series_3.miz
    
    begin
    
    reserve a,b,c for
    positive  
    Real, 
    
m,x,y,z for
    Real, 
    
n for
    Nat, 
    
s,s1,s2,s3,s4,s5 for
    Real_Sequence;
    
    registration
    
      let x;
    
      cluster 
    |.x.| -> non
    negative;
    
      coherence ;
    
    end
    
    
    
    
    
    Lm1: (x 
    ^2 ) 
    = (x 
    |^ 2) 
    
    proof
    
      (x
    ^2 ) 
    = ((x 
    |^ 1) 
    * x) 
    
      .= (x
    |^ (1 
    + 1)) by 
    NEWTON: 6
    
      .= (x
    |^ 2); 
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm2: (2 
    |^ 3) 
    = 8 
    
    proof
    
      (2
    |^ 3) 
    = (2 
    |^ (2 
    + 1)) 
    
      .= ((2
    |^ 2) 
    * 2) by 
    NEWTON: 6
    
      .= ((2
    ^2 ) 
    * 2) by 
    Lm1
    
      .= 8;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm3: (3 
    |^ 3) 
    = 27 
    
    proof
    
      (3
    |^ 3) 
    = (3 
    |^ (2 
    + 1)) 
    
      .= ((3
    |^ 2) 
    * 3) by 
    NEWTON: 6
    
      .= ((3
    ^2 ) 
    * 3) by 
    Lm1
    
      .= 27;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm4: (( 
    - x) 
    |^ 3) 
    = ( 
    - (x 
    |^ 3)) 
    
    proof
    
      3
    = ((2 
    * 1) 
    + 1); 
    
      then 3 is
    odd by 
    ABIAN: 1;
    
      hence thesis by
    POWER: 2;
    
    end;
    
    
    
    
    
    Lm5: ((x 
    + y) 
    |^ 3) 
    = ((((x 
    |^ 3) 
    + ((3 
    * (x 
    ^2 )) 
    * y)) 
    + ((3 
    * x) 
    * (y 
    ^2 ))) 
    + (y 
    |^ 3)) 
    
    proof
    
      ((x
    + y) 
    |^ 3) 
    = (((x 
    |^ 3) 
    + (((3 
    * y) 
    * (x 
    ^2 )) 
    + ((3 
    * (y 
    ^2 )) 
    * x))) 
    + (y 
    |^ 3)) by 
    POLYEQ_1: 14
    
      .= ((((x
    |^ 3) 
    + ((3 
    * (x 
    ^2 )) 
    * y)) 
    + ((3 
    * x) 
    * (y 
    ^2 ))) 
    + (y 
    |^ 3)); 
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm6: ((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    = ((x 
    + y) 
    * (((x 
    ^2 ) 
    - (x 
    * y)) 
    + (y 
    ^2 ))) 
    
    proof
    
      ((((x
    ^2 ) 
    - (x 
    * y)) 
    + (y 
    ^2 )) 
    * (x 
    + y)) 
    = (((((x 
    ^2 ) 
    * x) 
    + (y 
    * (x 
    ^2 ))) 
    - ((x 
    * (x 
    * y)) 
    + (y 
    * (x 
    * y)))) 
    + (((x 
    * (y 
    ^2 )) 
    + (y 
    * (y 
    ^2 ))) 
    + ( 
    0  
    * (y 
    ^2 )))) 
    
      .= ((((x
    |^ 3) 
    + (y 
    * (x 
    ^2 ))) 
    - ((x 
    * (x 
    * y)) 
    + (y 
    * (x 
    * y)))) 
    + ((x 
    * (y 
    ^2 )) 
    + (y 
    * (y 
    ^2 )))) by 
    POLYEQ_2: 4
    
      .= ((((x
    |^ 3) 
    + (y 
    * (x 
    ^2 ))) 
    - (((x 
    ^2 ) 
    * y) 
    + ((y 
    * y) 
    * x))) 
    + ((x 
    * (y 
    ^2 )) 
    + (y 
    |^ 3))) by 
    POLYEQ_2: 4
    
      .= ((x
    |^ 3) 
    + (y 
    |^ 3)); 
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm7: (x 
    ^2 ) 
    <= (y 
    * z) implies 
    |.x.|
    <= ( 
    sqrt (y 
    * z)) 
    
    proof
    
      
    
      
    
    A1: (x 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      assume (x
    ^2 ) 
    <= (y 
    * z); 
    
      then
    
      
    
    A2: ( 
    sqrt (x 
    ^2 )) 
    <= ( 
    sqrt (y 
    * z)) by 
    A1,
    SQUARE_1: 26;
    
      per cases ;
    
        suppose
    
        
    
    A3: x 
    >=  
    0 ; 
    
        then x
    <= ( 
    sqrt (y 
    * z)) by 
    A2,
    SQUARE_1: 22;
    
        hence thesis by
    A3,
    ABSVALUE:def 1;
    
      end;
    
        suppose
    
        
    
    A4: x 
    <  
    0 ; 
    
        then (
    - x) 
    <= ( 
    sqrt (y 
    * z)) by 
    A2,
    SQUARE_1: 23;
    
        hence thesis by
    A4,
    ABSVALUE:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    SERIES_3:1
    
    y
    > x & x 
    >=  
    0 & m 
    >=  
    0 implies (x 
    / y) 
    <= ((x 
    + m) 
    / (y 
    + m)) 
    
    proof
    
      assume that
    
      
    
    A1: y 
    > x and 
    
      
    
    A2: x 
    >=  
    0 and 
    
      
    
    A3: m 
    >=  
    0 ; 
    
      (y
    - x) 
    >  
    0 by 
    A1,
    XREAL_1: 50;
    
      then (m
    * (y 
    - x)) 
    >=  
    0 by 
    A3;
    
      then (((y
    * (x 
    + m)) 
    - (x 
    * (m 
    + y))) 
    / (y 
    * (y 
    + m))) 
    >=  
    0 by 
    A1,
    A2,
    A3;
    
      then (((x
    + m) 
    / (y 
    + m)) 
    - (x 
    / y)) 
    >=  
    0 by 
    A1,
    A2,
    A3,
    XCMPLX_1: 130;
    
      then ((((x
    + m) 
    / (y 
    + m)) 
    - (x 
    / y)) 
    + (x 
    / y)) 
    >= ( 
    0  
    + (x 
    / y)) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:2
    
    
    
    
    
    Th2: ((a 
    + b) 
    / 2) 
    >= ( 
    sqrt (a 
    * b)) 
    
    proof
    
      ((a
    + b) 
    / 2) 
    >= ((2 
    * ( 
    sqrt (a 
    * b))) 
    / 2) by 
    SIN_COS2: 1,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:3
    
    ((b
    / a) 
    + (a 
    / b)) 
    >= 2 
    
    proof
    
      ((a
    - b) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then ((((a
    ^2 ) 
    - ((2 
    * a) 
    * b)) 
    + (b 
    ^2 )) 
    + ((2 
    * a) 
    * b)) 
    >= ( 
    0  
    + ((2 
    * a) 
    * b)) by 
    XREAL_1: 7;
    
      then (((a
    ^2 ) 
    + (b 
    ^2 )) 
    / (a 
    * b)) 
    >= ((2 
    * (a 
    * b)) 
    / (1 
    * (a 
    * b))) by 
    XREAL_1: 72;
    
      then
    
      
    
    A1: (((a 
    ^2 ) 
    + (b 
    ^2 )) 
    / (a 
    * b)) 
    >= (2 
    / 1) by 
    XCMPLX_1: 91;
    
      ((b
    / a) 
    + (a 
    / b)) 
    = (((b 
    * b) 
    / (a 
    * b)) 
    + (a 
    / b)) by 
    XCMPLX_1: 91
    
      .= (((b
    * b) 
    / (a 
    * b)) 
    + ((a 
    * a) 
    / (a 
    * b))) by 
    XCMPLX_1: 91
    
      .= (((b
    ^2 ) 
    + (a 
    ^2 )) 
    / (a 
    * b)); 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    SERIES_3:4
    
    
    
    
    
    Th4: (((x 
    + y) 
    / 2) 
    ^2 ) 
    >= (x 
    * y) 
    
    proof
    
      ((x
    - y) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then ((((x
    ^2 ) 
    - ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + ((2 
    * x) 
    * y)) 
    >= ( 
    0  
    + ((2 
    * x) 
    * y)) by 
    XREAL_1: 7;
    
      then (((x
    ^2 ) 
    + (y 
    ^2 )) 
    + ((2 
    * x) 
    * y)) 
    >= (((2 
    * x) 
    * y) 
    + ((2 
    * x) 
    * y)) by 
    XREAL_1: 7;
    
      then (((x
    + y) 
    ^2 ) 
    / (2 
    * 2)) 
    >= ((4 
    * (x 
    * y)) 
    / 4) by 
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:5
    
    (((x
    ^2 ) 
    + (y 
    ^2 )) 
    / 2) 
    >= (((x 
    + y) 
    / 2) 
    ^2 ) 
    
    proof
    
      ((x
    - y) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then ((((x
    ^2 ) 
    - ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + ((2 
    * x) 
    * y)) 
    >= ( 
    0  
    + ((2 
    * x) 
    * y)) by 
    XREAL_1: 7;
    
      then (((x
    ^2 ) 
    + (y 
    ^2 )) 
    + ((x 
    ^2 ) 
    + (y 
    ^2 ))) 
    >= (((2 
    * x) 
    * y) 
    + ((x 
    ^2 ) 
    + (y 
    ^2 ))) by 
    XREAL_1: 7;
    
      then ((2
    * ((x 
    ^2 ) 
    + (y 
    ^2 ))) 
    / 4) 
    >= (((x 
    + y) 
    ^2 ) 
    / 4) by 
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:6
    
    
    
    
    
    Th6: ((x 
    ^2 ) 
    + (y 
    ^2 )) 
    >= ((2 
    * x) 
    * y) 
    
    proof
    
      ((x
    - y) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then ((((x
    ^2 ) 
    - ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + ((2 
    * x) 
    * y)) 
    >= ( 
    0  
    + ((2 
    * x) 
    * y)) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:7
    
    
    
    
    
    Th7: (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    / 2) 
    >= (x 
    * y) 
    
    proof
    
      (((x
    ^2 ) 
    + (y 
    ^2 )) 
    / 2) 
    >= (((2 
    * x) 
    * y) 
    / 2) by 
    Th6,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:8
    
    
    
    
    
    Th8: ((x 
    ^2 ) 
    + (y 
    ^2 )) 
    >= ((2 
    *  
    |.x.|)
    *  
    |.y.|)
    
    proof
    
      
    
      
    
    A1: (x 
    ^2 ) 
    >=  
    0 & (y 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * ( 
    sqrt ((x 
    ^2 ) 
    * (y 
    ^2 )))) by 
    SIN_COS2: 1;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * (( 
    sqrt (x 
    ^2 )) 
    * ( 
    sqrt (y 
    ^2 )))) by 
    A1,
    SQUARE_1: 29;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * (( 
    sqrt ( 
    |.x.|
    ^2 )) 
    * ( 
    sqrt (y 
    ^2 )))) by 
    COMPLEX1: 75;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * (( 
    sqrt ( 
    |.x.|
    ^2 )) 
    * ( 
    sqrt ( 
    |.y.|
    ^2 )))) by 
    COMPLEX1: 75;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * ( 
    |.x.|
    * ( 
    sqrt ( 
    |.y.|
    ^2 )))) by 
    SQUARE_1: 22;
    
      then ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= (2 
    * ( 
    |.x.|
    *  
    |.y.|)) by
    SQUARE_1: 22;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:9
    
    
    
    
    
    Th9: ((x 
    + y) 
    ^2 ) 
    >= ((4 
    * x) 
    * y) 
    
    proof
    
      (2
    * (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    / 2)) 
    >= (2 
    * (x 
    * y)) by 
    Th7,
    XREAL_1: 64;
    
      then (((x
    ^2 ) 
    + (y 
    ^2 )) 
    + ((2 
    * x) 
    * y)) 
    >= (((2 
    * x) 
    * y) 
    + ((2 
    * x) 
    * y)) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:10
    
    
    
    
    
    Th10: (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 )) 
    >= (((x 
    * y) 
    + (y 
    * z)) 
    + (x 
    * z)) 
    
    proof
    
      ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= ((2 
    * x) 
    * y) & ((y 
    ^2 ) 
    + (z 
    ^2 )) 
    >= ((2 
    * y) 
    * z) by 
    Th6;
    
      then
    
      
    
    A1: (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + ((y 
    ^2 ) 
    + (z 
    ^2 ))) 
    >= (((2 
    * x) 
    * y) 
    + ((2 
    * y) 
    * z)) by 
    XREAL_1: 7;
    
      ((z
    ^2 ) 
    + (x 
    ^2 )) 
    >= ((2 
    * z) 
    * x) by 
    Th6;
    
      then ((((x
    ^2 ) 
    + (y 
    ^2 )) 
    + ((y 
    ^2 ) 
    + (z 
    ^2 ))) 
    + ((z 
    ^2 ) 
    + (x 
    ^2 ))) 
    >= ((((2 
    * x) 
    * y) 
    + ((2 
    * y) 
    * z)) 
    + ((2 
    * z) 
    * x)) by 
    A1,
    XREAL_1: 7;
    
      then ((2
    * (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 ))) 
    / 2) 
    >= ((2 
    * (((x 
    * y) 
    + (y 
    * z)) 
    + (z 
    * x))) 
    / 2) by 
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:11
    
    (((x
    + y) 
    + z) 
    ^2 ) 
    >= (3 
    * (((x 
    * y) 
    + (y 
    * z)) 
    + (x 
    * z))) 
    
    proof
    
      (((x
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 )) 
    >= (((x 
    * y) 
    + (y 
    * z)) 
    + (x 
    * z)) by 
    Th10;
    
      then ((((x
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 )) 
    + ((((2 
    * x) 
    * y) 
    + ((2 
    * y) 
    * z)) 
    + ((2 
    * z) 
    * x))) 
    >= ((((x 
    * y) 
    + (y 
    * z)) 
    + (x 
    * z)) 
    + ((((2 
    * x) 
    * y) 
    + ((2 
    * y) 
    * z)) 
    + ((2 
    * z) 
    * x))) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:12
    
    
    
    
    
    Th12: (((a 
    |^ 3) 
    + (b 
    |^ 3)) 
    + (c 
    |^ 3)) 
    >= (((3 
    * a) 
    * b) 
    * c) 
    
    proof
    
      
    
      
    
    A1: (((a 
    + c) 
    |^ 3) 
    - (((3 
    * (a 
    ^2 )) 
    * c) 
    + ((3 
    * a) 
    * (c 
    ^2 )))) 
    = (((((a 
    |^ 3) 
    + ((3 
    * (a 
    ^2 )) 
    * c)) 
    + ((3 
    * a) 
    * (c 
    ^2 ))) 
    + (c 
    |^ 3)) 
    - (((3 
    * (a 
    ^2 )) 
    * c) 
    + ((3 
    * a) 
    * (c 
    ^2 )))) by 
    Lm5;
    
      (a
    * ((b 
    ^2 ) 
    + (c 
    ^2 ))) 
    >= (a 
    * ((2 
    * b) 
    * c)) & (b 
    * ((a 
    ^2 ) 
    + (c 
    ^2 ))) 
    >= (b 
    * ((2 
    * a) 
    * c)) by 
    Th6,
    XREAL_1: 64;
    
      then
    
      
    
    A2: ((b 
    * ((a 
    ^2 ) 
    + (c 
    ^2 ))) 
    + (a 
    * ((b 
    ^2 ) 
    + (c 
    ^2 )))) 
    >= ((((2 
    * a) 
    * b) 
    * c) 
    + (((2 
    * a) 
    * b) 
    * c)) by 
    XREAL_1: 7;
    
      (((a
    + c) 
    ^2 ) 
    * (a 
    + c)) 
    >= (((4 
    * a) 
    * c) 
    * (a 
    + c)) by 
    Th9,
    XREAL_1: 64;
    
      then (((a
    + c) 
    |^ 2) 
    * (a 
    + c)) 
    >= (((4 
    * a) 
    * c) 
    * (a 
    + c)) by 
    Lm1;
    
      then
    
      
    
    A3: ((a 
    + c) 
    |^ (2 
    + 1)) 
    >= (((4 
    * a) 
    * c) 
    * (a 
    + c)) by 
    NEWTON: 6;
    
      (((b
    + c) 
    ^2 ) 
    * (b 
    + c)) 
    >= (((4 
    * b) 
    * c) 
    * (b 
    + c)) by 
    Th9,
    XREAL_1: 64;
    
      then (((b
    + c) 
    |^ 2) 
    * (b 
    + c)) 
    >= (((4 
    * b) 
    * c) 
    * (b 
    + c)) by 
    Lm1;
    
      then
    
      
    
    A4: ((b 
    + c) 
    |^ (2 
    + 1)) 
    >= (((4 
    * b) 
    * c) 
    * (b 
    + c)) by 
    NEWTON: 6;
    
      (((a
    + b) 
    ^2 ) 
    * (a 
    + b)) 
    >= (((4 
    * a) 
    * b) 
    * (a 
    + b)) by 
    Th9,
    XREAL_1: 64;
    
      then (((a
    + b) 
    |^ 2) 
    * (a 
    + b)) 
    >= (((4 
    * a) 
    * b) 
    * (a 
    + b)) by 
    Lm1;
    
      then ((a
    + b) 
    |^ (2 
    + 1)) 
    >= (((4 
    * a) 
    * b) 
    * (a 
    + b)) by 
    NEWTON: 6;
    
      then (((a
    + b) 
    |^ 3) 
    + ((b 
    + c) 
    |^ 3)) 
    >= ((((4 
    * (a 
    ^2 )) 
    * b) 
    + ((4 
    * a) 
    * (b 
    ^2 ))) 
    + (((4 
    * (b 
    ^2 )) 
    * c) 
    + ((4 
    * b) 
    * (c 
    ^2 )))) by 
    A4,
    XREAL_1: 7;
    
      then ((((a
    + b) 
    |^ 3) 
    + ((b 
    + c) 
    |^ 3)) 
    + ((a 
    + c) 
    |^ 3)) 
    >= ((((((4 
    * (a 
    ^2 )) 
    * b) 
    + ((4 
    * a) 
    * (b 
    ^2 ))) 
    + ((4 
    * (b 
    ^2 )) 
    * c)) 
    + ((4 
    * b) 
    * (c 
    ^2 ))) 
    + (((4 
    * (a 
    ^2 )) 
    * c) 
    + ((4 
    * a) 
    * (c 
    ^2 )))) by 
    A3,
    XREAL_1: 7;
    
      then
    
      
    
    A5: (((((a 
    + b) 
    |^ 3) 
    + ((b 
    + c) 
    |^ 3)) 
    + ((a 
    + c) 
    |^ 3)) 
    + (((((( 
    - ((3 
    * (a 
    ^2 )) 
    * b)) 
    - ((3 
    * a) 
    * (b 
    ^2 ))) 
    - ((3 
    * (b 
    ^2 )) 
    * c)) 
    - ((3 
    * b) 
    * (c 
    ^2 ))) 
    - ((3 
    * (a 
    ^2 )) 
    * c)) 
    - ((3 
    * a) 
    * (c 
    ^2 )))) 
    >= ((((((((4 
    * (a 
    ^2 )) 
    * b) 
    + ((4 
    * a) 
    * (b 
    ^2 ))) 
    + ((4 
    * (b 
    ^2 )) 
    * c)) 
    + ((4 
    * b) 
    * (c 
    ^2 ))) 
    + ((4 
    * (a 
    ^2 )) 
    * c)) 
    + ((4 
    * a) 
    * (c 
    ^2 ))) 
    + (((((( 
    - ((3 
    * (a 
    ^2 )) 
    * b)) 
    - ((3 
    * a) 
    * (b 
    ^2 ))) 
    - ((3 
    * (b 
    ^2 )) 
    * c)) 
    - ((3 
    * b) 
    * (c 
    ^2 ))) 
    - ((3 
    * (a 
    ^2 )) 
    * c)) 
    - ((3 
    * a) 
    * (c 
    ^2 )))) by 
    XREAL_1: 6;
    
      (c
    * ((a 
    ^2 ) 
    + (b 
    ^2 ))) 
    >= (((2 
    * a) 
    * b) 
    * c) by 
    Th6,
    XREAL_1: 64;
    
      then
    
      
    
    A6: (((b 
    * ((a 
    ^2 ) 
    + (c 
    ^2 ))) 
    + (a 
    * ((b 
    ^2 ) 
    + (c 
    ^2 )))) 
    + (c 
    * ((a 
    ^2 ) 
    + (b 
    ^2 )))) 
    >= ((((4 
    * a) 
    * b) 
    * c) 
    + (((2 
    * a) 
    * b) 
    * c)) by 
    A2,
    XREAL_1: 7;
    
      (((a
    + b) 
    |^ 3) 
    - (((3 
    * (a 
    ^2 )) 
    * b) 
    + ((3 
    * a) 
    * (b 
    ^2 )))) 
    = (((((a 
    |^ 3) 
    + ((3 
    * (a 
    ^2 )) 
    * b)) 
    + ((3 
    * a) 
    * (b 
    ^2 ))) 
    + (b 
    |^ 3)) 
    - (((3 
    * (a 
    ^2 )) 
    * b) 
    + ((3 
    * a) 
    * (b 
    ^2 )))) & (((b 
    + c) 
    |^ 3) 
    - (((3 
    * (b 
    ^2 )) 
    * c) 
    + ((3 
    * b) 
    * (c 
    ^2 )))) 
    = (((((b 
    |^ 3) 
    + ((3 
    * (b 
    ^2 )) 
    * c)) 
    + ((3 
    * b) 
    * (c 
    ^2 ))) 
    + (c 
    |^ 3)) 
    - (((3 
    * (b 
    ^2 )) 
    * c) 
    + ((3 
    * b) 
    * (c 
    ^2 )))) by 
    Lm5;
    
      then (2
    * (((a 
    |^ 3) 
    + (b 
    |^ 3)) 
    + (c 
    |^ 3))) 
    >= (((6 
    * a) 
    * b) 
    * c) by 
    A1,
    A5,
    A6,
    XXREAL_0: 2;
    
      then ((2
    * (((a 
    |^ 3) 
    + (b 
    |^ 3)) 
    + (c 
    |^ 3))) 
    / 2) 
    >= ((((6 
    * a) 
    * b) 
    * c) 
    / 2) by 
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:13
    
    
    
    
    
    Th13: ((((a 
    |^ 3) 
    + (b 
    |^ 3)) 
    + (c 
    |^ 3)) 
    / 3) 
    >= ((a 
    * b) 
    * c) 
    
    proof
    
      ((((a
    |^ 3) 
    + (b 
    |^ 3)) 
    + (c 
    |^ 3)) 
    / 3) 
    >= ((((3 
    * a) 
    * b) 
    * c) 
    / 3) by 
    Th12,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:14
    
    ((((a
    / b) 
    |^ 3) 
    + ((b 
    / c) 
    |^ 3)) 
    + ((c 
    / a) 
    |^ 3)) 
    >= (((b 
    / a) 
    + (c 
    / b)) 
    + (a 
    / c)) 
    
    proof
    
      
    
      
    
    A1: 1 
    = (((a 
    / a) 
    * 1) 
    * 1) by 
    XCMPLX_1: 60
    
      .= (((a
    / a) 
    * (b 
    / b)) 
    * 1) by 
    XCMPLX_1: 60
    
      .= (((a
    / a) 
    * (b 
    / b)) 
    * (c 
    / c)) by 
    XCMPLX_1: 60
    
      .= (((a
    / b) 
    * (b 
    / a)) 
    * (c 
    / c)) 
    
      .= ((a
    / b) 
    * ((b 
    / a) 
    * (c 
    / c))) 
    
      .= ((a
    / b) 
    * ((b 
    / c) 
    * (c 
    / a))) 
    
      .= (((a
    / b) 
    * (b 
    / c)) 
    * (c 
    / a)); 
    
      (c
    / b) 
    = ((c 
    / b) 
    * 1) 
    
      .= ((c
    / b) 
    * (a 
    / a)) by 
    XCMPLX_1: 60
    
      .= (((a
    / b) 
    * (c 
    / a)) 
    * 1); 
    
      then
    
      
    
    A2: (c 
    / b) 
    <= (((((a 
    / b) 
    |^ 3) 
    + ((c 
    / a) 
    |^ 3)) 
    + (1 
    |^ 3)) 
    / 3) by 
    Th13;
    
      (a
    / c) 
    = ((a 
    / c) 
    * 1) 
    
      .= ((a
    / c) 
    * (b 
    / b)) by 
    XCMPLX_1: 60
    
      .= (((a
    / b) 
    * (b 
    / c)) 
    * 1); 
    
      then
    
      
    
    A3: (a 
    / c) 
    <= (((((a 
    / b) 
    |^ 3) 
    + ((b 
    / c) 
    |^ 3)) 
    + (1 
    |^ 3)) 
    / 3) by 
    Th13;
    
      (b
    / a) 
    = ((b 
    / a) 
    * 1) 
    
      .= ((b
    / a) 
    * (c 
    / c)) by 
    XCMPLX_1: 60
    
      .= (((b
    / c) 
    * (c 
    / a)) 
    * 1); 
    
      then (b
    / a) 
    <= (((((b 
    / c) 
    |^ 3) 
    + ((c 
    / a) 
    |^ 3)) 
    + (1 
    |^ 3)) 
    / 3) by 
    Th13;
    
      then ((b
    / a) 
    + (c 
    / b)) 
    <= ((((((b 
    / c) 
    |^ 3) 
    / 3) 
    + (((c 
    / a) 
    |^ 3) 
    / 3)) 
    + (1 
    / 3)) 
    + (((((a 
    / b) 
    |^ 3) 
    / 3) 
    + (((c 
    / a) 
    |^ 3) 
    / 3)) 
    + (1 
    / 3))) by 
    A2,
    XREAL_1: 7;
    
      then
    
      
    
    A4: (((b 
    / a) 
    + (c 
    / b)) 
    + (a 
    / c)) 
    <= (((((((b 
    / c) 
    |^ 3) 
    / 3) 
    + (((a 
    / b) 
    |^ 3) 
    / 3)) 
    + ((2 
    * ((c 
    / a) 
    |^ 3)) 
    / 3)) 
    + (2 
    / 3)) 
    + (((((a 
    / b) 
    |^ 3) 
    / 3) 
    + (((b 
    / c) 
    |^ 3) 
    / 3)) 
    + (1 
    / 3))) by 
    A3,
    XREAL_1: 7;
    
      (((a
    / b) 
    * (b 
    / c)) 
    * (c 
    / a)) 
    <= (((((a 
    / b) 
    |^ 3) 
    + ((b 
    / c) 
    |^ 3)) 
    + ((c 
    / a) 
    |^ 3)) 
    / 3) by 
    Th13;
    
      then ((((b
    / a) 
    + (c 
    / b)) 
    + (a 
    / c)) 
    + 1) 
    <= ((((((2 
    * ((b 
    / c) 
    |^ 3)) 
    / 3) 
    + ((2 
    * ((a 
    / b) 
    |^ 3)) 
    / 3)) 
    + ((2 
    * ((c 
    / a) 
    |^ 3)) 
    / 3)) 
    + 1) 
    + (((((a 
    / b) 
    |^ 3) 
    / 3) 
    + (((b 
    / c) 
    |^ 3) 
    / 3)) 
    + (((c 
    / a) 
    |^ 3) 
    / 3))) by 
    A1,
    A4,
    XREAL_1: 7;
    
      then (((((b
    / a) 
    + (c 
    / b)) 
    + (a 
    / c)) 
    + 1) 
    - 1) 
    <= ((((((b 
    / c) 
    |^ 3) 
    + ((a 
    / b) 
    |^ 3)) 
    + ((c 
    / a) 
    |^ 3)) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:15
    
    
    
    
    
    Th15: ((a 
    + b) 
    + c) 
    >= (3 
    * (3 
    -root ((a 
    * b) 
    * c))) 
    
    proof
    
      
    
      
    
    A1: (3 
    -Root c) 
    >  
    0 by 
    PREPOWER:def 2;
    
      (3
    -Root a) 
    >  
    0 & (3 
    -Root b) 
    >  
    0 by 
    PREPOWER:def 2;
    
      then ((((3
    -Root a) 
    |^ 3) 
    + ((3 
    -Root b) 
    |^ 3)) 
    + ((3 
    -Root c) 
    |^ 3)) 
    >= (((3 
    * (3 
    -Root a)) 
    * (3 
    -Root b)) 
    * (3 
    -Root c)) by 
    A1,
    Th12;
    
      then ((a
    + ((3 
    -Root b) 
    |^ 3)) 
    + ((3 
    -Root c) 
    |^ 3)) 
    >= (((3 
    * (3 
    -Root a)) 
    * (3 
    -Root b)) 
    * (3 
    -Root c)) by 
    PREPOWER: 19;
    
      then ((a
    + b) 
    + ((3 
    -Root c) 
    |^ 3)) 
    >= (((3 
    * (3 
    -Root a)) 
    * (3 
    -Root b)) 
    * (3 
    -Root c)) by 
    PREPOWER: 19;
    
      then ((a
    + b) 
    + c) 
    >= ((3 
    * ((3 
    -Root a) 
    * (3 
    -Root b))) 
    * (3 
    -Root c)) by 
    PREPOWER: 19;
    
      then ((a
    + b) 
    + c) 
    >= ((3 
    * (3 
    -Root (a 
    * b))) 
    * (3 
    -Root c)) by 
    PREPOWER: 22;
    
      then ((a
    + b) 
    + c) 
    >= (3 
    * ((3 
    -Root (a 
    * b)) 
    * (3 
    -Root c))); 
    
      then ((a
    + b) 
    + c) 
    >= (3 
    * (3 
    -Root ((a 
    * b) 
    * c))) by 
    PREPOWER: 22;
    
      hence thesis by
    POWER:def 1;
    
    end;
    
    theorem :: 
    
    SERIES_3:16
    
    (((a
    + b) 
    + c) 
    / 3) 
    >= (3 
    -root ((a 
    * b) 
    * c)) 
    
    proof
    
      (((a
    + b) 
    + c) 
    / 3) 
    >= ((3 
    * (3 
    -root ((a 
    * b) 
    * c))) 
    / 3) by 
    Th15,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:17
    
    ((x
    + y) 
    + z) 
    = 1 implies (((x 
    * y) 
    + (y 
    * z)) 
    + (x 
    * z)) 
    <= (1 
    / 3) 
    
    proof
    
      ((x
    ^2 ) 
    + (y 
    ^2 )) 
    >= ((2 
    * x) 
    * y) & ((x 
    ^2 ) 
    + (z 
    ^2 )) 
    >= ((2 
    * x) 
    * z) by 
    Th6;
    
      then
    
      
    
    A1: (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + ((x 
    ^2 ) 
    + (z 
    ^2 ))) 
    >= (((2 
    * x) 
    * y) 
    + ((2 
    * x) 
    * z)) by 
    XREAL_1: 7;
    
      ((y
    ^2 ) 
    + (z 
    ^2 )) 
    >= ((2 
    * y) 
    * z) by 
    Th6;
    
      then (((((x
    ^2 ) 
    + (y 
    ^2 )) 
    + (x 
    ^2 )) 
    + (z 
    ^2 )) 
    + ((y 
    ^2 ) 
    + (z 
    ^2 ))) 
    >= ((((2 
    * x) 
    * y) 
    + ((2 
    * x) 
    * z)) 
    + ((2 
    * y) 
    * z)) by 
    A1,
    XREAL_1: 7;
    
      then ((2
    * (((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 ))) 
    / 2) 
    >= ((2 
    * (((x 
    * y) 
    + (x 
    * z)) 
    + (y 
    * z))) 
    / 2) by 
    XREAL_1: 72;
    
      then
    
      
    
    A2: ((((x 
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 )) 
    + (2 
    * (((x 
    * z) 
    + (y 
    * z)) 
    + (x 
    * y)))) 
    >= ((((x 
    * y) 
    + (x 
    * z)) 
    + (y 
    * z)) 
    + (2 
    * (((x 
    * z) 
    + (y 
    * z)) 
    + (x 
    * y)))) by 
    XREAL_1: 7;
    
      assume ((x
    + y) 
    + z) 
    = 1; 
    
      
    
      then (1
    ^2 ) 
    = ((((x 
    + y) 
    ^2 ) 
    + ((2 
    * (x 
    + y)) 
    * z)) 
    + (z 
    ^2 )) by 
    SQUARE_1: 4
    
      .= ((((x
    ^2 ) 
    + (y 
    ^2 )) 
    + (z 
    ^2 )) 
    + (2 
    * (((x 
    * z) 
    + (y 
    * z)) 
    + (x 
    * y)))); 
    
      then (1
    / 3) 
    >= ((3 
    * (((x 
    * z) 
    + (y 
    * z)) 
    + (x 
    * y))) 
    / 3) by 
    A2,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:18
    
    
    
    
    
    Th18: (x 
    + y) 
    = 1 implies (x 
    * y) 
    <= (1 
    / 4) 
    
    proof
    
      ((x
    - y) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then
    
      
    
    A1: ((((x 
    ^2 ) 
    - ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    - (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 ))) 
    >= ( 
    0  
    - (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 ))) by 
    XREAL_1: 9;
    
      assume (x
    + y) 
    = 1; 
    
      then (1
    ^2 ) 
    = (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) by 
    SQUARE_1: 4;
    
      then (
    - ((4 
    * x) 
    * y)) 
    >= ( 
    - 1) by 
    A1;
    
      then (4
    * (x 
    * y)) 
    <= 1 by 
    XREAL_1: 24;
    
      then ((4
    * (x 
    * y)) 
    / 4) 
    <= (1 
    / 4) by 
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:19
    
    (x
    + y) 
    = 1 implies ((x 
    ^2 ) 
    + (y 
    ^2 )) 
    >= (1 
    / 2) 
    
    proof
    
      ((x
    - y) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then
    
      
    
    A1: ((((x 
    ^2 ) 
    - ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 ))) 
    >= ( 
    0  
    + (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 ))) by 
    XREAL_1: 7;
    
      assume (x
    + y) 
    = 1; 
    
      then (1
    ^2 ) 
    = (((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) by 
    SQUARE_1: 4;
    
      then ((2
    * ((x 
    ^2 ) 
    + (y 
    ^2 ))) 
    / 2) 
    >= (1 
    / 2) by 
    A1,
    XREAL_1: 72;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:20
    
    (a
    + b) 
    = 1 implies ((1 
    + (1 
    / a)) 
    * (1 
    + (1 
    / b))) 
    >= 9 
    
    proof
    
      assume
    
      
    
    A1: (a 
    + b) 
    = 1; 
    
      then (1
    / (a 
    * b)) 
    >= (1 
    / (1 
    / 4)) by 
    Th18,
    XREAL_1: 85;
    
      then ((1
    / (a 
    * b)) 
    * ( 
    - 2)) 
    <= (4 
    * ( 
    - 2)) by 
    XREAL_1: 65;
    
      then (
    - ((1 
    / (a 
    * b)) 
    * 2)) 
    <= ( 
    - 8); 
    
      then ((1
    / (a 
    * b)) 
    * 2) 
    >= 8 by 
    XREAL_1: 24;
    
      then
    
      
    
    A2: (1 
    + (2 
    * (1 
    / (a 
    * b)))) 
    >= (1 
    + 8) by 
    XREAL_1: 7;
    
      ((1
    + (1 
    / a)) 
    * (1 
    + (1 
    / b))) 
    = ((((1 
    * 1) 
    + (1 
    * (1 
    / b))) 
    + ((1 
    / a) 
    * (1 
    / b))) 
    + ((1 
    / a) 
    * 1)) 
    
      .= (((1
    + (1 
    / b)) 
    + (1 
    / (a 
    * b))) 
    + (1 
    / a)) by 
    XCMPLX_1: 102
    
      .= ((1
    + ((1 
    / b) 
    + (1 
    / a))) 
    + (1 
    / (a 
    * b))) 
    
      .= ((1
    + (((1 
    * a) 
    + (b 
    * 1)) 
    / (a 
    * b))) 
    + (1 
    / (a 
    * b))) by 
    XCMPLX_1: 116
    
      .= ((1
    + (1 
    / (a 
    * b))) 
    + (1 
    / (a 
    * b))) by 
    A1
    
      .= (1
    + (2 
    * (1 
    / (a 
    * b)))); 
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    SERIES_3:21
    
    (x
    + y) 
    = 1 implies ((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    >= (1 
    / 4) 
    
    proof
    
      assume
    
      
    
    A1: (x 
    + y) 
    = 1; 
    
      then ((x
    * y) 
    * ( 
    - 3)) 
    >= ((1 
    / 4) 
    * ( 
    - 3)) by 
    Th18,
    XREAL_1: 65;
    
      then
    
      
    
    A2: (1 
    + ((x 
    * y) 
    * ( 
    - 3))) 
    >= (((1 
    / 4) 
    * ( 
    - 3)) 
    + 1) by 
    XREAL_1: 7;
    
      ((x
    |^ 3) 
    + (y 
    |^ 3)) 
    = ((x 
    + y) 
    * (((x 
    ^2 ) 
    - (x 
    * y)) 
    + (y 
    ^2 ))) by 
    Lm6;
    
      
    
      then ((x
    |^ 3) 
    + (y 
    |^ 3)) 
    = ((((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    - ((3 
    * x) 
    * y)) by 
    A1
    
      .= ((1
    ^2 ) 
    - (3 
    * (x 
    * y))) by 
    A1,
    SQUARE_1: 4;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    SERIES_3:22
    
    (a
    + b) 
    = 1 implies ((a 
    |^ 3) 
    + (b 
    |^ 3)) 
    < 1 
    
    proof
    
      assume
    
      
    
    A1: (a 
    + b) 
    = 1; 
    
      
    
      
    
    A2: (1 
    + ((a 
    * b) 
    * ( 
    - 3))) 
    < ( 
    0  
    + 1) by 
    XREAL_1: 8;
    
      ((a
    |^ 3) 
    + (b 
    |^ 3)) 
    = ((a 
    + b) 
    * (((a 
    ^2 ) 
    - (a 
    * b)) 
    + (b 
    ^2 ))) by 
    Lm6;
    
      
    
      then ((a
    |^ 3) 
    + (b 
    |^ 3)) 
    = ((((a 
    ^2 ) 
    + ((2 
    * a) 
    * b)) 
    + (b 
    ^2 )) 
    - ((3 
    * a) 
    * b)) by 
    A1
    
      .= ((1
    ^2 ) 
    - (3 
    * (a 
    * b))) by 
    A1,
    SQUARE_1: 4;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    SERIES_3:23
    
    (a
    + b) 
    = 1 implies ((a 
    + (1 
    / a)) 
    * (b 
    + (1 
    / b))) 
    >= (25 
    / 4) 
    
    proof
    
      assume
    
      
    
    A1: (a 
    + b) 
    = 1; 
    
      then
    
      
    
    A2: (a 
    * b) 
    <= ((1 
    / 2) 
    ^2 ) by 
    Th4;
    
      then (1
    - (a 
    * b)) 
    >= (1 
    - (1 
    / 4)) by 
    XREAL_1: 10;
    
      then ((1
    - (a 
    * b)) 
    ^2 ) 
    >= ((3 
    / 4) 
    ^2 ) by 
    SQUARE_1: 15;
    
      then (1
    + ((1 
    - (a 
    * b)) 
    ^2 )) 
    >= (1 
    + (9 
    / 16)) by 
    XREAL_1: 6;
    
      then
    
      
    
    A3: (4 
    * (1 
    + ((1 
    - (a 
    * b)) 
    ^2 ))) 
    >= (4 
    * (25 
    / 16)) by 
    XREAL_1: 64;
    
      ((1
    - (a 
    * b)) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
      then
    
      
    
    A4: ((1 
    + ((1 
    - (a 
    * b)) 
    ^2 )) 
    / (a 
    * b)) 
    >= ((1 
    + ((1 
    - (a 
    * b)) 
    ^2 )) 
    / (1 
    / 4)) by 
    A2,
    XREAL_1: 118;
    
      ((a
    ^2 ) 
    + (b 
    ^2 )) 
    = ((((a 
    ^2 ) 
    + ((2 
    * a) 
    * b)) 
    + (b 
    ^2 )) 
    - ((2 
    * a) 
    * b)); 
    
      then
    
      
    
    A5: ((a 
    ^2 ) 
    + (b 
    ^2 )) 
    = ((1 
    ^2 ) 
    - ((2 
    * a) 
    * b)) by 
    A1,
    SQUARE_1: 4;
    
      ((a
    + (1 
    / a)) 
    * (b 
    + (1 
    / b))) 
    = (((1 
    + (a 
    ^2 )) 
    / a) 
    * (b 
    + (1 
    / b))) by 
    XCMPLX_1: 113
    
      .= (((1
    + (a 
    ^2 )) 
    / a) 
    * ((1 
    + (b 
    ^2 )) 
    / b)) by 
    XCMPLX_1: 113
    
      .= (((1
    + (a 
    ^2 )) 
    * (1 
    + (b 
    ^2 ))) 
    / (a 
    * b)) by 
    XCMPLX_1: 76
    
      .= ((1
    + (((1 
    ^2 ) 
    - (2 
    * (a 
    * b))) 
    + ((a 
    ^2 ) 
    * (b 
    ^2 )))) 
    / (a 
    * b)) by 
    A5
    
      .= ((1
    + ((1 
    - (a 
    * b)) 
    ^2 )) 
    / (a 
    * b)); 
    
      hence thesis by
    A4,
    A3,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    SERIES_3:24
    
    for x,a be
    Real st 
    |.x.|
    <= a holds (x 
    ^2 ) 
    <= (a 
    ^2 ) 
    
    proof
    
      let x,a be
    Real;
    
      assume
    
      
    
    A1: 
    |.x.|
    <= a; 
    
      per cases ;
    
        suppose
    
        
    
    A2: x 
    >=  
    0 ; 
    
        x
    <= a by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis by
    A2,
    SQUARE_1: 15;
    
      end;
    
        suppose
    
        
    
    A3: x 
    <  
    0 ; 
    
        then (
    - x) 
    <= a by 
    A1,
    ABSVALUE:def 1;
    
        then ((
    - x) 
    ^2 ) 
    <= (a 
    ^2 ) by 
    A3,
    SQUARE_1: 15;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SERIES_3:25
    
    
    |.x.|
    >= a implies (x 
    ^2 ) 
    >= (a 
    ^2 ) 
    
    proof
    
      assume
    
      
    
    A1: 
    |.x.|
    >= a; 
    
      per cases ;
    
        suppose x
    >=  
    0 ; 
    
        then x
    >= a by 
    A1,
    ABSVALUE:def 1;
    
        hence thesis by
    SQUARE_1: 15;
    
      end;
    
        suppose x
    <  
    0 ; 
    
        then (
    - x) 
    >= a by 
    A1,
    ABSVALUE:def 1;
    
        then ((
    - x) 
    ^2 ) 
    >= (a 
    ^2 ) by 
    SQUARE_1: 15;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    SERIES_3:26
    
    
    |.(
    |.x.|
    -  
    |.y.|).|
    <= ( 
    |.x.|
    +  
    |.y.|)
    
    proof
    
      
    |.(
    |.x.|
    -  
    |.y.|).|
    <=  
    |.(x
    - y).| & 
    |.(x
    - y).| 
    <= ( 
    |.x.|
    +  
    |.y.|) by
    COMPLEX1: 57,
    COMPLEX1: 64;
    
      hence thesis by
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    SERIES_3:27
    
    ((a
    * b) 
    * c) 
    = 1 implies (((1 
    / a) 
    + (1 
    / b)) 
    + (1 
    / c)) 
    >= ((( 
    sqrt a) 
    + ( 
    sqrt b)) 
    + ( 
    sqrt c)) 
    
    proof
    
      assume
    
      
    
    A1: ((a 
    * b) 
    * c) 
    = 1; 
    
      (((1
    / a) 
    + (1 
    / b)) 
    / 2) 
    >= ( 
    sqrt ((1 
    / a) 
    * (1 
    / b))) by 
    Th2;
    
      then (((1
    / a) 
    + (1 
    / b)) 
    / 2) 
    >= ( 
    sqrt (1 
    / (a 
    * b))) by 
    XCMPLX_1: 102;
    
      then
    
      
    
    A2: (((1 
    / a) 
    + (1 
    / b)) 
    / 2) 
    >= ( 
    sqrt ((1 
    * c) 
    / ((a 
    * b) 
    * c))) by 
    XCMPLX_1: 91;
    
      (((1
    / c) 
    + (1 
    / a)) 
    / 2) 
    >= ( 
    sqrt ((1 
    / c) 
    * (1 
    / a))) by 
    Th2;
    
      then (((1
    / c) 
    + (1 
    / a)) 
    / 2) 
    >= ( 
    sqrt (1 
    / (c 
    * a))) by 
    XCMPLX_1: 102;
    
      then
    
      
    
    A3: (((1 
    / c) 
    + (1 
    / a)) 
    / 2) 
    >= ( 
    sqrt ((1 
    * b) 
    / ((c 
    * a) 
    * b))) by 
    XCMPLX_1: 91;
    
      (((1
    / b) 
    + (1 
    / c)) 
    / 2) 
    >= ( 
    sqrt ((1 
    / b) 
    * (1 
    / c))) by 
    Th2;
    
      then (((1
    / b) 
    + (1 
    / c)) 
    / 2) 
    >= ( 
    sqrt (1 
    / (b 
    * c))) by 
    XCMPLX_1: 102;
    
      then (((1
    / b) 
    + (1 
    / c)) 
    / 2) 
    >= ( 
    sqrt ((1 
    * a) 
    / ((b 
    * c) 
    * a))) by 
    XCMPLX_1: 91;
    
      then ((((1
    / b) 
    + (1 
    / c)) 
    / 2) 
    + (((1 
    / c) 
    + (1 
    / a)) 
    / 2)) 
    >= (( 
    sqrt a) 
    + ( 
    sqrt b)) by 
    A1,
    A3,
    XREAL_1: 7;
    
      then (((((1
    / b) 
    + (1 
    / c)) 
    / 2) 
    + (((1 
    / c) 
    + (1 
    / a)) 
    / 2)) 
    + (((1 
    / a) 
    + (1 
    / b)) 
    / 2)) 
    >= ((( 
    sqrt a) 
    + ( 
    sqrt b)) 
    + ( 
    sqrt c)) by 
    A1,
    A2,
    XREAL_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:28
    
    x
    >  
    0 & y 
    >  
    0 & z 
    <  
    0 & ((x 
    + y) 
    + z) 
    =  
    0 implies ((((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    + (z 
    |^ 2)) 
    |^ 3) 
    >= (6 
    * ((((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    + (z 
    |^ 3)) 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: x 
    >  
    0 & y 
    >  
    0 and 
    
      
    
    A2: z 
    <  
    0 and 
    
      
    
    A3: ((x 
    + y) 
    + z) 
    =  
    0 ; 
    
      (3
    -Root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) 
    >  
    0 by 
    A1,
    A2,
    PREPOWER:def 2;
    
      then
    
      
    
    A4: (3 
    -root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) 
    >  
    0 by 
    A1,
    A2,
    POWER:def 1;
    
      ((((x
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    >= (3 
    * (3 
    -root ((((x 
    * (x 
    + y)) 
    / 2) 
    * ((y 
    * (x 
    + y)) 
    / 2)) 
    * (x 
    * y)))) by 
    A1,
    Th15;
    
      then ((((x
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    >= (3 
    * (3 
    -root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * ((x 
    + y) 
    * (x 
    + y))) 
    / 4))); 
    
      then
    
      
    
    A5: ((((x 
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    >= (3 
    * (3 
    -root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (( 
    - z) 
    ^2 )) 
    / 4))) by 
    A3;
    
      ((3
    * (3 
    -root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4))) 
    |^ 3) 
    = ((3 
    |^ 3) 
    * ((3 
    -root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) 
    |^ 3)) by 
    NEWTON: 7
    
      .= (27
    * ((3 
    -Root ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) 
    |^ 3)) by 
    A1,
    A2,
    Lm3,
    POWER:def 1
    
      .= (27
    * ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) by 
    A1,
    A2,
    PREPOWER: 19;
    
      then (((((x
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    |^ 3) 
    >= (27 
    * ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4)) by 
    A5,
    A4,
    PREPOWER: 9;
    
      then
    
      
    
    A6: (8 
    * (((((x 
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    |^ 3)) 
    >= (8 
    * (27 
    * ((((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 )) 
    / 4))) by 
    XREAL_1: 64;
    
      (((x
    ^2 ) 
    + (y 
    ^2 )) 
    / 2) 
    >= (x 
    * y) by 
    Th7;
    
      then (((x
    |^ 2) 
    + (y 
    ^2 )) 
    / 2) 
    >= (x 
    * y) by 
    Lm1;
    
      then (((x
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2) 
    >= (x 
    * y) by 
    Lm1;
    
      then (((((x
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2)) 
    >= (((((x 
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (x 
    * y)) by 
    XREAL_1: 6;
    
      then (((((x
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2)) 
    >= (((((x 
    ^2 ) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (x 
    * y)) by 
    Lm1;
    
      then (((((x
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2)) 
    >= (((((x 
    * x) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    ^2 )) 
    / 2)) 
    + (x 
    * y)) by 
    Lm1;
    
      then ((((((x
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2)) 
    |^ 3) 
    >= (((((x 
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    |^ 3) by 
    A1,
    PREPOWER: 9;
    
      then (8
    * ((((((x 
    |^ 2) 
    + (x 
    * y)) 
    / 2) 
    + (((x 
    * y) 
    + (y 
    |^ 2)) 
    / 2)) 
    + (((x 
    |^ 2) 
    + (y 
    |^ 2)) 
    / 2)) 
    |^ 3)) 
    >= (8 
    * (((((x 
    * (x 
    + y)) 
    / 2) 
    + ((y 
    * (x 
    + y)) 
    / 2)) 
    + (x 
    * y)) 
    |^ 3)) by 
    XREAL_1: 64;
    
      then (8
    * ((((x 
    |^ 2) 
    + (x 
    * y)) 
    + (y 
    |^ 2)) 
    |^ 3)) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    A6,
    XXREAL_0: 2;
    
      then ((2
    * (((x 
    |^ 2) 
    + (x 
    * y)) 
    + (y 
    |^ 2))) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    Lm2,
    NEWTON: 7;
    
      then ((((((x
    |^ 2) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    |^ 2)) 
    + (x 
    |^ 2)) 
    + (y 
    |^ 2)) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))); 
    
      then ((((((x
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    |^ 2)) 
    + (x 
    |^ 2)) 
    + (y 
    |^ 2)) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    Lm1;
    
      then ((((((x
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    |^ 2)) 
    + (x 
    ^2 )) 
    + (y 
    |^ 2)) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    Lm1;
    
      then ((((((x
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + (x 
    ^2 )) 
    + (y 
    |^ 2)) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    Lm1;
    
      then
    
      
    
    A7: ((((((x 
    ^2 ) 
    + ((2 
    * x) 
    * y)) 
    + (y 
    ^2 )) 
    + (x 
    ^2 )) 
    + (y 
    ^2 )) 
    |^ 3) 
    >= (54 
    * (((x 
    ^2 ) 
    * (y 
    ^2 )) 
    * (z 
    ^2 ))) by 
    Lm1;
    
      
    
      
    
    A8: z 
    = ( 
    - (x 
    + y)) by 
    A3;
    
      
    
      then (z
    |^ 3) 
    = ( 
    - ((x 
    + y) 
    |^ 3)) by 
    Lm4
    
      .= (
    - ((((x 
    |^ 3) 
    + ((3 
    * (x 
    ^2 )) 
    * y)) 
    + ((3 
    * x) 
    * (y 
    ^2 ))) 
    + (y 
    |^ 3))) by 
    Lm5;
    
      then ((((z
    |^ 2) 
    + (x 
    ^2 )) 
    + (y 
    ^2 )) 
    |^ 3) 
    >= (6 
    * ((((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    + (z 
    |^ 3)) 
    ^2 )) by 
    A8,
    A7,
    Lm1;
    
      then ((((z
    |^ 2) 
    + (x 
    |^ 2)) 
    + (y 
    ^2 )) 
    |^ 3) 
    >= (6 
    * ((((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    + (z 
    |^ 3)) 
    ^2 )) by 
    Lm1;
    
      then ((((z
    |^ 2) 
    + (x 
    |^ 2)) 
    + (y 
    |^ 2)) 
    |^ 3) 
    >= (6 
    * ((((x 
    |^ 3) 
    + (y 
    |^ 3)) 
    + (z 
    |^ 3)) 
    ^2 )) by 
    Lm1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:29
    
    a
    >= 1 implies ((a 
    to_power b) 
    + (a 
    to_power c)) 
    >= (2 
    * (a 
    to_power ( 
    sqrt (b 
    * c)))) 
    
    proof
    
      
    
      
    
    A1: ((b 
    + c) 
    / 2) 
    >= ((2 
    * ( 
    sqrt (b 
    * c))) 
    / 2) by 
    SIN_COS2: 1,
    XREAL_1: 72;
    
      set p = (a
    to_power c); 
    
      set o = (a
    to_power b); 
    
      o
    >  
    0 & p 
    >  
    0 by 
    POWER: 34;
    
      then ((a
    to_power b) 
    + (a 
    to_power c)) 
    >= (2 
    * ( 
    sqrt ((a 
    to_power b) 
    * (a 
    to_power c)))) by 
    SIN_COS2: 1;
    
      then (a
    to_power (b 
    + c)) 
    >  
    0 & ((a 
    to_power b) 
    + (a 
    to_power c)) 
    >= (2 
    * ( 
    sqrt (a 
    to_power (b 
    + c)))) by 
    POWER: 27,
    POWER: 34;
    
      then ((a
    to_power b) 
    + (a 
    to_power c)) 
    >= (2 
    * ((a 
    to_power (b 
    + c)) 
    to_power (1 
    / 2))) by 
    ASYMPT_1: 83;
    
      then
    
      
    
    A2: ((a 
    to_power b) 
    + (a 
    to_power c)) 
    >= (2 
    * (a 
    to_power ((1 
    / 2) 
    * (b 
    + c)))) by 
    POWER: 33;
    
      assume a
    >= 1; 
    
      then (a
    #R ((b 
    + c) 
    / 2)) 
    >= (a 
    #R ( 
    sqrt (b 
    * c))) by 
    A1,
    PREPOWER: 82;
    
      then (a
    to_power ((b 
    + c) 
    / 2)) 
    >= (a 
    #R ( 
    sqrt (b 
    * c))) by 
    POWER:def 2;
    
      then (a
    to_power ((b 
    + c) 
    / 2)) 
    >= (a 
    to_power ( 
    sqrt (b 
    * c))) by 
    POWER:def 2;
    
      then (2
    * (a 
    to_power ((b 
    + c) 
    / 2))) 
    >= (2 
    * (a 
    to_power ( 
    sqrt (b 
    * c)))) by 
    XREAL_1: 64;
    
      hence thesis by
    A2,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    SERIES_3:30
    
    a
    >= b & b 
    >= c implies (((a 
    to_power a) 
    * (b 
    to_power b)) 
    * (c 
    to_power c)) 
    >= (((a 
    * b) 
    * c) 
    to_power (((a 
    + b) 
    + c) 
    / 3)) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    >= b and 
    
      
    
    A2: b 
    >= c; 
    
      
    
      
    
    A3: ((b 
    / c) 
    to_power ((b 
    - c) 
    / 3)) 
    = ((b 
    / c) 
    #R ((b 
    - c) 
    / 3)) by 
    POWER:def 2;
    
      (b
    / c) 
    >= 1 & (b 
    - c) 
    >= (c 
    - c) by 
    A2,
    XREAL_1: 9,
    XREAL_1: 181;
    
      then
    
      
    
    A4: ((b 
    / c) 
    to_power ((b 
    - c) 
    / 3)) 
    >= 1 by 
    A3,
    PREPOWER: 85;
    
      
    
      
    
    A5: ((a 
    / b) 
    to_power ((a 
    - b) 
    / 3)) 
    = ((a 
    / b) 
    #R ((a 
    - b) 
    / 3)) by 
    POWER:def 2;
    
      (a
    / b) 
    >= 1 & (a 
    - b) 
    >= (b 
    - b) by 
    A1,
    XREAL_1: 9,
    XREAL_1: 181;
    
      then ((a
    / b) 
    to_power ((a 
    - b) 
    / 3)) 
    >= 1 by 
    A5,
    PREPOWER: 85;
    
      then
    
      
    
    A6: (((a 
    / b) 
    to_power ((a 
    - b) 
    / 3)) 
    * ((b 
    / c) 
    to_power ((b 
    - c) 
    / 3))) 
    >= (1 
    * 1) by 
    A4,
    XREAL_1: 66;
    
      a
    >= c by 
    A1,
    A2,
    XXREAL_0: 2;
    
      then
    
      
    
    A7: (a 
    / c) 
    >= 1 & (a 
    - c) 
    >= (c 
    - c) by 
    XREAL_1: 9,
    XREAL_1: 181;
    
      ((a
    / c) 
    to_power ((a 
    - c) 
    / 3)) 
    = ((a 
    / c) 
    #R ((a 
    - c) 
    / 3)) by 
    POWER:def 2;
    
      then ((a
    / c) 
    to_power ((a 
    - c) 
    / 3)) 
    >= 1 by 
    A7,
    PREPOWER: 85;
    
      then ((((a
    / b) 
    to_power ((a 
    - b) 
    / 3)) 
    * ((b 
    / c) 
    to_power ((b 
    - c) 
    / 3))) 
    * ((a 
    / c) 
    to_power ((a 
    - c) 
    / 3))) 
    >= 1 by 
    A6,
    XREAL_1: 66;
    
      then ((((a
    to_power ((a 
    - b) 
    / 3)) 
    / (b 
    to_power ((a 
    - b) 
    / 3))) 
    * ((b 
    / c) 
    to_power ((b 
    - c) 
    / 3))) 
    * ((a 
    / c) 
    to_power ((a 
    - c) 
    / 3))) 
    >= 1 by 
    POWER: 31;
    
      then
    
      
    
    A8: ((((a 
    to_power ((a 
    - b) 
    / 3)) 
    / (b 
    to_power ((a 
    - b) 
    / 3))) 
    * ((b 
    to_power ((b 
    - c) 
    / 3)) 
    / (c 
    to_power ((b 
    - c) 
    / 3)))) 
    * ((a 
    / c) 
    to_power ((a 
    - c) 
    / 3))) 
    >= 1 by 
    POWER: 31;
    
      set t = (b
    to_power (((a 
    + b) 
    + c) 
    / 3)); 
    
      set s = (b
    to_power b); 
    
      set r = (c
    to_power (((a 
    + b) 
    + c) 
    / 3)); 
    
      set q = (c
    to_power c); 
    
      set p = (a
    to_power (((a 
    + b) 
    + c) 
    / 3)); 
    
      set o = (a
    to_power a); 
    
      set j = (c
    to_power ((a 
    - c) 
    / 3)); 
    
      set i = (a
    to_power ((a 
    - c) 
    / 3)); 
    
      set h = (c
    to_power ((b 
    - c) 
    / 3)); 
    
      set w = (b
    to_power ((b 
    - c) 
    / 3)); 
    
      set v = (b
    to_power ((a 
    - b) 
    / 3)); 
    
      set u = (a
    to_power ((a 
    - b) 
    / 3)); 
    
      
    
      
    
    A9: p 
    >  
    0 & r 
    >  
    0 by 
    POWER: 34;
    
      
    
      
    
    A10: t 
    >  
    0 by 
    POWER: 34;
    
      ((((a
    to_power ((a 
    - b) 
    / 3)) 
    / (b 
    to_power ((a 
    - b) 
    / 3))) 
    * ((b 
    to_power ((b 
    - c) 
    / 3)) 
    / (c 
    to_power ((b 
    - c) 
    / 3)))) 
    * ((a 
    to_power ((a 
    - c) 
    / 3)) 
    / (c 
    to_power ((a 
    - c) 
    / 3)))) 
    = (((u 
    * w) 
    / (v 
    * h)) 
    * (i 
    / j)) by 
    XCMPLX_1: 76
    
      .= (((u
    * w) 
    * i) 
    / ((v 
    * h) 
    * j)) by 
    XCMPLX_1: 76
    
      .= ((((a
    to_power ((a 
    - b) 
    / 3)) 
    * (a 
    to_power ((a 
    - c) 
    / 3))) 
    * (b 
    to_power ((b 
    - c) 
    / 3))) 
    / (((b 
    to_power ((a 
    - b) 
    / 3)) 
    * (c 
    to_power ((a 
    - c) 
    / 3))) 
    * (c 
    to_power ((b 
    - c) 
    / 3)))) 
    
      .= (((a
    to_power (((a 
    - b) 
    / 3) 
    + ((a 
    - c) 
    / 3))) 
    * (b 
    to_power ((b 
    - c) 
    / 3))) 
    / (((b 
    to_power ((a 
    - b) 
    / 3)) 
    * (c 
    to_power ((a 
    - c) 
    / 3))) 
    * (c 
    to_power ((b 
    - c) 
    / 3)))) by 
    POWER: 27
    
      .= (((a
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3)) 
    * (b 
    to_power ((b 
    - c) 
    / 3))) 
    / ((b 
    to_power ((a 
    - b) 
    / 3)) 
    * ((c 
    to_power ((a 
    - c) 
    / 3)) 
    * (c 
    to_power ((b 
    - c) 
    / 3))))) 
    
      .= (((a
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3)) 
    * (b 
    to_power ((b 
    - c) 
    / 3))) 
    / ((b 
    to_power ((a 
    - b) 
    / 3)) 
    * (c 
    to_power (((a 
    - c) 
    / 3) 
    + ((b 
    - c) 
    / 3))))) by 
    POWER: 27
    
      .= (((a
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3)) 
    / (c 
    to_power (((a 
    + b) 
    - (2 
    * c)) 
    / 3))) 
    * ((b 
    to_power ((b 
    - c) 
    / 3)) 
    / (b 
    to_power ((a 
    - b) 
    / 3)))) by 
    XCMPLX_1: 76
    
      .= (((a
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3)) 
    / (c 
    to_power (((a 
    + b) 
    - (2 
    * c)) 
    / 3))) 
    * (b 
    to_power (((b 
    - c) 
    / 3) 
    - ((a 
    - b) 
    / 3)))) by 
    POWER: 29
    
      .= (((1
    / (c 
    to_power (((a 
    + b) 
    - (2 
    * c)) 
    / 3))) 
    * (b 
    to_power ((((2 
    * b) 
    - a) 
    - c) 
    / 3))) 
    * (a 
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3))) 
    
      .= (((c
    to_power ( 
    - (((a 
    + b) 
    - (2 
    * c)) 
    / 3))) 
    * (b 
    to_power ((((2 
    * b) 
    - a) 
    - c) 
    / 3))) 
    * (a 
    to_power ((((2 
    * a) 
    - b) 
    - c) 
    / 3))) by 
    POWER: 28
    
      .= (((a
    to_power (((3 
    * a) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3))) 
    * (c 
    to_power (((3 
    * c) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3)))) 
    * (b 
    to_power (((3 
    * b) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3)))) 
    
      .= ((((a
    to_power ((3 
    * a) 
    / 3)) 
    / (a 
    to_power (((a 
    + b) 
    + c) 
    / 3))) 
    * (c 
    to_power (((3 
    * c) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3)))) 
    * (b 
    to_power (((3 
    * b) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3)))) by 
    POWER: 29
    
      .= ((((a
    to_power ((3 
    * a) 
    / 3)) 
    / (a 
    to_power (((a 
    + b) 
    + c) 
    / 3))) 
    * ((c 
    to_power ((3 
    * c) 
    / 3)) 
    / (c 
    to_power (((a 
    + b) 
    + c) 
    / 3)))) 
    * (b 
    to_power (((3 
    * b) 
    / 3) 
    - (((a 
    + b) 
    + c) 
    / 3)))) by 
    POWER: 29
    
      .= ((((a
    to_power a) 
    / (a 
    to_power (((a 
    + b) 
    + c) 
    / 3))) 
    * ((c 
    to_power c) 
    / (c 
    to_power (((a 
    + b) 
    + c) 
    / 3)))) 
    * ((b 
    to_power b) 
    / (b 
    to_power (((a 
    + b) 
    + c) 
    / 3)))) by 
    POWER: 29
    
      .= (((o
    * q) 
    / (p 
    * r)) 
    * (s 
    / t)) by 
    XCMPLX_1: 76
    
      .= ((((a
    to_power a) 
    * (c 
    to_power c)) 
    * (b 
    to_power b)) 
    / (((a 
    to_power (((a 
    + b) 
    + c) 
    / 3)) 
    * (c 
    to_power (((a 
    + b) 
    + c) 
    / 3))) 
    * (b 
    to_power (((a 
    + b) 
    + c) 
    / 3)))) by 
    XCMPLX_1: 76;
    
      then (((o
    * q) 
    * s) 
    / ((p 
    * r) 
    * t)) 
    >= 1 by 
    A8,
    POWER: 31;
    
      then ((((o
    * q) 
    * s) 
    / ((p 
    * r) 
    * t)) 
    * ((p 
    * r) 
    * t)) 
    >= (1 
    * ((p 
    * r) 
    * t)) by 
    A9,
    A10,
    XREAL_1: 64;
    
      then (((a
    to_power a) 
    * (c 
    to_power c)) 
    * (b 
    to_power b)) 
    >= (((a 
    to_power (((a 
    + b) 
    + c) 
    / 3)) 
    * (c 
    to_power (((a 
    + b) 
    + c) 
    / 3))) 
    * (b 
    to_power (((a 
    + b) 
    + c) 
    / 3))) by 
    A9,
    A10,
    XCMPLX_1: 87;
    
      then (((a
    to_power a) 
    * (c 
    to_power c)) 
    * (b 
    to_power b)) 
    >= (((a 
    * c) 
    to_power (((a 
    + b) 
    + c) 
    / 3)) 
    * (b 
    to_power (((a 
    + b) 
    + c) 
    / 3))) by 
    POWER: 30;
    
      then ((a
    to_power a) 
    * ((b 
    to_power b) 
    * (c 
    to_power c))) 
    >= (((a 
    * c) 
    * b) 
    to_power (((a 
    + b) 
    + c) 
    / 3)) by 
    POWER: 30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:31
    
    
    
    
    
    Th31: for a,b be non 
    negative  
    Real holds ((a 
    + b) 
    |^ (n 
    + 2)) 
    >= ((a 
    |^ (n 
    + 2)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * b)) 
    
    proof
    
      let a,b be non
    negative  
    Real;
    
      defpred
    
    X[
    Nat] means ((a
    + b) 
    |^ ($1 
    + 2)) 
    >= ((a 
    |^ ($1 
    + 2)) 
    + ((($1 
    + 2) 
    * (a 
    |^ ($1 
    + 1))) 
    * b)); 
    
      
    
      
    
    A1: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        (a
    |^ (n 
    + 1)) 
    >=  
    0  
    
        proof
    
          per cases ;
    
            suppose a
    =  
    0 ; 
    
            hence thesis;
    
          end;
    
            suppose a
    >  
    0 ; 
    
            hence thesis by
    PREPOWER: 6;
    
          end;
    
        end;
    
        then
    
        
    
    A2: ((a 
    |^ (n 
    + 3)) 
    + (((n 
    + 3) 
    * (a 
    |^ (n 
    + 2))) 
    * b)) 
    <= ((((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * (b 
    ^2 )) 
    + ((a 
    |^ (n 
    + 3)) 
    + (((n 
    + 3) 
    * (a 
    |^ (n 
    + 2))) 
    * b))) by 
    XREAL_1: 31;
    
        assume ((a
    + b) 
    |^ (n 
    + 2)) 
    >= ((a 
    |^ (n 
    + 2)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * b)); 
    
        then (((a
    + b) 
    |^ (n 
    + 2)) 
    * (a 
    + b)) 
    >= (((a 
    |^ (n 
    + 2)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * b)) 
    * (a 
    + b)) by 
    XREAL_1: 64;
    
        then ((a
    + b) 
    |^ ((n 
    + 2) 
    + 1)) 
    >= (((a 
    |^ (n 
    + 2)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * b)) 
    * (a 
    + b)) by 
    NEWTON: 6;
    
        then ((a
    + b) 
    |^ (n 
    + 3)) 
    >= ((((a 
    |^ (n 
    + 2)) 
    * a) 
    + (b 
    * (a 
    |^ (n 
    + 2)))) 
    + ((((n 
    + 2) 
    * (a 
    + b)) 
    * (a 
    |^ (n 
    + 1))) 
    * b)); 
    
        then ((a
    + b) 
    |^ (n 
    + 3)) 
    >= (((a 
    |^ ((n 
    + 2) 
    + 1)) 
    + (b 
    * (a 
    |^ (n 
    + 2)))) 
    + ((((n 
    + 2) 
    * (a 
    + b)) 
    * (a 
    |^ (n 
    + 1))) 
    * b)) by 
    NEWTON: 6;
    
        then ((a
    + b) 
    |^ (n 
    + 3)) 
    >= ((((a 
    |^ (n 
    + 3)) 
    + ((a 
    |^ (n 
    + 2)) 
    * b)) 
    + (((n 
    + 2) 
    * (a 
    * (a 
    |^ (n 
    + 1)))) 
    * b)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * (b 
    * b))); 
    
        then ((a
    + b) 
    |^ (n 
    + 3)) 
    >= ((((a 
    |^ (n 
    + 3)) 
    + ((a 
    |^ (n 
    + 2)) 
    * b)) 
    + (((n 
    + 2) 
    * (a 
    |^ ((n 
    + 1) 
    + 1))) 
    * b)) 
    + (((n 
    + 2) 
    * (a 
    |^ (n 
    + 1))) 
    * (b 
    * b))) by 
    NEWTON: 6;
    
        hence thesis by
    A2,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A3: ((a 
    |^ ( 
    0  
    + 2)) 
    + ((( 
    0  
    + 2) 
    * (a 
    |^ ( 
    0  
    + 1))) 
    * b)) 
    = ((a 
    ^2 ) 
    + ((2 
    * (a 
    |^ 1)) 
    * b)) by 
    Lm1
    
      .= ((a
    ^2 ) 
    + ((2 
    * a) 
    * b)); 
    
      ((a
    + b) 
    |^ ( 
    0  
    + 2)) 
    = ((a 
    + b) 
    ^2 ) by 
    Lm1
    
      .= (((a
    ^2 ) 
    + ((2 
    * a) 
    * b)) 
    + (b 
    ^2 )); 
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    A3,
    XREAL_1: 31;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:32
    
    (((a
    |^ n) 
    + (b 
    |^ n)) 
    / 2) 
    >= (((a 
    + b) 
    / 2) 
    |^ n) 
    
    proof
    
      defpred
    
    X[
    Nat] means (((a
    |^ $1) 
    + (b 
    |^ $1)) 
    / 2) 
    >= (((a 
    + b) 
    / 2) 
    |^ $1); 
    
      
    
      
    
    A1: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    X[n];
    
        then
    
        
    
    A2: ((((a 
    |^ n) 
    + (b 
    |^ n)) 
    / 2) 
    * (a 
    + b)) 
    >= ((((a 
    + b) 
    / 2) 
    |^ n) 
    * (a 
    + b)) by 
    XREAL_1: 64;
    
        per cases ;
    
          suppose
    
          
    
    A3: (a 
    - b) 
    >=  
    0 ; 
    
          then ((a
    - b) 
    + b) 
    >= ( 
    0  
    + b) by 
    XREAL_1: 6;
    
          then (a
    |^ n) 
    >= (b 
    |^ n) by 
    PREPOWER: 9;
    
          then ((a
    |^ n) 
    - (b 
    |^ n)) 
    >=  
    0 by 
    XREAL_1: 48;
    
          then ((a
    - b) 
    * ((a 
    |^ n) 
    - (b 
    |^ n))) 
    >=  
    0 by 
    A3;
    
          then ((((a
    |^ n) 
    * a) 
    - ((a 
    |^ n) 
    * b)) 
    - (((b 
    |^ n) 
    * a) 
    - ((b 
    |^ n) 
    * b))) 
    >=  
    0 ; 
    
          then (((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - (((b 
    |^ n) 
    * a) 
    - ((b 
    |^ n) 
    * b))) 
    >=  
    0 by 
    NEWTON: 6;
    
          then ((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + ((b 
    |^ n) 
    * b)) 
    >=  
    0 ; 
    
          then ((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) 
    >=  
    0 by 
    NEWTON: 6;
    
          then (((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) 
    + (((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a))) 
    >= ( 
    0  
    + (((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a))) by 
    XREAL_1: 6;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    + ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) 
    >= ((((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a)) 
    + ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) by 
    XREAL_1: 6;
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= ((((a 
    |^ (n 
    + 1)) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))); 
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= (((((a 
    |^ n) 
    * a) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) by 
    NEWTON: 6;
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= (((((a 
    |^ n) 
    * a) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + ((b 
    |^ n) 
    * b)) by 
    NEWTON: 6;
    
          then ((2
    * ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) 
    / 2) 
    >= ((((a 
    |^ n) 
    + (b 
    |^ n)) 
    * (a 
    + b)) 
    / 2) by 
    XREAL_1: 72;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    / 2) 
    |^ n) 
    * (a 
    + b)) by 
    A2,
    XXREAL_0: 2;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    |^ n) 
    / (2 
    |^ n)) 
    * (a 
    + b)) by 
    PREPOWER: 8;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    |^ n) 
    * (a 
    + b)) 
    / (2 
    |^ n)); 
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ n)) by 
    NEWTON: 6;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= ((((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ n)) 
    / 2) by 
    XREAL_1: 72;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / ((2 
    |^ n) 
    * 2)) by 
    XCMPLX_1: 78;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ (n 
    + 1))) by 
    NEWTON: 6;
    
          hence thesis by
    PREPOWER: 8;
    
        end;
    
          suppose
    
          
    
    A4: (a 
    - b) 
    <  
    0 ; 
    
          then ((a
    - b) 
    + b) 
    < ( 
    0  
    + b) by 
    XREAL_1: 6;
    
          then (a
    |^ n) 
    <= (b 
    |^ n) by 
    PREPOWER: 9;
    
          then ((a
    |^ n) 
    - (b 
    |^ n)) 
    <=  
    0 by 
    XREAL_1: 47;
    
          then ((a
    - b) 
    * ((a 
    |^ n) 
    - (b 
    |^ n))) 
    >=  
    0 by 
    A4;
    
          then ((((a
    |^ n) 
    * a) 
    - ((a 
    |^ n) 
    * b)) 
    - (((b 
    |^ n) 
    * a) 
    - ((b 
    |^ n) 
    * b))) 
    >=  
    0 ; 
    
          then (((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - (((b 
    |^ n) 
    * a) 
    - ((b 
    |^ n) 
    * b))) 
    >=  
    0 by 
    NEWTON: 6;
    
          then ((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + ((b 
    |^ n) 
    * b)) 
    >=  
    0 ; 
    
          then ((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) 
    >=  
    0 by 
    NEWTON: 6;
    
          then (((((a
    |^ (n 
    + 1)) 
    - ((a 
    |^ n) 
    * b)) 
    - ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) 
    + (((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a))) 
    >= ( 
    0  
    + (((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a))) by 
    XREAL_1: 6;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    + ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) 
    >= ((((a 
    |^ n) 
    * b) 
    + ((b 
    |^ n) 
    * a)) 
    + ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) by 
    XREAL_1: 6;
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= ((((a 
    |^ (n 
    + 1)) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))); 
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= (((((a 
    |^ n) 
    * a) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + (b 
    |^ (n 
    + 1))) by 
    NEWTON: 6;
    
          then ((2
    * (a 
    |^ (n 
    + 1))) 
    + (2 
    * (b 
    |^ (n 
    + 1)))) 
    >= (((((a 
    |^ n) 
    * a) 
    + ((a 
    |^ n) 
    * b)) 
    + ((b 
    |^ n) 
    * a)) 
    + ((b 
    |^ n) 
    * b)) by 
    NEWTON: 6;
    
          then ((2
    * ((a 
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1)))) 
    / 2) 
    >= ((((a 
    |^ n) 
    + (b 
    |^ n)) 
    * (a 
    + b)) 
    / 2) by 
    XREAL_1: 72;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    / 2) 
    |^ n) 
    * (a 
    + b)) by 
    A2,
    XXREAL_0: 2;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    |^ n) 
    / (2 
    |^ n)) 
    * (a 
    + b)) by 
    PREPOWER: 8;
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= ((((a 
    + b) 
    |^ n) 
    * (a 
    + b)) 
    / (2 
    |^ n)); 
    
          then ((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ n)) by 
    NEWTON: 6;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= ((((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ n)) 
    / 2) by 
    XREAL_1: 72;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / ((2 
    |^ n) 
    * 2)) by 
    XCMPLX_1: 78;
    
          then (((a
    |^ (n 
    + 1)) 
    + (b 
    |^ (n 
    + 1))) 
    / 2) 
    >= (((a 
    + b) 
    |^ (n 
    + 1)) 
    / (2 
    |^ (n 
    + 1))) by 
    NEWTON: 6;
    
          hence thesis by
    PREPOWER: 8;
    
        end;
    
      end;
    
      (((a
    |^  
    0 ) 
    + (b 
    |^  
    0 )) 
    / 2) 
    = ((1 
    + (b 
    |^  
    0 )) 
    / 2) by 
    NEWTON: 4
    
      .= ((1
    + 1) 
    / 2) by 
    NEWTON: 4
    
      .= (((a
    + b) 
    / 2) 
    |^  
    0 ) by 
    NEWTON: 4;
    
      then
    
      
    
    A5: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A5,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:33
    
    
    
    
    
    Th33: (for n holds (s 
    . n) 
    >  
    0 ) implies for n holds (( 
    Partial_Sums s) 
    . n) 
    >  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    >  
    0 ; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        
    
        
    
    A3: (( 
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
        assume ((
    Partial_Sums s) 
    . n) 
    >  
    0 ; 
    
        hence thesis by
    A1,
    A3,
    XREAL_1: 34;
    
      end;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:34
    
    
    
    
    
    Th34: (for n holds (s 
    . n) 
    >=  
    0 ) implies for n holds (( 
    Partial_Sums s) 
    . n) 
    >=  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    >=  
    0 ; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Sums s) 
    . n) 
    >=  
    0 ; 
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) & (s 
    . (n 
    + 1)) 
    >=  
    0 by 
    A1,
    SERIES_1:def 1;
    
        hence thesis by
    A3;
    
      end;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:35
    
    
    
    
    
    Th35: (for n holds (s 
    . n) 
    <  
    0 ) implies (( 
    Partial_Sums s) 
    . n) 
    <  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    <  
    0 ; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    <  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Sums s) 
    . n) 
    <  
    0 ; 
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) & (s 
    . (n 
    + 1)) 
    <  
    0 by 
    A1,
    SERIES_1:def 1;
    
        hence thesis by
    A3;
    
      end;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:36
    
    
    
    
    
    Th36: s 
    = (s1 
    (#) s1) implies for n holds (( 
    Partial_Sums s) 
    . n) 
    >=  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    >=  
    0 ; 
    
      assume
    
      
    
    A1: s 
    = (s1 
    (#) s1); 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Sums s) 
    . n) 
    >=  
    0 ; 
    
        
    
        
    
    A4: ((s1 
    . (n 
    + 1)) 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= (((
    Partial_Sums s) 
    . n) 
    + ((s1 
    . (n 
    + 1)) 
    ^2 )) by 
    A1,
    SEQ_1: 8;
    
        hence thesis by
    A3,
    A4;
    
      end;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    ^2 ) by 
    A1,
    SEQ_1: 8;
    
      then
    
      
    
    A5: 
    X[
    0 ] by 
    XREAL_1: 63;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A5,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:37
    
    (for n holds (s
    . n) 
    >  
    0 & (s 
    . n) 
    > (s 
    . (n 
    - 1))) implies ((n 
    + 1) 
    * (s 
    . (n 
    + 1))) 
    > (( 
    Partial_Sums s) 
    . n) 
    
    proof
    
      defpred
    
    X[
    Nat] means (($1
    + 1) 
    * (s 
    . ($1 
    + 1))) 
    > (( 
    Partial_Sums s) 
    . $1); 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    > (s 
    . (n 
    - 1)); 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume ((n
    + 1) 
    * (s 
    . (n 
    + 1))) 
    > (( 
    Partial_Sums s) 
    . n); 
    
        then
    
        
    
    A3: ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) 
    < (((n 
    + 1) 
    * (s 
    . (n 
    + 1))) 
    + (s 
    . (n 
    + 1))) by 
    XREAL_1: 6;
    
        (s
    . (n 
    + 2)) 
    > (s 
    . ((n 
    + 2) 
    - 1)) by 
    A1;
    
        then ((n
    + 2) 
    * (s 
    . (n 
    + 2))) 
    > ((n 
    + 2) 
    * (s 
    . (n 
    + 1))) by 
    XREAL_1: 68;
    
        then (((
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) 
    < ((n 
    + 2) 
    * (s 
    . (n 
    + 2))) by 
    A3,
    XXREAL_0: 2;
    
        hence thesis by
    SERIES_1:def 1;
    
      end;
    
      (s
    . 1) 
    > (s 
    . (1 
    - 1)) by 
    A1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    SERIES_1:def 1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:38
    
    
    
    
    
    Th38: (for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1))) implies ((n 
    + 1) 
    * (s 
    . (n 
    + 1))) 
    >= (( 
    Partial_Sums s) 
    . n) 
    
    proof
    
      defpred
    
    X[
    Nat] means (($1
    + 1) 
    * (s 
    . ($1 
    + 1))) 
    >= (( 
    Partial_Sums s) 
    . $1); 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1)); 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume ((n
    + 1) 
    * (s 
    . (n 
    + 1))) 
    >= (( 
    Partial_Sums s) 
    . n); 
    
        then
    
        
    
    A3: ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) 
    <= (((n 
    + 1) 
    * (s 
    . (n 
    + 1))) 
    + (s 
    . (n 
    + 1))) by 
    XREAL_1: 6;
    
        (s
    . (n 
    + 2)) 
    >= (s 
    . ((n 
    + 2) 
    - 1)) by 
    A1;
    
        then ((n
    + 2) 
    * (s 
    . (n 
    + 2))) 
    >= ((n 
    + 2) 
    * (s 
    . (n 
    + 1))) by 
    XREAL_1: 64;
    
        then (((
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) 
    <= ((n 
    + 2) 
    * (s 
    . (n 
    + 2))) by 
    A3,
    XXREAL_0: 2;
    
        hence thesis by
    SERIES_1:def 1;
    
      end;
    
      (s
    . 1) 
    >= (s 
    . (1 
    - 1)) by 
    A1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    SERIES_1:def 1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:39
    
    (s
    = (s1 
    (#) s2) & for n holds (s1 
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 ) implies for n holds (( 
    Partial_Sums s) 
    . n) 
    <= ((( 
    Partial_Sums s1) 
    . n) 
    * (( 
    Partial_Sums s2) 
    . n)) 
    
    proof
    
      assume that
    
      
    
    A1: s 
    = (s1 
    (#) s2) and 
    
      
    
    A2: for n holds (s1 
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 ; 
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    <= ((( 
    Partial_Sums s1) 
    . $1) 
    * (( 
    Partial_Sums s2) 
    . $1)); 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set j = ((
    Partial_Sums s) 
    . n); 
    
        set u = ((
    Partial_Sums s1) 
    . n); 
    
        set v = ((
    Partial_Sums s2) 
    . n); 
    
        set w = (s1
    . (n 
    + 1)); 
    
        set h = (s2
    . (n 
    + 1)); 
    
        
    
        
    
    A4: ((( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s2) 
    . (n 
    + 1))) 
    = (((( 
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    * (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= ((u
    + w) 
    * (v 
    + h)) by 
    SERIES_1:def 1
    
        .= ((((u
    * v) 
    + (u 
    * h)) 
    + (w 
    * v)) 
    + (w 
    * h)); 
    
        assume ((
    Partial_Sums s) 
    . n) 
    <= ((( 
    Partial_Sums s1) 
    . n) 
    * (( 
    Partial_Sums s2) 
    . n)); 
    
        then
    
        
    
    A5: (j 
    + (w 
    * h)) 
    <= ((u 
    * v) 
    + (w 
    * h)) by 
    XREAL_1: 6;
    
        
    
        
    
    A6: w 
    >=  
    0 & h 
    >=  
    0 by 
    A2;
    
        u
    >=  
    0 & v 
    >=  
    0 by 
    A2,
    Th34;
    
        then
    
        
    
    A7: ((u 
    * v) 
    + (w 
    * h)) 
    <= (((u 
    * v) 
    + (w 
    * h)) 
    + ((u 
    * h) 
    + (w 
    * v))) by 
    A6,
    XREAL_1: 31;
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= (((
    Partial_Sums s) 
    . n) 
    + ((s1 
    . (n 
    + 1)) 
    * (s2 
    . (n 
    + 1)))) by 
    A1,
    SEQ_1: 8;
    
        hence thesis by
    A4,
    A5,
    A7,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A8: ((( 
    Partial_Sums s1) 
    .  
    0 ) 
    * (( 
    Partial_Sums s2) 
    .  
    0 )) 
    = ((s1 
    .  
    0 ) 
    * (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    * (s2 
    .  
    0 )) by 
    SERIES_1:def 1;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    * (s2 
    .  
    0 )) by 
    A1,
    SEQ_1: 8;
    
      then
    
      
    
    A9: 
    X[
    0 ] by 
    A8;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A9,
    A3);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:40
    
    (s
    = (s1 
    (#) s2) & for n holds (s1 
    . n) 
    <  
    0 & (s2 
    . n) 
    <  
    0 ) implies (( 
    Partial_Sums s) 
    . n) 
    <= ((( 
    Partial_Sums s1) 
    . n) 
    * (( 
    Partial_Sums s2) 
    . n)) 
    
    proof
    
      assume that
    
      
    
    A1: s 
    = (s1 
    (#) s2) and 
    
      
    
    A2: for n holds (s1 
    . n) 
    <  
    0 & (s2 
    . n) 
    <  
    0 ; 
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    <= ((( 
    Partial_Sums s1) 
    . $1) 
    * (( 
    Partial_Sums s2) 
    . $1)); 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set j = ((
    Partial_Sums s) 
    . n); 
    
        set u = ((
    Partial_Sums s1) 
    . n); 
    
        set v = ((
    Partial_Sums s2) 
    . n); 
    
        set w = (s1
    . (n 
    + 1)); 
    
        set h = (s2
    . (n 
    + 1)); 
    
        
    
        
    
    A4: ((( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s2) 
    . (n 
    + 1))) 
    = (((( 
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) 
    * (( 
    Partial_Sums s2) 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= ((u
    + w) 
    * (v 
    + h)) by 
    SERIES_1:def 1
    
        .= ((((u
    * v) 
    + (u 
    * h)) 
    + (w 
    * v)) 
    + (w 
    * h)); 
    
        assume ((
    Partial_Sums s) 
    . n) 
    <= ((( 
    Partial_Sums s1) 
    . n) 
    * (( 
    Partial_Sums s2) 
    . n)); 
    
        then
    
        
    
    A5: (j 
    + (w 
    * h)) 
    <= ((u 
    * v) 
    + (w 
    * h)) by 
    XREAL_1: 6;
    
        
    
        
    
    A6: w 
    <  
    0 & h 
    <  
    0 by 
    A2;
    
        u
    <  
    0 & v 
    <  
    0 by 
    A2,
    Th35;
    
        then
    
        
    
    A7: ((u 
    * v) 
    + (w 
    * h)) 
    <= (((u 
    * v) 
    + (w 
    * h)) 
    + ((u 
    * h) 
    + (w 
    * v))) by 
    A6,
    XREAL_1: 31;
    
        ((
    Partial_Sums s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
        .= (((
    Partial_Sums s) 
    . n) 
    + ((s1 
    . (n 
    + 1)) 
    * (s2 
    . (n 
    + 1)))) by 
    A1,
    SEQ_1: 8;
    
        hence thesis by
    A4,
    A5,
    A7,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A8: ((( 
    Partial_Sums s1) 
    .  
    0 ) 
    * (( 
    Partial_Sums s2) 
    .  
    0 )) 
    = ((s1 
    .  
    0 ) 
    * (( 
    Partial_Sums s2) 
    .  
    0 )) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    * (s2 
    .  
    0 )) by 
    SERIES_1:def 1;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    * (s2 
    .  
    0 )) by 
    A1,
    SEQ_1: 8;
    
      then
    
      
    
    A9: 
    X[
    0 ] by 
    A8;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A9,
    A3);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:41
    
    
    
    
    
    Th41: for n holds 
    |.((
    Partial_Sums s) 
    . n).| 
    <= (( 
    Partial_Sums ( 
    abs s)) 
    . n) 
    
    proof
    
      set s1 = (
    abs s); 
    
      defpred
    
    X[
    Nat] means
    |.((
    Partial_Sums s) 
    . $1).| 
    <= (( 
    Partial_Sums s1) 
    . $1); 
    
      let n;
    
      
    
      
    
    A1: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    |.((
    Partial_Sums s) 
    . n).| 
    <= (( 
    Partial_Sums s1) 
    . n); 
    
        then
    
        
    
    A2: ( 
    |.((
    Partial_Sums s) 
    . n).| 
    +  
    |.(s
    . (n 
    + 1)).|) 
    <= ((( 
    Partial_Sums s1) 
    . n) 
    +  
    |.(s
    . (n 
    + 1)).|) by 
    XREAL_1: 6;
    
        ((
    Partial_Sums s1) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s1) 
    . n) 
    + (s1 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
        then
    
        
    
    A3: (( 
    Partial_Sums s1) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums s1) 
    . n) 
    +  
    |.(s
    . (n 
    + 1)).|) by 
    SEQ_1: 12;
    
        
    |.((
    Partial_Sums s) 
    . (n 
    + 1)).| 
    =  
    |.(((
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))).| & 
    |.(((
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))).| 
    <= ( 
    |.((
    Partial_Sums s) 
    . n).| 
    +  
    |.(s
    . (n 
    + 1)).|) by 
    COMPLEX1: 56,
    SERIES_1:def 1;
    
        hence thesis by
    A3,
    A2,
    XXREAL_0: 2;
    
      end;
    
      (s1
    .  
    0 ) 
    =  
    |.(s
    .  
    0 ).| by 
    SEQ_1: 12;
    
      then ((
    Partial_Sums s1) 
    .  
    0 ) 
    =  
    |.(s
    .  
    0 ).| by 
    SERIES_1:def 1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    SERIES_1:def 1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:42
    
    ((
    Partial_Sums s) 
    . n) 
    <= (( 
    Partial_Sums ( 
    abs s)) 
    . n) 
    
    proof
    
      set s1 = (
    abs s); 
    
      ((
    Partial_Sums s) 
    . n) 
    <=  
    |.((
    Partial_Sums s) 
    . n).| & 
    |.((
    Partial_Sums s) 
    . n).| 
    <= (( 
    Partial_Sums s1) 
    . n) by 
    Th41,
    ABSVALUE: 4;
    
      hence thesis by
    XXREAL_0: 2;
    
    end;
    
    definition
    
      let s;
    
      :: 
    
    SERIES_3:def1
    
      func
    
    Partial_Product (s) -> 
    Real_Sequence means 
    
      :
    
    Def1: (it 
    .  
    0 ) 
    = (s 
    .  
    0 ) & for n holds (it 
    . (n 
    + 1)) 
    = ((it 
    . n) 
    * (s 
    . (n 
    + 1))); 
    
      existence
    
      proof
    
        deffunc
    
    U(
    Nat, 
    Real) = (
    In (($2 
    * (s 
    . ($1 
    + 1))), 
    REAL )); 
    
        consider f be
    sequence of 
    REAL such that 
    
        
    
    A1: (f 
    .  
    0 ) 
    = (s 
    .  
    0 ) & for n be 
    Nat holds (f 
    . (n 
    + 1)) 
    =  
    U(n,.) from
    NAT_1:sch 12;
    
        reconsider f as
    Real_Sequence;
    
        take f;
    
        thus (f
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    A1;
    
        let n be
    Nat;
    
        (f
    . (n 
    + 1)) 
    =  
    U(n,.) by
    A1;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let s1, s2;
    
        assume that
    
        
    
    A2: (s1 
    .  
    0 ) 
    = (s 
    .  
    0 ) and 
    
        
    
    A3: for n holds (s1 
    . (n 
    + 1)) 
    = ((s1 
    . n) 
    * (s 
    . (n 
    + 1))) and 
    
        
    
    A4: (s2 
    .  
    0 ) 
    = (s 
    .  
    0 ) and 
    
        
    
    A5: for n holds (s2 
    . (n 
    + 1)) 
    = ((s2 
    . n) 
    * (s 
    . (n 
    + 1))); 
    
        defpred
    
    X[
    Nat] means (s1
    . $1) 
    = (s2 
    . $1); 
    
        
    
        
    
    A6: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
        proof
    
          let n;
    
          assume (s1
    . n) 
    = (s2 
    . n); 
    
          
    
          hence (s1
    . (n 
    + 1)) 
    = ((s2 
    . n) 
    * (s 
    . (n 
    + 1))) by 
    A3
    
          .= (s2
    . (n 
    + 1)) by 
    A5;
    
        end;
    
        
    
        
    
    A7: 
    X[
    0 ] by 
    A2,
    A4;
    
        for n holds
    X[n] from
    NAT_1:sch 2(
    A7,
    A6);
    
        then for n be
    Element of 
    NAT holds 
    X[n];
    
        hence s1
    = s2 by 
    FUNCT_2: 63;
    
      end;
    
    end
    
    theorem :: 
    
    SERIES_3:43
    
    
    
    
    
    Th43: (for n holds (s 
    . n) 
    >  
    0 ) implies (( 
    Partial_Product s) 
    . n) 
    >  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Product s) 
    . $1) 
    >  
    0 ; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Product s) 
    . n) 
    >  
    0 ; 
    
        ((
    Partial_Product s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) & (s 
    . (n 
    + 1)) 
    >  
    0 by 
    A1,
    Def1;
    
        hence thesis by
    A3;
    
      end;
    
      (s
    .  
    0 ) 
    >  
    0 by 
    A1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    Def1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:44
    
    
    
    
    
    Th44: (for n holds (s 
    . n) 
    >=  
    0 ) implies (( 
    Partial_Product s) 
    . n) 
    >=  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Product s) 
    . $1) 
    >=  
    0 ; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Product s) 
    . n) 
    >=  
    0 ; 
    
        ((
    Partial_Product s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) & (s 
    . (n 
    + 1)) 
    >=  
    0 by 
    A1,
    Def1;
    
        hence thesis by
    A3;
    
      end;
    
      (s
    .  
    0 ) 
    >=  
    0 by 
    A1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    Def1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:45
    
    (for n holds (s
    . n) 
    >  
    0 & (s 
    . n) 
    < 1) implies for n holds (( 
    Partial_Product s) 
    . n) 
    >  
    0 & (( 
    Partial_Product s) 
    . n) 
    < 1 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Product s) 
    . $1) 
    >  
    0 & (( 
    Partial_Product s) 
    . $1) 
    < 1; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    < 1; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A3: (( 
    Partial_Product s) 
    . n) 
    >  
    0 & (( 
    Partial_Product s) 
    . n) 
    < 1; 
    
        ((
    Partial_Product s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) & (s 
    . (n 
    + 1)) 
    >  
    0 by 
    A1,
    Def1;
    
        hence thesis by
    A1,
    A3,
    XREAL_1: 162;
    
      end;
    
      ((
    Partial_Product s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1;
    
      then
    
      
    
    A4: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:46
    
    (for n holds (s
    . n) 
    >= 1) implies for n holds (( 
    Partial_Product s) 
    . n) 
    >= 1 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Product s) 
    . $1) 
    >= 1; 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >= 1; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        
    
        
    
    A3: (( 
    Partial_Product s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) by 
    Def1;
    
        assume
    
        
    
    A4: (( 
    Partial_Product s) 
    . n) 
    >= 1; 
    
        then ((
    Partial_Product s) 
    . n) 
    <= ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) by 
    A1,
    XREAL_1: 151;
    
        hence thesis by
    A4,
    A3,
    XXREAL_0: 2;
    
      end;
    
      ((
    Partial_Product s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1;
    
      then
    
      
    
    A5: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A5,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:47
    
    (for n holds (s1
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 ) implies for n holds ((( 
    Partial_Product s1) 
    . n) 
    + (( 
    Partial_Product s2) 
    . n)) 
    <= (( 
    Partial_Product (s1 
    + s2)) 
    . n) 
    
    proof
    
      set s = (s1
    + s2); 
    
      defpred
    
    X[
    Nat] means (((
    Partial_Product s1) 
    . $1) 
    + (( 
    Partial_Product s2) 
    . $1)) 
    <= (( 
    Partial_Product s) 
    . $1); 
    
      
    
      
    
    A1: (( 
    Partial_Product s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1
    
      .= ((s1
    .  
    0 ) 
    + (s2 
    .  
    0 )) by 
    SEQ_1: 7;
    
      assume
    
      
    
    A2: for n holds (s1 
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 ; 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set u = ((
    Partial_Product s1) 
    . n); 
    
        set v = ((
    Partial_Product s2) 
    . n); 
    
        set w = ((
    Partial_Product s) 
    . n); 
    
        set h = (s1
    . (n 
    + 1)); 
    
        set j = (s2
    . (n 
    + 1)); 
    
        
    
        
    
    A4: h 
    >=  
    0 & j 
    >=  
    0 by 
    A2;
    
        u
    >=  
    0 & v 
    >=  
    0 by 
    A2,
    Th44;
    
        then
    
        
    
    A5: ((u 
    * h) 
    + (v 
    * j)) 
    <= (((u 
    * h) 
    + (v 
    * j)) 
    + ((u 
    * j) 
    + (v 
    * h))) by 
    A4,
    XREAL_1: 31;
    
        
    
        
    
    A6: (( 
    Partial_Product s) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) by 
    Def1
    
        .= (w
    * (h 
    + j)) by 
    SEQ_1: 7;
    
        assume (((
    Partial_Product s1) 
    . n) 
    + (( 
    Partial_Product s2) 
    . n)) 
    <= (( 
    Partial_Product s) 
    . n); 
    
        then
    
        
    
    A7: ((u 
    + v) 
    * (h 
    + j)) 
    <= (w 
    * (h 
    + j)) by 
    A4,
    XREAL_1: 64;
    
        (((
    Partial_Product s1) 
    . (n 
    + 1)) 
    + (( 
    Partial_Product s2) 
    . (n 
    + 1))) 
    = (((( 
    Partial_Product s1) 
    . n) 
    * (s1 
    . (n 
    + 1))) 
    + (( 
    Partial_Product s2) 
    . (n 
    + 1))) by 
    Def1
    
        .= ((u
    * h) 
    + (v 
    * j)) by 
    Def1;
    
        hence thesis by
    A7,
    A6,
    A5,
    XXREAL_0: 2;
    
      end;
    
      (((
    Partial_Product s1) 
    .  
    0 ) 
    + (( 
    Partial_Product s2) 
    .  
    0 )) 
    = ((s1 
    .  
    0 ) 
    + (( 
    Partial_Product s2) 
    .  
    0 )) by 
    Def1
    
      .= ((s1
    .  
    0 ) 
    + (s2 
    .  
    0 )) by 
    Def1;
    
      then
    
      
    
    A8: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A8,
    A3);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:48
    
    (for n holds (s
    . n) 
    = (((2 
    * n) 
    + 1) 
    / ((2 
    * n) 
    + 2))) implies (( 
    Partial_Product s) 
    . n) 
    <= (1 
    / ( 
    sqrt ((3 
    * n) 
    + 4))) 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Product s) 
    . $1) 
    <= (1 
    / ( 
    sqrt ((3 
    * $1) 
    + 4))); 
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    = (((2 
    * n) 
    + 1) 
    / ((2 
    * n) 
    + 2)); 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume ((
    Partial_Product s) 
    . n) 
    <= (1 
    / ( 
    sqrt ((3 
    * n) 
    + 4))); 
    
        then (((
    Partial_Product s) 
    . n) 
    * (((2 
    * n) 
    + 3) 
    / ((2 
    * n) 
    + 4))) 
    <= ((1 
    / ( 
    sqrt ((3 
    * n) 
    + 4))) 
    * (((2 
    * n) 
    + 3) 
    / ((2 
    * n) 
    + 4))) by 
    XREAL_1: 64;
    
        then
    
        
    
    A3: ((( 
    Partial_Product s) 
    . n) 
    * (((2 
    * n) 
    + 3) 
    / ((2 
    * n) 
    + 4))) 
    <= ((1 
    * ((2 
    * n) 
    + 3)) 
    / (( 
    sqrt ((3 
    * n) 
    + 4)) 
    * ((2 
    * n) 
    + 4))) by 
    XCMPLX_1: 76;
    
        (111
    * n) 
    <= (112 
    * n) by 
    XREAL_1: 64;
    
        then ((111
    * n) 
    + 63) 
    <= ((112 
    * n) 
    + 64) by 
    XREAL_1: 7;
    
        then (((12
    * (n 
    |^ 3)) 
    + (64 
    * (n 
    ^2 ))) 
    + ((111 
    * n) 
    + 63)) 
    <= (((12 
    * (n 
    |^ 3)) 
    + (64 
    * (n 
    ^2 ))) 
    + ((112 
    * n) 
    + 64)) by 
    XREAL_1: 6;
    
        then ((((((12
    * (n 
    |^ (2 
    + 1))) 
    + (36 
    * (n 
    * n))) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * (n 
    |^ (2 
    + 1))) 
    + (48 
    * (n 
    ^2 ))) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64); 
    
        then ((((((12
    * ((n 
    |^ 2) 
    * (n 
    |^ 1))) 
    + (36 
    * (n 
    * n))) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * (n 
    |^ (2 
    + 1))) 
    + (48 
    * (n 
    * n))) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64) by 
    NEWTON: 8;
    
        then ((((((((4
    * (n 
    |^ 2)) 
    * 3) 
    * (n 
    |^ 1)) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * (n 
    |^ (2 
    + 1))) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64); 
    
        then ((((((((4
    * (n 
    |^ 2)) 
    * 3) 
    * n) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * (n 
    |^ (2 
    + 1))) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64); 
    
        then ((((((((4
    * (n 
    ^2 )) 
    * 3) 
    * n) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * (n 
    |^ (2 
    + 1))) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64) by 
    Lm1;
    
        then ((((((((4
    * (n 
    ^2 )) 
    * 3) 
    * n) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * ((n 
    |^ 2) 
    * (n 
    |^ 1))) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64) by 
    NEWTON: 8;
    
        then ((((((((4
    * (n 
    ^2 )) 
    * 3) 
    * n) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * ((n 
    ^2 ) 
    * (n 
    |^ 1))) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64) by 
    Lm1;
    
        then ((((((((4
    * (n 
    ^2 )) 
    * 3) 
    * n) 
    + ((36 
    * n) 
    * n)) 
    + (27 
    * n)) 
    + (28 
    * (n 
    ^2 ))) 
    + (84 
    * n)) 
    + 63) 
    <= ((((((12 
    * ((n 
    ^2 ) 
    * n)) 
    + ((48 
    * n) 
    * n)) 
    + (48 
    * n)) 
    + (16 
    * (n 
    ^2 ))) 
    + (64 
    * n)) 
    + 64); 
    
        then (
    sqrt ((((2 
    * n) 
    + 3) 
    ^2 ) 
    * ((3 
    * n) 
    + 7))) 
    <= ( 
    sqrt ((((2 
    * n) 
    + 4) 
    ^2 ) 
    * ((3 
    * n) 
    + 4))) by 
    SQUARE_1: 26;
    
        then ((
    sqrt (((2 
    * n) 
    + 3) 
    ^2 )) 
    * ( 
    sqrt ((3 
    * n) 
    + 7))) 
    <= ( 
    sqrt ((((2 
    * n) 
    + 4) 
    ^2 ) 
    * ((3 
    * n) 
    + 4))) by 
    SQUARE_1: 29;
    
        then ((
    sqrt (((2 
    * n) 
    + 3) 
    ^2 )) 
    * ( 
    sqrt ((3 
    * n) 
    + 7))) 
    <= (( 
    sqrt (((2 
    * n) 
    + 4) 
    ^2 )) 
    * ( 
    sqrt ((3 
    * n) 
    + 4))) by 
    SQUARE_1: 29;
    
        then (((2
    * n) 
    + 3) 
    * ( 
    sqrt ((3 
    * n) 
    + 7))) 
    <= (( 
    sqrt (((2 
    * n) 
    + 4) 
    ^2 )) 
    * ( 
    sqrt ((3 
    * n) 
    + 4))) by 
    SQUARE_1: 22;
    
        then
    
        
    
    A4: (((2 
    * n) 
    + 3) 
    * ( 
    sqrt ((3 
    * n) 
    + 7))) 
    <= ((((2 
    * n) 
    + 4) 
    * ( 
    sqrt ((3 
    * n) 
    + 4))) 
    * 1) by 
    SQUARE_1: 22;
    
        (
    sqrt ((3 
    * n) 
    + 4)) 
    >  
    0 & ( 
    sqrt ((3 
    * n) 
    + 7)) 
    >  
    0 by 
    SQUARE_1: 25;
    
        then ((1
    * ((2 
    * n) 
    + 3)) 
    / (((2 
    * n) 
    + 4) 
    * ( 
    sqrt ((3 
    * n) 
    + 4)))) 
    <= (1 
    / ( 
    sqrt ((3 
    * n) 
    + 7))) by 
    A4,
    XREAL_1: 102;
    
        then (((
    Partial_Product s) 
    . n) 
    * (((2 
    * (n 
    + 1)) 
    + 1) 
    / ((2 
    * (n 
    + 1)) 
    + 2))) 
    <= (1 
    / ( 
    sqrt ((3 
    * (n 
    + 1)) 
    + 4))) by 
    A3,
    XXREAL_0: 2;
    
        then (((
    Partial_Product s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    <= (1 
    / ( 
    sqrt ((3 
    * (n 
    + 1)) 
    + 4))) by 
    A1;
    
        hence thesis by
    Def1;
    
      end;
    
      ((
    Partial_Product s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    Def1
    
      .= (((2
    *  
    0 ) 
    + 1) 
    / ((2 
    *  
    0 ) 
    + 2)) by 
    A1
    
      .= (1
    / ( 
    sqrt ((3 
    *  
    0 ) 
    + 4))) by 
    SQUARE_1: 20;
    
      then
    
      
    
    A5: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A5,
    A2);
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm8: (for n holds (s 
    . n) 
    > ( 
    - 1) & (s 
    . n) 
    <  
    0 ) implies for n holds ((( 
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    >=  
    0  
    
    proof
    
      defpred
    
    X[
    Nat] means (((
    Partial_Sums s) 
    . $1) 
    * (s 
    . ($1 
    + 1))) 
    >=  
    0 ; 
    
      
    
      
    
    A1: ((( 
    Partial_Sums s) 
    .  
    0 ) 
    * (s 
    . 1)) 
    = ((s 
    .  
    0 ) 
    * (s 
    . 1)) by 
    SERIES_1:def 1;
    
      assume
    
      
    
    A2: for n holds (s 
    . n) 
    > ( 
    - 1) & (s 
    . n) 
    <  
    0 ; 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A4: ((( 
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    >=  
    0 ; 
    
        (s
    . (n 
    + 1)) 
    <  
    0 by 
    A2;
    
        then
    
        
    
    A5: ((( 
    Partial_Sums s) 
    . n) 
    * 1) 
    <=  
    0 by 
    A4;
    
        
    
        
    
    A6: ((( 
    Partial_Sums s) 
    . (n 
    + 1)) 
    * (s 
    . (n 
    + 2))) 
    = (((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1))) 
    * (s 
    . (n 
    + 2))) by 
    SERIES_1:def 1
    
        .= ((((
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 2))) 
    + ((s 
    . (n 
    + 1)) 
    * (s 
    . (n 
    + 2)))); 
    
        (s
    . (n 
    + 2)) 
    <=  
    0 & (s 
    . (n 
    + 1)) 
    <=  
    0 by 
    A2;
    
        hence thesis by
    A5,
    A6;
    
      end;
    
      let n;
    
      (s
    .  
    0 ) 
    <  
    0 & (s 
    . 1) 
    <  
    0 by 
    A2;
    
      then
    
      
    
    A7: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A7,
    A3);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:49
    
    (for n holds (s1
    . n) 
    = (1 
    + (s 
    . n)) & (s 
    . n) 
    > ( 
    - 1) & (s 
    . n) 
    <  
    0 ) implies for n holds (1 
    + (( 
    Partial_Sums s) 
    . n)) 
    <= (( 
    Partial_Product s1) 
    . n) 
    
    proof
    
      defpred
    
    X[
    Nat] means (1
    + (( 
    Partial_Sums s) 
    . $1)) 
    <= (( 
    Partial_Product s1) 
    . $1); 
    
      assume
    
      
    
    A1: for n holds (s1 
    . n) 
    = (1 
    + (s 
    . n)) & (s 
    . n) 
    > ( 
    - 1) & (s 
    . n) 
    <  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        
    
        
    
    A3: ((( 
    Partial_Product s1) 
    . n) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    = ((( 
    Partial_Product s1) 
    . n) 
    * (s1 
    . (n 
    + 1))) by 
    A1;
    
        (s
    . (n 
    + 1)) 
    > ( 
    - 1) by 
    A1;
    
        then
    
        
    
    A4: ((s 
    . (n 
    + 1)) 
    + 1) 
    > (( 
    - 1) 
    + 1) by 
    XREAL_1: 8;
    
        assume (1
    + (( 
    Partial_Sums s) 
    . n)) 
    <= (( 
    Partial_Product s1) 
    . n); 
    
        then ((1
    + (( 
    Partial_Sums s) 
    . n)) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    <= ((( 
    Partial_Product s1) 
    . n) 
    * (1 
    + (s 
    . (n 
    + 1)))) by 
    A4,
    XREAL_1: 64;
    
        then
    
        
    
    A5: ((1 
    + (( 
    Partial_Sums s) 
    . n)) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    <= (( 
    Partial_Product s1) 
    . (n 
    + 1)) by 
    A3,
    Def1;
    
        (((
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    >=  
    0 by 
    A1,
    Lm8;
    
        then
    
        
    
    A6: (((( 
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    + ((1 
    + (s 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s) 
    . n))) 
    >= ( 
    0  
    + ((1 
    + (s 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s) 
    . n))) by 
    XREAL_1: 6;
    
        (1
    + (( 
    Partial_Sums s) 
    . (n 
    + 1))) 
    = (1 
    + ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1)))) by 
    SERIES_1:def 1;
    
        hence thesis by
    A5,
    A6,
    XXREAL_0: 2;
    
      end;
    
      let n;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) & (( 
    Partial_Product s1) 
    .  
    0 ) 
    = (s1 
    .  
    0 ) by 
    Def1,
    SERIES_1:def 1;
    
      then
    
      
    
    A7: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A7,
    A2);
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm9: (for n holds (s 
    . n) 
    >=  
    0 ) implies for n holds ((( 
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    >=  
    0  
    
    proof
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    >=  
    0 ; 
    
      let n;
    
      ((
    Partial_Sums s) 
    . n) 
    >=  
    0 & (s 
    . (n 
    + 1)) 
    >=  
    0 by 
    A1,
    Th34;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:50
    
    (for n holds (s1
    . n) 
    = (1 
    + (s 
    . n)) & (s 
    . n) 
    >=  
    0 ) implies for n holds (1 
    + (( 
    Partial_Sums s) 
    . n)) 
    <= (( 
    Partial_Product s1) 
    . n) 
    
    proof
    
      defpred
    
    X[
    Nat] means (1
    + (( 
    Partial_Sums s) 
    . $1)) 
    <= (( 
    Partial_Product s1) 
    . $1); 
    
      assume
    
      
    
    A1: for n holds (s1 
    . n) 
    = (1 
    + (s 
    . n)) & (s 
    . n) 
    >=  
    0 ; 
    
      
    
      
    
    A2: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        
    
        
    
    A3: ((( 
    Partial_Product s1) 
    . n) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    = ((( 
    Partial_Product s1) 
    . n) 
    * (s1 
    . (n 
    + 1))) by 
    A1;
    
        (s
    . (n 
    + 1)) 
    > ( 
    - 1) by 
    A1;
    
        then
    
        
    
    A4: ((s 
    . (n 
    + 1)) 
    + 1) 
    > (( 
    - 1) 
    + 1) by 
    XREAL_1: 8;
    
        assume (1
    + (( 
    Partial_Sums s) 
    . n)) 
    <= (( 
    Partial_Product s1) 
    . n); 
    
        then ((1
    + (( 
    Partial_Sums s) 
    . n)) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    <= ((( 
    Partial_Product s1) 
    . n) 
    * (1 
    + (s 
    . (n 
    + 1)))) by 
    A4,
    XREAL_1: 64;
    
        then
    
        
    
    A5: ((1 
    + (( 
    Partial_Sums s) 
    . n)) 
    * (1 
    + (s 
    . (n 
    + 1)))) 
    <= (( 
    Partial_Product s1) 
    . (n 
    + 1)) by 
    A3,
    Def1;
    
        (((
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    >=  
    0 by 
    A1,
    Lm9;
    
        then
    
        
    
    A6: (((( 
    Partial_Sums s) 
    . n) 
    * (s 
    . (n 
    + 1))) 
    + ((1 
    + (s 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s) 
    . n))) 
    >= ( 
    0  
    + ((1 
    + (s 
    . (n 
    + 1))) 
    + (( 
    Partial_Sums s) 
    . n))) by 
    XREAL_1: 6;
    
        (1
    + (( 
    Partial_Sums s) 
    . (n 
    + 1))) 
    = (1 
    + ((( 
    Partial_Sums s) 
    . n) 
    + (s 
    . (n 
    + 1)))) by 
    SERIES_1:def 1;
    
        hence thesis by
    A5,
    A6,
    XXREAL_0: 2;
    
      end;
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) & (( 
    Partial_Product s1) 
    .  
    0 ) 
    = (s1 
    .  
    0 ) by 
    Def1,
    SERIES_1:def 1;
    
      then
    
      
    
    A7: 
    X[
    0 ] by 
    A1;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A7,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:51
    
    s3
    = (s1 
    (#) s2) & s4 
    = (s1 
    (#) s1) & s5 
    = (s2 
    (#) s2) implies for n holds ((( 
    Partial_Sums s3) 
    . n) 
    ^2 ) 
    <= ((( 
    Partial_Sums s4) 
    . n) 
    * (( 
    Partial_Sums s5) 
    . n)) 
    
    proof
    
      assume that
    
      
    
    A1: s3 
    = (s1 
    (#) s2) and 
    
      
    
    A2: s4 
    = (s1 
    (#) s1) and 
    
      
    
    A3: s5 
    = (s2 
    (#) s2); 
    
      let n;
    
      
    
      
    
    A4: (( 
    Partial_Sums s3) 
    .  
    0 ) 
    = (s3 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= ((s1
    .  
    0 ) 
    * (s2 
    .  
    0 )) by 
    A1,
    SEQ_1: 8;
    
      defpred
    
    X[
    Nat] means (((
    Partial_Sums s3) 
    . $1) 
    ^2 ) 
    <= ((( 
    Partial_Sums s4) 
    . $1) 
    * (( 
    Partial_Sums s5) 
    . $1)); 
    
      
    
      
    
    A5: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set u = ((
    Partial_Sums s3) 
    . n); 
    
        set v = ((
    Partial_Sums s4) 
    . n); 
    
        set w = ((
    Partial_Sums s5) 
    . n); 
    
        set h = (s1
    . (n 
    + 1)); 
    
        set j = (s2
    . (n 
    + 1)); 
    
        assume
    
        
    
    A6: ((( 
    Partial_Sums s3) 
    . n) 
    ^2 ) 
    <= ((( 
    Partial_Sums s4) 
    . n) 
    * (( 
    Partial_Sums s5) 
    . n)); 
    
        then
    |.u.|
    <= ( 
    sqrt (v 
    * w)) by 
    Lm7;
    
        then
    
        
    
    A7: ((2 
    * ( 
    |.j.|
    *  
    |.h.|))
    * ( 
    sqrt (v 
    * w))) 
    >= ((2 
    * ( 
    |.j.|
    *  
    |.h.|))
    *  
    |.u.|) by
    XREAL_1: 64;
    
        
    
        
    
    A8: w 
    >=  
    0 by 
    A3,
    Th36;
    
        then
    
        
    
    A9: w 
    = (( 
    sqrt w) 
    ^2 ) by 
    SQUARE_1:def 2;
    
        ((((
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= ((2 
    *  
    |.((
    sqrt v) 
    * j).|) 
    *  
    |.((
    sqrt w) 
    * h).|) by 
    Th8;
    
        then ((((
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= ((2 
    * ( 
    |.(
    sqrt v).| 
    *  
    |.j.|))
    *  
    |.((
    sqrt w) 
    * h).|) by 
    COMPLEX1: 65;
    
        then
    
        
    
    A10: (((( 
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= ((2 
    * ( 
    |.(
    sqrt v).| 
    *  
    |.j.|))
    * ( 
    |.(
    sqrt w).| 
    *  
    |.h.|)) by
    COMPLEX1: 65;
    
        
    
        
    
    A11: v 
    >=  
    0 by 
    A2,
    Th36;
    
        then (
    sqrt v) 
    >=  
    0 by 
    SQUARE_1:def 2;
    
        then
    
        
    
    A12: (((( 
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= ((2 
    * (( 
    sqrt v) 
    *  
    |.j.|))
    * ( 
    |.(
    sqrt w).| 
    *  
    |.h.|)) by
    A10,
    ABSVALUE:def 1;
    
        (
    sqrt w) 
    >=  
    0 by 
    A8,
    SQUARE_1:def 2;
    
        then ((((
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= ((2 
    * (( 
    sqrt v) 
    *  
    |.j.|))
    * (( 
    sqrt w) 
    *  
    |.h.|)) by
    A12,
    ABSVALUE:def 1;
    
        then
    
        
    
    A13: (((( 
    sqrt v) 
    * j) 
    ^2 ) 
    + ((( 
    sqrt w) 
    * h) 
    ^2 )) 
    >= (((2 
    * (( 
    sqrt v) 
    * ( 
    sqrt w))) 
    *  
    |.j.|)
    *  
    |.h.|);
    
        v
    = (( 
    sqrt v) 
    ^2 ) by 
    A11,
    SQUARE_1:def 2;
    
        then ((v
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= (((2 
    * ( 
    sqrt (v 
    * w))) 
    *  
    |.j.|)
    *  
    |.h.|) by
    A11,
    A8,
    A9,
    A13,
    SQUARE_1: 29;
    
        then ((v
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= ((2 
    * ( 
    |.u.|
    *  
    |.j.|))
    *  
    |.h.|) by
    A7,
    XXREAL_0: 2;
    
        then ((v
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= ((2 
    *  
    |.(u
    * j).|) 
    *  
    |.h.|) by
    COMPLEX1: 65;
    
        then ((v
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= (2 
    * ( 
    |.(u
    * j).| 
    *  
    |.h.|));
    
        then
    
        
    
    A14: ((v 
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= (2 
    *  
    |.((u
    * j) 
    * h).|) by 
    COMPLEX1: 65;
    
        (2
    *  
    |.((u
    * j) 
    * h).|) 
    >= (2 
    * ((u 
    * j) 
    * h)) by 
    ABSVALUE: 4,
    XREAL_1: 64;
    
        then ((v
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    >= (((2 
    * u) 
    * j) 
    * h) by 
    A14,
    XXREAL_0: 2;
    
        then
    
        
    
    A15: (((v 
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    - (((2 
    * u) 
    * j) 
    * h)) 
    >=  
    0 by 
    XREAL_1: 48;
    
        ((v
    * w) 
    - (u 
    ^2 )) 
    >=  
    0 by 
    A6,
    XREAL_1: 48;
    
        then
    
        
    
    A16: (((v 
    * w) 
    - (u 
    ^2 )) 
    + (((v 
    * (j 
    ^2 )) 
    + (w 
    * (h 
    ^2 ))) 
    - (((2 
    * u) 
    * j) 
    * h))) 
    >=  
    0 by 
    A15;
    
        ((
    Partial_Sums s3) 
    . (n 
    + 1)) 
    = (u 
    + (s3 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
        then ((
    Partial_Sums s3) 
    . (n 
    + 1)) 
    = (u 
    + (h 
    * (s2 
    . (n 
    + 1)))) by 
    A1,
    SEQ_1: 8;
    
        then
    
        
    
    A17: ((( 
    Partial_Sums s3) 
    . (n 
    + 1)) 
    ^2 ) 
    = (((u 
    ^2 ) 
    + ((2 
    * u) 
    * (h 
    * j))) 
    + ((h 
    * j) 
    ^2 )); 
    
        (((
    Partial_Sums s4) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s5) 
    . (n 
    + 1))) 
    = (((( 
    Partial_Sums s4) 
    . n) 
    + (s4 
    . (n 
    + 1))) 
    * (( 
    Partial_Sums s5) 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
        
    
        then (((
    Partial_Sums s4) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s5) 
    . (n 
    + 1))) 
    = ((v 
    + (s4 
    . (n 
    + 1))) 
    * (w 
    + (s5 
    . (n 
    + 1)))) by 
    SERIES_1:def 1
    
        .= ((v
    + (h 
    * h)) 
    * (w 
    + (s5 
    . (n 
    + 1)))) by 
    A2,
    SEQ_1: 8
    
        .= ((v
    + (h 
    * h)) 
    * (w 
    + ((s2 
    . (n 
    + 1)) 
    * (s2 
    . (n 
    + 1))))) by 
    A3,
    SEQ_1: 8
    
        .= ((((v
    * w) 
    + (v 
    * (j 
    ^2 ))) 
    + (w 
    * (h 
    ^2 ))) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 ))); 
    
        
    
        then ((((
    Partial_Sums s4) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s5) 
    . (n 
    + 1))) 
    - ((( 
    Partial_Sums s3) 
    . (n 
    + 1)) 
    ^2 )) 
    = (((((((v 
    * w) 
    - (u 
    ^2 )) 
    + (v 
    * (j 
    ^2 ))) 
    + (w 
    * (h 
    ^2 ))) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 ))) 
    - ((2 
    * u) 
    * (h 
    * j))) 
    - ((h 
    * j) 
    ^2 )) by 
    A17
    
        .= (((((v
    * w) 
    - (u 
    ^2 )) 
    + (v 
    * (j 
    ^2 ))) 
    + (w 
    * (h 
    ^2 ))) 
    - (((2 
    * u) 
    * h) 
    * j)); 
    
        then (((((
    Partial_Sums s4) 
    . (n 
    + 1)) 
    * (( 
    Partial_Sums s5) 
    . (n 
    + 1))) 
    - ((( 
    Partial_Sums s3) 
    . (n 
    + 1)) 
    ^2 )) 
    + ((( 
    Partial_Sums s3) 
    . (n 
    + 1)) 
    ^2 )) 
    >= ( 
    0  
    + ((( 
    Partial_Sums s3) 
    . (n 
    + 1)) 
    ^2 )) by 
    A16,
    XREAL_1: 6;
    
        hence thesis;
    
      end;
    
      (((
    Partial_Sums s4) 
    .  
    0 ) 
    * (( 
    Partial_Sums s5) 
    .  
    0 )) 
    = ((s4 
    .  
    0 ) 
    * (( 
    Partial_Sums s5) 
    .  
    0 )) by 
    SERIES_1:def 1
    
      .= ((s4
    .  
    0 ) 
    * (s5 
    .  
    0 )) by 
    SERIES_1:def 1
    
      .= (((s1
    .  
    0 ) 
    * (s1 
    .  
    0 )) 
    * (s5 
    .  
    0 )) by 
    A2,
    SEQ_1: 8
    
      .= (((s1
    .  
    0 ) 
    ^2 ) 
    * ((s2 
    .  
    0 ) 
    ^2 )) by 
    A3,
    SEQ_1: 8;
    
      then
    
      
    
    A18: 
    X[
    0 ] by 
    A4;
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A18,
    A5);
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm10: (for n holds (s 
    . n) 
    = (((s1 
    . n) 
    + (s2 
    . n)) 
    ^2 )) implies (( 
    Partial_Sums s) 
    . n) 
    >=  
    0  
    
    proof
    
      assume
    
      
    
    A1: for n holds (s 
    . n) 
    = (((s1 
    . n) 
    + (s2 
    . n)) 
    ^2 ); 
    
      now
    
        let n;
    
        (s
    . n) 
    = (((s1 
    . n) 
    + (s2 
    . n)) 
    ^2 ) by 
    A1;
    
        hence (s
    . n) 
    >=  
    0 by 
    XREAL_1: 63;
    
      end;
    
      hence thesis by
    Th34;
    
    end;
    
    theorem :: 
    
    SERIES_3:52
    
    (s4
    = (s1 
    (#) s1) & s5 
    = (s2 
    (#) s2) & for n holds (s1 
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 & (s3 
    . n) 
    = (((s1 
    . n) 
    + (s2 
    . n)) 
    ^2 )) implies for n holds ( 
    sqrt (( 
    Partial_Sums s3) 
    . n)) 
    <= (( 
    sqrt (( 
    Partial_Sums s4) 
    . n)) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    . n))) 
    
    proof
    
      assume that
    
      
    
    A1: s4 
    = (s1 
    (#) s1) and 
    
      
    
    A2: s5 
    = (s2 
    (#) s2) and 
    
      
    
    A3: for n holds (s1 
    . n) 
    >=  
    0 & (s2 
    . n) 
    >=  
    0 & (s3 
    . n) 
    = (((s1 
    . n) 
    + (s2 
    . n)) 
    ^2 ); 
    
      
    
      
    
    A4: (s1 
    .  
    0 ) 
    >=  
    0 by 
    A3;
    
      defpred
    
    X[
    Nat] means (
    sqrt (( 
    Partial_Sums s3) 
    . $1)) 
    <= (( 
    sqrt (( 
    Partial_Sums s4) 
    . $1)) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    . $1))); 
    
      
    
      
    
    A5: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        assume
    
        
    
    A6: ( 
    sqrt (( 
    Partial_Sums s3) 
    . n)) 
    <= (( 
    sqrt (( 
    Partial_Sums s4) 
    . n)) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    . n))); 
    
        set j = (s2
    . (n 
    + 1)); 
    
        set h = (s1
    . (n 
    + 1)); 
    
        set w = ((
    Partial_Sums s5) 
    . n); 
    
        set v = ((
    Partial_Sums s4) 
    . n); 
    
        set u = ((
    Partial_Sums s3) 
    . n); 
    
        
    
        
    
    A7: w 
    >=  
    0 by 
    A2,
    Th36;
    
        
    
        
    
    A8: (j 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
        then
    
        
    
    A9: ( 
    sqrt (w 
    + (j 
    ^2 ))) 
    >=  
    0 by 
    A7,
    SQUARE_1:def 2;
    
        
    
        
    
    A10: v 
    >=  
    0 by 
    A1,
    Th36;
    
        then
    
        
    
    A11: ( 
    sqrt (v 
    * w)) 
    >=  
    0 by 
    A7,
    SQUARE_1:def 2;
    
        
    
        
    
    A12: u 
    >=  
    0 by 
    A3,
    Lm10;
    
        then (
    sqrt u) 
    >=  
    0 by 
    SQUARE_1:def 2;
    
        then ((
    sqrt u) 
    ^2 ) 
    <= ((( 
    sqrt v) 
    + ( 
    sqrt w)) 
    ^2 ) by 
    A6,
    SQUARE_1: 15;
    
        then u
    <= (((( 
    sqrt v) 
    ^2 ) 
    + ((2 
    * ( 
    sqrt v)) 
    * ( 
    sqrt w))) 
    + (( 
    sqrt w) 
    ^2 )) by 
    A12,
    SQUARE_1:def 2;
    
        then u
    <= ((v 
    + ((2 
    * ( 
    sqrt v)) 
    * ( 
    sqrt w))) 
    + (( 
    sqrt w) 
    ^2 )) by 
    A10,
    SQUARE_1:def 2;
    
        then u
    <= ((v 
    + ((2 
    * ( 
    sqrt v)) 
    * ( 
    sqrt w))) 
    + w) by 
    A7,
    SQUARE_1:def 2;
    
        then (u
    + ((2 
    * h) 
    * j)) 
    <= (((v 
    + w) 
    + (2 
    * (( 
    sqrt v) 
    * ( 
    sqrt w)))) 
    + ((2 
    * h) 
    * j)) by 
    XREAL_1: 6;
    
        then
    
        
    
    A13: (u 
    + ((2 
    * h) 
    * j)) 
    <= (((v 
    + w) 
    + (2 
    * ( 
    sqrt (v 
    * w)))) 
    + ((2 
    * h) 
    * j)) by 
    A10,
    A7,
    SQUARE_1: 29;
    
        
    
        
    
    A14: h 
    >=  
    0 by 
    A3;
    
        
    
        
    
    A15: j 
    >=  
    0 by 
    A3;
    
        
    
        
    
    A16: (h 
    ^2 ) 
    >=  
    0 by 
    XREAL_1: 63;
    
        then
    
        
    
    A17: ( 
    sqrt (v 
    + (h 
    ^2 ))) 
    >=  
    0 by 
    A10,
    SQUARE_1:def 2;
    
        (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (2 
    * ( 
    sqrt (((h 
    ^2 ) 
    * w) 
    * ((j 
    ^2 ) 
    * v)))) by 
    A10,
    A7,
    A16,
    A8,
    SIN_COS2: 1;
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (2 
    * ( 
    sqrt (((h 
    ^2 ) 
    * (j 
    ^2 )) 
    * (w 
    * v)))); 
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (2 
    * (( 
    sqrt ((h 
    ^2 ) 
    * (j 
    ^2 ))) 
    * ( 
    sqrt (w 
    * v)))) by 
    A10,
    A7,
    A16,
    A8,
    SQUARE_1: 29;
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= ((2 
    * ( 
    sqrt ((h 
    ^2 ) 
    * (j 
    ^2 )))) 
    * ( 
    sqrt (w 
    * v))); 
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= ((2 
    * (( 
    sqrt (h 
    ^2 )) 
    * ( 
    sqrt (j 
    ^2 )))) 
    * ( 
    sqrt (w 
    * v))) by 
    A16,
    A8,
    SQUARE_1: 29;
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (((2 
    * ( 
    sqrt (h 
    ^2 ))) 
    * ( 
    sqrt (j 
    ^2 ))) 
    * ( 
    sqrt (w 
    * v))); 
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (((2 
    * h) 
    * ( 
    sqrt (j 
    ^2 ))) 
    * ( 
    sqrt (w 
    * v))) by 
    A14,
    SQUARE_1: 22;
    
        then (((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    >= (((2 
    * h) 
    * j) 
    * ( 
    sqrt (w 
    * v))) by 
    A15,
    SQUARE_1: 22;
    
        then ((((h
    ^2 ) 
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    + ((v 
    * w) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 )))) 
    >= ((((2 
    * h) 
    * j) 
    * ( 
    sqrt (w 
    * v))) 
    + ((v 
    * w) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 )))) by 
    XREAL_1: 6;
    
        then ((((v
    * w) 
    + ((j 
    ^2 ) 
    * v)) 
    + ((h 
    ^2 ) 
    * w)) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 ))) 
    >= (((v 
    * w) 
    + ((2 
    * ( 
    sqrt (w 
    * v))) 
    * (h 
    * j))) 
    + ((h 
    ^2 ) 
    * (j 
    ^2 ))); 
    
        then (((
    sqrt (v 
    * w)) 
    + (h 
    * j)) 
    ^2 ) 
    >=  
    0 & ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 ))) 
    >= (((( 
    sqrt (v 
    * w)) 
    ^2 ) 
    + ((2 
    * ( 
    sqrt (w 
    * v))) 
    * (h 
    * j))) 
    + ((h 
    * j) 
    ^2 )) by 
    A10,
    A7,
    SQUARE_1:def 2,
    XREAL_1: 63;
    
        then (
    sqrt ((( 
    sqrt (v 
    * w)) 
    + (h 
    * j)) 
    ^2 )) 
    <= ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))) by 
    SQUARE_1: 26;
    
        then ((
    sqrt (v 
    * w)) 
    + (h 
    * j)) 
    <= ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))) by 
    A14,
    A15,
    A11,
    SQUARE_1: 22;
    
        then (2
    * (( 
    sqrt (v 
    * w)) 
    + (h 
    * j))) 
    <= (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 ))))) by 
    XREAL_1: 64;
    
        then ((v
    + w) 
    + ((2 
    * ( 
    sqrt (v 
    * w))) 
    + ((2 
    * h) 
    * j))) 
    <= ((v 
    + w) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) by 
    XREAL_1: 6;
    
        then (u
    + ((2 
    * h) 
    * j)) 
    <= ((v 
    + w) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) by 
    A13,
    XXREAL_0: 2;
    
        then ((u
    + ((2 
    * h) 
    * j)) 
    + ((h 
    ^2 ) 
    + (j 
    ^2 ))) 
    <= (((v 
    + w) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) 
    + ((h 
    ^2 ) 
    + (j 
    ^2 ))) by 
    XREAL_1: 6;
    
        then (u
    + (((h 
    ^2 ) 
    + ((2 
    * h) 
    * j)) 
    + (j 
    ^2 ))) 
    <= (((v 
    + (h 
    ^2 )) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) 
    + (w 
    + (j 
    ^2 ))); 
    
        then (u
    + ((h 
    + j) 
    ^2 )) 
    <= (((( 
    sqrt (v 
    + (h 
    ^2 ))) 
    ^2 ) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) 
    + (w 
    + (j 
    ^2 ))) by 
    A10,
    A16,
    SQUARE_1:def 2;
    
        then (u
    + ((h 
    + j) 
    ^2 )) 
    <= (((( 
    sqrt (v 
    + (h 
    ^2 ))) 
    ^2 ) 
    + (2 
    * ( 
    sqrt ((v 
    + (h 
    ^2 )) 
    * (w 
    + (j 
    ^2 )))))) 
    + (( 
    sqrt (w 
    + (j 
    ^2 ))) 
    ^2 )) by 
    A7,
    A8,
    SQUARE_1:def 2;
    
        then ((h
    + j) 
    ^2 ) 
    >=  
    0 & (u 
    + ((h 
    + j) 
    ^2 )) 
    <= (((( 
    sqrt (v 
    + (h 
    ^2 ))) 
    ^2 ) 
    + (2 
    * (( 
    sqrt (v 
    + (h 
    ^2 ))) 
    * ( 
    sqrt (w 
    + (j 
    ^2 )))))) 
    + (( 
    sqrt (w 
    + (j 
    ^2 ))) 
    ^2 )) by 
    A10,
    A7,
    A16,
    A8,
    SQUARE_1: 29,
    XREAL_1: 63;
    
        then
    
        
    
    A18: ( 
    sqrt (u 
    + ((h 
    + j) 
    ^2 ))) 
    <= ( 
    sqrt ((( 
    sqrt (v 
    + (h 
    ^2 ))) 
    + ( 
    sqrt (w 
    + (j 
    ^2 )))) 
    ^2 )) by 
    A12,
    SQUARE_1: 26;
    
        
    
        
    
    A19: ( 
    sqrt (( 
    Partial_Sums s3) 
    . (n 
    + 1))) 
    = ( 
    sqrt ((( 
    Partial_Sums s3) 
    . n) 
    + (s3 
    . (n 
    + 1)))) by 
    SERIES_1:def 1
    
        .= (
    sqrt (u 
    + ((h 
    + j) 
    ^2 ))) by 
    A3;
    
        ((
    sqrt (( 
    Partial_Sums s4) 
    . (n 
    + 1))) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    . (n 
    + 1)))) 
    = (( 
    sqrt ((( 
    Partial_Sums s4) 
    . n) 
    + (s4 
    . (n 
    + 1)))) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    . (n 
    + 1)))) by 
    SERIES_1:def 1
    
        .= ((
    sqrt (v 
    + (s4 
    . (n 
    + 1)))) 
    + ( 
    sqrt (w 
    + (s5 
    . (n 
    + 1))))) by 
    SERIES_1:def 1
    
        .= ((
    sqrt (v 
    + ((s1 
    . (n 
    + 1)) 
    * (s1 
    . (n 
    + 1))))) 
    + ( 
    sqrt (w 
    + (s5 
    . (n 
    + 1))))) by 
    A1,
    SEQ_1: 8
    
        .= ((
    sqrt (v 
    + (h 
    ^2 ))) 
    + ( 
    sqrt (w 
    + (j 
    ^2 )))) by 
    A2,
    SEQ_1: 8;
    
        hence thesis by
    A19,
    A17,
    A9,
    A18,
    SQUARE_1: 22;
    
      end;
    
      
    
      
    
    A20: (s2 
    .  
    0 ) 
    >=  
    0 by 
    A3;
    
      ((
    sqrt (( 
    Partial_Sums s4) 
    .  
    0 )) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    .  
    0 ))) 
    = (( 
    sqrt (s4 
    .  
    0 )) 
    + ( 
    sqrt (( 
    Partial_Sums s5) 
    .  
    0 ))) by 
    SERIES_1:def 1
    
      .= ((
    sqrt (s4 
    .  
    0 )) 
    + ( 
    sqrt (s5 
    .  
    0 ))) by 
    SERIES_1:def 1
    
      .= ((
    sqrt ((s1 
    .  
    0 ) 
    * (s1 
    .  
    0 ))) 
    + ( 
    sqrt (s5 
    .  
    0 ))) by 
    A1,
    SEQ_1: 8
    
      .= ((
    sqrt ((s1 
    .  
    0 ) 
    ^2 )) 
    + ( 
    sqrt ((s2 
    .  
    0 ) 
    * (s2 
    .  
    0 )))) by 
    A2,
    SEQ_1: 8
    
      .= ((s1
    .  
    0 ) 
    + ( 
    sqrt ((s2 
    .  
    0 ) 
    ^2 ))) by 
    A4,
    SQUARE_1: 22
    
      .= ((s1
    .  
    0 ) 
    + (s2 
    .  
    0 )) by 
    A20,
    SQUARE_1: 22
    
      .= (
    sqrt (((s1 
    .  
    0 ) 
    + (s2 
    .  
    0 )) 
    ^2 )) by 
    A4,
    A20,
    SQUARE_1: 22
    
      .= (
    sqrt (s3 
    .  
    0 )) by 
    A3
    
      .= (
    sqrt (( 
    Partial_Sums s3) 
    .  
    0 )) by 
    SERIES_1:def 1;
    
      then
    
      
    
    A21: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A21,
    A5);
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm11: (for n holds (s 
    . n) 
    >  
    0 ) implies ((n 
    + 1) 
    -root (( 
    Partial_Product s) 
    . n)) 
    >  
    0  
    
    proof
    
      assume for n holds (s
    . n) 
    >  
    0 ; 
    
      then
    
      
    
    A1: (( 
    Partial_Product s) 
    . n) 
    >  
    0 by 
    Th43;
    
      
    
      
    
    A2: (n 
    + 1) 
    >= ( 
    0  
    + 1) by 
    XREAL_1: 6;
    
      then ((n
    + 1) 
    -root (( 
    Partial_Product s) 
    . n)) 
    = ((n 
    + 1) 
    -Root (( 
    Partial_Product s) 
    . n)) by 
    A1,
    POWER:def 1;
    
      hence thesis by
    A1,
    A2,
    PREPOWER:def 2;
    
    end;
    
    
    
    
    
    Lm12: (for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1))) implies (((s 
    . (n 
    + 1)) 
    - ((( 
    Partial_Sums s) 
    . n) 
    / (n 
    + 1))) 
    / (n 
    + 2)) 
    >=  
    0  
    
    proof
    
      assume for n holds (s
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1)); 
    
      then (((n
    + 1) 
    * (s 
    . (n 
    + 1))) 
    / (n 
    + 1)) 
    >= ((( 
    Partial_Sums s) 
    . n) 
    / (n 
    + 1)) by 
    Th38,
    XREAL_1: 72;
    
      then (s
    . (n 
    + 1)) 
    >= ((( 
    Partial_Sums s) 
    . n) 
    / (n 
    + 1)) by 
    XCMPLX_1: 89;
    
      then ((s
    . (n 
    + 1)) 
    - ((( 
    Partial_Sums s) 
    . n) 
    / (n 
    + 1))) 
    >=  
    0 by 
    XREAL_1: 48;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    SERIES_3:53
    
    (for n holds (s
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1))) implies (( 
    Partial_Sums s) 
    . n) 
    >= ((n 
    + 1) 
    * ((n 
    + 1) 
    -root (( 
    Partial_Product s) 
    . n))) 
    
    proof
    
      defpred
    
    X[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    >= (($1 
    + 1) 
    * (($1 
    + 1) 
    -root (( 
    Partial_Product s) 
    . $1))); 
    
      
    
      
    
    A1: (( 
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1;
    
      assume
    
      
    
    A2: for n holds (s 
    . n) 
    >  
    0 & (s 
    . n) 
    >= (s 
    . (n 
    - 1)); 
    
      
    
      
    
    A3: for n st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n;
    
        set u = ((
    Partial_Sums s) 
    . n); 
    
        set v = (s
    . (n 
    + 1)); 
    
        set w = (((u
    / (n 
    + 1)) 
    + ((v 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2))) 
    |^ (n 
    + 2)); 
    
        set h = ((n
    + 1) 
    -root (( 
    Partial_Product s) 
    . n)); 
    
        set j = (u
    / (n 
    + 1)); 
    
        
    
        
    
    A4: v 
    >  
    0 by 
    A2;
    
        
    
        
    
    A5: (n 
    + 1) 
    >= ( 
    0  
    + 1) by 
    XREAL_1: 6;
    
        then ((n
    + 1) 
    + 1) 
    >= (1 
    + 1) by 
    XREAL_1: 6;
    
        then
    
        
    
    A6: (n 
    + 2) 
    >= 1 by 
    XXREAL_0: 2;
    
        assume ((
    Partial_Sums s) 
    . n) 
    >= ((n 
    + 1) 
    * ((n 
    + 1) 
    -root (( 
    Partial_Product s) 
    . n))); 
    
        then (u
    / (n 
    + 1)) 
    >= (((n 
    + 1) 
    * ((n 
    + 1) 
    -root (( 
    Partial_Product s) 
    . n))) 
    / (n 
    + 1)) by 
    XREAL_1: 72;
    
        then ((n
    + 1) 
    -root (( 
    Partial_Product s) 
    . n)) 
    <= (u 
    / (n 
    + 1)) by 
    XCMPLX_1: 89;
    
        then
    
        
    
    A7: (h 
    |^ (n 
    + 1)) 
    <= (j 
    |^ (n 
    + 1)) by 
    A2,
    Lm11,
    PREPOWER: 9;
    
        
    
        
    
    A8: (( 
    Partial_Product s) 
    . n) 
    >  
    0 by 
    A2,
    Th43;
    
        then h
    = ((n 
    + 1) 
    -Root (( 
    Partial_Product s) 
    . n)) by 
    A5,
    POWER:def 1;
    
        then ((
    Partial_Product s) 
    . n) 
    <= (j 
    |^ (n 
    + 1)) by 
    A7,
    A8,
    A5,
    PREPOWER: 19;
    
        then (((
    Partial_Product s) 
    . n) 
    * v) 
    <= ((j 
    |^ (n 
    + 1)) 
    * v) by 
    A4,
    XREAL_1: 64;
    
        then
    
        
    
    A9: (( 
    Partial_Product s) 
    . (n 
    + 1)) 
    <= ((j 
    |^ (n 
    + 1)) 
    * v) by 
    Def1;
    
        
    
        
    
    A10: (( 
    Partial_Product s) 
    . (n 
    + 1)) 
    >=  
    0 by 
    A2,
    Th43;
    
        u
    >  
    0 & ((v 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2)) 
    >=  
    0 by 
    A2,
    Lm12,
    Th33;
    
        then w
    >= (((u 
    / (n 
    + 1)) 
    |^ ((n 
    + 1) 
    + 1)) 
    + (((n 
    + 2) 
    * ((u 
    / (n 
    + 1)) 
    |^ (n 
    + 1))) 
    * ((v 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2)))) by 
    Th31;
    
        then w
    >= ((((u 
    / (n 
    + 1)) 
    |^ (n 
    + 1)) 
    * (u 
    / (n 
    + 1))) 
    + (((u 
    / (n 
    + 1)) 
    |^ (n 
    + 1)) 
    * (((v 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2)) 
    * (n 
    + 2)))) by 
    NEWTON: 6;
    
        then
    
        
    
    A11: w 
    >= ((((u 
    / (n 
    + 1)) 
    |^ (n 
    + 1)) 
    * (u 
    / (n 
    + 1))) 
    + (((u 
    / (n 
    + 1)) 
    |^ (n 
    + 1)) 
    * (v 
    - (u 
    / (n 
    + 1))))) by 
    XCMPLX_1: 87;
    
        
    
        
    
    A12: (( 
    Partial_Sums s) 
    . (n 
    + 1)) 
    >  
    0 by 
    A2,
    Th33;
    
        (((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    = (((1 
    * (( 
    Partial_Sums s) 
    . n)) 
    + (s 
    . (n 
    + 1))) 
    / (n 
    + 2)) by 
    SERIES_1:def 1
    
        .= (((((n
    + 1) 
    / (n 
    + 1)) 
    * (( 
    Partial_Sums s) 
    . n)) 
    + (s 
    . (n 
    + 1))) 
    / (n 
    + 2)) by 
    XCMPLX_1: 60
    
        .= ((((((n
    + 2) 
    - 1) 
    * (( 
    Partial_Sums s) 
    . n)) 
    / (n 
    + 1)) 
    + (s 
    . (n 
    + 1))) 
    / (n 
    + 2)); 
    
        
    
        then (((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    = ((((((n 
    + 2) 
    * u) 
    - u) 
    / (n 
    + 1)) 
    + v) 
    / (n 
    + 2)) 
    
        .= ((((((n
    + 2) 
    * u) 
    / (n 
    + 1)) 
    - (u 
    / (n 
    + 1))) 
    + v) 
    / (n 
    + 2)) 
    
        .= ((((((n
    + 2) 
    * u) 
    / (n 
    + 1)) 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2)) 
    + (v 
    / (n 
    + 2))) 
    
        .= ((((((n
    + 2) 
    * u) 
    / (n 
    + 1)) 
    / (n 
    + 2)) 
    - ((u 
    / (n 
    + 1)) 
    / (n 
    + 2))) 
    + (v 
    / (n 
    + 2))) 
    
        .= (((((n
    + 2) 
    * u) 
    / ((n 
    + 1) 
    * (n 
    + 2))) 
    - ((u 
    / (n 
    + 1)) 
    / (n 
    + 2))) 
    + (v 
    / (n 
    + 2))) by 
    XCMPLX_1: 78
    
        .= (((u
    / (n 
    + 1)) 
    - ((u 
    / (n 
    + 1)) 
    / (n 
    + 2))) 
    + (v 
    / (n 
    + 2))) by 
    XCMPLX_1: 91
    
        .= ((u
    / (n 
    + 1)) 
    + ((v 
    / (n 
    + 2)) 
    - ((u 
    / (n 
    + 1)) 
    / (n 
    + 2)))) 
    
        .= ((u
    / (n 
    + 1)) 
    + ((v 
    - (u 
    / (n 
    + 1))) 
    / (n 
    + 2))); 
    
        then ((((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    |^ (n 
    + 2)) 
    >= (( 
    Partial_Product s) 
    . (n 
    + 1)) by 
    A11,
    A9,
    XXREAL_0: 2;
    
        then ((n
    + 2) 
    -Root (((( 
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    |^ (n 
    + 2))) 
    >= ((n 
    + 2) 
    -Root (( 
    Partial_Product s) 
    . (n 
    + 1))) by 
    A6,
    A10,
    PREPOWER: 27;
    
        then (((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    >= ((n 
    + 2) 
    -Root (( 
    Partial_Product s) 
    . (n 
    + 1))) by 
    A6,
    A12,
    PREPOWER: 19;
    
        then (((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    >= ((n 
    + 2) 
    -root (( 
    Partial_Product s) 
    . (n 
    + 1))) by 
    A6,
    A10,
    POWER:def 1;
    
        then ((((
    Partial_Sums s) 
    . (n 
    + 1)) 
    / (n 
    + 2)) 
    * (n 
    + 2)) 
    >= ((n 
    + 2) 
    * ((n 
    + 2) 
    -root (( 
    Partial_Product s) 
    . (n 
    + 1)))) by 
    XREAL_1: 64;
    
        hence thesis by
    XCMPLX_1: 87;
    
      end;
    
      ((
    0  
    + 1) 
    * (( 
    0  
    + 1) 
    -root (( 
    Partial_Product s) 
    .  
    0 ))) 
    = (( 
    0  
    + 1) 
    -root (s 
    .  
    0 )) by 
    Def1
    
      .= ((
    Partial_Sums s) 
    .  
    0 ) by 
    A1,
    POWER: 9;
    
      then
    
      
    
    A13: 
    X[
    0 ]; 
    
      for n holds
    X[n] from
    NAT_1:sch 2(
    A13,
    A3);
    
      hence thesis;
    
    end;