series_1.miz
begin
reserve n,m,k for
Nat;
reserve a,p,r for
Real;
reserve s,s1,s2,s3 for
Real_Sequence;
theorem ::
SERIES_1:1
Th1:
0
< a & a
< 1 & (for n holds (s
. n)
= (a
to_power (n
+ 1))) implies s is
convergent & (
lim s)
=
0
proof
assume that
A1:
0
< a and
A2: a
< 1 and
A3: for n holds (s
. n)
= (a
to_power (n
+ 1));
set r = ((1
/ a)
- 1);
(1
/ a)
> (1
/ 1) by
A1,
A2,
XREAL_1: 88;
then
A4: r
>
0 by
XREAL_1: 50;
A5: for p be
Real st
0
< p holds ex m st for n st m
<= n holds
|.((s
. n)
-
0 ).|
< p
proof
let p be
Real;
A6: (1
/ (p
* r))
<= (
[\(1
/ (p
* r))/]
+ 1) by
INT_1: 29;
assume
A7:
0
< p;
then (p
* r)
>
0 by
A4;
then (1
/ (p
* r))
>
0 ;
then
0
< (
[\(1
/ (p
* r))/]
+ 1) by
A6;
then
[\(1
/ (p
* r))/] is
Element of
NAT by
INT_1: 3,
INT_1: 7;
then
consider m such that
A8: m
=
[\(1
/ (p
* r))/];
take m;
A9: (1
/ (p
* r))
= ((1
/ p)
/ r) by
XCMPLX_1: 78;
now
A10:
[\(1
/ (p
* r))/]
> ((1
/ (p
* r))
- 1) by
INT_1:def 6;
let n;
assume m
<= n;
then n
> ((1
/ (p
* r))
- 1) by
A8,
A10,
XXREAL_0: 2;
then (n
+ 1)
> ((1
/ p)
/ r) by
A9,
XREAL_1: 19;
then
A11: ((n
+ 1)
* r)
> (1
/ p) by
A4,
XREAL_1: 77;
(
0
+ ((n
+ 1)
* r))
< (1
+ ((n
+ 1)
* r)) by
XREAL_1: 6;
then
A12: (1
/ p)
< (1
+ ((n
+ 1)
* r)) by
A11,
XXREAL_0: 2;
A13: ((1
+ r)
to_power (n
+ 1))
= ((1
to_power (n
+ 1))
/ (a
to_power (n
+ 1))) by
A1,
POWER: 31
.= (1
/ (a
to_power (n
+ 1)));
(a
to_power (n
+ 1))
>
0 by
A1,
POWER: 34;
then
A14:
|.(a
to_power (n
+ 1)).|
= (a
to_power (n
+ 1)) by
ABSVALUE:def 1;
(1
+ ((n
+ 1)
* r))
<= ((1
+ r)
to_power (n
+ 1)) by
A4,
POWER: 49;
then (1
/ p)
< (1
/ (a
to_power (n
+ 1))) by
A13,
A12,
XXREAL_0: 2;
then
|.(a
to_power (n
+ 1)).|
< p by
A7,
A14,
XREAL_1: 91;
hence
|.((s
. n)
-
0 ).|
< p by
A3;
end;
hence thesis;
end;
hence s is
convergent by
SEQ_2:def 6;
hence thesis by
A5,
SEQ_2:def 7;
end;
theorem ::
SERIES_1:2
Th2: for n be
Nat holds (
|.a.|
to_power n)
=
|.(a
to_power n).|
proof
let n be
Nat;
per cases ;
suppose
A1: a
<>
0 ;
then
A2:
|.a.|
>
0 by
COMPLEX1: 47;
now
per cases by
A1;
suppose a
>
0 ;
then (a
to_power n)
= (
|.a.|
to_power n) & (a
to_power n)
>
0 by
ABSVALUE:def 1,
POWER: 34;
hence thesis by
ABSVALUE:def 1;
end;
suppose
A3: a
<
0 ;
reconsider m = n as
Integer;
now
per cases ;
suppose
A4: m is
even;
A5: (
|.a.|
to_power n)
>
0 by
A2,
POWER: 34;
(
|.a.|
to_power n)
= ((
- a)
to_power m) by
A3,
ABSVALUE:def 1
.= (a
to_power m) by
A4,
POWER: 47;
hence thesis by
A5,
ABSVALUE:def 1;
end;
suppose
A6: m is
odd;
A7: (
|.a.|
to_power n)
>
0 by
A2,
POWER: 34;
(
|.a.|
to_power n)
= ((
- a)
to_power m) by
A3,
ABSVALUE:def 1
.= (
- (a
to_power m)) by
A6,
POWER: 48;
hence (
|.a.|
to_power n)
=
|.(
- (a
to_power n)).| by
A7,
ABSVALUE:def 1
.=
|.(a
to_power n).| by
COMPLEX1: 52;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
suppose
A8: a
=
0 ;
per cases ;
suppose n
=
0 ;
then (a
to_power n)
= 1 by
NEWTON: 4;
hence thesis by
A8,
COMPLEX1: 44,
COMPLEX1: 48;
end;
suppose n
>
0 ;
then (
|.a.|
to_power n)
=
0 by
A8,
COMPLEX1: 44,
POWER:def 2;
hence thesis by
A8,
COMPLEX1: 44;
end;
end;
end;
theorem ::
SERIES_1:3
Th3:
|.a.|
< 1 & (for n holds (s
. n)
= (a
to_power (n
+ 1))) implies s is
convergent & (
lim s)
=
0
proof
assume that
A1:
|.a.|
< 1 and
A2: for n holds (s
. n)
= (a
to_power (n
+ 1));
now
per cases ;
suppose
|.a.|
=
0 ;
then
A3: a
=
0 by
ABSVALUE: 2;
now
let n be
Nat;
n
in
NAT & (a
to_power (n
+ 1))
=
0 by
A3,
ORDINAL1:def 12,
POWER:def 2;
hence (s
. n)
= (
In (
0 ,
REAL )) by
A2;
end;
then s is
constant & (s
.
0 )
= (
In (
0 ,
REAL ));
hence thesis by
SEQ_4: 26;
end;
suppose
A4: not
|.a.|
=
0 ;
deffunc
U(
Nat) = (
|.a.|
to_power ($1
+ 1));
consider s1 such that
A5: for n holds (s1
. n)
=
U(n) from
SEQ_1:sch 1;
A6:
now
let n;
thus (s1
. n)
= (
|.a.|
to_power (n
+ 1)) by
A5
.=
|.(a
to_power (n
+ 1)).| by
Th2
.=
|.(s
. n).| by
A2;
end;
A7:
|.a.|
>
0 by
A4,
COMPLEX1: 46;
then (
lim s1)
=
0 by
A1,
A5,
Th1;
then
A8: (
lim (
abs s))
=
0 by
A6,
SEQ_1: 12;
s1 is
convergent by
A1,
A7,
A5,
Th1;
then (
abs s) is
convergent by
A6,
SEQ_1: 12;
hence thesis by
A8,
SEQ_4: 15;
end;
end;
hence thesis;
end;
definition
let X be non
empty
add-closed
complex-membered
set;
let s1,s2 be
sequence of X;
:: original:
+
redefine
func s1
+ s2 ->
sequence of X ;
coherence
proof
A1: (
dom (s1
+ s2))
= ((
dom s1)
/\ (
dom s2)) by
VALUED_1:def 1
.= (
NAT
/\ (
dom s2)) by
FUNCT_2:def 1
.= (
NAT
/\
NAT ) by
FUNCT_2:def 1;
now
let x be
object such that
A2: x
in
NAT ;
A3: (s1
. x)
in X & (s2
. x)
in X by
A2,
FUNCT_2: 5;
((s1
+ s2)
. x)
= ((s1
. x)
+ (s2
. x)) by
A1,
A2,
VALUED_1:def 1;
hence ((s1
+ s2)
. x)
in X by
A3,
MEMBERED:def 25;
end;
hence thesis by
A1,
FUNCT_2: 3;
end;
end
definition
let s be
complex-valued
ManySortedSet of
NAT ;
::
SERIES_1:def1
func
Partial_Sums (s) ->
complex-valued
ManySortedSet of
NAT means
:
Def1: (it
.
0 )
= (s
.
0 ) & for n holds (it
. (n
+ 1))
= ((it
. n)
+ (s
. (n
+ 1)));
existence
proof
set X =
COMPLEX ;
A1: (
dom s)
=
NAT by
PARTFUN1:def 2;
(
rng s)
c= X by
VALUED_0:def 1;
then
reconsider ss = s as
sequence of X by
A1,
RELSET_1: 4;
defpred
P[
Nat,
Element of X,
set] means $3
= ($2
+ (ss
. ($1
+ 1)));
A2: for n be
Nat holds for x be
Element of X holds ex y be
Element of X st
P[n, x, y]
proof
let n be
Nat, x be
Element of X;
reconsider y = (x
+ (ss
. (n
+ 1))) as
Element of
COMPLEX by
XCMPLX_0:def 2;
take y;
thus thesis;
end;
consider f be
sequence of X such that
A3: (f
.
0 )
= (ss
.
0 ) and
A4: for n be
Nat holds
P[n, (f
. n), (f
. (n
+ 1))] from
RECDEF_1:sch 2(
A2);
take f;
thus (f
.
0 )
= (s
.
0 ) by
A3;
let n;
reconsider n as
Element of
NAT by
ORDINAL1:def 12;
P[n, (f
. n), (f
. (n
+ 1))] by
A4;
hence thesis;
end;
uniqueness
proof
let s1,s2 be
complex-valued
ManySortedSet of
NAT ;
assume that
A5: (s1
.
0 )
= (s
.
0 ) and
A6: for n holds (s1
. (n
+ 1))
= ((s1
. n)
+ (s
. (n
+ 1))) and
A7: (s2
.
0 )
= (s
.
0 ) and
A8: for n holds (s2
. (n
+ 1))
= ((s2
. n)
+ (s
. (n
+ 1)));
defpred
X[
Nat] means (s1
. $1)
= (s2
. $1);
A9: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
assume (s1
. k)
= (s2
. k);
hence (s1
. (k
+ 1))
= ((s2
. k)
+ (s
. (k
+ 1))) by
A6
.= (s2
. (k
+ 1)) by
A8;
end;
A10:
X[
0 ] by
A5,
A7;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A10,
A9);
hence thesis;
end;
end
registration
let s be
real-valued
ManySortedSet of
NAT ;
cluster (
Partial_Sums s) ->
real-valued;
coherence
proof
set f = (
Partial_Sums s);
let x be
object;
assume x
in (
dom f);
then
reconsider n = x as
Element of
NAT ;
defpred
P[
Nat] means (f
. $1) is
real;
(f
.
0 )
= (s
.
0 ) by
Def1;
then
A1:
P[
0 ];
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A3:
P[k];
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
(f
. (k
+ 1))
= ((f
. k)
+ (s
. (k
+ 1))) by
Def1;
hence thesis by
A3;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A2);
then (f
. n) is
real;
hence thesis;
end;
end
definition
let s be
Real_Sequence;
:: original:
Partial_Sums
redefine
func
Partial_Sums s ->
Real_Sequence ;
coherence
proof
A1: (
dom (
Partial_Sums s))
=
NAT by
PARTFUN1:def 2;
(
rng (
Partial_Sums s))
c=
REAL by
VALUED_0:def 3;
then (
Partial_Sums s) is
Relation of
NAT ,
REAL by
A1,
RELSET_1: 4;
hence (
Partial_Sums s) is
Real_Sequence;
end;
end
definition
let s;
::
SERIES_1:def2
attr s is
summable means
:
Def2: (
Partial_Sums s) is
convergent;
::
SERIES_1:def3
func
Sum (s) ->
Real equals (
lim (
Partial_Sums s));
correctness ;
end
theorem ::
SERIES_1:4
Th4: s is
summable implies s is
convergent & (
lim s)
=
0
proof
assume s is
summable;
then
A1: (
Partial_Sums s) is
convergent;
now
let n;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
Def1;
then ((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ ((s
^\ 1)
. n)) by
NAT_1:def 3;
hence (((
Partial_Sums s)
^\ 1)
. n)
= (((
Partial_Sums s)
. n)
+ ((s
^\ 1)
. n)) by
NAT_1:def 3;
end;
then
A2: ((
Partial_Sums s)
^\ 1)
= ((
Partial_Sums s)
+ (s
^\ 1)) by
SEQ_1: 7;
now
let n be
Element of
NAT ;
thus (((s
^\ 1)
+ ((
Partial_Sums s)
- (
Partial_Sums s)))
. n)
= (((s
^\ 1)
. n)
+ (((
Partial_Sums s)
+ (
- (
Partial_Sums s)))
. n)) by
SEQ_1: 7
.= (((s
^\ 1)
. n)
+ (((
Partial_Sums s)
. n)
+ ((
- (
Partial_Sums s))
. n))) by
SEQ_1: 7
.= (((s
^\ 1)
. n)
+ (((
Partial_Sums s)
. n)
+ (
- ((
Partial_Sums s)
. n)))) by
SEQ_1: 10
.= ((s
^\ 1)
. n);
end;
then ((s
^\ 1)
+ ((
Partial_Sums s)
- (
Partial_Sums s)))
= (s
^\ 1);
then
A3: (s
^\ 1)
= (((
Partial_Sums s)
^\ 1)
- (
Partial_Sums s)) by
A2,
SEQ_1: 31;
then
A4: (s
^\ 1) qua
Real_Sequence is
convergent by
A1;
hence s is
convergent by
SEQ_4: 21;
(
lim ((
Partial_Sums s)
^\ 1))
= (
lim (
Partial_Sums s)) by
A1,
SEQ_4: 20;
then (
lim (((
Partial_Sums s)
^\ 1)
- (
Partial_Sums s)))
= ((
lim (
Partial_Sums s))
- (
lim (
Partial_Sums s))) by
A1,
SEQ_2: 12
.=
0 ;
hence thesis by
A3,
A4,
SEQ_4: 22;
end;
Lm1: for seq,seq1,seq2 be
complex-valued
ManySortedSet of
NAT holds seq
= (seq1
+ seq2) iff for n holds (seq
. n)
= ((seq1
. n)
+ (seq2
. n))
proof
let seq,seq1,seq2 be
complex-valued
ManySortedSet of
NAT ;
thus seq
= (seq1
+ seq2) implies for n holds (seq
. n)
= ((seq1
. n)
+ (seq2
. n))
proof
assume
A1: seq
= (seq1
+ seq2);
let n;
A2: n
in
NAT by
ORDINAL1:def 12;
(
dom seq)
=
NAT by
PARTFUN1:def 2;
hence thesis by
A1,
VALUED_1:def 1,
A2;
end;
assume for n holds (seq
. n)
= ((seq1
. n)
+ (seq2
. n));
then
A3: for n be
object st n
in (
dom seq) holds (seq
. n)
= ((seq1
. n)
+ (seq2
. n));
(
dom seq)
= (
NAT
/\
NAT ) by
PARTFUN1:def 2
.= (
NAT
/\ (
dom seq2)) by
PARTFUN1:def 2
.= ((
dom seq1)
/\ (
dom seq2)) by
PARTFUN1:def 2;
hence thesis by
A3,
VALUED_1:def 1;
end;
theorem ::
SERIES_1:5
Th5: for X be non
empty
add-closed
complex-membered
set holds for s1,s2 be
sequence of X holds ((
Partial_Sums s1)
+ (
Partial_Sums s2))
= (
Partial_Sums (s1
+ s2))
proof
let X be non
empty
add-closed
complex-membered
set;
let s1,s2 be
sequence of X;
A1:
now
let n;
thus (((
Partial_Sums s1)
+ (
Partial_Sums s2))
. (n
+ 1))
= (((
Partial_Sums s1)
. (n
+ 1))
+ ((
Partial_Sums s2)
. (n
+ 1))) by
Lm1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ ((
Partial_Sums s2)
. (n
+ 1))) by
Def1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ ((s2
. (n
+ 1))
+ ((
Partial_Sums s2)
. n))) by
Def1
.= ((((
Partial_Sums s1)
. n)
+ ((s1
. (n
+ 1))
+ (s2
. (n
+ 1))))
+ ((
Partial_Sums s2)
. n))
.= ((((
Partial_Sums s1)
. n)
+ ((s1
+ s2)
. (n
+ 1)))
+ ((
Partial_Sums s2)
. n)) by
Lm1
.= ((((
Partial_Sums s1)
. n)
+ ((
Partial_Sums s2)
. n))
+ ((s1
+ s2)
. (n
+ 1)))
.= ((((
Partial_Sums s1)
+ (
Partial_Sums s2))
. n)
+ ((s1
+ s2)
. (n
+ 1))) by
Lm1;
end;
(((
Partial_Sums s1)
+ (
Partial_Sums s2))
.
0 )
= (((
Partial_Sums s1)
.
0 )
+ ((
Partial_Sums s2)
.
0 )) by
Lm1
.= ((s1
.
0 )
+ ((
Partial_Sums s2)
.
0 )) by
Def1
.= ((s1
.
0 )
+ (s2
.
0 )) by
Def1
.= ((s1
+ s2)
.
0 ) by
Lm1;
hence thesis by
A1,
Def1;
end;
theorem ::
SERIES_1:6
Th6: ((
Partial_Sums s1)
- (
Partial_Sums s2))
= (
Partial_Sums (s1
- s2))
proof
A1:
now
let n;
thus (((
Partial_Sums s1)
- (
Partial_Sums s2))
. (n
+ 1))
= (((
Partial_Sums s1)
. (n
+ 1))
- ((
Partial_Sums s2)
. (n
+ 1))) by
RFUNCT_2: 1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
- ((
Partial_Sums s2)
. (n
+ 1))) by
Def1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
- ((s2
. (n
+ 1))
+ ((
Partial_Sums s2)
. n))) by
Def1
.= ((((
Partial_Sums s1)
. n)
+ ((s1
. (n
+ 1))
- (s2
. (n
+ 1))))
- ((
Partial_Sums s2)
. n))
.= ((((s1
- s2)
. (n
+ 1))
+ ((
Partial_Sums s1)
. n))
- ((
Partial_Sums s2)
. n)) by
RFUNCT_2: 1
.= (((s1
- s2)
. (n
+ 1))
+ (((
Partial_Sums s1)
. n)
- ((
Partial_Sums s2)
. n)))
.= ((((
Partial_Sums s1)
- (
Partial_Sums s2))
. n)
+ ((s1
- s2)
. (n
+ 1))) by
RFUNCT_2: 1;
end;
(((
Partial_Sums s1)
- (
Partial_Sums s2))
.
0 )
= (((
Partial_Sums s1)
.
0 )
- ((
Partial_Sums s2)
.
0 )) by
RFUNCT_2: 1
.= ((s1
.
0 )
- ((
Partial_Sums s2)
.
0 )) by
Def1
.= ((s1
.
0 )
- (s2
.
0 )) by
Def1
.= ((s1
- s2)
.
0 ) by
RFUNCT_2: 1;
hence thesis by
A1,
Def1;
end;
theorem ::
SERIES_1:7
s1 is
summable & s2 is
summable implies (s1
+ s2) is
summable & (
Sum (s1
+ s2))
= ((
Sum s1)
+ (
Sum s2))
proof
assume s1 is
summable & s2 is
summable;
then
A1: (
Partial_Sums s1) is
convergent & (
Partial_Sums s2) is
convergent;
then ((
Partial_Sums s1)
+ (
Partial_Sums s2)) is
convergent;
then (
Partial_Sums (s1
+ s2)) is
convergent by
Th5;
hence (s1
+ s2) is
summable;
thus (
Sum (s1
+ s2))
= (
lim ((
Partial_Sums s1)
+ (
Partial_Sums s2))) by
Th5
.= ((
Sum s1)
+ (
Sum s2)) by
A1,
SEQ_2: 6;
end;
theorem ::
SERIES_1:8
s1 is
summable & s2 is
summable implies (s1
- s2) is
summable & (
Sum (s1
- s2))
= ((
Sum s1)
- (
Sum s2))
proof
assume s1 is
summable & s2 is
summable;
then
A1: (
Partial_Sums s1) is
convergent & (
Partial_Sums s2) is
convergent;
then ((
Partial_Sums s1)
- (
Partial_Sums s2)) is
convergent;
then (
Partial_Sums (s1
- s2)) is
convergent by
Th6;
hence (s1
- s2) is
summable;
thus (
Sum (s1
- s2))
= (
lim ((
Partial_Sums s1)
- (
Partial_Sums s2))) by
Th6
.= ((
Sum s1)
- (
Sum s2)) by
A1,
SEQ_2: 12;
end;
theorem ::
SERIES_1:9
Th9: (
Partial_Sums (r
(#) s))
= (r
(#) (
Partial_Sums s))
proof
A1:
now
let n;
thus ((r
(#) (
Partial_Sums s))
. (n
+ 1))
= (r
* ((
Partial_Sums s)
. (n
+ 1))) by
SEQ_1: 9
.= (r
* (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))) by
Def1
.= ((r
* ((
Partial_Sums s)
. n))
+ (r
* (s
. (n
+ 1))))
.= (((r
(#) (
Partial_Sums s))
. n)
+ (r
* (s
. (n
+ 1)))) by
SEQ_1: 9
.= (((r
(#) (
Partial_Sums s))
. n)
+ ((r
(#) s)
. (n
+ 1))) by
SEQ_1: 9;
end;
((r
(#) (
Partial_Sums s))
.
0 )
= (r
* ((
Partial_Sums s)
.
0 )) by
SEQ_1: 9
.= (r
* (s
.
0 )) by
Def1
.= ((r
(#) s)
.
0 ) by
SEQ_1: 9;
hence thesis by
A1,
Def1;
end;
theorem ::
SERIES_1:10
Th10: s is
summable implies (r
(#) s) is
summable & (
Sum (r
(#) s))
= (r
* (
Sum s))
proof
assume s is
summable;
then
A1: (
Partial_Sums s) is
convergent;
then (r
(#) (
Partial_Sums s)) is
convergent;
then (
Partial_Sums (r
(#) s)) is
convergent by
Th9;
hence (r
(#) s) is
summable;
thus (
Sum (r
(#) s))
= (
lim (r
(#) (
Partial_Sums s))) by
Th9
.= (r
* (
Sum s)) by
A1,
SEQ_2: 8;
end;
theorem ::
SERIES_1:11
Th11: for s, s1 st for n holds (s1
. n)
= (s
.
0 ) holds (
Partial_Sums (s
^\ 1))
= (((
Partial_Sums s)
^\ 1)
- s1)
proof
let s, s1;
assume
A1: for n holds (s1
. n)
= (s
.
0 );
A2:
now
let k;
thus ((((
Partial_Sums s)
^\ 1)
- s1)
. (k
+ 1))
= ((((
Partial_Sums s)
^\ 1)
. (k
+ 1))
- (s1
. (k
+ 1))) by
RFUNCT_2: 1
.= ((((
Partial_Sums s)
^\ 1)
. (k
+ 1))
- (s
.
0 )) by
A1
.= (((
Partial_Sums s)
. ((k
+ 1)
+ 1))
- (s
.
0 )) by
NAT_1:def 3
.= (((s
. ((k
+ 1)
+ 1))
+ ((
Partial_Sums s)
. (k
+ 1)))
- (s
.
0 )) by
Def1
.= (((s
. ((k
+ 1)
+ 1))
+ ((
Partial_Sums s)
. (k
+ 1)))
- (s1
. k)) by
A1
.= ((s
. ((k
+ 1)
+ 1))
+ (((
Partial_Sums s)
. (k
+ 1))
- (s1
. k)))
.= ((s
. ((k
+ 1)
+ 1))
+ ((((
Partial_Sums s)
^\ 1)
. k)
- (s1
. k))) by
NAT_1:def 3
.= ((s
. ((k
+ 1)
+ 1))
+ ((((
Partial_Sums s)
^\ 1)
- s1)
. k)) by
RFUNCT_2: 1
.= (((((
Partial_Sums s)
^\ 1)
- s1)
. k)
+ ((s
^\ 1)
. (k
+ 1))) by
NAT_1:def 3;
end;
((((
Partial_Sums s)
^\ 1)
- s1)
.
0 )
= ((((
Partial_Sums s)
^\ 1)
.
0 )
- (s1
.
0 )) by
RFUNCT_2: 1
.= ((((
Partial_Sums s)
^\ 1)
.
0 )
- (s
.
0 )) by
A1
.= (((
Partial_Sums s)
. (
0
+ 1))
- (s
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums s)
.
0 )
+ (s
. (
0
+ 1)))
- (s
.
0 )) by
Def1
.= (((s
. (
0
+ 1))
+ (s
.
0 ))
- (s
.
0 )) by
Def1
.= ((s
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
A2,
Def1;
end;
theorem ::
SERIES_1:12
Th12: s is
summable implies for n holds (s
^\ n) is
summable
proof
defpred
X[
Nat] means (s
^\ $1) is
summable;
A1: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set s1 = (
seq_const ((s
^\ n)
.
0 ));
for k holds (s1
. k)
= ((s
^\ n)
.
0 ) by
SEQ_1: 57;
then
A2: (
Partial_Sums ((s
^\ n)
^\ 1))
= (((
Partial_Sums (s
^\ n))
^\ 1)
- s1) by
Th11;
assume (s
^\ n) is
summable;
then (
Partial_Sums (s
^\ n)) is
convergent;
then (s
^\ (n
+ 1))
= ((s
^\ n)
^\ 1) & (
Partial_Sums ((s
^\ n)
^\ 1)) is
convergent by
A2,
NAT_1: 48;
hence thesis by
Def2;
end;
assume s is
summable;
then
A3:
X[
0 ] by
NAT_1: 47;
thus for n holds
X[n] from
NAT_1:sch 2(
A3,
A1);
end;
theorem ::
SERIES_1:13
Th13: (ex n st (s
^\ n) is
summable) implies s is
summable
proof
given n such that
A1: (s
^\ n) is
summable;
reconsider PS = ((
Partial_Sums s)
. n) as
Element of
REAL ;
set s1 = (
seq_const ((
Partial_Sums s)
. n));
for k holds (((
Partial_Sums s)
^\ (n
+ 1))
. k)
= (((
Partial_Sums (s
^\ (n
+ 1)))
. k)
+ (s1
. k))
proof
defpred
X[
Nat] means (((
Partial_Sums s)
^\ (n
+ 1))
. $1)
= (((
Partial_Sums (s
^\ (n
+ 1)))
. $1)
+ (s1
. $1));
A2: ((
Partial_Sums (s
^\ (n
+ 1)))
.
0 )
= ((s
^\ (n
+ 1))
.
0 ) by
Def1
.= (s
. (
0
+ (n
+ 1))) by
NAT_1:def 3
.= (s
. (n
+ 1));
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
assume
A4: (((
Partial_Sums s)
^\ (n
+ 1))
. k)
= (((
Partial_Sums (s
^\ (n
+ 1)))
. k)
+ (s1
. k));
(((
Partial_Sums (s
^\ (n
+ 1)))
. (k
+ 1))
+ (s1
. (k
+ 1)))
= ((s1
. (k
+ 1))
+ (((
Partial_Sums (s
^\ (n
+ 1)))
. k)
+ ((s
^\ (n
+ 1))
. (k
+ 1)))) by
Def1
.= (((s1
. (k
+ 1))
+ ((
Partial_Sums (s
^\ (n
+ 1)))
. k))
+ ((s
^\ (n
+ 1))
. (k
+ 1)))
.= ((((
Partial_Sums s)
. n)
+ ((
Partial_Sums (s
^\ (n
+ 1)))
. k))
+ ((s
^\ (n
+ 1))
. (k
+ 1))) by
SEQ_1: 57
.= ((((
Partial_Sums s)
^\ (n
+ 1))
. k)
+ ((s
^\ (n
+ 1))
. (k
+ 1))) by
A4,
SEQ_1: 57
.= (((
Partial_Sums s)
. (k
+ (n
+ 1)))
+ ((s
^\ (n
+ 1))
. (k
+ 1))) by
NAT_1:def 3
.= (((
Partial_Sums s)
. (k
+ (n
+ 1)))
+ (s
. ((k
+ 1)
+ (n
+ 1)))) by
NAT_1:def 3
.= ((
Partial_Sums s)
. ((k
+ (n
+ 1))
+ 1)) by
Def1
.= ((
Partial_Sums s)
. ((k
+ 1)
+ (n
+ 1)))
.= (((
Partial_Sums s)
^\ (n
+ 1))
. (k
+ 1)) by
NAT_1:def 3;
hence thesis;
end;
(((
Partial_Sums s)
^\ (n
+ 1))
.
0 )
= ((
Partial_Sums s)
. (
0
+ (n
+ 1))) by
NAT_1:def 3
.= ((s
. (n
+ 1))
+ ((
Partial_Sums s)
. n)) by
Def1
.= (((
Partial_Sums (s
^\ (n
+ 1)))
.
0 )
+ (s1
.
0 )) by
A2,
SEQ_1: 57;
then
A5:
X[
0 ];
thus for k holds
X[k] from
NAT_1:sch 2(
A5,
A3);
end;
then
A6: ((
Partial_Sums s)
^\ (n
+ 1))
= ((
Partial_Sums (s
^\ (n
+ 1)))
+ s1) by
SEQ_1: 7
.= ((
Partial_Sums ((s
^\ n)
^\ 1))
+ s1) by
NAT_1: 48;
((s
^\ n)
^\ 1) is
summable by
A1,
Th12;
then (
Partial_Sums ((s
^\ n)
^\ 1)) is
convergent;
then ((
Partial_Sums s)
^\ (n
+ 1)) is
convergent by
A6;
then (
Partial_Sums s) is
convergent by
SEQ_4: 21;
hence thesis;
end;
theorem ::
SERIES_1:14
Th14: (for n holds (s1
. n)
<= (s2
. n)) implies for n holds ((
Partial_Sums s1)
. n)
<= ((
Partial_Sums s2)
. n)
proof
defpred
X[
Nat] means ((
Partial_Sums s1)
. $1)
<= ((
Partial_Sums s2)
. $1);
assume
A1: for n holds (s1
. n)
<= (s2
. n);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n such that
A3: ((
Partial_Sums s1)
. n)
<= ((
Partial_Sums s2)
. n);
A4: (s1
. (n
+ 1))
<= (s2
. (n
+ 1)) by
A1;
((
Partial_Sums s1)
. (n
+ 1))
= (((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1))) & ((
Partial_Sums s2)
. (n
+ 1))
= (((
Partial_Sums s2)
. n)
+ (s2
. (n
+ 1))) by
Def1;
hence thesis by
A3,
A4,
XREAL_1: 7;
end;
((
Partial_Sums s2)
.
0 )
= (s2
.
0 ) & ((
Partial_Sums s1)
.
0 )
= (s1
.
0 ) by
Def1;
then
A5:
X[
0 ] by
A1;
thus for n holds
X[n] from
NAT_1:sch 2(
A5,
A2);
end;
theorem ::
SERIES_1:15
s is
summable implies for n holds (
Sum s)
= (((
Partial_Sums s)
. n)
+ (
Sum (s
^\ (n
+ 1))))
proof
defpred
X[
Nat] means (
Sum s)
= (((
Partial_Sums s)
. $1)
+ (
Sum (s
^\ ($1
+ 1))));
assume
A1: s is
summable;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: (
Sum s)
= (((
Partial_Sums s)
. n)
+ (
Sum (s
^\ (n
+ 1))));
set s1 = (
seq_const ((s
^\ (n
+ 1))
.
0 ));
for k holds (s1
. k)
= ((s
^\ (n
+ 1))
.
0 ) by
SEQ_1: 57;
then
A4: (
Partial_Sums ((s
^\ (n
+ 1))
^\ 1))
= (((
Partial_Sums (s
^\ (n
+ 1)))
^\ 1)
- s1) by
Th11;
(s
^\ (n
+ 1)) is
summable by
A1,
Th12;
then
A5: (
Partial_Sums (s
^\ (n
+ 1))) is
convergent;
(
lim (
Partial_Sums (s
^\ ((n
+ 1)
+ 1))))
= (
lim (
Partial_Sums ((s
^\ (n
+ 1))
^\ 1))) by
NAT_1: 48
.= ((
lim ((
Partial_Sums (s
^\ (n
+ 1)))
^\ 1))
- (
lim s1)) by
A5,
A4,
SEQ_2: 12
.= ((
lim (
Partial_Sums (s
^\ (n
+ 1))))
- (
lim s1)) by
A5,
SEQ_4: 20
.= ((
Sum (s
^\ (n
+ 1)))
- (s1
.
0 )) by
SEQ_4: 26
.= ((
Sum (s
^\ (n
+ 1)))
- ((s
^\ (n
+ 1))
.
0 )) by
SEQ_1: 57;
then (
Sum (s
^\ ((n
+ 1)
+ 1)))
= ((
Sum s)
- (((
Partial_Sums s)
. n)
+ ((s
^\ (n
+ 1))
.
0 ))) by
A3
.= ((
Sum s)
- (((
Partial_Sums s)
. n)
+ (s
. (
0
+ (n
+ 1))))) by
NAT_1:def 3
.= ((
Sum s)
- ((
Partial_Sums s)
. (n
+ 1))) by
Def1;
hence thesis;
end;
A6:
X[
0 ]
proof
set s1 = (
seq_const (s
.
0 ));
A7: (
Partial_Sums s) is
convergent by
A1;
for k holds (s1
. k)
= (s
.
0 ) by
SEQ_1: 57;
then (
Partial_Sums (s
^\ 1))
= (((
Partial_Sums s)
^\ 1)
- s1) by
Th11;
then (
lim (
Partial_Sums (s
^\ 1)))
= ((
lim ((
Partial_Sums s)
^\ 1))
- (
lim s1)) by
A7,
SEQ_2: 12
.= ((
lim (
Partial_Sums s))
- (
lim s1)) by
A7,
SEQ_4: 20
.= ((
Sum s)
- (s1
.
0 )) by
SEQ_4: 26
.= ((
Sum s)
- (s
.
0 )) by
SEQ_1: 57;
then (
Sum s)
= ((
Sum (s
^\ 1))
+ (
- (
- (s
.
0 ))));
hence thesis by
Def1;
end;
thus for n holds
X[n] from
NAT_1:sch 2(
A6,
A2);
end;
theorem ::
SERIES_1:16
Th16: (for n holds
0
<= (s
. n)) implies (
Partial_Sums s) is
non-decreasing
proof
assume
A1: for n holds
0
<= (s
. n);
now
let n;
0
<= (s
. (n
+ 1)) by
A1;
then (
0
+ ((
Partial_Sums s)
. n))
<= ((s
. (n
+ 1))
+ ((
Partial_Sums s)
. n)) by
XREAL_1: 6;
hence ((
Partial_Sums s)
. n)
<= ((
Partial_Sums s)
. (n
+ 1)) by
Def1;
end;
hence thesis;
end;
theorem ::
SERIES_1:17
Th17: (for n holds
0
<= (s
. n)) implies ((
Partial_Sums s) is
bounded_above iff s is
summable)
proof
assume for n holds
0
<= (s
. n);
then (
Partial_Sums s) is
non-decreasing by
Th16;
hence (
Partial_Sums s) is
bounded_above implies s is
summable;
assume s is
summable;
then (
Partial_Sums s) is
convergent;
then (
Partial_Sums s) is
bounded;
hence thesis;
end;
theorem ::
SERIES_1:18
s is
summable & (for n holds
0
<= (s
. n)) implies
0
<= (
Sum s)
proof
assume that
A1: s is
summable and
A2: for n holds
0
<= (s
. n);
A3:
now
let n;
A4: ((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
Def1;
((
Partial_Sums s)
.
0 )
<= ((
Partial_Sums s)
. n) &
0
<= (s
.
0 ) by
A2,
Th16,
SEQM_3: 11;
hence
0
<= ((
Partial_Sums s)
. n) by
A4;
end;
(
Partial_Sums s) is
convergent by
A1;
hence thesis by
A3,
SEQ_2: 17;
end;
theorem ::
SERIES_1:19
Th19: (for n holds
0
<= (s2
. n)) & s1 is
summable & (ex m st for n st m
<= n holds (s2
. n)
<= (s1
. n)) implies s2 is
summable
proof
assume that
A1: for n holds
0
<= (s2
. n) and
A2: s1 is
summable;
given m such that
A3: for n st m
<= n holds (s2
. n)
<= (s1
. n);
(s1
^\ m) is
summable by
A2,
Th12;
then (
Partial_Sums (s1
^\ m)) is
bounded_above;
then
consider r be
Real such that
A4: for n holds ((
Partial_Sums (s1
^\ m))
. n)
< r by
SEQ_2:def 3;
A5:
now
let n;
(s2
. (n
+ m))
<= (s1
. (n
+ m)) by
A3,
NAT_1: 12;
then ((s2
^\ m)
. n)
<= (s1
. (n
+ m)) by
NAT_1:def 3;
hence ((s2
^\ m)
. n)
<= ((s1
^\ m)
. n) by
NAT_1:def 3;
end;
now
let n;
((
Partial_Sums (s2
^\ m))
. n)
<= ((
Partial_Sums (s1
^\ m))
. n) by
A5,
Th14;
hence ((
Partial_Sums (s2
^\ m))
. n)
< r by
A4,
XXREAL_0: 2;
end;
then
A6: (
Partial_Sums (s2
^\ m)) is
bounded_above by
SEQ_2:def 3;
now
let n;
((s2
^\ m)
. n)
= (s2
. (n
+ m)) by
NAT_1:def 3;
hence
0
<= ((s2
^\ m)
. n) by
A1;
end;
then (s2
^\ m) is
summable by
A6,
Th17;
hence thesis by
Th13;
end;
theorem ::
SERIES_1:20
(for n holds
0
<= (s1
. n) & (s1
. n)
<= (s2
. n)) & s2 is
summable implies s1 is
summable & (
Sum s1)
<= (
Sum s2)
proof
assume that
A1: for n holds
0
<= (s1
. n) & (s1
. n)
<= (s2
. n) and
A2: s2 is
summable;
for n holds
0
<= n implies (s1
. n)
<= (s2
. n) by
A1;
hence s1 is
summable by
A1,
A2,
Th19;
then
A3: (
Partial_Sums s1) is
convergent;
(
Partial_Sums s2) is
convergent & for n holds ((
Partial_Sums s1)
. n)
<= ((
Partial_Sums s2)
. n) by
A1,
A2,
Th14;
hence thesis by
A3,
SEQ_2: 18;
end;
theorem ::
SERIES_1:21
Th21: s is
summable iff for r st
0
< r holds ex n st for m st n
<= m holds
|.(((
Partial_Sums s)
. m)
- ((
Partial_Sums s)
. n)).|
< r by
SEQ_4: 41;
::$Notion-Name
theorem ::
SERIES_1:22
Th22: a
<> 1 implies ((
Partial_Sums (a
GeoSeq ))
. n)
= ((1
- (a
to_power (n
+ 1)))
/ (1
- a))
proof
defpred
X[
Nat] means ((
Partial_Sums (a
GeoSeq ))
. $1)
= ((1
- (a
to_power ($1
+ 1)))
/ (1
- a));
assume a
<> 1;
then
A1: (1
- a)
<>
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Sums (a
GeoSeq ))
. n)
= ((1
- (a
to_power (n
+ 1)))
/ (1
- a));
hence ((
Partial_Sums (a
GeoSeq ))
. (n
+ 1))
= (((1
- (a
to_power (n
+ 1)))
/ (1
- a))
+ ((a
GeoSeq )
. (n
+ 1))) by
Def1
.= (((1
- (a
to_power (n
+ 1)))
/ (1
- a))
+ ((a
to_power (n
+ 1))
* 1)) by
PREPOWER:def 1
.= (((1
- (a
to_power (n
+ 1)))
/ (1
- a))
+ ((a
to_power (n
+ 1))
* ((1
- a)
/ (1
- a)))) by
A1,
XCMPLX_1: 60
.= (((1
- (a
to_power (n
+ 1)))
/ (1
- a))
+ (((a
to_power (n
+ 1))
* (1
- a))
/ (1
- a)))
.= (((1
- (a
to_power (n
+ 1)))
+ ((a
to_power (n
+ 1))
- ((a
|^ (n
+ 1))
* a)))
/ (1
- a))
.= (((1
- (a
to_power (n
+ 1)))
+ ((a
to_power (n
+ 1))
- (a
|^ ((n
+ 1)
+ 1))))
/ (1
- a)) by
NEWTON: 6
.= ((1
- (a
to_power ((n
+ 1)
+ 1)))
/ (1
- a));
end;
((
Partial_Sums (a
GeoSeq ))
.
0 )
= ((a
GeoSeq )
.
0 ) by
Def1
.= 1 by
PREPOWER: 3
.= ((1
- a)
/ (1
- a)) by
A1,
XCMPLX_1: 60
.= ((1
- (a
to_power (
0
+ 1)))
/ (1
- a));
then
A3:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A3,
A2);
hence thesis;
end;
theorem ::
SERIES_1:23
a
<> 1 & (for n holds (s
. (n
+ 1))
= (a
* (s
. n))) implies for n holds ((
Partial_Sums s)
. n)
= (((s
.
0 )
* (1
- (a
to_power (n
+ 1))))
/ (1
- a))
proof
assume that
A1: a
<> 1 and
A2: for n holds (s
. (n
+ 1))
= (a
* (s
. n));
defpred
X[
Nat] means (s
. $1)
= ((s
.
0 )
* ((a
GeoSeq )
. $1));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume (s
. n)
= ((s
.
0 )
* ((a
GeoSeq )
. n));
then (s
. (n
+ 1))
= (a
* ((s
.
0 )
* ((a
GeoSeq )
. n))) by
A2
.= ((s
.
0 )
* (((a
GeoSeq )
. n)
* a))
.= ((s
.
0 )
* ((a
GeoSeq )
. (n
+ 1))) by
PREPOWER: 3;
hence thesis;
end;
((a
GeoSeq )
.
0 )
= 1 by
PREPOWER: 3;
then
A4:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A4,
A3);
then s
= ((s
.
0 )
(#) (a
GeoSeq )) by
SEQ_1: 9;
then
A5: (
Partial_Sums s)
= ((s
.
0 )
(#) (
Partial_Sums (a
GeoSeq ))) by
Th9;
now
let n;
thus ((
Partial_Sums s)
. n)
= ((s
.
0 )
* ((
Partial_Sums (a
GeoSeq ))
. n)) by
A5,
SEQ_1: 9
.= ((s
.
0 )
* ((1
- (a
to_power (n
+ 1)))
/ (1
- a))) by
A1,
Th22
.= (((s
.
0 )
* (1
- (a
to_power (n
+ 1))))
/ (1
- a));
end;
hence thesis;
end;
theorem ::
SERIES_1:24
Th24:
|.a.|
< 1 implies (a
GeoSeq ) is
summable & (
Sum (a
GeoSeq ))
= (1
/ (1
- a))
proof
deffunc
U(
Nat) = (a
to_power ($1
+ 1));
consider s such that
A1: for n holds (s
. n)
=
U(n) from
SEQ_1:sch 1;
assume
A2:
|.a.|
< 1;
then
A3: s is
convergent & (
lim s)
=
0 by
A1,
Th3;
A4:
now
a
< 1 by
A2,
SEQ_2: 1;
then
A5: (1
- a)
>
0 by
XREAL_1: 50;
let r be
Real;
assume r
>
0 ;
then (r
* (1
- a))
> (
0
* r) by
A5;
then
consider m such that
A6: for n st n
>= m holds
|.((s
. n)
-
0 ).|
< (r
* (1
- a)) by
A3,
SEQ_2:def 7;
take m;
let n;
assume n
>= m;
then
|.((s
. n)
-
0 ).|
< (r
* (1
- a)) by
A6;
then
|.((a
to_power (n
+ 1))
-
0 ).|
< (r
* (1
- a)) by
A1;
then
A7: (
|.(a
to_power (n
+ 1)).|
/ (1
- a))
< ((r
* (1
- a))
/ (1
- a)) by
A5,
XREAL_1: 74;
a
<> 1 by
A2,
SEQ_2: 1;
then
A8:
|.(((
Partial_Sums (a
GeoSeq ))
. n)
- (1
/ (1
- a))).|
=
|.(((1
- (a
to_power (n
+ 1)))
/ (1
- a))
- (1
/ (1
- a))).| by
Th22
.=
|.(((1
+ (
- (a
to_power (n
+ 1))))
- 1)
/ (1
- a)).|
.=
|.(
- ((a
to_power (n
+ 1))
/ (1
- a))).|
.=
|.((a
to_power (n
+ 1))
/ (1
- a)).| by
COMPLEX1: 52
.= (
|.(a
to_power (n
+ 1)).|
/
|.(1
- a).|) by
COMPLEX1: 67
.= (
|.(a
to_power (n
+ 1)).|
/ (1
- a)) by
A5,
ABSVALUE:def 1;
(1
- a)
<>
0 by
A2,
SEQ_2: 1;
hence
|.(((
Partial_Sums (a
GeoSeq ))
. n)
- (1
/ (1
- a))).|
< r by
A8,
A7,
XCMPLX_1: 89;
end;
then
A9: (
Partial_Sums (a
GeoSeq )) is
convergent by
SEQ_2:def 6;
hence (a
GeoSeq ) is
summable;
thus thesis by
A4,
A9,
SEQ_2:def 7;
end;
theorem ::
SERIES_1:25
|.a.|
< 1 & (for n holds (s
. (n
+ 1))
= (a
* (s
. n))) implies s is
summable & (
Sum s)
= ((s
.
0 )
/ (1
- a))
proof
assume that
A1:
|.a.|
< 1 and
A2: for n holds (s
. (n
+ 1))
= (a
* (s
. n));
defpred
X[
Nat] means (s
. $1)
= ((s
.
0 )
* ((a
GeoSeq )
. $1));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume (s
. n)
= ((s
.
0 )
* ((a
GeoSeq )
. n));
then (s
. (n
+ 1))
= (a
* ((s
.
0 )
* ((a
GeoSeq )
. n))) by
A2
.= ((s
.
0 )
* (((a
GeoSeq )
. n)
* a))
.= ((s
.
0 )
* ((a
GeoSeq )
. (n
+ 1))) by
PREPOWER: 3;
hence thesis;
end;
((a
GeoSeq )
.
0 )
= 1 by
PREPOWER: 3;
then
A4:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A4,
A3);
then s
= ((s
.
0 )
(#) (a
GeoSeq )) by
SEQ_1: 9;
then
A5: (
Partial_Sums s)
= ((s
.
0 )
(#) (
Partial_Sums (a
GeoSeq ))) by
Th9;
(a
GeoSeq ) is
summable by
A1,
Th24;
then
A6: (
Partial_Sums (a
GeoSeq )) is
convergent;
then (
Partial_Sums s) is
convergent by
A5;
hence s is
summable;
(
Sum (a
GeoSeq ))
= (1
/ (1
- a)) by
A1,
Th24;
then (
lim (
Partial_Sums s))
= ((s
.
0 )
* (1
/ (1
- a))) by
A5,
A6,
SEQ_2: 8
.= (((s
.
0 )
* 1)
/ (1
- a))
.= ((s
.
0 )
/ (1
- a));
hence thesis;
end;
theorem ::
SERIES_1:26
Th26: (for n holds (s
. n)
>
0 & (s1
. n)
= ((s
. (n
+ 1))
/ (s
. n))) & s1 is
convergent & (
lim s1)
< 1 implies s is
summable
proof
assume that
A1: for n holds (s
. n)
>
0 & (s1
. n)
= ((s
. (n
+ 1))
/ (s
. n)) and
A2: s1 is
convergent and
A3: (
lim s1)
< 1;
set r = ((1
- (
lim s1))
/ 2);
(
0
+ (
lim s1))
< 1 by
A3;
then
0
< (1
- (
lim s1)) by
XREAL_1: 20;
then r
>
0 ;
then
consider m such that
A4: for n st m
<= n holds
|.((s1
. n)
- (
lim s1)).|
< r by
A2,
SEQ_2:def 7;
set s2 = (((s
. m)
* ((1
- r)
to_power (
- m)))
(#) ((1
- r)
GeoSeq ));
defpred
X[
Nat] means (s
. (m
+ $1))
<= (s2
. (m
+ $1));
A5:
now
let n;
(s
. n)
>
0 & (s
. (n
+ 1))
>
0 by
A1;
then ((s
. (n
+ 1))
/ (s
. n))
>
0 ;
hence (s1
. n)
>=
0 by
A1;
end;
then
A6: (
lim s1)
>=
0 by
A2,
PREPOWER: 1;
then (1
+ (
- (
lim s1)))
< (1
+ 1) by
XREAL_1: 6;
then
A7: ((1
- (
lim s1))
/ 2)
< (2
/ 2) by
XREAL_1: 74;
A8: (r
+ (
lim s1))
= (1
- r);
A9: for k holds
X[k] implies
X[(k
+ 1)]
proof
set X = ((s
. m)
* ((1
- r)
to_power (
- m)));
let k such that
A10: (s
. (m
+ k))
<= (s2
. (m
+ k));
|.((s1
. (m
+ k))
- (
lim s1)).|
< r by
A4,
NAT_1: 11;
then ((s1
. (m
+ k))
- (
lim s1))
< r by
SEQ_2: 1;
then
A11: (s1
. (m
+ k))
<= (1
- r) by
A8,
XREAL_1: 19;
(s2
. (m
+ k))
>=
0 by
A1,
A10;
then
A12: ((s1
. (m
+ k))
* (s2
. (m
+ k)))
<= ((1
- r)
* (s2
. (m
+ k))) by
A11,
XREAL_1: 64;
(s
. (m
+ k))
<>
0 by
A1;
then
A13: (s
. (m
+ (k
+ 1)))
= (((s
. ((m
+ k)
+ 1))
/ (s
. (m
+ k)))
* (s
. (m
+ k))) by
XCMPLX_1: 87
.= ((s1
. (m
+ k))
* (s
. (m
+ k))) by
A1;
(s1
. (m
+ k))
>=
0 by
A5;
then
A14: (s
. (m
+ (k
+ 1)))
<= ((s1
. (m
+ k))
* (s2
. (m
+ k))) by
A10,
A13,
XREAL_1: 64;
((1
- r)
* (s2
. (m
+ k)))
= ((1
- r)
* (X
* (((1
- r)
GeoSeq )
. (m
+ k)))) by
SEQ_1: 9
.= (X
* ((((1
- r)
GeoSeq )
. (m
+ k))
* (1
- r)))
.= (X
* (((1
- r)
GeoSeq )
. ((m
+ k)
+ 1))) by
PREPOWER: 3
.= (s2
. (m
+ (k
+ 1))) by
SEQ_1: 9;
hence thesis by
A14,
A12,
XXREAL_0: 2;
end;
(s2
. (m
+
0 ))
= (((s
. m)
* ((1
- r)
to_power (
- m)))
* (((1
- r)
GeoSeq )
. m)) by
SEQ_1: 9
.= (((s
. m)
* ((1
- r)
to_power (
- m)))
* ((1
- r)
|^ m)) by
PREPOWER:def 1
.= ((s
. m)
* (((1
- r)
to_power (
- m))
* ((1
- r)
to_power m)))
.= ((s
. m)
* ((1
- r)
to_power ((
- m)
+ m))) by
A7,
POWER: 27,
XREAL_1: 50
.= ((s
. m)
* 1) by
POWER: 24
.= (s
. (m
+
0 ));
then
A15:
X[
0 ];
A16: for k holds
X[k] from
NAT_1:sch 2(
A15,
A9);
A17:
now
let n;
assume m
<= n;
then
consider k be
Nat such that
A18: n
= (m
+ k) by
NAT_1: 10;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
n
= (m
+ k) by
A18;
hence (s
. n)
<= (s2
. n) by
A16;
end;
(1
- (
lim s1))
<= (1
-
0 ) by
A6,
XREAL_1: 6;
then (1
- (
lim s1))
< (2
* 2) by
XXREAL_0: 2;
then r
< ((2
* 2)
/ 2) by
XREAL_1: 74;
then r
< (1
+ 1);
then (r
- 1)
< 1 by
XREAL_1: 19;
then
A19: (
- (r
- 1))
> (
- 1) by
XREAL_1: 24;
(1
- (
lim s1))
>
0 by
A3,
XREAL_1: 50;
then r
>
0 ;
then (1
- r)
< (1
-
0 ) by
XREAL_1: 10;
then
|.(1
- r).|
< 1 by
A19,
SEQ_2: 1;
then ((1
- r)
GeoSeq ) is
summable by
Th24;
then
A20: s2 is
summable by
Th10;
for n holds
0
<= (s
. n) by
A1;
hence thesis by
A20,
A17,
Th19;
end;
theorem ::
SERIES_1:27
(for n holds (s
. n)
>
0 ) & (ex m st for n st n
>= m holds ((s
. (n
+ 1))
/ (s
. n))
>= 1) implies not s is
summable
proof
assume that
A1: for n holds (s
. n)
>
0 and
A2: ex m st for n st n
>= m holds ((s
. (n
+ 1))
/ (s
. n))
>= 1;
consider m such that
A3: for n st n
>= m holds ((s
. (n
+ 1))
/ (s
. n))
>= 1 by
A2;
defpred
X[
Nat] means (s
. (m
+ $1))
>= (s
. m);
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A5: (s
. (m
+ k))
>= (s
. m);
(s
. (m
+ k))
>
0 & ((s
. ((m
+ k)
+ 1))
/ (s
. (m
+ k)))
>= 1 by
A1,
A3,
NAT_1: 11;
then (s
. ((m
+ k)
+ 1))
>= (s
. (m
+ k)) by
XREAL_1: 191;
hence thesis by
A5,
XXREAL_0: 2;
end;
A6:
X[
0 ];
A7: for k holds
X[k] from
NAT_1:sch 2(
A6,
A4);
A8: for k holds ex n st n
>= k & not
|.((s
. n)
-
0 ).|
< (s
. m)
proof
let k;
take n = (m
+ k);
(s
. n)
>= (s
. m) by
A7;
hence thesis by
NAT_1: 11,
SEQ_2: 1;
end;
(s
. m)
>
0 by
A1;
then not (
lim s)
=
0 or not s is
convergent by
A8,
SEQ_2:def 7;
hence thesis by
Th4;
end;
theorem ::
SERIES_1:28
Th28: (for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n))) & s1 is
convergent & (
lim s1)
< 1 implies s is
summable
proof
assume that
A1: for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n)) and
A2: s1 is
convergent and
A3: (
lim s1)
< 1;
A4:
now
let n;
A5: ((s1
^\ 1)
. n)
= (s1
. (n
+ 1)) by
NAT_1:def 3
.= ((n
+ 1)
-root (s
. (n
+ 1))) by
A1;
(s
. (n
+ 1))
>=
0 by
A1;
hence ((s1
^\ 1)
. n)
>=
0 by
A5,
NAT_1: 11,
POWER: 7;
end;
set r = ((1
- (
lim s1))
/ 2);
(
0
+ (
lim s1))
< 1 by
A3;
then
0
< (1
- (
lim s1)) by
XREAL_1: 20;
then r
>
0 ;
then
consider m such that
A6: for n st m
<= n holds
|.((s1
. n)
- (
lim s1)).|
< r by
A2,
SEQ_2:def 7;
(
lim (s1
^\ 1))
= (
lim s1) by
A2,
SEQ_4: 20;
then
A7: (
lim s1)
>=
0 by
A2,
A4,
PREPOWER: 1;
then (1
+ (
- (
lim s1)))
< (1
+ 1) by
XREAL_1: 6;
then ((1
- (
lim s1))
/ 2)
< (2
/ 2) by
XREAL_1: 74;
then
A8: (1
- r)
>
0 by
XREAL_1: 50;
set s2 = ((1
- r)
GeoSeq );
A9: (r
+ (
lim s1))
= (1
- r);
A10: for n st (m
+ 1)
<= n holds (s
. n)
<= ((1
- r)
to_power n)
proof
let n;
assume
A11: (m
+ 1)
<= n;
1
<= (m
+ 1) by
NAT_1: 11;
then
A12: 1
<= n by
A11,
XXREAL_0: 2;
A13: (s
. n)
>=
0 by
A1;
m
<= n by
A11,
NAT_1: 13;
then
|.((s1
. n)
- (
lim s1)).|
< r by
A6;
then ((s1
. n)
- (
lim s1))
< r by
SEQ_2: 1;
then (s1
. n)
< (1
- r) by
A9,
XREAL_1: 19;
then
A14: (n
-root (s
. n))
< (1
- r) by
A1;
now
per cases ;
suppose (s
. n)
=
0 ;
hence (s
. n)
< ((1
- r)
to_power n) by
A8,
POWER: 34;
end;
suppose (s
. n)
<>
0 ;
then (n
-Root (s
. n))
>
0 by
A12,
A13,
PREPOWER:def 2;
then (n
-root (s
. n))
>
0 by
A12,
A13,
POWER:def 1;
then ((n
-root (s
. n))
to_power n)
< ((1
- r)
to_power n) by
A11,
A14,
POWER: 37;
hence (s
. n)
< ((1
- r)
to_power n) by
A12,
A13,
POWER: 4;
end;
end;
hence thesis;
end;
A15: for n st (m
+ 1)
<= n holds (s
. n)
<= (s2
. n)
proof
let n;
(s2
. n)
= ((1
- r)
to_power n) by
PREPOWER:def 1;
hence thesis by
A10;
end;
(1
- (
lim s1))
<= (1
-
0 ) by
A7,
XREAL_1: 6;
then (1
- (
lim s1))
< (2
* 2) by
XXREAL_0: 2;
then r
< ((2
* 2)
/ 2) by
XREAL_1: 74;
then r
< (1
+ 1);
then (r
- 1)
< 1 by
XREAL_1: 19;
then
A16: (
- (r
- 1))
> (
- 1) by
XREAL_1: 24;
(1
- (
lim s1))
>
0 by
A3,
XREAL_1: 50;
then r
>
0 ;
then (1
- r)
< (1
-
0 ) by
XREAL_1: 10;
then
|.(1
- r).|
< 1 by
A16,
SEQ_2: 1;
then s2 is
summable by
Th24;
hence thesis by
A1,
A15,
Th19;
end;
theorem ::
SERIES_1:29
Th29: (for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n))) & (ex m st for n st m
<= n holds (s1
. n)
>= 1) implies not s is
summable
proof
assume that
A1: for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n)) and
A2: ex m st for n st m
<= n holds (s1
. n)
>= 1;
consider m such that
A3: for n st m
<= n holds (s1
. n)
>= 1 by
A2;
A4: for n st (m
+ 1)
<= n holds (s
. n)
>= 1
proof
let n such that
A5: (m
+ 1)
<= n;
1
<= (1
+ m) by
NAT_1: 11;
then
A6: 1
<= n by
A5,
XXREAL_0: 2;
A7: (s
. n)
>=
0 by
A1;
m
<= (m
+ 1) by
NAT_1: 11;
then m
<= n by
A5,
XXREAL_0: 2;
then (s1
. n)
>= 1 by
A3;
then
A8: (n
-root (s
. n))
>= 1 by
A1;
now
per cases by
A8,
XXREAL_0: 1;
suppose (n
-root (s
. n))
= 1;
then (s
. n)
= (1
|^ n) by
A6,
A7,
POWER: 4;
hence thesis;
end;
suppose (n
-root (s
. n))
> 1;
then ((n
-root (s
. n))
to_power n)
> 1 by
A5,
POWER: 35;
hence thesis by
A6,
A7,
POWER: 4;
end;
end;
hence thesis;
end;
for k holds ex n st k
<= n & not
|.((s
. n)
-
0 ).|
< 1
proof
let k;
take n = ((m
+ 1)
+ k);
not (s
. n)
< 1 by
A4,
NAT_1: 11;
hence thesis by
NAT_1: 11,
SEQ_2: 1;
end;
then not s is
convergent or not (
lim s)
=
0 by
SEQ_2:def 7;
hence thesis by
Th4;
end;
theorem ::
SERIES_1:30
(for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n))) & s1 is
convergent & (
lim s1)
> 1 implies not s is
summable
proof
assume that
A1: for n holds (s
. n)
>=
0 & (s1
. n)
= (n
-root (s
. n)) and
A2: s1 is
convergent and
A3: (
lim s1)
> 1;
set r = ((
lim s1)
- 1);
r
>
0 by
A3,
XREAL_1: 50;
then
consider m such that
A4: for n st m
<= n holds
|.((s1
. n)
- (
lim s1)).|
< r by
A2,
SEQ_2:def 7;
for n st m
<= n holds (s1
. n)
>= 1
proof
let n;
assume m
<= n;
then
|.((s1
. n)
- (
lim s1)).|
< r by
A4;
then ((s1
. n)
- (
lim s1))
> (
- r) by
SEQ_2: 1;
then (((s1
. n)
- (
lim s1))
+ (
lim s1))
> ((
- r)
+ (
lim s1)) by
XREAL_1: 6;
hence thesis;
end;
hence thesis by
A1,
Th29;
end;
registration
let k,n be
Nat;
cluster (k
to_power n) ->
natural;
coherence ;
end
definition
let k,n be
Nat;
:: original:
to_power
redefine
func k
to_power n ->
Element of
NAT ;
coherence by
ORDINAL1:def 12;
end
theorem ::
SERIES_1:31
Th31: s is
non-increasing & (for n holds (s
. n)
>=
0 & (s1
. n)
= ((2
to_power n)
* (s
. (2
to_power n)))) implies (s is
summable iff s1 is
summable)
proof
assume that
A1: s is
non-increasing and
A2: for n holds (s
. n)
>=
0 & (s1
. n)
= ((2
to_power n)
* (s
. (2
to_power n)));
A3: ((
Partial_Sums s)
. (2
to_power (
0
+ 1)))
= ((
Partial_Sums s)
. (1
+ 1))
.= (((
Partial_Sums s)
. (
0
+ 1))
+ (s
. 2)) by
Def1
.= ((((
Partial_Sums s)
.
0 )
+ (s
. 1))
+ (s
. 2)) by
Def1
.= (((s
.
0 )
+ (s
. 1))
+ (s
. 2)) by
Def1;
A4:
now
let n;
(s
. (2
to_power n))
>=
0 by
A2;
then ((2
to_power n)
* (s
. (2
to_power n)))
>=
0 ;
hence (s1
. n)
>=
0 by
A2;
end;
thus s is
summable implies s1 is
summable
proof
defpred
Y[
Nat] means ((
Partial_Sums s1)
. $1)
<= (2
* ((
Partial_Sums s)
. (2
to_power $1)));
A5: (s
.
0 )
>=
0 by
A2;
A6: for n st
Y[n] holds
Y[(n
+ 1)]
proof
let n;
deffunc
U(
Nat) = (((
Partial_Sums s)
. ((2
to_power n)
+ $1))
- ((
Partial_Sums s)
. (2
to_power n)));
consider a be
Real_Sequence such that
A7: for m holds (a
. m)
=
U(m) from
SEQ_1:sch 1;
defpred
X[
Nat] means $1
> (2
to_power n) or ($1
* (s
. (2
to_power (n
+ 1))))
<= (a
. $1);
A8: for m st
X[m] holds
X[(m
+ 1)]
proof
let m;
assume
A9: m
> (2
to_power n) or (m
* (s
. (2
to_power (n
+ 1))))
<= (a
. m);
now
per cases by
A9;
suppose m
> (2
to_power n);
hence thesis by
NAT_1: 13;
end;
suppose
A10: (m
* (s
. (2
to_power (n
+ 1))))
<= (a
. m);
now
per cases ;
suppose m
< (2
to_power n);
then (m
+ 1)
<= (2
to_power n) by
NAT_1: 13;
then ((2
to_power n)
+ (m
+ 1))
<= ((2
to_power n)
+ (2
to_power n)) by
XREAL_1: 7;
then (((2
to_power n)
+ m)
+ 1)
<= (2
* (2
to_power n));
then (((2
to_power n)
+ m)
+ 1)
<= ((2
to_power 1)
* (2
to_power n));
then (((2
to_power n)
+ m)
+ 1)
<= (2
to_power (n
+ 1)) by
POWER: 27;
then (s
. (((2
to_power n)
+ m)
+ 1))
>= (s
. (2
to_power (n
+ 1))) by
A1,
SEQM_3: 8;
then ((m
* (s
. (2
to_power (n
+ 1))))
+ (1
* (s
. (2
to_power (n
+ 1)))))
<= ((a
. m)
+ (s
. (((2
to_power n)
+ m)
+ 1))) by
A10,
XREAL_1: 7;
then ((m
+ 1)
* (s
. (2
to_power (n
+ 1))))
<= ((((
Partial_Sums s)
. ((2
to_power n)
+ m))
- ((
Partial_Sums s)
. (2
to_power n)))
+ (s
. (((2
to_power n)
+ m)
+ 1))) by
A7;
then ((m
+ 1)
* (s
. (2
to_power (n
+ 1))))
<= ((((
Partial_Sums s)
. ((2
to_power n)
+ m))
+ (s
. (((2
to_power n)
+ m)
+ 1)))
- ((
Partial_Sums s)
. (2
to_power n)));
then ((m
+ 1)
* (s
. (2
to_power (n
+ 1))))
<= (((
Partial_Sums s)
. ((2
to_power n)
+ (m
+ 1)))
- ((
Partial_Sums s)
. (2
to_power n))) by
Def1;
hence thesis by
A7;
end;
suppose m
>= (2
to_power n);
hence thesis by
NAT_1: 13;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
(a
.
0 )
= (((
Partial_Sums s)
. ((2
to_power n)
+
0 ))
- ((
Partial_Sums s)
. (2
to_power n))) by
A7
.=
0 ;
then
A11:
X[
0 ];
for m holds
X[m] from
NAT_1:sch 2(
A11,
A8);
then (2
* ((2
to_power n)
* (s
. (2
to_power (n
+ 1)))))
<= (2
* (a
. (2
to_power n))) by
XREAL_1: 64;
then ((2
* (2
to_power n))
* (s
. (2
to_power (n
+ 1))))
<= (2
* (a
. (2
to_power n)));
then (((2
to_power 1)
* (2
to_power n))
* (s
. (2
to_power (n
+ 1))))
<= (2
* (a
. (2
to_power n)));
then ((2
to_power (n
+ 1))
* (s
. (2
to_power (n
+ 1))))
<= (2
* (a
. (2
to_power n))) by
POWER: 27;
then (s1
. (n
+ 1))
<= (2
* (a
. (2
to_power n))) by
A2;
then (s1
. (n
+ 1))
<= (2
* (((
Partial_Sums s)
. ((2
to_power n)
+ (2
to_power n)))
- ((
Partial_Sums s)
. (2
to_power n)))) by
A7;
then
A12: ((2
* ((
Partial_Sums s)
. (2
to_power n)))
+ (s1
. (n
+ 1)))
<= ((2
* ((
Partial_Sums s)
. (2
to_power n)))
+ (2
* (((
Partial_Sums s)
. ((2
to_power n)
+ (2
to_power n)))
- ((
Partial_Sums s)
. (2
to_power n))))) by
XREAL_1: 7;
assume ((
Partial_Sums s1)
. n)
<= (2
* ((
Partial_Sums s)
. (2
to_power n)));
then (((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
<= ((2
* ((
Partial_Sums s)
. (2
to_power n)))
+ (s1
. (n
+ 1))) by
XREAL_1: 6;
then
A13: ((
Partial_Sums s1)
. (n
+ 1))
<= ((2
* ((
Partial_Sums s)
. (2
to_power n)))
+ (s1
. (n
+ 1))) by
Def1;
((2
to_power n)
+ (2
to_power n))
= (2
* (2
to_power n))
.= ((2
to_power 1)
* (2
to_power n))
.= (2
to_power (n
+ 1)) by
POWER: 27;
hence thesis by
A13,
A12,
XXREAL_0: 2;
end;
A14: (2
to_power
0 )
= (
0
+ 1) by
POWER: 24;
then
A15: (2
* ((
Partial_Sums s)
. (2
to_power
0 )))
= (2
* (((
Partial_Sums s)
.
0 )
+ (s
. 1))) by
Def1
.= (2
* ((s
.
0 )
+ (s
. 1))) by
Def1
.= ((2
* (s
.
0 ))
+ (2
* (s
. 1)));
assume s is
summable;
then (
Partial_Sums s) is
bounded_above;
then
consider r be
Real such that
A16: for n holds ((
Partial_Sums s)
. n)
< r by
SEQ_2:def 3;
(s
. 1)
>=
0 by
A2;
then
A17: ((s
. 1)
+ (s
. 1))
>= ((s
. 1)
+
0 ) by
XREAL_1: 7;
((
Partial_Sums s1)
.
0 )
= (s1
.
0 ) by
Def1
.= (1
* (s
. 1)) by
A2,
A14
.= (s
. 1);
then
A18:
Y[
0 ] by
A15,
A17,
A5,
XREAL_1: 7;
A19: for n holds
Y[n] from
NAT_1:sch 2(
A18,
A6);
now
let n;
(2
* ((
Partial_Sums s)
. (2
to_power n)))
< (2
* r) & ((
Partial_Sums s1)
. n)
<= (2
* ((
Partial_Sums s)
. (2
to_power n))) by
A19,
A16,
XREAL_1: 68;
hence ((
Partial_Sums s1)
. n)
< (2
* r) by
XXREAL_0: 2;
end;
then (
Partial_Sums s1) is
bounded_above by
SEQ_2:def 3;
hence thesis by
A4,
Th17;
end;
assume s1 is
summable;
then (
Partial_Sums s1) is
bounded_above;
then
consider r be
Real such that
A20: for n holds ((
Partial_Sums s1)
. n)
< r by
SEQ_2:def 3;
A21: (2
to_power
0 )
= 1 by
POWER: 24;
defpred
Y[
Nat] means ((
Partial_Sums s)
. (2
to_power ($1
+ 1)))
<= ((((
Partial_Sums s1)
. $1)
+ (s
.
0 ))
+ (s
. 2));
A22: for n st
Y[n] holds
Y[(n
+ 1)]
proof
let n;
defpred
X[
Nat] means (((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ $1))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= ($1
* (s
. (2
to_power (n
+ 1))));
A23: for m st
X[m] holds
X[(m
+ 1)]
proof
let m;
((2
to_power (n
+ 1))
+ (m
+ 1))
>= (2
to_power (n
+ 1)) by
NAT_1: 11;
then
A24: (s
. ((2
to_power (n
+ 1))
+ (m
+ 1)))
<= (s
. (2
to_power (n
+ 1))) by
A1,
SEQM_3: 8;
assume (((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ m))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= (m
* (s
. (2
to_power (n
+ 1))));
then ((((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ m))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
+ (s
. (((2
to_power (n
+ 1))
+ m)
+ 1)))
<= ((m
* (s
. (2
to_power (n
+ 1))))
+ (s
. (2
to_power (n
+ 1)))) by
A24,
XREAL_1: 7;
then ((((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ m))
+ (s
. (((2
to_power (n
+ 1))
+ m)
+ 1)))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= ((m
* (s
. (2
to_power (n
+ 1))))
+ (s
. (2
to_power (n
+ 1))));
hence thesis by
Def1;
end;
A25:
X[
0 ];
for m holds
X[m] from
NAT_1:sch 2(
A25,
A23);
then (((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ (2
to_power (n
+ 1))))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= ((2
to_power (n
+ 1))
* (s
. (2
to_power (n
+ 1))));
then
A26: (((
Partial_Sums s)
. ((2
to_power (n
+ 1))
+ (2
to_power (n
+ 1))))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= (s1
. (n
+ 1)) by
A2;
assume ((
Partial_Sums s)
. (2
to_power (n
+ 1)))
<= ((((
Partial_Sums s1)
. n)
+ (s
.
0 ))
+ (s
. 2));
then (((
Partial_Sums s)
. (2
to_power (n
+ 1)))
+ (s1
. (n
+ 1)))
<= ((s1
. (n
+ 1))
+ ((((
Partial_Sums s1)
. n)
+ (s
.
0 ))
+ (s
. 2))) by
XREAL_1: 7;
then (((
Partial_Sums s)
. (2
to_power (n
+ 1)))
+ (s1
. (n
+ 1)))
<= (((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ (s
.
0 ))
+ (s
. 2));
then
A27: (((
Partial_Sums s)
. (2
to_power (n
+ 1)))
+ (s1
. (n
+ 1)))
<= ((((
Partial_Sums s1)
. (n
+ 1))
+ (s
.
0 ))
+ (s
. 2)) by
Def1;
((2
to_power (n
+ 1))
+ (2
to_power (n
+ 1)))
= (2
* (2
to_power (n
+ 1)))
.= ((2
to_power 1)
* (2
to_power (n
+ 1)))
.= (2
to_power ((n
+ 1)
+ 1)) by
POWER: 27;
then ((((
Partial_Sums s)
. (2
to_power ((n
+ 1)
+ 1)))
- ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
+ ((
Partial_Sums s)
. (2
to_power (n
+ 1))))
<= (((
Partial_Sums s)
. (2
to_power (n
+ 1)))
+ (s1
. (n
+ 1))) by
A26,
XREAL_1: 7;
hence thesis by
A27,
XXREAL_0: 2;
end;
((((
Partial_Sums s1)
.
0 )
+ (s
.
0 ))
+ (s
. 2))
= (((s1
.
0 )
+ (s
.
0 ))
+ (s
. 2)) by
Def1
.= ((((2
to_power
0 )
* (s
. (2
to_power
0 )))
+ (s
.
0 ))
+ (s
. 2)) by
A2
.= (((s
.
0 )
+ (s
. 1))
+ (s
. 2)) by
A21;
then
A28:
Y[
0 ] by
A3;
A29: for n holds
Y[n] from
NAT_1:sch 2(
A28,
A22);
A30: (
Partial_Sums s) is
non-decreasing by
A2,
Th16;
now
let n;
((
Partial_Sums s1)
. n)
< r by
A20;
then
A31: (((
Partial_Sums s1)
. n)
+ ((s
.
0 )
+ (s
. 2)))
< (r
+ ((s
.
0 )
+ (s
. 2))) by
XREAL_1: 6;
((1
+ 1)
to_power n)
>= (1
+ (n
* 1)) & (1
+ n)
>= n by
NAT_1: 11,
POWER: 49;
then (2
to_power n)
>= n by
XXREAL_0: 2;
then ((2
to_power n)
+ (2
to_power n))
>= (n
+ n) by
XREAL_1: 7;
then (2
* (2
to_power n))
>= (n
+ n);
then ((2
to_power 1)
* (2
to_power n))
>= (n
+ n);
then
A32: (2
to_power (n
+ 1))
>= (n
+ n) by
POWER: 27;
(n
+ n)
>= n by
NAT_1: 11;
then (2
to_power (n
+ 1))
>= n by
A32,
XXREAL_0: 2;
then
A33: ((
Partial_Sums s)
. (2
to_power (n
+ 1)))
>= ((
Partial_Sums s)
. n) by
A30,
SEQM_3: 6;
((
Partial_Sums s)
. (2
to_power (n
+ 1)))
<= ((((
Partial_Sums s1)
. n)
+ (s
.
0 ))
+ (s
. 2)) by
A29;
then ((
Partial_Sums s)
. n)
<= ((((
Partial_Sums s1)
. n)
+ (s
.
0 ))
+ (s
. 2)) by
A33,
XXREAL_0: 2;
hence ((
Partial_Sums s)
. n)
< (r
+ ((s
.
0 )
+ (s
. 2))) by
A31,
XXREAL_0: 2;
end;
then (
Partial_Sums s) is
bounded_above by
SEQ_2:def 3;
hence thesis by
A2,
Th17;
end;
Lm2: 1
in
REAL by
XREAL_0:def 1;
theorem ::
SERIES_1:32
p
> 1 & (for n st n
>= 1 holds (s
. n)
= (1
/ (n
to_power p))) implies s is
summable
proof
assume that
A1: p
> 1 and
A2: for n st n
>= 1 holds (s
. n)
= (1
/ (n
to_power p));
defpred
X[
Nat,
Real] means ($1
=
0 & $2
= 1) or ($1
>= 1 & $2
= (1
/ ($1
to_power p)));
A3: for n be
Element of
NAT holds ex r be
Element of
REAL st
X[n, r]
proof
let n be
Element of
NAT ;
A4: n
<>
0 implies n
>= (
0
+ 1) by
NAT_1: 13;
per cases ;
suppose
A5: n
=
0 ;
reconsider jj = 1 as
Real;
take jj;
thus thesis by
A5,
Lm2;
end;
suppose
A6: n
>
0 ;
reconsider n1 = (1
/ (n
to_power p)) as
Element of
REAL by
XREAL_0:def 1;
take n1;
thus thesis by
A6,
A4;
end;
end;
consider s1 such that
A7: for n be
Element of
NAT holds
X[n, (s1
. n)] from
FUNCT_2:sch 3(
A3);
deffunc
V(
Nat) = ((2
to_power $1)
* (s1
. (2
to_power $1)));
consider s2 such that
A8: for n holds (s2
. n)
=
V(n) from
SEQ_1:sch 1;
A9: (s1
.
0 )
= 1 by
A7;
now
let n;
now
per cases by
NAT_1: 6;
suppose
A10: n
=
0 ;
then ((n
+ 1)
#R p)
>= 1 by
A1,
PREPOWER: 85;
then
A11: ((n
+ 1)
to_power p)
>= 1 by
POWER:def 2;
(s1
. (n
+ 1))
= (1
/ ((n
+ 1)
to_power p)) by
A7;
hence (s1
. (n
+ 1))
<= (s1
. n) by
A9,
A10,
A11,
XREAL_1: 211;
end;
suppose
A12: ex m be
Nat st n
= (m
+ 1);
A13: n
in
NAT by
ORDINAL1:def 12;
(n
to_power p)
>
0 by
POWER: 34,
A12;
then (1
/ (n
to_power p))
>
0 ;
then
A14: (s1
. n)
>
0 by
A7,
A13;
A15: (n
/ (n
+ 1))
<= 1 by
NAT_1: 11,
XREAL_1: 183;
A16: (n
/ (n
+ 1))
>
0 by
A12;
((s1
. (n
+ 1))
/ (s1
. n))
= ((1
/ ((n
+ 1)
to_power p))
/ (s1
. n)) by
A7
.= ((1
/ ((n
+ 1)
to_power p))
/ (1
/ (n
to_power p))) by
A7,
A12
.= ((1
/ ((n
+ 1)
to_power p))
* (n
to_power p))
.= ((n
to_power p)
/ ((n
+ 1)
to_power p))
.= ((n
/ (n
+ 1))
to_power p) by
A12,
POWER: 31
.= ((n
/ (n
+ 1))
#R p) by
A16,
POWER:def 2;
then ((s1
. (n
+ 1))
/ (s1
. n))
<= ((n
/ (n
+ 1))
#R
0 ) by
A1,
A16,
A15,
PREPOWER: 84;
then ((s1
. (n
+ 1))
/ (s1
. n))
<= 1 by
A12,
PREPOWER: 71;
hence (s1
. (n
+ 1))
<= (s1
. n) by
A14,
XREAL_1: 187;
end;
end;
hence (s1
. (n
+ 1))
<= (s1
. n);
end;
then
A17: s1 is
non-increasing;
A18:
now
let n;
assume n
>=
0 ;
A19: (n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
((s
^\ 1)
. n)
= (s
. (n
+ 1)) by
NAT_1:def 3
.= (1
/ ((n
+ 1)
to_power p)) by
A2,
A19
.= (s1
. (n
+ 1)) by
A7
.= ((s1
^\ 1)
. n) by
NAT_1:def 3;
hence ((s1
^\ 1)
. n)
>= ((s
^\ 1)
. n);
end;
deffunc
U(
Nat) = ($1
-root (s2
. $1));
consider s3 such that
A20: for n holds (s3
. n)
=
U(n) from
SEQ_1:sch 1;
A21:
now
let n;
A22: (2
to_power n)
>
0 by
POWER: 34;
thus
A23: (s2
. n)
= ((2
to_power n)
* (s1
. (2
to_power n))) by
A8
.= ((2
to_power n)
* (1
/ ((2
to_power n)
to_power p))) by
A7,
A22
.= ((2
to_power n)
* (1
/ (2
to_power (n
* p)))) by
POWER: 33
.= ((2
to_power n)
* (2
to_power (
- (n
* p)))) by
POWER: 28
.= (2
to_power (n
+ (
- (n
* p)))) by
POWER: 27
.= (2
to_power ((1
- p)
* n));
hence (s2
. n)
>=
0 by
POWER: 34;
(s2
. n)
= ((2
to_power (1
- p))
to_power n) by
A23,
POWER: 33;
hence (s3
. n)
= (n
-root ((2
to_power (1
- p))
to_power n)) by
A20;
end;
A0: (2
to_power (1
- p)) is
set by
TARSKI: 1;
A24:
now
let n be
Nat;
A25: (n
+ 1)
>= (
0
+ 1) & (2
to_power (1
- p))
>=
0 by
POWER: 34,
XREAL_1: 6;
thus ((s3
^\ 1)
. n)
= (s3
. (n
+ 1)) by
NAT_1:def 3
.= ((n
+ 1)
-root ((2
to_power (1
- p))
to_power (n
+ 1))) by
A21
.= (2
to_power (1
- p)) by
A25,
POWER: 4;
end;
then
A26: (s3
^\ 1) is
constant by
A0;
then (
lim (s3
^\ 1))
= ((s3
^\ 1)
.
0 ) by
SEQ_4: 26
.= (2
to_power (1
- p)) by
A24;
then
A27: (
lim s3)
= (2
to_power (1
- p)) by
A26,
SEQ_4: 22;
A28:
now
let n;
now
per cases by
NAT_1: 6;
suppose n
=
0 ;
hence (s1
. n)
>=
0 by
A7;
end;
suppose
A29: ex m be
Nat st n
= (m
+ 1);
A30: n
in
NAT by
ORDINAL1:def 12;
(n
to_power p)
>
0 by
POWER: 34,
A29;
then (1
/ (n
to_power p))
>=
0 ;
hence (s1
. n)
>=
0 by
A7,
A30;
end;
end;
hence (s1
. n)
>=
0 & (s2
. n)
= ((2
to_power n)
* (s1
. (2
to_power n))) by
A8;
end;
A31:
now
let n;
A32: (n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
A33: (s1
. (n
+ 1))
>=
0 by
A28;
((s
^\ 1)
. n)
= (s
. (n
+ 1)) by
NAT_1:def 3
.= (1
/ ((n
+ 1)
to_power p)) by
A2,
A32
.= (s1
. (n
+ 1)) by
A7
.= ((s1
^\ 1)
. n) by
NAT_1:def 3;
hence ((s
^\ 1)
. n)
>=
0 by
A33,
NAT_1:def 3;
end;
A34: s3 is
convergent by
A26,
SEQ_4: 21;
(1
- p)
<
0 by
A1,
XREAL_1: 49;
then (
lim s3)
< 1 by
A27,
POWER: 36;
then s2 is
summable by
A20,
A21,
A34,
Th28;
then s1 is
summable by
A17,
A28,
Th31;
then (s1
^\ 1) is
summable by
Th12;
then (s
^\ 1) is
summable by
A31,
A18,
Th19;
hence thesis by
Th13;
end;
::$Notion-Name
theorem ::
SERIES_1:33
p
<= 1 & (for n st n
>= 1 holds (s
. n)
= (1
/ (n
to_power p))) implies not s is
summable
proof
assume that
A1: p
<= 1 and
A2: for n st n
>= 1 holds (s
. n)
= (1
/ (n
to_power p));
per cases ;
suppose
A3: p
<
0 ;
now
assume s is
convergent & (
lim s)
=
0 ;
then
consider m such that
A4: for n st n
>= m holds
|.((s
. n)
-
0 ).|
< 1 by
SEQ_2:def 7;
consider k such that
A5: k
> m by
SEQ_4: 3;
now
let n such that
A6: n
>= k;
A7: n
>
0 by
A5,
A6;
then
A8: n
>= (
0
+ 1) by
NAT_1: 13;
n
>= m by
A5,
A6,
XXREAL_0: 2;
then
|.((s
. n)
-
0 ).|
< 1 by
A4;
then
|.(1
/ (n
to_power p)).|
< 1 by
A2,
A8;
then
|.(n
to_power (
- p)).|
< 1 by
A7,
POWER: 28;
then
A9: (n
to_power (
- p))
< 1 by
ABSVALUE:def 1;
(n
#R (
- p))
>= 1 by
A3,
A8,
PREPOWER: 85;
hence contradiction by
A7,
A9,
POWER:def 2;
end;
hence contradiction;
end;
hence thesis by
Th4;
end;
suppose
A10: p
>=
0 ;
defpred
X[
Element of
NAT ,
Real] means ($1
=
0 & $2
= 1) or ($1
>= 1 & $2
= (1
/ ($1
to_power p)));
A11: for n be
Element of
NAT holds ex r be
Element of
REAL st
X[n, r]
proof
let n be
Element of
NAT ;
A12: n
<>
0 implies n
>= (
0
+ 1) by
NAT_1: 13;
per cases ;
suppose
A13: n
=
0 ;
reconsider jj = 1 as
Real;
take jj;
thus thesis by
A13,
Lm2;
end;
suppose
A14: n
>
0 ;
reconsider n1 = (1
/ (n
to_power p)) as
Element of
REAL by
XREAL_0:def 1;
take n1;
thus thesis by
A14,
A12;
end;
end;
consider s1 such that
A15: for n be
Element of
NAT holds
X[n, (s1
. n)] from
FUNCT_2:sch 3(
A11);
A16: (s1
.
0 )
= 1 by
A15;
now
let n;
now
per cases by
NAT_1: 6;
suppose
A17: n
=
0 ;
then ((n
+ 1)
#R p)
>= 1 by
A10,
PREPOWER: 85;
then
A18: ((n
+ 1)
to_power p)
>= 1 by
POWER:def 2;
(s1
. (n
+ 1))
= (1
/ ((n
+ 1)
to_power p)) by
A15;
hence (s1
. (n
+ 1))
<= (s1
. n) by
A16,
A17,
A18,
XREAL_1: 211;
end;
suppose
A19: ex m be
Nat st n
= (m
+ 1);
A20: n
in
NAT by
ORDINAL1:def 12;
(n
to_power p)
>
0 by
POWER: 34,
A19;
then (1
/ (n
to_power p))
>
0 ;
then
A21: (s1
. n)
>
0 by
A15,
A20;
A22: (n
/ (n
+ 1))
<= 1 by
NAT_1: 11,
XREAL_1: 183;
A23: (n
/ (n
+ 1))
>
0 by
A19;
((s1
. (n
+ 1))
/ (s1
. n))
= ((1
/ ((n
+ 1)
to_power p))
/ (s1
. n)) by
A15
.= ((1
/ ((n
+ 1)
to_power p))
/ (1
/ (n
to_power p))) by
A15,
A19
.= ((1
/ ((n
+ 1)
to_power p))
* (n
to_power p))
.= ((n
to_power p)
/ ((n
+ 1)
to_power p))
.= ((n
/ (n
+ 1))
to_power p) by
A19,
POWER: 31
.= ((n
/ (n
+ 1))
#R p) by
A23,
POWER:def 2;
then ((s1
. (n
+ 1))
/ (s1
. n))
<= ((n
/ (n
+ 1))
#R
0 ) by
A10,
A23,
A22,
PREPOWER: 84;
then ((s1
. (n
+ 1))
/ (s1
. n))
<= 1 by
A19,
PREPOWER: 71;
hence (s1
. (n
+ 1))
<= (s1
. n) by
A21,
XREAL_1: 187;
end;
end;
hence (s1
. (n
+ 1))
<= (s1
. n);
end;
then
A24: s1 is
non-increasing;
A25:
now
let n;
A26: n
in
NAT by
ORDINAL1:def 12;
assume
A27: n
>= 1;
then (s
. n)
= (1
/ (n
to_power p)) by
A2
.= (s1
. n) by
A15,
A27,
A26;
hence (s
. n)
>= (s1
. n);
end;
deffunc
U(
Nat) = ((2
to_power $1)
* (s1
. (2
to_power $1)));
consider s2 such that
A28: for n holds (s2
. n)
=
U(n) from
SEQ_1:sch 1;
A29:
now
let n;
now
per cases by
NAT_1: 6;
suppose n
=
0 ;
hence (s1
. n)
>=
0 by
A15;
end;
suppose
A30: ex m be
Nat st n
= (m
+ 1);
A31: n
in
NAT by
ORDINAL1:def 12;
(n
to_power p)
>
0 by
POWER: 34,
A30;
then (1
/ (n
to_power p))
>=
0 ;
hence (s1
. n)
>=
0 by
A15,
A31;
end;
end;
hence (s1
. n)
>=
0 & (s2
. n)
= ((2
to_power n)
* (s1
. (2
to_power n))) by
A28;
end;
now
assume s2 is
convergent & (
lim s2)
=
0 ;
then
consider m such that
A32: for n st n
>= m holds
|.((s2
. n)
-
0 ).|
< (1
/ 2) by
SEQ_2:def 7;
now
let n;
assume n
>= m;
then
|.((s2
. n)
-
0 ).|
< (1
/ 2) by
A32;
then
A33:
|.((2
to_power n)
* (s1
. (2
to_power n))).|
< (1
/ 2) by
A28;
(2
to_power n)
>= 1 by
PREPOWER: 11;
then
|.((2
to_power n)
* (1
/ ((2
to_power n)
to_power p))).|
< (1
/ 2) by
A15,
A33;
then
|.((2
to_power n)
* (1
/ (2
to_power (n
* p)))).|
< (1
/ 2) by
POWER: 33;
then
|.((2
to_power n)
* (2
to_power (
- (n
* p)))).|
< (1
/ 2) by
POWER: 28;
then
|.(2
to_power (n
+ (
- (n
* p)))).|
< (1
/ 2) by
POWER: 27;
then (2
to_power (n
- (n
* p)))
< (1
/ 2) by
ABSVALUE:def 1;
then ((2
to_power (n
- (n
* p)))
* 2)
< ((1
/ 2)
* 2) by
XREAL_1: 68;
then ((2
to_power (n
- (n
* p)))
* (2
to_power 1))
< 1;
then
A34: (2
to_power ((n
- (n
* p))
+ 1))
< 1 by
POWER: 27;
(1
- p)
>=
0 by
A1,
XREAL_1: 48;
then (n
* (1
- p))
>=
0 ;
then (2
#R ((n
- (n
* p))
+ 1))
>= 1 by
PREPOWER: 85;
hence contradiction by
A34,
POWER:def 2;
end;
hence contradiction;
end;
then not s2 is
summable by
Th4;
then not s1 is
summable by
A24,
A29,
Th31;
hence thesis by
A29,
A25,
Th19;
end;
end;
definition
let s;
::
SERIES_1:def4
attr s is
absolutely_summable means (
abs s) is
summable;
end
theorem ::
SERIES_1:34
Th34: for n, m st n
<= m holds
|.(((
Partial_Sums s)
. m)
- ((
Partial_Sums s)
. n)).|
<=
|.(((
Partial_Sums
|.s.|)
. m)
- ((
Partial_Sums
|.s.|)
. n)).|
proof
let n, m such that
A1: n
<= m;
reconsider u = n, v = m as
Integer;
set s2 = (
Partial_Sums (
abs s));
set s1 = (
Partial_Sums s);
defpred
X[
Nat] means
|.((s1
. (n
+ $1))
- (s1
. n)).|
<=
|.((s2
. (n
+ $1))
- (s2
. n)).|;
now
let k;
|.(s
. k).|
>=
0 by
COMPLEX1: 46;
hence ((
abs s)
. k)
>=
0 by
SEQ_1: 12;
end;
then
A2: s2 is
non-decreasing by
Th16;
A3: for k st
X[k] holds
X[(k
+ 1)]
proof
let k;
A4:
|.(s
. ((n
+ k)
+ 1)).|
>=
0 by
COMPLEX1: 46;
assume
|.((s1
. (n
+ k))
- (s1
. n)).|
<=
|.((s2
. (n
+ k))
- (s2
. n)).|;
then
A5: (
|.(s
. ((n
+ k)
+ 1)).|
+
|.((s1
. (n
+ k))
- (s1
. n)).|)
<= (
|.(s
. ((n
+ k)
+ 1)).|
+
|.((s2
. (n
+ k))
- (s2
. n)).|) by
XREAL_1: 7;
A6:
|.((s2
. (n
+ (k
+ 1)))
- (s2
. n)).|
=
|.(((s2
. (n
+ k))
+ ((
abs s)
. ((n
+ k)
+ 1)))
- (s2
. n)).| by
Def1
.=
|.((
|.(s
. ((n
+ k)
+ 1)).|
+ (s2
. (n
+ k)))
- (s2
. n)).| by
SEQ_1: 12
.=
|.(
|.(s
. ((n
+ k)
+ 1)).|
+ ((s2
. (n
+ k))
- (s2
. n))).|;
(s2
. (n
+ k))
>= (s2
. n) by
A2,
SEQM_3: 5;
then
A7: ((s2
. (n
+ k))
- (s2
. n))
>=
0 by
XREAL_1: 48;
|.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).|
=
|.(((s
. ((n
+ k)
+ 1))
+ (s1
. (n
+ k)))
- (s1
. n)).| by
Def1
.=
|.((s
. ((n
+ k)
+ 1))
+ ((s1
. (n
+ k))
- (s1
. n))).|;
then
|.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).|
<= (
|.(s
. ((n
+ k)
+ 1)).|
+
|.((s1
. (n
+ k))
- (s1
. n)).|) by
COMPLEX1: 56;
then
|.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).|
<= (
|.(s
. ((n
+ k)
+ 1)).|
+
|.((s2
. (n
+ k))
- (s2
. n)).|) by
A5,
XXREAL_0: 2;
then
|.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).|
<= (
|.(s
. ((n
+ k)
+ 1)).|
+ ((s2
. (n
+ k))
- (s2
. n))) by
A7,
ABSVALUE:def 1;
hence thesis by
A7,
A4,
A6,
ABSVALUE:def 1;
end;
reconsider k = (v
- u) as
Element of
NAT by
A1,
INT_1: 5;
A8: (n
+ k)
= m;
A9:
X[
0 ];
for k holds
X[k] from
NAT_1:sch 2(
A9,
A3);
hence thesis by
A8;
end;
registration
cluster
absolutely_summable ->
summable for
Real_Sequence;
coherence
proof
let s be
Real_Sequence;
assume s is
absolutely_summable;
then
A1: (
abs s) is
summable;
now
let r;
assume
0
< r;
then
consider n such that
A2: for m st n
<= m holds
|.(((
Partial_Sums (
abs s))
. m)
- ((
Partial_Sums (
abs s))
. n)).|
< r by
A1,
Th21;
take n;
let m;
assume
A3: n
<= m;
then
A4:
|.(((
Partial_Sums s)
. m)
- ((
Partial_Sums s)
. n)).|
<=
|.(((
Partial_Sums (
abs s))
. m)
- ((
Partial_Sums (
abs s))
. n)).| by
Th34;
|.(((
Partial_Sums (
abs s))
. m)
- ((
Partial_Sums (
abs s))
. n)).|
< r by
A2,
A3;
hence
|.(((
Partial_Sums s)
. m)
- ((
Partial_Sums s)
. n)).|
< r by
A4,
XXREAL_0: 2;
end;
hence thesis by
Th21;
end;
end
theorem ::
SERIES_1:35
s is
absolutely_summable implies s is
summable;
theorem ::
SERIES_1:36
(for n holds
0
<= (s
. n)) & s is
summable implies s is
absolutely_summable
proof
assume that
A1: for n holds
0
<= (s
. n) and
A2: s is
summable;
A3: for n holds (s
. n)
=
|.(s
. n).| by
A1,
ABSVALUE:def 1;
(
Partial_Sums s) is
convergent by
A2;
then (
Partial_Sums (
abs s)) is
convergent by
A3,
SEQ_1: 12;
then (
abs s) is
summable;
hence thesis;
end;
theorem ::
SERIES_1:37
(for n holds (s
. n)
<>
0 & (s1
. n)
= (((
abs s)
. (n
+ 1))
/ ((
abs s)
. n))) & s1 is
convergent & (
lim s1)
< 1 implies s is
absolutely_summable
proof
assume that
A1: for n holds (s
. n)
<>
0 & (s1
. n)
= (((
abs s)
. (n
+ 1))
/ ((
abs s)
. n)) and
A2: s1 is
convergent & (
lim s1)
< 1;
now
let n;
((
abs s)
. n)
=
|.(s
. n).| & (s
. n)
<>
0 by
A1,
SEQ_1: 12;
hence ((
abs s)
. n)
>
0 by
COMPLEX1: 47;
thus (s1
. n)
= (((
abs s)
. (n
+ 1))
/ ((
abs s)
. n)) by
A1;
end;
then (
abs s) is
summable by
A2,
Th26;
hence thesis;
end;
theorem ::
SERIES_1:38
Th38: r
>
0 & (ex m st for n st n
>= m holds
|.(s
. n).|
>= r) implies not s is
convergent or (
lim s)
<>
0
proof
assume
A1: r
>
0 ;
given m such that
A2: for n st n
>= m holds
|.(s
. n).|
>= r;
now
per cases ;
suppose not s is
convergent;
hence thesis;
end;
suppose
A3: s is
convergent;
now
assume (
lim s)
=
0 ;
then
consider k such that
A4: for n st n
>= k holds
|.((s
. n)
-
0 ).|
< r by
A1,
A3,
SEQ_2:def 7;
now
let n such that
A5: n
>= (m
+ k);
(m
+ k)
>= k by
NAT_1: 11;
then n
>= k by
A5,
XXREAL_0: 2;
then
A6:
|.((s
. n)
-
0 ).|
< r by
A4;
(m
+ k)
>= m by
NAT_1: 11;
then n
>= m by
A5,
XXREAL_0: 2;
hence contradiction by
A2,
A6;
end;
hence contradiction;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
SERIES_1:39
(for n holds (s
. n)
<>
0 ) & (ex m st for n st n
>= m holds (((
abs s)
. (n
+ 1))
/ ((
abs s)
. n))
>= 1) implies not s is
summable
proof
assume
A1: for n holds (s
. n)
<>
0 ;
given m such that
A2: for n st n
>= m holds (((
abs s)
. (n
+ 1))
/ ((
abs s)
. n))
>= 1;
A3:
now
defpred
X[
Nat] means
|.(s
. (m
+ $1)).|
>=
|.(s
. m).|;
A4: for k st
X[k] holds
X[(k
+ 1)]
proof
let k such that
A5:
|.(s
. (m
+ k)).|
>=
|.(s
. m).|;
(((
abs s)
. ((m
+ k)
+ 1))
/ ((
abs s)
. (m
+ k)))
>= 1 by
A2,
NAT_1: 11;
then (
|.(s
. ((m
+ k)
+ 1)).|
/ ((
abs s)
. (m
+ k)))
>= 1 by
SEQ_1: 12;
then
A6: (
|.(s
. ((m
+ k)
+ 1)).|
/
|.(s
. (m
+ k)).|)
>= 1 by
SEQ_1: 12;
(s
. (m
+ k))
<>
0 by
A1;
then
|.(s
. (m
+ k)).|
>
0 by
COMPLEX1: 47;
then
|.(s
. ((m
+ k)
+ 1)).|
>=
|.(s
. (m
+ k)).| by
A6,
XREAL_1: 191;
hence thesis by
A5,
XXREAL_0: 2;
end;
let n;
assume n
>= m;
then
consider k be
Nat such that
A7: n
= (m
+ k) by
NAT_1: 10;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
A8: n
= (m
+ k) by
A7;
A9:
X[
0 ];
for k holds
X[k] from
NAT_1:sch 2(
A9,
A4);
hence
|.(s
. n).|
>=
|.(s
. m).| by
A8;
end;
(s
. m)
<>
0 by
A1;
then
|.(s
. m).|
>
0 by
COMPLEX1: 47;
then not s is
convergent or (
lim s)
<>
0 by
A3,
Th38;
hence thesis by
Th4;
end;
theorem ::
SERIES_1:40
(for n holds (s1
. n)
= (n
-root ((
abs s)
. n))) & s1 is
convergent & (
lim s1)
< 1 implies s is
absolutely_summable
proof
assume that
A1: for n holds (s1
. n)
= (n
-root ((
abs s)
. n)) and
A2: s1 is
convergent & (
lim s1)
< 1;
now
let n;
((
abs s)
. n)
=
|.(s
. n).| by
SEQ_1: 12;
hence ((
abs s)
. n)
>=
0 by
COMPLEX1: 46;
thus (s1
. n)
= (n
-root ((
abs s)
. n)) by
A1;
end;
then (
abs s) is
summable by
A2,
Th28;
hence thesis;
end;
theorem ::
SERIES_1:41
(for n holds (s1
. n)
= (n
-root ((
abs s)
. n))) & (ex m st for n st m
<= n holds (s1
. n)
>= 1) implies not s is
summable
proof
assume
A1: for n holds (s1
. n)
= (n
-root ((
abs s)
. n));
given m such that
A2: for n st m
<= n holds (s1
. n)
>= 1;
now
let n such that
A3: n
>= (m
+ 1);
(m
+ 1)
>= 1 by
NAT_1: 11;
then
A4: n
>= 1 by
A3,
XXREAL_0: 2;
(m
+ 1)
>= m by
NAT_1: 11;
then
A5: n
>= m by
A3,
XXREAL_0: 2;
(s1
. n)
= (n
-root ((
abs s)
. n)) by
A1
.= (n
-root
|.(s
. n).|) by
SEQ_1: 12;
then
|.(s
. n).|
>=
0 & ((n
-root
|.(s
. n).|)
|^ n)
>= 1 by
A2,
A5,
COMPLEX1: 46,
PREPOWER: 11;
hence
|.(s
. n).|
>= 1 by
A4,
POWER: 4;
end;
then not s is
convergent or (
lim s)
<>
0 by
Th38;
hence thesis by
Th4;
end;
theorem ::
SERIES_1:42
(for n holds (s1
. n)
= (n
-root ((
abs s)
. n))) & s1 is
convergent & (
lim s1)
> 1 implies not s is
summable
proof
assume that
A1: for n holds (s1
. n)
= (n
-root ((
abs s)
. n)) and
A2: s1 is
convergent and
A3: (
lim s1)
> 1;
((
lim s1)
- 1)
>
0 by
A3,
XREAL_1: 50;
then
consider m such that
A4: for n st n
>= m holds
|.((s1
. n)
- (
lim s1)).|
< ((
lim s1)
- 1) by
A2,
SEQ_2:def 7;
now
let n such that
A5: n
>= (m
+ 1);
A6: (s1
. n)
= (n
-root ((
abs s)
. n)) by
A1
.= (n
-root
|.(s
. n).|) by
SEQ_1: 12;
(m
+ 1)
>= m by
NAT_1: 11;
then n
>= m by
A5,
XXREAL_0: 2;
then
|.((n
-root
|.(s
. n).|)
- (
lim s1)).|
< ((
lim s1)
- 1) by
A4,
A6;
then (
- ((
lim s1)
- 1))
< ((n
-root
|.(s
. n).|)
- (
lim s1)) by
SEQ_2: 1;
then ((1
- (
lim s1))
+ (
lim s1))
< (((n
-root
|.(s
. n).|)
- (
lim s1))
+ (
lim s1)) by
XREAL_1: 6;
then
A7:
|.(s
. n).|
>=
0 & ((n
-root
|.(s
. n).|)
|^ n)
>= 1 by
COMPLEX1: 46,
PREPOWER: 11;
(m
+ 1)
>= 1 by
NAT_1: 11;
then n
>= 1 by
A5,
XXREAL_0: 2;
hence
|.(s
. n).|
>= 1 by
A7,
POWER: 4;
end;
then not s is
convergent or (
lim s)
<>
0 by
Th38;
hence thesis by
Th4;
end;
begin
definition
let s;
let n be
Nat;
::
SERIES_1:def5
func
Sum (s,n) ->
Real equals ((
Partial_Sums s)
. n);
coherence ;
end
definition
let s;
let n,m be
Nat;
::
SERIES_1:def6
func
Sum (s,n,m) ->
Real equals ((
Sum (s,n))
- (
Sum (s,m)));
coherence ;
end