series_1.miz
    
    begin
    
    reserve n,m,k for
    Nat;
    
    reserve a,p,r for
    Real;
    
    reserve s,s1,s2,s3 for
    Real_Sequence;
    
    theorem :: 
    
    SERIES_1:1
    
    
    
    
    
    Th1: 
    0  
    < a & a 
    < 1 & (for n holds (s 
    . n) 
    = (a 
    to_power (n 
    + 1))) implies s is 
    convergent & ( 
    lim s) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: 
    0  
    < a and 
    
      
    
    A2: a 
    < 1 and 
    
      
    
    A3: for n holds (s 
    . n) 
    = (a 
    to_power (n 
    + 1)); 
    
      set r = ((1
    / a) 
    - 1); 
    
      (1
    / a) 
    > (1 
    / 1) by 
    A1,
    A2,
    XREAL_1: 88;
    
      then
    
      
    
    A4: r 
    >  
    0 by 
    XREAL_1: 50;
    
      
    
      
    
    A5: for p be 
    Real st 
    0  
    < p holds ex m st for n st m 
    <= n holds 
    |.((s
    . n) 
    -  
    0 ).| 
    < p 
    
      proof
    
        let p be
    Real;
    
        
    
        
    
    A6: (1 
    / (p 
    * r)) 
    <= ( 
    [\(1
    / (p 
    * r))/] 
    + 1) by 
    INT_1: 29;
    
        assume
    
        
    
    A7: 
    0  
    < p; 
    
        then (p
    * r) 
    >  
    0 by 
    A4;
    
        then (1
    / (p 
    * r)) 
    >  
    0 ; 
    
        then
    0  
    < ( 
    [\(1
    / (p 
    * r))/] 
    + 1) by 
    A6;
    
        then
    [\(1
    / (p 
    * r))/] is 
    Element of 
    NAT by 
    INT_1: 3,
    INT_1: 7;
    
        then
    
        consider m such that
    
        
    
    A8: m 
    =  
    [\(1
    / (p 
    * r))/]; 
    
        take m;
    
        
    
        
    
    A9: (1 
    / (p 
    * r)) 
    = ((1 
    / p) 
    / r) by 
    XCMPLX_1: 78;
    
        now
    
          
    
          
    
    A10: 
    [\(1
    / (p 
    * r))/] 
    > ((1 
    / (p 
    * r)) 
    - 1) by 
    INT_1:def 6;
    
          let n;
    
          assume m
    <= n; 
    
          then n
    > ((1 
    / (p 
    * r)) 
    - 1) by 
    A8,
    A10,
    XXREAL_0: 2;
    
          then (n
    + 1) 
    > ((1 
    / p) 
    / r) by 
    A9,
    XREAL_1: 19;
    
          then
    
          
    
    A11: ((n 
    + 1) 
    * r) 
    > (1 
    / p) by 
    A4,
    XREAL_1: 77;
    
          (
    0  
    + ((n 
    + 1) 
    * r)) 
    < (1 
    + ((n 
    + 1) 
    * r)) by 
    XREAL_1: 6;
    
          then
    
          
    
    A12: (1 
    / p) 
    < (1 
    + ((n 
    + 1) 
    * r)) by 
    A11,
    XXREAL_0: 2;
    
          
    
          
    
    A13: ((1 
    + r) 
    to_power (n 
    + 1)) 
    = ((1 
    to_power (n 
    + 1)) 
    / (a 
    to_power (n 
    + 1))) by 
    A1,
    POWER: 31
    
          .= (1
    / (a 
    to_power (n 
    + 1))); 
    
          (a
    to_power (n 
    + 1)) 
    >  
    0 by 
    A1,
    POWER: 34;
    
          then
    
          
    
    A14: 
    |.(a
    to_power (n 
    + 1)).| 
    = (a 
    to_power (n 
    + 1)) by 
    ABSVALUE:def 1;
    
          (1
    + ((n 
    + 1) 
    * r)) 
    <= ((1 
    + r) 
    to_power (n 
    + 1)) by 
    A4,
    POWER: 49;
    
          then (1
    / p) 
    < (1 
    / (a 
    to_power (n 
    + 1))) by 
    A13,
    A12,
    XXREAL_0: 2;
    
          then
    |.(a
    to_power (n 
    + 1)).| 
    < p by 
    A7,
    A14,
    XREAL_1: 91;
    
          hence
    |.((s
    . n) 
    -  
    0 ).| 
    < p by 
    A3;
    
        end;
    
        hence thesis;
    
      end;
    
      hence s is
    convergent by 
    SEQ_2:def 6;
    
      hence thesis by
    A5,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SERIES_1:2
    
    
    
    
    
    Th2: for n be 
    Nat holds ( 
    |.a.|
    to_power n) 
    =  
    |.(a
    to_power n).| 
    
    proof
    
      let n be
    Nat;
    
      per cases ;
    
        suppose
    
        
    
    A1: a 
    <>  
    0 ; 
    
        then
    
        
    
    A2: 
    |.a.|
    >  
    0 by 
    COMPLEX1: 47;
    
        now
    
          per cases by
    A1;
    
            suppose a
    >  
    0 ; 
    
            then (a
    to_power n) 
    = ( 
    |.a.|
    to_power n) & (a 
    to_power n) 
    >  
    0 by 
    ABSVALUE:def 1,
    POWER: 34;
    
            hence thesis by
    ABSVALUE:def 1;
    
          end;
    
            suppose
    
            
    
    A3: a 
    <  
    0 ; 
    
            reconsider m = n as
    Integer;
    
            now
    
              per cases ;
    
                suppose
    
                
    
    A4: m is 
    even;
    
                
    
                
    
    A5: ( 
    |.a.|
    to_power n) 
    >  
    0 by 
    A2,
    POWER: 34;
    
                (
    |.a.|
    to_power n) 
    = (( 
    - a) 
    to_power m) by 
    A3,
    ABSVALUE:def 1
    
                .= (a
    to_power m) by 
    A4,
    POWER: 47;
    
                hence thesis by
    A5,
    ABSVALUE:def 1;
    
              end;
    
                suppose
    
                
    
    A6: m is 
    odd;
    
                
    
                
    
    A7: ( 
    |.a.|
    to_power n) 
    >  
    0 by 
    A2,
    POWER: 34;
    
                (
    |.a.|
    to_power n) 
    = (( 
    - a) 
    to_power m) by 
    A3,
    ABSVALUE:def 1
    
                .= (
    - (a 
    to_power m)) by 
    A6,
    POWER: 48;
    
                
    
                hence (
    |.a.|
    to_power n) 
    =  
    |.(
    - (a 
    to_power n)).| by 
    A7,
    ABSVALUE:def 1
    
                .=
    |.(a
    to_power n).| by 
    COMPLEX1: 52;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    A8: a 
    =  
    0 ; 
    
        per cases ;
    
          suppose n
    =  
    0 ; 
    
          then (a
    to_power n) 
    = 1 by 
    NEWTON: 4;
    
          hence thesis by
    A8,
    COMPLEX1: 44,
    COMPLEX1: 48;
    
        end;
    
          suppose n
    >  
    0 ; 
    
          then (
    |.a.|
    to_power n) 
    =  
    0 by 
    A8,
    COMPLEX1: 44,
    POWER:def 2;
    
          hence thesis by
    A8,
    COMPLEX1: 44;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    SERIES_1:3
    
    
    
    
    
    Th3: 
    |.a.|
    < 1 & (for n holds (s 
    . n) 
    = (a 
    to_power (n 
    + 1))) implies s is 
    convergent & ( 
    lim s) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: 
    |.a.|
    < 1 and 
    
      
    
    A2: for n holds (s 
    . n) 
    = (a 
    to_power (n 
    + 1)); 
    
      now
    
        per cases ;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          then
    
          
    
    A3: a 
    =  
    0 by 
    ABSVALUE: 2;
    
          now
    
            let n be
    Nat;
    
            n
    in  
    NAT & (a 
    to_power (n 
    + 1)) 
    =  
    0 by 
    A3,
    ORDINAL1:def 12,
    POWER:def 2;
    
            hence (s
    . n) 
    = ( 
    In ( 
    0 , 
    REAL )) by 
    A2;
    
          end;
    
          then s is
    constant & (s 
    .  
    0 ) 
    = ( 
    In ( 
    0 , 
    REAL )); 
    
          hence thesis by
    SEQ_4: 26;
    
        end;
    
          suppose
    
          
    
    A4: not 
    |.a.|
    =  
    0 ; 
    
          deffunc
    
    U(
    Nat) = (
    |.a.|
    to_power ($1 
    + 1)); 
    
          consider s1 such that
    
          
    
    A5: for n holds (s1 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
          
    
    A6: 
    
          now
    
            let n;
    
            
    
            thus (s1
    . n) 
    = ( 
    |.a.|
    to_power (n 
    + 1)) by 
    A5
    
            .=
    |.(a
    to_power (n 
    + 1)).| by 
    Th2
    
            .=
    |.(s
    . n).| by 
    A2;
    
          end;
    
          
    
          
    
    A7: 
    |.a.|
    >  
    0 by 
    A4,
    COMPLEX1: 46;
    
          then (
    lim s1) 
    =  
    0 by 
    A1,
    A5,
    Th1;
    
          then
    
          
    
    A8: ( 
    lim ( 
    abs s)) 
    =  
    0 by 
    A6,
    SEQ_1: 12;
    
          s1 is
    convergent by 
    A1,
    A7,
    A5,
    Th1;
    
          then (
    abs s) is 
    convergent by 
    A6,
    SEQ_1: 12;
    
          hence thesis by
    A8,
    SEQ_4: 15;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    definition
    
      let X be non
    empty
    add-closed
    complex-membered  
    set;
    
      let s1,s2 be
    sequence of X; 
    
      :: original:
    +
    
      redefine
    
      func s1
    
    + s2 -> 
    sequence of X ; 
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    dom (s1 
    + s2)) 
    = (( 
    dom s1) 
    /\ ( 
    dom s2)) by 
    VALUED_1:def 1
    
        .= (
    NAT  
    /\ ( 
    dom s2)) by 
    FUNCT_2:def 1
    
        .= (
    NAT  
    /\  
    NAT ) by 
    FUNCT_2:def 1;
    
        now
    
          let x be
    object such that 
    
          
    
    A2: x 
    in  
    NAT ; 
    
          
    
          
    
    A3: (s1 
    . x) 
    in X & (s2 
    . x) 
    in X by 
    A2,
    FUNCT_2: 5;
    
          ((s1
    + s2) 
    . x) 
    = ((s1 
    . x) 
    + (s2 
    . x)) by 
    A1,
    A2,
    VALUED_1:def 1;
    
          hence ((s1
    + s2) 
    . x) 
    in X by 
    A3,
    MEMBERED:def 25;
    
        end;
    
        hence thesis by
    A1,
    FUNCT_2: 3;
    
      end;
    
    end
    
    definition
    
      let s be
    complex-valued  
    ManySortedSet of 
    NAT ; 
    
      :: 
    
    SERIES_1:def1
    
      func
    
    Partial_Sums (s) -> 
    complex-valued  
    ManySortedSet of 
    NAT means 
    
      :
    
    Def1: (it 
    .  
    0 ) 
    = (s 
    .  
    0 ) & for n holds (it 
    . (n 
    + 1)) 
    = ((it 
    . n) 
    + (s 
    . (n 
    + 1))); 
    
      existence
    
      proof
    
        set X =
    COMPLEX ; 
    
        
    
        
    
    A1: ( 
    dom s) 
    =  
    NAT by 
    PARTFUN1:def 2;
    
        (
    rng s) 
    c= X by 
    VALUED_0:def 1;
    
        then
    
        reconsider ss = s as
    sequence of X by 
    A1,
    RELSET_1: 4;
    
        defpred
    
    P[
    Nat, 
    Element of X, 
    set] means $3
    = ($2 
    + (ss 
    . ($1 
    + 1))); 
    
        
    
        
    
    A2: for n be 
    Nat holds for x be 
    Element of X holds ex y be 
    Element of X st 
    P[n, x, y]
    
        proof
    
          let n be
    Nat, x be 
    Element of X; 
    
          reconsider y = (x
    + (ss 
    . (n 
    + 1))) as 
    Element of 
    COMPLEX by 
    XCMPLX_0:def 2;
    
          take y;
    
          thus thesis;
    
        end;
    
        consider f be
    sequence of X such that 
    
        
    
    A3: (f 
    .  
    0 ) 
    = (ss 
    .  
    0 ) and 
    
        
    
    A4: for n be 
    Nat holds 
    P[n, (f
    . n), (f 
    . (n 
    + 1))] from 
    RECDEF_1:sch 2(
    A2);
    
        take f;
    
        thus (f
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    A3;
    
        let n;
    
        reconsider n as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        
    P[n, (f
    . n), (f 
    . (n 
    + 1))] by 
    A4;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let s1,s2 be
    complex-valued  
    ManySortedSet of 
    NAT ; 
    
        assume that
    
        
    
    A5: (s1 
    .  
    0 ) 
    = (s 
    .  
    0 ) and 
    
        
    
    A6: for n holds (s1 
    . (n 
    + 1)) 
    = ((s1 
    . n) 
    + (s 
    . (n 
    + 1))) and 
    
        
    
    A7: (s2 
    .  
    0 ) 
    = (s 
    .  
    0 ) and 
    
        
    
    A8: for n holds (s2 
    . (n 
    + 1)) 
    = ((s2 
    . n) 
    + (s 
    . (n 
    + 1))); 
    
        defpred
    
    X[
    Nat] means (s1
    . $1) 
    = (s2 
    . $1); 
    
        
    
        
    
    A9: for k be 
    Nat st 
    X[k] holds
    X[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume (s1
    . k) 
    = (s2 
    . k); 
    
          
    
          hence (s1
    . (k 
    + 1)) 
    = ((s2 
    . k) 
    + (s 
    . (k 
    + 1))) by 
    A6
    
          .= (s2
    . (k 
    + 1)) by 
    A8;
    
        end;
    
        
    
        
    
    A10: 
    X[
    0 ] by 
    A5,
    A7;
    
        for n be
    Nat holds 
    X[n] from
    NAT_1:sch 2(
    A10,
    A9);
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let s be
    real-valued  
    ManySortedSet of 
    NAT ; 
    
      cluster ( 
    Partial_Sums s) -> 
    real-valued;
    
      coherence
    
      proof
    
        set f = (
    Partial_Sums s); 
    
        let x be
    object;
    
        assume x
    in ( 
    dom f); 
    
        then
    
        reconsider n = x as
    Element of 
    NAT ; 
    
        defpred
    
    P[
    Nat] means (f
    . $1) is 
    real;
    
        (f
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1;
    
        then
    
        
    
    A1: 
    P[
    0 ]; 
    
        
    
        
    
    A2: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume
    
          
    
    A3: 
    P[k];
    
          reconsider k as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (f
    . (k 
    + 1)) 
    = ((f 
    . k) 
    + (s 
    . (k 
    + 1))) by 
    Def1;
    
          hence thesis by
    A3;
    
        end;
    
        for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A1,
    A2);
    
        then (f
    . n) is 
    real;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let s be
    Real_Sequence;
    
      :: original:
    Partial_Sums
    
      redefine
    
      func
    
    Partial_Sums s -> 
    Real_Sequence ; 
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    dom ( 
    Partial_Sums s)) 
    =  
    NAT by 
    PARTFUN1:def 2;
    
        (
    rng ( 
    Partial_Sums s)) 
    c=  
    REAL by 
    VALUED_0:def 3;
    
        then (
    Partial_Sums s) is 
    Relation of 
    NAT , 
    REAL by 
    A1,
    RELSET_1: 4;
    
        hence (
    Partial_Sums s) is 
    Real_Sequence;
    
      end;
    
    end
    
    definition
    
      let s;
    
      :: 
    
    SERIES_1:def2
    
      attr s is
    
    summable means 
    
      :
    
    Def2: ( 
    Partial_Sums s) is 
    convergent;
    
      :: 
    
    SERIES_1:def3
    
      func
    
    Sum (s) -> 
    Real equals ( 
    lim ( 
    Partial_Sums s)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    SERIES_1:4
    
    
    
    
    
    Th4: s is 
    summable implies s is 
    convergent & ( 
    lim s) 
    =  
    0  
    
    proof
    
      assume s is
    summable;
    
      then
    
      
    
    A1: ( 
    Partial_Sums s) is 
    convergent;
    
      now
    
        let n;
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) by 
    Def1;
    
        then ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + ((s 
    ^\ 1) 
    . n)) by 
    NAT_1:def 3;
    
        hence (((
    Partial_Sums s) 
    ^\ 1) 
    . n) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + ((s 
    ^\ 1) 
    . n)) by 
    NAT_1:def 3;
    
      end;
    
      then
    
      
    
    A2: (( 
    Partial_Sums s) 
    ^\ 1) 
    = (( 
    Partial_Sums s) 
    + (s 
    ^\ 1)) by 
    SEQ_1: 7;
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus (((s
    ^\ 1) 
    + (( 
    Partial_Sums s) 
    - ( 
    Partial_Sums s))) 
    . n) 
    = (((s 
    ^\ 1) 
    . n) 
    + ((( 
    Partial_Sums s) 
    + ( 
    - ( 
    Partial_Sums s))) 
    . n)) by 
    SEQ_1: 7
    
        .= (((s
    ^\ 1) 
    . n) 
    + ((( 
    Partial_Sums s) 
    . n) 
    + (( 
    - ( 
    Partial_Sums s)) 
    . n))) by 
    SEQ_1: 7
    
        .= (((s
    ^\ 1) 
    . n) 
    + ((( 
    Partial_Sums s) 
    . n) 
    + ( 
    - (( 
    Partial_Sums s) 
    . n)))) by 
    SEQ_1: 10
    
        .= ((s
    ^\ 1) 
    . n); 
    
      end;
    
      then ((s
    ^\ 1) 
    + (( 
    Partial_Sums s) 
    - ( 
    Partial_Sums s))) 
    = (s 
    ^\ 1); 
    
      then
    
      
    
    A3: (s 
    ^\ 1) 
    = ((( 
    Partial_Sums s) 
    ^\ 1) 
    - ( 
    Partial_Sums s)) by 
    A2,
    SEQ_1: 31;
    
      then
    
      
    
    A4: (s 
    ^\ 1) qua 
    Real_Sequence is 
    convergent by 
    A1;
    
      hence s is
    convergent by 
    SEQ_4: 21;
    
      (
    lim (( 
    Partial_Sums s) 
    ^\ 1)) 
    = ( 
    lim ( 
    Partial_Sums s)) by 
    A1,
    SEQ_4: 20;
    
      
    
      then (
    lim ((( 
    Partial_Sums s) 
    ^\ 1) 
    - ( 
    Partial_Sums s))) 
    = (( 
    lim ( 
    Partial_Sums s)) 
    - ( 
    lim ( 
    Partial_Sums s))) by 
    A1,
    SEQ_2: 12
    
      .=
    0 ; 
    
      hence thesis by
    A3,
    A4,
    SEQ_4: 22;
    
    end;
    
    
    
    
    
    Lm1: for seq,seq1,seq2 be 
    complex-valued  
    ManySortedSet of 
    NAT holds seq 
    = (seq1 
    + seq2) iff for n holds (seq 
    . n) 
    = ((seq1 
    . n) 
    + (seq2 
    . n)) 
    
    proof
    
      let seq,seq1,seq2 be
    complex-valued  
    ManySortedSet of 
    NAT ; 
    
      thus seq
    = (seq1 
    + seq2) implies for n holds (seq 
    . n) 
    = ((seq1 
    . n) 
    + (seq2 
    . n)) 
    
      proof
    
        assume
    
        
    
    A1: seq 
    = (seq1 
    + seq2); 
    
        let n;
    
        
    
        
    
    A2: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        (
    dom seq) 
    =  
    NAT by 
    PARTFUN1:def 2;
    
        hence thesis by
    A1,
    VALUED_1:def 1,
    A2;
    
      end;
    
      assume for n holds (seq
    . n) 
    = ((seq1 
    . n) 
    + (seq2 
    . n)); 
    
      then
    
      
    
    A3: for n be 
    object st n 
    in ( 
    dom seq) holds (seq 
    . n) 
    = ((seq1 
    . n) 
    + (seq2 
    . n)); 
    
      (
    dom seq) 
    = ( 
    NAT  
    /\  
    NAT ) by 
    PARTFUN1:def 2
    
      .= (
    NAT  
    /\ ( 
    dom seq2)) by 
    PARTFUN1:def 2
    
      .= ((
    dom seq1) 
    /\ ( 
    dom seq2)) by 
    PARTFUN1:def 2;
    
      hence thesis by
    A3,
    VALUED_1:def 1;
    
    end;
    
    theorem :: 
    
    SERIES_1:5
    
    
    
    
    
    Th5: for X be non 
    empty
    add-closed
    complex-membered  
    set holds for s1,s2 be 
    sequence of X holds (( 
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2)) 
    = ( 
    Partial_Sums (s1 
    + s2)) 
    
    proof
    
      let X be non
    empty
    add-closed
    complex-membered  
    set;
    
      let s1,s2 be
    sequence of X; 
    
      
    
    A1: 
    
      now
    
        let n;
    
        
    
        thus (((
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2)) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    Lm1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    Def1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    + ((s2 
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s2) 
    . n))) by 
    Def1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + ((s1 
    . (n 
    + 1)) 
    + (s2 
    . (n 
    + 1)))) 
    + (( 
    Partial_Sums s2) 
    . n)) 
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + ((s1 
    + s2) 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s2) 
    . n)) by 
    Lm1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + (( 
    Partial_Sums s2) 
    . n)) 
    + ((s1 
    + s2) 
    . (n 
    + 1))) 
    
        .= ((((
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2)) 
    . n) 
    + ((s1 
    + s2) 
    . (n 
    + 1))) by 
    Lm1;
    
      end;
    
      (((
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2)) 
    .  
    0 ) 
    = ((( 
    Partial_Sums s1) 
    .  
    0 ) 
    + (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    Lm1
    
      .= ((s1
    .  
    0 ) 
    + (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    Def1
    
      .= ((s1
    .  
    0 ) 
    + (s2 
    .  
    0 )) by 
    Def1
    
      .= ((s1
    + s2) 
    .  
    0 ) by 
    Lm1;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    SERIES_1:6
    
    
    
    
    
    Th6: (( 
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2)) 
    = ( 
    Partial_Sums (s1 
    - s2)) 
    
    proof
    
      
    
    A1: 
    
      now
    
        let n;
    
        
    
        thus (((
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2)) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    - (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    RFUNCT_2: 1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    - (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    Def1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    - ((s2 
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s2) 
    . n))) by 
    Def1
    
        .= ((((
    Partial_Sums s1) 
    . n) 
    + ((s1 
    . (n 
    + 1)) 
    - (s2 
    . (n 
    + 1)))) 
    - (( 
    Partial_Sums s2) 
    . n)) 
    
        .= ((((s1
    - s2) 
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s1) 
    . n)) 
    - (( 
    Partial_Sums s2) 
    . n)) by 
    RFUNCT_2: 1
    
        .= (((s1
    - s2) 
    . (n 
    + 1)) 
    + ((( 
    Partial_Sums s1) 
    . n) 
    - (( 
    Partial_Sums s2) 
    . n))) 
    
        .= ((((
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2)) 
    . n) 
    + ((s1 
    - s2) 
    . (n 
    + 1))) by 
    RFUNCT_2: 1;
    
      end;
    
      (((
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2)) 
    .  
    0 ) 
    = ((( 
    Partial_Sums s1) 
    .  
    0 ) 
    - (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    RFUNCT_2: 1
    
      .= ((s1
    .  
    0 ) 
    - (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    Def1
    
      .= ((s1
    .  
    0 ) 
    - (s2 
    .  
    0 )) by 
    Def1
    
      .= ((s1
    - s2) 
    .  
    0 ) by 
    RFUNCT_2: 1;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    SERIES_1:7
    
    s1 is
    summable & s2 is 
    summable implies (s1 
    + s2) is 
    summable & ( 
    Sum (s1 
    + s2)) 
    = (( 
    Sum s1) 
    + ( 
    Sum s2)) 
    
    proof
    
      assume s1 is
    summable & s2 is 
    summable;
    
      then
    
      
    
    A1: ( 
    Partial_Sums s1) is 
    convergent & ( 
    Partial_Sums s2) is 
    convergent;
    
      then ((
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2)) is 
    convergent;
    
      then (
    Partial_Sums (s1 
    + s2)) is 
    convergent by 
    Th5;
    
      hence (s1
    + s2) is 
    summable;
    
      
    
      thus (
    Sum (s1 
    + s2)) 
    = ( 
    lim (( 
    Partial_Sums s1) 
    + ( 
    Partial_Sums s2))) by 
    Th5
    
      .= ((
    Sum s1) 
    + ( 
    Sum s2)) by 
    A1,
    SEQ_2: 6;
    
    end;
    
    theorem :: 
    
    SERIES_1:8
    
    s1 is
    summable & s2 is 
    summable implies (s1 
    - s2) is 
    summable & ( 
    Sum (s1 
    - s2)) 
    = (( 
    Sum s1) 
    - ( 
    Sum s2)) 
    
    proof
    
      assume s1 is
    summable & s2 is 
    summable;
    
      then
    
      
    
    A1: ( 
    Partial_Sums s1) is 
    convergent & ( 
    Partial_Sums s2) is 
    convergent;
    
      then ((
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2)) is 
    convergent;
    
      then (
    Partial_Sums (s1 
    - s2)) is 
    convergent by 
    Th6;
    
      hence (s1
    - s2) is 
    summable;
    
      
    
      thus (
    Sum (s1 
    - s2)) 
    = ( 
    lim (( 
    Partial_Sums s1) 
    - ( 
    Partial_Sums s2))) by 
    Th6
    
      .= ((
    Sum s1) 
    - ( 
    Sum s2)) by 
    A1,
    SEQ_2: 12;
    
    end;
    
    theorem :: 
    
    SERIES_1:9
    
    
    
    
    
    Th9: ( 
    Partial_Sums (r 
    (#) s)) 
    = (r 
    (#) ( 
    Partial_Sums s)) 
    
    proof
    
      
    
    A1: 
    
      now
    
        let n;
    
        
    
        thus ((r
    (#) ( 
    Partial_Sums s)) 
    . (n 
    + 1)) 
    = (r 
    * (( 
    Partial_Sums s) 
    . (n 
    + 1))) by 
    SEQ_1: 9
    
        .= (r
    * ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1)))) by 
    Def1
    
        .= ((r
    * (( 
    Partial_Sums s) 
    . n)) 
    + (r 
    * (s 
    . (n 
    + 1)))) 
    
        .= (((r
    (#) ( 
    Partial_Sums s)) 
    . n) 
    + (r 
    * (s 
    . (n 
    + 1)))) by 
    SEQ_1: 9
    
        .= (((r
    (#) ( 
    Partial_Sums s)) 
    . n) 
    + ((r 
    (#) s) 
    . (n 
    + 1))) by 
    SEQ_1: 9;
    
      end;
    
      ((r
    (#) ( 
    Partial_Sums s)) 
    .  
    0 ) 
    = (r 
    * (( 
    Partial_Sums s) 
    .  
    0 )) by 
    SEQ_1: 9
    
      .= (r
    * (s 
    .  
    0 )) by 
    Def1
    
      .= ((r
    (#) s) 
    .  
    0 ) by 
    SEQ_1: 9;
    
      hence thesis by
    A1,
    Def1;
    
    end;
    
    theorem :: 
    
    SERIES_1:10
    
    
    
    
    
    Th10: s is 
    summable implies (r 
    (#) s) is 
    summable & ( 
    Sum (r 
    (#) s)) 
    = (r 
    * ( 
    Sum s)) 
    
    proof
    
      assume s is
    summable;
    
      then
    
      
    
    A1: ( 
    Partial_Sums s) is 
    convergent;
    
      then (r
    (#) ( 
    Partial_Sums s)) is 
    convergent;
    
      then (
    Partial_Sums (r 
    (#) s)) is 
    convergent by 
    Th9;
    
      hence (r
    (#) s) is 
    summable;
    
      
    
      thus (
    Sum (r 
    (#) s)) 
    = ( 
    lim (r 
    (#) ( 
    Partial_Sums s))) by 
    Th9
    
      .= (r
    * ( 
    Sum s)) by 
    A1,
    SEQ_2: 8;
    
    end;
    
    theorem :: 
    
    SERIES_1:11
    
    
    
    
    
    Th11: for s, s1 st for n holds (s1 
    . n) 
    = (s 
    .  
    0 ) holds ( 
    Partial_Sums (s 
    ^\ 1)) 
    = ((( 
    Partial_Sums s) 
    ^\ 1) 
    - s1) 
    
    proof
    
      let s, s1;
    
      assume
    
      
    
    A1: for n holds (s1 
    . n) 
    = (s 
    .  
    0 ); 
    
      
    
    A2: 
    
      now
    
        let k;
    
        
    
        thus ((((
    Partial_Sums s) 
    ^\ 1) 
    - s1) 
    . (k 
    + 1)) 
    = (((( 
    Partial_Sums s) 
    ^\ 1) 
    . (k 
    + 1)) 
    - (s1 
    . (k 
    + 1))) by 
    RFUNCT_2: 1
    
        .= ((((
    Partial_Sums s) 
    ^\ 1) 
    . (k 
    + 1)) 
    - (s 
    .  
    0 )) by 
    A1
    
        .= (((
    Partial_Sums s) 
    . ((k 
    + 1) 
    + 1)) 
    - (s 
    .  
    0 )) by 
    NAT_1:def 3
    
        .= (((s
    . ((k 
    + 1) 
    + 1)) 
    + (( 
    Partial_Sums s) 
    . (k 
    + 1))) 
    - (s 
    .  
    0 )) by 
    Def1
    
        .= (((s
    . ((k 
    + 1) 
    + 1)) 
    + (( 
    Partial_Sums s) 
    . (k 
    + 1))) 
    - (s1 
    . k)) by 
    A1
    
        .= ((s
    . ((k 
    + 1) 
    + 1)) 
    + ((( 
    Partial_Sums s) 
    . (k 
    + 1)) 
    - (s1 
    . k))) 
    
        .= ((s
    . ((k 
    + 1) 
    + 1)) 
    + (((( 
    Partial_Sums s) 
    ^\ 1) 
    . k) 
    - (s1 
    . k))) by 
    NAT_1:def 3
    
        .= ((s
    . ((k 
    + 1) 
    + 1)) 
    + (((( 
    Partial_Sums s) 
    ^\ 1) 
    - s1) 
    . k)) by 
    RFUNCT_2: 1
    
        .= (((((
    Partial_Sums s) 
    ^\ 1) 
    - s1) 
    . k) 
    + ((s 
    ^\ 1) 
    . (k 
    + 1))) by 
    NAT_1:def 3;
    
      end;
    
      ((((
    Partial_Sums s) 
    ^\ 1) 
    - s1) 
    .  
    0 ) 
    = (((( 
    Partial_Sums s) 
    ^\ 1) 
    .  
    0 ) 
    - (s1 
    .  
    0 )) by 
    RFUNCT_2: 1
    
      .= ((((
    Partial_Sums s) 
    ^\ 1) 
    .  
    0 ) 
    - (s 
    .  
    0 )) by 
    A1
    
      .= (((
    Partial_Sums s) 
    . ( 
    0  
    + 1)) 
    - (s 
    .  
    0 )) by 
    NAT_1:def 3
    
      .= ((((
    Partial_Sums s) 
    .  
    0 ) 
    + (s 
    . ( 
    0  
    + 1))) 
    - (s 
    .  
    0 )) by 
    Def1
    
      .= (((s
    . ( 
    0  
    + 1)) 
    + (s 
    .  
    0 )) 
    - (s 
    .  
    0 )) by 
    Def1
    
      .= ((s
    ^\ 1) 
    .  
    0 ) by 
    NAT_1:def 3;
    
      hence thesis by
    A2,
    Def1;
    
    end;
    
    theorem :: 
    
    SERIES_1:12
    
    
    
    
    
    Th12: s is 
    summable implies for n holds (s 
    ^\ n) is 
    summable
    
    proof
    
      defpred
    
    X[
    Nat] means (s
    ^\ $1) is 
    summable;
    
      
    
      
    
    A1: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set s1 = (
    seq_const ((s 
    ^\ n) 
    .  
    0 )); 
    
        for k holds (s1
    . k) 
    = ((s 
    ^\ n) 
    .  
    0 ) by 
    SEQ_1: 57;
    
        then
    
        
    
    A2: ( 
    Partial_Sums ((s 
    ^\ n) 
    ^\ 1)) 
    = ((( 
    Partial_Sums (s 
    ^\ n)) 
    ^\ 1) 
    - s1) by 
    Th11;
    
        assume (s
    ^\ n) is 
    summable;
    
        then (
    Partial_Sums (s 
    ^\ n)) is 
    convergent;
    
        then (s
    ^\ (n 
    + 1)) 
    = ((s 
    ^\ n) 
    ^\ 1) & ( 
    Partial_Sums ((s 
    ^\ n) 
    ^\ 1)) is 
    convergent by 
    A2,
    NAT_1: 48;
    
        hence thesis by
    Def2;
    
      end;
    
      assume s is
    summable;
    
      then
    
      
    
    A3: 
    X[
    0 ] by 
    NAT_1: 47;
    
      thus for n holds
    X[n] from
    NAT_1:sch 2(
    A3,
    A1);
    
    end;
    
    theorem :: 
    
    SERIES_1:13
    
    
    
    
    
    Th13: (ex n st (s 
    ^\ n) is 
    summable) implies s is
    summable
    
    proof
    
      given n such that
    
      
    
    A1: (s 
    ^\ n) is 
    summable;
    
      reconsider PS = ((
    Partial_Sums s) 
    . n) as 
    Element of 
    REAL ; 
    
      set s1 = (
    seq_const (( 
    Partial_Sums s) 
    . n)); 
    
      for k holds (((
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    . k) 
    = ((( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . k) 
    + (s1 
    . k)) 
    
      proof
    
        defpred
    
    X[
    Nat] means (((
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    . $1) 
    = ((( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . $1) 
    + (s1 
    . $1)); 
    
        
    
        
    
    A2: (( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    .  
    0 ) 
    = ((s 
    ^\ (n 
    + 1)) 
    .  
    0 ) by 
    Def1
    
        .= (s
    . ( 
    0  
    + (n 
    + 1))) by 
    NAT_1:def 3
    
        .= (s
    . (n 
    + 1)); 
    
        
    
        
    
    A3: for k st 
    X[k] holds
    X[(k
    + 1)] 
    
        proof
    
          let k;
    
          assume
    
          
    
    A4: ((( 
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    . k) 
    = ((( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . k) 
    + (s1 
    . k)); 
    
          (((
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . (k 
    + 1)) 
    + (s1 
    . (k 
    + 1))) 
    = ((s1 
    . (k 
    + 1)) 
    + ((( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . k) 
    + ((s 
    ^\ (n 
    + 1)) 
    . (k 
    + 1)))) by 
    Def1
    
          .= (((s1
    . (k 
    + 1)) 
    + (( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . k)) 
    + ((s 
    ^\ (n 
    + 1)) 
    . (k 
    + 1))) 
    
          .= ((((
    Partial_Sums s) 
    . n) 
    + (( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    . k)) 
    + ((s 
    ^\ (n 
    + 1)) 
    . (k 
    + 1))) by 
    SEQ_1: 57
    
          .= ((((
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    . k) 
    + ((s 
    ^\ (n 
    + 1)) 
    . (k 
    + 1))) by 
    A4,
    SEQ_1: 57
    
          .= (((
    Partial_Sums s) 
    . (k 
    + (n 
    + 1))) 
    + ((s 
    ^\ (n 
    + 1)) 
    . (k 
    + 1))) by 
    NAT_1:def 3
    
          .= (((
    Partial_Sums s) 
    . (k 
    + (n 
    + 1))) 
    + (s 
    . ((k 
    + 1) 
    + (n 
    + 1)))) by 
    NAT_1:def 3
    
          .= ((
    Partial_Sums s) 
    . ((k 
    + (n 
    + 1)) 
    + 1)) by 
    Def1
    
          .= ((
    Partial_Sums s) 
    . ((k 
    + 1) 
    + (n 
    + 1))) 
    
          .= (((
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    . (k 
    + 1)) by 
    NAT_1:def 3;
    
          hence thesis;
    
        end;
    
        (((
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    .  
    0 ) 
    = (( 
    Partial_Sums s) 
    . ( 
    0  
    + (n 
    + 1))) by 
    NAT_1:def 3
    
        .= ((s
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s) 
    . n)) by 
    Def1
    
        .= (((
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    .  
    0 ) 
    + (s1 
    .  
    0 )) by 
    A2,
    SEQ_1: 57;
    
        then
    
        
    
    A5: 
    X[
    0 ]; 
    
        thus for k holds
    X[k] from
    NAT_1:sch 2(
    A5,
    A3);
    
      end;
    
      
    
      then
    
      
    
    A6: (( 
    Partial_Sums s) 
    ^\ (n 
    + 1)) 
    = (( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    + s1) by 
    SEQ_1: 7
    
      .= ((
    Partial_Sums ((s 
    ^\ n) 
    ^\ 1)) 
    + s1) by 
    NAT_1: 48;
    
      ((s
    ^\ n) 
    ^\ 1) is 
    summable by 
    A1,
    Th12;
    
      then (
    Partial_Sums ((s 
    ^\ n) 
    ^\ 1)) is 
    convergent;
    
      then ((
    Partial_Sums s) 
    ^\ (n 
    + 1)) is 
    convergent by 
    A6;
    
      then (
    Partial_Sums s) is 
    convergent by 
    SEQ_4: 21;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:14
    
    
    
    
    
    Th14: (for n holds (s1 
    . n) 
    <= (s2 
    . n)) implies for n holds (( 
    Partial_Sums s1) 
    . n) 
    <= (( 
    Partial_Sums s2) 
    . n) 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s1) 
    . $1) 
    <= (( 
    Partial_Sums s2) 
    . $1); 
    
      assume
    
      
    
    A1: for n holds (s1 
    . n) 
    <= (s2 
    . n); 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n such that
    
        
    
    A3: (( 
    Partial_Sums s1) 
    . n) 
    <= (( 
    Partial_Sums s2) 
    . n); 
    
        
    
        
    
    A4: (s1 
    . (n 
    + 1)) 
    <= (s2 
    . (n 
    + 1)) by 
    A1;
    
        ((
    Partial_Sums s1) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) & (( 
    Partial_Sums s2) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s2) 
    . n) 
    + (s2 
    . (n 
    + 1))) by 
    Def1;
    
        hence thesis by
    A3,
    A4,
    XREAL_1: 7;
    
      end;
    
      ((
    Partial_Sums s2) 
    .  
    0 ) 
    = (s2 
    .  
    0 ) & (( 
    Partial_Sums s1) 
    .  
    0 ) 
    = (s1 
    .  
    0 ) by 
    Def1;
    
      then
    
      
    
    A5: 
    X[
    0 ] by 
    A1;
    
      thus for n holds
    X[n] from
    NAT_1:sch 2(
    A5,
    A2);
    
    end;
    
    theorem :: 
    
    SERIES_1:15
    
    s is
    summable implies for n holds ( 
    Sum s) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + ( 
    Sum (s 
    ^\ (n 
    + 1)))) 
    
    proof
    
      defpred
    
    X[
    Nat] means (
    Sum s) 
    = ((( 
    Partial_Sums s) 
    . $1) 
    + ( 
    Sum (s 
    ^\ ($1 
    + 1)))); 
    
      assume
    
      
    
    A1: s is 
    summable;
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: ( 
    Sum s) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + ( 
    Sum (s 
    ^\ (n 
    + 1)))); 
    
        set s1 = (
    seq_const ((s 
    ^\ (n 
    + 1)) 
    .  
    0 )); 
    
        for k holds (s1
    . k) 
    = ((s 
    ^\ (n 
    + 1)) 
    .  
    0 ) by 
    SEQ_1: 57;
    
        then
    
        
    
    A4: ( 
    Partial_Sums ((s 
    ^\ (n 
    + 1)) 
    ^\ 1)) 
    = ((( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    ^\ 1) 
    - s1) by 
    Th11;
    
        (s
    ^\ (n 
    + 1)) is 
    summable by 
    A1,
    Th12;
    
        then
    
        
    
    A5: ( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) is 
    convergent;
    
        (
    lim ( 
    Partial_Sums (s 
    ^\ ((n 
    + 1) 
    + 1)))) 
    = ( 
    lim ( 
    Partial_Sums ((s 
    ^\ (n 
    + 1)) 
    ^\ 1))) by 
    NAT_1: 48
    
        .= ((
    lim (( 
    Partial_Sums (s 
    ^\ (n 
    + 1))) 
    ^\ 1)) 
    - ( 
    lim s1)) by 
    A5,
    A4,
    SEQ_2: 12
    
        .= ((
    lim ( 
    Partial_Sums (s 
    ^\ (n 
    + 1)))) 
    - ( 
    lim s1)) by 
    A5,
    SEQ_4: 20
    
        .= ((
    Sum (s 
    ^\ (n 
    + 1))) 
    - (s1 
    .  
    0 )) by 
    SEQ_4: 26
    
        .= ((
    Sum (s 
    ^\ (n 
    + 1))) 
    - ((s 
    ^\ (n 
    + 1)) 
    .  
    0 )) by 
    SEQ_1: 57;
    
        
    
        then (
    Sum (s 
    ^\ ((n 
    + 1) 
    + 1))) 
    = (( 
    Sum s) 
    - ((( 
    Partial_Sums s) 
    . n) 
    + ((s 
    ^\ (n 
    + 1)) 
    .  
    0 ))) by 
    A3
    
        .= ((
    Sum s) 
    - ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . ( 
    0  
    + (n 
    + 1))))) by 
    NAT_1:def 3
    
        .= ((
    Sum s) 
    - (( 
    Partial_Sums s) 
    . (n 
    + 1))) by 
    Def1;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A6: 
    X[
    0 ] 
    
      proof
    
        set s1 = (
    seq_const (s 
    .  
    0 )); 
    
        
    
        
    
    A7: ( 
    Partial_Sums s) is 
    convergent by 
    A1;
    
        for k holds (s1
    . k) 
    = (s 
    .  
    0 ) by 
    SEQ_1: 57;
    
        then (
    Partial_Sums (s 
    ^\ 1)) 
    = ((( 
    Partial_Sums s) 
    ^\ 1) 
    - s1) by 
    Th11;
    
        
    
        then (
    lim ( 
    Partial_Sums (s 
    ^\ 1))) 
    = (( 
    lim (( 
    Partial_Sums s) 
    ^\ 1)) 
    - ( 
    lim s1)) by 
    A7,
    SEQ_2: 12
    
        .= ((
    lim ( 
    Partial_Sums s)) 
    - ( 
    lim s1)) by 
    A7,
    SEQ_4: 20
    
        .= ((
    Sum s) 
    - (s1 
    .  
    0 )) by 
    SEQ_4: 26
    
        .= ((
    Sum s) 
    - (s 
    .  
    0 )) by 
    SEQ_1: 57;
    
        then (
    Sum s) 
    = (( 
    Sum (s 
    ^\ 1)) 
    + ( 
    - ( 
    - (s 
    .  
    0 )))); 
    
        hence thesis by
    Def1;
    
      end;
    
      thus for n holds
    X[n] from
    NAT_1:sch 2(
    A6,
    A2);
    
    end;
    
    theorem :: 
    
    SERIES_1:16
    
    
    
    
    
    Th16: (for n holds 
    0  
    <= (s 
    . n)) implies ( 
    Partial_Sums s) is 
    non-decreasing
    
    proof
    
      assume
    
      
    
    A1: for n holds 
    0  
    <= (s 
    . n); 
    
      now
    
        let n;
    
        
    0  
    <= (s 
    . (n 
    + 1)) by 
    A1;
    
        then (
    0  
    + (( 
    Partial_Sums s) 
    . n)) 
    <= ((s 
    . (n 
    + 1)) 
    + (( 
    Partial_Sums s) 
    . n)) by 
    XREAL_1: 6;
    
        hence ((
    Partial_Sums s) 
    . n) 
    <= (( 
    Partial_Sums s) 
    . (n 
    + 1)) by 
    Def1;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:17
    
    
    
    
    
    Th17: (for n holds 
    0  
    <= (s 
    . n)) implies (( 
    Partial_Sums s) is 
    bounded_above iff s is 
    summable)
    
    proof
    
      assume for n holds
    0  
    <= (s 
    . n); 
    
      then (
    Partial_Sums s) is 
    non-decreasing by 
    Th16;
    
      hence (
    Partial_Sums s) is 
    bounded_above implies s is 
    summable;
    
      assume s is
    summable;
    
      then (
    Partial_Sums s) is 
    convergent;
    
      then (
    Partial_Sums s) is 
    bounded;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:18
    
    s is
    summable & (for n holds 
    0  
    <= (s 
    . n)) implies 
    0  
    <= ( 
    Sum s) 
    
    proof
    
      assume that
    
      
    
    A1: s is 
    summable and 
    
      
    
    A2: for n holds 
    0  
    <= (s 
    . n); 
    
      
    
    A3: 
    
      now
    
        let n;
    
        
    
        
    
    A4: (( 
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1;
    
        ((
    Partial_Sums s) 
    .  
    0 ) 
    <= (( 
    Partial_Sums s) 
    . n) & 
    0  
    <= (s 
    .  
    0 ) by 
    A2,
    Th16,
    SEQM_3: 11;
    
        hence
    0  
    <= (( 
    Partial_Sums s) 
    . n) by 
    A4;
    
      end;
    
      (
    Partial_Sums s) is 
    convergent by 
    A1;
    
      hence thesis by
    A3,
    SEQ_2: 17;
    
    end;
    
    theorem :: 
    
    SERIES_1:19
    
    
    
    
    
    Th19: (for n holds 
    0  
    <= (s2 
    . n)) & s1 is 
    summable & (ex m st for n st m 
    <= n holds (s2 
    . n) 
    <= (s1 
    . n)) implies s2 is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds 
    0  
    <= (s2 
    . n) and 
    
      
    
    A2: s1 is 
    summable;
    
      given m such that
    
      
    
    A3: for n st m 
    <= n holds (s2 
    . n) 
    <= (s1 
    . n); 
    
      (s1
    ^\ m) is 
    summable by 
    A2,
    Th12;
    
      then (
    Partial_Sums (s1 
    ^\ m)) is 
    bounded_above;
    
      then
    
      consider r be
    Real such that 
    
      
    
    A4: for n holds (( 
    Partial_Sums (s1 
    ^\ m)) 
    . n) 
    < r by 
    SEQ_2:def 3;
    
      
    
    A5: 
    
      now
    
        let n;
    
        (s2
    . (n 
    + m)) 
    <= (s1 
    . (n 
    + m)) by 
    A3,
    NAT_1: 12;
    
        then ((s2
    ^\ m) 
    . n) 
    <= (s1 
    . (n 
    + m)) by 
    NAT_1:def 3;
    
        hence ((s2
    ^\ m) 
    . n) 
    <= ((s1 
    ^\ m) 
    . n) by 
    NAT_1:def 3;
    
      end;
    
      now
    
        let n;
    
        ((
    Partial_Sums (s2 
    ^\ m)) 
    . n) 
    <= (( 
    Partial_Sums (s1 
    ^\ m)) 
    . n) by 
    A5,
    Th14;
    
        hence ((
    Partial_Sums (s2 
    ^\ m)) 
    . n) 
    < r by 
    A4,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A6: ( 
    Partial_Sums (s2 
    ^\ m)) is 
    bounded_above by 
    SEQ_2:def 3;
    
      now
    
        let n;
    
        ((s2
    ^\ m) 
    . n) 
    = (s2 
    . (n 
    + m)) by 
    NAT_1:def 3;
    
        hence
    0  
    <= ((s2 
    ^\ m) 
    . n) by 
    A1;
    
      end;
    
      then (s2
    ^\ m) is 
    summable by 
    A6,
    Th17;
    
      hence thesis by
    Th13;
    
    end;
    
    theorem :: 
    
    SERIES_1:20
    
    (for n holds
    0  
    <= (s1 
    . n) & (s1 
    . n) 
    <= (s2 
    . n)) & s2 is 
    summable implies s1 is 
    summable & ( 
    Sum s1) 
    <= ( 
    Sum s2) 
    
    proof
    
      assume that
    
      
    
    A1: for n holds 
    0  
    <= (s1 
    . n) & (s1 
    . n) 
    <= (s2 
    . n) and 
    
      
    
    A2: s2 is 
    summable;
    
      for n holds
    0  
    <= n implies (s1 
    . n) 
    <= (s2 
    . n) by 
    A1;
    
      hence s1 is
    summable by 
    A1,
    A2,
    Th19;
    
      then
    
      
    
    A3: ( 
    Partial_Sums s1) is 
    convergent;
    
      (
    Partial_Sums s2) is 
    convergent & for n holds (( 
    Partial_Sums s1) 
    . n) 
    <= (( 
    Partial_Sums s2) 
    . n) by 
    A1,
    A2,
    Th14;
    
      hence thesis by
    A3,
    SEQ_2: 18;
    
    end;
    
    theorem :: 
    
    SERIES_1:21
    
    
    
    
    
    Th21: s is 
    summable iff for r st 
    0  
    < r holds ex n st for m st n 
    <= m holds 
    |.(((
    Partial_Sums s) 
    . m) 
    - (( 
    Partial_Sums s) 
    . n)).| 
    < r by 
    SEQ_4: 41;
    
    ::$Notion-Name
    
    theorem :: 
    
    SERIES_1:22
    
    
    
    
    
    Th22: a 
    <> 1 implies (( 
    Partial_Sums (a 
    GeoSeq )) 
    . n) 
    = ((1 
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums (a 
    GeoSeq )) 
    . $1) 
    = ((1 
    - (a 
    to_power ($1 
    + 1))) 
    / (1 
    - a)); 
    
      assume a
    <> 1; 
    
      then
    
      
    
    A1: (1 
    - a) 
    <>  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume ((
    Partial_Sums (a 
    GeoSeq )) 
    . n) 
    = ((1 
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)); 
    
        
    
        hence ((
    Partial_Sums (a 
    GeoSeq )) 
    . (n 
    + 1)) 
    = (((1 
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    + ((a 
    GeoSeq ) 
    . (n 
    + 1))) by 
    Def1
    
        .= (((1
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    + ((a 
    to_power (n 
    + 1)) 
    * 1)) by 
    PREPOWER:def 1
    
        .= (((1
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    + ((a 
    to_power (n 
    + 1)) 
    * ((1 
    - a) 
    / (1 
    - a)))) by 
    A1,
    XCMPLX_1: 60
    
        .= (((1
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    + (((a 
    to_power (n 
    + 1)) 
    * (1 
    - a)) 
    / (1 
    - a))) 
    
        .= (((1
    - (a 
    to_power (n 
    + 1))) 
    + ((a 
    to_power (n 
    + 1)) 
    - ((a 
    |^ (n 
    + 1)) 
    * a))) 
    / (1 
    - a)) 
    
        .= (((1
    - (a 
    to_power (n 
    + 1))) 
    + ((a 
    to_power (n 
    + 1)) 
    - (a 
    |^ ((n 
    + 1) 
    + 1)))) 
    / (1 
    - a)) by 
    NEWTON: 6
    
        .= ((1
    - (a 
    to_power ((n 
    + 1) 
    + 1))) 
    / (1 
    - a)); 
    
      end;
    
      ((
    Partial_Sums (a 
    GeoSeq )) 
    .  
    0 ) 
    = ((a 
    GeoSeq ) 
    .  
    0 ) by 
    Def1
    
      .= 1 by
    PREPOWER: 3
    
      .= ((1
    - a) 
    / (1 
    - a)) by 
    A1,
    XCMPLX_1: 60
    
      .= ((1
    - (a 
    to_power ( 
    0  
    + 1))) 
    / (1 
    - a)); 
    
      then
    
      
    
    A3: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A3,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:23
    
    a
    <> 1 & (for n holds (s 
    . (n 
    + 1)) 
    = (a 
    * (s 
    . n))) implies for n holds (( 
    Partial_Sums s) 
    . n) 
    = (((s 
    .  
    0 ) 
    * (1 
    - (a 
    to_power (n 
    + 1)))) 
    / (1 
    - a)) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <> 1 and 
    
      
    
    A2: for n holds (s 
    . (n 
    + 1)) 
    = (a 
    * (s 
    . n)); 
    
      defpred
    
    X[
    Nat] means (s
    . $1) 
    = ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . $1)); 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume (s
    . n) 
    = ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . n)); 
    
        
    
        then (s
    . (n 
    + 1)) 
    = (a 
    * ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . n))) by 
    A2
    
        .= ((s
    .  
    0 ) 
    * (((a 
    GeoSeq ) 
    . n) 
    * a)) 
    
        .= ((s
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . (n 
    + 1))) by 
    PREPOWER: 3;
    
        hence thesis;
    
      end;
    
      ((a
    GeoSeq ) 
    .  
    0 ) 
    = 1 by 
    PREPOWER: 3;
    
      then
    
      
    
    A4: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A3);
    
      then s
    = ((s 
    .  
    0 ) 
    (#) (a 
    GeoSeq )) by 
    SEQ_1: 9;
    
      then
    
      
    
    A5: ( 
    Partial_Sums s) 
    = ((s 
    .  
    0 ) 
    (#) ( 
    Partial_Sums (a 
    GeoSeq ))) by 
    Th9;
    
      now
    
        let n;
    
        
    
        thus ((
    Partial_Sums s) 
    . n) 
    = ((s 
    .  
    0 ) 
    * (( 
    Partial_Sums (a 
    GeoSeq )) 
    . n)) by 
    A5,
    SEQ_1: 9
    
        .= ((s
    .  
    0 ) 
    * ((1 
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a))) by 
    A1,
    Th22
    
        .= (((s
    .  
    0 ) 
    * (1 
    - (a 
    to_power (n 
    + 1)))) 
    / (1 
    - a)); 
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:24
    
    
    
    
    
    Th24: 
    |.a.|
    < 1 implies (a 
    GeoSeq ) is 
    summable & ( 
    Sum (a 
    GeoSeq )) 
    = (1 
    / (1 
    - a)) 
    
    proof
    
      deffunc
    
    U(
    Nat) = (a
    to_power ($1 
    + 1)); 
    
      consider s such that
    
      
    
    A1: for n holds (s 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      assume
    
      
    
    A2: 
    |.a.|
    < 1; 
    
      then
    
      
    
    A3: s is 
    convergent & ( 
    lim s) 
    =  
    0 by 
    A1,
    Th3;
    
      
    
    A4: 
    
      now
    
        a
    < 1 by 
    A2,
    SEQ_2: 1;
    
        then
    
        
    
    A5: (1 
    - a) 
    >  
    0 by 
    XREAL_1: 50;
    
        let r be
    Real;
    
        assume r
    >  
    0 ; 
    
        then (r
    * (1 
    - a)) 
    > ( 
    0  
    * r) by 
    A5;
    
        then
    
        consider m such that
    
        
    
    A6: for n st n 
    >= m holds 
    |.((s
    . n) 
    -  
    0 ).| 
    < (r 
    * (1 
    - a)) by 
    A3,
    SEQ_2:def 7;
    
        take m;
    
        let n;
    
        assume n
    >= m; 
    
        then
    |.((s
    . n) 
    -  
    0 ).| 
    < (r 
    * (1 
    - a)) by 
    A6;
    
        then
    |.((a
    to_power (n 
    + 1)) 
    -  
    0 ).| 
    < (r 
    * (1 
    - a)) by 
    A1;
    
        then
    
        
    
    A7: ( 
    |.(a
    to_power (n 
    + 1)).| 
    / (1 
    - a)) 
    < ((r 
    * (1 
    - a)) 
    / (1 
    - a)) by 
    A5,
    XREAL_1: 74;
    
        a
    <> 1 by 
    A2,
    SEQ_2: 1;
    
        
    
        then
    
        
    
    A8: 
    |.(((
    Partial_Sums (a 
    GeoSeq )) 
    . n) 
    - (1 
    / (1 
    - a))).| 
    =  
    |.(((1
    - (a 
    to_power (n 
    + 1))) 
    / (1 
    - a)) 
    - (1 
    / (1 
    - a))).| by 
    Th22
    
        .=
    |.(((1
    + ( 
    - (a 
    to_power (n 
    + 1)))) 
    - 1) 
    / (1 
    - a)).| 
    
        .=
    |.(
    - ((a 
    to_power (n 
    + 1)) 
    / (1 
    - a))).| 
    
        .=
    |.((a
    to_power (n 
    + 1)) 
    / (1 
    - a)).| by 
    COMPLEX1: 52
    
        .= (
    |.(a
    to_power (n 
    + 1)).| 
    /  
    |.(1
    - a).|) by 
    COMPLEX1: 67
    
        .= (
    |.(a
    to_power (n 
    + 1)).| 
    / (1 
    - a)) by 
    A5,
    ABSVALUE:def 1;
    
        (1
    - a) 
    <>  
    0 by 
    A2,
    SEQ_2: 1;
    
        hence
    |.(((
    Partial_Sums (a 
    GeoSeq )) 
    . n) 
    - (1 
    / (1 
    - a))).| 
    < r by 
    A8,
    A7,
    XCMPLX_1: 89;
    
      end;
    
      then
    
      
    
    A9: ( 
    Partial_Sums (a 
    GeoSeq )) is 
    convergent by 
    SEQ_2:def 6;
    
      hence (a
    GeoSeq ) is 
    summable;
    
      thus thesis by
    A4,
    A9,
    SEQ_2:def 7;
    
    end;
    
    theorem :: 
    
    SERIES_1:25
    
    
    |.a.|
    < 1 & (for n holds (s 
    . (n 
    + 1)) 
    = (a 
    * (s 
    . n))) implies s is 
    summable & ( 
    Sum s) 
    = ((s 
    .  
    0 ) 
    / (1 
    - a)) 
    
    proof
    
      assume that
    
      
    
    A1: 
    |.a.|
    < 1 and 
    
      
    
    A2: for n holds (s 
    . (n 
    + 1)) 
    = (a 
    * (s 
    . n)); 
    
      defpred
    
    X[
    Nat] means (s
    . $1) 
    = ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . $1)); 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume (s
    . n) 
    = ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . n)); 
    
        
    
        then (s
    . (n 
    + 1)) 
    = (a 
    * ((s 
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . n))) by 
    A2
    
        .= ((s
    .  
    0 ) 
    * (((a 
    GeoSeq ) 
    . n) 
    * a)) 
    
        .= ((s
    .  
    0 ) 
    * ((a 
    GeoSeq ) 
    . (n 
    + 1))) by 
    PREPOWER: 3;
    
        hence thesis;
    
      end;
    
      ((a
    GeoSeq ) 
    .  
    0 ) 
    = 1 by 
    PREPOWER: 3;
    
      then
    
      
    
    A4: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A3);
    
      then s
    = ((s 
    .  
    0 ) 
    (#) (a 
    GeoSeq )) by 
    SEQ_1: 9;
    
      then
    
      
    
    A5: ( 
    Partial_Sums s) 
    = ((s 
    .  
    0 ) 
    (#) ( 
    Partial_Sums (a 
    GeoSeq ))) by 
    Th9;
    
      (a
    GeoSeq ) is 
    summable by 
    A1,
    Th24;
    
      then
    
      
    
    A6: ( 
    Partial_Sums (a 
    GeoSeq )) is 
    convergent;
    
      then (
    Partial_Sums s) is 
    convergent by 
    A5;
    
      hence s is
    summable;
    
      (
    Sum (a 
    GeoSeq )) 
    = (1 
    / (1 
    - a)) by 
    A1,
    Th24;
    
      
    
      then (
    lim ( 
    Partial_Sums s)) 
    = ((s 
    .  
    0 ) 
    * (1 
    / (1 
    - a))) by 
    A5,
    A6,
    SEQ_2: 8
    
      .= (((s
    .  
    0 ) 
    * 1) 
    / (1 
    - a)) 
    
      .= ((s
    .  
    0 ) 
    / (1 
    - a)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:26
    
    
    
    
    
    Th26: (for n holds (s 
    . n) 
    >  
    0 & (s1 
    . n) 
    = ((s 
    . (n 
    + 1)) 
    / (s 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    < 1 implies s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 & (s1 
    . n) 
    = ((s 
    . (n 
    + 1)) 
    / (s 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent and 
    
      
    
    A3: ( 
    lim s1) 
    < 1; 
    
      set r = ((1
    - ( 
    lim s1)) 
    / 2); 
    
      (
    0  
    + ( 
    lim s1)) 
    < 1 by 
    A3;
    
      then
    0  
    < (1 
    - ( 
    lim s1)) by 
    XREAL_1: 20;
    
      then r
    >  
    0 ; 
    
      then
    
      consider m such that
    
      
    
    A4: for n st m 
    <= n holds 
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < r by 
    A2,
    SEQ_2:def 7;
    
      set s2 = (((s
    . m) 
    * ((1 
    - r) 
    to_power ( 
    - m))) 
    (#) ((1 
    - r) 
    GeoSeq )); 
    
      defpred
    
    X[
    Nat] means (s
    . (m 
    + $1)) 
    <= (s2 
    . (m 
    + $1)); 
    
      
    
    A5: 
    
      now
    
        let n;
    
        (s
    . n) 
    >  
    0 & (s 
    . (n 
    + 1)) 
    >  
    0 by 
    A1;
    
        then ((s
    . (n 
    + 1)) 
    / (s 
    . n)) 
    >  
    0 ; 
    
        hence (s1
    . n) 
    >=  
    0 by 
    A1;
    
      end;
    
      then
    
      
    
    A6: ( 
    lim s1) 
    >=  
    0 by 
    A2,
    PREPOWER: 1;
    
      then (1
    + ( 
    - ( 
    lim s1))) 
    < (1 
    + 1) by 
    XREAL_1: 6;
    
      then
    
      
    
    A7: ((1 
    - ( 
    lim s1)) 
    / 2) 
    < (2 
    / 2) by 
    XREAL_1: 74;
    
      
    
      
    
    A8: (r 
    + ( 
    lim s1)) 
    = (1 
    - r); 
    
      
    
      
    
    A9: for k holds 
    X[k] implies
    X[(k
    + 1)] 
    
      proof
    
        set X = ((s
    . m) 
    * ((1 
    - r) 
    to_power ( 
    - m))); 
    
        let k such that
    
        
    
    A10: (s 
    . (m 
    + k)) 
    <= (s2 
    . (m 
    + k)); 
    
        
    |.((s1
    . (m 
    + k)) 
    - ( 
    lim s1)).| 
    < r by 
    A4,
    NAT_1: 11;
    
        then ((s1
    . (m 
    + k)) 
    - ( 
    lim s1)) 
    < r by 
    SEQ_2: 1;
    
        then
    
        
    
    A11: (s1 
    . (m 
    + k)) 
    <= (1 
    - r) by 
    A8,
    XREAL_1: 19;
    
        (s2
    . (m 
    + k)) 
    >=  
    0 by 
    A1,
    A10;
    
        then
    
        
    
    A12: ((s1 
    . (m 
    + k)) 
    * (s2 
    . (m 
    + k))) 
    <= ((1 
    - r) 
    * (s2 
    . (m 
    + k))) by 
    A11,
    XREAL_1: 64;
    
        (s
    . (m 
    + k)) 
    <>  
    0 by 
    A1;
    
        
    
        then
    
        
    
    A13: (s 
    . (m 
    + (k 
    + 1))) 
    = (((s 
    . ((m 
    + k) 
    + 1)) 
    / (s 
    . (m 
    + k))) 
    * (s 
    . (m 
    + k))) by 
    XCMPLX_1: 87
    
        .= ((s1
    . (m 
    + k)) 
    * (s 
    . (m 
    + k))) by 
    A1;
    
        (s1
    . (m 
    + k)) 
    >=  
    0 by 
    A5;
    
        then
    
        
    
    A14: (s 
    . (m 
    + (k 
    + 1))) 
    <= ((s1 
    . (m 
    + k)) 
    * (s2 
    . (m 
    + k))) by 
    A10,
    A13,
    XREAL_1: 64;
    
        ((1
    - r) 
    * (s2 
    . (m 
    + k))) 
    = ((1 
    - r) 
    * (X 
    * (((1 
    - r) 
    GeoSeq ) 
    . (m 
    + k)))) by 
    SEQ_1: 9
    
        .= (X
    * ((((1 
    - r) 
    GeoSeq ) 
    . (m 
    + k)) 
    * (1 
    - r))) 
    
        .= (X
    * (((1 
    - r) 
    GeoSeq ) 
    . ((m 
    + k) 
    + 1))) by 
    PREPOWER: 3
    
        .= (s2
    . (m 
    + (k 
    + 1))) by 
    SEQ_1: 9;
    
        hence thesis by
    A14,
    A12,
    XXREAL_0: 2;
    
      end;
    
      (s2
    . (m 
    +  
    0 )) 
    = (((s 
    . m) 
    * ((1 
    - r) 
    to_power ( 
    - m))) 
    * (((1 
    - r) 
    GeoSeq ) 
    . m)) by 
    SEQ_1: 9
    
      .= (((s
    . m) 
    * ((1 
    - r) 
    to_power ( 
    - m))) 
    * ((1 
    - r) 
    |^ m)) by 
    PREPOWER:def 1
    
      .= ((s
    . m) 
    * (((1 
    - r) 
    to_power ( 
    - m)) 
    * ((1 
    - r) 
    to_power m))) 
    
      .= ((s
    . m) 
    * ((1 
    - r) 
    to_power (( 
    - m) 
    + m))) by 
    A7,
    POWER: 27,
    XREAL_1: 50
    
      .= ((s
    . m) 
    * 1) by 
    POWER: 24
    
      .= (s
    . (m 
    +  
    0 )); 
    
      then
    
      
    
    A15: 
    X[
    0 ]; 
    
      
    
      
    
    A16: for k holds 
    X[k] from
    NAT_1:sch 2(
    A15,
    A9);
    
      
    
    A17: 
    
      now
    
        let n;
    
        assume m
    <= n; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    A18: n 
    = (m 
    + k) by 
    NAT_1: 10;
    
        reconsider k as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        n
    = (m 
    + k) by 
    A18;
    
        hence (s
    . n) 
    <= (s2 
    . n) by 
    A16;
    
      end;
    
      (1
    - ( 
    lim s1)) 
    <= (1 
    -  
    0 ) by 
    A6,
    XREAL_1: 6;
    
      then (1
    - ( 
    lim s1)) 
    < (2 
    * 2) by 
    XXREAL_0: 2;
    
      then r
    < ((2 
    * 2) 
    / 2) by 
    XREAL_1: 74;
    
      then r
    < (1 
    + 1); 
    
      then (r
    - 1) 
    < 1 by 
    XREAL_1: 19;
    
      then
    
      
    
    A19: ( 
    - (r 
    - 1)) 
    > ( 
    - 1) by 
    XREAL_1: 24;
    
      (1
    - ( 
    lim s1)) 
    >  
    0 by 
    A3,
    XREAL_1: 50;
    
      then r
    >  
    0 ; 
    
      then (1
    - r) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      then
    |.(1
    - r).| 
    < 1 by 
    A19,
    SEQ_2: 1;
    
      then ((1
    - r) 
    GeoSeq ) is 
    summable by 
    Th24;
    
      then
    
      
    
    A20: s2 is 
    summable by 
    Th10;
    
      for n holds
    0  
    <= (s 
    . n) by 
    A1;
    
      hence thesis by
    A20,
    A17,
    Th19;
    
    end;
    
    theorem :: 
    
    SERIES_1:27
    
    (for n holds (s
    . n) 
    >  
    0 ) & (ex m st for n st n 
    >= m holds ((s 
    . (n 
    + 1)) 
    / (s 
    . n)) 
    >= 1) implies not s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 and 
    
      
    
    A2: ex m st for n st n 
    >= m holds ((s 
    . (n 
    + 1)) 
    / (s 
    . n)) 
    >= 1; 
    
      consider m such that
    
      
    
    A3: for n st n 
    >= m holds ((s 
    . (n 
    + 1)) 
    / (s 
    . n)) 
    >= 1 by 
    A2;
    
      defpred
    
    X[
    Nat] means (s
    . (m 
    + $1)) 
    >= (s 
    . m); 
    
      
    
      
    
    A4: for k st 
    X[k] holds
    X[(k
    + 1)] 
    
      proof
    
        let k such that
    
        
    
    A5: (s 
    . (m 
    + k)) 
    >= (s 
    . m); 
    
        (s
    . (m 
    + k)) 
    >  
    0 & ((s 
    . ((m 
    + k) 
    + 1)) 
    / (s 
    . (m 
    + k))) 
    >= 1 by 
    A1,
    A3,
    NAT_1: 11;
    
        then (s
    . ((m 
    + k) 
    + 1)) 
    >= (s 
    . (m 
    + k)) by 
    XREAL_1: 191;
    
        hence thesis by
    A5,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A6: 
    X[
    0 ]; 
    
      
    
      
    
    A7: for k holds 
    X[k] from
    NAT_1:sch 2(
    A6,
    A4);
    
      
    
      
    
    A8: for k holds ex n st n 
    >= k & not 
    |.((s
    . n) 
    -  
    0 ).| 
    < (s 
    . m) 
    
      proof
    
        let k;
    
        take n = (m
    + k); 
    
        (s
    . n) 
    >= (s 
    . m) by 
    A7;
    
        hence thesis by
    NAT_1: 11,
    SEQ_2: 1;
    
      end;
    
      (s
    . m) 
    >  
    0 by 
    A1;
    
      then not (
    lim s) 
    =  
    0 or not s is 
    convergent by 
    A8,
    SEQ_2:def 7;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    SERIES_1:28
    
    
    
    
    
    Th28: (for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    < 1 implies s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent and 
    
      
    
    A3: ( 
    lim s1) 
    < 1; 
    
      
    
    A4: 
    
      now
    
        let n;
    
        
    
        
    
    A5: ((s1 
    ^\ 1) 
    . n) 
    = (s1 
    . (n 
    + 1)) by 
    NAT_1:def 3
    
        .= ((n
    + 1) 
    -root (s 
    . (n 
    + 1))) by 
    A1;
    
        (s
    . (n 
    + 1)) 
    >=  
    0 by 
    A1;
    
        hence ((s1
    ^\ 1) 
    . n) 
    >=  
    0 by 
    A5,
    NAT_1: 11,
    POWER: 7;
    
      end;
    
      set r = ((1
    - ( 
    lim s1)) 
    / 2); 
    
      (
    0  
    + ( 
    lim s1)) 
    < 1 by 
    A3;
    
      then
    0  
    < (1 
    - ( 
    lim s1)) by 
    XREAL_1: 20;
    
      then r
    >  
    0 ; 
    
      then
    
      consider m such that
    
      
    
    A6: for n st m 
    <= n holds 
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < r by 
    A2,
    SEQ_2:def 7;
    
      (
    lim (s1 
    ^\ 1)) 
    = ( 
    lim s1) by 
    A2,
    SEQ_4: 20;
    
      then
    
      
    
    A7: ( 
    lim s1) 
    >=  
    0 by 
    A2,
    A4,
    PREPOWER: 1;
    
      then (1
    + ( 
    - ( 
    lim s1))) 
    < (1 
    + 1) by 
    XREAL_1: 6;
    
      then ((1
    - ( 
    lim s1)) 
    / 2) 
    < (2 
    / 2) by 
    XREAL_1: 74;
    
      then
    
      
    
    A8: (1 
    - r) 
    >  
    0 by 
    XREAL_1: 50;
    
      set s2 = ((1
    - r) 
    GeoSeq ); 
    
      
    
      
    
    A9: (r 
    + ( 
    lim s1)) 
    = (1 
    - r); 
    
      
    
      
    
    A10: for n st (m 
    + 1) 
    <= n holds (s 
    . n) 
    <= ((1 
    - r) 
    to_power n) 
    
      proof
    
        let n;
    
        assume
    
        
    
    A11: (m 
    + 1) 
    <= n; 
    
        1
    <= (m 
    + 1) by 
    NAT_1: 11;
    
        then
    
        
    
    A12: 1 
    <= n by 
    A11,
    XXREAL_0: 2;
    
        
    
        
    
    A13: (s 
    . n) 
    >=  
    0 by 
    A1;
    
        m
    <= n by 
    A11,
    NAT_1: 13;
    
        then
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < r by 
    A6;
    
        then ((s1
    . n) 
    - ( 
    lim s1)) 
    < r by 
    SEQ_2: 1;
    
        then (s1
    . n) 
    < (1 
    - r) by 
    A9,
    XREAL_1: 19;
    
        then
    
        
    
    A14: (n 
    -root (s 
    . n)) 
    < (1 
    - r) by 
    A1;
    
        now
    
          per cases ;
    
            suppose (s
    . n) 
    =  
    0 ; 
    
            hence (s
    . n) 
    < ((1 
    - r) 
    to_power n) by 
    A8,
    POWER: 34;
    
          end;
    
            suppose (s
    . n) 
    <>  
    0 ; 
    
            then (n
    -Root (s 
    . n)) 
    >  
    0 by 
    A12,
    A13,
    PREPOWER:def 2;
    
            then (n
    -root (s 
    . n)) 
    >  
    0 by 
    A12,
    A13,
    POWER:def 1;
    
            then ((n
    -root (s 
    . n)) 
    to_power n) 
    < ((1 
    - r) 
    to_power n) by 
    A11,
    A14,
    POWER: 37;
    
            hence (s
    . n) 
    < ((1 
    - r) 
    to_power n) by 
    A12,
    A13,
    POWER: 4;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A15: for n st (m 
    + 1) 
    <= n holds (s 
    . n) 
    <= (s2 
    . n) 
    
      proof
    
        let n;
    
        (s2
    . n) 
    = ((1 
    - r) 
    to_power n) by 
    PREPOWER:def 1;
    
        hence thesis by
    A10;
    
      end;
    
      (1
    - ( 
    lim s1)) 
    <= (1 
    -  
    0 ) by 
    A7,
    XREAL_1: 6;
    
      then (1
    - ( 
    lim s1)) 
    < (2 
    * 2) by 
    XXREAL_0: 2;
    
      then r
    < ((2 
    * 2) 
    / 2) by 
    XREAL_1: 74;
    
      then r
    < (1 
    + 1); 
    
      then (r
    - 1) 
    < 1 by 
    XREAL_1: 19;
    
      then
    
      
    
    A16: ( 
    - (r 
    - 1)) 
    > ( 
    - 1) by 
    XREAL_1: 24;
    
      (1
    - ( 
    lim s1)) 
    >  
    0 by 
    A3,
    XREAL_1: 50;
    
      then r
    >  
    0 ; 
    
      then (1
    - r) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      then
    |.(1
    - r).| 
    < 1 by 
    A16,
    SEQ_2: 1;
    
      then s2 is
    summable by 
    Th24;
    
      hence thesis by
    A1,
    A15,
    Th19;
    
    end;
    
    theorem :: 
    
    SERIES_1:29
    
    
    
    
    
    Th29: (for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n))) & (ex m st for n st m 
    <= n holds (s1 
    . n) 
    >= 1) implies not s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n)) and 
    
      
    
    A2: ex m st for n st m 
    <= n holds (s1 
    . n) 
    >= 1; 
    
      consider m such that
    
      
    
    A3: for n st m 
    <= n holds (s1 
    . n) 
    >= 1 by 
    A2;
    
      
    
      
    
    A4: for n st (m 
    + 1) 
    <= n holds (s 
    . n) 
    >= 1 
    
      proof
    
        let n such that
    
        
    
    A5: (m 
    + 1) 
    <= n; 
    
        1
    <= (1 
    + m) by 
    NAT_1: 11;
    
        then
    
        
    
    A6: 1 
    <= n by 
    A5,
    XXREAL_0: 2;
    
        
    
        
    
    A7: (s 
    . n) 
    >=  
    0 by 
    A1;
    
        m
    <= (m 
    + 1) by 
    NAT_1: 11;
    
        then m
    <= n by 
    A5,
    XXREAL_0: 2;
    
        then (s1
    . n) 
    >= 1 by 
    A3;
    
        then
    
        
    
    A8: (n 
    -root (s 
    . n)) 
    >= 1 by 
    A1;
    
        now
    
          per cases by
    A8,
    XXREAL_0: 1;
    
            suppose (n
    -root (s 
    . n)) 
    = 1; 
    
            then (s
    . n) 
    = (1 
    |^ n) by 
    A6,
    A7,
    POWER: 4;
    
            hence thesis;
    
          end;
    
            suppose (n
    -root (s 
    . n)) 
    > 1; 
    
            then ((n
    -root (s 
    . n)) 
    to_power n) 
    > 1 by 
    A5,
    POWER: 35;
    
            hence thesis by
    A6,
    A7,
    POWER: 4;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      for k holds ex n st k
    <= n & not 
    |.((s
    . n) 
    -  
    0 ).| 
    < 1 
    
      proof
    
        let k;
    
        take n = ((m
    + 1) 
    + k); 
    
         not (s
    . n) 
    < 1 by 
    A4,
    NAT_1: 11;
    
        hence thesis by
    NAT_1: 11,
    SEQ_2: 1;
    
      end;
    
      then not s is
    convergent or not ( 
    lim s) 
    =  
    0 by 
    SEQ_2:def 7;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    SERIES_1:30
    
    (for n holds (s
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    > 1 implies not s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = (n 
    -root (s 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent and 
    
      
    
    A3: ( 
    lim s1) 
    > 1; 
    
      set r = ((
    lim s1) 
    - 1); 
    
      r
    >  
    0 by 
    A3,
    XREAL_1: 50;
    
      then
    
      consider m such that
    
      
    
    A4: for n st m 
    <= n holds 
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < r by 
    A2,
    SEQ_2:def 7;
    
      for n st m
    <= n holds (s1 
    . n) 
    >= 1 
    
      proof
    
        let n;
    
        assume m
    <= n; 
    
        then
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < r by 
    A4;
    
        then ((s1
    . n) 
    - ( 
    lim s1)) 
    > ( 
    - r) by 
    SEQ_2: 1;
    
        then (((s1
    . n) 
    - ( 
    lim s1)) 
    + ( 
    lim s1)) 
    > (( 
    - r) 
    + ( 
    lim s1)) by 
    XREAL_1: 6;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    Th29;
    
    end;
    
    registration
    
      let k,n be
    Nat;
    
      cluster (k 
    to_power n) -> 
    natural;
    
      coherence ;
    
    end
    
    definition
    
      let k,n be
    Nat;
    
      :: original:
    to_power
    
      redefine
    
      func k
    
    to_power n -> 
    Element of 
    NAT ; 
    
      coherence by
    ORDINAL1:def 12;
    
    end
    
    theorem :: 
    
    SERIES_1:31
    
    
    
    
    
    Th31: s is 
    non-increasing & (for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = ((2 
    to_power n) 
    * (s 
    . (2 
    to_power n)))) implies (s is 
    summable iff s1 is 
    summable)
    
    proof
    
      assume that
    
      
    
    A1: s is 
    non-increasing and 
    
      
    
    A2: for n holds (s 
    . n) 
    >=  
    0 & (s1 
    . n) 
    = ((2 
    to_power n) 
    * (s 
    . (2 
    to_power n))); 
    
      
    
      
    
    A3: (( 
    Partial_Sums s) 
    . (2 
    to_power ( 
    0  
    + 1))) 
    = (( 
    Partial_Sums s) 
    . (1 
    + 1)) 
    
      .= (((
    Partial_Sums s) 
    . ( 
    0  
    + 1)) 
    + (s 
    . 2)) by 
    Def1
    
      .= ((((
    Partial_Sums s) 
    .  
    0 ) 
    + (s 
    . 1)) 
    + (s 
    . 2)) by 
    Def1
    
      .= (((s
    .  
    0 ) 
    + (s 
    . 1)) 
    + (s 
    . 2)) by 
    Def1;
    
      
    
    A4: 
    
      now
    
        let n;
    
        (s
    . (2 
    to_power n)) 
    >=  
    0 by 
    A2;
    
        then ((2
    to_power n) 
    * (s 
    . (2 
    to_power n))) 
    >=  
    0 ; 
    
        hence (s1
    . n) 
    >=  
    0 by 
    A2;
    
      end;
    
      thus s is
    summable implies s1 is 
    summable
    
      proof
    
        defpred
    
    Y[
    Nat] means ((
    Partial_Sums s1) 
    . $1) 
    <= (2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power $1))); 
    
        
    
        
    
    A5: (s 
    .  
    0 ) 
    >=  
    0 by 
    A2;
    
        
    
        
    
    A6: for n st 
    Y[n] holds
    Y[(n
    + 1)] 
    
        proof
    
          let n;
    
          deffunc
    
    U(
    Nat) = (((
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + $1)) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))); 
    
          consider a be
    Real_Sequence such that 
    
          
    
    A7: for m holds (a 
    . m) 
    =  
    U(m) from
    SEQ_1:sch 1;
    
          defpred
    
    X[
    Nat] means $1
    > (2 
    to_power n) or ($1 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (a 
    . $1); 
    
          
    
          
    
    A8: for m st 
    X[m] holds
    X[(m
    + 1)] 
    
          proof
    
            let m;
    
            assume
    
            
    
    A9: m 
    > (2 
    to_power n) or (m 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (a 
    . m); 
    
            now
    
              per cases by
    A9;
    
                suppose m
    > (2 
    to_power n); 
    
                hence thesis by
    NAT_1: 13;
    
              end;
    
                suppose
    
                
    
    A10: (m 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (a 
    . m); 
    
                now
    
                  per cases ;
    
                    suppose m
    < (2 
    to_power n); 
    
                    then (m
    + 1) 
    <= (2 
    to_power n) by 
    NAT_1: 13;
    
                    then ((2
    to_power n) 
    + (m 
    + 1)) 
    <= ((2 
    to_power n) 
    + (2 
    to_power n)) by 
    XREAL_1: 7;
    
                    then (((2
    to_power n) 
    + m) 
    + 1) 
    <= (2 
    * (2 
    to_power n)); 
    
                    then (((2
    to_power n) 
    + m) 
    + 1) 
    <= ((2 
    to_power 1) 
    * (2 
    to_power n)); 
    
                    then (((2
    to_power n) 
    + m) 
    + 1) 
    <= (2 
    to_power (n 
    + 1)) by 
    POWER: 27;
    
                    then (s
    . (((2 
    to_power n) 
    + m) 
    + 1)) 
    >= (s 
    . (2 
    to_power (n 
    + 1))) by 
    A1,
    SEQM_3: 8;
    
                    then ((m
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    + (1 
    * (s 
    . (2 
    to_power (n 
    + 1))))) 
    <= ((a 
    . m) 
    + (s 
    . (((2 
    to_power n) 
    + m) 
    + 1))) by 
    A10,
    XREAL_1: 7;
    
                    then ((m
    + 1) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + m)) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    + (s 
    . (((2 
    to_power n) 
    + m) 
    + 1))) by 
    A7;
    
                    then ((m
    + 1) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + m)) 
    + (s 
    . (((2 
    to_power n) 
    + m) 
    + 1))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))); 
    
                    then ((m
    + 1) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= ((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + (m 
    + 1))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))) by 
    Def1;
    
                    hence thesis by
    A7;
    
                  end;
    
                    suppose m
    >= (2 
    to_power n); 
    
                    hence thesis by
    NAT_1: 13;
    
                  end;
    
                end;
    
                hence thesis;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
          (a
    .  
    0 ) 
    = ((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    +  
    0 )) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))) by 
    A7
    
          .=
    0 ; 
    
          then
    
          
    
    A11: 
    X[
    0 ]; 
    
          for m holds
    X[m] from
    NAT_1:sch 2(
    A11,
    A8);
    
          then (2
    * ((2 
    to_power n) 
    * (s 
    . (2 
    to_power (n 
    + 1))))) 
    <= (2 
    * (a 
    . (2 
    to_power n))) by 
    XREAL_1: 64;
    
          then ((2
    * (2 
    to_power n)) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (2 
    * (a 
    . (2 
    to_power n))); 
    
          then (((2
    to_power 1) 
    * (2 
    to_power n)) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (2 
    * (a 
    . (2 
    to_power n))); 
    
          then ((2
    to_power (n 
    + 1)) 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    <= (2 
    * (a 
    . (2 
    to_power n))) by 
    POWER: 27;
    
          then (s1
    . (n 
    + 1)) 
    <= (2 
    * (a 
    . (2 
    to_power n))) by 
    A2;
    
          then (s1
    . (n 
    + 1)) 
    <= (2 
    * ((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + (2 
    to_power n))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n)))) by 
    A7;
    
          then
    
          
    
    A12: ((2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    + (s1 
    . (n 
    + 1))) 
    <= ((2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    + (2 
    * ((( 
    Partial_Sums s) 
    . ((2 
    to_power n) 
    + (2 
    to_power n))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power n))))) by 
    XREAL_1: 7;
    
          assume ((
    Partial_Sums s1) 
    . n) 
    <= (2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))); 
    
          then (((
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    <= ((2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    + (s1 
    . (n 
    + 1))) by 
    XREAL_1: 6;
    
          then
    
          
    
    A13: (( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    <= ((2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    + (s1 
    . (n 
    + 1))) by 
    Def1;
    
          ((2
    to_power n) 
    + (2 
    to_power n)) 
    = (2 
    * (2 
    to_power n)) 
    
          .= ((2
    to_power 1) 
    * (2 
    to_power n)) 
    
          .= (2
    to_power (n 
    + 1)) by 
    POWER: 27;
    
          hence thesis by
    A13,
    A12,
    XXREAL_0: 2;
    
        end;
    
        
    
        
    
    A14: (2 
    to_power  
    0 ) 
    = ( 
    0  
    + 1) by 
    POWER: 24;
    
        
    
        then
    
        
    
    A15: (2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power  
    0 ))) 
    = (2 
    * ((( 
    Partial_Sums s) 
    .  
    0 ) 
    + (s 
    . 1))) by 
    Def1
    
        .= (2
    * ((s 
    .  
    0 ) 
    + (s 
    . 1))) by 
    Def1
    
        .= ((2
    * (s 
    .  
    0 )) 
    + (2 
    * (s 
    . 1))); 
    
        assume s is
    summable;
    
        then (
    Partial_Sums s) is 
    bounded_above;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A16: for n holds (( 
    Partial_Sums s) 
    . n) 
    < r by 
    SEQ_2:def 3;
    
        (s
    . 1) 
    >=  
    0 by 
    A2;
    
        then
    
        
    
    A17: ((s 
    . 1) 
    + (s 
    . 1)) 
    >= ((s 
    . 1) 
    +  
    0 ) by 
    XREAL_1: 7;
    
        ((
    Partial_Sums s1) 
    .  
    0 ) 
    = (s1 
    .  
    0 ) by 
    Def1
    
        .= (1
    * (s 
    . 1)) by 
    A2,
    A14
    
        .= (s
    . 1); 
    
        then
    
        
    
    A18: 
    Y[
    0 ] by 
    A15,
    A17,
    A5,
    XREAL_1: 7;
    
        
    
        
    
    A19: for n holds 
    Y[n] from
    NAT_1:sch 2(
    A18,
    A6);
    
        now
    
          let n;
    
          (2
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) 
    < (2 
    * r) & (( 
    Partial_Sums s1) 
    . n) 
    <= (2 
    * (( 
    Partial_Sums s) 
    . (2 
    to_power n))) by 
    A19,
    A16,
    XREAL_1: 68;
    
          hence ((
    Partial_Sums s1) 
    . n) 
    < (2 
    * r) by 
    XXREAL_0: 2;
    
        end;
    
        then (
    Partial_Sums s1) is 
    bounded_above by 
    SEQ_2:def 3;
    
        hence thesis by
    A4,
    Th17;
    
      end;
    
      assume s1 is
    summable;
    
      then (
    Partial_Sums s1) is 
    bounded_above;
    
      then
    
      consider r be
    Real such that 
    
      
    
    A20: for n holds (( 
    Partial_Sums s1) 
    . n) 
    < r by 
    SEQ_2:def 3;
    
      
    
      
    
    A21: (2 
    to_power  
    0 ) 
    = 1 by 
    POWER: 24;
    
      defpred
    
    Y[
    Nat] means ((
    Partial_Sums s) 
    . (2 
    to_power ($1 
    + 1))) 
    <= (((( 
    Partial_Sums s1) 
    . $1) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)); 
    
      
    
      
    
    A22: for n st 
    Y[n] holds
    Y[(n
    + 1)] 
    
      proof
    
        let n;
    
        defpred
    
    X[
    Nat] means (((
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + $1)) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= ($1 
    * (s 
    . (2 
    to_power (n 
    + 1)))); 
    
        
    
        
    
    A23: for m st 
    X[m] holds
    X[(m
    + 1)] 
    
        proof
    
          let m;
    
          ((2
    to_power (n 
    + 1)) 
    + (m 
    + 1)) 
    >= (2 
    to_power (n 
    + 1)) by 
    NAT_1: 11;
    
          then
    
          
    
    A24: (s 
    . ((2 
    to_power (n 
    + 1)) 
    + (m 
    + 1))) 
    <= (s 
    . (2 
    to_power (n 
    + 1))) by 
    A1,
    SEQM_3: 8;
    
          assume (((
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + m)) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= (m 
    * (s 
    . (2 
    to_power (n 
    + 1)))); 
    
          then ((((
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + m)) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    + (s 
    . (((2 
    to_power (n 
    + 1)) 
    + m) 
    + 1))) 
    <= ((m 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    + (s 
    . (2 
    to_power (n 
    + 1)))) by 
    A24,
    XREAL_1: 7;
    
          then ((((
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + m)) 
    + (s 
    . (((2 
    to_power (n 
    + 1)) 
    + m) 
    + 1))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= ((m 
    * (s 
    . (2 
    to_power (n 
    + 1)))) 
    + (s 
    . (2 
    to_power (n 
    + 1)))); 
    
          hence thesis by
    Def1;
    
        end;
    
        
    
        
    
    A25: 
    X[
    0 ]; 
    
        for m holds
    X[m] from
    NAT_1:sch 2(
    A25,
    A23);
    
        then (((
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + (2 
    to_power (n 
    + 1)))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= ((2 
    to_power (n 
    + 1)) 
    * (s 
    . (2 
    to_power (n 
    + 1)))); 
    
        then
    
        
    
    A26: ((( 
    Partial_Sums s) 
    . ((2 
    to_power (n 
    + 1)) 
    + (2 
    to_power (n 
    + 1)))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= (s1 
    . (n 
    + 1)) by 
    A2;
    
        assume ((
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    <= (((( 
    Partial_Sums s1) 
    . n) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)); 
    
        then (((
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    + (s1 
    . (n 
    + 1))) 
    <= ((s1 
    . (n 
    + 1)) 
    + (((( 
    Partial_Sums s1) 
    . n) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2))) by 
    XREAL_1: 7;
    
        then (((
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    + (s1 
    . (n 
    + 1))) 
    <= ((((( 
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)); 
    
        then
    
        
    
    A27: ((( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    + (s1 
    . (n 
    + 1))) 
    <= (((( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) by 
    Def1;
    
        ((2
    to_power (n 
    + 1)) 
    + (2 
    to_power (n 
    + 1))) 
    = (2 
    * (2 
    to_power (n 
    + 1))) 
    
        .= ((2
    to_power 1) 
    * (2 
    to_power (n 
    + 1))) 
    
        .= (2
    to_power ((n 
    + 1) 
    + 1)) by 
    POWER: 27;
    
        then ((((
    Partial_Sums s) 
    . (2 
    to_power ((n 
    + 1) 
    + 1))) 
    - (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    + (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1)))) 
    <= ((( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    + (s1 
    . (n 
    + 1))) by 
    A26,
    XREAL_1: 7;
    
        hence thesis by
    A27,
    XXREAL_0: 2;
    
      end;
    
      ((((
    Partial_Sums s1) 
    .  
    0 ) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) 
    = (((s1 
    .  
    0 ) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) by 
    Def1
    
      .= ((((2
    to_power  
    0 ) 
    * (s 
    . (2 
    to_power  
    0 ))) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) by 
    A2
    
      .= (((s
    .  
    0 ) 
    + (s 
    . 1)) 
    + (s 
    . 2)) by 
    A21;
    
      then
    
      
    
    A28: 
    Y[
    0 ] by 
    A3;
    
      
    
      
    
    A29: for n holds 
    Y[n] from
    NAT_1:sch 2(
    A28,
    A22);
    
      
    
      
    
    A30: ( 
    Partial_Sums s) is 
    non-decreasing by 
    A2,
    Th16;
    
      now
    
        let n;
    
        ((
    Partial_Sums s1) 
    . n) 
    < r by 
    A20;
    
        then
    
        
    
    A31: ((( 
    Partial_Sums s1) 
    . n) 
    + ((s 
    .  
    0 ) 
    + (s 
    . 2))) 
    < (r 
    + ((s 
    .  
    0 ) 
    + (s 
    . 2))) by 
    XREAL_1: 6;
    
        ((1
    + 1) 
    to_power n) 
    >= (1 
    + (n 
    * 1)) & (1 
    + n) 
    >= n by 
    NAT_1: 11,
    POWER: 49;
    
        then (2
    to_power n) 
    >= n by 
    XXREAL_0: 2;
    
        then ((2
    to_power n) 
    + (2 
    to_power n)) 
    >= (n 
    + n) by 
    XREAL_1: 7;
    
        then (2
    * (2 
    to_power n)) 
    >= (n 
    + n); 
    
        then ((2
    to_power 1) 
    * (2 
    to_power n)) 
    >= (n 
    + n); 
    
        then
    
        
    
    A32: (2 
    to_power (n 
    + 1)) 
    >= (n 
    + n) by 
    POWER: 27;
    
        (n
    + n) 
    >= n by 
    NAT_1: 11;
    
        then (2
    to_power (n 
    + 1)) 
    >= n by 
    A32,
    XXREAL_0: 2;
    
        then
    
        
    
    A33: (( 
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    >= (( 
    Partial_Sums s) 
    . n) by 
    A30,
    SEQM_3: 6;
    
        ((
    Partial_Sums s) 
    . (2 
    to_power (n 
    + 1))) 
    <= (((( 
    Partial_Sums s1) 
    . n) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) by 
    A29;
    
        then ((
    Partial_Sums s) 
    . n) 
    <= (((( 
    Partial_Sums s1) 
    . n) 
    + (s 
    .  
    0 )) 
    + (s 
    . 2)) by 
    A33,
    XXREAL_0: 2;
    
        hence ((
    Partial_Sums s) 
    . n) 
    < (r 
    + ((s 
    .  
    0 ) 
    + (s 
    . 2))) by 
    A31,
    XXREAL_0: 2;
    
      end;
    
      then (
    Partial_Sums s) is 
    bounded_above by 
    SEQ_2:def 3;
    
      hence thesis by
    A2,
    Th17;
    
    end;
    
    
    
    
    
    Lm2: 1 
    in  
    REAL by 
    XREAL_0:def 1;
    
    theorem :: 
    
    SERIES_1:32
    
    p
    > 1 & (for n st n 
    >= 1 holds (s 
    . n) 
    = (1 
    / (n 
    to_power p))) implies s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: p 
    > 1 and 
    
      
    
    A2: for n st n 
    >= 1 holds (s 
    . n) 
    = (1 
    / (n 
    to_power p)); 
    
      defpred
    
    X[
    Nat, 
    Real] means ($1
    =  
    0 & $2 
    = 1) or ($1 
    >= 1 & $2 
    = (1 
    / ($1 
    to_power p))); 
    
      
    
      
    
    A3: for n be 
    Element of 
    NAT holds ex r be 
    Element of 
    REAL st 
    X[n, r]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        
    
        
    
    A4: n 
    <>  
    0 implies n 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
        per cases ;
    
          suppose
    
          
    
    A5: n 
    =  
    0 ; 
    
          reconsider jj = 1 as
    Real;
    
          take jj;
    
          thus thesis by
    A5,
    Lm2;
    
        end;
    
          suppose
    
          
    
    A6: n 
    >  
    0 ; 
    
          reconsider n1 = (1
    / (n 
    to_power p)) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take n1;
    
          thus thesis by
    A6,
    A4;
    
        end;
    
      end;
    
      consider s1 such that
    
      
    
    A7: for n be 
    Element of 
    NAT holds 
    X[n, (s1
    . n)] from 
    FUNCT_2:sch 3(
    A3);
    
      deffunc
    
    V(
    Nat) = ((2
    to_power $1) 
    * (s1 
    . (2 
    to_power $1))); 
    
      consider s2 such that
    
      
    
    A8: for n holds (s2 
    . n) 
    =  
    V(n) from
    SEQ_1:sch 1;
    
      
    
      
    
    A9: (s1 
    .  
    0 ) 
    = 1 by 
    A7;
    
      now
    
        let n;
    
        now
    
          per cases by
    NAT_1: 6;
    
            suppose
    
            
    
    A10: n 
    =  
    0 ; 
    
            then ((n
    + 1) 
    #R p) 
    >= 1 by 
    A1,
    PREPOWER: 85;
    
            then
    
            
    
    A11: ((n 
    + 1) 
    to_power p) 
    >= 1 by 
    POWER:def 2;
    
            (s1
    . (n 
    + 1)) 
    = (1 
    / ((n 
    + 1) 
    to_power p)) by 
    A7;
    
            hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n) by 
    A9,
    A10,
    A11,
    XREAL_1: 211;
    
          end;
    
            suppose
    
            
    
    A12: ex m be 
    Nat st n 
    = (m 
    + 1); 
    
            
    
            
    
    A13: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            (n
    to_power p) 
    >  
    0 by 
    POWER: 34,
    A12;
    
            then (1
    / (n 
    to_power p)) 
    >  
    0 ; 
    
            then
    
            
    
    A14: (s1 
    . n) 
    >  
    0 by 
    A7,
    A13;
    
            
    
            
    
    A15: (n 
    / (n 
    + 1)) 
    <= 1 by 
    NAT_1: 11,
    XREAL_1: 183;
    
            
    
            
    
    A16: (n 
    / (n 
    + 1)) 
    >  
    0 by 
    A12;
    
            ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    = ((1 
    / ((n 
    + 1) 
    to_power p)) 
    / (s1 
    . n)) by 
    A7
    
            .= ((1
    / ((n 
    + 1) 
    to_power p)) 
    / (1 
    / (n 
    to_power p))) by 
    A7,
    A12
    
            .= ((1
    / ((n 
    + 1) 
    to_power p)) 
    * (n 
    to_power p)) 
    
            .= ((n
    to_power p) 
    / ((n 
    + 1) 
    to_power p)) 
    
            .= ((n
    / (n 
    + 1)) 
    to_power p) by 
    A12,
    POWER: 31
    
            .= ((n
    / (n 
    + 1)) 
    #R p) by 
    A16,
    POWER:def 2;
    
            then ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    <= ((n 
    / (n 
    + 1)) 
    #R  
    0 ) by 
    A1,
    A16,
    A15,
    PREPOWER: 84;
    
            then ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    <= 1 by 
    A12,
    PREPOWER: 71;
    
            hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n) by 
    A14,
    XREAL_1: 187;
    
          end;
    
        end;
    
        hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n); 
    
      end;
    
      then
    
      
    
    A17: s1 is 
    non-increasing;
    
      
    
    A18: 
    
      now
    
        let n;
    
        assume n
    >=  
    0 ; 
    
        
    
        
    
    A19: (n 
    + 1) 
    >= ( 
    0  
    + 1) by 
    XREAL_1: 6;
    
        ((s
    ^\ 1) 
    . n) 
    = (s 
    . (n 
    + 1)) by 
    NAT_1:def 3
    
        .= (1
    / ((n 
    + 1) 
    to_power p)) by 
    A2,
    A19
    
        .= (s1
    . (n 
    + 1)) by 
    A7
    
        .= ((s1
    ^\ 1) 
    . n) by 
    NAT_1:def 3;
    
        hence ((s1
    ^\ 1) 
    . n) 
    >= ((s 
    ^\ 1) 
    . n); 
    
      end;
    
      deffunc
    
    U(
    Nat) = ($1
    -root (s2 
    . $1)); 
    
      consider s3 such that
    
      
    
    A20: for n holds (s3 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
      
    
    A21: 
    
      now
    
        let n;
    
        
    
        
    
    A22: (2 
    to_power n) 
    >  
    0 by 
    POWER: 34;
    
        
    
        thus
    
        
    
    A23: (s2 
    . n) 
    = ((2 
    to_power n) 
    * (s1 
    . (2 
    to_power n))) by 
    A8
    
        .= ((2
    to_power n) 
    * (1 
    / ((2 
    to_power n) 
    to_power p))) by 
    A7,
    A22
    
        .= ((2
    to_power n) 
    * (1 
    / (2 
    to_power (n 
    * p)))) by 
    POWER: 33
    
        .= ((2
    to_power n) 
    * (2 
    to_power ( 
    - (n 
    * p)))) by 
    POWER: 28
    
        .= (2
    to_power (n 
    + ( 
    - (n 
    * p)))) by 
    POWER: 27
    
        .= (2
    to_power ((1 
    - p) 
    * n)); 
    
        hence (s2
    . n) 
    >=  
    0 by 
    POWER: 34;
    
        (s2
    . n) 
    = ((2 
    to_power (1 
    - p)) 
    to_power n) by 
    A23,
    POWER: 33;
    
        hence (s3
    . n) 
    = (n 
    -root ((2 
    to_power (1 
    - p)) 
    to_power n)) by 
    A20;
    
      end;
    
      
    
      
    
    A0: (2 
    to_power (1 
    - p)) is 
    set by 
    TARSKI: 1;
    
      
    
    A24: 
    
      now
    
        let n be
    Nat;
    
        
    
        
    
    A25: (n 
    + 1) 
    >= ( 
    0  
    + 1) & (2 
    to_power (1 
    - p)) 
    >=  
    0 by 
    POWER: 34,
    XREAL_1: 6;
    
        
    
        thus ((s3
    ^\ 1) 
    . n) 
    = (s3 
    . (n 
    + 1)) by 
    NAT_1:def 3
    
        .= ((n
    + 1) 
    -root ((2 
    to_power (1 
    - p)) 
    to_power (n 
    + 1))) by 
    A21
    
        .= (2
    to_power (1 
    - p)) by 
    A25,
    POWER: 4;
    
      end;
    
      then
    
      
    
    A26: (s3 
    ^\ 1) is 
    constant by 
    A0;
    
      
    
      then (
    lim (s3 
    ^\ 1)) 
    = ((s3 
    ^\ 1) 
    .  
    0 ) by 
    SEQ_4: 26
    
      .= (2
    to_power (1 
    - p)) by 
    A24;
    
      then
    
      
    
    A27: ( 
    lim s3) 
    = (2 
    to_power (1 
    - p)) by 
    A26,
    SEQ_4: 22;
    
      
    
    A28: 
    
      now
    
        let n;
    
        now
    
          per cases by
    NAT_1: 6;
    
            suppose n
    =  
    0 ; 
    
            hence (s1
    . n) 
    >=  
    0 by 
    A7;
    
          end;
    
            suppose
    
            
    
    A29: ex m be 
    Nat st n 
    = (m 
    + 1); 
    
            
    
            
    
    A30: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
            (n
    to_power p) 
    >  
    0 by 
    POWER: 34,
    A29;
    
            then (1
    / (n 
    to_power p)) 
    >=  
    0 ; 
    
            hence (s1
    . n) 
    >=  
    0 by 
    A7,
    A30;
    
          end;
    
        end;
    
        hence (s1
    . n) 
    >=  
    0 & (s2 
    . n) 
    = ((2 
    to_power n) 
    * (s1 
    . (2 
    to_power n))) by 
    A8;
    
      end;
    
      
    
    A31: 
    
      now
    
        let n;
    
        
    
        
    
    A32: (n 
    + 1) 
    >= ( 
    0  
    + 1) by 
    XREAL_1: 6;
    
        
    
        
    
    A33: (s1 
    . (n 
    + 1)) 
    >=  
    0 by 
    A28;
    
        ((s
    ^\ 1) 
    . n) 
    = (s 
    . (n 
    + 1)) by 
    NAT_1:def 3
    
        .= (1
    / ((n 
    + 1) 
    to_power p)) by 
    A2,
    A32
    
        .= (s1
    . (n 
    + 1)) by 
    A7
    
        .= ((s1
    ^\ 1) 
    . n) by 
    NAT_1:def 3;
    
        hence ((s
    ^\ 1) 
    . n) 
    >=  
    0 by 
    A33,
    NAT_1:def 3;
    
      end;
    
      
    
      
    
    A34: s3 is 
    convergent by 
    A26,
    SEQ_4: 21;
    
      (1
    - p) 
    <  
    0 by 
    A1,
    XREAL_1: 49;
    
      then (
    lim s3) 
    < 1 by 
    A27,
    POWER: 36;
    
      then s2 is
    summable by 
    A20,
    A21,
    A34,
    Th28;
    
      then s1 is
    summable by 
    A17,
    A28,
    Th31;
    
      then (s1
    ^\ 1) is 
    summable by 
    Th12;
    
      then (s
    ^\ 1) is 
    summable by 
    A31,
    A18,
    Th19;
    
      hence thesis by
    Th13;
    
    end;
    
    ::$Notion-Name
    
    theorem :: 
    
    SERIES_1:33
    
    p
    <= 1 & (for n st n 
    >= 1 holds (s 
    . n) 
    = (1 
    / (n 
    to_power p))) implies not s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: p 
    <= 1 and 
    
      
    
    A2: for n st n 
    >= 1 holds (s 
    . n) 
    = (1 
    / (n 
    to_power p)); 
    
      per cases ;
    
        suppose
    
        
    
    A3: p 
    <  
    0 ; 
    
        now
    
          assume s is
    convergent & ( 
    lim s) 
    =  
    0 ; 
    
          then
    
          consider m such that
    
          
    
    A4: for n st n 
    >= m holds 
    |.((s
    . n) 
    -  
    0 ).| 
    < 1 by 
    SEQ_2:def 7;
    
          consider k such that
    
          
    
    A5: k 
    > m by 
    SEQ_4: 3;
    
          now
    
            let n such that
    
            
    
    A6: n 
    >= k; 
    
            
    
            
    
    A7: n 
    >  
    0 by 
    A5,
    A6;
    
            then
    
            
    
    A8: n 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
            n
    >= m by 
    A5,
    A6,
    XXREAL_0: 2;
    
            then
    |.((s
    . n) 
    -  
    0 ).| 
    < 1 by 
    A4;
    
            then
    |.(1
    / (n 
    to_power p)).| 
    < 1 by 
    A2,
    A8;
    
            then
    |.(n
    to_power ( 
    - p)).| 
    < 1 by 
    A7,
    POWER: 28;
    
            then
    
            
    
    A9: (n 
    to_power ( 
    - p)) 
    < 1 by 
    ABSVALUE:def 1;
    
            (n
    #R ( 
    - p)) 
    >= 1 by 
    A3,
    A8,
    PREPOWER: 85;
    
            hence contradiction by
    A7,
    A9,
    POWER:def 2;
    
          end;
    
          hence contradiction;
    
        end;
    
        hence thesis by
    Th4;
    
      end;
    
        suppose
    
        
    
    A10: p 
    >=  
    0 ; 
    
        defpred
    
    X[
    Element of 
    NAT , 
    Real] means ($1
    =  
    0 & $2 
    = 1) or ($1 
    >= 1 & $2 
    = (1 
    / ($1 
    to_power p))); 
    
        
    
        
    
    A11: for n be 
    Element of 
    NAT holds ex r be 
    Element of 
    REAL st 
    X[n, r]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          
    
          
    
    A12: n 
    <>  
    0 implies n 
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
          per cases ;
    
            suppose
    
            
    
    A13: n 
    =  
    0 ; 
    
            reconsider jj = 1 as
    Real;
    
            take jj;
    
            thus thesis by
    A13,
    Lm2;
    
          end;
    
            suppose
    
            
    
    A14: n 
    >  
    0 ; 
    
            reconsider n1 = (1
    / (n 
    to_power p)) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
            take n1;
    
            thus thesis by
    A14,
    A12;
    
          end;
    
        end;
    
        consider s1 such that
    
        
    
    A15: for n be 
    Element of 
    NAT holds 
    X[n, (s1
    . n)] from 
    FUNCT_2:sch 3(
    A11);
    
        
    
        
    
    A16: (s1 
    .  
    0 ) 
    = 1 by 
    A15;
    
        now
    
          let n;
    
          now
    
            per cases by
    NAT_1: 6;
    
              suppose
    
              
    
    A17: n 
    =  
    0 ; 
    
              then ((n
    + 1) 
    #R p) 
    >= 1 by 
    A10,
    PREPOWER: 85;
    
              then
    
              
    
    A18: ((n 
    + 1) 
    to_power p) 
    >= 1 by 
    POWER:def 2;
    
              (s1
    . (n 
    + 1)) 
    = (1 
    / ((n 
    + 1) 
    to_power p)) by 
    A15;
    
              hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n) by 
    A16,
    A17,
    A18,
    XREAL_1: 211;
    
            end;
    
              suppose
    
              
    
    A19: ex m be 
    Nat st n 
    = (m 
    + 1); 
    
              
    
              
    
    A20: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              (n
    to_power p) 
    >  
    0 by 
    POWER: 34,
    A19;
    
              then (1
    / (n 
    to_power p)) 
    >  
    0 ; 
    
              then
    
              
    
    A21: (s1 
    . n) 
    >  
    0 by 
    A15,
    A20;
    
              
    
              
    
    A22: (n 
    / (n 
    + 1)) 
    <= 1 by 
    NAT_1: 11,
    XREAL_1: 183;
    
              
    
              
    
    A23: (n 
    / (n 
    + 1)) 
    >  
    0 by 
    A19;
    
              ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    = ((1 
    / ((n 
    + 1) 
    to_power p)) 
    / (s1 
    . n)) by 
    A15
    
              .= ((1
    / ((n 
    + 1) 
    to_power p)) 
    / (1 
    / (n 
    to_power p))) by 
    A15,
    A19
    
              .= ((1
    / ((n 
    + 1) 
    to_power p)) 
    * (n 
    to_power p)) 
    
              .= ((n
    to_power p) 
    / ((n 
    + 1) 
    to_power p)) 
    
              .= ((n
    / (n 
    + 1)) 
    to_power p) by 
    A19,
    POWER: 31
    
              .= ((n
    / (n 
    + 1)) 
    #R p) by 
    A23,
    POWER:def 2;
    
              then ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    <= ((n 
    / (n 
    + 1)) 
    #R  
    0 ) by 
    A10,
    A23,
    A22,
    PREPOWER: 84;
    
              then ((s1
    . (n 
    + 1)) 
    / (s1 
    . n)) 
    <= 1 by 
    A19,
    PREPOWER: 71;
    
              hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n) by 
    A21,
    XREAL_1: 187;
    
            end;
    
          end;
    
          hence (s1
    . (n 
    + 1)) 
    <= (s1 
    . n); 
    
        end;
    
        then
    
        
    
    A24: s1 is 
    non-increasing;
    
        
    
    A25: 
    
        now
    
          let n;
    
          
    
          
    
    A26: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          assume
    
          
    
    A27: n 
    >= 1; 
    
          
    
          then (s
    . n) 
    = (1 
    / (n 
    to_power p)) by 
    A2
    
          .= (s1
    . n) by 
    A15,
    A27,
    A26;
    
          hence (s
    . n) 
    >= (s1 
    . n); 
    
        end;
    
        deffunc
    
    U(
    Nat) = ((2
    to_power $1) 
    * (s1 
    . (2 
    to_power $1))); 
    
        consider s2 such that
    
        
    
    A28: for n holds (s2 
    . n) 
    =  
    U(n) from
    SEQ_1:sch 1;
    
        
    
    A29: 
    
        now
    
          let n;
    
          now
    
            per cases by
    NAT_1: 6;
    
              suppose n
    =  
    0 ; 
    
              hence (s1
    . n) 
    >=  
    0 by 
    A15;
    
            end;
    
              suppose
    
              
    
    A30: ex m be 
    Nat st n 
    = (m 
    + 1); 
    
              
    
              
    
    A31: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              (n
    to_power p) 
    >  
    0 by 
    POWER: 34,
    A30;
    
              then (1
    / (n 
    to_power p)) 
    >=  
    0 ; 
    
              hence (s1
    . n) 
    >=  
    0 by 
    A15,
    A31;
    
            end;
    
          end;
    
          hence (s1
    . n) 
    >=  
    0 & (s2 
    . n) 
    = ((2 
    to_power n) 
    * (s1 
    . (2 
    to_power n))) by 
    A28;
    
        end;
    
        now
    
          assume s2 is
    convergent & ( 
    lim s2) 
    =  
    0 ; 
    
          then
    
          consider m such that
    
          
    
    A32: for n st n 
    >= m holds 
    |.((s2
    . n) 
    -  
    0 ).| 
    < (1 
    / 2) by 
    SEQ_2:def 7;
    
          now
    
            let n;
    
            assume n
    >= m; 
    
            then
    |.((s2
    . n) 
    -  
    0 ).| 
    < (1 
    / 2) by 
    A32;
    
            then
    
            
    
    A33: 
    |.((2
    to_power n) 
    * (s1 
    . (2 
    to_power n))).| 
    < (1 
    / 2) by 
    A28;
    
            (2
    to_power n) 
    >= 1 by 
    PREPOWER: 11;
    
            then
    |.((2
    to_power n) 
    * (1 
    / ((2 
    to_power n) 
    to_power p))).| 
    < (1 
    / 2) by 
    A15,
    A33;
    
            then
    |.((2
    to_power n) 
    * (1 
    / (2 
    to_power (n 
    * p)))).| 
    < (1 
    / 2) by 
    POWER: 33;
    
            then
    |.((2
    to_power n) 
    * (2 
    to_power ( 
    - (n 
    * p)))).| 
    < (1 
    / 2) by 
    POWER: 28;
    
            then
    |.(2
    to_power (n 
    + ( 
    - (n 
    * p)))).| 
    < (1 
    / 2) by 
    POWER: 27;
    
            then (2
    to_power (n 
    - (n 
    * p))) 
    < (1 
    / 2) by 
    ABSVALUE:def 1;
    
            then ((2
    to_power (n 
    - (n 
    * p))) 
    * 2) 
    < ((1 
    / 2) 
    * 2) by 
    XREAL_1: 68;
    
            then ((2
    to_power (n 
    - (n 
    * p))) 
    * (2 
    to_power 1)) 
    < 1; 
    
            then
    
            
    
    A34: (2 
    to_power ((n 
    - (n 
    * p)) 
    + 1)) 
    < 1 by 
    POWER: 27;
    
            (1
    - p) 
    >=  
    0 by 
    A1,
    XREAL_1: 48;
    
            then (n
    * (1 
    - p)) 
    >=  
    0 ; 
    
            then (2
    #R ((n 
    - (n 
    * p)) 
    + 1)) 
    >= 1 by 
    PREPOWER: 85;
    
            hence contradiction by
    A34,
    POWER:def 2;
    
          end;
    
          hence contradiction;
    
        end;
    
        then not s2 is
    summable by 
    Th4;
    
        then not s1 is
    summable by 
    A24,
    A29,
    Th31;
    
        hence thesis by
    A29,
    A25,
    Th19;
    
      end;
    
    end;
    
    definition
    
      let s;
    
      :: 
    
    SERIES_1:def4
    
      attr s is
    
    absolutely_summable means ( 
    abs s) is 
    summable;
    
    end
    
    theorem :: 
    
    SERIES_1:34
    
    
    
    
    
    Th34: for n, m st n 
    <= m holds 
    |.(((
    Partial_Sums s) 
    . m) 
    - (( 
    Partial_Sums s) 
    . n)).| 
    <=  
    |.(((
    Partial_Sums  
    |.s.|)
    . m) 
    - (( 
    Partial_Sums  
    |.s.|)
    . n)).| 
    
    proof
    
      let n, m such that
    
      
    
    A1: n 
    <= m; 
    
      reconsider u = n, v = m as
    Integer;
    
      set s2 = (
    Partial_Sums ( 
    abs s)); 
    
      set s1 = (
    Partial_Sums s); 
    
      defpred
    
    X[
    Nat] means
    |.((s1
    . (n 
    + $1)) 
    - (s1 
    . n)).| 
    <=  
    |.((s2
    . (n 
    + $1)) 
    - (s2 
    . n)).|; 
    
      now
    
        let k;
    
        
    |.(s
    . k).| 
    >=  
    0 by 
    COMPLEX1: 46;
    
        hence ((
    abs s) 
    . k) 
    >=  
    0 by 
    SEQ_1: 12;
    
      end;
    
      then
    
      
    
    A2: s2 is 
    non-decreasing by 
    Th16;
    
      
    
      
    
    A3: for k st 
    X[k] holds
    X[(k
    + 1)] 
    
      proof
    
        let k;
    
        
    
        
    
    A4: 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    >=  
    0 by 
    COMPLEX1: 46;
    
        assume
    |.((s1
    . (n 
    + k)) 
    - (s1 
    . n)).| 
    <=  
    |.((s2
    . (n 
    + k)) 
    - (s2 
    . n)).|; 
    
        then
    
        
    
    A5: ( 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    +  
    |.((s1
    . (n 
    + k)) 
    - (s1 
    . n)).|) 
    <= ( 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    +  
    |.((s2
    . (n 
    + k)) 
    - (s2 
    . n)).|) by 
    XREAL_1: 7;
    
        
    
        
    
    A6: 
    |.((s2
    . (n 
    + (k 
    + 1))) 
    - (s2 
    . n)).| 
    =  
    |.(((s2
    . (n 
    + k)) 
    + (( 
    abs s) 
    . ((n 
    + k) 
    + 1))) 
    - (s2 
    . n)).| by 
    Def1
    
        .=
    |.((
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    + (s2 
    . (n 
    + k))) 
    - (s2 
    . n)).| by 
    SEQ_1: 12
    
        .=
    |.(
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    + ((s2 
    . (n 
    + k)) 
    - (s2 
    . n))).|; 
    
        (s2
    . (n 
    + k)) 
    >= (s2 
    . n) by 
    A2,
    SEQM_3: 5;
    
        then
    
        
    
    A7: ((s2 
    . (n 
    + k)) 
    - (s2 
    . n)) 
    >=  
    0 by 
    XREAL_1: 48;
    
        
    |.((s1
    . (n 
    + (k 
    + 1))) 
    - (s1 
    . n)).| 
    =  
    |.(((s
    . ((n 
    + k) 
    + 1)) 
    + (s1 
    . (n 
    + k))) 
    - (s1 
    . n)).| by 
    Def1
    
        .=
    |.((s
    . ((n 
    + k) 
    + 1)) 
    + ((s1 
    . (n 
    + k)) 
    - (s1 
    . n))).|; 
    
        then
    |.((s1
    . (n 
    + (k 
    + 1))) 
    - (s1 
    . n)).| 
    <= ( 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    +  
    |.((s1
    . (n 
    + k)) 
    - (s1 
    . n)).|) by 
    COMPLEX1: 56;
    
        then
    |.((s1
    . (n 
    + (k 
    + 1))) 
    - (s1 
    . n)).| 
    <= ( 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    +  
    |.((s2
    . (n 
    + k)) 
    - (s2 
    . n)).|) by 
    A5,
    XXREAL_0: 2;
    
        then
    |.((s1
    . (n 
    + (k 
    + 1))) 
    - (s1 
    . n)).| 
    <= ( 
    |.(s
    . ((n 
    + k) 
    + 1)).| 
    + ((s2 
    . (n 
    + k)) 
    - (s2 
    . n))) by 
    A7,
    ABSVALUE:def 1;
    
        hence thesis by
    A7,
    A4,
    A6,
    ABSVALUE:def 1;
    
      end;
    
      reconsider k = (v
    - u) as 
    Element of 
    NAT by 
    A1,
    INT_1: 5;
    
      
    
      
    
    A8: (n 
    + k) 
    = m; 
    
      
    
      
    
    A9: 
    X[
    0 ]; 
    
      for k holds
    X[k] from
    NAT_1:sch 2(
    A9,
    A3);
    
      hence thesis by
    A8;
    
    end;
    
    registration
    
      cluster 
    absolutely_summable -> 
    summable for 
    Real_Sequence;
    
      coherence
    
      proof
    
        let s be
    Real_Sequence;
    
        assume s is
    absolutely_summable;
    
        then
    
        
    
    A1: ( 
    abs s) is 
    summable;
    
        now
    
          let r;
    
          assume
    0  
    < r; 
    
          then
    
          consider n such that
    
          
    
    A2: for m st n 
    <= m holds 
    |.(((
    Partial_Sums ( 
    abs s)) 
    . m) 
    - (( 
    Partial_Sums ( 
    abs s)) 
    . n)).| 
    < r by 
    A1,
    Th21;
    
          take n;
    
          let m;
    
          assume
    
          
    
    A3: n 
    <= m; 
    
          then
    
          
    
    A4: 
    |.(((
    Partial_Sums s) 
    . m) 
    - (( 
    Partial_Sums s) 
    . n)).| 
    <=  
    |.(((
    Partial_Sums ( 
    abs s)) 
    . m) 
    - (( 
    Partial_Sums ( 
    abs s)) 
    . n)).| by 
    Th34;
    
          
    |.(((
    Partial_Sums ( 
    abs s)) 
    . m) 
    - (( 
    Partial_Sums ( 
    abs s)) 
    . n)).| 
    < r by 
    A2,
    A3;
    
          hence
    |.(((
    Partial_Sums s) 
    . m) 
    - (( 
    Partial_Sums s) 
    . n)).| 
    < r by 
    A4,
    XXREAL_0: 2;
    
        end;
    
        hence thesis by
    Th21;
    
      end;
    
    end
    
    theorem :: 
    
    SERIES_1:35
    
    s is
    absolutely_summable implies s is 
    summable;
    
    theorem :: 
    
    SERIES_1:36
    
    (for n holds
    0  
    <= (s 
    . n)) & s is 
    summable implies s is 
    absolutely_summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds 
    0  
    <= (s 
    . n) and 
    
      
    
    A2: s is 
    summable;
    
      
    
      
    
    A3: for n holds (s 
    . n) 
    =  
    |.(s
    . n).| by 
    A1,
    ABSVALUE:def 1;
    
      (
    Partial_Sums s) is 
    convergent by 
    A2;
    
      then (
    Partial_Sums ( 
    abs s)) is 
    convergent by 
    A3,
    SEQ_1: 12;
    
      then (
    abs s) is 
    summable;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:37
    
    (for n holds (s
    . n) 
    <>  
    0 & (s1 
    . n) 
    = ((( 
    abs s) 
    . (n 
    + 1)) 
    / (( 
    abs s) 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    < 1 implies s is 
    absolutely_summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s 
    . n) 
    <>  
    0 & (s1 
    . n) 
    = ((( 
    abs s) 
    . (n 
    + 1)) 
    / (( 
    abs s) 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent & ( 
    lim s1) 
    < 1; 
    
      now
    
        let n;
    
        ((
    abs s) 
    . n) 
    =  
    |.(s
    . n).| & (s 
    . n) 
    <>  
    0 by 
    A1,
    SEQ_1: 12;
    
        hence ((
    abs s) 
    . n) 
    >  
    0 by 
    COMPLEX1: 47;
    
        thus (s1
    . n) 
    = ((( 
    abs s) 
    . (n 
    + 1)) 
    / (( 
    abs s) 
    . n)) by 
    A1;
    
      end;
    
      then (
    abs s) is 
    summable by 
    A2,
    Th26;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:38
    
    
    
    
    
    Th38: r 
    >  
    0 & (ex m st for n st n 
    >= m holds 
    |.(s
    . n).| 
    >= r) implies not s is 
    convergent or ( 
    lim s) 
    <>  
    0  
    
    proof
    
      assume
    
      
    
    A1: r 
    >  
    0 ; 
    
      given m such that
    
      
    
    A2: for n st n 
    >= m holds 
    |.(s
    . n).| 
    >= r; 
    
      now
    
        per cases ;
    
          suppose not s is
    convergent;
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    A3: s is 
    convergent;
    
          now
    
            assume (
    lim s) 
    =  
    0 ; 
    
            then
    
            consider k such that
    
            
    
    A4: for n st n 
    >= k holds 
    |.((s
    . n) 
    -  
    0 ).| 
    < r by 
    A1,
    A3,
    SEQ_2:def 7;
    
            now
    
              let n such that
    
              
    
    A5: n 
    >= (m 
    + k); 
    
              (m
    + k) 
    >= k by 
    NAT_1: 11;
    
              then n
    >= k by 
    A5,
    XXREAL_0: 2;
    
              then
    
              
    
    A6: 
    |.((s
    . n) 
    -  
    0 ).| 
    < r by 
    A4;
    
              (m
    + k) 
    >= m by 
    NAT_1: 11;
    
              then n
    >= m by 
    A5,
    XXREAL_0: 2;
    
              hence contradiction by
    A2,
    A6;
    
            end;
    
            hence contradiction;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:39
    
    (for n holds (s
    . n) 
    <>  
    0 ) & (ex m st for n st n 
    >= m holds ((( 
    abs s) 
    . (n 
    + 1)) 
    / (( 
    abs s) 
    . n)) 
    >= 1) implies not s is 
    summable
    
    proof
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    <>  
    0 ; 
    
      given m such that
    
      
    
    A2: for n st n 
    >= m holds ((( 
    abs s) 
    . (n 
    + 1)) 
    / (( 
    abs s) 
    . n)) 
    >= 1; 
    
      
    
    A3: 
    
      now
    
        defpred
    
    X[
    Nat] means
    |.(s
    . (m 
    + $1)).| 
    >=  
    |.(s
    . m).|; 
    
        
    
        
    
    A4: for k st 
    X[k] holds
    X[(k
    + 1)] 
    
        proof
    
          let k such that
    
          
    
    A5: 
    |.(s
    . (m 
    + k)).| 
    >=  
    |.(s
    . m).|; 
    
          (((
    abs s) 
    . ((m 
    + k) 
    + 1)) 
    / (( 
    abs s) 
    . (m 
    + k))) 
    >= 1 by 
    A2,
    NAT_1: 11;
    
          then (
    |.(s
    . ((m 
    + k) 
    + 1)).| 
    / (( 
    abs s) 
    . (m 
    + k))) 
    >= 1 by 
    SEQ_1: 12;
    
          then
    
          
    
    A6: ( 
    |.(s
    . ((m 
    + k) 
    + 1)).| 
    /  
    |.(s
    . (m 
    + k)).|) 
    >= 1 by 
    SEQ_1: 12;
    
          (s
    . (m 
    + k)) 
    <>  
    0 by 
    A1;
    
          then
    |.(s
    . (m 
    + k)).| 
    >  
    0 by 
    COMPLEX1: 47;
    
          then
    |.(s
    . ((m 
    + k) 
    + 1)).| 
    >=  
    |.(s
    . (m 
    + k)).| by 
    A6,
    XREAL_1: 191;
    
          hence thesis by
    A5,
    XXREAL_0: 2;
    
        end;
    
        let n;
    
        assume n
    >= m; 
    
        then
    
        consider k be
    Nat such that 
    
        
    
    A7: n 
    = (m 
    + k) by 
    NAT_1: 10;
    
        reconsider k as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A8: n 
    = (m 
    + k) by 
    A7;
    
        
    
        
    
    A9: 
    X[
    0 ]; 
    
        for k holds
    X[k] from
    NAT_1:sch 2(
    A9,
    A4);
    
        hence
    |.(s
    . n).| 
    >=  
    |.(s
    . m).| by 
    A8;
    
      end;
    
      (s
    . m) 
    <>  
    0 by 
    A1;
    
      then
    |.(s
    . m).| 
    >  
    0 by 
    COMPLEX1: 47;
    
      then not s is
    convergent or ( 
    lim s) 
    <>  
    0 by 
    A3,
    Th38;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    SERIES_1:40
    
    (for n holds (s1
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    < 1 implies s is 
    absolutely_summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s1 
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent & ( 
    lim s1) 
    < 1; 
    
      now
    
        let n;
    
        ((
    abs s) 
    . n) 
    =  
    |.(s
    . n).| by 
    SEQ_1: 12;
    
        hence ((
    abs s) 
    . n) 
    >=  
    0 by 
    COMPLEX1: 46;
    
        thus (s1
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)) by 
    A1;
    
      end;
    
      then (
    abs s) is 
    summable by 
    A2,
    Th28;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_1:41
    
    (for n holds (s1
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n))) & (ex m st for n st m 
    <= n holds (s1 
    . n) 
    >= 1) implies not s is 
    summable
    
    proof
    
      assume
    
      
    
    A1: for n holds (s1 
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)); 
    
      given m such that
    
      
    
    A2: for n st m 
    <= n holds (s1 
    . n) 
    >= 1; 
    
      now
    
        let n such that
    
        
    
    A3: n 
    >= (m 
    + 1); 
    
        (m
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
        then
    
        
    
    A4: n 
    >= 1 by 
    A3,
    XXREAL_0: 2;
    
        (m
    + 1) 
    >= m by 
    NAT_1: 11;
    
        then
    
        
    
    A5: n 
    >= m by 
    A3,
    XXREAL_0: 2;
    
        (s1
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)) by 
    A1
    
        .= (n
    -root  
    |.(s
    . n).|) by 
    SEQ_1: 12;
    
        then
    |.(s
    . n).| 
    >=  
    0 & ((n 
    -root  
    |.(s
    . n).|) 
    |^ n) 
    >= 1 by 
    A2,
    A5,
    COMPLEX1: 46,
    PREPOWER: 11;
    
        hence
    |.(s
    . n).| 
    >= 1 by 
    A4,
    POWER: 4;
    
      end;
    
      then not s is
    convergent or ( 
    lim s) 
    <>  
    0 by 
    Th38;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    SERIES_1:42
    
    (for n holds (s1
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n))) & s1 is 
    convergent & ( 
    lim s1) 
    > 1 implies not s is 
    summable
    
    proof
    
      assume that
    
      
    
    A1: for n holds (s1 
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)) and 
    
      
    
    A2: s1 is 
    convergent and 
    
      
    
    A3: ( 
    lim s1) 
    > 1; 
    
      ((
    lim s1) 
    - 1) 
    >  
    0 by 
    A3,
    XREAL_1: 50;
    
      then
    
      consider m such that
    
      
    
    A4: for n st n 
    >= m holds 
    |.((s1
    . n) 
    - ( 
    lim s1)).| 
    < (( 
    lim s1) 
    - 1) by 
    A2,
    SEQ_2:def 7;
    
      now
    
        let n such that
    
        
    
    A5: n 
    >= (m 
    + 1); 
    
        
    
        
    
    A6: (s1 
    . n) 
    = (n 
    -root (( 
    abs s) 
    . n)) by 
    A1
    
        .= (n
    -root  
    |.(s
    . n).|) by 
    SEQ_1: 12;
    
        (m
    + 1) 
    >= m by 
    NAT_1: 11;
    
        then n
    >= m by 
    A5,
    XXREAL_0: 2;
    
        then
    |.((n
    -root  
    |.(s
    . n).|) 
    - ( 
    lim s1)).| 
    < (( 
    lim s1) 
    - 1) by 
    A4,
    A6;
    
        then (
    - (( 
    lim s1) 
    - 1)) 
    < ((n 
    -root  
    |.(s
    . n).|) 
    - ( 
    lim s1)) by 
    SEQ_2: 1;
    
        then ((1
    - ( 
    lim s1)) 
    + ( 
    lim s1)) 
    < (((n 
    -root  
    |.(s
    . n).|) 
    - ( 
    lim s1)) 
    + ( 
    lim s1)) by 
    XREAL_1: 6;
    
        then
    
        
    
    A7: 
    |.(s
    . n).| 
    >=  
    0 & ((n 
    -root  
    |.(s
    . n).|) 
    |^ n) 
    >= 1 by 
    COMPLEX1: 46,
    PREPOWER: 11;
    
        (m
    + 1) 
    >= 1 by 
    NAT_1: 11;
    
        then n
    >= 1 by 
    A5,
    XXREAL_0: 2;
    
        hence
    |.(s
    . n).| 
    >= 1 by 
    A7,
    POWER: 4;
    
      end;
    
      then not s is
    convergent or ( 
    lim s) 
    <>  
    0 by 
    Th38;
    
      hence thesis by
    Th4;
    
    end;
    
    begin
    
    definition
    
      let s;
    
      let n be
    Nat;
    
      :: 
    
    SERIES_1:def5
    
      func
    
    Sum (s,n) -> 
    Real equals (( 
    Partial_Sums s) 
    . n); 
    
      coherence ;
    
    end
    
    definition
    
      let s;
    
      let n,m be
    Nat;
    
      :: 
    
    SERIES_1:def6
    
      func
    
    Sum (s,n,m) -> 
    Real equals (( 
    Sum (s,n)) 
    - ( 
    Sum (s,m))); 
    
      coherence ;
    
    end