series_3.miz
begin
reserve a,b,c for
positive
Real,
m,x,y,z for
Real,
n for
Nat,
s,s1,s2,s3,s4,s5 for
Real_Sequence;
registration
let x;
cluster
|.x.| -> non
negative;
coherence ;
end
Lm1: (x
^2 )
= (x
|^ 2)
proof
(x
^2 )
= ((x
|^ 1)
* x)
.= (x
|^ (1
+ 1)) by
NEWTON: 6
.= (x
|^ 2);
hence thesis;
end;
Lm2: (2
|^ 3)
= 8
proof
(2
|^ 3)
= (2
|^ (2
+ 1))
.= ((2
|^ 2)
* 2) by
NEWTON: 6
.= ((2
^2 )
* 2) by
Lm1
.= 8;
hence thesis;
end;
Lm3: (3
|^ 3)
= 27
proof
(3
|^ 3)
= (3
|^ (2
+ 1))
.= ((3
|^ 2)
* 3) by
NEWTON: 6
.= ((3
^2 )
* 3) by
Lm1
.= 27;
hence thesis;
end;
Lm4: ((
- x)
|^ 3)
= (
- (x
|^ 3))
proof
3
= ((2
* 1)
+ 1);
then 3 is
odd by
ABIAN: 1;
hence thesis by
POWER: 2;
end;
Lm5: ((x
+ y)
|^ 3)
= ((((x
|^ 3)
+ ((3
* (x
^2 ))
* y))
+ ((3
* x)
* (y
^2 )))
+ (y
|^ 3))
proof
((x
+ y)
|^ 3)
= (((x
|^ 3)
+ (((3
* y)
* (x
^2 ))
+ ((3
* (y
^2 ))
* x)))
+ (y
|^ 3)) by
POLYEQ_1: 14
.= ((((x
|^ 3)
+ ((3
* (x
^2 ))
* y))
+ ((3
* x)
* (y
^2 )))
+ (y
|^ 3));
hence thesis;
end;
Lm6: ((x
|^ 3)
+ (y
|^ 3))
= ((x
+ y)
* (((x
^2 )
- (x
* y))
+ (y
^2 )))
proof
((((x
^2 )
- (x
* y))
+ (y
^2 ))
* (x
+ y))
= (((((x
^2 )
* x)
+ (y
* (x
^2 )))
- ((x
* (x
* y))
+ (y
* (x
* y))))
+ (((x
* (y
^2 ))
+ (y
* (y
^2 )))
+ (
0
* (y
^2 ))))
.= ((((x
|^ 3)
+ (y
* (x
^2 )))
- ((x
* (x
* y))
+ (y
* (x
* y))))
+ ((x
* (y
^2 ))
+ (y
* (y
^2 )))) by
POLYEQ_2: 4
.= ((((x
|^ 3)
+ (y
* (x
^2 )))
- (((x
^2 )
* y)
+ ((y
* y)
* x)))
+ ((x
* (y
^2 ))
+ (y
|^ 3))) by
POLYEQ_2: 4
.= ((x
|^ 3)
+ (y
|^ 3));
hence thesis;
end;
Lm7: (x
^2 )
<= (y
* z) implies
|.x.|
<= (
sqrt (y
* z))
proof
A1: (x
^2 )
>=
0 by
XREAL_1: 63;
assume (x
^2 )
<= (y
* z);
then
A2: (
sqrt (x
^2 ))
<= (
sqrt (y
* z)) by
A1,
SQUARE_1: 26;
per cases ;
suppose
A3: x
>=
0 ;
then x
<= (
sqrt (y
* z)) by
A2,
SQUARE_1: 22;
hence thesis by
A3,
ABSVALUE:def 1;
end;
suppose
A4: x
<
0 ;
then (
- x)
<= (
sqrt (y
* z)) by
A2,
SQUARE_1: 23;
hence thesis by
A4,
ABSVALUE:def 1;
end;
end;
theorem ::
SERIES_3:1
y
> x & x
>=
0 & m
>=
0 implies (x
/ y)
<= ((x
+ m)
/ (y
+ m))
proof
assume that
A1: y
> x and
A2: x
>=
0 and
A3: m
>=
0 ;
(y
- x)
>
0 by
A1,
XREAL_1: 50;
then (m
* (y
- x))
>=
0 by
A3;
then (((y
* (x
+ m))
- (x
* (m
+ y)))
/ (y
* (y
+ m)))
>=
0 by
A1,
A2,
A3;
then (((x
+ m)
/ (y
+ m))
- (x
/ y))
>=
0 by
A1,
A2,
A3,
XCMPLX_1: 130;
then ((((x
+ m)
/ (y
+ m))
- (x
/ y))
+ (x
/ y))
>= (
0
+ (x
/ y)) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
SERIES_3:2
Th2: ((a
+ b)
/ 2)
>= (
sqrt (a
* b))
proof
((a
+ b)
/ 2)
>= ((2
* (
sqrt (a
* b)))
/ 2) by
SIN_COS2: 1,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:3
((b
/ a)
+ (a
/ b))
>= 2
proof
((a
- b)
^2 )
>=
0 by
XREAL_1: 63;
then ((((a
^2 )
- ((2
* a)
* b))
+ (b
^2 ))
+ ((2
* a)
* b))
>= (
0
+ ((2
* a)
* b)) by
XREAL_1: 7;
then (((a
^2 )
+ (b
^2 ))
/ (a
* b))
>= ((2
* (a
* b))
/ (1
* (a
* b))) by
XREAL_1: 72;
then
A1: (((a
^2 )
+ (b
^2 ))
/ (a
* b))
>= (2
/ 1) by
XCMPLX_1: 91;
((b
/ a)
+ (a
/ b))
= (((b
* b)
/ (a
* b))
+ (a
/ b)) by
XCMPLX_1: 91
.= (((b
* b)
/ (a
* b))
+ ((a
* a)
/ (a
* b))) by
XCMPLX_1: 91
.= (((b
^2 )
+ (a
^2 ))
/ (a
* b));
hence thesis by
A1;
end;
theorem ::
SERIES_3:4
Th4: (((x
+ y)
/ 2)
^2 )
>= (x
* y)
proof
((x
- y)
^2 )
>=
0 by
XREAL_1: 63;
then ((((x
^2 )
- ((2
* x)
* y))
+ (y
^2 ))
+ ((2
* x)
* y))
>= (
0
+ ((2
* x)
* y)) by
XREAL_1: 7;
then (((x
^2 )
+ (y
^2 ))
+ ((2
* x)
* y))
>= (((2
* x)
* y)
+ ((2
* x)
* y)) by
XREAL_1: 7;
then (((x
+ y)
^2 )
/ (2
* 2))
>= ((4
* (x
* y))
/ 4) by
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:5
(((x
^2 )
+ (y
^2 ))
/ 2)
>= (((x
+ y)
/ 2)
^2 )
proof
((x
- y)
^2 )
>=
0 by
XREAL_1: 63;
then ((((x
^2 )
- ((2
* x)
* y))
+ (y
^2 ))
+ ((2
* x)
* y))
>= (
0
+ ((2
* x)
* y)) by
XREAL_1: 7;
then (((x
^2 )
+ (y
^2 ))
+ ((x
^2 )
+ (y
^2 )))
>= (((2
* x)
* y)
+ ((x
^2 )
+ (y
^2 ))) by
XREAL_1: 7;
then ((2
* ((x
^2 )
+ (y
^2 )))
/ 4)
>= (((x
+ y)
^2 )
/ 4) by
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:6
Th6: ((x
^2 )
+ (y
^2 ))
>= ((2
* x)
* y)
proof
((x
- y)
^2 )
>=
0 by
XREAL_1: 63;
then ((((x
^2 )
- ((2
* x)
* y))
+ (y
^2 ))
+ ((2
* x)
* y))
>= (
0
+ ((2
* x)
* y)) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
SERIES_3:7
Th7: (((x
^2 )
+ (y
^2 ))
/ 2)
>= (x
* y)
proof
(((x
^2 )
+ (y
^2 ))
/ 2)
>= (((2
* x)
* y)
/ 2) by
Th6,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:8
Th8: ((x
^2 )
+ (y
^2 ))
>= ((2
*
|.x.|)
*
|.y.|)
proof
A1: (x
^2 )
>=
0 & (y
^2 )
>=
0 by
XREAL_1: 63;
then ((x
^2 )
+ (y
^2 ))
>= (2
* (
sqrt ((x
^2 )
* (y
^2 )))) by
SIN_COS2: 1;
then ((x
^2 )
+ (y
^2 ))
>= (2
* ((
sqrt (x
^2 ))
* (
sqrt (y
^2 )))) by
A1,
SQUARE_1: 29;
then ((x
^2 )
+ (y
^2 ))
>= (2
* ((
sqrt (
|.x.|
^2 ))
* (
sqrt (y
^2 )))) by
COMPLEX1: 75;
then ((x
^2 )
+ (y
^2 ))
>= (2
* ((
sqrt (
|.x.|
^2 ))
* (
sqrt (
|.y.|
^2 )))) by
COMPLEX1: 75;
then ((x
^2 )
+ (y
^2 ))
>= (2
* (
|.x.|
* (
sqrt (
|.y.|
^2 )))) by
SQUARE_1: 22;
then ((x
^2 )
+ (y
^2 ))
>= (2
* (
|.x.|
*
|.y.|)) by
SQUARE_1: 22;
hence thesis;
end;
theorem ::
SERIES_3:9
Th9: ((x
+ y)
^2 )
>= ((4
* x)
* y)
proof
(2
* (((x
^2 )
+ (y
^2 ))
/ 2))
>= (2
* (x
* y)) by
Th7,
XREAL_1: 64;
then (((x
^2 )
+ (y
^2 ))
+ ((2
* x)
* y))
>= (((2
* x)
* y)
+ ((2
* x)
* y)) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
SERIES_3:10
Th10: (((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
>= (((x
* y)
+ (y
* z))
+ (x
* z))
proof
((x
^2 )
+ (y
^2 ))
>= ((2
* x)
* y) & ((y
^2 )
+ (z
^2 ))
>= ((2
* y)
* z) by
Th6;
then
A1: (((x
^2 )
+ (y
^2 ))
+ ((y
^2 )
+ (z
^2 )))
>= (((2
* x)
* y)
+ ((2
* y)
* z)) by
XREAL_1: 7;
((z
^2 )
+ (x
^2 ))
>= ((2
* z)
* x) by
Th6;
then ((((x
^2 )
+ (y
^2 ))
+ ((y
^2 )
+ (z
^2 )))
+ ((z
^2 )
+ (x
^2 )))
>= ((((2
* x)
* y)
+ ((2
* y)
* z))
+ ((2
* z)
* x)) by
A1,
XREAL_1: 7;
then ((2
* (((x
^2 )
+ (y
^2 ))
+ (z
^2 )))
/ 2)
>= ((2
* (((x
* y)
+ (y
* z))
+ (z
* x)))
/ 2) by
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:11
(((x
+ y)
+ z)
^2 )
>= (3
* (((x
* y)
+ (y
* z))
+ (x
* z)))
proof
(((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
>= (((x
* y)
+ (y
* z))
+ (x
* z)) by
Th10;
then ((((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
+ ((((2
* x)
* y)
+ ((2
* y)
* z))
+ ((2
* z)
* x)))
>= ((((x
* y)
+ (y
* z))
+ (x
* z))
+ ((((2
* x)
* y)
+ ((2
* y)
* z))
+ ((2
* z)
* x))) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
SERIES_3:12
Th12: (((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
>= (((3
* a)
* b)
* c)
proof
A1: (((a
+ c)
|^ 3)
- (((3
* (a
^2 ))
* c)
+ ((3
* a)
* (c
^2 ))))
= (((((a
|^ 3)
+ ((3
* (a
^2 ))
* c))
+ ((3
* a)
* (c
^2 )))
+ (c
|^ 3))
- (((3
* (a
^2 ))
* c)
+ ((3
* a)
* (c
^2 )))) by
Lm5;
(a
* ((b
^2 )
+ (c
^2 )))
>= (a
* ((2
* b)
* c)) & (b
* ((a
^2 )
+ (c
^2 )))
>= (b
* ((2
* a)
* c)) by
Th6,
XREAL_1: 64;
then
A2: ((b
* ((a
^2 )
+ (c
^2 )))
+ (a
* ((b
^2 )
+ (c
^2 ))))
>= ((((2
* a)
* b)
* c)
+ (((2
* a)
* b)
* c)) by
XREAL_1: 7;
(((a
+ c)
^2 )
* (a
+ c))
>= (((4
* a)
* c)
* (a
+ c)) by
Th9,
XREAL_1: 64;
then (((a
+ c)
|^ 2)
* (a
+ c))
>= (((4
* a)
* c)
* (a
+ c)) by
Lm1;
then
A3: ((a
+ c)
|^ (2
+ 1))
>= (((4
* a)
* c)
* (a
+ c)) by
NEWTON: 6;
(((b
+ c)
^2 )
* (b
+ c))
>= (((4
* b)
* c)
* (b
+ c)) by
Th9,
XREAL_1: 64;
then (((b
+ c)
|^ 2)
* (b
+ c))
>= (((4
* b)
* c)
* (b
+ c)) by
Lm1;
then
A4: ((b
+ c)
|^ (2
+ 1))
>= (((4
* b)
* c)
* (b
+ c)) by
NEWTON: 6;
(((a
+ b)
^2 )
* (a
+ b))
>= (((4
* a)
* b)
* (a
+ b)) by
Th9,
XREAL_1: 64;
then (((a
+ b)
|^ 2)
* (a
+ b))
>= (((4
* a)
* b)
* (a
+ b)) by
Lm1;
then ((a
+ b)
|^ (2
+ 1))
>= (((4
* a)
* b)
* (a
+ b)) by
NEWTON: 6;
then (((a
+ b)
|^ 3)
+ ((b
+ c)
|^ 3))
>= ((((4
* (a
^2 ))
* b)
+ ((4
* a)
* (b
^2 )))
+ (((4
* (b
^2 ))
* c)
+ ((4
* b)
* (c
^2 )))) by
A4,
XREAL_1: 7;
then ((((a
+ b)
|^ 3)
+ ((b
+ c)
|^ 3))
+ ((a
+ c)
|^ 3))
>= ((((((4
* (a
^2 ))
* b)
+ ((4
* a)
* (b
^2 )))
+ ((4
* (b
^2 ))
* c))
+ ((4
* b)
* (c
^2 )))
+ (((4
* (a
^2 ))
* c)
+ ((4
* a)
* (c
^2 )))) by
A3,
XREAL_1: 7;
then
A5: (((((a
+ b)
|^ 3)
+ ((b
+ c)
|^ 3))
+ ((a
+ c)
|^ 3))
+ ((((((
- ((3
* (a
^2 ))
* b))
- ((3
* a)
* (b
^2 )))
- ((3
* (b
^2 ))
* c))
- ((3
* b)
* (c
^2 )))
- ((3
* (a
^2 ))
* c))
- ((3
* a)
* (c
^2 ))))
>= ((((((((4
* (a
^2 ))
* b)
+ ((4
* a)
* (b
^2 )))
+ ((4
* (b
^2 ))
* c))
+ ((4
* b)
* (c
^2 )))
+ ((4
* (a
^2 ))
* c))
+ ((4
* a)
* (c
^2 )))
+ ((((((
- ((3
* (a
^2 ))
* b))
- ((3
* a)
* (b
^2 )))
- ((3
* (b
^2 ))
* c))
- ((3
* b)
* (c
^2 )))
- ((3
* (a
^2 ))
* c))
- ((3
* a)
* (c
^2 )))) by
XREAL_1: 6;
(c
* ((a
^2 )
+ (b
^2 )))
>= (((2
* a)
* b)
* c) by
Th6,
XREAL_1: 64;
then
A6: (((b
* ((a
^2 )
+ (c
^2 )))
+ (a
* ((b
^2 )
+ (c
^2 ))))
+ (c
* ((a
^2 )
+ (b
^2 ))))
>= ((((4
* a)
* b)
* c)
+ (((2
* a)
* b)
* c)) by
A2,
XREAL_1: 7;
(((a
+ b)
|^ 3)
- (((3
* (a
^2 ))
* b)
+ ((3
* a)
* (b
^2 ))))
= (((((a
|^ 3)
+ ((3
* (a
^2 ))
* b))
+ ((3
* a)
* (b
^2 )))
+ (b
|^ 3))
- (((3
* (a
^2 ))
* b)
+ ((3
* a)
* (b
^2 )))) & (((b
+ c)
|^ 3)
- (((3
* (b
^2 ))
* c)
+ ((3
* b)
* (c
^2 ))))
= (((((b
|^ 3)
+ ((3
* (b
^2 ))
* c))
+ ((3
* b)
* (c
^2 )))
+ (c
|^ 3))
- (((3
* (b
^2 ))
* c)
+ ((3
* b)
* (c
^2 )))) by
Lm5;
then (2
* (((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3)))
>= (((6
* a)
* b)
* c) by
A1,
A5,
A6,
XXREAL_0: 2;
then ((2
* (((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3)))
/ 2)
>= ((((6
* a)
* b)
* c)
/ 2) by
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:13
Th13: ((((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
/ 3)
>= ((a
* b)
* c)
proof
((((a
|^ 3)
+ (b
|^ 3))
+ (c
|^ 3))
/ 3)
>= ((((3
* a)
* b)
* c)
/ 3) by
Th12,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:14
((((a
/ b)
|^ 3)
+ ((b
/ c)
|^ 3))
+ ((c
/ a)
|^ 3))
>= (((b
/ a)
+ (c
/ b))
+ (a
/ c))
proof
A1: 1
= (((a
/ a)
* 1)
* 1) by
XCMPLX_1: 60
.= (((a
/ a)
* (b
/ b))
* 1) by
XCMPLX_1: 60
.= (((a
/ a)
* (b
/ b))
* (c
/ c)) by
XCMPLX_1: 60
.= (((a
/ b)
* (b
/ a))
* (c
/ c))
.= ((a
/ b)
* ((b
/ a)
* (c
/ c)))
.= ((a
/ b)
* ((b
/ c)
* (c
/ a)))
.= (((a
/ b)
* (b
/ c))
* (c
/ a));
(c
/ b)
= ((c
/ b)
* 1)
.= ((c
/ b)
* (a
/ a)) by
XCMPLX_1: 60
.= (((a
/ b)
* (c
/ a))
* 1);
then
A2: (c
/ b)
<= (((((a
/ b)
|^ 3)
+ ((c
/ a)
|^ 3))
+ (1
|^ 3))
/ 3) by
Th13;
(a
/ c)
= ((a
/ c)
* 1)
.= ((a
/ c)
* (b
/ b)) by
XCMPLX_1: 60
.= (((a
/ b)
* (b
/ c))
* 1);
then
A3: (a
/ c)
<= (((((a
/ b)
|^ 3)
+ ((b
/ c)
|^ 3))
+ (1
|^ 3))
/ 3) by
Th13;
(b
/ a)
= ((b
/ a)
* 1)
.= ((b
/ a)
* (c
/ c)) by
XCMPLX_1: 60
.= (((b
/ c)
* (c
/ a))
* 1);
then (b
/ a)
<= (((((b
/ c)
|^ 3)
+ ((c
/ a)
|^ 3))
+ (1
|^ 3))
/ 3) by
Th13;
then ((b
/ a)
+ (c
/ b))
<= ((((((b
/ c)
|^ 3)
/ 3)
+ (((c
/ a)
|^ 3)
/ 3))
+ (1
/ 3))
+ (((((a
/ b)
|^ 3)
/ 3)
+ (((c
/ a)
|^ 3)
/ 3))
+ (1
/ 3))) by
A2,
XREAL_1: 7;
then
A4: (((b
/ a)
+ (c
/ b))
+ (a
/ c))
<= (((((((b
/ c)
|^ 3)
/ 3)
+ (((a
/ b)
|^ 3)
/ 3))
+ ((2
* ((c
/ a)
|^ 3))
/ 3))
+ (2
/ 3))
+ (((((a
/ b)
|^ 3)
/ 3)
+ (((b
/ c)
|^ 3)
/ 3))
+ (1
/ 3))) by
A3,
XREAL_1: 7;
(((a
/ b)
* (b
/ c))
* (c
/ a))
<= (((((a
/ b)
|^ 3)
+ ((b
/ c)
|^ 3))
+ ((c
/ a)
|^ 3))
/ 3) by
Th13;
then ((((b
/ a)
+ (c
/ b))
+ (a
/ c))
+ 1)
<= ((((((2
* ((b
/ c)
|^ 3))
/ 3)
+ ((2
* ((a
/ b)
|^ 3))
/ 3))
+ ((2
* ((c
/ a)
|^ 3))
/ 3))
+ 1)
+ (((((a
/ b)
|^ 3)
/ 3)
+ (((b
/ c)
|^ 3)
/ 3))
+ (((c
/ a)
|^ 3)
/ 3))) by
A1,
A4,
XREAL_1: 7;
then (((((b
/ a)
+ (c
/ b))
+ (a
/ c))
+ 1)
- 1)
<= ((((((b
/ c)
|^ 3)
+ ((a
/ b)
|^ 3))
+ ((c
/ a)
|^ 3))
+ 1)
- 1) by
XREAL_1: 9;
hence thesis;
end;
theorem ::
SERIES_3:15
Th15: ((a
+ b)
+ c)
>= (3
* (3
-root ((a
* b)
* c)))
proof
A1: (3
-Root c)
>
0 by
PREPOWER:def 2;
(3
-Root a)
>
0 & (3
-Root b)
>
0 by
PREPOWER:def 2;
then ((((3
-Root a)
|^ 3)
+ ((3
-Root b)
|^ 3))
+ ((3
-Root c)
|^ 3))
>= (((3
* (3
-Root a))
* (3
-Root b))
* (3
-Root c)) by
A1,
Th12;
then ((a
+ ((3
-Root b)
|^ 3))
+ ((3
-Root c)
|^ 3))
>= (((3
* (3
-Root a))
* (3
-Root b))
* (3
-Root c)) by
PREPOWER: 19;
then ((a
+ b)
+ ((3
-Root c)
|^ 3))
>= (((3
* (3
-Root a))
* (3
-Root b))
* (3
-Root c)) by
PREPOWER: 19;
then ((a
+ b)
+ c)
>= ((3
* ((3
-Root a)
* (3
-Root b)))
* (3
-Root c)) by
PREPOWER: 19;
then ((a
+ b)
+ c)
>= ((3
* (3
-Root (a
* b)))
* (3
-Root c)) by
PREPOWER: 22;
then ((a
+ b)
+ c)
>= (3
* ((3
-Root (a
* b))
* (3
-Root c)));
then ((a
+ b)
+ c)
>= (3
* (3
-Root ((a
* b)
* c))) by
PREPOWER: 22;
hence thesis by
POWER:def 1;
end;
theorem ::
SERIES_3:16
(((a
+ b)
+ c)
/ 3)
>= (3
-root ((a
* b)
* c))
proof
(((a
+ b)
+ c)
/ 3)
>= ((3
* (3
-root ((a
* b)
* c)))
/ 3) by
Th15,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:17
((x
+ y)
+ z)
= 1 implies (((x
* y)
+ (y
* z))
+ (x
* z))
<= (1
/ 3)
proof
((x
^2 )
+ (y
^2 ))
>= ((2
* x)
* y) & ((x
^2 )
+ (z
^2 ))
>= ((2
* x)
* z) by
Th6;
then
A1: (((x
^2 )
+ (y
^2 ))
+ ((x
^2 )
+ (z
^2 )))
>= (((2
* x)
* y)
+ ((2
* x)
* z)) by
XREAL_1: 7;
((y
^2 )
+ (z
^2 ))
>= ((2
* y)
* z) by
Th6;
then (((((x
^2 )
+ (y
^2 ))
+ (x
^2 ))
+ (z
^2 ))
+ ((y
^2 )
+ (z
^2 )))
>= ((((2
* x)
* y)
+ ((2
* x)
* z))
+ ((2
* y)
* z)) by
A1,
XREAL_1: 7;
then ((2
* (((x
^2 )
+ (y
^2 ))
+ (z
^2 )))
/ 2)
>= ((2
* (((x
* y)
+ (x
* z))
+ (y
* z)))
/ 2) by
XREAL_1: 72;
then
A2: ((((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
+ (2
* (((x
* z)
+ (y
* z))
+ (x
* y))))
>= ((((x
* y)
+ (x
* z))
+ (y
* z))
+ (2
* (((x
* z)
+ (y
* z))
+ (x
* y)))) by
XREAL_1: 7;
assume ((x
+ y)
+ z)
= 1;
then (1
^2 )
= ((((x
+ y)
^2 )
+ ((2
* (x
+ y))
* z))
+ (z
^2 )) by
SQUARE_1: 4
.= ((((x
^2 )
+ (y
^2 ))
+ (z
^2 ))
+ (2
* (((x
* z)
+ (y
* z))
+ (x
* y))));
then (1
/ 3)
>= ((3
* (((x
* z)
+ (y
* z))
+ (x
* y)))
/ 3) by
A2,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:18
Th18: (x
+ y)
= 1 implies (x
* y)
<= (1
/ 4)
proof
((x
- y)
^2 )
>=
0 by
XREAL_1: 63;
then
A1: ((((x
^2 )
- ((2
* x)
* y))
+ (y
^2 ))
- (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 )))
>= (
0
- (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 ))) by
XREAL_1: 9;
assume (x
+ y)
= 1;
then (1
^2 )
= (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 )) by
SQUARE_1: 4;
then (
- ((4
* x)
* y))
>= (
- 1) by
A1;
then (4
* (x
* y))
<= 1 by
XREAL_1: 24;
then ((4
* (x
* y))
/ 4)
<= (1
/ 4) by
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:19
(x
+ y)
= 1 implies ((x
^2 )
+ (y
^2 ))
>= (1
/ 2)
proof
((x
- y)
^2 )
>=
0 by
XREAL_1: 63;
then
A1: ((((x
^2 )
- ((2
* x)
* y))
+ (y
^2 ))
+ (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 )))
>= (
0
+ (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 ))) by
XREAL_1: 7;
assume (x
+ y)
= 1;
then (1
^2 )
= (((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 )) by
SQUARE_1: 4;
then ((2
* ((x
^2 )
+ (y
^2 )))
/ 2)
>= (1
/ 2) by
A1,
XREAL_1: 72;
hence thesis;
end;
theorem ::
SERIES_3:20
(a
+ b)
= 1 implies ((1
+ (1
/ a))
* (1
+ (1
/ b)))
>= 9
proof
assume
A1: (a
+ b)
= 1;
then (1
/ (a
* b))
>= (1
/ (1
/ 4)) by
Th18,
XREAL_1: 85;
then ((1
/ (a
* b))
* (
- 2))
<= (4
* (
- 2)) by
XREAL_1: 65;
then (
- ((1
/ (a
* b))
* 2))
<= (
- 8);
then ((1
/ (a
* b))
* 2)
>= 8 by
XREAL_1: 24;
then
A2: (1
+ (2
* (1
/ (a
* b))))
>= (1
+ 8) by
XREAL_1: 7;
((1
+ (1
/ a))
* (1
+ (1
/ b)))
= ((((1
* 1)
+ (1
* (1
/ b)))
+ ((1
/ a)
* (1
/ b)))
+ ((1
/ a)
* 1))
.= (((1
+ (1
/ b))
+ (1
/ (a
* b)))
+ (1
/ a)) by
XCMPLX_1: 102
.= ((1
+ ((1
/ b)
+ (1
/ a)))
+ (1
/ (a
* b)))
.= ((1
+ (((1
* a)
+ (b
* 1))
/ (a
* b)))
+ (1
/ (a
* b))) by
XCMPLX_1: 116
.= ((1
+ (1
/ (a
* b)))
+ (1
/ (a
* b))) by
A1
.= (1
+ (2
* (1
/ (a
* b))));
hence thesis by
A2;
end;
theorem ::
SERIES_3:21
(x
+ y)
= 1 implies ((x
|^ 3)
+ (y
|^ 3))
>= (1
/ 4)
proof
assume
A1: (x
+ y)
= 1;
then ((x
* y)
* (
- 3))
>= ((1
/ 4)
* (
- 3)) by
Th18,
XREAL_1: 65;
then
A2: (1
+ ((x
* y)
* (
- 3)))
>= (((1
/ 4)
* (
- 3))
+ 1) by
XREAL_1: 7;
((x
|^ 3)
+ (y
|^ 3))
= ((x
+ y)
* (((x
^2 )
- (x
* y))
+ (y
^2 ))) by
Lm6;
then ((x
|^ 3)
+ (y
|^ 3))
= ((((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 ))
- ((3
* x)
* y)) by
A1
.= ((1
^2 )
- (3
* (x
* y))) by
A1,
SQUARE_1: 4;
hence thesis by
A2;
end;
theorem ::
SERIES_3:22
(a
+ b)
= 1 implies ((a
|^ 3)
+ (b
|^ 3))
< 1
proof
assume
A1: (a
+ b)
= 1;
A2: (1
+ ((a
* b)
* (
- 3)))
< (
0
+ 1) by
XREAL_1: 8;
((a
|^ 3)
+ (b
|^ 3))
= ((a
+ b)
* (((a
^2 )
- (a
* b))
+ (b
^2 ))) by
Lm6;
then ((a
|^ 3)
+ (b
|^ 3))
= ((((a
^2 )
+ ((2
* a)
* b))
+ (b
^2 ))
- ((3
* a)
* b)) by
A1
.= ((1
^2 )
- (3
* (a
* b))) by
A1,
SQUARE_1: 4;
hence thesis by
A2;
end;
theorem ::
SERIES_3:23
(a
+ b)
= 1 implies ((a
+ (1
/ a))
* (b
+ (1
/ b)))
>= (25
/ 4)
proof
assume
A1: (a
+ b)
= 1;
then
A2: (a
* b)
<= ((1
/ 2)
^2 ) by
Th4;
then (1
- (a
* b))
>= (1
- (1
/ 4)) by
XREAL_1: 10;
then ((1
- (a
* b))
^2 )
>= ((3
/ 4)
^2 ) by
SQUARE_1: 15;
then (1
+ ((1
- (a
* b))
^2 ))
>= (1
+ (9
/ 16)) by
XREAL_1: 6;
then
A3: (4
* (1
+ ((1
- (a
* b))
^2 )))
>= (4
* (25
/ 16)) by
XREAL_1: 64;
((1
- (a
* b))
^2 )
>=
0 by
XREAL_1: 63;
then
A4: ((1
+ ((1
- (a
* b))
^2 ))
/ (a
* b))
>= ((1
+ ((1
- (a
* b))
^2 ))
/ (1
/ 4)) by
A2,
XREAL_1: 118;
((a
^2 )
+ (b
^2 ))
= ((((a
^2 )
+ ((2
* a)
* b))
+ (b
^2 ))
- ((2
* a)
* b));
then
A5: ((a
^2 )
+ (b
^2 ))
= ((1
^2 )
- ((2
* a)
* b)) by
A1,
SQUARE_1: 4;
((a
+ (1
/ a))
* (b
+ (1
/ b)))
= (((1
+ (a
^2 ))
/ a)
* (b
+ (1
/ b))) by
XCMPLX_1: 113
.= (((1
+ (a
^2 ))
/ a)
* ((1
+ (b
^2 ))
/ b)) by
XCMPLX_1: 113
.= (((1
+ (a
^2 ))
* (1
+ (b
^2 )))
/ (a
* b)) by
XCMPLX_1: 76
.= ((1
+ (((1
^2 )
- (2
* (a
* b)))
+ ((a
^2 )
* (b
^2 ))))
/ (a
* b)) by
A5
.= ((1
+ ((1
- (a
* b))
^2 ))
/ (a
* b));
hence thesis by
A4,
A3,
XXREAL_0: 2;
end;
theorem ::
SERIES_3:24
for x,a be
Real st
|.x.|
<= a holds (x
^2 )
<= (a
^2 )
proof
let x,a be
Real;
assume
A1:
|.x.|
<= a;
per cases ;
suppose
A2: x
>=
0 ;
x
<= a by
A1,
ABSVALUE:def 1;
hence thesis by
A2,
SQUARE_1: 15;
end;
suppose
A3: x
<
0 ;
then (
- x)
<= a by
A1,
ABSVALUE:def 1;
then ((
- x)
^2 )
<= (a
^2 ) by
A3,
SQUARE_1: 15;
hence thesis;
end;
end;
theorem ::
SERIES_3:25
|.x.|
>= a implies (x
^2 )
>= (a
^2 )
proof
assume
A1:
|.x.|
>= a;
per cases ;
suppose x
>=
0 ;
then x
>= a by
A1,
ABSVALUE:def 1;
hence thesis by
SQUARE_1: 15;
end;
suppose x
<
0 ;
then (
- x)
>= a by
A1,
ABSVALUE:def 1;
then ((
- x)
^2 )
>= (a
^2 ) by
SQUARE_1: 15;
hence thesis;
end;
end;
theorem ::
SERIES_3:26
|.(
|.x.|
-
|.y.|).|
<= (
|.x.|
+
|.y.|)
proof
|.(
|.x.|
-
|.y.|).|
<=
|.(x
- y).| &
|.(x
- y).|
<= (
|.x.|
+
|.y.|) by
COMPLEX1: 57,
COMPLEX1: 64;
hence thesis by
XXREAL_0: 2;
end;
theorem ::
SERIES_3:27
((a
* b)
* c)
= 1 implies (((1
/ a)
+ (1
/ b))
+ (1
/ c))
>= (((
sqrt a)
+ (
sqrt b))
+ (
sqrt c))
proof
assume
A1: ((a
* b)
* c)
= 1;
(((1
/ a)
+ (1
/ b))
/ 2)
>= (
sqrt ((1
/ a)
* (1
/ b))) by
Th2;
then (((1
/ a)
+ (1
/ b))
/ 2)
>= (
sqrt (1
/ (a
* b))) by
XCMPLX_1: 102;
then
A2: (((1
/ a)
+ (1
/ b))
/ 2)
>= (
sqrt ((1
* c)
/ ((a
* b)
* c))) by
XCMPLX_1: 91;
(((1
/ c)
+ (1
/ a))
/ 2)
>= (
sqrt ((1
/ c)
* (1
/ a))) by
Th2;
then (((1
/ c)
+ (1
/ a))
/ 2)
>= (
sqrt (1
/ (c
* a))) by
XCMPLX_1: 102;
then
A3: (((1
/ c)
+ (1
/ a))
/ 2)
>= (
sqrt ((1
* b)
/ ((c
* a)
* b))) by
XCMPLX_1: 91;
(((1
/ b)
+ (1
/ c))
/ 2)
>= (
sqrt ((1
/ b)
* (1
/ c))) by
Th2;
then (((1
/ b)
+ (1
/ c))
/ 2)
>= (
sqrt (1
/ (b
* c))) by
XCMPLX_1: 102;
then (((1
/ b)
+ (1
/ c))
/ 2)
>= (
sqrt ((1
* a)
/ ((b
* c)
* a))) by
XCMPLX_1: 91;
then ((((1
/ b)
+ (1
/ c))
/ 2)
+ (((1
/ c)
+ (1
/ a))
/ 2))
>= ((
sqrt a)
+ (
sqrt b)) by
A1,
A3,
XREAL_1: 7;
then (((((1
/ b)
+ (1
/ c))
/ 2)
+ (((1
/ c)
+ (1
/ a))
/ 2))
+ (((1
/ a)
+ (1
/ b))
/ 2))
>= (((
sqrt a)
+ (
sqrt b))
+ (
sqrt c)) by
A1,
A2,
XREAL_1: 7;
hence thesis;
end;
theorem ::
SERIES_3:28
x
>
0 & y
>
0 & z
<
0 & ((x
+ y)
+ z)
=
0 implies ((((x
|^ 2)
+ (y
|^ 2))
+ (z
|^ 2))
|^ 3)
>= (6
* ((((x
|^ 3)
+ (y
|^ 3))
+ (z
|^ 3))
^2 ))
proof
assume that
A1: x
>
0 & y
>
0 and
A2: z
<
0 and
A3: ((x
+ y)
+ z)
=
0 ;
(3
-Root ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4))
>
0 by
A1,
A2,
PREPOWER:def 2;
then
A4: (3
-root ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4))
>
0 by
A1,
A2,
POWER:def 1;
((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
>= (3
* (3
-root ((((x
* (x
+ y))
/ 2)
* ((y
* (x
+ y))
/ 2))
* (x
* y)))) by
A1,
Th15;
then ((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
>= (3
* (3
-root ((((x
^2 )
* (y
^2 ))
* ((x
+ y)
* (x
+ y)))
/ 4)));
then
A5: ((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
>= (3
* (3
-root ((((x
^2 )
* (y
^2 ))
* ((
- z)
^2 ))
/ 4))) by
A3;
((3
* (3
-root ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4)))
|^ 3)
= ((3
|^ 3)
* ((3
-root ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4))
|^ 3)) by
NEWTON: 7
.= (27
* ((3
-Root ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4))
|^ 3)) by
A1,
A2,
Lm3,
POWER:def 1
.= (27
* ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4)) by
A1,
A2,
PREPOWER: 19;
then (((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
|^ 3)
>= (27
* ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4)) by
A5,
A4,
PREPOWER: 9;
then
A6: (8
* (((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
|^ 3))
>= (8
* (27
* ((((x
^2 )
* (y
^2 ))
* (z
^2 ))
/ 4))) by
XREAL_1: 64;
(((x
^2 )
+ (y
^2 ))
/ 2)
>= (x
* y) by
Th7;
then (((x
|^ 2)
+ (y
^2 ))
/ 2)
>= (x
* y) by
Lm1;
then (((x
|^ 2)
+ (y
|^ 2))
/ 2)
>= (x
* y) by
Lm1;
then (((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (((x
|^ 2)
+ (y
|^ 2))
/ 2))
>= (((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (x
* y)) by
XREAL_1: 6;
then (((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (((x
|^ 2)
+ (y
|^ 2))
/ 2))
>= (((((x
^2 )
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (x
* y)) by
Lm1;
then (((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (((x
|^ 2)
+ (y
|^ 2))
/ 2))
>= (((((x
* x)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
^2 ))
/ 2))
+ (x
* y)) by
Lm1;
then ((((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (((x
|^ 2)
+ (y
|^ 2))
/ 2))
|^ 3)
>= (((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
|^ 3) by
A1,
PREPOWER: 9;
then (8
* ((((((x
|^ 2)
+ (x
* y))
/ 2)
+ (((x
* y)
+ (y
|^ 2))
/ 2))
+ (((x
|^ 2)
+ (y
|^ 2))
/ 2))
|^ 3))
>= (8
* (((((x
* (x
+ y))
/ 2)
+ ((y
* (x
+ y))
/ 2))
+ (x
* y))
|^ 3)) by
XREAL_1: 64;
then (8
* ((((x
|^ 2)
+ (x
* y))
+ (y
|^ 2))
|^ 3))
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
A6,
XXREAL_0: 2;
then ((2
* (((x
|^ 2)
+ (x
* y))
+ (y
|^ 2)))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
Lm2,
NEWTON: 7;
then ((((((x
|^ 2)
+ ((2
* x)
* y))
+ (y
|^ 2))
+ (x
|^ 2))
+ (y
|^ 2))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 )));
then ((((((x
^2 )
+ ((2
* x)
* y))
+ (y
|^ 2))
+ (x
|^ 2))
+ (y
|^ 2))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
Lm1;
then ((((((x
^2 )
+ ((2
* x)
* y))
+ (y
|^ 2))
+ (x
^2 ))
+ (y
|^ 2))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
Lm1;
then ((((((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 ))
+ (x
^2 ))
+ (y
|^ 2))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
Lm1;
then
A7: ((((((x
^2 )
+ ((2
* x)
* y))
+ (y
^2 ))
+ (x
^2 ))
+ (y
^2 ))
|^ 3)
>= (54
* (((x
^2 )
* (y
^2 ))
* (z
^2 ))) by
Lm1;
A8: z
= (
- (x
+ y)) by
A3;
then (z
|^ 3)
= (
- ((x
+ y)
|^ 3)) by
Lm4
.= (
- ((((x
|^ 3)
+ ((3
* (x
^2 ))
* y))
+ ((3
* x)
* (y
^2 )))
+ (y
|^ 3))) by
Lm5;
then ((((z
|^ 2)
+ (x
^2 ))
+ (y
^2 ))
|^ 3)
>= (6
* ((((x
|^ 3)
+ (y
|^ 3))
+ (z
|^ 3))
^2 )) by
A8,
A7,
Lm1;
then ((((z
|^ 2)
+ (x
|^ 2))
+ (y
^2 ))
|^ 3)
>= (6
* ((((x
|^ 3)
+ (y
|^ 3))
+ (z
|^ 3))
^2 )) by
Lm1;
then ((((z
|^ 2)
+ (x
|^ 2))
+ (y
|^ 2))
|^ 3)
>= (6
* ((((x
|^ 3)
+ (y
|^ 3))
+ (z
|^ 3))
^2 )) by
Lm1;
hence thesis;
end;
theorem ::
SERIES_3:29
a
>= 1 implies ((a
to_power b)
+ (a
to_power c))
>= (2
* (a
to_power (
sqrt (b
* c))))
proof
A1: ((b
+ c)
/ 2)
>= ((2
* (
sqrt (b
* c)))
/ 2) by
SIN_COS2: 1,
XREAL_1: 72;
set p = (a
to_power c);
set o = (a
to_power b);
o
>
0 & p
>
0 by
POWER: 34;
then ((a
to_power b)
+ (a
to_power c))
>= (2
* (
sqrt ((a
to_power b)
* (a
to_power c)))) by
SIN_COS2: 1;
then (a
to_power (b
+ c))
>
0 & ((a
to_power b)
+ (a
to_power c))
>= (2
* (
sqrt (a
to_power (b
+ c)))) by
POWER: 27,
POWER: 34;
then ((a
to_power b)
+ (a
to_power c))
>= (2
* ((a
to_power (b
+ c))
to_power (1
/ 2))) by
ASYMPT_1: 83;
then
A2: ((a
to_power b)
+ (a
to_power c))
>= (2
* (a
to_power ((1
/ 2)
* (b
+ c)))) by
POWER: 33;
assume a
>= 1;
then (a
#R ((b
+ c)
/ 2))
>= (a
#R (
sqrt (b
* c))) by
A1,
PREPOWER: 82;
then (a
to_power ((b
+ c)
/ 2))
>= (a
#R (
sqrt (b
* c))) by
POWER:def 2;
then (a
to_power ((b
+ c)
/ 2))
>= (a
to_power (
sqrt (b
* c))) by
POWER:def 2;
then (2
* (a
to_power ((b
+ c)
/ 2)))
>= (2
* (a
to_power (
sqrt (b
* c)))) by
XREAL_1: 64;
hence thesis by
A2,
XXREAL_0: 2;
end;
theorem ::
SERIES_3:30
a
>= b & b
>= c implies (((a
to_power a)
* (b
to_power b))
* (c
to_power c))
>= (((a
* b)
* c)
to_power (((a
+ b)
+ c)
/ 3))
proof
assume that
A1: a
>= b and
A2: b
>= c;
A3: ((b
/ c)
to_power ((b
- c)
/ 3))
= ((b
/ c)
#R ((b
- c)
/ 3)) by
POWER:def 2;
(b
/ c)
>= 1 & (b
- c)
>= (c
- c) by
A2,
XREAL_1: 9,
XREAL_1: 181;
then
A4: ((b
/ c)
to_power ((b
- c)
/ 3))
>= 1 by
A3,
PREPOWER: 85;
A5: ((a
/ b)
to_power ((a
- b)
/ 3))
= ((a
/ b)
#R ((a
- b)
/ 3)) by
POWER:def 2;
(a
/ b)
>= 1 & (a
- b)
>= (b
- b) by
A1,
XREAL_1: 9,
XREAL_1: 181;
then ((a
/ b)
to_power ((a
- b)
/ 3))
>= 1 by
A5,
PREPOWER: 85;
then
A6: (((a
/ b)
to_power ((a
- b)
/ 3))
* ((b
/ c)
to_power ((b
- c)
/ 3)))
>= (1
* 1) by
A4,
XREAL_1: 66;
a
>= c by
A1,
A2,
XXREAL_0: 2;
then
A7: (a
/ c)
>= 1 & (a
- c)
>= (c
- c) by
XREAL_1: 9,
XREAL_1: 181;
((a
/ c)
to_power ((a
- c)
/ 3))
= ((a
/ c)
#R ((a
- c)
/ 3)) by
POWER:def 2;
then ((a
/ c)
to_power ((a
- c)
/ 3))
>= 1 by
A7,
PREPOWER: 85;
then ((((a
/ b)
to_power ((a
- b)
/ 3))
* ((b
/ c)
to_power ((b
- c)
/ 3)))
* ((a
/ c)
to_power ((a
- c)
/ 3)))
>= 1 by
A6,
XREAL_1: 66;
then ((((a
to_power ((a
- b)
/ 3))
/ (b
to_power ((a
- b)
/ 3)))
* ((b
/ c)
to_power ((b
- c)
/ 3)))
* ((a
/ c)
to_power ((a
- c)
/ 3)))
>= 1 by
POWER: 31;
then
A8: ((((a
to_power ((a
- b)
/ 3))
/ (b
to_power ((a
- b)
/ 3)))
* ((b
to_power ((b
- c)
/ 3))
/ (c
to_power ((b
- c)
/ 3))))
* ((a
/ c)
to_power ((a
- c)
/ 3)))
>= 1 by
POWER: 31;
set t = (b
to_power (((a
+ b)
+ c)
/ 3));
set s = (b
to_power b);
set r = (c
to_power (((a
+ b)
+ c)
/ 3));
set q = (c
to_power c);
set p = (a
to_power (((a
+ b)
+ c)
/ 3));
set o = (a
to_power a);
set j = (c
to_power ((a
- c)
/ 3));
set i = (a
to_power ((a
- c)
/ 3));
set h = (c
to_power ((b
- c)
/ 3));
set w = (b
to_power ((b
- c)
/ 3));
set v = (b
to_power ((a
- b)
/ 3));
set u = (a
to_power ((a
- b)
/ 3));
A9: p
>
0 & r
>
0 by
POWER: 34;
A10: t
>
0 by
POWER: 34;
((((a
to_power ((a
- b)
/ 3))
/ (b
to_power ((a
- b)
/ 3)))
* ((b
to_power ((b
- c)
/ 3))
/ (c
to_power ((b
- c)
/ 3))))
* ((a
to_power ((a
- c)
/ 3))
/ (c
to_power ((a
- c)
/ 3))))
= (((u
* w)
/ (v
* h))
* (i
/ j)) by
XCMPLX_1: 76
.= (((u
* w)
* i)
/ ((v
* h)
* j)) by
XCMPLX_1: 76
.= ((((a
to_power ((a
- b)
/ 3))
* (a
to_power ((a
- c)
/ 3)))
* (b
to_power ((b
- c)
/ 3)))
/ (((b
to_power ((a
- b)
/ 3))
* (c
to_power ((a
- c)
/ 3)))
* (c
to_power ((b
- c)
/ 3))))
.= (((a
to_power (((a
- b)
/ 3)
+ ((a
- c)
/ 3)))
* (b
to_power ((b
- c)
/ 3)))
/ (((b
to_power ((a
- b)
/ 3))
* (c
to_power ((a
- c)
/ 3)))
* (c
to_power ((b
- c)
/ 3)))) by
POWER: 27
.= (((a
to_power ((((2
* a)
- b)
- c)
/ 3))
* (b
to_power ((b
- c)
/ 3)))
/ ((b
to_power ((a
- b)
/ 3))
* ((c
to_power ((a
- c)
/ 3))
* (c
to_power ((b
- c)
/ 3)))))
.= (((a
to_power ((((2
* a)
- b)
- c)
/ 3))
* (b
to_power ((b
- c)
/ 3)))
/ ((b
to_power ((a
- b)
/ 3))
* (c
to_power (((a
- c)
/ 3)
+ ((b
- c)
/ 3))))) by
POWER: 27
.= (((a
to_power ((((2
* a)
- b)
- c)
/ 3))
/ (c
to_power (((a
+ b)
- (2
* c))
/ 3)))
* ((b
to_power ((b
- c)
/ 3))
/ (b
to_power ((a
- b)
/ 3)))) by
XCMPLX_1: 76
.= (((a
to_power ((((2
* a)
- b)
- c)
/ 3))
/ (c
to_power (((a
+ b)
- (2
* c))
/ 3)))
* (b
to_power (((b
- c)
/ 3)
- ((a
- b)
/ 3)))) by
POWER: 29
.= (((1
/ (c
to_power (((a
+ b)
- (2
* c))
/ 3)))
* (b
to_power ((((2
* b)
- a)
- c)
/ 3)))
* (a
to_power ((((2
* a)
- b)
- c)
/ 3)))
.= (((c
to_power (
- (((a
+ b)
- (2
* c))
/ 3)))
* (b
to_power ((((2
* b)
- a)
- c)
/ 3)))
* (a
to_power ((((2
* a)
- b)
- c)
/ 3))) by
POWER: 28
.= (((a
to_power (((3
* a)
/ 3)
- (((a
+ b)
+ c)
/ 3)))
* (c
to_power (((3
* c)
/ 3)
- (((a
+ b)
+ c)
/ 3))))
* (b
to_power (((3
* b)
/ 3)
- (((a
+ b)
+ c)
/ 3))))
.= ((((a
to_power ((3
* a)
/ 3))
/ (a
to_power (((a
+ b)
+ c)
/ 3)))
* (c
to_power (((3
* c)
/ 3)
- (((a
+ b)
+ c)
/ 3))))
* (b
to_power (((3
* b)
/ 3)
- (((a
+ b)
+ c)
/ 3)))) by
POWER: 29
.= ((((a
to_power ((3
* a)
/ 3))
/ (a
to_power (((a
+ b)
+ c)
/ 3)))
* ((c
to_power ((3
* c)
/ 3))
/ (c
to_power (((a
+ b)
+ c)
/ 3))))
* (b
to_power (((3
* b)
/ 3)
- (((a
+ b)
+ c)
/ 3)))) by
POWER: 29
.= ((((a
to_power a)
/ (a
to_power (((a
+ b)
+ c)
/ 3)))
* ((c
to_power c)
/ (c
to_power (((a
+ b)
+ c)
/ 3))))
* ((b
to_power b)
/ (b
to_power (((a
+ b)
+ c)
/ 3)))) by
POWER: 29
.= (((o
* q)
/ (p
* r))
* (s
/ t)) by
XCMPLX_1: 76
.= ((((a
to_power a)
* (c
to_power c))
* (b
to_power b))
/ (((a
to_power (((a
+ b)
+ c)
/ 3))
* (c
to_power (((a
+ b)
+ c)
/ 3)))
* (b
to_power (((a
+ b)
+ c)
/ 3)))) by
XCMPLX_1: 76;
then (((o
* q)
* s)
/ ((p
* r)
* t))
>= 1 by
A8,
POWER: 31;
then ((((o
* q)
* s)
/ ((p
* r)
* t))
* ((p
* r)
* t))
>= (1
* ((p
* r)
* t)) by
A9,
A10,
XREAL_1: 64;
then (((a
to_power a)
* (c
to_power c))
* (b
to_power b))
>= (((a
to_power (((a
+ b)
+ c)
/ 3))
* (c
to_power (((a
+ b)
+ c)
/ 3)))
* (b
to_power (((a
+ b)
+ c)
/ 3))) by
A9,
A10,
XCMPLX_1: 87;
then (((a
to_power a)
* (c
to_power c))
* (b
to_power b))
>= (((a
* c)
to_power (((a
+ b)
+ c)
/ 3))
* (b
to_power (((a
+ b)
+ c)
/ 3))) by
POWER: 30;
then ((a
to_power a)
* ((b
to_power b)
* (c
to_power c)))
>= (((a
* c)
* b)
to_power (((a
+ b)
+ c)
/ 3)) by
POWER: 30;
hence thesis;
end;
theorem ::
SERIES_3:31
Th31: for a,b be non
negative
Real holds ((a
+ b)
|^ (n
+ 2))
>= ((a
|^ (n
+ 2))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* b))
proof
let a,b be non
negative
Real;
defpred
X[
Nat] means ((a
+ b)
|^ ($1
+ 2))
>= ((a
|^ ($1
+ 2))
+ ((($1
+ 2)
* (a
|^ ($1
+ 1)))
* b));
A1: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
(a
|^ (n
+ 1))
>=
0
proof
per cases ;
suppose a
=
0 ;
hence thesis;
end;
suppose a
>
0 ;
hence thesis by
PREPOWER: 6;
end;
end;
then
A2: ((a
|^ (n
+ 3))
+ (((n
+ 3)
* (a
|^ (n
+ 2)))
* b))
<= ((((n
+ 2)
* (a
|^ (n
+ 1)))
* (b
^2 ))
+ ((a
|^ (n
+ 3))
+ (((n
+ 3)
* (a
|^ (n
+ 2)))
* b))) by
XREAL_1: 31;
assume ((a
+ b)
|^ (n
+ 2))
>= ((a
|^ (n
+ 2))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* b));
then (((a
+ b)
|^ (n
+ 2))
* (a
+ b))
>= (((a
|^ (n
+ 2))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* b))
* (a
+ b)) by
XREAL_1: 64;
then ((a
+ b)
|^ ((n
+ 2)
+ 1))
>= (((a
|^ (n
+ 2))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* b))
* (a
+ b)) by
NEWTON: 6;
then ((a
+ b)
|^ (n
+ 3))
>= ((((a
|^ (n
+ 2))
* a)
+ (b
* (a
|^ (n
+ 2))))
+ ((((n
+ 2)
* (a
+ b))
* (a
|^ (n
+ 1)))
* b));
then ((a
+ b)
|^ (n
+ 3))
>= (((a
|^ ((n
+ 2)
+ 1))
+ (b
* (a
|^ (n
+ 2))))
+ ((((n
+ 2)
* (a
+ b))
* (a
|^ (n
+ 1)))
* b)) by
NEWTON: 6;
then ((a
+ b)
|^ (n
+ 3))
>= ((((a
|^ (n
+ 3))
+ ((a
|^ (n
+ 2))
* b))
+ (((n
+ 2)
* (a
* (a
|^ (n
+ 1))))
* b))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* (b
* b)));
then ((a
+ b)
|^ (n
+ 3))
>= ((((a
|^ (n
+ 3))
+ ((a
|^ (n
+ 2))
* b))
+ (((n
+ 2)
* (a
|^ ((n
+ 1)
+ 1)))
* b))
+ (((n
+ 2)
* (a
|^ (n
+ 1)))
* (b
* b))) by
NEWTON: 6;
hence thesis by
A2,
XXREAL_0: 2;
end;
A3: ((a
|^ (
0
+ 2))
+ (((
0
+ 2)
* (a
|^ (
0
+ 1)))
* b))
= ((a
^2 )
+ ((2
* (a
|^ 1))
* b)) by
Lm1
.= ((a
^2 )
+ ((2
* a)
* b));
((a
+ b)
|^ (
0
+ 2))
= ((a
+ b)
^2 ) by
Lm1
.= (((a
^2 )
+ ((2
* a)
* b))
+ (b
^2 ));
then
A4:
X[
0 ] by
A3,
XREAL_1: 31;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
SERIES_3:32
(((a
|^ n)
+ (b
|^ n))
/ 2)
>= (((a
+ b)
/ 2)
|^ n)
proof
defpred
X[
Nat] means (((a
|^ $1)
+ (b
|^ $1))
/ 2)
>= (((a
+ b)
/ 2)
|^ $1);
A1: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
X[n];
then
A2: ((((a
|^ n)
+ (b
|^ n))
/ 2)
* (a
+ b))
>= ((((a
+ b)
/ 2)
|^ n)
* (a
+ b)) by
XREAL_1: 64;
per cases ;
suppose
A3: (a
- b)
>=
0 ;
then ((a
- b)
+ b)
>= (
0
+ b) by
XREAL_1: 6;
then (a
|^ n)
>= (b
|^ n) by
PREPOWER: 9;
then ((a
|^ n)
- (b
|^ n))
>=
0 by
XREAL_1: 48;
then ((a
- b)
* ((a
|^ n)
- (b
|^ n)))
>=
0 by
A3;
then ((((a
|^ n)
* a)
- ((a
|^ n)
* b))
- (((b
|^ n)
* a)
- ((b
|^ n)
* b)))
>=
0 ;
then (((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- (((b
|^ n)
* a)
- ((b
|^ n)
* b)))
>=
0 by
NEWTON: 6;
then ((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ ((b
|^ n)
* b))
>=
0 ;
then ((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)))
>=
0 by
NEWTON: 6;
then (((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)))
+ (((a
|^ n)
* b)
+ ((b
|^ n)
* a)))
>= (
0
+ (((a
|^ n)
* b)
+ ((b
|^ n)
* a))) by
XREAL_1: 6;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))))
>= ((((a
|^ n)
* b)
+ ((b
|^ n)
* a))
+ ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))) by
XREAL_1: 6;
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= ((((a
|^ (n
+ 1))
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)));
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= (((((a
|^ n)
* a)
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ (b
|^ (n
+ 1))) by
NEWTON: 6;
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= (((((a
|^ n)
* a)
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ ((b
|^ n)
* b)) by
NEWTON: 6;
then ((2
* ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))))
/ 2)
>= ((((a
|^ n)
+ (b
|^ n))
* (a
+ b))
/ 2) by
XREAL_1: 72;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
/ 2)
|^ n)
* (a
+ b)) by
A2,
XXREAL_0: 2;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
|^ n)
/ (2
|^ n))
* (a
+ b)) by
PREPOWER: 8;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
|^ n)
* (a
+ b))
/ (2
|^ n));
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= (((a
+ b)
|^ (n
+ 1))
/ (2
|^ n)) by
NEWTON: 6;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= ((((a
+ b)
|^ (n
+ 1))
/ (2
|^ n))
/ 2) by
XREAL_1: 72;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= (((a
+ b)
|^ (n
+ 1))
/ ((2
|^ n)
* 2)) by
XCMPLX_1: 78;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= (((a
+ b)
|^ (n
+ 1))
/ (2
|^ (n
+ 1))) by
NEWTON: 6;
hence thesis by
PREPOWER: 8;
end;
suppose
A4: (a
- b)
<
0 ;
then ((a
- b)
+ b)
< (
0
+ b) by
XREAL_1: 6;
then (a
|^ n)
<= (b
|^ n) by
PREPOWER: 9;
then ((a
|^ n)
- (b
|^ n))
<=
0 by
XREAL_1: 47;
then ((a
- b)
* ((a
|^ n)
- (b
|^ n)))
>=
0 by
A4;
then ((((a
|^ n)
* a)
- ((a
|^ n)
* b))
- (((b
|^ n)
* a)
- ((b
|^ n)
* b)))
>=
0 ;
then (((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- (((b
|^ n)
* a)
- ((b
|^ n)
* b)))
>=
0 by
NEWTON: 6;
then ((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ ((b
|^ n)
* b))
>=
0 ;
then ((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)))
>=
0 by
NEWTON: 6;
then (((((a
|^ (n
+ 1))
- ((a
|^ n)
* b))
- ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)))
+ (((a
|^ n)
* b)
+ ((b
|^ n)
* a)))
>= (
0
+ (((a
|^ n)
* b)
+ ((b
|^ n)
* a))) by
XREAL_1: 6;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
+ ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))))
>= ((((a
|^ n)
* b)
+ ((b
|^ n)
* a))
+ ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))) by
XREAL_1: 6;
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= ((((a
|^ (n
+ 1))
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ (b
|^ (n
+ 1)));
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= (((((a
|^ n)
* a)
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ (b
|^ (n
+ 1))) by
NEWTON: 6;
then ((2
* (a
|^ (n
+ 1)))
+ (2
* (b
|^ (n
+ 1))))
>= (((((a
|^ n)
* a)
+ ((a
|^ n)
* b))
+ ((b
|^ n)
* a))
+ ((b
|^ n)
* b)) by
NEWTON: 6;
then ((2
* ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1))))
/ 2)
>= ((((a
|^ n)
+ (b
|^ n))
* (a
+ b))
/ 2) by
XREAL_1: 72;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
/ 2)
|^ n)
* (a
+ b)) by
A2,
XXREAL_0: 2;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
|^ n)
/ (2
|^ n))
* (a
+ b)) by
PREPOWER: 8;
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
|^ n)
* (a
+ b))
/ (2
|^ n));
then ((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
>= (((a
+ b)
|^ (n
+ 1))
/ (2
|^ n)) by
NEWTON: 6;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= ((((a
+ b)
|^ (n
+ 1))
/ (2
|^ n))
/ 2) by
XREAL_1: 72;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= (((a
+ b)
|^ (n
+ 1))
/ ((2
|^ n)
* 2)) by
XCMPLX_1: 78;
then (((a
|^ (n
+ 1))
+ (b
|^ (n
+ 1)))
/ 2)
>= (((a
+ b)
|^ (n
+ 1))
/ (2
|^ (n
+ 1))) by
NEWTON: 6;
hence thesis by
PREPOWER: 8;
end;
end;
(((a
|^
0 )
+ (b
|^
0 ))
/ 2)
= ((1
+ (b
|^
0 ))
/ 2) by
NEWTON: 4
.= ((1
+ 1)
/ 2) by
NEWTON: 4
.= (((a
+ b)
/ 2)
|^
0 ) by
NEWTON: 4;
then
A5:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
theorem ::
SERIES_3:33
Th33: (for n holds (s
. n)
>
0 ) implies for n holds ((
Partial_Sums s)
. n)
>
0
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
>
0 ;
assume
A1: for n holds (s
. n)
>
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
A3: ((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
SERIES_1:def 1;
assume ((
Partial_Sums s)
. n)
>
0 ;
hence thesis by
A1,
A3,
XREAL_1: 34;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1;
then
A4:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:34
Th34: (for n holds (s
. n)
>=
0 ) implies for n holds ((
Partial_Sums s)
. n)
>=
0
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
>=
0 ;
assume
A1: for n holds (s
. n)
>=
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Sums s)
. n)
>=
0 ;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) & (s
. (n
+ 1))
>=
0 by
A1,
SERIES_1:def 1;
hence thesis by
A3;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1;
then
A4:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:35
Th35: (for n holds (s
. n)
<
0 ) implies ((
Partial_Sums s)
. n)
<
0
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
<
0 ;
assume
A1: for n holds (s
. n)
<
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Sums s)
. n)
<
0 ;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) & (s
. (n
+ 1))
<
0 by
A1,
SERIES_1:def 1;
hence thesis by
A3;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1;
then
A4:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:36
Th36: s
= (s1
(#) s1) implies for n holds ((
Partial_Sums s)
. n)
>=
0
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
>=
0 ;
assume
A1: s
= (s1
(#) s1);
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Sums s)
. n)
>=
0 ;
A4: ((s1
. (n
+ 1))
^2 )
>=
0 by
XREAL_1: 63;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums s)
. n)
+ ((s1
. (n
+ 1))
^2 )) by
A1,
SEQ_1: 8;
hence thesis by
A3,
A4;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((s1
.
0 )
^2 ) by
A1,
SEQ_1: 8;
then
A5:
X[
0 ] by
XREAL_1: 63;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_3:37
(for n holds (s
. n)
>
0 & (s
. n)
> (s
. (n
- 1))) implies ((n
+ 1)
* (s
. (n
+ 1)))
> ((
Partial_Sums s)
. n)
proof
defpred
X[
Nat] means (($1
+ 1)
* (s
. ($1
+ 1)))
> ((
Partial_Sums s)
. $1);
assume
A1: for n holds (s
. n)
>
0 & (s
. n)
> (s
. (n
- 1));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((n
+ 1)
* (s
. (n
+ 1)))
> ((
Partial_Sums s)
. n);
then
A3: (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))
< (((n
+ 1)
* (s
. (n
+ 1)))
+ (s
. (n
+ 1))) by
XREAL_1: 6;
(s
. (n
+ 2))
> (s
. ((n
+ 2)
- 1)) by
A1;
then ((n
+ 2)
* (s
. (n
+ 2)))
> ((n
+ 2)
* (s
. (n
+ 1))) by
XREAL_1: 68;
then (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))
< ((n
+ 2)
* (s
. (n
+ 2))) by
A3,
XXREAL_0: 2;
hence thesis by
SERIES_1:def 1;
end;
(s
. 1)
> (s
. (1
- 1)) by
A1;
then
A4:
X[
0 ] by
SERIES_1:def 1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:38
Th38: (for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1))) implies ((n
+ 1)
* (s
. (n
+ 1)))
>= ((
Partial_Sums s)
. n)
proof
defpred
X[
Nat] means (($1
+ 1)
* (s
. ($1
+ 1)))
>= ((
Partial_Sums s)
. $1);
assume
A1: for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((n
+ 1)
* (s
. (n
+ 1)))
>= ((
Partial_Sums s)
. n);
then
A3: (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))
<= (((n
+ 1)
* (s
. (n
+ 1)))
+ (s
. (n
+ 1))) by
XREAL_1: 6;
(s
. (n
+ 2))
>= (s
. ((n
+ 2)
- 1)) by
A1;
then ((n
+ 2)
* (s
. (n
+ 2)))
>= ((n
+ 2)
* (s
. (n
+ 1))) by
XREAL_1: 64;
then (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))
<= ((n
+ 2)
* (s
. (n
+ 2))) by
A3,
XXREAL_0: 2;
hence thesis by
SERIES_1:def 1;
end;
(s
. 1)
>= (s
. (1
- 1)) by
A1;
then
A4:
X[
0 ] by
SERIES_1:def 1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:39
(s
= (s1
(#) s2) & for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 ) implies for n holds ((
Partial_Sums s)
. n)
<= (((
Partial_Sums s1)
. n)
* ((
Partial_Sums s2)
. n))
proof
assume that
A1: s
= (s1
(#) s2) and
A2: for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 ;
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
<= (((
Partial_Sums s1)
. $1)
* ((
Partial_Sums s2)
. $1));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set j = ((
Partial_Sums s)
. n);
set u = ((
Partial_Sums s1)
. n);
set v = ((
Partial_Sums s2)
. n);
set w = (s1
. (n
+ 1));
set h = (s2
. (n
+ 1));
A4: (((
Partial_Sums s1)
. (n
+ 1))
* ((
Partial_Sums s2)
. (n
+ 1)))
= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
* ((
Partial_Sums s2)
. (n
+ 1))) by
SERIES_1:def 1
.= ((u
+ w)
* (v
+ h)) by
SERIES_1:def 1
.= ((((u
* v)
+ (u
* h))
+ (w
* v))
+ (w
* h));
assume ((
Partial_Sums s)
. n)
<= (((
Partial_Sums s1)
. n)
* ((
Partial_Sums s2)
. n));
then
A5: (j
+ (w
* h))
<= ((u
* v)
+ (w
* h)) by
XREAL_1: 6;
A6: w
>=
0 & h
>=
0 by
A2;
u
>=
0 & v
>=
0 by
A2,
Th34;
then
A7: ((u
* v)
+ (w
* h))
<= (((u
* v)
+ (w
* h))
+ ((u
* h)
+ (w
* v))) by
A6,
XREAL_1: 31;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums s)
. n)
+ ((s1
. (n
+ 1))
* (s2
. (n
+ 1)))) by
A1,
SEQ_1: 8;
hence thesis by
A4,
A5,
A7,
XXREAL_0: 2;
end;
A8: (((
Partial_Sums s1)
.
0 )
* ((
Partial_Sums s2)
.
0 ))
= ((s1
.
0 )
* ((
Partial_Sums s2)
.
0 )) by
SERIES_1:def 1
.= ((s1
.
0 )
* (s2
.
0 )) by
SERIES_1:def 1;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((s1
.
0 )
* (s2
.
0 )) by
A1,
SEQ_1: 8;
then
A9:
X[
0 ] by
A8;
for n holds
X[n] from
NAT_1:sch 2(
A9,
A3);
hence thesis;
end;
theorem ::
SERIES_3:40
(s
= (s1
(#) s2) & for n holds (s1
. n)
<
0 & (s2
. n)
<
0 ) implies ((
Partial_Sums s)
. n)
<= (((
Partial_Sums s1)
. n)
* ((
Partial_Sums s2)
. n))
proof
assume that
A1: s
= (s1
(#) s2) and
A2: for n holds (s1
. n)
<
0 & (s2
. n)
<
0 ;
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
<= (((
Partial_Sums s1)
. $1)
* ((
Partial_Sums s2)
. $1));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set j = ((
Partial_Sums s)
. n);
set u = ((
Partial_Sums s1)
. n);
set v = ((
Partial_Sums s2)
. n);
set w = (s1
. (n
+ 1));
set h = (s2
. (n
+ 1));
A4: (((
Partial_Sums s1)
. (n
+ 1))
* ((
Partial_Sums s2)
. (n
+ 1)))
= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
* ((
Partial_Sums s2)
. (n
+ 1))) by
SERIES_1:def 1
.= ((u
+ w)
* (v
+ h)) by
SERIES_1:def 1
.= ((((u
* v)
+ (u
* h))
+ (w
* v))
+ (w
* h));
assume ((
Partial_Sums s)
. n)
<= (((
Partial_Sums s1)
. n)
* ((
Partial_Sums s2)
. n));
then
A5: (j
+ (w
* h))
<= ((u
* v)
+ (w
* h)) by
XREAL_1: 6;
A6: w
<
0 & h
<
0 by
A2;
u
<
0 & v
<
0 by
A2,
Th35;
then
A7: ((u
* v)
+ (w
* h))
<= (((u
* v)
+ (w
* h))
+ ((u
* h)
+ (w
* v))) by
A6,
XREAL_1: 31;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
SERIES_1:def 1
.= (((
Partial_Sums s)
. n)
+ ((s1
. (n
+ 1))
* (s2
. (n
+ 1)))) by
A1,
SEQ_1: 8;
hence thesis by
A4,
A5,
A7,
XXREAL_0: 2;
end;
A8: (((
Partial_Sums s1)
.
0 )
* ((
Partial_Sums s2)
.
0 ))
= ((s1
.
0 )
* ((
Partial_Sums s2)
.
0 )) by
SERIES_1:def 1
.= ((s1
.
0 )
* (s2
.
0 )) by
SERIES_1:def 1;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1
.= ((s1
.
0 )
* (s2
.
0 )) by
A1,
SEQ_1: 8;
then
A9:
X[
0 ] by
A8;
for n holds
X[n] from
NAT_1:sch 2(
A9,
A3);
hence thesis;
end;
theorem ::
SERIES_3:41
Th41: for n holds
|.((
Partial_Sums s)
. n).|
<= ((
Partial_Sums (
abs s))
. n)
proof
set s1 = (
abs s);
defpred
X[
Nat] means
|.((
Partial_Sums s)
. $1).|
<= ((
Partial_Sums s1)
. $1);
let n;
A1: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
|.((
Partial_Sums s)
. n).|
<= ((
Partial_Sums s1)
. n);
then
A2: (
|.((
Partial_Sums s)
. n).|
+
|.(s
. (n
+ 1)).|)
<= (((
Partial_Sums s1)
. n)
+
|.(s
. (n
+ 1)).|) by
XREAL_1: 6;
((
Partial_Sums s1)
. (n
+ 1))
= (((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1))) by
SERIES_1:def 1;
then
A3: ((
Partial_Sums s1)
. (n
+ 1))
= (((
Partial_Sums s1)
. n)
+
|.(s
. (n
+ 1)).|) by
SEQ_1: 12;
|.((
Partial_Sums s)
. (n
+ 1)).|
=
|.(((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))).| &
|.(((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))).|
<= (
|.((
Partial_Sums s)
. n).|
+
|.(s
. (n
+ 1)).|) by
COMPLEX1: 56,
SERIES_1:def 1;
hence thesis by
A3,
A2,
XXREAL_0: 2;
end;
(s1
.
0 )
=
|.(s
.
0 ).| by
SEQ_1: 12;
then ((
Partial_Sums s1)
.
0 )
=
|.(s
.
0 ).| by
SERIES_1:def 1;
then
A4:
X[
0 ] by
SERIES_1:def 1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A1);
hence thesis;
end;
theorem ::
SERIES_3:42
((
Partial_Sums s)
. n)
<= ((
Partial_Sums (
abs s))
. n)
proof
set s1 = (
abs s);
((
Partial_Sums s)
. n)
<=
|.((
Partial_Sums s)
. n).| &
|.((
Partial_Sums s)
. n).|
<= ((
Partial_Sums s1)
. n) by
Th41,
ABSVALUE: 4;
hence thesis by
XXREAL_0: 2;
end;
definition
let s;
::
SERIES_3:def1
func
Partial_Product (s) ->
Real_Sequence means
:
Def1: (it
.
0 )
= (s
.
0 ) & for n holds (it
. (n
+ 1))
= ((it
. n)
* (s
. (n
+ 1)));
existence
proof
deffunc
U(
Nat,
Real) = (
In (($2
* (s
. ($1
+ 1))),
REAL ));
consider f be
sequence of
REAL such that
A1: (f
.
0 )
= (s
.
0 ) & for n be
Nat holds (f
. (n
+ 1))
=
U(n,.) from
NAT_1:sch 12;
reconsider f as
Real_Sequence;
take f;
thus (f
.
0 )
= (s
.
0 ) by
A1;
let n be
Nat;
(f
. (n
+ 1))
=
U(n,.) by
A1;
hence thesis;
end;
uniqueness
proof
let s1, s2;
assume that
A2: (s1
.
0 )
= (s
.
0 ) and
A3: for n holds (s1
. (n
+ 1))
= ((s1
. n)
* (s
. (n
+ 1))) and
A4: (s2
.
0 )
= (s
.
0 ) and
A5: for n holds (s2
. (n
+ 1))
= ((s2
. n)
* (s
. (n
+ 1)));
defpred
X[
Nat] means (s1
. $1)
= (s2
. $1);
A6: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume (s1
. n)
= (s2
. n);
hence (s1
. (n
+ 1))
= ((s2
. n)
* (s
. (n
+ 1))) by
A3
.= (s2
. (n
+ 1)) by
A5;
end;
A7:
X[
0 ] by
A2,
A4;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A6);
then for n be
Element of
NAT holds
X[n];
hence s1
= s2 by
FUNCT_2: 63;
end;
end
theorem ::
SERIES_3:43
Th43: (for n holds (s
. n)
>
0 ) implies ((
Partial_Product s)
. n)
>
0
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
>
0 ;
assume
A1: for n holds (s
. n)
>
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Product s)
. n)
>
0 ;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) & (s
. (n
+ 1))
>
0 by
A1,
Def1;
hence thesis by
A3;
end;
(s
.
0 )
>
0 by
A1;
then
A4:
X[
0 ] by
Def1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:44
Th44: (for n holds (s
. n)
>=
0 ) implies ((
Partial_Product s)
. n)
>=
0
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
>=
0 ;
assume
A1: for n holds (s
. n)
>=
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Product s)
. n)
>=
0 ;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) & (s
. (n
+ 1))
>=
0 by
A1,
Def1;
hence thesis by
A3;
end;
(s
.
0 )
>=
0 by
A1;
then
A4:
X[
0 ] by
Def1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:45
(for n holds (s
. n)
>
0 & (s
. n)
< 1) implies for n holds ((
Partial_Product s)
. n)
>
0 & ((
Partial_Product s)
. n)
< 1
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
>
0 & ((
Partial_Product s)
. $1)
< 1;
assume
A1: for n holds (s
. n)
>
0 & (s
. n)
< 1;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A3: ((
Partial_Product s)
. n)
>
0 & ((
Partial_Product s)
. n)
< 1;
((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) & (s
. (n
+ 1))
>
0 by
A1,
Def1;
hence thesis by
A1,
A3,
XREAL_1: 162;
end;
((
Partial_Product s)
.
0 )
= (s
.
0 ) by
Def1;
then
A4:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A4,
A2);
hence thesis;
end;
theorem ::
SERIES_3:46
(for n holds (s
. n)
>= 1) implies for n holds ((
Partial_Product s)
. n)
>= 1
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
>= 1;
assume
A1: for n holds (s
. n)
>= 1;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
A3: ((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
Def1;
assume
A4: ((
Partial_Product s)
. n)
>= 1;
then ((
Partial_Product s)
. n)
<= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
A1,
XREAL_1: 151;
hence thesis by
A4,
A3,
XXREAL_0: 2;
end;
((
Partial_Product s)
.
0 )
= (s
.
0 ) by
Def1;
then
A5:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
theorem ::
SERIES_3:47
(for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 ) implies for n holds (((
Partial_Product s1)
. n)
+ ((
Partial_Product s2)
. n))
<= ((
Partial_Product (s1
+ s2))
. n)
proof
set s = (s1
+ s2);
defpred
X[
Nat] means (((
Partial_Product s1)
. $1)
+ ((
Partial_Product s2)
. $1))
<= ((
Partial_Product s)
. $1);
A1: ((
Partial_Product s)
.
0 )
= (s
.
0 ) by
Def1
.= ((s1
.
0 )
+ (s2
.
0 )) by
SEQ_1: 7;
assume
A2: for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 ;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set u = ((
Partial_Product s1)
. n);
set v = ((
Partial_Product s2)
. n);
set w = ((
Partial_Product s)
. n);
set h = (s1
. (n
+ 1));
set j = (s2
. (n
+ 1));
A4: h
>=
0 & j
>=
0 by
A2;
u
>=
0 & v
>=
0 by
A2,
Th44;
then
A5: ((u
* h)
+ (v
* j))
<= (((u
* h)
+ (v
* j))
+ ((u
* j)
+ (v
* h))) by
A4,
XREAL_1: 31;
A6: ((
Partial_Product s)
. (n
+ 1))
= (((
Partial_Product s)
. n)
* (s
. (n
+ 1))) by
Def1
.= (w
* (h
+ j)) by
SEQ_1: 7;
assume (((
Partial_Product s1)
. n)
+ ((
Partial_Product s2)
. n))
<= ((
Partial_Product s)
. n);
then
A7: ((u
+ v)
* (h
+ j))
<= (w
* (h
+ j)) by
A4,
XREAL_1: 64;
(((
Partial_Product s1)
. (n
+ 1))
+ ((
Partial_Product s2)
. (n
+ 1)))
= ((((
Partial_Product s1)
. n)
* (s1
. (n
+ 1)))
+ ((
Partial_Product s2)
. (n
+ 1))) by
Def1
.= ((u
* h)
+ (v
* j)) by
Def1;
hence thesis by
A7,
A6,
A5,
XXREAL_0: 2;
end;
(((
Partial_Product s1)
.
0 )
+ ((
Partial_Product s2)
.
0 ))
= ((s1
.
0 )
+ ((
Partial_Product s2)
.
0 )) by
Def1
.= ((s1
.
0 )
+ (s2
.
0 )) by
Def1;
then
A8:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A8,
A3);
hence thesis;
end;
theorem ::
SERIES_3:48
(for n holds (s
. n)
= (((2
* n)
+ 1)
/ ((2
* n)
+ 2))) implies ((
Partial_Product s)
. n)
<= (1
/ (
sqrt ((3
* n)
+ 4)))
proof
defpred
X[
Nat] means ((
Partial_Product s)
. $1)
<= (1
/ (
sqrt ((3
* $1)
+ 4)));
assume
A1: for n holds (s
. n)
= (((2
* n)
+ 1)
/ ((2
* n)
+ 2));
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume ((
Partial_Product s)
. n)
<= (1
/ (
sqrt ((3
* n)
+ 4)));
then (((
Partial_Product s)
. n)
* (((2
* n)
+ 3)
/ ((2
* n)
+ 4)))
<= ((1
/ (
sqrt ((3
* n)
+ 4)))
* (((2
* n)
+ 3)
/ ((2
* n)
+ 4))) by
XREAL_1: 64;
then
A3: (((
Partial_Product s)
. n)
* (((2
* n)
+ 3)
/ ((2
* n)
+ 4)))
<= ((1
* ((2
* n)
+ 3))
/ ((
sqrt ((3
* n)
+ 4))
* ((2
* n)
+ 4))) by
XCMPLX_1: 76;
(111
* n)
<= (112
* n) by
XREAL_1: 64;
then ((111
* n)
+ 63)
<= ((112
* n)
+ 64) by
XREAL_1: 7;
then (((12
* (n
|^ 3))
+ (64
* (n
^2 )))
+ ((111
* n)
+ 63))
<= (((12
* (n
|^ 3))
+ (64
* (n
^2 )))
+ ((112
* n)
+ 64)) by
XREAL_1: 6;
then ((((((12
* (n
|^ (2
+ 1)))
+ (36
* (n
* n)))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* (n
|^ (2
+ 1)))
+ (48
* (n
^2 )))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64);
then ((((((12
* ((n
|^ 2)
* (n
|^ 1)))
+ (36
* (n
* n)))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* (n
|^ (2
+ 1)))
+ (48
* (n
* n)))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64) by
NEWTON: 8;
then ((((((((4
* (n
|^ 2))
* 3)
* (n
|^ 1))
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* (n
|^ (2
+ 1)))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64);
then ((((((((4
* (n
|^ 2))
* 3)
* n)
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* (n
|^ (2
+ 1)))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64);
then ((((((((4
* (n
^2 ))
* 3)
* n)
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* (n
|^ (2
+ 1)))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64) by
Lm1;
then ((((((((4
* (n
^2 ))
* 3)
* n)
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* ((n
|^ 2)
* (n
|^ 1)))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64) by
NEWTON: 8;
then ((((((((4
* (n
^2 ))
* 3)
* n)
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* ((n
^2 )
* (n
|^ 1)))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64) by
Lm1;
then ((((((((4
* (n
^2 ))
* 3)
* n)
+ ((36
* n)
* n))
+ (27
* n))
+ (28
* (n
^2 )))
+ (84
* n))
+ 63)
<= ((((((12
* ((n
^2 )
* n))
+ ((48
* n)
* n))
+ (48
* n))
+ (16
* (n
^2 )))
+ (64
* n))
+ 64);
then (
sqrt ((((2
* n)
+ 3)
^2 )
* ((3
* n)
+ 7)))
<= (
sqrt ((((2
* n)
+ 4)
^2 )
* ((3
* n)
+ 4))) by
SQUARE_1: 26;
then ((
sqrt (((2
* n)
+ 3)
^2 ))
* (
sqrt ((3
* n)
+ 7)))
<= (
sqrt ((((2
* n)
+ 4)
^2 )
* ((3
* n)
+ 4))) by
SQUARE_1: 29;
then ((
sqrt (((2
* n)
+ 3)
^2 ))
* (
sqrt ((3
* n)
+ 7)))
<= ((
sqrt (((2
* n)
+ 4)
^2 ))
* (
sqrt ((3
* n)
+ 4))) by
SQUARE_1: 29;
then (((2
* n)
+ 3)
* (
sqrt ((3
* n)
+ 7)))
<= ((
sqrt (((2
* n)
+ 4)
^2 ))
* (
sqrt ((3
* n)
+ 4))) by
SQUARE_1: 22;
then
A4: (((2
* n)
+ 3)
* (
sqrt ((3
* n)
+ 7)))
<= ((((2
* n)
+ 4)
* (
sqrt ((3
* n)
+ 4)))
* 1) by
SQUARE_1: 22;
(
sqrt ((3
* n)
+ 4))
>
0 & (
sqrt ((3
* n)
+ 7))
>
0 by
SQUARE_1: 25;
then ((1
* ((2
* n)
+ 3))
/ (((2
* n)
+ 4)
* (
sqrt ((3
* n)
+ 4))))
<= (1
/ (
sqrt ((3
* n)
+ 7))) by
A4,
XREAL_1: 102;
then (((
Partial_Product s)
. n)
* (((2
* (n
+ 1))
+ 1)
/ ((2
* (n
+ 1))
+ 2)))
<= (1
/ (
sqrt ((3
* (n
+ 1))
+ 4))) by
A3,
XXREAL_0: 2;
then (((
Partial_Product s)
. n)
* (s
. (n
+ 1)))
<= (1
/ (
sqrt ((3
* (n
+ 1))
+ 4))) by
A1;
hence thesis by
Def1;
end;
((
Partial_Product s)
.
0 )
= (s
.
0 ) by
Def1
.= (((2
*
0 )
+ 1)
/ ((2
*
0 )
+ 2)) by
A1
.= (1
/ (
sqrt ((3
*
0 )
+ 4))) by
SQUARE_1: 20;
then
A5:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A5,
A2);
hence thesis;
end;
Lm8: (for n holds (s
. n)
> (
- 1) & (s
. n)
<
0 ) implies for n holds (((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
>=
0
proof
defpred
X[
Nat] means (((
Partial_Sums s)
. $1)
* (s
. ($1
+ 1)))
>=
0 ;
A1: (((
Partial_Sums s)
.
0 )
* (s
. 1))
= ((s
.
0 )
* (s
. 1)) by
SERIES_1:def 1;
assume
A2: for n holds (s
. n)
> (
- 1) & (s
. n)
<
0 ;
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A4: (((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
>=
0 ;
(s
. (n
+ 1))
<
0 by
A2;
then
A5: (((
Partial_Sums s)
. n)
* 1)
<=
0 by
A4;
A6: (((
Partial_Sums s)
. (n
+ 1))
* (s
. (n
+ 2)))
= ((((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))
* (s
. (n
+ 2))) by
SERIES_1:def 1
.= ((((
Partial_Sums s)
. n)
* (s
. (n
+ 2)))
+ ((s
. (n
+ 1))
* (s
. (n
+ 2))));
(s
. (n
+ 2))
<=
0 & (s
. (n
+ 1))
<=
0 by
A2;
hence thesis by
A5,
A6;
end;
let n;
(s
.
0 )
<
0 & (s
. 1)
<
0 by
A2;
then
A7:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A3);
hence thesis;
end;
theorem ::
SERIES_3:49
(for n holds (s1
. n)
= (1
+ (s
. n)) & (s
. n)
> (
- 1) & (s
. n)
<
0 ) implies for n holds (1
+ ((
Partial_Sums s)
. n))
<= ((
Partial_Product s1)
. n)
proof
defpred
X[
Nat] means (1
+ ((
Partial_Sums s)
. $1))
<= ((
Partial_Product s1)
. $1);
assume
A1: for n holds (s1
. n)
= (1
+ (s
. n)) & (s
. n)
> (
- 1) & (s
. n)
<
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
A3: (((
Partial_Product s1)
. n)
* (1
+ (s
. (n
+ 1))))
= (((
Partial_Product s1)
. n)
* (s1
. (n
+ 1))) by
A1;
(s
. (n
+ 1))
> (
- 1) by
A1;
then
A4: ((s
. (n
+ 1))
+ 1)
> ((
- 1)
+ 1) by
XREAL_1: 8;
assume (1
+ ((
Partial_Sums s)
. n))
<= ((
Partial_Product s1)
. n);
then ((1
+ ((
Partial_Sums s)
. n))
* (1
+ (s
. (n
+ 1))))
<= (((
Partial_Product s1)
. n)
* (1
+ (s
. (n
+ 1)))) by
A4,
XREAL_1: 64;
then
A5: ((1
+ ((
Partial_Sums s)
. n))
* (1
+ (s
. (n
+ 1))))
<= ((
Partial_Product s1)
. (n
+ 1)) by
A3,
Def1;
(((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
>=
0 by
A1,
Lm8;
then
A6: ((((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
+ ((1
+ (s
. (n
+ 1)))
+ ((
Partial_Sums s)
. n)))
>= (
0
+ ((1
+ (s
. (n
+ 1)))
+ ((
Partial_Sums s)
. n))) by
XREAL_1: 6;
(1
+ ((
Partial_Sums s)
. (n
+ 1)))
= (1
+ (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))) by
SERIES_1:def 1;
hence thesis by
A5,
A6,
XXREAL_0: 2;
end;
let n;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) & ((
Partial_Product s1)
.
0 )
= (s1
.
0 ) by
Def1,
SERIES_1:def 1;
then
A7:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A2);
hence thesis;
end;
Lm9: (for n holds (s
. n)
>=
0 ) implies for n holds (((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
>=
0
proof
assume
A1: for n holds (s
. n)
>=
0 ;
let n;
((
Partial_Sums s)
. n)
>=
0 & (s
. (n
+ 1))
>=
0 by
A1,
Th34;
hence thesis;
end;
theorem ::
SERIES_3:50
(for n holds (s1
. n)
= (1
+ (s
. n)) & (s
. n)
>=
0 ) implies for n holds (1
+ ((
Partial_Sums s)
. n))
<= ((
Partial_Product s1)
. n)
proof
defpred
X[
Nat] means (1
+ ((
Partial_Sums s)
. $1))
<= ((
Partial_Product s1)
. $1);
assume
A1: for n holds (s1
. n)
= (1
+ (s
. n)) & (s
. n)
>=
0 ;
A2: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
A3: (((
Partial_Product s1)
. n)
* (1
+ (s
. (n
+ 1))))
= (((
Partial_Product s1)
. n)
* (s1
. (n
+ 1))) by
A1;
(s
. (n
+ 1))
> (
- 1) by
A1;
then
A4: ((s
. (n
+ 1))
+ 1)
> ((
- 1)
+ 1) by
XREAL_1: 8;
assume (1
+ ((
Partial_Sums s)
. n))
<= ((
Partial_Product s1)
. n);
then ((1
+ ((
Partial_Sums s)
. n))
* (1
+ (s
. (n
+ 1))))
<= (((
Partial_Product s1)
. n)
* (1
+ (s
. (n
+ 1)))) by
A4,
XREAL_1: 64;
then
A5: ((1
+ ((
Partial_Sums s)
. n))
* (1
+ (s
. (n
+ 1))))
<= ((
Partial_Product s1)
. (n
+ 1)) by
A3,
Def1;
(((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
>=
0 by
A1,
Lm9;
then
A6: ((((
Partial_Sums s)
. n)
* (s
. (n
+ 1)))
+ ((1
+ (s
. (n
+ 1)))
+ ((
Partial_Sums s)
. n)))
>= (
0
+ ((1
+ (s
. (n
+ 1)))
+ ((
Partial_Sums s)
. n))) by
XREAL_1: 6;
(1
+ ((
Partial_Sums s)
. (n
+ 1)))
= (1
+ (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1)))) by
SERIES_1:def 1;
hence thesis by
A5,
A6,
XXREAL_0: 2;
end;
((
Partial_Sums s)
.
0 )
= (s
.
0 ) & ((
Partial_Product s1)
.
0 )
= (s1
.
0 ) by
Def1,
SERIES_1:def 1;
then
A7:
X[
0 ] by
A1;
for n holds
X[n] from
NAT_1:sch 2(
A7,
A2);
hence thesis;
end;
theorem ::
SERIES_3:51
s3
= (s1
(#) s2) & s4
= (s1
(#) s1) & s5
= (s2
(#) s2) implies for n holds (((
Partial_Sums s3)
. n)
^2 )
<= (((
Partial_Sums s4)
. n)
* ((
Partial_Sums s5)
. n))
proof
assume that
A1: s3
= (s1
(#) s2) and
A2: s4
= (s1
(#) s1) and
A3: s5
= (s2
(#) s2);
let n;
A4: ((
Partial_Sums s3)
.
0 )
= (s3
.
0 ) by
SERIES_1:def 1
.= ((s1
.
0 )
* (s2
.
0 )) by
A1,
SEQ_1: 8;
defpred
X[
Nat] means (((
Partial_Sums s3)
. $1)
^2 )
<= (((
Partial_Sums s4)
. $1)
* ((
Partial_Sums s5)
. $1));
A5: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set u = ((
Partial_Sums s3)
. n);
set v = ((
Partial_Sums s4)
. n);
set w = ((
Partial_Sums s5)
. n);
set h = (s1
. (n
+ 1));
set j = (s2
. (n
+ 1));
assume
A6: (((
Partial_Sums s3)
. n)
^2 )
<= (((
Partial_Sums s4)
. n)
* ((
Partial_Sums s5)
. n));
then
|.u.|
<= (
sqrt (v
* w)) by
Lm7;
then
A7: ((2
* (
|.j.|
*
|.h.|))
* (
sqrt (v
* w)))
>= ((2
* (
|.j.|
*
|.h.|))
*
|.u.|) by
XREAL_1: 64;
A8: w
>=
0 by
A3,
Th36;
then
A9: w
= ((
sqrt w)
^2 ) by
SQUARE_1:def 2;
((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= ((2
*
|.((
sqrt v)
* j).|)
*
|.((
sqrt w)
* h).|) by
Th8;
then ((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= ((2
* (
|.(
sqrt v).|
*
|.j.|))
*
|.((
sqrt w)
* h).|) by
COMPLEX1: 65;
then
A10: ((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= ((2
* (
|.(
sqrt v).|
*
|.j.|))
* (
|.(
sqrt w).|
*
|.h.|)) by
COMPLEX1: 65;
A11: v
>=
0 by
A2,
Th36;
then (
sqrt v)
>=
0 by
SQUARE_1:def 2;
then
A12: ((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= ((2
* ((
sqrt v)
*
|.j.|))
* (
|.(
sqrt w).|
*
|.h.|)) by
A10,
ABSVALUE:def 1;
(
sqrt w)
>=
0 by
A8,
SQUARE_1:def 2;
then ((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= ((2
* ((
sqrt v)
*
|.j.|))
* ((
sqrt w)
*
|.h.|)) by
A12,
ABSVALUE:def 1;
then
A13: ((((
sqrt v)
* j)
^2 )
+ (((
sqrt w)
* h)
^2 ))
>= (((2
* ((
sqrt v)
* (
sqrt w)))
*
|.j.|)
*
|.h.|);
v
= ((
sqrt v)
^2 ) by
A11,
SQUARE_1:def 2;
then ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= (((2
* (
sqrt (v
* w)))
*
|.j.|)
*
|.h.|) by
A11,
A8,
A9,
A13,
SQUARE_1: 29;
then ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= ((2
* (
|.u.|
*
|.j.|))
*
|.h.|) by
A7,
XXREAL_0: 2;
then ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= ((2
*
|.(u
* j).|)
*
|.h.|) by
COMPLEX1: 65;
then ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= (2
* (
|.(u
* j).|
*
|.h.|));
then
A14: ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= (2
*
|.((u
* j)
* h).|) by
COMPLEX1: 65;
(2
*
|.((u
* j)
* h).|)
>= (2
* ((u
* j)
* h)) by
ABSVALUE: 4,
XREAL_1: 64;
then ((v
* (j
^2 ))
+ (w
* (h
^2 )))
>= (((2
* u)
* j)
* h) by
A14,
XXREAL_0: 2;
then
A15: (((v
* (j
^2 ))
+ (w
* (h
^2 )))
- (((2
* u)
* j)
* h))
>=
0 by
XREAL_1: 48;
((v
* w)
- (u
^2 ))
>=
0 by
A6,
XREAL_1: 48;
then
A16: (((v
* w)
- (u
^2 ))
+ (((v
* (j
^2 ))
+ (w
* (h
^2 )))
- (((2
* u)
* j)
* h)))
>=
0 by
A15;
((
Partial_Sums s3)
. (n
+ 1))
= (u
+ (s3
. (n
+ 1))) by
SERIES_1:def 1;
then ((
Partial_Sums s3)
. (n
+ 1))
= (u
+ (h
* (s2
. (n
+ 1)))) by
A1,
SEQ_1: 8;
then
A17: (((
Partial_Sums s3)
. (n
+ 1))
^2 )
= (((u
^2 )
+ ((2
* u)
* (h
* j)))
+ ((h
* j)
^2 ));
(((
Partial_Sums s4)
. (n
+ 1))
* ((
Partial_Sums s5)
. (n
+ 1)))
= ((((
Partial_Sums s4)
. n)
+ (s4
. (n
+ 1)))
* ((
Partial_Sums s5)
. (n
+ 1))) by
SERIES_1:def 1;
then (((
Partial_Sums s4)
. (n
+ 1))
* ((
Partial_Sums s5)
. (n
+ 1)))
= ((v
+ (s4
. (n
+ 1)))
* (w
+ (s5
. (n
+ 1)))) by
SERIES_1:def 1
.= ((v
+ (h
* h))
* (w
+ (s5
. (n
+ 1)))) by
A2,
SEQ_1: 8
.= ((v
+ (h
* h))
* (w
+ ((s2
. (n
+ 1))
* (s2
. (n
+ 1))))) by
A3,
SEQ_1: 8
.= ((((v
* w)
+ (v
* (j
^2 )))
+ (w
* (h
^2 )))
+ ((h
^2 )
* (j
^2 )));
then ((((
Partial_Sums s4)
. (n
+ 1))
* ((
Partial_Sums s5)
. (n
+ 1)))
- (((
Partial_Sums s3)
. (n
+ 1))
^2 ))
= (((((((v
* w)
- (u
^2 ))
+ (v
* (j
^2 )))
+ (w
* (h
^2 )))
+ ((h
^2 )
* (j
^2 )))
- ((2
* u)
* (h
* j)))
- ((h
* j)
^2 )) by
A17
.= (((((v
* w)
- (u
^2 ))
+ (v
* (j
^2 )))
+ (w
* (h
^2 )))
- (((2
* u)
* h)
* j));
then (((((
Partial_Sums s4)
. (n
+ 1))
* ((
Partial_Sums s5)
. (n
+ 1)))
- (((
Partial_Sums s3)
. (n
+ 1))
^2 ))
+ (((
Partial_Sums s3)
. (n
+ 1))
^2 ))
>= (
0
+ (((
Partial_Sums s3)
. (n
+ 1))
^2 )) by
A16,
XREAL_1: 6;
hence thesis;
end;
(((
Partial_Sums s4)
.
0 )
* ((
Partial_Sums s5)
.
0 ))
= ((s4
.
0 )
* ((
Partial_Sums s5)
.
0 )) by
SERIES_1:def 1
.= ((s4
.
0 )
* (s5
.
0 )) by
SERIES_1:def 1
.= (((s1
.
0 )
* (s1
.
0 ))
* (s5
.
0 )) by
A2,
SEQ_1: 8
.= (((s1
.
0 )
^2 )
* ((s2
.
0 )
^2 )) by
A3,
SEQ_1: 8;
then
A18:
X[
0 ] by
A4;
for n holds
X[n] from
NAT_1:sch 2(
A18,
A5);
hence thesis;
end;
Lm10: (for n holds (s
. n)
= (((s1
. n)
+ (s2
. n))
^2 )) implies ((
Partial_Sums s)
. n)
>=
0
proof
assume
A1: for n holds (s
. n)
= (((s1
. n)
+ (s2
. n))
^2 );
now
let n;
(s
. n)
= (((s1
. n)
+ (s2
. n))
^2 ) by
A1;
hence (s
. n)
>=
0 by
XREAL_1: 63;
end;
hence thesis by
Th34;
end;
theorem ::
SERIES_3:52
(s4
= (s1
(#) s1) & s5
= (s2
(#) s2) & for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 & (s3
. n)
= (((s1
. n)
+ (s2
. n))
^2 )) implies for n holds (
sqrt ((
Partial_Sums s3)
. n))
<= ((
sqrt ((
Partial_Sums s4)
. n))
+ (
sqrt ((
Partial_Sums s5)
. n)))
proof
assume that
A1: s4
= (s1
(#) s1) and
A2: s5
= (s2
(#) s2) and
A3: for n holds (s1
. n)
>=
0 & (s2
. n)
>=
0 & (s3
. n)
= (((s1
. n)
+ (s2
. n))
^2 );
A4: (s1
.
0 )
>=
0 by
A3;
defpred
X[
Nat] means (
sqrt ((
Partial_Sums s3)
. $1))
<= ((
sqrt ((
Partial_Sums s4)
. $1))
+ (
sqrt ((
Partial_Sums s5)
. $1)));
A5: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
assume
A6: (
sqrt ((
Partial_Sums s3)
. n))
<= ((
sqrt ((
Partial_Sums s4)
. n))
+ (
sqrt ((
Partial_Sums s5)
. n)));
set j = (s2
. (n
+ 1));
set h = (s1
. (n
+ 1));
set w = ((
Partial_Sums s5)
. n);
set v = ((
Partial_Sums s4)
. n);
set u = ((
Partial_Sums s3)
. n);
A7: w
>=
0 by
A2,
Th36;
A8: (j
^2 )
>=
0 by
XREAL_1: 63;
then
A9: (
sqrt (w
+ (j
^2 )))
>=
0 by
A7,
SQUARE_1:def 2;
A10: v
>=
0 by
A1,
Th36;
then
A11: (
sqrt (v
* w))
>=
0 by
A7,
SQUARE_1:def 2;
A12: u
>=
0 by
A3,
Lm10;
then (
sqrt u)
>=
0 by
SQUARE_1:def 2;
then ((
sqrt u)
^2 )
<= (((
sqrt v)
+ (
sqrt w))
^2 ) by
A6,
SQUARE_1: 15;
then u
<= ((((
sqrt v)
^2 )
+ ((2
* (
sqrt v))
* (
sqrt w)))
+ ((
sqrt w)
^2 )) by
A12,
SQUARE_1:def 2;
then u
<= ((v
+ ((2
* (
sqrt v))
* (
sqrt w)))
+ ((
sqrt w)
^2 )) by
A10,
SQUARE_1:def 2;
then u
<= ((v
+ ((2
* (
sqrt v))
* (
sqrt w)))
+ w) by
A7,
SQUARE_1:def 2;
then (u
+ ((2
* h)
* j))
<= (((v
+ w)
+ (2
* ((
sqrt v)
* (
sqrt w))))
+ ((2
* h)
* j)) by
XREAL_1: 6;
then
A13: (u
+ ((2
* h)
* j))
<= (((v
+ w)
+ (2
* (
sqrt (v
* w))))
+ ((2
* h)
* j)) by
A10,
A7,
SQUARE_1: 29;
A14: h
>=
0 by
A3;
A15: j
>=
0 by
A3;
A16: (h
^2 )
>=
0 by
XREAL_1: 63;
then
A17: (
sqrt (v
+ (h
^2 )))
>=
0 by
A10,
SQUARE_1:def 2;
(((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (2
* (
sqrt (((h
^2 )
* w)
* ((j
^2 )
* v)))) by
A10,
A7,
A16,
A8,
SIN_COS2: 1;
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (2
* (
sqrt (((h
^2 )
* (j
^2 ))
* (w
* v))));
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (2
* ((
sqrt ((h
^2 )
* (j
^2 )))
* (
sqrt (w
* v)))) by
A10,
A7,
A16,
A8,
SQUARE_1: 29;
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= ((2
* (
sqrt ((h
^2 )
* (j
^2 ))))
* (
sqrt (w
* v)));
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= ((2
* ((
sqrt (h
^2 ))
* (
sqrt (j
^2 ))))
* (
sqrt (w
* v))) by
A16,
A8,
SQUARE_1: 29;
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (((2
* (
sqrt (h
^2 )))
* (
sqrt (j
^2 )))
* (
sqrt (w
* v)));
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (((2
* h)
* (
sqrt (j
^2 )))
* (
sqrt (w
* v))) by
A14,
SQUARE_1: 22;
then (((h
^2 )
* w)
+ ((j
^2 )
* v))
>= (((2
* h)
* j)
* (
sqrt (w
* v))) by
A15,
SQUARE_1: 22;
then ((((h
^2 )
* w)
+ ((j
^2 )
* v))
+ ((v
* w)
+ ((h
^2 )
* (j
^2 ))))
>= ((((2
* h)
* j)
* (
sqrt (w
* v)))
+ ((v
* w)
+ ((h
^2 )
* (j
^2 )))) by
XREAL_1: 6;
then ((((v
* w)
+ ((j
^2 )
* v))
+ ((h
^2 )
* w))
+ ((h
^2 )
* (j
^2 )))
>= (((v
* w)
+ ((2
* (
sqrt (w
* v)))
* (h
* j)))
+ ((h
^2 )
* (j
^2 )));
then (((
sqrt (v
* w))
+ (h
* j))
^2 )
>=
0 & ((v
+ (h
^2 ))
* (w
+ (j
^2 )))
>= ((((
sqrt (v
* w))
^2 )
+ ((2
* (
sqrt (w
* v)))
* (h
* j)))
+ ((h
* j)
^2 )) by
A10,
A7,
SQUARE_1:def 2,
XREAL_1: 63;
then (
sqrt (((
sqrt (v
* w))
+ (h
* j))
^2 ))
<= (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 )))) by
SQUARE_1: 26;
then ((
sqrt (v
* w))
+ (h
* j))
<= (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 )))) by
A14,
A15,
A11,
SQUARE_1: 22;
then (2
* ((
sqrt (v
* w))
+ (h
* j)))
<= (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 ))))) by
XREAL_1: 64;
then ((v
+ w)
+ ((2
* (
sqrt (v
* w)))
+ ((2
* h)
* j)))
<= ((v
+ w)
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 )))))) by
XREAL_1: 6;
then (u
+ ((2
* h)
* j))
<= ((v
+ w)
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 )))))) by
A13,
XXREAL_0: 2;
then ((u
+ ((2
* h)
* j))
+ ((h
^2 )
+ (j
^2 )))
<= (((v
+ w)
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 ))))))
+ ((h
^2 )
+ (j
^2 ))) by
XREAL_1: 6;
then (u
+ (((h
^2 )
+ ((2
* h)
* j))
+ (j
^2 )))
<= (((v
+ (h
^2 ))
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 ))))))
+ (w
+ (j
^2 )));
then (u
+ ((h
+ j)
^2 ))
<= ((((
sqrt (v
+ (h
^2 )))
^2 )
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 ))))))
+ (w
+ (j
^2 ))) by
A10,
A16,
SQUARE_1:def 2;
then (u
+ ((h
+ j)
^2 ))
<= ((((
sqrt (v
+ (h
^2 )))
^2 )
+ (2
* (
sqrt ((v
+ (h
^2 ))
* (w
+ (j
^2 ))))))
+ ((
sqrt (w
+ (j
^2 )))
^2 )) by
A7,
A8,
SQUARE_1:def 2;
then ((h
+ j)
^2 )
>=
0 & (u
+ ((h
+ j)
^2 ))
<= ((((
sqrt (v
+ (h
^2 )))
^2 )
+ (2
* ((
sqrt (v
+ (h
^2 )))
* (
sqrt (w
+ (j
^2 ))))))
+ ((
sqrt (w
+ (j
^2 )))
^2 )) by
A10,
A7,
A16,
A8,
SQUARE_1: 29,
XREAL_1: 63;
then
A18: (
sqrt (u
+ ((h
+ j)
^2 )))
<= (
sqrt (((
sqrt (v
+ (h
^2 )))
+ (
sqrt (w
+ (j
^2 ))))
^2 )) by
A12,
SQUARE_1: 26;
A19: (
sqrt ((
Partial_Sums s3)
. (n
+ 1)))
= (
sqrt (((
Partial_Sums s3)
. n)
+ (s3
. (n
+ 1)))) by
SERIES_1:def 1
.= (
sqrt (u
+ ((h
+ j)
^2 ))) by
A3;
((
sqrt ((
Partial_Sums s4)
. (n
+ 1)))
+ (
sqrt ((
Partial_Sums s5)
. (n
+ 1))))
= ((
sqrt (((
Partial_Sums s4)
. n)
+ (s4
. (n
+ 1))))
+ (
sqrt ((
Partial_Sums s5)
. (n
+ 1)))) by
SERIES_1:def 1
.= ((
sqrt (v
+ (s4
. (n
+ 1))))
+ (
sqrt (w
+ (s5
. (n
+ 1))))) by
SERIES_1:def 1
.= ((
sqrt (v
+ ((s1
. (n
+ 1))
* (s1
. (n
+ 1)))))
+ (
sqrt (w
+ (s5
. (n
+ 1))))) by
A1,
SEQ_1: 8
.= ((
sqrt (v
+ (h
^2 )))
+ (
sqrt (w
+ (j
^2 )))) by
A2,
SEQ_1: 8;
hence thesis by
A19,
A17,
A9,
A18,
SQUARE_1: 22;
end;
A20: (s2
.
0 )
>=
0 by
A3;
((
sqrt ((
Partial_Sums s4)
.
0 ))
+ (
sqrt ((
Partial_Sums s5)
.
0 )))
= ((
sqrt (s4
.
0 ))
+ (
sqrt ((
Partial_Sums s5)
.
0 ))) by
SERIES_1:def 1
.= ((
sqrt (s4
.
0 ))
+ (
sqrt (s5
.
0 ))) by
SERIES_1:def 1
.= ((
sqrt ((s1
.
0 )
* (s1
.
0 )))
+ (
sqrt (s5
.
0 ))) by
A1,
SEQ_1: 8
.= ((
sqrt ((s1
.
0 )
^2 ))
+ (
sqrt ((s2
.
0 )
* (s2
.
0 )))) by
A2,
SEQ_1: 8
.= ((s1
.
0 )
+ (
sqrt ((s2
.
0 )
^2 ))) by
A4,
SQUARE_1: 22
.= ((s1
.
0 )
+ (s2
.
0 )) by
A20,
SQUARE_1: 22
.= (
sqrt (((s1
.
0 )
+ (s2
.
0 ))
^2 )) by
A4,
A20,
SQUARE_1: 22
.= (
sqrt (s3
.
0 )) by
A3
.= (
sqrt ((
Partial_Sums s3)
.
0 )) by
SERIES_1:def 1;
then
A21:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A21,
A5);
hence thesis;
end;
Lm11: (for n holds (s
. n)
>
0 ) implies ((n
+ 1)
-root ((
Partial_Product s)
. n))
>
0
proof
assume for n holds (s
. n)
>
0 ;
then
A1: ((
Partial_Product s)
. n)
>
0 by
Th43;
A2: (n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then ((n
+ 1)
-root ((
Partial_Product s)
. n))
= ((n
+ 1)
-Root ((
Partial_Product s)
. n)) by
A1,
POWER:def 1;
hence thesis by
A1,
A2,
PREPOWER:def 2;
end;
Lm12: (for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1))) implies (((s
. (n
+ 1))
- (((
Partial_Sums s)
. n)
/ (n
+ 1)))
/ (n
+ 2))
>=
0
proof
assume for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1));
then (((n
+ 1)
* (s
. (n
+ 1)))
/ (n
+ 1))
>= (((
Partial_Sums s)
. n)
/ (n
+ 1)) by
Th38,
XREAL_1: 72;
then (s
. (n
+ 1))
>= (((
Partial_Sums s)
. n)
/ (n
+ 1)) by
XCMPLX_1: 89;
then ((s
. (n
+ 1))
- (((
Partial_Sums s)
. n)
/ (n
+ 1)))
>=
0 by
XREAL_1: 48;
hence thesis;
end;
theorem ::
SERIES_3:53
(for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1))) implies ((
Partial_Sums s)
. n)
>= ((n
+ 1)
* ((n
+ 1)
-root ((
Partial_Product s)
. n)))
proof
defpred
X[
Nat] means ((
Partial_Sums s)
. $1)
>= (($1
+ 1)
* (($1
+ 1)
-root ((
Partial_Product s)
. $1)));
A1: ((
Partial_Sums s)
.
0 )
= (s
.
0 ) by
SERIES_1:def 1;
assume
A2: for n holds (s
. n)
>
0 & (s
. n)
>= (s
. (n
- 1));
A3: for n st
X[n] holds
X[(n
+ 1)]
proof
let n;
set u = ((
Partial_Sums s)
. n);
set v = (s
. (n
+ 1));
set w = (((u
/ (n
+ 1))
+ ((v
- (u
/ (n
+ 1)))
/ (n
+ 2)))
|^ (n
+ 2));
set h = ((n
+ 1)
-root ((
Partial_Product s)
. n));
set j = (u
/ (n
+ 1));
A4: v
>
0 by
A2;
A5: (n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then ((n
+ 1)
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
then
A6: (n
+ 2)
>= 1 by
XXREAL_0: 2;
assume ((
Partial_Sums s)
. n)
>= ((n
+ 1)
* ((n
+ 1)
-root ((
Partial_Product s)
. n)));
then (u
/ (n
+ 1))
>= (((n
+ 1)
* ((n
+ 1)
-root ((
Partial_Product s)
. n)))
/ (n
+ 1)) by
XREAL_1: 72;
then ((n
+ 1)
-root ((
Partial_Product s)
. n))
<= (u
/ (n
+ 1)) by
XCMPLX_1: 89;
then
A7: (h
|^ (n
+ 1))
<= (j
|^ (n
+ 1)) by
A2,
Lm11,
PREPOWER: 9;
A8: ((
Partial_Product s)
. n)
>
0 by
A2,
Th43;
then h
= ((n
+ 1)
-Root ((
Partial_Product s)
. n)) by
A5,
POWER:def 1;
then ((
Partial_Product s)
. n)
<= (j
|^ (n
+ 1)) by
A7,
A8,
A5,
PREPOWER: 19;
then (((
Partial_Product s)
. n)
* v)
<= ((j
|^ (n
+ 1))
* v) by
A4,
XREAL_1: 64;
then
A9: ((
Partial_Product s)
. (n
+ 1))
<= ((j
|^ (n
+ 1))
* v) by
Def1;
A10: ((
Partial_Product s)
. (n
+ 1))
>=
0 by
A2,
Th43;
u
>
0 & ((v
- (u
/ (n
+ 1)))
/ (n
+ 2))
>=
0 by
A2,
Lm12,
Th33;
then w
>= (((u
/ (n
+ 1))
|^ ((n
+ 1)
+ 1))
+ (((n
+ 2)
* ((u
/ (n
+ 1))
|^ (n
+ 1)))
* ((v
- (u
/ (n
+ 1)))
/ (n
+ 2)))) by
Th31;
then w
>= ((((u
/ (n
+ 1))
|^ (n
+ 1))
* (u
/ (n
+ 1)))
+ (((u
/ (n
+ 1))
|^ (n
+ 1))
* (((v
- (u
/ (n
+ 1)))
/ (n
+ 2))
* (n
+ 2)))) by
NEWTON: 6;
then
A11: w
>= ((((u
/ (n
+ 1))
|^ (n
+ 1))
* (u
/ (n
+ 1)))
+ (((u
/ (n
+ 1))
|^ (n
+ 1))
* (v
- (u
/ (n
+ 1))))) by
XCMPLX_1: 87;
A12: ((
Partial_Sums s)
. (n
+ 1))
>
0 by
A2,
Th33;
(((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
= (((1
* ((
Partial_Sums s)
. n))
+ (s
. (n
+ 1)))
/ (n
+ 2)) by
SERIES_1:def 1
.= (((((n
+ 1)
/ (n
+ 1))
* ((
Partial_Sums s)
. n))
+ (s
. (n
+ 1)))
/ (n
+ 2)) by
XCMPLX_1: 60
.= ((((((n
+ 2)
- 1)
* ((
Partial_Sums s)
. n))
/ (n
+ 1))
+ (s
. (n
+ 1)))
/ (n
+ 2));
then (((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
= ((((((n
+ 2)
* u)
- u)
/ (n
+ 1))
+ v)
/ (n
+ 2))
.= ((((((n
+ 2)
* u)
/ (n
+ 1))
- (u
/ (n
+ 1)))
+ v)
/ (n
+ 2))
.= ((((((n
+ 2)
* u)
/ (n
+ 1))
- (u
/ (n
+ 1)))
/ (n
+ 2))
+ (v
/ (n
+ 2)))
.= ((((((n
+ 2)
* u)
/ (n
+ 1))
/ (n
+ 2))
- ((u
/ (n
+ 1))
/ (n
+ 2)))
+ (v
/ (n
+ 2)))
.= (((((n
+ 2)
* u)
/ ((n
+ 1)
* (n
+ 2)))
- ((u
/ (n
+ 1))
/ (n
+ 2)))
+ (v
/ (n
+ 2))) by
XCMPLX_1: 78
.= (((u
/ (n
+ 1))
- ((u
/ (n
+ 1))
/ (n
+ 2)))
+ (v
/ (n
+ 2))) by
XCMPLX_1: 91
.= ((u
/ (n
+ 1))
+ ((v
/ (n
+ 2))
- ((u
/ (n
+ 1))
/ (n
+ 2))))
.= ((u
/ (n
+ 1))
+ ((v
- (u
/ (n
+ 1)))
/ (n
+ 2)));
then ((((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
|^ (n
+ 2))
>= ((
Partial_Product s)
. (n
+ 1)) by
A11,
A9,
XXREAL_0: 2;
then ((n
+ 2)
-Root ((((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
|^ (n
+ 2)))
>= ((n
+ 2)
-Root ((
Partial_Product s)
. (n
+ 1))) by
A6,
A10,
PREPOWER: 27;
then (((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
>= ((n
+ 2)
-Root ((
Partial_Product s)
. (n
+ 1))) by
A6,
A12,
PREPOWER: 19;
then (((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
>= ((n
+ 2)
-root ((
Partial_Product s)
. (n
+ 1))) by
A6,
A10,
POWER:def 1;
then ((((
Partial_Sums s)
. (n
+ 1))
/ (n
+ 2))
* (n
+ 2))
>= ((n
+ 2)
* ((n
+ 2)
-root ((
Partial_Product s)
. (n
+ 1)))) by
XREAL_1: 64;
hence thesis by
XCMPLX_1: 87;
end;
((
0
+ 1)
* ((
0
+ 1)
-root ((
Partial_Product s)
.
0 )))
= ((
0
+ 1)
-root (s
.
0 )) by
Def1
.= ((
Partial_Sums s)
.
0 ) by
A1,
POWER: 9;
then
A13:
X[
0 ];
for n holds
X[n] from
NAT_1:sch 2(
A13,
A3);
hence thesis;
end;