2) / (((2 |^ ( 0 + 1)) + (( - 1) |^ ( 0 + 1))) * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2)))))

      .= ((1 * 2) / ((2 + (( - 1) |^ ( 0 + 1))) * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2)))))

      .= ((1 * 2) / ((2 + ( - 1)) * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2)))))

      .= ((1 * 2) / ((2 + ( - 1)) * ((2 * 2) + (( - 1) |^ ( 0 + 2))))) by WSIERP_1: 1

      .= ((1 * 2) / ((2 + ( - 1)) * ((2 * 2) + (( - 1) * ( - 1))))) by WSIERP_1: 1

      .= ((1 / 3) + ((( - 1) * ( - 1)) / (3 * ((2 * 2) + (( - 1) * ( - 1))))))

      .= ((1 / 3) + ((( - 1) |^ 2) / (3 * ((2 * 2) + (( - 1) * ( - 1)))))) by WSIERP_1: 1

      .= ((1 / 3) + ((( - 1) |^ 2) / (3 * ((2 * 2) + (( - 1) |^ 2))))) by WSIERP_1: 1

      .= ((1 / 3) + ((( - 1) |^ ( 0 + 2)) / (3 * ((2 |^ ( 0 + 2)) + (( - 1) |^ ( 0 + 2)))))) by WSIERP_1: 1;

      then

       A5: X[ 0 ];

      for n holds X[n] from NAT_1:sch 2( A5, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:37

    (for n holds (s . n) = ((n ! ) * n)) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (((n + 1) ! ) - 1)

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((($1 + 1) ! ) - 1);

      assume

       A1: for n holds (s . n) = ((n ! ) * n);

      

      then

       A2: (s . 0 ) = (( 0 ! ) * 0 )

      .= 0 ;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (((n + 1) ! ) - 1);

        (( Partial_Sums s) . (n + 1)) = ((((n + 1) ! ) - 1) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((((n + 1) ! ) - 1) + (((n + 1) ! ) * (n + 1))) by A1

        .= ((((n + 1) ! ) * ((n + 1) + 1)) - 1)

        .= ((((n + 1) + 1) ! ) - 1) by NEWTON: 15;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((1 ! ) * 1) by A1, A2

      .= (((1 + 1) ! ) - 1) by NEWTON: 13, NEWTON: 14;

      then

       A5: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A5, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:38

    (for n holds (s . n) = (n / ((n + 1) ! ))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) ! )))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (1 - (1 / (($1 + 1) ! )));

      assume

       A1: for n holds (s . n) = (n / ((n + 1) ! ));

      

      then

       A2: (s . 0 ) = ( 0 / (( 0 + 1) ! ))

      .= 0 ;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (1 - (1 / ((n + 1) ! )));

        (n + 2) >= 2 by NAT_1: 11;

        then

         A5: (n + 2) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((1 - (1 / ((n + 1) ! ))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((1 - (1 / ((n + 1) ! ))) + ((n + 1) / (((n + 1) + 1) ! ))) by A1

        .= ((1 - ((1 * (n + 2)) / (((n + 1) ! ) * ((n + 1) + 1)))) + ((n + 1) / ((n + 2) ! ))) by A5, XCMPLX_1: 91

        .= ((1 - ((1 * (n + 2)) / (((n + 1) + 1) ! ))) + ((n + 1) / ((n + 2) ! ))) by NEWTON: 15

        .= (1 - (((n + 2) / (((n + 1) + 1) ! )) - ((n + 1) / ((n + 2) ! ))))

        .= (1 - (((n + 2) - (n + 1)) / ((n + 2) ! ))) by XCMPLX_1: 120

        .= (1 - (1 / (((n + 1) + 1) ! )));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= (1 - (1 / ((1 + 1) ! ))) by A1, A2, NEWTON: 14;

      then

       A6: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A6, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:39

    (for n st n >= 1 holds (s . n) = ((((n |^ 2) + n) - 1) / ((n + 2) ! )) & (s . 0 ) = 0 ) implies for n st n >= 1 holds (( Partial_Sums s) . n) = ((1 / 2) - ((n + 1) / ((n + 2) ! )))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = ((1 / 2) - (($1 + 1) / (($1 + 2) ! )));

      assume

       A1: for n st n >= 1 holds (s . n) = ((((n |^ 2) + n) - 1) / ((n + 2) ! )) & (s . 0 ) = 0 ;

      

       A2: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A3: (( Partial_Sums s) . n) = ((1 / 2) - ((n + 1) / ((n + 2) ! )));

        

         A4: (n + 1) >= 1 by NAT_1: 11;

        (n + 3) >= 3 by NAT_1: 11;

        then

         A5: (n + 3) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = (((1 / 2) - ((n + 1) / ((n + 2) ! ))) + (s . (n + 1))) by A3, SERIES_1:def 1

        .= (((1 / 2) - ((n + 1) / ((n + 2) ! ))) + (((((n + 1) |^ 2) + (n + 1)) - 1) / (((n + 1) + 2) ! ))) by A1, A4

        .= (((1 / 2) - (((n + 1) * (n + 3)) / (((n + 2) ! ) * ((n + 2) + 1)))) + ((((n + 1) |^ 2) + n) / ((n + 3) ! ))) by A5, XCMPLX_1: 91

        .= (((1 / 2) - (((n + 1) * (n + 3)) / (((n + 2) + 1) ! ))) + ((((n + 1) |^ 2) + n) / ((n + 3) ! ))) by NEWTON: 15

        .= ((1 / 2) - ((((n + 1) * (n + 3)) / ((n + 3) ! )) - ((((n + 1) |^ 2) + n) / ((n + 3) ! ))))

        .= ((1 / 2) - ((((n + 1) * (n + 3)) - (((n + 1) |^ 2) + n)) / ((n + 3) ! ))) by XCMPLX_1: 120

        .= ((1 / 2) - (((((n + 1) * (n + 3)) - ((n + 1) |^ 2)) - n) / ((n + 3) ! )))

        .= ((1 / 2) - (((((n + 1) * (n + 3)) - ((n + 1) * (n + 1))) - n) / ((n + 3) ! ))) by WSIERP_1: 1

        .= ((1 / 2) - (((n + 1) + 1) / (((n + 1) + 2) ! )));

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ( 0 + (s . 1)) by A1

      .= ((((1 |^ 2) + 1) - 1) / ((1 + 2) ! )) by A1

      .= ((1 * 1) / ((2 + 1) ! ))

      .= (1 / (2 * 3)) by NEWTON: 14, NEWTON: 15

      .= ((1 / 2) - (2 / ((2 ! ) * (2 + 1)))) by NEWTON: 14

      .= ((1 / 2) - (2 / ((2 + 1) ! ))) by NEWTON: 15;

      then

       A6: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A6, A2);

      hence thesis;

    end;

    theorem :: SERIES_2:40

    (for n holds (s . n) = ((n * (2 |^ n)) / ((n + 2) ! ))) implies for n st n >= 1 holds (( Partial_Sums s) . n) = (1 - ((2 |^ (n + 1)) / ((n + 2) ! )))

    proof

      defpred X[ Nat] means (( Partial_Sums s) . $1) = (1 - ((2 |^ ($1 + 1)) / (($1 + 2) ! )));

      assume

       A1: for n holds (s . n) = ((n * (2 |^ n)) / ((n + 2) ! ));

      

      then

       A2: (s . 0 ) = (( 0 * (2 |^ 0 )) / (( 0 + 2) ! ))

      .= 0 ;

      

       A3: for n be Nat st n >= 1 & X[n] holds X[(n + 1)]

      proof

        let n be Nat;

        assume that n >= 1 and

         A4: (( Partial_Sums s) . n) = (1 - ((2 |^ (n + 1)) / ((n + 2) ! )));

        (n + 3) >= 3 by NAT_1: 11;

        then

         A5: (n + 3) > 0 by XXREAL_0: 2;

        (( Partial_Sums s) . (n + 1)) = ((1 - ((2 |^ (n + 1)) / ((n + 2) ! ))) + (s . (n + 1))) by A4, SERIES_1:def 1

        .= ((1 - ((2 |^ (n + 1)) / ((n + 2) ! ))) + (((n + 1) * (2 |^ (n + 1))) / (((n + 1) + 2) ! ))) by A1

        .= ((1 - (((2 |^ (n + 1)) * (n + 3)) / (((n + 2) ! ) * ((n + 2) + 1)))) + (((n + 1) * (2 |^ (n + 1))) / ((n + 3) ! ))) by A5, XCMPLX_1: 91

        .= ((1 - (((2 |^ (n + 1)) * (n + 3)) / (((n + 2) + 1) ! ))) + (((n + 1) * (2 |^ (n + 1))) / ((n + 3) ! ))) by NEWTON: 15

        .= (1 - ((((2 |^ (n + 1)) * (n + 3)) / (((n + 2) + 1) ! )) - (((n + 1) * (2 |^ (n + 1))) / ((n + 3) ! ))))

        .= (1 - ((((2 |^ (n + 1)) * (n + 3)) - ((2 |^ (n + 1)) * (n + 1))) / ((n + 3) ! ))) by XCMPLX_1: 120

        .= (1 - (((2 |^ (n + 1)) * 2) / ((n + 3) ! )))

        .= (1 - ((2 |^ ((n + 1) + 1)) / (((n + 1) + 2) ! ))) by NEWTON: 6;

        hence thesis;

      end;

      (( Partial_Sums s) . (1 + 0 )) = ((( Partial_Sums s) . 0 ) + (s . (1 + 0 ))) by SERIES_1:def 1

      .= ((s . 0 ) + (s . 1)) by SERIES_1:def 1

      .= ((1 * (2 |^ 1)) / ((1 + 2) ! )) by A1, A2

      .= (2 / ((2 + 1) ! ))

      .= (2 / (2 * 3)) by NEWTON: 14, NEWTON: 15

      .= (1 - ((2 * 2) / ((2 ! ) * (2 + 1)))) by NEWTON: 14

      .= (1 - ((2 |^ 2) / ((2 ! ) * (2 + 1)))) by WSIERP_1: 1

      .= (1 - ((2 |^ (1 + 1)) / ((1 + 2) ! ))) by NEWTON: 15;

      then

       A6: X[1];

      for n be Nat st n >= 1 holds X[n] from NAT_1:sch 8( A6, A3);

      hence thesis;

    end;

    theorem :: SERIES_2:41

    (for n holds (s . n) = ((a * n) + b)) implies for n holds (( Partial_Sums s) . n) = (((((a * (n + 1)) * n) / 2) + (n * b)) + b) by Lm14;

    ::$Notion-Name

    theorem :: SERIES_2:42

    (for n holds (s . n) = ((a * n) + b)) implies for n holds (( Partial_Sums s) . n) = (((n + 1) * ((s . 0 ) + (s . n))) / 2)

    proof

      assume

       A1: for n holds (s . n) = ((a * n) + b);

      let n;

      (( Partial_Sums s) . n) = (((((a * (n + 1)) * n) / 2) + (n * b)) + b) by A1, Lm14

      .= (((n + 1) * (((n * a) + b) + b)) / 2)

      .= (((n + 1) * ((s . n) + ((a * 0 ) + b))) / 2) by A1

      .= (((n + 1) * ((s . n) + (s . 0 ))) / 2) by A1;

      hence thesis;

    end;