tops_4.miz
    
    begin
    
    reserve n,m for
    Nat, 
    
T for non
    empty  
    TopSpace, 
    
M,M1,M2 for non
    empty  
    MetrSpace;
    
    theorem :: 
    
    TOPS_4:1
    
    
    
    
    
    Th1: for A,B,S,T be 
    TopSpace, f be 
    Function of A, S, g be 
    Function of B, T st the TopStruct of A 
    = the TopStruct of B & the TopStruct of S 
    = the TopStruct of T & f 
    = g & f is 
    open holds g is 
    open
    
    proof
    
      let A,B,S,T be
    TopSpace;
    
      let f be
    Function of A, S; 
    
      let g be
    Function of B, T; 
    
      assume that
    
      
    
    A1: the TopStruct of A 
    = the TopStruct of B and 
    
      
    
    A2: the TopStruct of S 
    = the TopStruct of T and 
    
      
    
    A3: f 
    = g and 
    
      
    
    A4: f is 
    open;
    
      let b be
    Subset of B; 
    
      assume
    
      
    
    A5: b is 
    open;
    
      reconsider a = b as
    Subset of A by 
    A1;
    
      a is
    open by 
    A1,
    A5,
    TOPS_3: 76;
    
      then (f
    .: a) is 
    open by 
    A4;
    
      hence thesis by
    A2,
    A3,
    TOPS_3: 76;
    
    end;
    
    theorem :: 
    
    TOPS_4:2
    
    for P be
    Subset of ( 
    TOP-REAL m) holds P is 
    open iff for p be 
    Point of ( 
    TOP-REAL m) st p 
    in P holds ex r be 
    positive  
    Real st ( 
    Ball (p,r)) 
    c= P 
    
    proof
    
      let P be
    Subset of ( 
    TOP-REAL m); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider P1 = P as
    Subset of ( 
    TopSpaceMetr ( 
    Euclid m)); 
    
      hereby
    
        assume
    
        
    
    A2: P is 
    open;
    
        let p be
    Point of ( 
    TOP-REAL m); 
    
        assume
    
        
    
    A3: p 
    in P; 
    
        reconsider e = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        P1 is
    open by 
    A2,
    A1,
    TOPS_3: 76;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A4: r 
    >  
    0 and 
    
        
    
    A5: ( 
    Ball (e,r)) 
    c= P1 by 
    A3,
    TOPMETR: 15;
    
        reconsider r as
    positive  
    Real by 
    A4;
    
        take r;
    
        thus (
    Ball (p,r)) 
    c= P by 
    A5,
    TOPREAL9: 13;
    
      end;
    
      assume
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL m) st p 
    in P holds ex r be 
    positive  
    Real st ( 
    Ball (p,r)) 
    c= P; 
    
      for p be
    Point of ( 
    Euclid m) st p 
    in P1 holds ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (p,r)) 
    c= P1 
    
      proof
    
        let p be
    Point of ( 
    Euclid m); 
    
        assume
    
        
    
    A7: p 
    in P1; 
    
        reconsider e = p as
    Point of ( 
    TOP-REAL m) by 
    EUCLID: 67;
    
        consider r be
    positive  
    Real such that 
    
        
    
    A8: ( 
    Ball (e,r)) 
    c= P1 by 
    A6,
    A7;
    
        take r;
    
        thus thesis by
    A8,
    TOPREAL9: 13;
    
      end;
    
      then P1 is
    open by 
    TOPMETR: 15;
    
      hence thesis by
    A1,
    TOPS_3: 76;
    
    end;
    
    theorem :: 
    
    TOPS_4:3
    
    
    
    
    
    Th3: for X,Y be non 
    empty  
    TopSpace, f be 
    Function of X, Y holds f is 
    open iff for p be 
    Point of X, V be 
    open  
    Subset of X st p 
    in V holds ex W be 
    open  
    Subset of Y st (f 
    . p) 
    in W & W 
    c= (f 
    .: V) 
    
    proof
    
      let X,Y be non
    empty  
    TopSpace, f be 
    Function of X, Y; 
    
      thus f is
    open implies for p be 
    Point of X, V be 
    open  
    Subset of X st p 
    in V holds ex W be 
    open  
    Subset of Y st (f 
    . p) 
    in W & W 
    c= (f 
    .: V) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of X, V be 
    open  
    Subset of X such that 
    
        
    
    A2: p 
    in V; 
    
        V is
    a_neighborhood of p by 
    A2,
    CONNSP_2: 3;
    
        then
    
        consider W be
    open  
    a_neighborhood of (f 
    . p) such that 
    
        
    
    A3: W 
    c= (f 
    .: V) by 
    A1,
    TOPGRP_1: 22;
    
        take W;
    
        thus (f
    . p) 
    in W by 
    CONNSP_2: 4;
    
        thus thesis by
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of X, V be 
    open  
    Subset of X st p 
    in V holds ex W be 
    open  
    Subset of Y st (f 
    . p) 
    in W & W 
    c= (f 
    .: V); 
    
      for p be
    Point of X, P be 
    open  
    a_neighborhood of p holds ex R be 
    a_neighborhood of (f 
    . p) st R 
    c= (f 
    .: P) 
    
      proof
    
        let p be
    Point of X; 
    
        let P be
    open  
    a_neighborhood of p; 
    
        consider W be
    open  
    Subset of Y such that 
    
        
    
    A5: (f 
    . p) 
    in W and 
    
        
    
    A6: W 
    c= (f 
    .: P) by 
    A4,
    CONNSP_2: 4;
    
        W is
    a_neighborhood of (f 
    . p) by 
    A5,
    CONNSP_2: 3;
    
        hence thesis by
    A6;
    
      end;
    
      hence thesis by
    TOPGRP_1: 23;
    
    end;
    
    theorem :: 
    
    TOPS_4:4
    
    
    
    
    
    Th4: for f be 
    Function of T, ( 
    TopSpaceMetr M) holds f is 
    open iff for p be 
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of M st q 
    = (f 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f 
    .: V) 
    
    proof
    
      let f be
    Function of T, ( 
    TopSpaceMetr M); 
    
      thus f is
    open implies for p be 
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of M st q 
    = (f 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f 
    .: V) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of M such that 
    
        
    
    A2: q 
    = (f 
    . p); 
    
        assume p
    in V; 
    
        then
    
        consider W be
    open  
    Subset of ( 
    TopSpaceMetr M) such that 
    
        
    
    A3: (f 
    . p) 
    in W and 
    
        
    
    A4: W 
    c= (f 
    .: V) by 
    A1,
    Th3;
    
        ex r be
    Real st r 
    >  
    0 & ( 
    Ball (q,r)) 
    c= W by 
    A2,
    A3,
    TOPMETR: 15;
    
        hence thesis by
    A4,
    XBOOLE_1: 1;
    
      end;
    
      assume
    
      
    
    A5: for p be 
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of M st q 
    = (f 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f 
    .: V); 
    
      for p be
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex W be 
    open  
    Subset of ( 
    TopSpaceMetr M) st (f 
    . p) 
    in W & W 
    c= (f 
    .: V) 
    
      proof
    
        let p be
    Point of T; 
    
        let V be
    open  
    Subset of T; 
    
        reconsider q = (f
    . p) as 
    Point of M; 
    
        assume p
    in V; 
    
        then
    
        consider r be
    positive  
    Real such that 
    
        
    
    A6: ( 
    Ball (q,r)) 
    c= (f 
    .: V) by 
    A5;
    
        reconsider W = (
    Ball (q,r)) as 
    open  
    Subset of ( 
    TopSpaceMetr M) by 
    TOPMETR: 14;
    
        take W;
    
        thus (f
    . p) 
    in W by 
    GOBOARD6: 1;
    
        thus W
    c= (f 
    .: V) by 
    A6;
    
      end;
    
      hence thesis by
    Th3;
    
    end;
    
    theorem :: 
    
    TOPS_4:5
    
    
    
    
    
    Th5: for f be 
    Function of ( 
    TopSpaceMetr M), T holds f is 
    open iff for p be 
    Point of M, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
    proof
    
      let f be
    Function of ( 
    TopSpaceMetr M), T; 
    
      hereby
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of M, r be 
    positive  
    Real;
    
        
    
        
    
    A2: p 
    in ( 
    Ball (p,r)) by 
    GOBOARD6: 1;
    
        reconsider V = (
    Ball (p,r)) as 
    Subset of ( 
    TopSpaceMetr M); 
    
        V is
    open by 
    TOPMETR: 14;
    
        then
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A3: (f 
    . p) 
    in W & W 
    c= (f 
    .: V) by 
    A1,
    A2,
    Th3;
    
        take W;
    
        thus (f
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))) by 
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of M, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))); 
    
      for p be
    Point of ( 
    TopSpaceMetr M), V be 
    open  
    Subset of ( 
    TopSpaceMetr M) st p 
    in V holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: V) 
    
      proof
    
        let p be
    Point of ( 
    TopSpaceMetr M); 
    
        let V be
    open  
    Subset of ( 
    TopSpaceMetr M); 
    
        reconsider q = p as
    Point of M; 
    
        assume p
    in V; 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A5: r 
    >  
    0 and 
    
        
    
    A6: ( 
    Ball (q,r)) 
    c= V by 
    TOPMETR: 15;
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A7: (f 
    . p) 
    in W and 
    
        
    
    A8: W 
    c= (f 
    .: ( 
    Ball (q,r))) by 
    A4,
    A5;
    
        take W;
    
        thus (f
    . p) 
    in W by 
    A7;
    
        (f
    .: ( 
    Ball (q,r))) 
    c= (f 
    .: V) by 
    A6,
    RELAT_1: 123;
    
        hence thesis by
    A8;
    
      end;
    
      hence thesis by
    Th3;
    
    end;
    
    theorem :: 
    
    TOPS_4:6
    
    
    
    
    
    Th6: for f be 
    Function of ( 
    TopSpaceMetr M1), ( 
    TopSpaceMetr M2) holds f is 
    open iff for p be 
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
    proof
    
      let f be
    Function of ( 
    TopSpaceMetr M1), ( 
    TopSpaceMetr M2); 
    
      thus f is
    open implies for p be 
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real such that 
    
        
    
    A2: q 
    = (f 
    . p); 
    
        reconsider V = (
    Ball (p,r)) as 
    Subset of ( 
    TopSpaceMetr M1); 
    
        
    
        
    
    A3: p 
    in V by 
    GOBOARD6: 1;
    
        V is
    open by 
    TOPMETR: 14;
    
        hence thesis by
    A1,
    A2,
    A3,
    Th4;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f 
    .: ( 
    Ball (p,r))); 
    
      for p be
    Point of ( 
    TopSpaceMetr M1), V be 
    open  
    Subset of ( 
    TopSpaceMetr M1), q be 
    Point of M2 st q 
    = (f 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f 
    .: V) 
    
      proof
    
        let p be
    Point of ( 
    TopSpaceMetr M1), V be 
    open  
    Subset of ( 
    TopSpaceMetr M1), q be 
    Point of M2 such that 
    
        
    
    A5: q 
    = (f 
    . p); 
    
        reconsider p1 = p as
    Point of M1; 
    
        assume p
    in V; 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A6: r 
    >  
    0 and 
    
        
    
    A7: ( 
    Ball (p1,r)) 
    c= V by 
    TOPMETR: 15;
    
        
    
        
    
    A8: (f 
    .: ( 
    Ball (p1,r))) 
    c= (f 
    .: V) by 
    A7,
    RELAT_1: 123;
    
        ex s be
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f 
    .: ( 
    Ball (p1,r))) by 
    A4,
    A5,
    A6;
    
        hence thesis by
    A8,
    XBOOLE_1: 1;
    
      end;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    TOPS_4:7
    
    for f be
    Function of T, ( 
    TOP-REAL m) holds f is 
    open iff for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball ((f 
    . p),r)) 
    c= (f 
    .: V) 
    
    proof
    
      let f be
    Function of T, ( 
    TOP-REAL m); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of T, ( 
    TopSpaceMetr ( 
    Euclid m)); 
    
      
    
      
    
    A2: the TopStruct of T 
    = the TopStruct of T; 
    
      thus f is
    open implies for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball ((f 
    . p),r)) 
    c= (f 
    .: V) 
    
      proof
    
        assume
    
        
    
    A3: f is 
    open;
    
        let p be
    Point of T, V be 
    open  
    Subset of T; 
    
        assume
    
        
    
    A4: p 
    in V; 
    
        reconsider fp = (f
    . p) as 
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        f1 is
    open by 
    A3,
    A1,
    A2,
    Th1;
    
        then
    
        consider r be
    positive  
    Real such that 
    
        
    
    A5: ( 
    Ball (fp,r)) 
    c= (f1 
    .: V) by 
    A4,
    Th4;
    
        (
    Ball ((f 
    . p),r)) 
    = ( 
    Ball (fp,r)) by 
    TOPREAL9: 13;
    
        hence thesis by
    A5;
    
      end;
    
      assume
    
      
    
    A6: for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball ((f 
    . p),r)) 
    c= (f 
    .: V); 
    
      for p be
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of ( 
    Euclid m) st q 
    = (f1 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f1 
    .: V) 
    
      proof
    
        let p be
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of ( 
    Euclid m) such that 
    
        
    
    A7: q 
    = (f1 
    . p); 
    
        assume p
    in V; 
    
        then
    
        consider r be
    positive  
    Real such that 
    
        
    
    A8: ( 
    Ball ((f 
    . p),r)) 
    c= (f 
    .: V) by 
    A6;
    
        (
    Ball ((f 
    . p),r)) 
    = ( 
    Ball (q,r)) by 
    A7,
    TOPREAL9: 13;
    
        hence thesis by
    A8;
    
      end;
    
      then f1 is
    open by 
    Th4;
    
      hence thesis by
    A1,
    A2,
    Th1;
    
    end;
    
    theorem :: 
    
    TOPS_4:8
    
    for f be
    Function of ( 
    TOP-REAL m), T holds f is 
    open iff for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), T; 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of ( 
    TopSpaceMetr ( 
    Euclid m)), T; 
    
      
    
      
    
    A2: the TopStruct of T 
    = the TopStruct of T; 
    
      thus f is
    open implies for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        assume
    
        
    
    A3: f is 
    open;
    
        let p be
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real;
    
        reconsider q = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        f1 is
    open by 
    A3,
    A1,
    A2,
    Th1;
    
        then
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A4: (f1 
    . p) 
    in W & W 
    c= (f1 
    .: ( 
    Ball (q,r))) by 
    Th5;
    
        (
    Ball (p,r)) 
    = ( 
    Ball (q,r)) by 
    TOPREAL9: 13;
    
        hence thesis by
    A4;
    
      end;
    
      assume
    
      
    
    A5: for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))); 
    
      for p be
    Point of ( 
    Euclid m), r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f1 
    . p) 
    in W & W 
    c= (f1 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        let p be
    Point of ( 
    Euclid m), r be 
    positive  
    Real;
    
        reconsider q = p as
    Point of ( 
    TOP-REAL m) by 
    EUCLID: 67;
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A6: (f 
    . q) 
    in W & W 
    c= (f 
    .: ( 
    Ball (q,r))) by 
    A5;
    
        (
    Ball (p,r)) 
    = ( 
    Ball (q,r)) by 
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    open by 
    Th5;
    
      hence thesis by
    A1,
    A2,
    Th1;
    
    end;
    
    theorem :: 
    
    TOPS_4:9
    
    for f be
    Function of ( 
    TOP-REAL m), ( 
    TOP-REAL n) holds f is 
    open iff for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), ( 
    TOP-REAL n); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) & the TopStruct of ( 
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of ( 
    TopSpaceMetr ( 
    Euclid m)), ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      thus f is
    open implies for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        assume
    
        
    
    A2: f is 
    open;
    
        let p be
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real;
    
        reconsider p1 = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        reconsider q1 = (f
    . p) as 
    Point of ( 
    Euclid n) by 
    EUCLID: 67;
    
        f1 is
    open by 
    A1,
    A2,
    Th1;
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A3: ( 
    Ball (q1,s)) 
    c= (f1 
    .: ( 
    Ball (p1,r))) by 
    Th6;
    
        (
    Ball (p1,r)) 
    = ( 
    Ball (p,r)) & ( 
    Ball (q1,s)) 
    = ( 
    Ball ((f 
    . p),s)) by 
    TOPREAL9: 13;
    
        hence thesis by
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .: ( 
    Ball (p,r))); 
    
      for p be
    Point of ( 
    Euclid m), q be 
    Point of ( 
    Euclid n), r be 
    positive  
    Real st q 
    = (f1 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f1 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        let p be
    Point of ( 
    Euclid m), q be 
    Point of ( 
    Euclid n), r be 
    positive  
    Real such that 
    
        
    
    A5: q 
    = (f1 
    . p); 
    
        reconsider p1 = p as
    Point of ( 
    TOP-REAL m) by 
    EUCLID: 67;
    
        reconsider q1 = q as
    Point of ( 
    TOP-REAL n) by 
    EUCLID: 67;
    
        consider s be
    positive  
    Real such that 
    
        
    
    A6: ( 
    Ball (q1,s)) 
    c= (f 
    .: ( 
    Ball (p1,r))) by 
    A4,
    A5;
    
        (
    Ball (p1,r)) 
    = ( 
    Ball (p,r)) & ( 
    Ball (q1,s)) 
    = ( 
    Ball (q,s)) by 
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    open by 
    Th6;
    
      hence thesis by
    A1,
    Th1;
    
    end;
    
    theorem :: 
    
    TOPS_4:10
    
    for f be
    Function of T, 
    R^1 holds f is 
    open iff for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    c= (f 
    .: V) 
    
    proof
    
      let f be
    Function of T, 
    R^1 ; 
    
      thus f is
    open implies for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    c= (f 
    .: V) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of T, V be 
    open  
    Subset of T; 
    
        assume
    
        
    
    A2: p 
    in V; 
    
        reconsider fp = (f
    . p) as 
    Point of 
    RealSpace ; 
    
        consider r be
    positive  
    Real such that 
    
        
    
    A3: ( 
    Ball (fp,r)) 
    c= (f 
    .: V) by 
    A1,
    A2,
    Th4;
    
        
    ].(fp
    - r), (fp 
    + r).[ 
    = ( 
    Ball (fp,r)) by 
    FRECHET: 7;
    
        hence thesis by
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of T, V be 
    open  
    Subset of T st p 
    in V holds ex r be 
    positive  
    Real st 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    c= (f 
    .: V); 
    
      for p be
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of 
    RealSpace st q 
    = (f 
    . p) & p 
    in V holds ex r be 
    positive  
    Real st ( 
    Ball (q,r)) 
    c= (f 
    .: V) 
    
      proof
    
        let p be
    Point of T, V be 
    open  
    Subset of T, q be 
    Point of 
    RealSpace such that 
    
        
    
    A5: q 
    = (f 
    . p); 
    
        assume p
    in V; 
    
        then
    
        consider r be
    positive  
    Real such that 
    
        
    
    A6: 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    c= (f 
    .: V) by 
    A4;
    
        
    ].(q
    - r), (q 
    + r).[ 
    = ( 
    Ball (q,r)) by 
    FRECHET: 7;
    
        hence thesis by
    A5,
    A6;
    
      end;
    
      hence thesis by
    Th4;
    
    end;
    
    theorem :: 
    
    TOPS_4:11
    
    for f be
    Function of 
    R^1 , T holds f is 
    open iff for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex V be 
    open  
    Subset of T st (f 
    . p) 
    in V & V 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
    proof
    
      let f be
    Function of 
    R^1 , T; 
    
      thus f is
    open implies for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of 
    R^1 , r be 
    positive  
    Real;
    
        reconsider q = p as
    Point of 
    RealSpace ; 
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A2: (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (q,r))) by 
    A1,
    Th5;
    
        
    ].(q
    - r), (q 
    + r).[ 
    = ( 
    Ball (q,r)) by 
    FRECHET: 7;
    
        hence thesis by
    A2;
    
      end;
    
      assume
    
      
    
    A3: for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[); 
    
      for p be
    Point of 
    RealSpace , r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st (f 
    . p) 
    in W & W 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        let p be
    Point of 
    RealSpace , r be 
    positive  
    Real;
    
        reconsider q = p as
    Point of 
    R^1 ; 
    
        consider W be
    open  
    Subset of T such that 
    
        
    
    A4: (f 
    . q) 
    in W & W 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) by 
    A3;
    
        
    ].(p
    - r), (p 
    + r).[ 
    = ( 
    Ball (p,r)) by 
    FRECHET: 7;
    
        hence thesis by
    A4;
    
      end;
    
      hence thesis by
    Th5;
    
    end;
    
    theorem :: 
    
    TOPS_4:12
    
    for f be
    Function of 
    R^1 , 
    R^1 holds f is 
    open iff for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
    proof
    
      let f be
    Function of 
    R^1 , 
    R^1 ; 
    
      thus f is
    open implies for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    open;
    
        let p be
    Point of 
    R^1 , r be 
    positive  
    Real;
    
        reconsider p1 = p, q1 = (f
    . p) as 
    Point of 
    RealSpace ; 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A2: ( 
    Ball (q1,s)) 
    c= (f 
    .: ( 
    Ball (p1,r))) by 
    A1,
    Th6;
    
        
    ].(p
    - r), (p 
    + r).[ 
    = ( 
    Ball (p1,r)) & 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    = ( 
    Ball (q1,s)) by 
    FRECHET: 7;
    
        hence thesis by
    A2;
    
      end;
    
      assume
    
      
    
    A3: for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[); 
    
      for p,q be
    Point of 
    RealSpace , r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        let p,q be
    Point of 
    RealSpace , r be 
    positive  
    Real such that 
    
        
    
    A4: q 
    = (f 
    . p); 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A5: 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) by 
    A3;
    
        
    ].(p
    - r), (p 
    + r).[ 
    = ( 
    Ball (p,r)) & 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    = ( 
    Ball (q,s)) by 
    A4,
    FRECHET: 7;
    
        hence thesis by
    A5;
    
      end;
    
      hence thesis by
    Th6;
    
    end;
    
    theorem :: 
    
    TOPS_4:13
    
    for f be
    Function of ( 
    TOP-REAL m), 
    R^1 holds f is 
    open iff for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .: ( 
    Ball (p,r))) 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), 
    R^1 ; 
    
      
    
      
    
    A1: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      hereby
    
        assume
    
        
    
    A2: f is 
    open;
    
        let p be
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real;
    
        p
    in ( 
    Ball (p,r)) by 
    A1,
    TOPGEN_5: 13;
    
        then
    
        
    
    A3: (f 
    . p) 
    in (f 
    .: ( 
    Ball (p,r))) by 
    FUNCT_2: 35;
    
        (f
    .: ( 
    Ball (p,r))) is 
    open by 
    A2;
    
        then
    
        consider s be
    Real such that 
    
        
    
    A4: s 
    >  
    0 and 
    
        
    
    A5: 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .: ( 
    Ball (p,r))) by 
    A3,
    FRECHET: 8;
    
        reconsider s as
    positive  
    Real by 
    A4;
    
        take s;
    
        thus
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .: ( 
    Ball (p,r))) by 
    A5;
    
      end;
    
      assume
    
      
    
    A6: for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .: ( 
    Ball (p,r))); 
    
      let A be
    Subset of ( 
    TOP-REAL m) such that 
    
      
    
    A7: A is 
    open;
    
      for x be
    set holds x 
    in (f 
    .: A) iff ex Q be 
    Subset of 
    R^1 st Q is 
    open & Q 
    c= (f 
    .: A) & x 
    in Q 
    
      proof
    
        let x be
    set;
    
        hereby
    
          assume x
    in (f 
    .: A); 
    
          then
    
          consider p be
    Point of ( 
    TOP-REAL m) such that 
    
          
    
    A8: p 
    in A and 
    
          
    
    A9: x 
    = (f 
    . p) by 
    FUNCT_2: 65;
    
          reconsider u = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
          A
    = ( 
    Int A) by 
    A7,
    TOPS_1: 23;
    
          then
    
          consider e be
    Real such that 
    
          
    
    A10: e 
    >  
    0 and 
    
          
    
    A11: ( 
    Ball (u,e)) 
    c= A by 
    A8,
    GOBOARD6: 5;
    
          
    
          
    
    A12: ( 
    Ball (u,e)) 
    = ( 
    Ball (p,e)) by 
    TOPREAL9: 13;
    
          consider s be
    positive  
    Real such that 
    
          
    
    A13: 
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[ 
    c= (f 
    .: ( 
    Ball (p,e))) by 
    A6,
    A10;
    
          take Q = (
    R^1  
    ].((f
    . p) 
    - s), ((f 
    . p) 
    + s).[); 
    
          thus Q is
    open;
    
          (f
    .: ( 
    Ball (p,e))) 
    c= (f 
    .: A) by 
    A11,
    A12,
    RELAT_1: 123;
    
          hence Q
    c= (f 
    .: A) by 
    A13;
    
          thus x
    in Q by 
    A9,
    TOPREAL6: 15;
    
        end;
    
        thus thesis;
    
      end;
    
      hence (f
    .: A) is 
    open by 
    TOPS_1: 25;
    
    end;
    
    theorem :: 
    
    TOPS_4:14
    
    for f be
    Function of 
    R^1 , ( 
    TOP-REAL m) holds f is 
    open iff for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
    proof
    
      let f be
    Function of 
    R^1 , ( 
    TOP-REAL m); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of 
    R^1 , ( 
    TopSpaceMetr ( 
    Euclid m)); 
    
      thus f is
    open implies for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[) 
    
      proof
    
        assume
    
        
    
    A2: f is 
    open;
    
        let p be
    Point of 
    R^1 , r be 
    positive  
    Real;
    
        reconsider p1 = p as
    Point of 
    RealSpace ; 
    
        reconsider q1 = (f
    . p) as 
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        f1 is
    open by 
    A1,
    A2,
    Th1;
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A3: ( 
    Ball (q1,s)) 
    c= (f1 
    .: ( 
    Ball (p1,r))) by 
    Th6;
    
        
    ].(p
    - r), (p 
    + r).[ 
    = ( 
    Ball (p1,r)) & ( 
    Ball ((f 
    . p),s)) 
    = ( 
    Ball (q1,s)) by 
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence thesis by
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st ( 
    Ball ((f 
    . p),s)) 
    c= (f 
    .:  
    ].(p
    - r), (p 
    + r).[); 
    
      for p be
    Point of 
    RealSpace , q be 
    Point of ( 
    Euclid m), r be 
    positive  
    Real st q 
    = (f1 
    . p) holds ex s be 
    positive  
    Real st ( 
    Ball (q,s)) 
    c= (f1 
    .: ( 
    Ball (p,r))) 
    
      proof
    
        let p be
    Point of 
    RealSpace , q be 
    Point of ( 
    Euclid m), r be 
    positive  
    Real such that 
    
        
    
    A5: q 
    = (f1 
    . p); 
    
        reconsider p1 = p as
    Point of 
    R^1 ; 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A6: ( 
    Ball ((f 
    . p1),s)) 
    c= (f 
    .:  
    ].(p1
    - r), (p1 
    + r).[) by 
    A4;
    
        
    ].(p1
    - r), (p1 
    + r).[ 
    = ( 
    Ball (p,r)) & ( 
    Ball ((f 
    . p1),s)) 
    = ( 
    Ball (q,s)) by 
    A5,
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    open by 
    Th6;
    
      hence thesis by
    A1,
    Th1;
    
    end;
    
    begin
    
    theorem :: 
    
    TOPS_4:15
    
    for f be
    Function of T, ( 
    TopSpaceMetr M) holds f is 
    continuous iff for p be 
    Point of T, q be 
    Point of M, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball (q,r)) 
    
    proof
    
      let f be
    Function of T, ( 
    TopSpaceMetr M); 
    
      thus f is
    continuous implies for p be 
    Point of T, q be 
    Point of M, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball (q,r)) 
    
      proof
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of T; 
    
        let q be
    Point of M; 
    
        let r be
    positive  
    Real;
    
        assume
    
        
    
    A2: (f 
    . p) 
    = q; 
    
        reconsider V = (
    Ball (q,r)) as 
    Subset of ( 
    TopSpaceMetr M); 
    
        
    
        
    
    A3: q 
    in ( 
    Ball (q,r)) by 
    GOBOARD6: 1;
    
        V is
    open by 
    TOPMETR: 14;
    
        then ex W be
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V by 
    A1,
    A2,
    A3,
    JGRAPH_2: 10;
    
        hence thesis;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of T, q be 
    Point of M, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball (q,r)); 
    
      for p be
    Point of T, V be 
    Subset of ( 
    TopSpaceMetr M) st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of T, V be 
    Subset of ( 
    TopSpaceMetr M) such that 
    
        
    
    A5: (f 
    . p) 
    in V; 
    
        reconsider u = (f
    . p) as 
    Point of M; 
    
        assume V is
    open;
    
        then (
    Int V) 
    = V by 
    TOPS_1: 23;
    
        then
    
        consider e be
    Real such that 
    
        
    
    A6: e 
    >  
    0 & ( 
    Ball (u,e)) 
    c= V by 
    A5,
    GOBOARD6: 4;
    
        ex W be
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball (u,e)) by 
    A4,
    A6;
    
        hence thesis by
    A6,
    XBOOLE_1: 1;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:16
    
    for f be
    Function of ( 
    TopSpaceMetr M), T holds f is 
    continuous iff for p be 
    Point of M, V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= V 
    
    proof
    
      let f be
    Function of ( 
    TopSpaceMetr M), T; 
    
      hereby
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of M; 
    
        let V be
    open  
    Subset of T; 
    
        assume (f
    . p) 
    in V; 
    
        then
    
        consider W be
    Subset of ( 
    TopSpaceMetr M) such that 
    
        
    
    A2: p 
    in W and 
    
        
    
    A3: W is 
    open and 
    
        
    
    A4: (f 
    .: W) 
    c= V by 
    A1,
    JGRAPH_2: 10;
    
        (
    Int W) 
    = W by 
    A3,
    TOPS_1: 23;
    
        then
    
        consider s be
    Real such that 
    
        
    
    A5: s 
    >  
    0 and 
    
        
    
    A6: ( 
    Ball (p,s)) 
    c= W by 
    A2,
    GOBOARD6: 4;
    
        reconsider s as
    positive  
    Real by 
    A5;
    
        take s;
    
        (f
    .: ( 
    Ball (p,s))) 
    c= (f 
    .: W) by 
    A6,
    RELAT_1: 123;
    
        hence (f
    .: ( 
    Ball (p,s))) 
    c= V by 
    A4;
    
      end;
    
      assume
    
      
    
    A7: for p be 
    Point of M, V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= V; 
    
      for p be
    Point of ( 
    TopSpaceMetr M), V be 
    Subset of T st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of ( 
    TopSpaceMetr M) st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of ( 
    TopSpaceMetr M), V be 
    Subset of T such that 
    
        
    
    A8: (f 
    . p) 
    in V and 
    
        
    
    A9: V is 
    open;
    
        reconsider u = p as
    Point of M; 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A10: (f 
    .: ( 
    Ball (u,s))) 
    c= V by 
    A7,
    A8,
    A9;
    
        reconsider W = (
    Ball (u,s)) as 
    Subset of ( 
    TopSpaceMetr M); 
    
        take W;
    
        thus p
    in W by 
    GOBOARD6: 1;
    
        thus W is
    open by 
    TOPMETR: 14;
    
        thus thesis by
    A10;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:17
    
    
    
    
    
    Th17: for f be 
    Function of ( 
    TopSpaceMetr M1), ( 
    TopSpaceMetr M2) holds f is 
    continuous iff for p be 
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
    proof
    
      let f be
    Function of ( 
    TopSpaceMetr M1), ( 
    TopSpaceMetr M2); 
    
      hereby
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of M1; 
    
        let q be
    Point of M2; 
    
        let r be
    positive  
    Real;
    
        assume that
    
        
    
    A2: q 
    = (f 
    . p); 
    
        consider s be
    Real such that 
    
        
    
    A3: s 
    >  
    0 and 
    
        
    
    A4: for w be 
    Element of M1, w1 be 
    Element of M2 st w1 
    = (f 
    . w) & ( 
    dist (p,w)) 
    < s holds ( 
    dist (q,w1)) 
    < r by 
    A1,
    A2,
    UNIFORM1: 4;
    
        reconsider s as
    positive  
    Real by 
    A3;
    
        take s;
    
        thus (f
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in (f 
    .: ( 
    Ball (p,s))); 
    
          then
    
          consider x be
    Point of ( 
    TopSpaceMetr M1) such that 
    
          
    
    A5: x 
    in ( 
    Ball (p,s)) and 
    
          
    
    A6: (f 
    . x) 
    = y by 
    FUNCT_2: 65;
    
          reconsider x1 = x as
    Point of M1; 
    
          reconsider y1 = y as
    Point of M2 by 
    A6;
    
          (
    dist (p,x1)) 
    < s by 
    A5,
    METRIC_1: 11;
    
          then (
    dist (q,y1)) 
    < r by 
    A6,
    A4;
    
          hence y
    in ( 
    Ball (q,r)) by 
    METRIC_1: 11;
    
        end;
    
      end;
    
      assume
    
      
    
    A7: for p be 
    Point of M1, q be 
    Point of M2, r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)); 
    
      for r be
    Real, u be 
    Element of M1, u1 be 
    Element of M2 st r 
    >  
    0 & u1 
    = (f 
    . u) holds ex s be 
    Real st s 
    >  
    0 & for w be 
    Element of M1, w1 be 
    Element of M2 st w1 
    = (f 
    . w) & ( 
    dist (u,w)) 
    < s holds ( 
    dist (u1,w1)) 
    < r 
    
      proof
    
        let r be
    Real, u be 
    Element of M1, u1 be 
    Element of M2; 
    
        assume r
    >  
    0 & u1 
    = (f 
    . u); 
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A8: (f 
    .: ( 
    Ball (u,s))) 
    c= ( 
    Ball (u1,r)) by 
    A7;
    
        take s;
    
        thus s
    >  
    0 ; 
    
        let w be
    Element of M1, w1 be 
    Element of M2 such that 
    
        
    
    A9: w1 
    = (f 
    . w); 
    
        assume (
    dist (u,w)) 
    < s; 
    
        then w
    in ( 
    Ball (u,s)) by 
    METRIC_1: 11;
    
        then (f
    . w) 
    in (f 
    .: ( 
    Ball (u,s))) by 
    FUNCT_2: 35;
    
        hence thesis by
    A8,
    A9,
    METRIC_1: 11;
    
      end;
    
      hence thesis by
    UNIFORM1: 3;
    
    end;
    
    theorem :: 
    
    TOPS_4:18
    
    for f be
    Function of T, ( 
    TOP-REAL m) holds f is 
    continuous iff for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball ((f 
    . p),r)) 
    
    proof
    
      let f be
    Function of T, ( 
    TOP-REAL m); 
    
      
    
      
    
    A1: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      thus f is
    continuous implies for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball ((f 
    . p),r)) 
    
      proof
    
        assume
    
        
    
    A2: f is 
    continuous;
    
        let p be
    Point of T; 
    
        let r be
    positive  
    Real;
    
        (f
    . p) 
    in ( 
    Ball ((f 
    . p),r)) by 
    A1,
    TOPGEN_5: 13;
    
        then ex W be
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c= ( 
    Ball ((f 
    . p),r)) by 
    A2,
    JGRAPH_2: 10;
    
        hence thesis;
    
      end;
    
      assume
    
      
    
    A3: for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball ((f 
    . p),r)); 
    
      for p be
    Point of T, V be 
    Subset of ( 
    TOP-REAL m) st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of T, V be 
    Subset of ( 
    TOP-REAL m) such that 
    
        
    
    A4: (f 
    . p) 
    in V; 
    
        reconsider u = (f
    . p) as 
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        assume V is
    open;
    
        then (
    Int V) 
    = V by 
    TOPS_1: 23;
    
        then
    
        consider e be
    Real such that 
    
        
    
    A5: e 
    >  
    0 and 
    
        
    
    A6: ( 
    Ball (u,e)) 
    c= V by 
    A4,
    GOBOARD6: 5;
    
        
    
        
    
    A7: ( 
    Ball (u,e)) 
    = ( 
    Ball ((f 
    . p),e)) by 
    TOPREAL9: 13;
    
        ex W be
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c= ( 
    Ball ((f 
    . p),e)) by 
    A3,
    A5;
    
        hence thesis by
    A6,
    A7,
    XBOOLE_1: 1;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:19
    
    for f be
    Function of ( 
    TOP-REAL m), T holds f is 
    continuous iff for p be 
    Point of ( 
    TOP-REAL m), V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= V 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), T; 
    
      
    
      
    
    A1: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      hereby
    
        assume
    
        
    
    A2: f is 
    continuous;
    
        let p be
    Point of ( 
    TOP-REAL m); 
    
        let V be
    open  
    Subset of T; 
    
        assume (f
    . p) 
    in V; 
    
        then
    
        consider W be
    Subset of ( 
    TOP-REAL m) such that 
    
        
    
    A3: p 
    in W and 
    
        
    
    A4: W is 
    open and 
    
        
    
    A5: (f 
    .: W) 
    c= V by 
    A2,
    JGRAPH_2: 10;
    
        reconsider u = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        (
    Int W) 
    = W by 
    A4,
    TOPS_1: 23;
    
        then
    
        consider s be
    Real such that 
    
        
    
    A6: s 
    >  
    0 and 
    
        
    
    A7: ( 
    Ball (u,s)) 
    c= W by 
    A3,
    GOBOARD6: 5;
    
        reconsider s as
    positive  
    Real by 
    A6;
    
        take s;
    
        (
    Ball (u,s)) 
    = ( 
    Ball (p,s)) by 
    TOPREAL9: 13;
    
        then (f
    .: ( 
    Ball (p,s))) 
    c= (f 
    .: W) by 
    A7,
    RELAT_1: 123;
    
        hence (f
    .: ( 
    Ball (p,s))) 
    c= V by 
    A5;
    
      end;
    
      assume
    
      
    
    A8: for p be 
    Point of ( 
    TOP-REAL m), V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= V; 
    
      for p be
    Point of ( 
    TOP-REAL m), V be 
    Subset of T st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of ( 
    TOP-REAL m) st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of ( 
    TOP-REAL m), V be 
    Subset of T such that 
    
        
    
    A9: (f 
    . p) 
    in V and 
    
        
    
    A10: V is 
    open;
    
        consider s be
    positive  
    Real such that 
    
        
    
    A11: (f 
    .: ( 
    Ball (p,s))) 
    c= V by 
    A8,
    A9,
    A10;
    
        take W = (
    Ball (p,s)); 
    
        thus p
    in W by 
    A1,
    TOPGEN_5: 13;
    
        thus W is
    open;
    
        thus thesis by
    A11;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:20
    
    for f be
    Function of ( 
    TOP-REAL m), ( 
    TOP-REAL n) holds f is 
    continuous iff for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball ((f 
    . p),r)) 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), ( 
    TOP-REAL n); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) & the TopStruct of ( 
    TOP-REAL n) 
    = ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of ( 
    TopSpaceMetr ( 
    Euclid m)), ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      hereby
    
        assume
    
        
    
    A2: f is 
    continuous;
    
        let p be
    Point of ( 
    TOP-REAL m); 
    
        let r be
    positive  
    Real;
    
        reconsider p1 = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        reconsider q1 = (f
    . p) as 
    Point of ( 
    Euclid n) by 
    EUCLID: 67;
    
        f1 is
    continuous by 
    A1,
    A2,
    YELLOW12: 36;
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A3: (f1 
    .: ( 
    Ball (p1,s))) 
    c= ( 
    Ball (q1,r)) by 
    Th17;
    
        take s;
    
        (
    Ball (p1,s)) 
    = ( 
    Ball (p,s)) & ( 
    Ball (q1,r)) 
    = ( 
    Ball ((f 
    . p),r)) by 
    TOPREAL9: 13;
    
        hence (f
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball ((f 
    . p),r)) by 
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball ((f 
    . p),r)); 
    
      for p be
    Point of ( 
    Euclid m), q be 
    Point of ( 
    Euclid n), r be 
    positive  
    Real st q 
    = (f1 
    . p) holds ex s be 
    positive  
    Real st (f1 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
      proof
    
        let p be
    Point of ( 
    Euclid m), q be 
    Point of ( 
    Euclid n), r be 
    positive  
    Real such that 
    
        
    
    A5: q 
    = (f1 
    . p); 
    
        reconsider p1 = p as
    Point of ( 
    TOP-REAL m) by 
    EUCLID: 67;
    
        consider s be
    positive  
    Real such that 
    
        
    
    A6: (f 
    .: ( 
    Ball (p1,s))) 
    c= ( 
    Ball ((f 
    . p1),r)) by 
    A4;
    
        take s;
    
        (
    Ball (p1,s)) 
    = ( 
    Ball (p,s)) & ( 
    Ball ((f 
    . p1),r)) 
    = ( 
    Ball (q,r)) by 
    A5,
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    continuous by 
    Th17;
    
      hence thesis by
    A1,
    YELLOW12: 36;
    
    end;
    
    theorem :: 
    
    TOPS_4:21
    
    for f be
    Function of T, 
    R^1 holds f is 
    continuous iff for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    
    proof
    
      let f be
    Function of T, 
    R^1 ; 
    
      thus f is
    continuous implies for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    
      proof
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of T; 
    
        let r be
    positive  
    Real;
    
        
    
        
    
    A2: (f 
    . p) 
    in  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    TOPREAL6: 15;
    
        (
    R^1  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[) is 
    open;
    
        then ex W be
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A1,
    A2,
    JGRAPH_2: 10;
    
        hence thesis;
    
      end;
    
      assume
    
      
    
    A3: for p be 
    Point of T, r be 
    positive  
    Real holds ex W be 
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[; 
    
      for p be
    Point of T, V be 
    Subset of 
    R^1 st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of T st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of T, V be 
    Subset of 
    R^1 such that 
    
        
    
    A4: (f 
    . p) 
    in V; 
    
        assume V is
    open;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A5: r 
    >  
    0 and 
    
        
    
    A6: 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    c= V by 
    A4,
    FRECHET: 8;
    
        ex W be
    open  
    Subset of T st p 
    in W & (f 
    .: W) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A3,
    A5;
    
        hence thesis by
    A6,
    XBOOLE_1: 1;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:22
    
    for f be
    Function of 
    R^1 , T holds f is 
    continuous iff for p be 
    Point of 
    R^1 , V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= V 
    
    proof
    
      let f be
    Function of 
    R^1 , T; 
    
      hereby
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of 
    R^1 ; 
    
        let V be
    open  
    Subset of T; 
    
        assume (f
    . p) 
    in V; 
    
        then
    
        consider W be
    Subset of 
    R^1 such that 
    
        
    
    A2: p 
    in W and 
    
        
    
    A3: W is 
    open and 
    
        
    
    A4: (f 
    .: W) 
    c= V by 
    A1,
    JGRAPH_2: 10;
    
        consider s be
    Real such that 
    
        
    
    A5: s 
    >  
    0 and 
    
        
    
    A6: 
    ].(p
    - s), (p 
    + s).[ 
    c= W by 
    A2,
    A3,
    FRECHET: 8;
    
        reconsider s as
    positive  
    Real by 
    A5;
    
        take s;
    
        (f
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= (f 
    .: W) by 
    A6,
    RELAT_1: 123;
    
        hence (f
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= V by 
    A4;
    
      end;
    
      assume
    
      
    
    A7: for p be 
    Point of 
    R^1 , V be 
    open  
    Subset of T st (f 
    . p) 
    in V holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= V; 
    
      for p be
    Point of 
    R^1 , V be 
    Subset of T st (f 
    . p) 
    in V & V is 
    open holds ex W be 
    Subset of 
    R^1 st p 
    in W & W is 
    open & (f 
    .: W) 
    c= V 
    
      proof
    
        let p be
    Point of 
    R^1 , V be 
    Subset of T such that 
    
        
    
    A8: (f 
    . p) 
    in V and 
    
        
    
    A9: V is 
    open;
    
        consider s be
    positive  
    Real such that 
    
        
    
    A10: (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= V by 
    A7,
    A8,
    A9;
    
        take W = (
    R^1  
    ].(p
    - s), (p 
    + s).[); 
    
        thus p
    in W by 
    TOPREAL6: 15;
    
        thus W is
    open;
    
        thus thesis by
    A10;
    
      end;
    
      hence thesis by
    JGRAPH_2: 10;
    
    end;
    
    theorem :: 
    
    TOPS_4:23
    
    for f be
    Function of 
    R^1 , 
    R^1 holds f is 
    continuous iff for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    
    proof
    
      let f be
    Function of 
    R^1 , 
    R^1 ; 
    
      hereby
    
        assume
    
        
    
    A1: f is 
    continuous;
    
        let p be
    Point of 
    R^1 ; 
    
        let r be
    positive  
    Real;
    
        reconsider p1 = p, q1 = (f
    . p) as 
    Point of 
    RealSpace ; 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A2: (f 
    .: ( 
    Ball (p1,s))) 
    c= ( 
    Ball (q1,r)) by 
    A1,
    Th17;
    
        take s;
    
        (
    Ball (p1,s)) 
    =  
    ].(p1
    - s), (p1 
    + s).[ & ( 
    Ball (q1,r)) 
    =  
    ].(q1
    - r), (q1 
    + r).[ by 
    FRECHET: 7;
    
        hence (f
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A2;
    
      end;
    
      assume
    
      
    
    A3: for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[; 
    
      for p,q be
    Point of 
    RealSpace , r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
      proof
    
        let p,q be
    Point of 
    RealSpace , r be 
    positive  
    Real such that 
    
        
    
    A4: q 
    = (f 
    . p); 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A5: (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A3;
    
        take s;
    
        (
    Ball (p,s)) 
    =  
    ].(p
    - s), (p 
    + s).[ & ( 
    Ball (q,r)) 
    =  
    ].(q
    - r), (q 
    + r).[ by 
    FRECHET: 7;
    
        hence thesis by
    A5,
    A4;
    
      end;
    
      hence f is
    continuous by 
    Th17;
    
    end;
    
    theorem :: 
    
    TOPS_4:24
    
    for f be
    Function of ( 
    TOP-REAL m), 
    R^1 holds f is 
    continuous iff for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    
    proof
    
      let f be
    Function of ( 
    TOP-REAL m), 
    R^1 ; 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of ( 
    TopSpaceMetr ( 
    Euclid m)), 
    R^1 ; 
    
      hereby
    
        assume
    
        
    
    A2: f is 
    continuous;
    
        let p be
    Point of ( 
    TOP-REAL m); 
    
        let r be
    positive  
    Real;
    
        reconsider p1 = p as
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        reconsider q1 = (f
    . p) as 
    Point of 
    RealSpace ; 
    
        f1 is
    continuous by 
    A1,
    A2,
    YELLOW12: 36;
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A3: (f 
    .: ( 
    Ball (p1,s))) 
    c= ( 
    Ball (q1,r)) by 
    A1,
    Th17;
    
        take s;
    
        (
    Ball (p1,s)) 
    = ( 
    Ball (p,s)) & ( 
    Ball (q1,r)) 
    =  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence (f
    .: ( 
    Ball (p,s))) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of ( 
    TOP-REAL m), r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[; 
    
      for p be
    Point of ( 
    Euclid m), q be 
    Point of 
    RealSpace , r be 
    positive  
    Real st q 
    = (f1 
    . p) holds ex s be 
    positive  
    Real st (f1 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
      proof
    
        let p be
    Point of ( 
    Euclid m), q be 
    Point of 
    RealSpace , r be 
    positive  
    Real such that 
    
        
    
    A5: q 
    = (f1 
    . p); 
    
        reconsider p1 = p as
    Point of ( 
    TOP-REAL m) by 
    EUCLID: 67;
    
        consider s be
    positive  
    Real such that 
    
        
    
    A6: (f 
    .: ( 
    Ball (p1,s))) 
    c=  
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ by 
    A4;
    
        take s;
    
        (
    Ball (p1,s)) 
    = ( 
    Ball (p,s)) & 
    ].((f
    . p) 
    - r), ((f 
    . p) 
    + r).[ 
    = ( 
    Ball (q,r)) by 
    A5,
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    continuous by 
    Th17;
    
      hence thesis by
    A1,
    YELLOW12: 36;
    
    end;
    
    theorem :: 
    
    TOPS_4:25
    
    for f be
    Function of 
    R^1 , ( 
    TOP-REAL m) holds f is 
    continuous iff for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= ( 
    Ball ((f 
    . p),r)) 
    
    proof
    
      let f be
    Function of 
    R^1 , ( 
    TOP-REAL m); 
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL m) 
    = ( 
    TopSpaceMetr ( 
    Euclid m)) by 
    EUCLID:def 8;
    
      then
    
      reconsider f1 = f as
    Function of 
    R^1 , ( 
    TopSpaceMetr ( 
    Euclid m)); 
    
      hereby
    
        assume
    
        
    
    A2: f is 
    continuous;
    
        let p be
    Point of 
    R^1 ; 
    
        let r be
    positive  
    Real;
    
        reconsider p1 = p as
    Point of 
    RealSpace ; 
    
        reconsider q1 = (f
    . p) as 
    Point of ( 
    Euclid m) by 
    EUCLID: 67;
    
        f1 is
    continuous by 
    A1,
    A2,
    YELLOW12: 36;
    
        then
    
        consider s be
    positive  
    Real such that 
    
        
    
    A3: (f1 
    .: ( 
    Ball (p1,s))) 
    c= ( 
    Ball (q1,r)) by 
    Th17;
    
        take s;
    
        (
    Ball (p1,s)) 
    =  
    ].(p
    - s), (p 
    + s).[ & ( 
    Ball (q1,r)) 
    = ( 
    Ball ((f 
    . p),r)) by 
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence (f
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= ( 
    Ball ((f 
    . p),r)) by 
    A3;
    
      end;
    
      assume
    
      
    
    A4: for p be 
    Point of 
    R^1 , r be 
    positive  
    Real holds ex s be 
    positive  
    Real st (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= ( 
    Ball ((f 
    . p),r)); 
    
      for p be
    Point of 
    RealSpace , q be 
    Point of ( 
    Euclid m), r be 
    positive  
    Real st q 
    = (f 
    . p) holds ex s be 
    positive  
    Real st (f 
    .: ( 
    Ball (p,s))) 
    c= ( 
    Ball (q,r)) 
    
      proof
    
        let p be
    Point of 
    RealSpace , q be 
    Point of ( 
    Euclid m), r be 
    positive  
    Real such that 
    
        
    
    A5: q 
    = (f 
    . p); 
    
        reconsider p1 = p as
    Point of 
    R^1 ; 
    
        consider s be
    positive  
    Real such that 
    
        
    
    A6: (f 
    .:  
    ].(p
    - s), (p 
    + s).[) 
    c= ( 
    Ball ((f 
    . p1),r)) by 
    A4;
    
        take s;
    
        
    ].(p
    - s), (p 
    + s).[ 
    = ( 
    Ball (p,s)) & ( 
    Ball ((f 
    . p1),r)) 
    = ( 
    Ball (q,r)) by 
    A5,
    FRECHET: 7,
    TOPREAL9: 13;
    
        hence thesis by
    A6;
    
      end;
    
      then f1 is
    continuous by 
    A1,
    Th17;
    
      hence thesis by
    A1,
    YELLOW12: 36;
    
    end;