topmetr2.miz
    
    begin
    
    reserve x,r,a for
    Real;
    
    reserve f,g for
    Function, 
    
x1,x2 for
    set;
    
    theorem :: 
    
    TOPMETR2:1
    
    f is
    one-to-one & g is 
    one-to-one & (for x1, x2 st x1 
    in ( 
    dom g) & x2 
    in (( 
    dom f) 
    \ ( 
    dom g)) holds (g 
    . x1) 
    <> (f 
    . x2)) implies (f 
    +* g) is 
    one-to-one
    
    proof
    
      assume that
    
      
    
    A1: f is 
    one-to-one and 
    
      
    
    A2: g is 
    one-to-one and 
    
      
    
    A3: for x1, x2 st x1 
    in ( 
    dom g) & x2 
    in (( 
    dom f) 
    \ ( 
    dom g)) holds (g 
    . x1) 
    <> (f 
    . x2); 
    
      now
    
        let x11,x22 be
    object;
    
        assume that
    
        
    
    A4: x11 
    in ( 
    dom (f 
    +* g)) and 
    
        
    
    A5: x22 
    in ( 
    dom (f 
    +* g)) and 
    
        
    
    A6: ((f 
    +* g) 
    . x11) 
    = ((f 
    +* g) 
    . x22); 
    
        
    
        
    
    A7: x22 
    in (( 
    dom f) 
    \/ ( 
    dom g)) by 
    A5,
    FUNCT_4:def 1;
    
        then
    
        
    
    A8: x22 
    in ((( 
    dom f) 
    \ ( 
    dom g)) 
    \/ ( 
    dom g)) by 
    XBOOLE_1: 39;
    
        
    
        
    
    A9: x11 
    in (( 
    dom f) 
    \/ ( 
    dom g)) by 
    A4,
    FUNCT_4:def 1;
    
        then
    
        
    
    A10: x11 
    in ((( 
    dom f) 
    \ ( 
    dom g)) 
    \/ ( 
    dom g)) by 
    XBOOLE_1: 39;
    
        now
    
          per cases by
    A10,
    XBOOLE_0:def 3;
    
            suppose
    
            
    
    A11: x11 
    in (( 
    dom f) 
    \ ( 
    dom g)); 
    
            then not x11
    in ( 
    dom g) by 
    XBOOLE_0:def 5;
    
            then
    
            
    
    A12: ((f 
    +* g) 
    . x11) 
    = (f 
    . x11) by 
    A9,
    FUNCT_4:def 1;
    
            now
    
              per cases by
    A8,
    XBOOLE_0:def 3;
    
                case
    
                
    
    A13: x22 
    in (( 
    dom f) 
    \ ( 
    dom g)); 
    
                then not x22
    in ( 
    dom g) by 
    XBOOLE_0:def 5;
    
                then (f
    . x11) 
    = (f 
    . x22) by 
    A6,
    A7,
    A12,
    FUNCT_4:def 1;
    
                hence x11
    = x22 by 
    A1,
    A11,
    A13,
    FUNCT_1:def 4;
    
              end;
    
                case
    
                
    
    A14: x22 
    in ( 
    dom g); 
    
                then (g
    . x22) 
    <> (f 
    . x11) by 
    A3,
    A11;
    
                hence contradiction by
    A6,
    A7,
    A12,
    A14,
    FUNCT_4:def 1;
    
              end;
    
            end;
    
            hence x11
    = x22; 
    
          end;
    
            suppose
    
            
    
    A15: x11 
    in ( 
    dom g); 
    
            now
    
              per cases by
    A8,
    XBOOLE_0:def 3;
    
                case
    
                
    
    A16: x22 
    in (( 
    dom f) 
    \ ( 
    dom g)); 
    
                then not x22
    in ( 
    dom g) by 
    XBOOLE_0:def 5;
    
                then
    
                
    
    A17: ((f 
    +* g) 
    . x22) 
    = (f 
    . x22) by 
    A7,
    FUNCT_4:def 1;
    
                (g
    . x11) 
    <> (f 
    . x22) by 
    A3,
    A15,
    A16;
    
                hence contradiction by
    A6,
    A9,
    A15,
    A17,
    FUNCT_4:def 1;
    
              end;
    
                case
    
                
    
    A18: x22 
    in ( 
    dom g); 
    
                then ((f
    +* g) 
    . x22) 
    = (g 
    . x22) by 
    A7,
    FUNCT_4:def 1;
    
                then (g
    . x11) 
    = (g 
    . x22) by 
    A6,
    A9,
    A15,
    FUNCT_4:def 1;
    
                hence x11
    = x22 by 
    A2,
    A15,
    A18,
    FUNCT_1:def 4;
    
              end;
    
            end;
    
            hence x11
    = x22; 
    
          end;
    
        end;
    
        hence x11
    = x22; 
    
      end;
    
      hence thesis by
    FUNCT_1:def 4;
    
    end;
    
    
    
    
    
    Lm1: (f 
    .: (( 
    dom f) 
    /\ ( 
    dom g))) 
    c= ( 
    rng g) implies (( 
    rng f) 
    \ ( 
    rng g)) 
    c= ( 
    rng (f 
    +* g)) 
    
    proof
    
      assume
    
      
    
    A1: (f 
    .: (( 
    dom f) 
    /\ ( 
    dom g))) 
    c= ( 
    rng g); 
    
      let y1 be
    object;
    
      assume
    
      
    
    A2: y1 
    in (( 
    rng f) 
    \ ( 
    rng g)); 
    
      then
    
      consider x1 be
    object such that 
    
      
    
    A3: x1 
    in ( 
    dom f) and 
    
      
    
    A4: y1 
    = (f 
    . x1) by 
    FUNCT_1:def 3;
    
      
    
      
    
    A5: x1 
    in (( 
    dom f) 
    \/ ( 
    dom g)) by 
    A3,
    XBOOLE_0:def 3;
    
      then
    
      
    
    A6: x1 
    in ( 
    dom (f 
    +* g)) by 
    FUNCT_4:def 1;
    
      now
    
        assume x1
    in ( 
    dom g); 
    
        then x1
    in (( 
    dom f) 
    /\ ( 
    dom g)) by 
    A3,
    XBOOLE_0:def 4;
    
        then (f
    . x1) 
    in (f 
    .: (( 
    dom f) 
    /\ ( 
    dom g))) by 
    A3,
    FUNCT_1:def 6;
    
        hence contradiction by
    A1,
    A2,
    A4,
    XBOOLE_0:def 5;
    
      end;
    
      then ((f
    +* g) 
    . x1) 
    = (f 
    . x1) by 
    A5,
    FUNCT_4:def 1;
    
      hence thesis by
    A4,
    A6,
    FUNCT_1:def 3;
    
    end;
    
    theorem :: 
    
    TOPMETR2:2
    
    (f
    .: (( 
    dom f) 
    /\ ( 
    dom g))) 
    c= ( 
    rng g) implies (( 
    rng f) 
    \/ ( 
    rng g)) 
    = ( 
    rng (f 
    +* g)) 
    
    proof
    
      assume (f
    .: (( 
    dom f) 
    /\ ( 
    dom g))) 
    c= ( 
    rng g); 
    
      then
    
      
    
    A1: (( 
    rng f) 
    \ ( 
    rng g)) 
    c= ( 
    rng (f 
    +* g)) by 
    Lm1;
    
      (
    rng g) 
    c= ( 
    rng (f 
    +* g)) by 
    FUNCT_4: 18;
    
      then (((
    rng f) 
    \ ( 
    rng g)) 
    \/ ( 
    rng g)) 
    c= ( 
    rng (f 
    +* g)) by 
    A1,
    XBOOLE_1: 8;
    
      then
    
      
    
    A2: (( 
    rng f) 
    \/ ( 
    rng g)) 
    c= ( 
    rng (f 
    +* g)) by 
    XBOOLE_1: 39;
    
      (
    rng (f 
    +* g)) 
    c= (( 
    rng f) 
    \/ ( 
    rng g)) by 
    FUNCT_4: 17;
    
      hence thesis by
    A2,
    XBOOLE_0:def 10;
    
    end;
    
    reserve T for
    T_2  
    TopSpace;
    
    reconsider dwa = 2 as
    Real;
    
    theorem :: 
    
    TOPMETR2:3
    
    for P,Q be
    Subset of T holds for p be 
    Point of T, f be 
    Function of 
    I[01] , (T 
    | P), g be 
    Function of 
    I[01] , (T 
    | Q) st (P 
    /\ Q) 
    =  
    {p} & f is
    being_homeomorphism & (f 
    . 1) 
    = p & g is 
    being_homeomorphism & (g 
    .  
    0 ) 
    = p holds ex h be 
    Function of 
    I[01] , (T 
    | (P 
    \/ Q)) st h is 
    being_homeomorphism & (h 
    .  
    0 ) 
    = (f 
    .  
    0 ) & (h 
    . 1) 
    = (g 
    . 1) 
    
    proof
    
      (1
    / 2) 
    in { r where r be 
    Real : 
    0  
    <= r & r 
    <= 1 }; 
    
      then
    
      reconsider pp = (1
    / 2) as 
    Point of 
    I[01] by 
    BORSUK_1: 40,
    RCOMP_1:def 1;
    
      reconsider PP =
    [.
    0 , (1 
    / 2).] as 
    Subset of 
    R^1 by 
    TOPMETR: 17;
    
      
    
      
    
    A1: (1 
    / 2) 
    in  
    [.
    0 , 1.] by 
    XXREAL_1: 1;
    
      1
    in  
    [.
    0 , 1.] by 
    XXREAL_1: 1;
    
      then
    [.(1
    / 2), 1.] 
    c= the 
    carrier of 
    I[01] by 
    A1,
    BORSUK_1: 40,
    XXREAL_2:def 12;
    
      then
    
      
    
    A2: the 
    carrier of ( 
    Closed-Interval-TSpace ((1 
    / 2),1)) 
    c= the 
    carrier of 
    I[01] by 
    TOPMETR: 18;
    
      
    0  
    in  
    [.
    0 , 1.] by 
    XXREAL_1: 1;
    
      then
    [.
    0 , (1 
    / 2).] 
    c= the 
    carrier of 
    I[01] by 
    A1,
    BORSUK_1: 40,
    XXREAL_2:def 12;
    
      then the
    carrier of ( 
    Closed-Interval-TSpace ( 
    0 ,(1 
    / 2))) 
    c= the 
    carrier of 
    I[01] by 
    TOPMETR: 18;
    
      then
    
      reconsider T1 = (
    Closed-Interval-TSpace ( 
    0 ,(1 
    / 2))), T2 = ( 
    Closed-Interval-TSpace ((1 
    / 2),1)) as 
    SubSpace of 
    I[01] by 
    A2,
    TOPMETR: 3;
    
      deffunc
    
    U(
    Real) = (
    In ((2 
    * $1), 
    REAL )); 
    
      let P,Q be
    Subset of T; 
    
      let p be
    Point of T; 
    
      let f be
    Function of 
    I[01] , (T 
    | P), g be 
    Function of 
    I[01] , (T 
    | Q); 
    
      assume that
    
      
    
    A3: (P 
    /\ Q) 
    =  
    {p} and
    
      
    
    A4: f is 
    being_homeomorphism and 
    
      
    
    A5: (f 
    . 1) 
    = p and 
    
      
    
    A6: g is 
    being_homeomorphism and 
    
      
    
    A7: (g 
    .  
    0 ) 
    = p; 
    
      Q
    = ( 
    [#] (T 
    | Q)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A8: ( 
    rng g) 
    = Q by 
    A6,
    TOPS_2:def 5;
    
      p
    in (P 
    /\ Q) by 
    A3,
    TARSKI:def 1;
    
      then
    
      reconsider M = T as non
    empty  
    TopSpace;
    
      reconsider P9 = P, Q9 = Q as non
    empty  
    Subset of M by 
    A3;
    
      reconsider R = (P9
    \/ Q9) as non 
    empty  
    Subset of M; 
    
      
    
      
    
    A9: (M 
    | P9) is 
    SubSpace of (M 
    | R) by 
    TOPMETR: 4;
    
      defpred
    
    X[
    object, 
    object] means for a st a
    = $1 holds $2 
    = (f 
    . (2 
    * a)); 
    
      consider f3 be
    Function of 
    REAL , 
    REAL such that 
    
      
    
    A10: for x be 
    Element of 
    REAL holds (f3 
    . x) 
    =  
    U(x) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A11: R 
    = ( 
    [#] (M 
    | R)) by 
    PRE_TOPC:def 5
    
      .= the
    carrier of (M 
    | R); 
    
      then (
    dom g) 
    = the 
    carrier of 
    I[01] by 
    FUNCT_2:def 1;
    
      then
    
      reconsider g9 = g as
    Function of 
    I[01] , (M 
    | R) by 
    A8,
    A11,
    RELSET_1: 4,
    XBOOLE_1: 7;
    
      
    
      
    
    A12: (M 
    | Q9) is 
    SubSpace of (M 
    | R) by 
    TOPMETR: 4;
    
      g is
    continuous by 
    A6,
    TOPS_2:def 5;
    
      then
    
      
    
    A13: g9 is 
    continuous by 
    A12,
    PRE_TOPC: 26;
    
      reconsider PP as non
    empty  
    Subset of 
    R^1 by 
    XXREAL_1: 1;
    
      
    
      
    
    A14: T1 is 
    compact & T2 is 
    compact by 
    HEINE: 4;
    
      P
    = ( 
    [#] (T 
    | P)) by 
    PRE_TOPC:def 5;
    
      then
    
      
    
    A15: ( 
    rng f) 
    = P by 
    A4,
    TOPS_2:def 5;
    
      (
    dom f) 
    = the 
    carrier of 
    I[01] by 
    A11,
    FUNCT_2:def 1;
    
      then
    
      reconsider ff = f as
    Function of 
    I[01] , (M 
    | R) by 
    A15,
    A11,
    RELSET_1: 4,
    XBOOLE_1: 7;
    
      f is
    continuous by 
    A4,
    TOPS_2:def 5;
    
      then
    
      
    
    A16: ff is 
    continuous by 
    A9,
    PRE_TOPC: 26;
    
      reconsider f3 as
    Function of 
    R^1 , 
    R^1 by 
    TOPMETR: 17;
    
      
    
      
    
    A17: ( 
    dom (f3 
    |  
    [.
    0 , (1 
    / 2).])) 
    = (( 
    dom f3) 
    /\  
    [.
    0 , (1 
    / 2).]) by 
    RELAT_1: 61
    
      .= (
    REAL  
    /\  
    [.
    0 , (1 
    / 2).]) by 
    FUNCT_2:def 1
    
      .=
    [.
    0 , (1 
    / 2).] by 
    XBOOLE_1: 28
    
      .= the
    carrier of T1 by 
    TOPMETR: 18;
    
      (
    rng (f3 
    |  
    [.
    0 , (1 
    / 2).])) 
    c= the 
    carrier of 
    R^1 ; 
    
      then
    
      reconsider f39 = (f3
    | PP) as 
    Function of T1, 
    R^1 by 
    A17,
    FUNCT_2:def 1,
    RELSET_1: 4;
    
      
    
      
    
    A18: ( 
    dom f39) 
    = the 
    carrier of T1 by 
    FUNCT_2:def 1;
    
      (
    rng f39) 
    c= the 
    carrier of 
    I[01]  
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng f39); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A19: x 
    in ( 
    dom f39) and 
    
        
    
    A20: y 
    = (f39 
    . x) by 
    FUNCT_1:def 3;
    
        x
    in  
    [.
    0 , (1 
    / 2).] by 
    A18,
    A19,
    TOPMETR: 18;
    
        then x
    in { r where r be 
    Real : 
    0  
    <= r & r 
    <= (1 
    / 2) } by 
    RCOMP_1:def 1;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A21: x 
    = r and 
    
        
    
    A22: 
    0  
    <= r & r 
    <= (1 
    / 2); 
    
        
    
        
    
    A23: (2 
    *  
    0 ) 
    <= (2 
    * r) & (2 
    * r) 
    <= (2 
    * (1 
    / 2)) by 
    A22,
    XREAL_1: 64;
    
        reconsider r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        y
    = (f3 
    . x) by 
    A19,
    A20,
    FUNCT_1: 47
    
        .=
    U(r) by
    A10,
    A21;
    
        then y
    in { rr where rr be 
    Real : 
    0  
    <= rr & rr 
    <= 1 } by 
    A23;
    
        hence thesis by
    BORSUK_1: 40,
    RCOMP_1:def 1;
    
      end;
    
      then
    
      reconsider f4 = f39 as
    Function of T1, 
    I[01] by 
    A18,
    RELSET_1: 4;
    
      
    
      
    
    A24: ( 
    R^1  
    | PP) 
    = T1 by 
    TOPMETR: 19;
    
      (f3
    . x) 
    = ((dwa 
    * x) 
    +  
    0 ) 
    
      proof
    
        reconsider x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        (f3
    . x) 
    = ( 
    U(x)
    +  
    0 ) by 
    A10;
    
        hence thesis;
    
      end;
    
      then f39 is
    continuous by 
    A24,
    TOPMETR: 7,
    TOPMETR: 21;
    
      then
    
      
    
    A25: f4 is 
    continuous by 
    PRE_TOPC: 27;
    
      reconsider PP =
    [.(1
    / 2), 1.] as 
    Subset of 
    R^1 by 
    TOPMETR: 17;
    
      reconsider PP as non
    empty  
    Subset of 
    R^1 by 
    XXREAL_1: 1;
    
      deffunc
    
    U1(
    Real) = (
    In (((2 
    * $1) 
    - 1), 
    REAL )); 
    
      consider g3 be
    Function of 
    REAL , 
    REAL such that 
    
      
    
    A26: for x be 
    Element of 
    REAL holds (g3 
    . x) 
    =  
    U1(x) from
    FUNCT_2:sch 4;
    
      reconsider g3 as
    Function of 
    R^1 , 
    R^1 by 
    TOPMETR: 17;
    
      
    
      
    
    A27: ( 
    dom (g3 
    |  
    [.(1
    / 2), 1.])) 
    = (( 
    dom g3) 
    /\  
    [.(1
    / 2), 1.]) by 
    RELAT_1: 61
    
      .= (
    REAL  
    /\  
    [.(1
    / 2), 1.]) by 
    FUNCT_2:def 1
    
      .=
    [.(1
    / 2), 1.] by 
    XBOOLE_1: 28
    
      .= the
    carrier of T2 by 
    TOPMETR: 18;
    
      (
    rng (g3 
    |  
    [.(1
    / 2), 1.])) 
    c= the 
    carrier of 
    R^1 ; 
    
      then
    
      reconsider g39 = (g3
    | PP) as 
    Function of T2, 
    R^1 by 
    A27,
    FUNCT_2:def 1,
    RELSET_1: 4;
    
      
    
      
    
    A28: ( 
    dom g39) 
    = the 
    carrier of T2 by 
    FUNCT_2:def 1;
    
      (
    rng g39) 
    c= the 
    carrier of 
    I[01]  
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    rng g39); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A29: x 
    in ( 
    dom g39) and 
    
        
    
    A30: y 
    = (g39 
    . x) by 
    FUNCT_1:def 3;
    
        x
    in  
    [.(1
    / 2), 1.] by 
    A28,
    A29,
    TOPMETR: 18;
    
        then x
    in { r where r be 
    Real : (1 
    / 2) 
    <= r & r 
    <= 1 } by 
    RCOMP_1:def 1;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A31: x 
    = r and 
    
        
    
    A32: (1 
    / 2) 
    <= r and 
    
        
    
    A33: r 
    <= 1; 
    
        (2
    * (1 
    / 2)) 
    <= (2 
    * r) by 
    A32,
    XREAL_1: 64;
    
        then
    
        
    
    A34: (1 
    - 1) 
    <= ((2 
    * r) 
    - 1) by 
    XREAL_1: 9;
    
        (2
    * r) 
    <= (2 
    * 1) by 
    A33,
    XREAL_1: 64;
    
        then
    
        
    
    A35: ((2 
    * r) 
    - 1) 
    <= ((1 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
        reconsider r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        y
    = (g3 
    . x) by 
    A29,
    A30,
    FUNCT_1: 47
    
        .=
    U1(r) by
    A26,
    A31
    
        .= ((dwa
    * r) 
    - 1); 
    
        then y
    in { rr where rr be 
    Real : 
    0  
    <= rr & rr 
    <= 1 } by 
    A34,
    A35;
    
        hence thesis by
    BORSUK_1: 40,
    RCOMP_1:def 1;
    
      end;
    
      then
    
      reconsider g4 = g39 as
    Function of T2, 
    I[01] by 
    A28,
    RELSET_1: 4;
    
      (
    [#] T1) 
    =  
    [.
    0 , (1 
    / 2).] & ( 
    [#] T2) 
    =  
    [.(1
    / 2), 1.] by 
    TOPMETR: 18;
    
      then
    
      
    
    A36: (( 
    [#] T1) 
    \/ ( 
    [#] T2)) 
    = ( 
    [#]  
    I[01] qua 
    TopSpace) & ((
    [#] T1) 
    /\ ( 
    [#] T2)) 
    =  
    {pp} by
    BORSUK_1: 40,
    XXREAL_1: 165,
    XXREAL_1: 418;
    
      
    
      
    
    A37: (g3 
    . x) 
    = ((2 
    * x) 
    + ( 
    - 1)) 
    
      proof
    
        reconsider x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        (g3
    . x) 
    =  
    U1(x) by
    A26
    
        .= ((dwa
    * x) 
    - 1) 
    
        .= ((2
    * x) 
    + ( 
    - 1)); 
    
        hence thesis;
    
      end;
    
      (
    R^1  
    | PP) 
    = T2 by 
    TOPMETR: 19;
    
      then g39 is
    continuous by 
    A37,
    TOPMETR: 7,
    TOPMETR: 21;
    
      then
    
      
    
    A38: g4 is 
    continuous by 
    PRE_TOPC: 27;
    
      
    
      
    
    A39: for x be 
    object st x 
    in  
    [.
    0 , (1 
    / 2).] holds ex u be 
    object st 
    X[x, u]
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    [.
    0 , (1 
    / 2).]; 
    
        then x
    in { r : 
    0  
    <= r & r 
    <= (1 
    / 2) } by 
    RCOMP_1:def 1;
    
        then
    
        consider r such that
    
        
    
    A40: r 
    = x and 
    0  
    <= r and r 
    <= (1 
    / 2); 
    
        take (f
    . (2 
    * r)); 
    
        thus thesis by
    A40;
    
      end;
    
      consider f2 be
    Function such that 
    
      
    
    A41: ( 
    dom f2) 
    =  
    [.
    0 , (1 
    / 2).] and 
    
      
    
    A42: for x be 
    object st x 
    in  
    [.
    0 , (1 
    / 2).] holds 
    X[x, (f2
    . x)] from 
    CLASSES1:sch 1(
    A39);
    
      
    
      
    
    A43: ( 
    dom f2) 
    = the 
    carrier of T1 by 
    A41,
    TOPMETR: 18;
    
      f is
    Function of the 
    carrier of 
    I[01] , the 
    carrier of (M 
    | P9); 
    
      then
    
      
    
    A44: ( 
    dom f) 
    =  
    [.
    0 , 1.] by 
    BORSUK_1: 40,
    FUNCT_2:def 1;
    
      now
    
        let y be
    object;
    
        assume y
    in ( 
    rng f2); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A45: x 
    in ( 
    dom f2) and 
    
        
    
    A46: y 
    = (f2 
    . x) by 
    FUNCT_1:def 3;
    
        x
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    A41,
    A45,
    RCOMP_1:def 1;
    
        then
    
        consider a such that
    
        
    
    A47: x 
    = a and 
    
        
    
    A48: 
    0  
    <= a & a 
    <= (1 
    / 2); 
    
        
    0  
    <= (2 
    * a) & (2 
    * a) 
    <= (2 
    * (1 
    / 2)) by 
    A48,
    XREAL_1: 64,
    XREAL_1: 127;
    
        then (2
    * a) 
    in { r : 
    0  
    <= r & r 
    <= 1 }; 
    
        then
    
        
    
    A49: (2 
    * a) 
    in ( 
    dom f) by 
    A44,
    RCOMP_1:def 1;
    
        y
    = (f 
    . (2 
    * a)) by 
    A41,
    A42,
    A45,
    A46,
    A47;
    
        hence y
    in P by 
    A15,
    A49,
    FUNCT_1:def 3;
    
      end;
    
      then
    
      
    
    A50: ( 
    rng f2) 
    c= P; 
    
      P
    c= (P 
    \/ Q) by 
    XBOOLE_1: 7;
    
      then (
    rng f2) 
    c= the 
    carrier of (T 
    | (P 
    \/ Q) qua 
    Subset of T) by 
    A11,
    A50;
    
      then
    
      reconsider f1 = f2 as
    Function of T1, (M 
    | R) by 
    A43,
    FUNCT_2:def 1,
    RELSET_1: 4;
    
      for x be
    object st x 
    in the 
    carrier of T1 holds (f1 
    . x) 
    = ((ff 
    * f4) 
    . x) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A51: x 
    in the 
    carrier of T1; 
    
        the
    carrier of T1 
    =  
    [.
    0 , (1 
    / 2).] by 
    TOPMETR: 18;
    
        then
    
        reconsider x9 = x as
    Element of 
    REAL by 
    A51;
    
        the
    carrier of T1 
    =  
    [.
    0 , (1 
    / 2).] by 
    TOPMETR: 18;
    
        
    
        hence (f1
    . x) 
    = (f 
    . (2 
    * x9)) by 
    A42,
    A51
    
        .= (f
    .  
    U(x9))
    
        .= (f
    . (f3 
    . x9)) by 
    A10
    
        .= (f
    . (f4 
    . x)) by 
    A17,
    A51,
    FUNCT_1: 47
    
        .= ((ff
    * f4) 
    . x) by 
    A51,
    FUNCT_2: 15;
    
      end;
    
      then
    
      
    
    A52: f1 is 
    continuous by 
    A25,
    A16,
    FUNCT_2: 12;
    
      
    
    A53: 
    
      now
    
        let x be
    Real;
    
        assume x
    in ( 
    dom f2); 
    
        then x
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    A41,
    RCOMP_1:def 1;
    
        then
    
        consider a such that
    
        
    
    A54: a 
    = x and 
    
        
    
    A55: 
    0  
    <= a & a 
    <= (1 
    / 2); 
    
        
    0  
    <= (2 
    * a) & (2 
    * a) 
    <= (2 
    * (1 
    / 2)) by 
    A55,
    XREAL_1: 64,
    XREAL_1: 127;
    
        then (2
    * a) 
    in { r : 
    0  
    <= r & r 
    <= 1 }; 
    
        hence (2
    * x) 
    in ( 
    dom f) by 
    A44,
    A54,
    RCOMP_1:def 1;
    
      end;
    
      defpred
    
    X[
    object, 
    object] means for a st a
    = $1 holds $2 
    = (g 
    . ((2 
    * a) 
    - 1)); 
    
      
    
      
    
    A56: for x be 
    object st x 
    in  
    [.(1
    / 2), 1.] holds ex u be 
    object st 
    X[x, u]
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    [.(1
    / 2), 1.]; 
    
        then x
    in { r : (1 
    / 2) 
    <= r & r 
    <= 1 } by 
    RCOMP_1:def 1;
    
        then
    
        consider r such that
    
        
    
    A57: r 
    = x and (1 
    / 2) 
    <= r and r 
    <= 1; 
    
        take (g
    . ((2 
    * r) 
    - 1)); 
    
        thus thesis by
    A57;
    
      end;
    
      consider g2 be
    Function such that 
    
      
    
    A58: ( 
    dom g2) 
    =  
    [.(1
    / 2), 1.] and 
    
      
    
    A59: for x be 
    object st x 
    in  
    [.(1
    / 2), 1.] holds 
    X[x, (g2
    . x)] from 
    CLASSES1:sch 1(
    A56);
    
      
    
      
    
    A60: ( 
    dom g2) 
    = the 
    carrier of T2 by 
    A58,
    TOPMETR: 18;
    
      g is
    Function of the 
    carrier of 
    I[01] , the 
    carrier of (M 
    | Q9); 
    
      then
    
      
    
    A61: ( 
    dom g) 
    =  
    [.
    0 , 1.] by 
    BORSUK_1: 40,
    FUNCT_2:def 1;
    
      now
    
        let y be
    object;
    
        assume y
    in ( 
    rng g2); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A62: x 
    in ( 
    dom g2) and 
    
        
    
    A63: y 
    = (g2 
    . x) by 
    FUNCT_1:def 3;
    
        x
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    A62,
    RCOMP_1:def 1;
    
        then
    
        consider a such that
    
        
    
    A64: x 
    = a and 
    
        
    
    A65: (1 
    / 2) 
    <= a and 
    
        
    
    A66: a 
    <= 1; 
    
        (2
    * a) 
    <= (2 
    * 1) by 
    A66,
    XREAL_1: 64;
    
        then
    
        
    
    A67: ((2 
    * a) 
    - 1) 
    <= ((1 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
        (2
    * (1 
    / 2)) 
    = 1; 
    
        then 1
    <= (2 
    * a) by 
    A65,
    XREAL_1: 64;
    
        then (1
    - 1) 
    <= ((2 
    * a) 
    - 1) by 
    XREAL_1: 9;
    
        then ((2
    * a) 
    - 1) 
    in { r : 
    0  
    <= r & r 
    <= 1 } by 
    A67;
    
        then
    
        
    
    A68: ((2 
    * a) 
    - 1) 
    in ( 
    dom g) by 
    A61,
    RCOMP_1:def 1;
    
        y
    = (g 
    . ((2 
    * a) 
    - 1)) by 
    A58,
    A59,
    A62,
    A63,
    A64;
    
        hence y
    in Q by 
    A8,
    A68,
    FUNCT_1:def 3;
    
      end;
    
      then
    
      
    
    A69: ( 
    rng g2) 
    c= Q; 
    
      
    
      
    
    A70: Q 
    c= ( 
    rng g2) 
    
      proof
    
        let a be
    object;
    
        assume a
    in Q; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A71: x 
    in ( 
    dom g) and 
    
        
    
    A72: a 
    = (g 
    . x) by 
    A8,
    FUNCT_1:def 3;
    
        x
    in { r where r be 
    Real : 
    0  
    <= r & r 
    <= 1 } by 
    A61,
    A71,
    RCOMP_1:def 1;
    
        then
    
        consider x9 be
    Real such that 
    
        
    
    A73: x9 
    = x and 
    
        
    
    A74: 
    0  
    <= x9 and 
    
        
    
    A75: x9 
    <= 1; 
    
        (x9
    + 1) 
    <= (1 
    + 1) by 
    A75,
    XREAL_1: 6;
    
        then
    
        
    
    A76: ((x9 
    + 1) 
    / 2) 
    <= (2 
    / 2) by 
    XREAL_1: 72;
    
        (
    0  
    + 1) 
    <= (x9 
    + 1) by 
    A74,
    XREAL_1: 6;
    
        then (1
    / 2) 
    <= ((x9 
    + 1) 
    / 2) by 
    XREAL_1: 72;
    
        then ((x9
    + 1) 
    / 2) 
    in { r where r be 
    Real : (1 
    / 2) 
    <= r & r 
    <= 1 } by 
    A76;
    
        then
    
        
    
    A77: ((x9 
    + 1) 
    / 2) 
    in ( 
    dom g2) by 
    A58,
    RCOMP_1:def 1;
    
        a
    = (g 
    . ((2 
    * ((x9 
    + 1) 
    / 2)) 
    - 1)) by 
    A72,
    A73
    
        .= (g2
    . ((x9 
    + 1) 
    / 2)) by 
    A58,
    A59,
    A77;
    
        hence thesis by
    A77,
    FUNCT_1:def 3;
    
      end;
    
      (
    TopSpaceMetr  
    RealSpace ) is 
    T_2 by 
    PCOMPS_1: 34;
    
      then
    
      
    
    A78: 
    I[01] is 
    T_2 by 
    TOPMETR: 2,
    TOPMETR:def 6;
    
      
    
      
    
    A79: (1 
    / 2) 
    in  
    [.(1
    / 2), 1.] by 
    XXREAL_1: 1;
    
      
    
    A80: 
    
      now
    
        let x be
    Real;
    
        assume x
    in ( 
    dom g2); 
    
        then x
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    RCOMP_1:def 1;
    
        then
    
        consider a such that
    
        
    
    A81: a 
    = x and 
    
        
    
    A82: (1 
    / 2) 
    <= a and 
    
        
    
    A83: a 
    <= 1; 
    
        (2
    * a) 
    <= (2 
    * 1) by 
    A83,
    XREAL_1: 64;
    
        then
    
        
    
    A84: ((2 
    * a) 
    - 1) 
    <= ((1 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
        (2
    * (1 
    / 2)) 
    = 1; 
    
        then 1
    <= (2 
    * a) by 
    A82,
    XREAL_1: 64;
    
        then (1
    - 1) 
    <= ((2 
    * a) 
    - 1) by 
    XREAL_1: 9;
    
        then ((2
    * a) 
    - 1) 
    in { r : 
    0  
    <= r & r 
    <= 1 } by 
    A84;
    
        hence ((2
    * x) 
    - 1) 
    in ( 
    dom g) by 
    A61,
    A81,
    RCOMP_1:def 1;
    
      end;
    
      Q
    c= (P 
    \/ Q) by 
    XBOOLE_1: 7;
    
      then (
    rng g2) 
    c= the 
    carrier of (M 
    | R) by 
    A11,
    A69;
    
      then
    
      reconsider g1 = g2 as
    Function of T2, (M 
    | R) by 
    A60,
    FUNCT_2:def 1,
    RELSET_1: 4;
    
      for x be
    object st x 
    in the 
    carrier of T2 holds (g1 
    . x) 
    = ((g9 
    * g4) 
    . x) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A85: x 
    in the 
    carrier of T2; 
    
        the
    carrier of T2 
    =  
    [.(1
    / 2), 1.] by 
    TOPMETR: 18;
    
        then
    
        reconsider x9 = x as
    Element of 
    REAL by 
    A85;
    
        the
    carrier of T2 
    =  
    [.(1
    / 2), 1.] by 
    TOPMETR: 18;
    
        
    
        hence (g1
    . x) 
    = (g 
    . ((2 
    * x9) 
    - 1)) by 
    A59,
    A85
    
        .= (g
    .  
    U1(x9))
    
        .= (g
    . (g3 
    . x9)) by 
    A26
    
        .= (g
    . (g4 
    . x)) by 
    A27,
    A85,
    FUNCT_1: 47
    
        .= ((g9
    * g4) 
    . x) by 
    A85,
    FUNCT_2: 15;
    
      end;
    
      then
    
      
    
    A86: g1 is 
    continuous by 
    A38,
    A13,
    FUNCT_2: 12;
    
      (1
    / 2) 
    in  
    [.
    0 , (1 
    / 2).] by 
    XXREAL_1: 1;
    
      
    
      then (f1
    . pp) 
    = (g 
    . ((2 
    * (1 
    / 2)) 
    - 1)) by 
    A5,
    A7,
    A42
    
      .= (g1
    . pp) by 
    A59,
    A79;
    
      then
    
      reconsider h = (f2
    +* g2) as 
    continuous  
    Function of 
    I[01] , (M 
    | R) by 
    A36,
    A14,
    A78,
    A52,
    A86,
    COMPTS_1: 20;
    
      
    
      
    
    A87: g is 
    one-to-one by 
    A6,
    TOPS_2:def 5;
    
      
    
      
    
    A88: f is 
    one-to-one by 
    A4,
    TOPS_2:def 5;
    
      now
    
        let x1,x2 be
    object;
    
        assume that
    
        
    
    A89: x1 
    in ( 
    dom h) and 
    
        
    
    A90: x2 
    in ( 
    dom h) and 
    
        
    
    A91: (h 
    . x1) 
    = (h 
    . x2); 
    
        now
    
          per cases ;
    
            suppose
    
            
    
    A92: not x1 
    in ( 
    dom g2) & not x2 
    in ( 
    dom g2); 
    
            
    
            
    
    A93: ( 
    dom h) 
    = (( 
    dom f2) 
    \/ ( 
    dom g2)) by 
    FUNCT_4:def 1;
    
            then x1
    in  
    [.
    0 , (1 
    / 2).] by 
    A41,
    A89,
    A92,
    XBOOLE_0:def 3;
    
            then x1
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    RCOMP_1:def 1;
    
            then
    
            consider x19 be
    Real such that 
    
            
    
    A94: x19 
    = x1 and 
    0  
    <= x19 and x19 
    <= (1 
    / 2); 
    
            reconsider x19 as
    Real;
    
            
    
            
    
    A95: x1 
    in ( 
    dom f2) by 
    A89,
    A92,
    A93,
    XBOOLE_0:def 3;
    
            then
    
            
    
    A96: (2 
    * x19) 
    in ( 
    dom f) by 
    A53,
    A94;
    
            x2
    in  
    [.
    0 , (1 
    / 2).] by 
    A41,
    A90,
    A92,
    A93,
    XBOOLE_0:def 3;
    
            then x2
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    RCOMP_1:def 1;
    
            then
    
            consider x29 be
    Real such that 
    
            
    
    A97: x29 
    = x2 and 
    0  
    <= x29 and x29 
    <= (1 
    / 2); 
    
            reconsider x29 as
    Real;
    
            
    
            
    
    A98: x2 
    in ( 
    dom f2) by 
    A90,
    A92,
    A93,
    XBOOLE_0:def 3;
    
            then
    
            
    
    A99: (2 
    * x29) 
    in ( 
    dom f) by 
    A53,
    A97;
    
            (f
    . (2 
    * x19)) 
    = (f2 
    . x1) by 
    A41,
    A42,
    A95,
    A94
    
            .= (h
    . x2) by 
    A91,
    A92,
    FUNCT_4: 11
    
            .= (f2
    . x2) by 
    A92,
    FUNCT_4: 11
    
            .= (f
    . (2 
    * x29)) by 
    A41,
    A42,
    A98,
    A97;
    
            then (2
    * x19) 
    = (2 
    * x29) by 
    A88,
    A96,
    A99,
    FUNCT_1:def 4;
    
            hence x1
    = x2 by 
    A94,
    A97;
    
          end;
    
            suppose
    
            
    
    A100: not x1 
    in ( 
    dom g2) & x2 
    in ( 
    dom g2); 
    
            (
    dom h) 
    = (( 
    dom f2) 
    \/ ( 
    dom g2)) by 
    FUNCT_4:def 1;
    
            then
    
            
    
    A101: x1 
    in ( 
    dom f2) by 
    A89,
    A100,
    XBOOLE_0:def 3;
    
            then x1
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    A41,
    RCOMP_1:def 1;
    
            then
    
            consider x19 be
    Real such that 
    
            
    
    A102: x19 
    = x1 and 
    0  
    <= x19 and x19 
    <= (1 
    / 2); 
    
            reconsider x19 as
    Real;
    
            
    
            
    
    A103: (2 
    * x19) 
    in ( 
    dom f) by 
    A53,
    A101,
    A102;
    
            then
    
            
    
    A104: (f 
    . (2 
    * x19)) 
    in P by 
    A15,
    FUNCT_1:def 3;
    
            x2
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    A100,
    RCOMP_1:def 1;
    
            then
    
            consider x29 be
    Real such that 
    
            
    
    A105: x29 
    = x2 and (1 
    / 2) 
    <= x29 and x29 
    <= 1; 
    
            reconsider x29 as
    Real;
    
            
    
            
    
    A106: ((2 
    * x29) 
    - 1) 
    in ( 
    dom g) by 
    A80,
    A100,
    A105;
    
            then
    
            
    
    A107: (g 
    . ((2 
    * x29) 
    - 1)) 
    in Q by 
    A8,
    FUNCT_1:def 3;
    
            
    
            
    
    A108: 1 
    in ( 
    dom f) by 
    A44,
    XXREAL_1: 1;
    
            
    
            
    
    A109: 
    0  
    in ( 
    dom g) by 
    A61,
    XXREAL_1: 1;
    
            
    
            
    
    A110: (f 
    . (2 
    * x19)) 
    = (f2 
    . x1) by 
    A41,
    A42,
    A101,
    A102
    
            .= (h
    . x2) by 
    A91,
    A100,
    FUNCT_4: 11
    
            .= (g2
    . x2) by 
    A100,
    FUNCT_4: 13
    
            .= (g
    . ((2 
    * x29) 
    - 1)) by 
    A58,
    A59,
    A100,
    A105;
    
            then (g
    . ((2 
    * x29) 
    - 1)) 
    in (P 
    /\ Q) by 
    A104,
    A107,
    XBOOLE_0:def 4;
    
            then (g
    . ((2 
    * x29) 
    - 1)) 
    = p by 
    A3,
    TARSKI:def 1;
    
            then
    
            
    
    A111: (((2 
    * x29) 
    - 1) 
    + 1) 
    = ( 
    0  
    + 1) by 
    A7,
    A87,
    A106,
    A109,
    FUNCT_1:def 4;
    
            (f
    . (2 
    * x19)) 
    in (P 
    /\ Q) by 
    A110,
    A104,
    A107,
    XBOOLE_0:def 4;
    
            then (f
    . (2 
    * x19)) 
    = p by 
    A3,
    TARSKI:def 1;
    
            then ((1
    / 2) 
    * (2 
    * x19)) 
    = ((1 
    / 2) 
    * 1) by 
    A5,
    A88,
    A103,
    A108,
    FUNCT_1:def 4;
    
            hence x1
    = x2 by 
    A105,
    A102,
    A111;
    
          end;
    
            suppose
    
            
    
    A112: x1 
    in ( 
    dom g2) & not x2 
    in ( 
    dom g2); 
    
            (
    dom h) 
    = (( 
    dom f2) 
    \/ ( 
    dom g2)) by 
    FUNCT_4:def 1;
    
            then
    
            
    
    A113: x2 
    in ( 
    dom f2) by 
    A90,
    A112,
    XBOOLE_0:def 3;
    
            then x2
    in { a : 
    0  
    <= a & a 
    <= (1 
    / 2) } by 
    A41,
    RCOMP_1:def 1;
    
            then
    
            consider x29 be
    Real such that 
    
            
    
    A114: x29 
    = x2 and 
    0  
    <= x29 and x29 
    <= (1 
    / 2); 
    
            reconsider x29 as
    Real;
    
            
    
            
    
    A115: (2 
    * x29) 
    in ( 
    dom f) by 
    A53,
    A113,
    A114;
    
            then
    
            
    
    A116: (f 
    . (2 
    * x29)) 
    in P by 
    A15,
    FUNCT_1:def 3;
    
            x1
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    A112,
    RCOMP_1:def 1;
    
            then
    
            consider x19 be
    Real such that 
    
            
    
    A117: x19 
    = x1 and (1 
    / 2) 
    <= x19 and x19 
    <= 1; 
    
            reconsider x19 as
    Real;
    
            
    
            
    
    A118: ((2 
    * x19) 
    - 1) 
    in ( 
    dom g) by 
    A80,
    A112,
    A117;
    
            then
    
            
    
    A119: (g 
    . ((2 
    * x19) 
    - 1)) 
    in Q by 
    A8,
    FUNCT_1:def 3;
    
            
    
            
    
    A120: 1 
    in ( 
    dom f) by 
    A44,
    XXREAL_1: 1;
    
            
    
            
    
    A121: 
    0  
    in ( 
    dom g) by 
    A61,
    XXREAL_1: 1;
    
            
    
            
    
    A122: (f 
    . (2 
    * x29)) 
    = (f2 
    . x2) by 
    A41,
    A42,
    A113,
    A114
    
            .= (h
    . x1) by 
    A91,
    A112,
    FUNCT_4: 11
    
            .= (g2
    . x1) by 
    A112,
    FUNCT_4: 13
    
            .= (g
    . ((2 
    * x19) 
    - 1)) by 
    A58,
    A59,
    A112,
    A117;
    
            then (g
    . ((2 
    * x19) 
    - 1)) 
    in (P 
    /\ Q) by 
    A116,
    A119,
    XBOOLE_0:def 4;
    
            then (g
    . ((2 
    * x19) 
    - 1)) 
    = p by 
    A3,
    TARSKI:def 1;
    
            then
    
            
    
    A123: (((2 
    * x19) 
    - 1) 
    + 1) 
    = ( 
    0  
    + 1) by 
    A7,
    A87,
    A118,
    A121,
    FUNCT_1:def 4;
    
            (f
    . (2 
    * x29)) 
    in (P 
    /\ Q) by 
    A122,
    A116,
    A119,
    XBOOLE_0:def 4;
    
            then (f
    . (2 
    * x29)) 
    = p by 
    A3,
    TARSKI:def 1;
    
            then ((1
    / 2) 
    * (2 
    * x29)) 
    = ((1 
    / 2) 
    * 1) by 
    A5,
    A88,
    A115,
    A120,
    FUNCT_1:def 4;
    
            hence x1
    = x2 by 
    A117,
    A114,
    A123;
    
          end;
    
            suppose
    
            
    
    A124: x1 
    in ( 
    dom g2) & x2 
    in ( 
    dom g2); 
    
            then x2
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    RCOMP_1:def 1;
    
            then
    
            consider x29 be
    Real such that 
    
            
    
    A125: x29 
    = x2 and (1 
    / 2) 
    <= x29 and x29 
    <= 1; 
    
            reconsider x29 as
    Real;
    
            
    
            
    
    A126: ((2 
    * x29) 
    - 1) 
    in ( 
    dom g) by 
    A80,
    A124,
    A125;
    
            x1
    in { a : (1 
    / 2) 
    <= a & a 
    <= 1 } by 
    A58,
    A124,
    RCOMP_1:def 1;
    
            then
    
            consider x19 be
    Real such that 
    
            
    
    A127: x19 
    = x1 and (1 
    / 2) 
    <= x19 and x19 
    <= 1; 
    
            reconsider x19 as
    Real;
    
            
    
            
    
    A128: ((2 
    * x19) 
    - 1) 
    in ( 
    dom g) by 
    A80,
    A124,
    A127;
    
            (g
    . ((2 
    * x19) 
    - 1)) 
    = (g2 
    . x1) by 
    A58,
    A59,
    A124,
    A127
    
            .= (h
    . x2) by 
    A91,
    A124,
    FUNCT_4: 13
    
            .= (g2
    . x2) by 
    A124,
    FUNCT_4: 13
    
            .= (g
    . ((2 
    * x29) 
    - 1)) by 
    A58,
    A59,
    A124,
    A125;
    
            then (((2
    * x19) 
    - 1) 
    + 1) 
    = (((2 
    * x29) 
    - 1) 
    + 1) by 
    A87,
    A128,
    A126,
    FUNCT_1:def 4;
    
            hence x1
    = x2 by 
    A127,
    A125;
    
          end;
    
        end;
    
        hence x1
    = x2; 
    
      end;
    
      then
    
      
    
    A129: ( 
    dom h) 
    = ( 
    [#]  
    I[01] ) & h is 
    one-to-one by 
    FUNCT_1:def 4,
    FUNCT_2:def 1;
    
      reconsider h9 = h as
    Function of 
    I[01] , (T 
    | (P 
    \/ Q)); 
    
      take h9;
    
      
    
      
    
    A130: 
    0  
    in  
    [.
    0 , (1 
    / 2).] by 
    XXREAL_1: 1;
    
      
    
      
    
    A131: P 
    c= ( 
    rng f2) 
    
      proof
    
        let a be
    object;
    
        assume a
    in P; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A132: x 
    in ( 
    dom f) and 
    
        
    
    A133: a 
    = (f 
    . x) by 
    A15,
    FUNCT_1:def 3;
    
        x
    in { r where r be 
    Real : 
    0  
    <= r & r 
    <= 1 } by 
    A44,
    A132,
    RCOMP_1:def 1;
    
        then
    
        consider x9 be
    Real such that 
    
        
    
    A134: x9 
    = x and 
    
        
    
    A135: 
    0  
    <= x9 & x9 
    <= 1; 
    
        reconsider x9 as
    Real;
    
        (
    0  
    / 2) 
    <= (x9 
    / 2) & (x9 
    / 2) 
    <= (1 
    / 2) by 
    A135,
    XREAL_1: 72;
    
        then (x9
    / 2) 
    in { r where r be 
    Real : 
    0  
    <= r & r 
    <= (1 
    / 2) }; 
    
        then
    
        
    
    A136: (x9 
    / 2) 
    in ( 
    dom f2) by 
    A41,
    RCOMP_1:def 1;
    
        a
    = (f 
    . (2 
    * (x9 
    / 2))) by 
    A133,
    A134
    
        .= (f2
    . (x9 
    / 2)) by 
    A41,
    A42,
    A136;
    
        hence thesis by
    A136,
    FUNCT_1:def 3;
    
      end;
    
      
    
      
    
    A137: P 
    c= ( 
    rng h) 
    
      proof
    
        let a be
    object;
    
        assume a
    in P; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A138: x 
    in ( 
    dom f2) and 
    
        
    
    A139: a 
    = (f2 
    . x) by 
    A131,
    FUNCT_1:def 3;
    
        now
    
          per cases ;
    
            suppose
    
            
    
    A140: x 
    in  
    [.(1
    / 2), 1.]; 
    
            then x
    in ( 
    [.
    0 , (1 
    / 2).] 
    /\  
    [.(1
    / 2), 1.]) by 
    A41,
    A138,
    XBOOLE_0:def 4;
    
            then x
    in  
    {(1
    / 2)} by 
    XXREAL_1: 418;
    
            then
    
            
    
    A141: x 
    = (1 
    / 2) by 
    TARSKI:def 1;
    
            x
    in (( 
    dom f2) 
    \/ ( 
    dom g2)) by 
    A138,
    XBOOLE_0:def 3;
    
            then
    
            
    
    A142: x 
    in ( 
    dom h) by 
    FUNCT_4:def 1;
    
            
    
            
    
    A143: (1 
    / 2) 
    in  
    [.
    0 , (1 
    / 2).] by 
    XXREAL_1: 1;
    
            (h
    . x) 
    = (g2 
    . x) by 
    A58,
    A140,
    FUNCT_4: 13
    
            .= (g
    . ((2 
    * (1 
    / 2)) 
    - 1)) by 
    A59,
    A140,
    A141
    
            .= (f2
    . (1 
    / 2)) by 
    A5,
    A7,
    A42,
    A143;
    
            hence thesis by
    A139,
    A141,
    A142,
    FUNCT_1:def 3;
    
          end;
    
            suppose
    
            
    
    A144: not x 
    in  
    [.(1
    / 2), 1.]; 
    
            
    
            
    
    A145: x 
    in (( 
    dom f2) 
    \/ ( 
    dom g2)) by 
    A138,
    XBOOLE_0:def 3;
    
            then
    
            
    
    A146: x 
    in ( 
    dom h) by 
    FUNCT_4:def 1;
    
            (h
    . x) 
    = (f2 
    . x) by 
    A58,
    A144,
    A145,
    FUNCT_4:def 1;
    
            hence thesis by
    A139,
    A146,
    FUNCT_1:def 3;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      (
    rng h) 
    c= (( 
    rng f2) 
    \/ ( 
    rng g2)) & (( 
    rng f2) 
    \/ ( 
    rng g2)) 
    c= (P 
    \/ Q) by 
    A50,
    A69,
    FUNCT_4: 17,
    XBOOLE_1: 13;
    
      then
    
      
    
    A147: ( 
    rng h) 
    c= (P 
    \/ Q); 
    
      (
    rng g2) 
    c= ( 
    rng h) by 
    FUNCT_4: 18;
    
      then Q
    c= ( 
    rng h) by 
    A70;
    
      then (P
    \/ Q) 
    c= ( 
    rng h) by 
    A137,
    XBOOLE_1: 8;
    
      then (
    rng h) 
    = (P 
    \/ Q) by 
    A147,
    XBOOLE_0:def 10;
    
      then
    
      
    
    A148: ( 
    rng h) 
    = ( 
    [#] (M 
    | R)) by 
    PRE_TOPC:def 5;
    
      
    I[01] is 
    compact & (M 
    | R) is 
    T_2 by 
    HEINE: 4,
    TOPMETR: 2,
    TOPMETR: 20;
    
      hence h9 is
    being_homeomorphism by 
    A148,
    A129,
    COMPTS_1: 17;
    
       not
    0  
    in ( 
    dom g2) by 
    A58,
    XXREAL_1: 1;
    
      
    
      hence (h9
    .  
    0 ) 
    = (f2 
    .  
    0 ) by 
    FUNCT_4: 11
    
      .= (f
    . (2 
    *  
    0 )) by 
    A42,
    A130
    
      .= (f
    .  
    0 ); 
    
      
    
      
    
    A149: 1 
    in ( 
    dom g2) by 
    A58,
    XXREAL_1: 1;
    
      
    
      hence (h9
    . 1) 
    = (g2 
    . 1) by 
    FUNCT_4: 13
    
      .= (g
    . ((2 
    * 1) 
    - 1)) by 
    A58,
    A59,
    A149
    
      .= (g
    . 1); 
    
    end;