valued_2.miz
    
    begin
    
    reserve x,y for
    object, 
    
X,X1,X2 for
    set;
    
    
    
    Lm1: 
    
    now
    
      let X1,X2,X3 be
    set;
    
      
    
      thus (X1
    /\ (X2 
    /\ X3)) 
    = (((X1 
    /\ X1) 
    /\ X2) 
    /\ X3) by 
    XBOOLE_1: 16
    
      .= ((X1
    /\ (X1 
    /\ X2)) 
    /\ X3) by 
    XBOOLE_1: 16
    
      .= ((X1
    /\ X2) 
    /\ (X1 
    /\ X3)) by 
    XBOOLE_1: 16;
    
    end;
    
    definition
    
      let Y be
    functional  
    set;
    
      :: 
    
    VALUED_2:def1
    
      func
    
    DOMS (Y) -> 
    set equals ( 
    union the set of all ( 
    dom f) where f be 
    Element of Y); 
    
      coherence ;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def2
    
      attr X is
    
    complex-functions-membered means 
    
      :
    
    Def2: x 
    in X implies x is 
    complex-valued  
    Function;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def3
    
      attr X is
    
    ext-real-functions-membered means 
    
      :
    
    Def3: x 
    in X implies x is 
    ext-real-valued  
    Function;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def4
    
      attr X is
    
    real-functions-membered means 
    
      :
    
    Def4: x 
    in X implies x is 
    real-valued  
    Function;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def5
    
      attr X is
    
    rational-functions-membered means 
    
      :
    
    Def5: x 
    in X implies x is 
    RAT  
    -valued  
    Function;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def6
    
      attr X is
    
    integer-functions-membered means 
    
      :
    
    Def6: x 
    in X implies x is 
    INT  
    -valued  
    Function;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    VALUED_2:def7
    
      attr X is
    
    natural-functions-membered means 
    
      :
    
    Def7: x 
    in X implies x is 
    natural-valued  
    Function;
    
    end
    
    registration
    
      cluster 
    natural-functions-membered -> 
    integer-functions-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A1: for x be 
    object st x 
    in X holds x is 
    natural-valued  
    Function;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    natural-valued  
    Function by 
    A1;
    
        hence thesis;
    
      end;
    
      cluster 
    integer-functions-membered -> 
    rational-functions-membered for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A2: for x be 
    object st x 
    in X holds x is 
    INT  
    -valued  
    Function;
    
        let x;
    
        assume x
    in X; 
    
        then x is
    INT  
    -valued  
    Function by 
    A2;
    
        hence thesis;
    
      end;
    
      cluster 
    rational-functions-membered -> 
    real-functions-membered for 
    set;
    
      coherence ;
    
      cluster 
    real-functions-membered -> 
    complex-functions-membered for 
    set;
    
      coherence ;
    
      cluster 
    real-functions-membered -> 
    ext-real-functions-membered for 
    set;
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    empty -> 
    natural-functions-membered for 
    set;
    
      coherence ;
    
    end
    
    registration
    
      let f be
    complex-valued  
    Function;
    
      cluster 
    {f} ->
    complex-functions-membered;
    
      coherence by
    TARSKI:def 1;
    
    end
    
    registration
    
      cluster 
    complex-functions-membered -> 
    functional for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A1: X is 
    complex-functions-membered;
    
        let x;
    
        thus thesis by
    A1;
    
      end;
    
      cluster 
    ext-real-functions-membered -> 
    functional for 
    set;
    
      coherence
    
      proof
    
        let X;
    
        assume
    
        
    
    A2: X is 
    ext-real-functions-membered;
    
        let x;
    
        thus thesis by
    A2;
    
      end;
    
    end
    
    set ff = the
    natural-valued  
    Function;
    
    registration
    
      cluster 
    natural-functions-membered non 
    empty for 
    set;
    
      existence
    
      proof
    
        take
    {ff};
    
        thus for x be
    object st x 
    in  
    {ff} holds x is
    natural-valued  
    Function by 
    TARSKI:def 1;
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      let X be
    complex-functions-membered  
    set;
    
      cluster -> 
    complex-functions-membered for 
    Subset of X; 
    
      coherence by
    Def2;
    
    end
    
    registration
    
      let X be
    ext-real-functions-membered  
    set;
    
      cluster -> 
    ext-real-functions-membered for 
    Subset of X; 
    
      coherence by
    Def3;
    
    end
    
    registration
    
      let X be
    real-functions-membered  
    set;
    
      cluster -> 
    real-functions-membered for 
    Subset of X; 
    
      coherence by
    Def4;
    
    end
    
    registration
    
      let X be
    rational-functions-membered  
    set;
    
      cluster -> 
    rational-functions-membered for 
    Subset of X; 
    
      coherence by
    Def5;
    
    end
    
    registration
    
      let X be
    integer-functions-membered  
    set;
    
      cluster -> 
    integer-functions-membered for 
    Subset of X; 
    
      coherence by
    Def6;
    
    end
    
    registration
    
      let X be
    natural-functions-membered  
    set;
    
      cluster -> 
    natural-functions-membered for 
    Subset of X; 
    
      coherence by
    Def7;
    
    end
    
    definition
    
      set A =
    COMPLEX ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def8
    
      func
    
    C_PFuncs (D) -> 
    set means 
    
      :
    
    Def8: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    COMPLEX ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    COMPLEX ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def9
    
      func
    
    C_Funcs (D) -> 
    set means 
    
      :
    
    Def9: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    COMPLEX ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    ExtREAL ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def10
    
      func
    
    E_PFuncs (D) -> 
    set means 
    
      :
    
    Def10: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    ExtREAL ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    ExtREAL ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def11
    
      func
    
    E_Funcs (D) -> 
    set means 
    
      :
    
    Def11: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    ExtREAL ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    REAL ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def12
    
      func
    
    R_PFuncs (D) -> 
    set means 
    
      :
    
    Def12: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    REAL ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    REAL ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def13
    
      func
    
    R_Funcs (D) -> 
    set means 
    
      :
    
    Def13: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    REAL ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    RAT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def14
    
      func
    
    Q_PFuncs (D) -> 
    set means 
    
      :
    
    Def14: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    RAT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    RAT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def15
    
      func
    
    Q_Funcs (D) -> 
    set means 
    
      :
    
    Def15: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    RAT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    INT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def16
    
      func
    
    I_PFuncs (D) -> 
    set means 
    
      :
    
    Def16: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    INT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    INT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def17
    
      func
    
    I_Funcs (D) -> 
    set means 
    
      :
    
    Def17: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    INT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    NAT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    PartFunc of D, A; 
    
      :: 
    
    VALUED_2:def18
    
      func
    
    N_PFuncs (D) -> 
    set means 
    
      :
    
    Def18: for f be 
    object holds f 
    in it iff f is 
    PartFunc of D, 
    NAT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    PFuncs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    PartFunc of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    PartFunc of D, A; 
    
        then f
    in ( 
    PFuncs (D,A)) by 
    PARTFUN1: 45;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    PartFunc of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    definition
    
      set A =
    NAT ; 
    
      let D be
    set;
    
      defpred
    
    P[
    object] means $1 is
    Function of D, A; 
    
      :: 
    
    VALUED_2:def19
    
      func
    
    N_Funcs (D) -> 
    set means 
    
      :
    
    Def19: for f be 
    object holds f 
    in it iff f is 
    Function of D, 
    NAT ; 
    
      existence
    
      proof
    
        consider X be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    Funcs (D,A)) & 
    P[x] from
    XBOOLE_0:sch 1;
    
        take X;
    
        let f be
    object;
    
        thus f
    in X implies f is 
    Function of D, A by 
    A1;
    
        assume
    
        
    
    A2: f is 
    Function of D, A; 
    
        then f
    in ( 
    Funcs (D,A)) by 
    FUNCT_2: 8;
    
        hence thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let P,Q be
    set;
    
        assume for f be
    object holds f 
    in P iff f is 
    Function of D, A; 
    
        then
    
        
    
    A3: for f be 
    object holds f 
    in P iff 
    P[f];
    
        assume for f be
    object holds f 
    in Q iff f is 
    Function of D, A; 
    
        then
    
        
    
    A4: for f be 
    object holds f 
    in Q iff 
    P[f];
    
        thus P
    = Q from 
    XBOOLE_0:sch 2(
    A3,
    A4);
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:1
    
    
    
    
    
    Th1: ( 
    C_Funcs X) is 
    Subset of ( 
    C_PFuncs X) 
    
    proof
    
      (
    C_Funcs X) 
    c= ( 
    C_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    C_Funcs X); 
    
        then x is
    Function of X, 
    COMPLEX by 
    Def9;
    
        hence thesis by
    Def8;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    VALUED_2:2
    
    
    
    
    
    Th2: ( 
    E_Funcs X) is 
    Subset of ( 
    E_PFuncs X) 
    
    proof
    
      (
    E_Funcs X) 
    c= ( 
    E_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    E_Funcs X); 
    
        then x is
    Function of X, 
    ExtREAL by 
    Def11;
    
        hence thesis by
    Def10;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    VALUED_2:3
    
    
    
    
    
    Th3: ( 
    R_Funcs X) is 
    Subset of ( 
    R_PFuncs X) 
    
    proof
    
      (
    R_Funcs X) 
    c= ( 
    R_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    R_Funcs X); 
    
        then x is
    Function of X, 
    REAL by 
    Def13;
    
        hence thesis by
    Def12;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    VALUED_2:4
    
    
    
    
    
    Th4: ( 
    Q_Funcs X) is 
    Subset of ( 
    Q_PFuncs X) 
    
    proof
    
      (
    Q_Funcs X) 
    c= ( 
    Q_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Q_Funcs X); 
    
        then x is
    Function of X, 
    RAT by 
    Def15;
    
        hence thesis by
    Def14;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    VALUED_2:5
    
    
    
    
    
    Th5: ( 
    I_Funcs X) is 
    Subset of ( 
    I_PFuncs X) 
    
    proof
    
      (
    I_Funcs X) 
    c= ( 
    I_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    I_Funcs X); 
    
        then x is
    Function of X, 
    INT by 
    Def17;
    
        hence thesis by
    Def16;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    VALUED_2:6
    
    
    
    
    
    Th6: ( 
    N_Funcs X) is 
    Subset of ( 
    N_PFuncs X) 
    
    proof
    
      (
    N_Funcs X) 
    c= ( 
    N_PFuncs X) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    N_Funcs X); 
    
        then x is
    Function of X, 
    NAT by 
    Def19;
    
        hence thesis by
    Def18;
    
      end;
    
      hence thesis;
    
    end;
    
    registration
    
      let X;
    
      cluster ( 
    C_PFuncs X) -> 
    complex-functions-membered;
    
      coherence by
    Def8;
    
      cluster ( 
    C_Funcs X) -> 
    complex-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    C_Funcs X) as 
    Subset of ( 
    C_PFuncs X) by 
    Th1;
    
        C is
    complex-functions-membered;
    
        hence thesis;
    
      end;
    
      cluster ( 
    E_PFuncs X) -> 
    ext-real-functions-membered;
    
      coherence by
    Def10;
    
      cluster ( 
    E_Funcs X) -> 
    ext-real-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    E_Funcs X) as 
    Subset of ( 
    E_PFuncs X) by 
    Th2;
    
        C is
    ext-real-functions-membered;
    
        hence thesis;
    
      end;
    
      cluster ( 
    R_PFuncs X) -> 
    real-functions-membered;
    
      coherence by
    Def12;
    
      cluster ( 
    R_Funcs X) -> 
    real-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    R_Funcs X) as 
    Subset of ( 
    R_PFuncs X) by 
    Th3;
    
        C is
    real-functions-membered;
    
        hence thesis;
    
      end;
    
      cluster ( 
    Q_PFuncs X) -> 
    rational-functions-membered;
    
      coherence by
    Def14;
    
      cluster ( 
    Q_Funcs X) -> 
    rational-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    Q_Funcs X) as 
    Subset of ( 
    Q_PFuncs X) by 
    Th4;
    
        C is
    rational-functions-membered;
    
        hence thesis;
    
      end;
    
      cluster ( 
    I_PFuncs X) -> 
    integer-functions-membered;
    
      coherence by
    Def16;
    
      cluster ( 
    I_Funcs X) -> 
    integer-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    I_Funcs X) as 
    Subset of ( 
    I_PFuncs X) by 
    Th5;
    
        C is
    integer-functions-membered;
    
        hence thesis;
    
      end;
    
      cluster ( 
    N_PFuncs X) -> 
    natural-functions-membered;
    
      coherence by
    Def18;
    
      cluster ( 
    N_Funcs X) -> 
    natural-functions-membered;
    
      coherence
    
      proof
    
        reconsider C = (
    N_Funcs X) as 
    Subset of ( 
    N_PFuncs X) by 
    Th6;
    
        C is
    natural-functions-membered;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let X be
    complex-functions-membered  
    set;
    
      cluster -> 
    complex-valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def2,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    ext-real-functions-membered  
    set;
    
      cluster -> 
    ext-real-valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def3,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    real-functions-membered  
    set;
    
      cluster -> 
    real-valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def4,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    rational-functions-membered  
    set;
    
      cluster -> 
    RAT  
    -valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def5,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    integer-functions-membered  
    set;
    
      cluster -> 
    INT  
    -valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def6,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    natural-functions-membered  
    set;
    
      cluster -> 
    natural-valued for 
    Element of X; 
    
      coherence
    
      proof
    
        X is
    empty or X is non 
    empty;
    
        hence thesis by
    Def7,
    SUBSET_1:def 1;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    Function-like
    Relation-like;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    ext-real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    Function-like
    Relation-like;
    
      coherence ;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    complex-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    ext-real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    ext-real-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    real-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    RAT  
    -valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    INT  
    -valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X be
    set, x be 
    object;
    
      let Y be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      cluster (f 
    . x) -> 
    natural-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    complex-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    complex-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    ext-real-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    ext-real-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    real-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    real-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    rational-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    rational-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    integer-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    integer-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    natural-membered  
    set;
    
      cluster ( 
    PFuncs (X,Y)) -> 
    natural-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    PFuncs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    c= X & ( 
    rng f) 
    c= Y by 
    PARTFUN1:def 3;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    complex-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    complex-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    ext-real-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    ext-real-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    real-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    real-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    rational-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    rational-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    integer-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    integer-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    registration
    
      let X;
    
      let Y be
    natural-membered  
    set;
    
      cluster ( 
    Funcs (X,Y)) -> 
    natural-functions-membered;
    
      coherence
    
      proof
    
        let x;
    
        assume x
    in ( 
    Funcs (X,Y)); 
    
        then
    
        consider f be
    Function such that 
    
        
    
    A1: x 
    = f and 
    
        
    
    A2: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    FUNCT_2:def 2;
    
        reconsider f as
    PartFunc of X, Y by 
    A2,
    RELSET_1: 4;
    
        f is
    set;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    definition
    
      let R be
    Relation;
    
      :: 
    
    VALUED_2:def20
    
      attr R is
    
    complex-functions-valued means 
    
      :
    
    Def20: ( 
    rng R) is 
    complex-functions-membered;
    
      :: 
    
    VALUED_2:def21
    
      attr R is
    
    ext-real-functions-valued means 
    
      :
    
    Def21: ( 
    rng R) is 
    ext-real-functions-membered;
    
      :: 
    
    VALUED_2:def22
    
      attr R is
    
    real-functions-valued means 
    
      :
    
    Def22: ( 
    rng R) is 
    real-functions-membered;
    
      :: 
    
    VALUED_2:def23
    
      attr R is
    
    rational-functions-valued means 
    
      :
    
    Def23: ( 
    rng R) is 
    rational-functions-membered;
    
      :: 
    
    VALUED_2:def24
    
      attr R is
    
    integer-functions-valued means 
    
      :
    
    Def24: ( 
    rng R) is 
    integer-functions-membered;
    
      :: 
    
    VALUED_2:def25
    
      attr R is
    
    natural-functions-valued means 
    
      :
    
    Def25: ( 
    rng R) is 
    natural-functions-membered;
    
    end
    
    registration
    
      let Y be
    complex-functions-membered  
    set;
    
      cluster -> 
    complex-functions-valued for Y 
    -valued  
    Function;
    
      coherence
    
      proof
    
        let f be Y
    -valued  
    Function;
    
        thus (
    rng f) is 
    complex-functions-membered;
    
      end;
    
    end
    
    definition
    
      let f be
    Function;
    
      :: original:
    complex-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def26
    
      attr f is
    
    complex-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    complex-valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    complex-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    complex-valued  
    Function
    
        proof
    
          assume
    
          
    
    A1: ( 
    rng f) is 
    complex-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A1;
    
        end;
    
        assume
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    complex-valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A2;
    
      end;
    
      :: original:
    ext-real-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def27
    
      attr f is
    
    ext-real-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    ext-real-valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    ext-real-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    ext-real-valued  
    Function
    
        proof
    
          assume
    
          
    
    A3: ( 
    rng f) is 
    ext-real-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A3;
    
        end;
    
        assume
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    ext-real-valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A4;
    
      end;
    
      :: original:
    real-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def28
    
      attr f is
    
    real-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    real-valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    real-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    real-valued  
    Function
    
        proof
    
          assume
    
          
    
    A5: ( 
    rng f) is 
    real-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A5;
    
        end;
    
        assume
    
        
    
    A6: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    real-valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A6;
    
      end;
    
      :: original:
    rational-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def29
    
      attr f is
    
    rational-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    RAT  
    -valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    rational-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    RAT  
    -valued  
    Function
    
        proof
    
          assume
    
          
    
    A7: ( 
    rng f) is 
    rational-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A7;
    
        end;
    
        assume
    
        
    
    A8: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    RAT  
    -valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A8;
    
      end;
    
      :: original:
    integer-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def30
    
      attr f is
    
    integer-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    INT  
    -valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    integer-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    INT  
    -valued  
    Function
    
        proof
    
          assume
    
          
    
    A9: ( 
    rng f) is 
    integer-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A9;
    
        end;
    
        assume
    
        
    
    A10: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    INT  
    -valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A10;
    
      end;
    
      :: original:
    natural-functions-valued
    
      redefine
    
      :: 
    
    VALUED_2:def31
    
      attr f is
    
    natural-functions-valued means for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    natural-valued  
    Function;
    
      compatibility
    
      proof
    
        thus f is
    natural-functions-valued implies for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    natural-valued  
    Function
    
        proof
    
          assume
    
          
    
    A11: ( 
    rng f) is 
    natural-functions-membered;
    
          let x;
    
          assume x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis by
    A11;
    
        end;
    
        assume
    
        
    
    A12: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) is 
    natural-valued  
    Function;
    
        let y be
    object;
    
        assume y
    in ( 
    rng f); 
    
        then ex x be
    object st x 
    in ( 
    dom f) & (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
        hence thesis by
    A12;
    
      end;
    
    end
    
    registration
    
      cluster 
    natural-functions-valued -> 
    integer-functions-valued for 
    Relation;
    
      coherence ;
    
      cluster 
    integer-functions-valued -> 
    rational-functions-valued for 
    Relation;
    
      coherence ;
    
      cluster 
    rational-functions-valued -> 
    real-functions-valued for 
    Relation;
    
      coherence ;
    
      cluster 
    real-functions-valued -> 
    ext-real-functions-valued for 
    Relation;
    
      coherence ;
    
      cluster 
    real-functions-valued -> 
    complex-functions-valued for 
    Relation;
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    empty -> 
    natural-functions-valued for 
    Relation;
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    natural-functions-valued for 
    Function;
    
      existence
    
      proof
    
        take
    {} ; 
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      let R be
    complex-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    complex-functions-membered;
    
      coherence by
    Def20;
    
    end
    
    registration
    
      let R be
    ext-real-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    ext-real-functions-membered;
    
      coherence by
    Def21;
    
    end
    
    registration
    
      let R be
    real-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    real-functions-membered;
    
      coherence by
    Def22;
    
    end
    
    registration
    
      let R be
    rational-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    rational-functions-membered;
    
      coherence by
    Def23;
    
    end
    
    registration
    
      let R be
    integer-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    integer-functions-membered;
    
      coherence by
    Def24;
    
    end
    
    registration
    
      let R be
    natural-functions-valued  
    Relation;
    
      cluster ( 
    rng R) -> 
    natural-functions-membered;
    
      coherence by
    Def25;
    
    end
    
    registration
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      cluster -> 
    complex-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      let X;
    
      let Y be
    ext-real-functions-membered  
    set;
    
      cluster -> 
    ext-real-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      cluster -> 
    real-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      cluster -> 
    rational-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      cluster -> 
    integer-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      let X;
    
      let Y be
    natural-functions-membered  
    set;
    
      cluster -> 
    natural-functions-valued for 
    PartFunc of X, Y; 
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    complex-functions-valued -> 
    Function-yielding for 
    Function;
    
      coherence
    
      proof
    
        let f be
    Function such that 
    
        
    
    A1: f is 
    complex-functions-valued;
    
        let x be
    object;
    
        thus thesis by
    A1;
    
      end;
    
      cluster 
    real-functions-valued -> 
    Function-yielding for 
    Function;
    
      coherence ;
    
      cluster 
    ext-real-functions-valued -> 
    Function-yielding for 
    Function;
    
      coherence
    
      proof
    
        let f be
    Function such that 
    
        
    
    A2: f is 
    ext-real-functions-valued;
    
        let x be
    object;
    
        thus thesis by
    A2;
    
      end;
    
    end
    
    registration
    
      let f be
    complex-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    Function-like
    Relation-like;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    ext-real-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    Function-like
    Relation-like;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    complex-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    complex-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    ext-real-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    ext-real-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    real-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    real-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    rational-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    RAT  
    -valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    integer-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    INT  
    -valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    natural-functions-valued  
    Function;
    
      let x be
    object;
    
      cluster (f 
    . x) -> 
    natural-valued;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose x
    in ( 
    dom f); 
    
          then (f
    . x) 
    in ( 
    rng f) by 
    FUNCT_1:def 3;
    
          hence thesis;
    
        end;
    
          suppose not x
    in ( 
    dom f); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let f be
    real-functions-valued  
    Function;
    
      let x, y;
    
      cluster (f 
    . (x,y)) -> 
    real-valued;
    
      coherence ;
    
    end
    
    begin
    
    reserve Y,Y1,Y2 for
    complex-functions-membered  
    set, 
    
c,c1,c2 for
    Complex, 
    
f for
    PartFunc of X, Y, 
    
f1 for
    PartFunc of X1, Y1, 
    
f2 for
    PartFunc of X2, Y2, 
    
g,h,k for
    complex-valued  
    Function;
    
    theorem :: 
    
    VALUED_2:7
    
    
    
    
    
    Th7: g 
    <>  
    {} & (g 
    + c1) 
    = (g 
    + c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: g 
    <>  
    {} and 
    
      
    
    A2: (g 
    + c1) 
    = (g 
    + c2); 
    
      consider x be
    object such that 
    
      
    
    A3: x 
    in ( 
    dom g) by 
    A1,
    XBOOLE_0:def 1;
    
      (
    dom g) 
    = ( 
    dom (g 
    + c2)) by 
    VALUED_1:def 2;
    
      then
    
      
    
    A4: ((g 
    + c2) 
    . x) 
    = ((g 
    . x) 
    + c2) by 
    A3,
    VALUED_1:def 2;
    
      (
    dom g) 
    = ( 
    dom (g 
    + c1)) by 
    VALUED_1:def 2;
    
      then ((g
    + c1) 
    . x) 
    = ((g 
    . x) 
    + c1) by 
    A3,
    VALUED_1:def 2;
    
      hence c1
    = c2 by 
    A2,
    A4;
    
    end;
    
    theorem :: 
    
    VALUED_2:8
    
    
    
    
    
    Th8: g 
    <>  
    {} & (g 
    - c1) 
    = (g 
    - c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: g 
    <>  
    {} and 
    
      
    
    A2: (g 
    - c1) 
    = (g 
    - c2); 
    
      consider x be
    object such that 
    
      
    
    A3: x 
    in ( 
    dom g) by 
    A1,
    XBOOLE_0:def 1;
    
      (
    dom g) 
    = ( 
    dom (g 
    - c2)) by 
    VALUED_1:def 2;
    
      then
    
      
    
    A4: ((g 
    - c2) 
    . x) 
    = ((g 
    . x) 
    - c2) by 
    A3,
    VALUED_1:def 2;
    
      (
    dom g) 
    = ( 
    dom (g 
    - c1)) by 
    VALUED_1:def 2;
    
      then ((g
    - c1) 
    . x) 
    = ((g 
    . x) 
    - c1) by 
    A3,
    VALUED_1:def 2;
    
      hence c1
    = c2 by 
    A2,
    A4;
    
    end;
    
    theorem :: 
    
    VALUED_2:9
    
    
    
    
    
    Th9: g 
    <>  
    {} & g is 
    non-empty & (g 
    (#) c1) 
    = (g 
    (#) c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: g 
    <>  
    {} and 
    
      
    
    A2: g is 
    non-empty and 
    
      
    
    A3: (g 
    (#) c1) 
    = (g 
    (#) c2); 
    
      consider x be
    object such that 
    
      
    
    A4: x 
    in ( 
    dom g) by 
    A1,
    XBOOLE_0:def 1;
    
      (g
    . x) 
    in ( 
    rng g) by 
    A4,
    FUNCT_1:def 3;
    
      then
    
      
    
    A5: (g 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      ((g
    (#) c1) 
    . x) 
    = ((g 
    . x) 
    * c1) & ((g 
    (#) c2) 
    . x) 
    = ((g 
    . x) 
    * c2) by 
    VALUED_1: 6;
    
      hence c1
    = c2 by 
    A3,
    A5,
    XCMPLX_1: 5;
    
    end;
    
    theorem :: 
    
    VALUED_2:10
    
    
    
    
    
    Th10: ( 
    - (g 
    + c)) 
    = (( 
    - g) 
    - c) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (g 
    + c))) 
    = ( 
    dom (g 
    + c)) by 
    VALUED_1: 8;
    
      
    
      
    
    A2: ( 
    dom (g 
    + c)) 
    = ( 
    dom g) & ( 
    dom (( 
    - g) 
    - c)) 
    = ( 
    dom ( 
    - g)) by 
    VALUED_1:def 2;
    
      hence (
    dom ( 
    - (g 
    + c))) 
    = ( 
    dom (( 
    - g) 
    - c)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom ( 
    - (g 
    + c))); 
    
      
    
      
    
    A4: ( 
    dom ( 
    - g)) 
    = ( 
    dom g) by 
    VALUED_1: 8;
    
      
    
      thus ((
    - (g 
    + c)) 
    . x) 
    = ( 
    - ((g 
    + c) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    + c)) by 
    A1,
    A3,
    VALUED_1:def 2
    
      .= ((
    - (g 
    . x)) 
    - c) 
    
      .= (((
    - g) 
    . x) 
    - c) by 
    VALUED_1: 8
    
      .= (((
    - g) 
    - c) 
    . x) by 
    A2,
    A1,
    A4,
    A3,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:11
    
    
    
    
    
    Th11: ( 
    - (g 
    - c)) 
    = (( 
    - g) 
    + c) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (g 
    - c))) 
    = ( 
    dom (g 
    - c)) by 
    VALUED_1: 8;
    
      
    
      
    
    A2: ( 
    dom (g 
    - c)) 
    = ( 
    dom g) & ( 
    dom (( 
    - g) 
    + c)) 
    = ( 
    dom ( 
    - g)) by 
    VALUED_1:def 2;
    
      hence (
    dom ( 
    - (g 
    - c))) 
    = ( 
    dom (( 
    - g) 
    + c)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom ( 
    - (g 
    - c))); 
    
      
    
      
    
    A4: ( 
    dom ( 
    - g)) 
    = ( 
    dom g) by 
    VALUED_1: 8;
    
      
    
      thus ((
    - (g 
    - c)) 
    . x) 
    = ( 
    - ((g 
    - c) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    - c)) by 
    A1,
    A3,
    VALUED_1:def 2
    
      .= ((
    - (g 
    . x)) 
    + c) 
    
      .= (((
    - g) 
    . x) 
    + c) by 
    VALUED_1: 8
    
      .= (((
    - g) 
    + c) 
    . x) by 
    A2,
    A1,
    A4,
    A3,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:12
    
    
    
    
    
    Th12: ((g 
    + c1) 
    + c2) 
    = (g 
    + (c1 
    + c2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    + c1) 
    + c2)) 
    = ( 
    dom (g 
    + c1)) by 
    VALUED_1:def 2;
    
      
    
      
    
    A2: ( 
    dom (g 
    + c1)) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      hence (
    dom ((g 
    + c1) 
    + c2)) 
    = ( 
    dom (g 
    + (c1 
    + c2))) by 
    A1,
    VALUED_1:def 2;
    
      let x be
    object;
    
      
    
      
    
    A3: ( 
    dom (g 
    + (c1 
    + c2))) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    + c1) 
    + c2)); 
    
      
    
      hence (((g
    + c1) 
    + c2) 
    . x) 
    = (((g 
    + c1) 
    . x) 
    + c2) by 
    VALUED_1:def 2
    
      .= (((g
    . x) 
    + c1) 
    + c2) by 
    A1,
    A4,
    VALUED_1:def 2
    
      .= ((g
    . x) 
    + (c1 
    + c2)) 
    
      .= ((g
    + (c1 
    + c2)) 
    . x) by 
    A1,
    A2,
    A3,
    A4,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:13
    
    
    
    
    
    Th13: ((g 
    + c1) 
    - c2) 
    = (g 
    + (c1 
    - c2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    + c1) 
    - c2)) 
    = ( 
    dom (g 
    + c1)) by 
    VALUED_1:def 2;
    
      
    
      
    
    A2: ( 
    dom (g 
    + c1)) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      hence (
    dom ((g 
    + c1) 
    - c2)) 
    = ( 
    dom (g 
    + (c1 
    - c2))) by 
    A1,
    VALUED_1:def 2;
    
      let x be
    object;
    
      
    
      
    
    A3: ( 
    dom (g 
    + (c1 
    - c2))) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    + c1) 
    - c2)); 
    
      
    
      hence (((g
    + c1) 
    - c2) 
    . x) 
    = (((g 
    + c1) 
    . x) 
    - c2) by 
    VALUED_1:def 2
    
      .= (((g
    . x) 
    + c1) 
    - c2) by 
    A1,
    A4,
    VALUED_1:def 2
    
      .= ((g
    . x) 
    + (c1 
    - c2)) 
    
      .= ((g
    + (c1 
    - c2)) 
    . x) by 
    A1,
    A2,
    A3,
    A4,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:14
    
    
    
    
    
    Th14: ((g 
    - c1) 
    + c2) 
    = (g 
    - (c1 
    - c2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    - c1) 
    + c2)) 
    = ( 
    dom (g 
    - c1)) by 
    VALUED_1:def 2;
    
      
    
      
    
    A2: ( 
    dom (g 
    - c1)) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      hence (
    dom ((g 
    - c1) 
    + c2)) 
    = ( 
    dom (g 
    - (c1 
    - c2))) by 
    A1,
    VALUED_1:def 2;
    
      let x be
    object;
    
      
    
      
    
    A3: ( 
    dom (g 
    - (c1 
    - c2))) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    - c1) 
    + c2)); 
    
      
    
      hence (((g
    - c1) 
    + c2) 
    . x) 
    = (((g 
    - c1) 
    . x) 
    + c2) by 
    VALUED_1:def 2
    
      .= (((g
    . x) 
    - c1) 
    + c2) by 
    A1,
    A4,
    VALUED_1:def 2
    
      .= ((g
    . x) 
    - (c1 
    - c2)) 
    
      .= ((g
    - (c1 
    - c2)) 
    . x) by 
    A1,
    A2,
    A3,
    A4,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:15
    
    
    
    
    
    Th15: ((g 
    - c1) 
    - c2) 
    = (g 
    - (c1 
    + c2)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    - c1) 
    - c2)) 
    = ( 
    dom (g 
    - c1)) by 
    VALUED_1:def 2;
    
      
    
      
    
    A2: ( 
    dom (g 
    - c1)) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      hence (
    dom ((g 
    - c1) 
    - c2)) 
    = ( 
    dom (g 
    - (c1 
    + c2))) by 
    A1,
    VALUED_1:def 2;
    
      let x be
    object;
    
      
    
      
    
    A3: ( 
    dom (g 
    - (c1 
    + c2))) 
    = ( 
    dom g) by 
    VALUED_1:def 2;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    - c1) 
    - c2)); 
    
      
    
      hence (((g
    - c1) 
    - c2) 
    . x) 
    = (((g 
    - c1) 
    . x) 
    - c2) by 
    VALUED_1:def 2
    
      .= (((g
    . x) 
    - c1) 
    - c2) by 
    A1,
    A4,
    VALUED_1:def 2
    
      .= ((g
    . x) 
    - (c1 
    + c2)) 
    
      .= ((g
    - (c1 
    + c2)) 
    . x) by 
    A1,
    A2,
    A3,
    A4,
    VALUED_1:def 2;
    
    end;
    
    theorem :: 
    
    VALUED_2:16
    
    
    
    
    
    Th16: ((g 
    (#) c1) 
    (#) c2) 
    = (g 
    (#) (c1 
    * c2)) 
    
    proof
    
      (
    dom ((g 
    (#) c1) 
    (#) c2)) 
    = ( 
    dom (g 
    (#) c1)) & ( 
    dom (g 
    (#) c1)) 
    = ( 
    dom g) by 
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    (#) c1) 
    (#) c2)) 
    = ( 
    dom (g 
    (#) (c1 
    * c2))) by 
    VALUED_1:def 5;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (#) c1) 
    (#) c2)); 
    
      
    
      thus (((g
    (#) c1) 
    (#) c2) 
    . x) 
    = (((g 
    (#) c1) 
    . x) 
    * c2) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * c1) 
    * c2) by 
    VALUED_1: 6
    
      .= ((g
    . x) 
    * (c1 
    * c2)) 
    
      .= ((g
    (#) (c1 
    * c2)) 
    . x) by 
    VALUED_1: 6;
    
    end;
    
    theorem :: 
    
    VALUED_2:17
    
    
    
    
    
    Th17: ( 
    - (g 
    + h)) 
    = (( 
    - g) 
    - h) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (g 
    + h))) 
    = ( 
    dom (g 
    + h)) by 
    VALUED_1: 8;
    
      (
    dom (g 
    + h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (( 
    - g) 
    - h)) 
    = (( 
    dom ( 
    - g)) 
    /\ ( 
    dom h)) by 
    VALUED_1: 12,
    VALUED_1:def 1;
    
      hence
    
      
    
    A2: ( 
    dom ( 
    - (g 
    + h))) 
    = ( 
    dom (( 
    - g) 
    - h)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom ( 
    - (g 
    + h))); 
    
      
    
      thus ((
    - (g 
    + h)) 
    . x) 
    = ( 
    - ((g 
    + h) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    + (h 
    . x))) by 
    A1,
    A3,
    VALUED_1:def 1
    
      .= ((
    - (g 
    . x)) 
    - (h 
    . x)) 
    
      .= (((
    - g) 
    . x) 
    - (h 
    . x)) by 
    VALUED_1: 8
    
      .= (((
    - g) 
    - h) 
    . x) by 
    A2,
    A3,
    VALUED_1: 13;
    
    end;
    
    theorem :: 
    
    VALUED_2:18
    
    
    
    
    
    Th18: (g 
    - h) 
    = ( 
    - (h 
    - g)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (h 
    - g))) 
    = ( 
    dom (h 
    - g)) by 
    VALUED_1: 8;
    
      (
    dom (g 
    - h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1: 12;
    
      hence
    
      
    
    A2: ( 
    dom (g 
    - h)) 
    = ( 
    dom ( 
    - (h 
    - g))) by 
    A1,
    VALUED_1: 12;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (g 
    - h)); 
    
      
    
      hence ((g
    - h) 
    . x) 
    = ((g 
    . x) 
    - (h 
    . x)) by 
    VALUED_1: 13
    
      .= (
    - ((h 
    . x) 
    - (g 
    . x))) 
    
      .= (
    - ((h 
    - g) 
    . x)) by 
    A1,
    A2,
    A3,
    VALUED_1: 13
    
      .= ((
    - (h 
    - g)) 
    . x) by 
    VALUED_1: 8;
    
    end;
    
    theorem :: 
    
    VALUED_2:19
    
    
    
    
    
    Th19: ((g 
    (#) h) 
    /" k) 
    = (g 
    (#) (h 
    /" k)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom (g 
    (#) (h 
    /" k))) 
    = (( 
    dom g) 
    /\ ( 
    dom (h 
    /" k))) & ( 
    dom ((g 
    (#) h) 
    /" k)) 
    = (( 
    dom (g 
    (#) h)) 
    /\ ( 
    dom k)) by 
    VALUED_1: 16,
    VALUED_1:def 4;
    
      (
    dom (g 
    (#) h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (h 
    /" k)) 
    = (( 
    dom h) 
    /\ ( 
    dom k)) by 
    VALUED_1: 16,
    VALUED_1:def 4;
    
      hence (
    dom ((g 
    (#) h) 
    /" k)) 
    = ( 
    dom (g 
    (#) (h 
    /" k))) by 
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (#) h) 
    /" k)); 
    
      
    
      thus (((g
    (#) h) 
    /" k) 
    . x) 
    = (((g 
    (#) h) 
    . x) 
    / (k 
    . x)) by 
    VALUED_1: 17
    
      .= (((g
    . x) 
    * (h 
    . x)) 
    / (k 
    . x)) by 
    VALUED_1: 5
    
      .= ((g
    . x) 
    * ((h 
    . x) 
    / (k 
    . x))) 
    
      .= ((g
    . x) 
    * ((h 
    /" k) 
    . x)) by 
    VALUED_1: 17
    
      .= ((g
    (#) (h 
    /" k)) 
    . x) by 
    VALUED_1: 5;
    
    end;
    
    theorem :: 
    
    VALUED_2:20
    
    
    
    
    
    Th20: ((g 
    /" h) 
    (#) k) 
    = ((g 
    (#) k) 
    /" h) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    /" h) 
    (#) k)) 
    = (( 
    dom (g 
    /" h)) 
    /\ ( 
    dom k)) & ( 
    dom ((g 
    (#) k) 
    /" h)) 
    = (( 
    dom (g 
    (#) k)) 
    /\ ( 
    dom h)) by 
    VALUED_1: 16,
    VALUED_1:def 4;
    
      (
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (g 
    (#) k)) 
    = (( 
    dom g) 
    /\ ( 
    dom k)) by 
    VALUED_1: 16,
    VALUED_1:def 4;
    
      hence (
    dom ((g 
    /" h) 
    (#) k)) 
    = ( 
    dom ((g 
    (#) k) 
    /" h)) by 
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    /" h) 
    (#) k)); 
    
      
    
      thus (((g
    /" h) 
    (#) k) 
    . x) 
    = (((g 
    /" h) 
    . x) 
    * (k 
    . x)) by 
    VALUED_1: 5
    
      .= (((g
    . x) 
    / (h 
    . x)) 
    * (k 
    . x)) by 
    VALUED_1: 17
    
      .= (((g
    . x) 
    * (k 
    . x)) 
    / (h 
    . x)) 
    
      .= (((g
    (#) k) 
    . x) 
    / (h 
    . x)) by 
    VALUED_1: 5
    
      .= (((g
    (#) k) 
    /" h) 
    . x) by 
    VALUED_1: 17;
    
    end;
    
    theorem :: 
    
    VALUED_2:21
    
    
    
    
    
    Th21: ((g 
    /" h) 
    /" k) 
    = (g 
    /" (h 
    (#) k)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    /" h) 
    /" k)) 
    = (( 
    dom (g 
    /" h)) 
    /\ ( 
    dom k)) & ( 
    dom (g 
    /" (h 
    (#) k))) 
    = (( 
    dom g) 
    /\ ( 
    dom (h 
    (#) k))) by 
    VALUED_1: 16;
    
      (
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (h 
    (#) k)) 
    = (( 
    dom h) 
    /\ ( 
    dom k)) by 
    VALUED_1: 16,
    VALUED_1:def 4;
    
      hence (
    dom ((g 
    /" h) 
    /" k)) 
    = ( 
    dom (g 
    /" (h 
    (#) k))) by 
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    /" h) 
    /" k)); 
    
      
    
      thus (((g
    /" h) 
    /" k) 
    . x) 
    = (((g 
    /" h) 
    . x) 
    / (k 
    . x)) by 
    VALUED_1: 17
    
      .= (((g
    . x) 
    / (h 
    . x)) 
    / (k 
    . x)) by 
    VALUED_1: 17
    
      .= ((g
    . x) 
    / ((h 
    . x) 
    * (k 
    . x))) by 
    XCMPLX_1: 78
    
      .= ((g
    . x) 
    / ((h 
    (#) k) 
    . x)) by 
    VALUED_1: 5
    
      .= ((g
    /" (h 
    (#) k)) 
    . x) by 
    VALUED_1: 17;
    
    end;
    
    theorem :: 
    
    VALUED_2:22
    
    
    
    
    
    Th22: (c 
    (#) ( 
    - g)) 
    = (( 
    - c) 
    (#) g) 
    
    proof
    
      (
    dom (c 
    (#) ( 
    - g))) 
    = ( 
    dom ( 
    - g)) by 
    VALUED_1:def 5
    
      .= (
    dom g) by 
    VALUED_1: 8;
    
      hence (
    dom (c 
    (#) ( 
    - g))) 
    = ( 
    dom (( 
    - c) 
    (#) g)) by 
    VALUED_1:def 5;
    
      let x be
    object;
    
      assume x
    in ( 
    dom (c 
    (#) ( 
    - g))); 
    
      
    
      thus ((c
    (#) ( 
    - g)) 
    . x) 
    = (c 
    * (( 
    - g) 
    . x)) by 
    VALUED_1: 6
    
      .= (c
    * ( 
    - (g 
    . x))) by 
    VALUED_1: 8
    
      .= ((
    - c) 
    * (g 
    . x)) 
    
      .= (((
    - c) 
    (#) g) 
    . x) by 
    VALUED_1: 6;
    
    end;
    
    theorem :: 
    
    VALUED_2:23
    
    
    
    
    
    Th23: (c 
    (#) ( 
    - g)) 
    = ( 
    - (c 
    (#) g)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (c 
    (#) g))) 
    = ( 
    dom (c 
    (#) g)) by 
    VALUED_1: 8
    
      .= (
    dom g) by 
    VALUED_1:def 5;
    
      (
    dom (c 
    (#) ( 
    - g))) 
    = ( 
    dom ( 
    - g)) by 
    VALUED_1:def 5
    
      .= (
    dom g) by 
    VALUED_1: 8;
    
      hence (
    dom (c 
    (#) ( 
    - g))) 
    = ( 
    dom ( 
    - (c 
    (#) g))) by 
    A1;
    
      let x be
    object;
    
      assume x
    in ( 
    dom (c 
    (#) ( 
    - g))); 
    
      
    
      thus ((c
    (#) ( 
    - g)) 
    . x) 
    = (c 
    * (( 
    - g) 
    . x)) by 
    VALUED_1: 6
    
      .= (c
    * ( 
    - (g 
    . x))) by 
    VALUED_1: 8
    
      .= (
    - (c 
    * (g 
    . x))) 
    
      .= (
    - ((c 
    (#) g) 
    . x)) by 
    VALUED_1: 6
    
      .= ((
    - (c 
    (#) g)) 
    . x) by 
    VALUED_1: 8;
    
    end;
    
    theorem :: 
    
    VALUED_2:24
    
    
    
    
    
    Th24: (( 
    - c) 
    (#) g) 
    = ( 
    - (c 
    (#) g)) 
    
    proof
    
      
    
      thus ((
    - c) 
    (#) g) 
    = (c 
    (#) ( 
    - g)) by 
    Th22
    
      .= (
    - (c 
    (#) g)) by 
    Th23;
    
    end;
    
    theorem :: 
    
    VALUED_2:25
    
    
    
    
    
    Th25: ( 
    - (g 
    (#) h)) 
    = (( 
    - g) 
    (#) h) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (g 
    (#) h))) 
    = ( 
    dom (g 
    (#) h)) by 
    VALUED_1: 8;
    
      (
    dom (g 
    (#) h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (( 
    - g) 
    (#) h)) 
    = (( 
    dom ( 
    - g)) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 4;
    
      hence (
    dom ( 
    - (g 
    (#) h))) 
    = ( 
    dom (( 
    - g) 
    (#) h)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ( 
    - (g 
    (#) h))); 
    
      
    
      thus ((
    - (g 
    (#) h)) 
    . x) 
    = ( 
    - ((g 
    (#) h) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    * (h 
    . x))) by 
    VALUED_1: 5
    
      .= ((
    - (g 
    . x)) 
    * (h 
    . x)) 
    
      .= (((
    - g) 
    . x) 
    * (h 
    . x)) by 
    VALUED_1: 8
    
      .= (((
    - g) 
    (#) h) 
    . x) by 
    VALUED_1: 5;
    
    end;
    
    theorem :: 
    
    VALUED_2:26
    
    (
    - (g 
    /" h)) 
    = (( 
    - g) 
    /" h) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - (g 
    /" h))) 
    = ( 
    dom (g 
    /" h)) by 
    VALUED_1: 8;
    
      (
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (( 
    - g) 
    /" h)) 
    = (( 
    dom ( 
    - g)) 
    /\ ( 
    dom h)) by 
    VALUED_1: 16;
    
      hence (
    dom ( 
    - (g 
    /" h))) 
    = ( 
    dom (( 
    - g) 
    /" h)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ( 
    - (g 
    /" h))); 
    
      
    
      thus ((
    - (g 
    /" h)) 
    . x) 
    = ( 
    - ((g 
    /" h) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    / (h 
    . x))) by 
    VALUED_1: 17
    
      .= ((
    - (g 
    . x)) 
    / (h 
    . x)) 
    
      .= (((
    - g) 
    . x) 
    / (h 
    . x)) by 
    VALUED_1: 8
    
      .= (((
    - g) 
    /" h) 
    . x) by 
    VALUED_1: 17;
    
    end;
    
    theorem :: 
    
    VALUED_2:27
    
    
    
    
    
    Th27: ( 
    - (g 
    /" h)) 
    = (g 
    /" ( 
    - h)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    - h)) 
    = ( 
    dom h) by 
    VALUED_1: 8;
    
      (
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (g 
    /" ( 
    - h))) 
    = (( 
    dom g) 
    /\ ( 
    dom ( 
    - h))) by 
    VALUED_1: 16;
    
      hence (
    dom ( 
    - (g 
    /" h))) 
    = ( 
    dom (g 
    /" ( 
    - h))) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ( 
    - (g 
    /" h))); 
    
      
    
      thus ((
    - (g 
    /" h)) 
    . x) 
    = ( 
    - ((g 
    /" h) 
    . x)) by 
    VALUED_1: 8
    
      .= (
    - ((g 
    . x) 
    / (h 
    . x))) by 
    VALUED_1: 17
    
      .= ((g
    . x) 
    / ( 
    - (h 
    . x))) by 
    XCMPLX_1: 188
    
      .= ((g
    . x) 
    / (( 
    - h) 
    . x)) by 
    VALUED_1: 8
    
      .= ((g
    /" ( 
    - h)) 
    . x) by 
    VALUED_1: 17;
    
    end;
    
    definition
    
      let f be
    complex-valued  
    Function, c be 
    Complex;
    
      :: 
    
    VALUED_2:def32
    
      func f
    
    (/) c -> 
    Function equals ((1 
    / c) 
    (#) f); 
    
      coherence ;
    
    end
    
    registration
    
      let f be
    complex-valued  
    Function, c be 
    Complex;
    
      cluster (f 
    (/) c) -> 
    complex-valued;
    
      coherence ;
    
    end
    
    registration
    
      let f be
    real-valued  
    Function, r be 
    Real;
    
      cluster (f 
    (/) r) -> 
    real-valued;
    
      coherence ;
    
    end
    
    registration
    
      let f be
    RAT  
    -valued  
    Function, r be 
    Rational;
    
      cluster (f 
    (/) r) -> 
    RAT  
    -valued;
    
      coherence ;
    
    end
    
    registration
    
      let f be
    complex-valued  
    FinSequence, c be 
    Complex;
    
      cluster (f 
    (/) c) -> 
    FinSequence-like;
    
      coherence ;
    
    end
    
    theorem :: 
    
    VALUED_2:28
    
    (
    dom (g 
    (/) c)) 
    = ( 
    dom g) by 
    VALUED_1:def 5;
    
    theorem :: 
    
    VALUED_2:29
    
    for x be
    object holds ((g 
    (/) c) 
    . x) 
    = ((g 
    . x) 
    / c) by 
    VALUED_1: 6;
    
    theorem :: 
    
    VALUED_2:30
    
    
    
    
    
    Th30: (( 
    - g) 
    (/) c) 
    = ( 
    - (g 
    (/) c)) 
    
    proof
    
      
    
      thus ((
    - g) 
    (/) c) 
    = (( 
    - (1 
    / c)) 
    (#) g) by 
    Th22
    
      .= (
    - (g 
    (/) c)) by 
    Th24;
    
    end;
    
    theorem :: 
    
    VALUED_2:31
    
    
    
    
    
    Th31: (g 
    (/) ( 
    - c)) 
    = ( 
    - (g 
    (/) c)) 
    
    proof
    
      
    
      thus (g
    (/) ( 
    - c)) 
    = (( 
    - (1 
    / c)) 
    (#) g) by 
    XCMPLX_1: 188
    
      .= (
    - (g 
    (/) c)) by 
    Th24;
    
    end;
    
    theorem :: 
    
    VALUED_2:32
    
    (g
    (/) ( 
    - c)) 
    = (( 
    - g) 
    (/) c) 
    
    proof
    
      
    
      thus (g
    (/) ( 
    - c)) 
    = ( 
    - (g 
    (/) c)) by 
    Th31
    
      .= ((
    - g) 
    (/) c) by 
    Th30;
    
    end;
    
    theorem :: 
    
    VALUED_2:33
    
    
    
    
    
    Th33: g 
    <>  
    {} & g is 
    non-empty & (g 
    (/) c1) 
    = (g 
    (/) c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: g 
    <>  
    {} and 
    
      
    
    A2: g is 
    non-empty and 
    
      
    
    A3: (g 
    (/) c1) 
    = (g 
    (/) c2); 
    
      consider x be
    object such that 
    
      
    
    A4: x 
    in ( 
    dom g) by 
    A1,
    XBOOLE_0:def 1;
    
      (g
    . x) 
    in ( 
    rng g) by 
    A4,
    FUNCT_1:def 3;
    
      then
    
      
    
    A5: (g 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      ((g
    (/) c1) 
    . x) 
    = ((g 
    . x) 
    / c1) & ((g 
    (/) c2) 
    . x) 
    = ((g 
    . x) 
    / c2) by 
    VALUED_1: 6;
    
      then (c1
    " ) 
    = (c2 
    " ) by 
    A3,
    A5,
    XCMPLX_1: 5;
    
      hence c1
    = c2 by 
    XCMPLX_1: 201;
    
    end;
    
    theorem :: 
    
    VALUED_2:34
    
    ((g
    (#) c1) 
    (/) c2) 
    = (g 
    (#) (c1 
    / c2)) 
    
    proof
    
      (
    dom (g 
    (#) c1)) 
    = ( 
    dom g) & ( 
    dom ((g 
    (#) c1) 
    (/) c2)) 
    = ( 
    dom (g 
    (#) c1)) by 
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    (#) c1) 
    (/) c2)) 
    = ( 
    dom (g 
    (#) (c1 
    / c2))) by 
    VALUED_1:def 5;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (#) c1) 
    (/) c2)); 
    
      
    
      thus (((g
    (#) c1) 
    (/) c2) 
    . x) 
    = (((g 
    (#) c1) 
    . x) 
    * (c2 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * c1) 
    * (c2 
    " )) by 
    VALUED_1: 6
    
      .= ((g
    . x) 
    * (c1 
    / c2)) 
    
      .= ((g
    (#) (c1 
    / c2)) 
    . x) by 
    VALUED_1: 6;
    
    end;
    
    theorem :: 
    
    VALUED_2:35
    
    ((g
    (/) c1) 
    (#) c2) 
    = ((g 
    (#) c2) 
    (/) c1) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    (/) c1) 
    (#) c2)) 
    = ( 
    dom (g 
    (/) c1)) by 
    VALUED_1:def 5;
    
      (
    dom (g 
    (/) c1)) 
    = ( 
    dom g) & ( 
    dom (g 
    (#) c2)) 
    = ( 
    dom g) by 
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    (/) c1) 
    (#) c2)) 
    = ( 
    dom ((g 
    (#) c2) 
    (/) c1)) by 
    A1,
    VALUED_1:def 5;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (/) c1) 
    (#) c2)); 
    
      
    
      thus (((g
    (/) c1) 
    (#) c2) 
    . x) 
    = (((g 
    (/) c1) 
    . x) 
    * c2) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * (c1 
    " )) 
    * c2) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * c2) 
    * (c1 
    " )) 
    
      .= (((g
    (#) c2) 
    . x) 
    * (c1 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    (#) c2) 
    (/) c1) 
    . x) by 
    VALUED_1: 6;
    
    end;
    
    theorem :: 
    
    VALUED_2:36
    
    ((g
    (/) c1) 
    (/) c2) 
    = (g 
    (/) (c1 
    * c2)) 
    
    proof
    
      (
    dom (g 
    (/) c1)) 
    = ( 
    dom g) & ( 
    dom (g 
    (/) (c1 
    * c2))) 
    = ( 
    dom g) by 
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    (/) c1) 
    (/) c2)) 
    = ( 
    dom (g 
    (/) (c1 
    * c2))) by 
    VALUED_1:def 5;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (/) c1) 
    (/) c2)); 
    
      
    
      thus (((g
    (/) c1) 
    (/) c2) 
    . x) 
    = (((g 
    (/) c1) 
    . x) 
    * (c2 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * (c1 
    " )) 
    * (c2 
    " )) by 
    VALUED_1: 6
    
      .= ((g
    . x) 
    * ((c1 
    " ) 
    * (c2 
    " ))) 
    
      .= ((g
    . x) 
    * ((c1 
    * c2) 
    " )) by 
    XCMPLX_1: 204
    
      .= ((g
    (/) (c1 
    * c2)) 
    . x) by 
    VALUED_1: 6;
    
    end;
    
    theorem :: 
    
    VALUED_2:37
    
    ((g
    + h) 
    (/) c) 
    = ((g 
    (/) c) 
    + (h 
    (/) c)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    + h) 
    (/) c)) 
    = ( 
    dom (g 
    + h)) by 
    VALUED_1:def 5;
    
      
    
      
    
    A2: ( 
    dom (g 
    + h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 1;
    
      (
    dom (g 
    (/) c)) 
    = ( 
    dom g) & ( 
    dom (h 
    (/) c)) 
    = ( 
    dom h) by 
    VALUED_1:def 5;
    
      hence
    
      
    
    A3: ( 
    dom ((g 
    + h) 
    (/) c)) 
    = ( 
    dom ((g 
    (/) c) 
    + (h 
    (/) c))) by 
    A1,
    A2,
    VALUED_1:def 1;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    + h) 
    (/) c)); 
    
      
    
      thus (((g
    + h) 
    (/) c) 
    . x) 
    = (((g 
    + h) 
    . x) 
    * (c 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    + (h 
    . x)) 
    * (c 
    " )) by 
    A1,
    A4,
    VALUED_1:def 1
    
      .= (((g
    . x) 
    * (c 
    " )) 
    + ((h 
    . x) 
    * (c 
    " ))) 
    
      .= (((g
    (/) c) 
    . x) 
    + ((h 
    . x) 
    * (c 
    " ))) by 
    VALUED_1: 6
    
      .= (((g
    (/) c) 
    . x) 
    + ((h 
    (/) c) 
    . x)) by 
    VALUED_1: 6
    
      .= (((g
    (/) c) 
    + (h 
    (/) c)) 
    . x) by 
    A3,
    A4,
    VALUED_1:def 1;
    
    end;
    
    theorem :: 
    
    VALUED_2:38
    
    ((g
    - h) 
    (/) c) 
    = ((g 
    (/) c) 
    - (h 
    (/) c)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    - h) 
    (/) c)) 
    = ( 
    dom (g 
    - h)) by 
    VALUED_1:def 5;
    
      
    
      
    
    A2: ( 
    dom (g 
    - h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1: 12;
    
      (
    dom (g 
    (/) c)) 
    = ( 
    dom g) & ( 
    dom (h 
    (/) c)) 
    = ( 
    dom h) by 
    VALUED_1:def 5;
    
      hence
    
      
    
    A3: ( 
    dom ((g 
    - h) 
    (/) c)) 
    = ( 
    dom ((g 
    (/) c) 
    - (h 
    (/) c))) by 
    A1,
    A2,
    VALUED_1: 12;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ((g 
    - h) 
    (/) c)); 
    
      
    
      thus (((g
    - h) 
    (/) c) 
    . x) 
    = (((g 
    - h) 
    . x) 
    * (c 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    - (h 
    . x)) 
    * (c 
    " )) by 
    A1,
    A4,
    VALUED_1: 13
    
      .= (((g
    . x) 
    * (c 
    " )) 
    - ((h 
    . x) 
    * (c 
    " ))) 
    
      .= (((g
    (/) c) 
    . x) 
    - ((h 
    . x) 
    * (c 
    " ))) by 
    VALUED_1: 6
    
      .= (((g
    (/) c) 
    . x) 
    - ((h 
    (/) c) 
    . x)) by 
    VALUED_1: 6
    
      .= (((g
    (/) c) 
    - (h 
    (/) c)) 
    . x) by 
    A3,
    A4,
    VALUED_1: 13;
    
    end;
    
    theorem :: 
    
    VALUED_2:39
    
    ((g
    (#) h) 
    (/) c) 
    = (g 
    (#) (h 
    (/) c)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    (#) h) 
    (/) c)) 
    = ( 
    dom (g 
    (#) h)) by 
    VALUED_1:def 5;
    
      (
    dom (g 
    (#) h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (h 
    (/) c)) 
    = ( 
    dom h) by 
    VALUED_1:def 4,
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    (#) h) 
    (/) c)) 
    = ( 
    dom (g 
    (#) (h 
    (/) c))) by 
    A1,
    VALUED_1:def 4;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    (#) h) 
    (/) c)); 
    
      
    
      thus (((g
    (#) h) 
    (/) c) 
    . x) 
    = (((g 
    (#) h) 
    . x) 
    * (c 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    * (h 
    . x)) 
    * (c 
    " )) by 
    VALUED_1: 5
    
      .= ((g
    . x) 
    * ((h 
    . x) 
    * (c 
    " ))) 
    
      .= ((g
    . x) 
    * ((h 
    (/) c) 
    . x)) by 
    VALUED_1: 6
    
      .= ((g
    (#) (h 
    (/) c)) 
    . x) by 
    VALUED_1: 5;
    
    end;
    
    theorem :: 
    
    VALUED_2:40
    
    ((g
    /" h) 
    (/) c) 
    = (g 
    /" (h 
    (#) c)) 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ((g 
    /" h) 
    (/) c)) 
    = ( 
    dom (g 
    /" h)) by 
    VALUED_1:def 5;
    
      (
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) & ( 
    dom (h 
    (#) c)) 
    = ( 
    dom h) by 
    VALUED_1: 16,
    VALUED_1:def 5;
    
      hence (
    dom ((g 
    /" h) 
    (/) c)) 
    = ( 
    dom (g 
    /" (h 
    (#) c))) by 
    A1,
    VALUED_1: 16;
    
      let x be
    object;
    
      assume x
    in ( 
    dom ((g 
    /" h) 
    (/) c)); 
    
      
    
      thus (((g
    /" h) 
    (/) c) 
    . x) 
    = (((g 
    /" h) 
    . x) 
    * (c 
    " )) by 
    VALUED_1: 6
    
      .= (((g
    . x) 
    / (h 
    . x)) 
    / c) by 
    VALUED_1: 17
    
      .= ((g
    . x) 
    / ((h 
    . x) 
    * c)) by 
    XCMPLX_1: 78
    
      .= ((g
    . x) 
    / ((h 
    (#) c) 
    . x)) by 
    VALUED_1: 6
    
      .= ((g
    /" (h 
    (#) c)) 
    . x) by 
    VALUED_1: 17;
    
    end;
    
    definition
    
      let f be
    complex-functions-valued  
    Function;
    
      deffunc
    
    F(
    object) = (
    - (f 
    . $1)); 
    
      :: 
    
    VALUED_2:def33
    
      func
    
    <-> f -> 
    Function means 
    
      :
    
    Def33: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ( 
    - (f 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    <->
    
      redefine
    
      func
    
    <-> f -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    <-> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def33;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    - (f 
    . x)) by 
    A2,
    Def33;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1: 8;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    <->
    
      redefine
    
      func
    
    <-> f -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    <-> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def33;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    - (f 
    . x)) by 
    A2,
    Def33;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1: 8;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    <->
    
      redefine
    
      func
    
    <-> f -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    <-> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def33;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    - (f 
    . x)) by 
    A2,
    Def33;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1: 8;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    <->
    
      redefine
    
      func
    
    <-> f -> 
    PartFunc of X, ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    <-> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def33;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    - (f 
    . x)) by 
    A2,
    Def33;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1: 8;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    registration
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    FinSequence of Y; 
    
      cluster ( 
    <-> f) -> 
    FinSequence-like;
    
      coherence
    
      proof
    
        (
    dom ( 
    <-> f)) 
    = ( 
    dom f) & ex n be 
    Nat st ( 
    dom f) 
    = ( 
    Seg n) by 
    Def33,
    FINSEQ_1:def 2;
    
        hence thesis by
    FINSEQ_1:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:41
    
    (
    <-> ( 
    <-> f)) 
    = f 
    
    proof
    
      set f1 = (
    <-> f); 
    
      
    
      
    
    A1: ( 
    dom f1) 
    = ( 
    dom f) by 
    Def33;
    
      hence
    
      
    
    A2: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f) by 
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom ( 
    <-> f1)); 
    
      
    
      hence ((
    <-> f1) 
    . x) 
    = ( 
    - (f1 
    . x)) by 
    Def33
    
      .= (
    - ( 
    - (f 
    . x))) by 
    A1,
    A2,
    A3,
    Def33
    
      .= (f
    . x); 
    
    end;
    
    theorem :: 
    
    VALUED_2:42
    
    (
    <-> f1) 
    = ( 
    <-> f2) implies f1 
    = f2 
    
    proof
    
      
    
      
    
    A1: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33;
    
      assume
    
      
    
    A2: ( 
    <-> f1) 
    = ( 
    <-> f2); 
    
      hence (
    dom f1) 
    = ( 
    dom f2) by 
    A1,
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom f1); 
    
      
    
      thus (f1
    . x) 
    = ( 
    - ( 
    - (f1 
    . x))) 
    
      .= (
    - (( 
    <-> f1) 
    . x)) by 
    A1,
    A3,
    Def33
    
      .= (
    - ( 
    - (f2 
    . x))) by 
    A2,
    A1,
    A3,
    Def33
    
      .= (f2
    . x); 
    
    end;
    
    definition
    
      let X be
    complex-functions-membered  
    set;
    
      let Y be
    set;
    
      let f be
    PartFunc of X, Y; 
    
      defpred
    
    P[
    object, 
    object] means ex a be
    complex-valued  
    Function st $1 
    = a & $2 
    = (f 
    . ( 
    - a)); 
    
      :: 
    
    VALUED_2:def34
    
      func f
    
    (-) -> 
    Function means ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    complex-valued  
    Function st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = (f 
    . ( 
    - x)); 
    
      existence
    
      proof
    
        
    
        
    
    A1: for x be 
    object st x 
    in ( 
    dom f) holds ex y be 
    object st 
    P[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    dom f); 
    
          then
    
          reconsider a = x as
    complex-valued  
    Function;
    
          take (f
    . ( 
    - a)), a; 
    
          thus thesis;
    
        end;
    
        consider F be
    Function such that 
    
        
    
    A2: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A3: for x be 
    object st x 
    in ( 
    dom f) holds 
    P[x, (F
    . x)] from 
    CLASSES1:sch 1(
    A1);
    
        take F;
    
        thus (
    dom F) 
    = ( 
    dom f) by 
    A2;
    
        let x be
    complex-valued  
    Function;
    
        assume x
    in ( 
    dom F); 
    
        then
    P[x, (F
    . x)] by 
    A2,
    A3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A4: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A5: for x be 
    complex-valued  
    Function st x 
    in ( 
    dom F) holds (F 
    . x) 
    = (f 
    . ( 
    - x)) and 
    
        
    
    A6: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A7: for x be 
    complex-valued  
    Function st x 
    in ( 
    dom G) holds (G 
    . x) 
    = (f 
    . ( 
    - x)); 
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A4,
    A6;
    
        let x be
    object;
    
        assume
    
        
    
    A8: x 
    in ( 
    dom F); 
    
        then
    
        reconsider y = x as
    complex-valued  
    Function by 
    A4;
    
        
    
        thus (F
    . x) 
    = (f 
    . ( 
    - y)) by 
    A5,
    A8
    
        .= (G
    . x) by 
    A4,
    A6,
    A7,
    A8;
    
      end;
    
    end
    
    definition
    
      let f be
    complex-functions-valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    " ); 
    
      :: 
    
    VALUED_2:def35
    
      func
    
    </> f -> 
    Function means 
    
      :
    
    Def35: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    " ); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    </>
    
      redefine
    
      func
    
    </> f -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    </> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def35;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    " ) by 
    A2,
    Def35;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 7;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    </>
    
      redefine
    
      func
    
    </> f -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    </> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def35;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    " ) by 
    A2,
    Def35;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 7;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    </>
    
      redefine
    
      func
    
    </> f -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    </> f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def35;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    " ) by 
    A2,
    Def35;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 7;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    registration
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    FinSequence of Y; 
    
      cluster ( 
    </> f) -> 
    FinSequence-like;
    
      coherence
    
      proof
    
        (
    dom ( 
    </> f)) 
    = ( 
    dom f) & ex n be 
    Nat st ( 
    dom f) 
    = ( 
    Seg n) by 
    Def35,
    FINSEQ_1:def 2;
    
        hence thesis by
    FINSEQ_1:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:43
    
    (
    </> ( 
    </> f)) 
    = f 
    
    proof
    
      set f1 = (
    </> f); 
    
      
    
      
    
    A1: ( 
    dom f1) 
    = ( 
    dom f) by 
    Def35;
    
      hence
    
      
    
    A2: ( 
    dom ( 
    </> f1)) 
    = ( 
    dom f) by 
    Def35;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom ( 
    </> f1)); 
    
      
    
      hence ((
    </> f1) 
    . x) 
    = ((f1 
    . x) 
    " ) by 
    Def35
    
      .= (((f
    . x) 
    " ) 
    " ) by 
    A1,
    A2,
    A3,
    Def35
    
      .= (f
    . x); 
    
    end;
    
    definition
    
      let f be
    complex-functions-valued  
    Function;
    
      deffunc
    
    F(
    object) = (
    abs (f 
    . $1)); 
    
      :: 
    
    VALUED_2:def36
    
      func
    
    abs (f) -> 
    Function means 
    
      :
    
    Def36: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ( 
    abs (f 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    abs
    
      redefine
    
      func
    
    abs (f) -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    abs f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def36;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    abs (f 
    . x)) by 
    A2,
    Def36;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 11;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    abs
    
      redefine
    
      func
    
    abs (f) -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    abs f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def36;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    abs (f 
    . x)) by 
    A2,
    Def36;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 11;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    abs
    
      redefine
    
      func
    
    abs (f) -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    abs f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def36;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    abs (f 
    . x)) by 
    A2,
    Def36;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 11;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      :: original:
    abs
    
      redefine
    
      func
    
    abs (f) -> 
    PartFunc of X, ( 
    N_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (
    abs f); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def36;
    
        (
    rng h) 
    c= ( 
    N_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ( 
    abs (f 
    . x)) by 
    A2,
    Def36;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 11;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    NAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    registration
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    FinSequence of Y; 
    
      cluster ( 
    abs f) -> 
    FinSequence-like;
    
      coherence
    
      proof
    
        (
    dom ( 
    abs f)) 
    = ( 
    dom f) & ex n be 
    Nat st ( 
    dom f) 
    = ( 
    Seg n) by 
    Def36,
    FINSEQ_1:def 2;
    
        hence thesis by
    FINSEQ_1:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:44
    
    (
    abs ( 
    abs f)) 
    = ( 
    abs f) 
    
    proof
    
      set f1 = (
    abs f); 
    
      thus
    
      
    
    A1: ( 
    dom ( 
    abs f1)) 
    = ( 
    dom ( 
    abs f)) by 
    Def36;
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    dom ( 
    abs f1)); 
    
      
    
      hence ((
    abs f1) 
    . x) 
    = ( 
    abs (f1 
    . x)) by 
    Def36
    
      .= (
    abs ( 
    abs (f 
    . x))) by 
    A1,
    A2,
    Def36
    
      .= ((
    abs f) 
    . x) by 
    A1,
    A2,
    Def36;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let c be
    Complex;
    
      deffunc
    
    F(
    object) = (c
    + (f 
    . $1)); 
    
      :: 
    
    VALUED_2:def37
    
      func f
    
    [+] c -> 
    Function means 
    
      :
    
    Def37: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = (c 
    + (f 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Complex;
    
      :: original:
    [+]
    
      redefine
    
      func f
    
    [+] c -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [+] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def37;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + c) by 
    A2,
    Def37;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Real;
    
      :: original:
    [+]
    
      redefine
    
      func f
    
    [+] c -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [+] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def37;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + c) by 
    A2,
    Def37;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Rational;
    
      :: original:
    [+]
    
      redefine
    
      func f
    
    [+] c -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [+] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def37;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + c) by 
    A2,
    Def37;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Integer;
    
      :: original:
    [+]
    
      redefine
    
      func f
    
    [+] c -> 
    PartFunc of X, ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [+] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def37;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + c) by 
    A2,
    Def37;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Nat;
    
      :: original:
    [+]
    
      redefine
    
      func f
    
    [+] c -> 
    PartFunc of X, ( 
    N_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [+] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def37;
    
        (
    rng h) 
    c= ( 
    N_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + c) by 
    A2,
    Def37;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    NAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:45
    
    ((f
    [+] c1) 
    [+] c2) 
    = (f 
    [+] (c1 
    + c2)) 
    
    proof
    
      set f1 = (f
    [+] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [+] c2)) 
    = ( 
    dom f1) by 
    Def37;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def37;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [+] c2)) 
    = ( 
    dom (f 
    [+] (c1 
    + c2))) by 
    A1,
    Def37;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [+] c2)); 
    
      
    
      hence ((f1
    [+] c2) 
    . x) 
    = ((f1 
    . x) 
    + c2) by 
    Def37
    
      .= (((f
    . x) 
    + c1) 
    + c2) by 
    A1,
    A3,
    Def37
    
      .= ((f
    . x) 
    + (c1 
    + c2)) by 
    Th12
    
      .= ((f
    [+] (c1 
    + c2)) 
    . x) by 
    A2,
    A3,
    Def37;
    
    end;
    
    theorem :: 
    
    VALUED_2:46
    
    f
    <>  
    {} & f is 
    non-empty & (f 
    [+] c1) 
    = (f 
    [+] c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: f 
    <>  
    {} and 
    
      
    
    A2: f is 
    non-empty and 
    
      
    
    A3: (f 
    [+] c1) 
    = (f 
    [+] c2); 
    
      consider x be
    object such that 
    
      
    
    A4: x 
    in ( 
    dom f) by 
    A1,
    XBOOLE_0:def 1;
    
      (f
    . x) 
    in ( 
    rng f) by 
    A4,
    FUNCT_1:def 3;
    
      then
    
      
    
    A5: (f 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      (
    dom f) 
    = ( 
    dom (f 
    [+] c2)) by 
    Def37;
    
      then
    
      
    
    A6: ((f 
    [+] c2) 
    . x) 
    = ((f 
    . x) 
    + c2) by 
    A4,
    Def37;
    
      (
    dom f) 
    = ( 
    dom (f 
    [+] c1)) by 
    Def37;
    
      then ((f
    [+] c1) 
    . x) 
    = ((f 
    . x) 
    + c1) by 
    A4,
    Def37;
    
      hence c1
    = c2 by 
    A3,
    A5,
    A6,
    Th7;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let c be
    Complex;
    
      :: 
    
    VALUED_2:def38
    
      func f
    
    [-] c -> 
    Function equals (f 
    [+] ( 
    - c)); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    VALUED_2:47
    
    (
    dom (f 
    [-] c)) 
    = ( 
    dom f) by 
    Def37;
    
    theorem :: 
    
    VALUED_2:48
    
    x
    in ( 
    dom (f 
    [-] c)) implies ((f 
    [-] c) 
    . x) 
    = ((f 
    . x) 
    - c) by 
    Def37;
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Complex;
    
      :: original:
    [-]
    
      redefine
    
      func f
    
    [-] c -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [-] c) 
    = (f 
    [+] ( 
    - c)); 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Real;
    
      :: original:
    [-]
    
      redefine
    
      func f
    
    [-] c -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [-] c) 
    = (f 
    [+] ( 
    - c)); 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Rational;
    
      :: original:
    [-]
    
      redefine
    
      func f
    
    [-] c -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [-] c) 
    = (f 
    [+] ( 
    - c)); 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Integer;
    
      :: original:
    [-]
    
      redefine
    
      func f
    
    [-] c -> 
    PartFunc of X, ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [-] c) 
    = (f 
    [+] ( 
    - c)); 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:49
    
    f
    <>  
    {} & f is 
    non-empty & (f 
    [-] c1) 
    = (f 
    [-] c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: f 
    <>  
    {} and 
    
      
    
    A2: f is 
    non-empty and 
    
      
    
    A3: (f 
    [-] c1) 
    = (f 
    [-] c2); 
    
      consider x be
    object such that 
    
      
    
    A4: x 
    in ( 
    dom f) by 
    A1,
    XBOOLE_0:def 1;
    
      (f
    . x) 
    in ( 
    rng f) by 
    A4,
    FUNCT_1:def 3;
    
      then
    
      
    
    A5: (f 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      (
    dom f) 
    = ( 
    dom (f 
    [-] c2)) by 
    Def37;
    
      then
    
      
    
    A6: ((f 
    [-] c2) 
    . x) 
    = ((f 
    . x) 
    - c2) by 
    A4,
    Def37;
    
      (
    dom f) 
    = ( 
    dom (f 
    [-] c1)) by 
    Def37;
    
      then ((f
    [-] c1) 
    . x) 
    = ((f 
    . x) 
    - c1) by 
    A4,
    Def37;
    
      hence c1
    = c2 by 
    A3,
    A5,
    A6,
    Th8;
    
    end;
    
    theorem :: 
    
    VALUED_2:50
    
    ((f
    [+] c1) 
    [-] c2) 
    = (f 
    [+] (c1 
    - c2)) 
    
    proof
    
      set f1 = (f
    [+] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [-] c2)) 
    = ( 
    dom f1) by 
    Def37;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def37;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [-] c2)) 
    = ( 
    dom (f 
    [+] (c1 
    - c2))) by 
    A1,
    Def37;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [-] c2)); 
    
      
    
      hence ((f1
    [-] c2) 
    . x) 
    = ((f1 
    . x) 
    - c2) by 
    Def37
    
      .= (((f
    . x) 
    + c1) 
    - c2) by 
    A1,
    A3,
    Def37
    
      .= ((f
    . x) 
    + (c1 
    - c2)) by 
    Th12
    
      .= ((f
    [+] (c1 
    - c2)) 
    . x) by 
    A2,
    A3,
    Def37;
    
    end;
    
    theorem :: 
    
    VALUED_2:51
    
    ((f
    [-] c1) 
    [+] c2) 
    = (f 
    [-] (c1 
    - c2)) 
    
    proof
    
      set f1 = (f
    [-] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [+] c2)) 
    = ( 
    dom f1) by 
    Def37;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def37;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [+] c2)) 
    = ( 
    dom (f 
    [-] (c1 
    - c2))) by 
    A1,
    Def37;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [+] c2)); 
    
      
    
      hence ((f1
    [+] c2) 
    . x) 
    = ((f1 
    . x) 
    + c2) by 
    Def37
    
      .= (((f
    . x) 
    - c1) 
    + c2) by 
    A1,
    A3,
    Def37
    
      .= ((f
    . x) 
    - (c1 
    - c2)) by 
    Th14
    
      .= ((f
    [-] (c1 
    - c2)) 
    . x) by 
    A2,
    A3,
    Def37;
    
    end;
    
    theorem :: 
    
    VALUED_2:52
    
    ((f
    [-] c1) 
    [-] c2) 
    = (f 
    [-] (c1 
    + c2)) 
    
    proof
    
      set f1 = (f
    [-] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [-] c2)) 
    = ( 
    dom f1) by 
    Def37;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def37;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [-] c2)) 
    = ( 
    dom (f 
    [-] (c1 
    + c2))) by 
    A1,
    Def37;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [-] c2)); 
    
      
    
      hence ((f1
    [-] c2) 
    . x) 
    = ((f1 
    . x) 
    - c2) by 
    Def37
    
      .= (((f
    . x) 
    - c1) 
    - c2) by 
    A1,
    A3,
    Def37
    
      .= ((f
    . x) 
    - (c1 
    + c2)) by 
    Th15
    
      .= ((f
    [-] (c1 
    + c2)) 
    . x) by 
    A2,
    A3,
    Def37;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let c be
    Complex;
    
      deffunc
    
    F(
    object) = (c
    (#) (f 
    . $1)); 
    
      :: 
    
    VALUED_2:def39
    
      func f
    
    [#] c -> 
    Function means 
    
      :
    
    Def39: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = (c 
    (#) (f 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Complex;
    
      :: original:
    [#]
    
      redefine
    
      func f
    
    [#] c -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [#] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def39;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = (c 
    (#) (f 
    . x)) by 
    A2,
    Def39;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Real;
    
      :: original:
    [#]
    
      redefine
    
      func f
    
    [#] c -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [#] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def39;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = (c 
    (#) (f 
    . x)) by 
    A2,
    Def39;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Rational;
    
      :: original:
    [#]
    
      redefine
    
      func f
    
    [#] c -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [#] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def39;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = (c 
    (#) (f 
    . x)) by 
    A2,
    Def39;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Integer;
    
      :: original:
    [#]
    
      redefine
    
      func f
    
    [#] c -> 
    PartFunc of X, ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [#] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def39;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = (c 
    (#) (f 
    . x)) by 
    A2,
    Def39;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Nat;
    
      :: original:
    [#]
    
      redefine
    
      func f
    
    [#] c -> 
    PartFunc of X, ( 
    N_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    [#] c); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = ( 
    dom f) by 
    Def39;
    
        (
    rng h) 
    c= ( 
    N_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = (c 
    (#) (f 
    . x)) by 
    A2,
    Def39;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          (f
    . x) 
    in Y by 
    A1,
    A2,
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    NAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:53
    
    ((f
    [#] c1) 
    [#] c2) 
    = (f 
    [#] (c1 
    * c2)) 
    
    proof
    
      set f1 = (f
    [#] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [#] c2)) 
    = ( 
    dom f1) by 
    Def39;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def39;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [#] c2)) 
    = ( 
    dom (f 
    [#] (c1 
    * c2))) by 
    A1,
    Def39;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [#] c2)); 
    
      
    
      hence ((f1
    [#] c2) 
    . x) 
    = ((f1 
    . x) 
    (#) c2) by 
    Def39
    
      .= (((f
    . x) 
    (#) c1) 
    (#) c2) by 
    A1,
    A3,
    Def39
    
      .= ((f
    . x) 
    (#) (c1 
    * c2)) by 
    Th16
    
      .= ((f
    [#] (c1 
    * c2)) 
    . x) by 
    A2,
    A3,
    Def39;
    
    end;
    
    theorem :: 
    
    VALUED_2:54
    
    f
    <>  
    {} & f is 
    non-empty & (for x st x 
    in ( 
    dom f) holds (f 
    . x) is 
    non-empty) & (f
    [#] c1) 
    = (f 
    [#] c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: f 
    <>  
    {} and 
    
      
    
    A2: f is 
    non-empty and 
    
      
    
    A3: for x st x 
    in ( 
    dom f) holds (f 
    . x) is 
    non-empty and 
    
      
    
    A4: (f 
    [#] c1) 
    = (f 
    [#] c2); 
    
      consider x be
    object such that 
    
      
    
    A5: x 
    in ( 
    dom f) by 
    A1,
    XBOOLE_0:def 1;
    
      (
    dom f) 
    = ( 
    dom (f 
    [#] c2)) by 
    Def39;
    
      then
    
      
    
    A6: ((f 
    [#] c2) 
    . x) 
    = ((f 
    . x) 
    (#) c2) by 
    A5,
    Def39;
    
      (
    dom f) 
    = ( 
    dom (f 
    [#] c1)) by 
    Def39;
    
      then
    
      
    
    A7: ((f 
    [#] c1) 
    . x) 
    = ((f 
    . x) 
    (#) c1) by 
    A5,
    Def39;
    
      (f
    . x) 
    in ( 
    rng f) by 
    A5,
    FUNCT_1:def 3;
    
      then
    
      
    
    A8: (f 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      (f
    . x) is 
    non-empty by 
    A3,
    A5;
    
      hence c1
    = c2 by 
    A4,
    A8,
    A7,
    A6,
    Th9;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let c be
    Complex;
    
      :: 
    
    VALUED_2:def40
    
      func f
    
    [/] c -> 
    Function equals (f 
    [#] (c 
    " )); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    VALUED_2:55
    
    (
    dom (f 
    [/] c)) 
    = ( 
    dom f) by 
    Def39;
    
    theorem :: 
    
    VALUED_2:56
    
    x
    in ( 
    dom (f 
    [/] c)) implies ((f 
    [/] c) 
    . x) 
    = ((c 
    " ) 
    (#) (f 
    . x)) by 
    Def39;
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Complex;
    
      :: original:
    [/]
    
      redefine
    
      func f
    
    [/] c -> 
    PartFunc of X, ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [/] c) 
    = (f 
    [#] (c 
    " )); 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Real;
    
      :: original:
    [/]
    
      redefine
    
      func f
    
    [/] c -> 
    PartFunc of X, ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [/] c) 
    = (f 
    [#] (c 
    " )); 
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let c be
    Rational;
    
      :: original:
    [/]
    
      redefine
    
      func f
    
    [/] c -> 
    PartFunc of X, ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    [/] c) 
    = (f 
    [#] (c 
    " )); 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:57
    
    ((f
    [/] c1) 
    [/] c2) 
    = (f 
    [/] (c1 
    * c2)) 
    
    proof
    
      set f1 = (f
    [/] c1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    [/] c2)) 
    = ( 
    dom f1) by 
    Def39;
    
      (
    dom f1) 
    = ( 
    dom f) by 
    Def39;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    [/] c2)) 
    = ( 
    dom (f 
    [/] (c1 
    * c2))) by 
    A1,
    Def39;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    [/] c2)); 
    
      
    
      hence ((f1
    [/] c2) 
    . x) 
    = ((f1 
    . x) 
    (#) (c2 
    " )) by 
    Def39
    
      .= (((f
    . x) 
    (#) (c1 
    " )) 
    (#) (c2 
    " )) by 
    A1,
    A3,
    Def39
    
      .= ((f
    . x) 
    (#) ((c1 
    " ) 
    * (c2 
    " ))) by 
    Th16
    
      .= ((f
    . x) 
    (#) ((c1 
    * c2) 
    " )) by 
    XCMPLX_1: 204
    
      .= ((f
    [/] (c1 
    * c2)) 
    . x) by 
    A2,
    A3,
    Def39;
    
    end;
    
    theorem :: 
    
    VALUED_2:58
    
    f
    <>  
    {} & f is 
    non-empty & (for x st x 
    in ( 
    dom f) holds (f 
    . x) is 
    non-empty) & (f
    [/] c1) 
    = (f 
    [/] c2) implies c1 
    = c2 
    
    proof
    
      assume that
    
      
    
    A1: f 
    <>  
    {} and 
    
      
    
    A2: f is 
    non-empty and 
    
      
    
    A3: for x st x 
    in ( 
    dom f) holds (f 
    . x) is 
    non-empty and 
    
      
    
    A4: (f 
    [/] c1) 
    = (f 
    [/] c2); 
    
      consider x be
    object such that 
    
      
    
    A5: x 
    in ( 
    dom f) by 
    A1,
    XBOOLE_0:def 1;
    
      (
    dom f) 
    = ( 
    dom (f 
    [/] c2)) by 
    Def39;
    
      then
    
      
    
    A6: ((f 
    [/] c2) 
    . x) 
    = ((f 
    . x) 
    (/) c2) by 
    A5,
    Def39;
    
      (
    dom f) 
    = ( 
    dom (f 
    [/] c1)) by 
    Def39;
    
      then
    
      
    
    A7: ((f 
    [/] c1) 
    . x) 
    = ((f 
    . x) 
    (/) c1) by 
    A5,
    Def39;
    
      (f
    . x) 
    in ( 
    rng f) by 
    A5,
    FUNCT_1:def 3;
    
      then
    
      
    
    A8: (f 
    . x) 
    <>  
    {} by 
    A2,
    RELAT_1:def 9;
    
      (f
    . x) is 
    non-empty by 
    A3,
    A5;
    
      hence c1
    = c2 by 
    A4,
    A8,
    A7,
    A6,
    Th33;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let g be
    complex-valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    + (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def41
    
      func f
    
    <+> g -> 
    Function means 
    
      :
    
    Def41: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    complex-valued  
    Function;
    
      :: original:
    <+>
    
      redefine
    
      func f
    
    <+> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <+> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def41;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def41;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    real-valued  
    Function;
    
      :: original:
    <+>
    
      redefine
    
      func f
    
    <+> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <+> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def41;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def41;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    RAT  
    -valued  
    Function;
    
      :: original:
    <+>
    
      redefine
    
      func f
    
    <+> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <+> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def41;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def41;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    INT  
    -valued  
    Function;
    
      :: original:
    <+>
    
      redefine
    
      func f
    
    <+> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <+> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def41;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def41;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    natural-valued  
    Function;
    
      :: original:
    <+>
    
      redefine
    
      func f
    
    <+> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    N_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <+> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def41;
    
        (
    rng h) 
    c= ( 
    N_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def41;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    NAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:59
    
    ((f
    <+> g) 
    <+> h) 
    = (f 
    <+> (g 
    + h)) 
    
    proof
    
      set f1 = (f
    <+> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    + h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 1;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <+> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Def41;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <+> (g 
    + h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    + h))) by 
    Def41;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    <+> h)) 
    = ( 
    dom (f 
    <+> (g 
    + h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    <+> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom (g 
    + h)) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <+> h) 
    . x) 
    = ((f1 
    . x) 
    + (h 
    . x)) by 
    A4,
    Def41
    
      .= (((f
    . x) 
    + (g 
    . x)) 
    + (h 
    . x)) by 
    A5,
    Def41
    
      .= ((f
    . x) 
    + ((g 
    . x) 
    + (h 
    . x))) by 
    Th12
    
      .= ((f
    . x) 
    + ((g 
    + h) 
    . x)) by 
    A6,
    VALUED_1:def 1
    
      .= ((f
    <+> (g 
    + h)) 
    . x) by 
    A3,
    A4,
    Def41;
    
    end;
    
    theorem :: 
    
    VALUED_2:60
    
    (
    <-> (f 
    <+> g)) 
    = (( 
    <-> f) 
    <+> ( 
    - g)) 
    
    proof
    
      set f1 = (f
    <+> g), f2 = ( 
    <-> f); 
    
      
    
      
    
    A1: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33;
    
      
    
      
    
    A2: ( 
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom f2) 
    = ( 
    dom f) by 
    Def33,
    Def41;
    
      (
    dom ( 
    - g)) 
    = ( 
    dom g) by 
    VALUED_1: 8;
    
      hence
    
      
    
    A3: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom (f2 
    <+> ( 
    - g))) by 
    A1,
    A2,
    Def41;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ( 
    <-> f1)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f2) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
      
    
      thus ((
    <-> f1) 
    . x) 
    = ( 
    - (f1 
    . x)) by 
    A4,
    Def33
    
      .= (
    - ((f 
    . x) 
    + (g 
    . x))) by 
    A1,
    A4,
    Def41
    
      .= ((
    - (f 
    . x)) 
    - (g 
    . x)) by 
    Th10
    
      .= ((
    - (f 
    . x)) 
    + (( 
    - g) 
    . x)) by 
    VALUED_1: 8
    
      .= ((f2
    . x) 
    + (( 
    - g) 
    . x)) by 
    A5,
    Def33
    
      .= ((f2
    <+> ( 
    - g)) 
    . x) by 
    A3,
    A4,
    Def41;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let g be
    complex-valued  
    Function;
    
      :: 
    
    VALUED_2:def42
    
      func f
    
    <-> g -> 
    Function equals (f 
    <+> ( 
    - g)); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    VALUED_2:61
    
    
    
    
    
    Th61: ( 
    dom (f 
    <-> g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) 
    
    proof
    
      
    
      thus (
    dom (f 
    <-> g)) 
    = (( 
    dom f) 
    /\ ( 
    dom ( 
    - g))) by 
    Def41
    
      .= ((
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1: 8;
    
    end;
    
    theorem :: 
    
    VALUED_2:62
    
    
    
    
    
    Th62: x 
    in ( 
    dom (f 
    <-> g)) implies ((f 
    <-> g) 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) 
    
    proof
    
      assume x
    in ( 
    dom (f 
    <-> g)); 
    
      
    
      hence ((f
    <-> g) 
    . x) 
    = ((f 
    . x) 
    + (( 
    - g) 
    . x)) by 
    Def41
    
      .= ((f
    . x) 
    - (g 
    . x)) by 
    VALUED_1: 8;
    
    end;
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    complex-valued  
    Function;
    
      :: original:
    <->
    
      redefine
    
      func f
    
    <-> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <-> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Th61;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Th62;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (h
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Th62;
    
          then (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    real-valued  
    Function;
    
      :: original:
    <->
    
      redefine
    
      func f
    
    <-> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <-> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Th61;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Th62;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    RAT  
    -valued  
    Function;
    
      :: original:
    <->
    
      redefine
    
      func f
    
    <-> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <-> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Th61;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Th62;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    INT  
    -valued  
    Function;
    
      :: original:
    <->
    
      redefine
    
      func f
    
    <-> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <-> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Th61;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Th62;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 2;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:63
    
    (f
    <-> ( 
    - g)) 
    = (f 
    <+> g); 
    
    theorem :: 
    
    VALUED_2:64
    
    (
    <-> (f 
    <-> g)) 
    = (( 
    <-> f) 
    <+> g) 
    
    proof
    
      set f1 = (f
    <-> g), f2 = ( 
    <-> f); 
    
      
    
      
    
    A1: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33;
    
      
    
      
    
    A2: ( 
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom f2) 
    = ( 
    dom f) by 
    Def33,
    Th61;
    
      hence
    
      
    
    A3: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom (f2 
    <+> g)) by 
    A1,
    Def41;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ( 
    <-> f1)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f2) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
      
    
      thus ((
    <-> f1) 
    . x) 
    = ( 
    - (f1 
    . x)) by 
    A4,
    Def33
    
      .= (
    - ((f 
    . x) 
    - (g 
    . x))) by 
    A1,
    A4,
    Th62
    
      .= ((
    - (f 
    . x)) 
    + (g 
    . x)) by 
    Th11
    
      .= ((f2
    . x) 
    + (g 
    . x)) by 
    A5,
    Def33
    
      .= ((f2
    <+> g) 
    . x) by 
    A3,
    A4,
    Def41;
    
    end;
    
    theorem :: 
    
    VALUED_2:65
    
    ((f
    <+> g) 
    <-> h) 
    = (f 
    <+> (g 
    - h)) 
    
    proof
    
      set f1 = (f
    <+> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    - h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1: 12;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <-> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Th61;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <+> (g 
    - h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    - h))) by 
    Def41;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    <-> h)) 
    = ( 
    dom (f 
    <+> (g 
    - h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    <-> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom (g 
    - h)) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <-> h) 
    . x) 
    = ((f1 
    . x) 
    - (h 
    . x)) by 
    A4,
    Th62
    
      .= (((f
    . x) 
    + (g 
    . x)) 
    - (h 
    . x)) by 
    A5,
    Def41
    
      .= ((f
    . x) 
    + ((g 
    . x) 
    - (h 
    . x))) by 
    Th13
    
      .= ((f
    . x) 
    + ((g 
    - h) 
    . x)) by 
    A6,
    VALUED_1: 13
    
      .= ((f
    <+> (g 
    - h)) 
    . x) by 
    A3,
    A4,
    Def41;
    
    end;
    
    theorem :: 
    
    VALUED_2:66
    
    ((f
    <-> g) 
    <+> h) 
    = (f 
    <-> (g 
    - h)) 
    
    proof
    
      set f1 = (f
    <-> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    - h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1: 12;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <+> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Def41;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <-> (g 
    - h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    - h))) by 
    Th61;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    <+> h)) 
    = ( 
    dom (f 
    <-> (g 
    - h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    <+> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom (g 
    - h)) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <+> h) 
    . x) 
    = ((f1 
    . x) 
    + (h 
    . x)) by 
    A4,
    Def41
    
      .= (((f
    . x) 
    - (g 
    . x)) 
    + (h 
    . x)) by 
    A5,
    Th62
    
      .= ((f
    . x) 
    - ((g 
    . x) 
    - (h 
    . x))) by 
    Th14
    
      .= ((f
    . x) 
    - ((g 
    - h) 
    . x)) by 
    A6,
    VALUED_1: 13
    
      .= ((f
    <-> (g 
    - h)) 
    . x) by 
    A3,
    A4,
    Th62;
    
    end;
    
    theorem :: 
    
    VALUED_2:67
    
    ((f
    <-> g) 
    <-> h) 
    = (f 
    <-> (g 
    + h)) 
    
    proof
    
      set f1 = (f
    <-> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    + h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 1;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <-> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Th61;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <-> (g 
    + h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    + h))) by 
    Th61;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    <-> h)) 
    = ( 
    dom (f 
    <-> (g 
    + h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    <-> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom (g 
    + h)) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <-> h) 
    . x) 
    = ((f1 
    . x) 
    - (h 
    . x)) by 
    A4,
    Th62
    
      .= (((f
    . x) 
    - (g 
    . x)) 
    - (h 
    . x)) by 
    A5,
    Th62
    
      .= ((f
    . x) 
    - ((g 
    . x) 
    + (h 
    . x))) by 
    Th15
    
      .= ((f
    . x) 
    - ((g 
    + h) 
    . x)) by 
    A6,
    VALUED_1:def 1
    
      .= ((f
    <-> (g 
    + h)) 
    . x) by 
    A3,
    A4,
    Th62;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let g be
    complex-valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    (#) (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def43
    
      func f
    
    <#> g -> 
    Function means 
    
      :
    
    Def43: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    complex-valued  
    Function;
    
      :: original:
    <#>
    
      redefine
    
      func f
    
    <#> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <#> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def43;
    
        (
    rng h) 
    c= ( 
    C_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def43;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    COMPLEX by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    real-valued  
    Function;
    
      :: original:
    <#>
    
      redefine
    
      func f
    
    <#> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <#> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def43;
    
        (
    rng h) 
    c= ( 
    R_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def43;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    REAL by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    RAT  
    -valued  
    Function;
    
      :: original:
    <#>
    
      redefine
    
      func f
    
    <#> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <#> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def43;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def43;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    RAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    INT  
    -valued  
    Function;
    
      :: original:
    <#>
    
      redefine
    
      func f
    
    <#> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    I_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <#> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def43;
    
        (
    rng h) 
    c= ( 
    I_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def43;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    INT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    natural-valued  
    Function;
    
      :: original:
    <#>
    
      redefine
    
      func f
    
    <#> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    N_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        set h = (f
    <#> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def43;
    
        (
    rng h) 
    c= ( 
    N_PFuncs ( 
    DOMS Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def43;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y; 
    
          then
    
          
    
    A6: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = ( 
    dom (f 
    . x)) by 
    A3,
    A4,
    VALUED_1:def 5;
    
          then y is
    PartFunc of ( 
    DOMS Y), 
    NAT by 
    A6,
    A5,
    RELSET_1: 4;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:68
    
    (f
    <#> ( 
    - g)) 
    = (( 
    <-> f) 
    <#> g) 
    
    proof
    
      set f1 = (
    <-> f); 
    
      
    
      
    
    A1: ( 
    dom f1) 
    = ( 
    dom f) & ( 
    dom (f 
    <#> ( 
    - g))) 
    = (( 
    dom f) 
    /\ ( 
    dom ( 
    - g))) by 
    Def33,
    Def43;
    
      (
    dom (f1 
    <#> g)) 
    = (( 
    dom f1) 
    /\ ( 
    dom g)) by 
    Def43;
    
      hence
    
      
    
    A2: ( 
    dom (f 
    <#> ( 
    - g))) 
    = ( 
    dom (f1 
    <#> g)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f 
    <#> ( 
    - g))); 
    
      then
    
      
    
    A4: x 
    in ( 
    dom f1) by 
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((f
    <#> ( 
    - g)) 
    . x) 
    = ((f 
    . x) 
    (#) (( 
    - g) 
    . x)) by 
    A3,
    Def43
    
      .= ((f
    . x) 
    (#) ( 
    - (g 
    . x))) by 
    VALUED_1: 8
    
      .= ((
    - (f 
    . x)) 
    (#) (g 
    . x)) by 
    Th22
    
      .= ((f1
    . x) 
    (#) (g 
    . x)) by 
    A4,
    Def33
    
      .= ((f1
    <#> g) 
    . x) by 
    A2,
    A3,
    Def43;
    
    end;
    
    theorem :: 
    
    VALUED_2:69
    
    (f
    <#> ( 
    - g)) 
    = ( 
    <-> (f 
    <#> g)) 
    
    proof
    
      set f1 = (f
    <#> g); 
    
      
    
      
    
    A1: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <#> ( 
    - g))) 
    = (( 
    dom f) 
    /\ ( 
    dom ( 
    - g))) by 
    Def43;
    
      hence
    
      
    
    A2: ( 
    dom (f 
    <#> ( 
    - g))) 
    = ( 
    dom ( 
    <-> f1)) by 
    A1,
    VALUED_1: 8;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f 
    <#> ( 
    - g))); 
    
      
    
      hence ((f
    <#> ( 
    - g)) 
    . x) 
    = ((f 
    . x) 
    (#) (( 
    - g) 
    . x)) by 
    Def43
    
      .= ((f
    . x) 
    (#) ( 
    - (g 
    . x))) by 
    VALUED_1: 8
    
      .= (
    - ((f 
    . x) 
    (#) (g 
    . x))) by 
    Th24
    
      .= (
    - (f1 
    . x)) by 
    A1,
    A2,
    A3,
    Def43
    
      .= ((
    <-> f1) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:70
    
    ((f
    <#> g) 
    <#> h) 
    = (f 
    <#> (g 
    (#) h)) 
    
    proof
    
      set f1 = (f
    <#> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    (#) h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1:def 4;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <#> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Def43;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <#> (g 
    (#) h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    (#) h))) by 
    Def43;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    <#> h)) 
    = ( 
    dom (f 
    <#> (g 
    (#) h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    <#> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom (g 
    (#) h)) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <#> h) 
    . x) 
    = ((f1 
    . x) 
    (#) (h 
    . x)) by 
    A4,
    Def43
    
      .= (((f
    . x) 
    (#) (g 
    . x)) 
    (#) (h 
    . x)) by 
    A5,
    Def43
    
      .= ((f
    . x) 
    (#) ((g 
    . x) 
    * (h 
    . x))) by 
    Th16
    
      .= ((f
    . x) 
    (#) ((g 
    (#) h) 
    . x)) by 
    A6,
    VALUED_1:def 4
    
      .= ((f
    <#> (g 
    (#) h)) 
    . x) by 
    A3,
    A4,
    Def43;
    
    end;
    
    definition
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be Y
    -valued  
    Function;
    
      let g be
    complex-valued  
    Function;
    
      :: 
    
    VALUED_2:def44
    
      func f
    
    </> g -> 
    Function equals (f 
    <#> (g 
    " )); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    VALUED_2:71
    
    
    
    
    
    Th71: ( 
    dom (f 
    </> g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) 
    
    proof
    
      
    
      thus (
    dom (f 
    </> g)) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    " ))) by 
    Def43
    
      .= ((
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 7;
    
    end;
    
    theorem :: 
    
    VALUED_2:72
    
    
    
    
    
    Th72: x 
    in ( 
    dom (f 
    </> g)) implies ((f 
    </> g) 
    . x) 
    = ((f 
    . x) 
    (/) (g 
    . x)) 
    
    proof
    
      assume x
    in ( 
    dom (f 
    </> g)); 
    
      
    
      hence ((f
    </> g) 
    . x) 
    = ((f 
    . x) 
    (#) ((g 
    " ) 
    . x)) by 
    Def43
    
      .= ((f
    . x) 
    (/) (g 
    . x)) by 
    VALUED_1: 10;
    
    end;
    
    definition
    
      let X;
    
      let Y be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    complex-valued  
    Function;
    
      :: original:
    </>
    
      redefine
    
      func f
    
    </> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    C_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    </> g) 
    = (f 
    <#> (g 
    " )); 
    
        hence thesis by
    VALUED_1:def 7;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    real-valued  
    Function;
    
      :: original:
    </>
    
      redefine
    
      func f
    
    </> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    R_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    </> g) 
    = (f 
    <#> (g 
    " )); 
    
        hence thesis by
    VALUED_1:def 7;
    
      end;
    
    end
    
    definition
    
      let X;
    
      let Y be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X, Y; 
    
      let g be
    RAT  
    -valued  
    Function;
    
      :: original:
    </>
    
      redefine
    
      func f
    
    </> g -> 
    PartFunc of (X 
    /\ ( 
    dom g)), ( 
    Q_PFuncs ( 
    DOMS Y)) ; 
    
      coherence
    
      proof
    
        (f
    </> g) 
    = (f 
    <#> (g 
    " )); 
    
        hence thesis by
    VALUED_1:def 7;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:73
    
    ((f
    <#> g) 
    </> h) 
    = (f 
    <#> (g 
    /" h)) 
    
    proof
    
      set f1 = (f
    <#> g); 
    
      
    
      
    
    A1: ( 
    dom (g 
    /" h)) 
    = (( 
    dom g) 
    /\ ( 
    dom h)) by 
    VALUED_1: 16;
    
      
    
      
    
    A2: ( 
    dom (f1 
    </> h)) 
    = (( 
    dom f1) 
    /\ ( 
    dom h)) by 
    Th71;
    
      (
    dom f1) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & ( 
    dom (f 
    <#> (g 
    /" h))) 
    = (( 
    dom f) 
    /\ ( 
    dom (g 
    /" h))) by 
    Def43;
    
      hence
    
      
    
    A3: ( 
    dom (f1 
    </> h)) 
    = ( 
    dom (f 
    <#> (g 
    /" h))) by 
    A2,
    A1,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f1 
    </> h)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f1) by 
    A2,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    </> h) 
    . x) 
    = ((f1 
    . x) 
    (/) (h 
    . x)) by 
    A4,
    Th72
    
      .= (((f
    . x) 
    (#) (g 
    . x)) 
    (/) (h 
    . x)) by 
    A5,
    Def43
    
      .= ((f
    . x) 
    (#) ((g 
    . x) 
    / (h 
    . x))) by 
    Th16
    
      .= ((f
    . x) 
    (#) ((g 
    /" h) 
    . x)) by 
    VALUED_1: 17
    
      .= ((f
    <#> (g 
    /" h)) 
    . x) by 
    A3,
    A4,
    Def43;
    
    end;
    
    definition
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be Y1
    -valued  
    Function;
    
      let g be Y2
    -valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    + (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def45
    
      func f
    
    <++> g -> 
    Function means 
    
      :
    
    Def45: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <++>
    
      redefine
    
      func f
    
    <++> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <++> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def45;
    
        (
    rng h) 
    c= ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def45;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 1;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    COMPLEX by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <++>
    
      redefine
    
      func f
    
    <++> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <++> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def45;
    
        (
    rng h) 
    c= ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def45;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 1;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    REAL by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <++>
    
      redefine
    
      func f
    
    <++> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <++> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def45;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def45;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 1;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    RAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <++>
    
      redefine
    
      func f
    
    <++> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <++> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def45;
    
        (
    rng h) 
    c= ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def45;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 1;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    INT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <++>
    
      redefine
    
      func f
    
    <++> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    N_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <++> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def45;
    
        (
    rng h) 
    c= ( 
    N_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    + (g 
    . x)) by 
    A2,
    Def45;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 1;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    NAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:74
    
    (f1
    <++> f2) 
    = (f2 
    <++> f1) 
    
    proof
    
      (
    dom (f1 
    <++> f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      hence
    
      
    
    A1: ( 
    dom (f1 
    <++> f2)) 
    = ( 
    dom (f2 
    <++> f1)) by 
    Def45;
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    dom (f1 
    <++> f2)); 
    
      
    
      hence ((f1
    <++> f2) 
    . x) 
    = ((f1 
    . x) 
    + (f2 
    . x)) by 
    Def45
    
      .= ((f2
    <++> f1) 
    . x) by 
    A1,
    A2,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:75
    
    ((f
    <++> f1) 
    <++> f2) 
    = (f 
    <++> (f1 
    <++> f2)) 
    
    proof
    
      set f3 = (f
    <++> f1), f4 = (f1 
    <++> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <++> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      
    
      
    
    A2: ( 
    dom (f 
    <++> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def45;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <++> f2)) 
    = ( 
    dom (f 
    <++> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <++> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <++> f2) 
    . x) 
    = ((f3 
    . x) 
    + (f2 
    . x)) by 
    A4,
    Def45
    
      .= (((f
    . x) 
    + (f1 
    . x)) 
    + (f2 
    . x)) by 
    A6,
    Def45
    
      .= ((f
    . x) 
    + ((f1 
    . x) 
    + (f2 
    . x))) by 
    RFUNCT_1: 8
    
      .= ((f
    . x) 
    + (f4 
    . x)) by 
    A5,
    Def45
    
      .= ((f
    <++> f4) 
    . x) by 
    A3,
    A4,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:76
    
    (
    <-> (f1 
    <++> f2)) 
    = (( 
    <-> f1) 
    <++> ( 
    <-> f2)) 
    
    proof
    
      set f3 = (f1
    <++> f2), f4 = ( 
    <-> f1), f5 = ( 
    <-> f2); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    <++> f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      
    
      
    
    A2: ( 
    dom ( 
    <-> f2)) 
    = ( 
    dom f2) by 
    Def33;
    
      
    
      
    
    A3: ( 
    dom ( 
    <-> f3)) 
    = ( 
    dom f3) by 
    Def33;
    
      
    
      
    
    A4: ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33;
    
      hence
    
      
    
    A5: ( 
    dom ( 
    <-> f3)) 
    = ( 
    dom (f4 
    <++> f5)) by 
    A1,
    A2,
    A3,
    Def45;
    
      let x be
    object;
    
      assume
    
      
    
    A6: x 
    in ( 
    dom ( 
    <-> f3)); 
    
      then
    
      
    
    A7: x 
    in ( 
    dom f4) by 
    A1,
    A4,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A8: x 
    in ( 
    dom f5) by 
    A1,
    A2,
    A3,
    A6,
    XBOOLE_0:def 4;
    
      
    
      thus ((
    <-> f3) 
    . x) 
    = ( 
    - (f3 
    . x)) by 
    A6,
    Def33
    
      .= (
    - ((f1 
    . x) 
    + (f2 
    . x))) by 
    A3,
    A6,
    Def45
    
      .= ((
    - (f1 
    . x)) 
    - (f2 
    . x)) by 
    Th17
    
      .= ((f4
    . x) 
    + ( 
    - (f2 
    . x))) by 
    A7,
    Def33
    
      .= ((f4
    . x) 
    + (f5 
    . x)) by 
    A8,
    Def33
    
      .= ((f4
    <++> f5) 
    . x) by 
    A5,
    A6,
    Def45;
    
    end;
    
    definition
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be Y1
    -valued  
    Function;
    
      let g be Y2
    -valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    - (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def46
    
      func f
    
    <--> g -> 
    Function means 
    
      :
    
    Def46: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <-->
    
      redefine
    
      func f
    
    <--> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <--> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def46;
    
        (
    rng h) 
    c= ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Def46;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 12;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    COMPLEX by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <-->
    
      redefine
    
      func f
    
    <--> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <--> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def46;
    
        (
    rng h) 
    c= ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Def46;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 12;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    REAL by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <-->
    
      redefine
    
      func f
    
    <--> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <--> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def46;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Def46;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 12;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    RAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <-->
    
      redefine
    
      func f
    
    <--> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <--> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def46;
    
        (
    rng h) 
    c= ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    - (g 
    . x)) by 
    A2,
    Def46;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 12;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    INT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:77
    
    (f1
    <--> f2) 
    = ( 
    <-> (f2 
    <--> f1)) 
    
    proof
    
      set f = (f2
    <--> f1); 
    
      
    
      
    
    A1: ( 
    dom (f1 
    <--> f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom (f2 
    <--> f1)) 
    = (( 
    dom f2) 
    /\ ( 
    dom f1)) by 
    Def46;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    <--> f2)) 
    = ( 
    dom ( 
    <-> f)) by 
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    <--> f2)); 
    
      
    
      hence ((f1
    <--> f2) 
    . x) 
    = ((f1 
    . x) 
    - (f2 
    . x)) by 
    Def46
    
      .= (
    - ((f2 
    . x) 
    - (f1 
    . x))) by 
    Th18
    
      .= (
    - (f 
    . x)) by 
    A1,
    A3,
    Def46
    
      .= ((
    <-> f) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:78
    
    (
    <-> (f1 
    <--> f2)) 
    = (( 
    <-> f1) 
    <++> f2) 
    
    proof
    
      set f3 = (f1
    <--> f2), f4 = ( 
    <-> f1); 
    
      
    
      
    
    A1: ( 
    dom ( 
    <-> f3)) 
    = ( 
    dom f3) by 
    Def33;
    
      
    
      
    
    A2: ( 
    dom (f1 
    <--> f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom ( 
    <-> f1)) 
    = ( 
    dom f1) by 
    Def33,
    Def46;
    
      hence
    
      
    
    A3: ( 
    dom ( 
    <-> f3)) 
    = ( 
    dom (f4 
    <++> f2)) by 
    A1,
    Def45;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom ( 
    <-> f3)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((
    <-> f3) 
    . x) 
    = ( 
    - (f3 
    . x)) by 
    A4,
    Def33
    
      .= (
    - ((f1 
    . x) 
    - (f2 
    . x))) by 
    A1,
    A4,
    Def46
    
      .= ((
    - (f1 
    . x)) 
    - ( 
    - (f2 
    . x))) by 
    Th17
    
      .= ((f4
    . x) 
    + (f2 
    . x)) by 
    A5,
    Def33
    
      .= ((f4
    <++> f2) 
    . x) by 
    A3,
    A4,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:79
    
    ((f
    <++> f1) 
    <--> f2) 
    = (f 
    <++> (f1 
    <--> f2)) 
    
    proof
    
      set f3 = (f
    <++> f1), f4 = (f1 
    <--> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <--> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      
    
      
    
    A2: ( 
    dom (f 
    <++> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def45;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45,
    Def46;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <--> f2)) 
    = ( 
    dom (f 
    <++> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <--> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <--> f2) 
    . x) 
    = ((f3 
    . x) 
    - (f2 
    . x)) by 
    A4,
    Def46
    
      .= (((f
    . x) 
    + (f1 
    . x)) 
    - (f2 
    . x)) by 
    A6,
    Def45
    
      .= ((f
    . x) 
    + ((f1 
    . x) 
    - (f2 
    . x))) by 
    RFUNCT_1: 8
    
      .= ((f
    . x) 
    + (f4 
    . x)) by 
    A5,
    Def46
    
      .= ((f
    <++> f4) 
    . x) by 
    A3,
    A4,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:80
    
    ((f
    <--> f1) 
    <++> f2) 
    = (f 
    <--> (f1 
    <--> f2)) 
    
    proof
    
      set f3 = (f
    <--> f1), f4 = (f1 
    <--> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <++> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      
    
      
    
    A2: ( 
    dom (f 
    <--> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def46;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <++> f2)) 
    = ( 
    dom (f 
    <--> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <++> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <++> f2) 
    . x) 
    = ((f3 
    . x) 
    + (f2 
    . x)) by 
    A4,
    Def45
    
      .= (((f
    . x) 
    - (f1 
    . x)) 
    + (f2 
    . x)) by 
    A6,
    Def46
    
      .= ((f
    . x) 
    - ((f1 
    . x) 
    - (f2 
    . x))) by 
    RFUNCT_1: 22
    
      .= ((f
    . x) 
    - (f4 
    . x)) by 
    A5,
    Def46
    
      .= ((f
    <--> f4) 
    . x) by 
    A3,
    A4,
    Def46;
    
    end;
    
    theorem :: 
    
    VALUED_2:81
    
    ((f
    <--> f1) 
    <--> f2) 
    = (f 
    <--> (f1 
    <++> f2)) 
    
    proof
    
      set f3 = (f
    <--> f1), f4 = (f1 
    <++> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <--> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      
    
      
    
    A2: ( 
    dom (f 
    <--> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def46;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45,
    Def46;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <--> f2)) 
    = ( 
    dom (f 
    <--> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <--> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <--> f2) 
    . x) 
    = ((f3 
    . x) 
    - (f2 
    . x)) by 
    A4,
    Def46
    
      .= (((f
    . x) 
    - (f1 
    . x)) 
    - (f2 
    . x)) by 
    A6,
    Def46
    
      .= ((f
    . x) 
    - ((f1 
    . x) 
    + (f2 
    . x))) by 
    RFUNCT_1: 20
    
      .= ((f
    . x) 
    - (f4 
    . x)) by 
    A5,
    Def45
    
      .= ((f
    <--> f4) 
    . x) by 
    A3,
    A4,
    Def46;
    
    end;
    
    theorem :: 
    
    VALUED_2:82
    
    ((f
    <--> f1) 
    <--> f2) 
    = ((f 
    <--> f2) 
    <--> f1) 
    
    proof
    
      set f3 = (f
    <--> f1), f4 = (f 
    <--> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <--> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      
    
      
    
    A2: ( 
    dom (f4 
    <--> f1)) 
    = (( 
    dom f4) 
    /\ ( 
    dom f1)) by 
    Def46;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <--> f2)) 
    = ( 
    dom (f4 
    <--> f1)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <--> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <--> f2) 
    . x) 
    = ((f3 
    . x) 
    - (f2 
    . x)) by 
    A4,
    Def46
    
      .= (((f
    . x) 
    - (f1 
    . x)) 
    - (f2 
    . x)) by 
    A6,
    Def46
    
      .= (((f
    . x) 
    - (f2 
    . x)) 
    - (f1 
    . x)) by 
    RFUNCT_1: 23
    
      .= ((f4
    . x) 
    - (f1 
    . x)) by 
    A5,
    Def46
    
      .= ((f4
    <--> f1) 
    . x) by 
    A3,
    A4,
    Def46;
    
    end;
    
    definition
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be Y1
    -valued  
    Function;
    
      let g be Y2
    -valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    (#) (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def47
    
      func f
    
    <##> g -> 
    Function means 
    
      :
    
    Def47: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <##>
    
      redefine
    
      func f
    
    <##> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <##> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def47;
    
        (
    rng h) 
    c= ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def47;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 4;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    COMPLEX by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <##>
    
      redefine
    
      func f
    
    <##> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <##> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def47;
    
        (
    rng h) 
    c= ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def47;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 4;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    REAL by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <##>
    
      redefine
    
      func f
    
    <##> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <##> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def47;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def47;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 4;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    RAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    integer-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <##>
    
      redefine
    
      func f
    
    <##> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <##> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def47;
    
        (
    rng h) 
    c= ( 
    I_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def47;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    INT by 
    A3,
    A4,
    INT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 4;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    INT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def16;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    natural-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <##>
    
      redefine
    
      func f
    
    <##> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    N_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <##> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def47;
    
        (
    rng h) 
    c= ( 
    N_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    (#) (g 
    . x)) by 
    A2,
    Def47;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    NAT by 
    A3,
    A4,
    ORDINAL1:def 12;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1:def 4;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    NAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def18;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:83
    
    
    
    
    
    Th83: (f1 
    <##> f2) 
    = (f2 
    <##> f1) 
    
    proof
    
      (
    dom (f1 
    <##> f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      hence
    
      
    
    A1: ( 
    dom (f1 
    <##> f2)) 
    = ( 
    dom (f2 
    <##> f1)) by 
    Def47;
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    dom (f1 
    <##> f2)); 
    
      
    
      hence ((f1
    <##> f2) 
    . x) 
    = ((f1 
    . x) 
    (#) (f2 
    . x)) by 
    Def47
    
      .= ((f2
    <##> f1) 
    . x) by 
    A1,
    A2,
    Def47;
    
    end;
    
    theorem :: 
    
    VALUED_2:84
    
    ((f
    <##> f1) 
    <##> f2) 
    = (f 
    <##> (f1 
    <##> f2)) 
    
    proof
    
      set f3 = (f
    <##> f1), f4 = (f1 
    <##> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <##> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      
    
      
    
    A2: ( 
    dom (f 
    <##> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def47;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <##> f2)) 
    = ( 
    dom (f 
    <##> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <##> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <##> f2) 
    . x) 
    = ((f3 
    . x) 
    (#) (f2 
    . x)) by 
    A4,
    Def47
    
      .= (((f
    . x) 
    (#) (f1 
    . x)) 
    (#) (f2 
    . x)) by 
    A6,
    Def47
    
      .= ((f
    . x) 
    (#) ((f1 
    . x) 
    (#) (f2 
    . x))) by 
    RFUNCT_1: 9
    
      .= ((f
    . x) 
    (#) (f4 
    . x)) by 
    A5,
    Def47
    
      .= ((f
    <##> f4) 
    . x) by 
    A3,
    A4,
    Def47;
    
    end;
    
    theorem :: 
    
    VALUED_2:85
    
    ((
    <-> f1) 
    <##> f2) 
    = ( 
    <-> (f1 
    <##> f2)) 
    
    proof
    
      set f3 = (f1
    <##> f2), f4 = ( 
    <-> f1); 
    
      
    
      
    
    A1: ( 
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom f4) 
    = ( 
    dom f1) by 
    Def33,
    Def47;
    
      (
    dom (f4 
    <##> f2)) 
    = (( 
    dom f4) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      hence
    
      
    
    A2: ( 
    dom (f4 
    <##> f2)) 
    = ( 
    dom ( 
    <-> f3)) by 
    A1,
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f4 
    <##> f2)); 
    
      then
    
      
    
    A4: x 
    in ( 
    dom f3) by 
    A1,
    Def47;
    
      then
    
      
    
    A5: x 
    in ( 
    dom ( 
    <-> f1)) by 
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((f4
    <##> f2) 
    . x) 
    = ((f4 
    . x) 
    (#) (f2 
    . x)) by 
    A3,
    Def47
    
      .= ((
    - (f1 
    . x)) 
    (#) (f2 
    . x)) by 
    A5,
    Def33
    
      .= (
    - ((f1 
    . x) 
    (#) (f2 
    . x))) by 
    Th25
    
      .= (
    - (f3 
    . x)) by 
    A4,
    Def47
    
      .= ((
    <-> f3) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:86
    
    (f1
    <##> ( 
    <-> f2)) 
    = ( 
    <-> (f1 
    <##> f2)) 
    
    proof
    
      set f3 = (f1
    <##> f2), f4 = ( 
    <-> f2); 
    
      
    
      
    
    A1: ( 
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom f4) 
    = ( 
    dom f2) by 
    Def33,
    Def47;
    
      (
    dom (f1 
    <##> f4)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f4)) by 
    Def47;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    <##> f4)) 
    = ( 
    dom ( 
    <-> f3)) by 
    A1,
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    <##> f4)); 
    
      then
    
      
    
    A4: x 
    in ( 
    dom f3) by 
    A1,
    Def47;
    
      then
    
      
    
    A5: x 
    in ( 
    dom ( 
    <-> f2)) by 
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <##> f4) 
    . x) 
    = ((f1 
    . x) 
    (#) (f4 
    . x)) by 
    A3,
    Def47
    
      .= ((f1
    . x) 
    (#) ( 
    - (f2 
    . x))) by 
    A5,
    Def33
    
      .= (
    - ((f1 
    . x) 
    (#) (f2 
    . x))) by 
    Th25
    
      .= (
    - (f3 
    . x)) by 
    A4,
    Def47
    
      .= ((
    <-> f3) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:87
    
    
    
    
    
    Th87: (f 
    <##> (f1 
    <++> f2)) 
    = ((f 
    <##> f1) 
    <++> (f 
    <##> f2)) 
    
    proof
    
      set f3 = (f
    <##> f1), f4 = (f 
    <##> f2), f5 = (f1 
    <++> f2); 
    
      
    
      
    
    A1: ( 
    dom (f 
    <##> f5)) 
    = (( 
    dom f) 
    /\ ( 
    dom f5)) by 
    Def47;
    
      
    
      
    
    A2: ( 
    dom f5) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      
    
      
    
    A3: ( 
    dom (f3 
    <++> f4)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f4)) by 
    Def45;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      hence
    
      
    
    A4: ( 
    dom (f 
    <##> f5)) 
    = ( 
    dom (f3 
    <++> f4)) by 
    A1,
    A3,
    A2,
    Lm1;
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    dom (f 
    <##> f5)); 
    
      then
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      
    
    A7: x 
    in ( 
    dom f5) by 
    A1,
    A5,
    XBOOLE_0:def 4;
    
      
    
      
    
    A8: x 
    in ( 
    dom f4) by 
    A3,
    A4,
    A5,
    XBOOLE_0:def 4;
    
      
    
      thus ((f
    <##> f5) 
    . x) 
    = ((f 
    . x) 
    (#) (f5 
    . x)) by 
    A5,
    Def47
    
      .= ((f
    . x) 
    (#) ((f1 
    . x) 
    + (f2 
    . x))) by 
    A7,
    Def45
    
      .= (((f
    . x) 
    (#) (f1 
    . x)) 
    + ((f 
    . x) 
    (#) (f2 
    . x))) by 
    RFUNCT_1: 10
    
      .= ((f3
    . x) 
    + ((f 
    . x) 
    (#) (f2 
    . x))) by 
    A6,
    Def47
    
      .= ((f3
    . x) 
    + (f4 
    . x)) by 
    A8,
    Def47
    
      .= ((f3
    <++> f4) 
    . x) by 
    A4,
    A5,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:88
    
    ((f1
    <++> f2) 
    <##> f) 
    = ((f1 
    <##> f) 
    <++> (f2 
    <##> f)) 
    
    proof
    
      set f3 = (f1
    <##> f), f4 = (f2 
    <##> f), f5 = (f1 
    <++> f2); 
    
      
    
      
    
    A1: (f1 
    <##> f) 
    = (f 
    <##> f1) & (f2 
    <##> f) 
    = (f 
    <##> f2) by 
    Th83;
    
      
    
      thus (f5
    <##> f) 
    = (f 
    <##> f5) by 
    Th83
    
      .= (f3
    <++> f4) by 
    A1,
    Th87;
    
    end;
    
    theorem :: 
    
    VALUED_2:89
    
    
    
    
    
    Th89: (f 
    <##> (f1 
    <--> f2)) 
    = ((f 
    <##> f1) 
    <--> (f 
    <##> f2)) 
    
    proof
    
      set f3 = (f
    <##> f1), f4 = (f 
    <##> f2), f5 = (f1 
    <--> f2); 
    
      
    
      
    
    A1: ( 
    dom (f 
    <##> f5)) 
    = (( 
    dom f) 
    /\ ( 
    dom f5)) by 
    Def47;
    
      
    
      
    
    A2: ( 
    dom f5) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      
    
      
    
    A3: ( 
    dom (f3 
    <--> f4)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f4)) by 
    Def46;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      hence
    
      
    
    A4: ( 
    dom (f 
    <##> f5)) 
    = ( 
    dom (f3 
    <--> f4)) by 
    A1,
    A3,
    A2,
    Lm1;
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    dom (f 
    <##> f5)); 
    
      then
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      
    
    A7: x 
    in ( 
    dom f5) by 
    A1,
    A5,
    XBOOLE_0:def 4;
    
      
    
      
    
    A8: x 
    in ( 
    dom f4) by 
    A3,
    A4,
    A5,
    XBOOLE_0:def 4;
    
      
    
      thus ((f
    <##> f5) 
    . x) 
    = ((f 
    . x) 
    (#) (f5 
    . x)) by 
    A5,
    Def47
    
      .= ((f
    . x) 
    (#) ((f1 
    . x) 
    - (f2 
    . x))) by 
    A7,
    Def46
    
      .= (((f
    . x) 
    (#) (f1 
    . x)) 
    - ((f 
    . x) 
    (#) (f2 
    . x))) by 
    RFUNCT_1: 15
    
      .= ((f3
    . x) 
    - ((f 
    . x) 
    (#) (f2 
    . x))) by 
    A6,
    Def47
    
      .= ((f3
    . x) 
    - (f4 
    . x)) by 
    A8,
    Def47
    
      .= ((f3
    <--> f4) 
    . x) by 
    A4,
    A5,
    Def46;
    
    end;
    
    theorem :: 
    
    VALUED_2:90
    
    ((f1
    <--> f2) 
    <##> f) 
    = ((f1 
    <##> f) 
    <--> (f2 
    <##> f)) 
    
    proof
    
      set f3 = (f1
    <##> f), f4 = (f2 
    <##> f), f5 = (f1 
    <--> f2); 
    
      
    
      
    
    A1: (f1 
    <##> f) 
    = (f 
    <##> f1) & (f2 
    <##> f) 
    = (f 
    <##> f2) by 
    Th83;
    
      
    
      thus (f5
    <##> f) 
    = (f 
    <##> f5) by 
    Th83
    
      .= (f3
    <--> f4) by 
    A1,
    Th89;
    
    end;
    
    definition
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be Y1
    -valued  
    Function;
    
      let g be Y2
    -valued  
    Function;
    
      deffunc
    
    F(
    object) = ((f
    . $1) 
    /" (g 
    . $1)); 
    
      :: 
    
    VALUED_2:def48
    
      func f
    
    <//> g -> 
    Function means 
    
      :
    
    Def48: ( 
    dom it ) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in ( 
    dom it ) holds (it 
    . x) 
    = ((f 
    . x) 
    /" (g 
    . x)); 
    
      existence
    
      proof
    
        ex F be
    Function st ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) & for x be 
    object st x 
    in (( 
    dom f) 
    /\ ( 
    dom g)) holds (F 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let F,G be
    Function such that 
    
        
    
    A1: ( 
    dom F) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) and
    
        
    
    A3: ( 
    dom G) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom G) holds (G 
    . x) 
    =  
    F(x);
    
        thus (
    dom F) 
    = ( 
    dom G) by 
    A1,
    A3;
    
        let x be
    object;
    
        assume
    
        
    
    A5: x 
    in ( 
    dom F); 
    
        
    
        hence (F
    . x) 
    =  
    F(x) by
    A2
    
        .= (G
    . x) by 
    A1,
    A3,
    A4,
    A5;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    complex-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <//>
    
      redefine
    
      func f
    
    <//> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <//> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def48;
    
        (
    rng h) 
    c= ( 
    C_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    /" (g 
    . x)) by 
    A2,
    Def48;
    
          then
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    COMPLEX by 
    A3,
    A4,
    XCMPLX_0:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 16;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    COMPLEX by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def8;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    real-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <//>
    
      redefine
    
      func f
    
    <//> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <//> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def48;
    
        (
    rng h) 
    c= ( 
    R_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    /" (g 
    . x)) by 
    A2,
    Def48;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    REAL by 
    A3,
    A4,
    XREAL_0:def 1;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 16;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    REAL by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def12;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    definition
    
      let X1,X2 be
    set;
    
      let Y1,Y2 be
    rational-functions-membered  
    set;
    
      let f be
    PartFunc of X1, Y1; 
    
      let g be
    PartFunc of X2, Y2; 
    
      :: original:
    <//>
    
      redefine
    
      func f
    
    <//> g -> 
    PartFunc of (X1 
    /\ X2), ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) ; 
    
      coherence
    
      proof
    
        set h = (f
    <//> g); 
    
        
    
        
    
    A1: ( 
    dom h) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    Def48;
    
        (
    rng h) 
    c= ( 
    Q_PFuncs (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng h); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A2: x 
    in ( 
    dom h) and 
    
          
    
    A3: (h 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          reconsider y as
    Function by 
    A3;
    
          
    
          
    
    A4: (h 
    . x) 
    = ((f 
    . x) 
    /" (g 
    . x)) by 
    A2,
    Def48;
    
          
    
          
    
    A5: ( 
    rng y) 
    c=  
    RAT by 
    A3,
    A4,
    RAT_1:def 2;
    
          x
    in ( 
    dom g) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (g
    . x) 
    in Y2 by 
    PARTFUN1: 4;
    
          then (
    dom (g 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y2; 
    
          then
    
          
    
    A6: ( 
    dom (g 
    . x)) 
    c= ( 
    DOMS Y2) by 
    ZFMISC_1: 74;
    
          x
    in ( 
    dom f) by 
    A1,
    A2,
    XBOOLE_0:def 4;
    
          then (f
    . x) 
    in Y1 by 
    PARTFUN1: 4;
    
          then (
    dom (f 
    . x)) 
    in the set of all ( 
    dom m) where m be 
    Element of Y1; 
    
          then
    
          
    
    A7: ( 
    dom (f 
    . x)) 
    c= ( 
    DOMS Y1) by 
    ZFMISC_1: 74;
    
          (
    dom y) 
    = (( 
    dom (f 
    . x)) 
    /\ ( 
    dom (g 
    . x))) by 
    A3,
    A4,
    VALUED_1: 16;
    
          then y is
    PartFunc of (( 
    DOMS Y1) 
    /\ ( 
    DOMS Y2)), 
    RAT by 
    A7,
    A6,
    A5,
    RELSET_1: 4,
    XBOOLE_1: 27;
    
          hence thesis by
    Def14;
    
        end;
    
        hence thesis by
    A1,
    RELSET_1: 4;
    
      end;
    
    end
    
    theorem :: 
    
    VALUED_2:91
    
    ((
    <-> f1) 
    <//> f2) 
    = ( 
    <-> (f1 
    <//> f2)) 
    
    proof
    
      set f3 = (f1
    <//> f2), f4 = ( 
    <-> f1); 
    
      
    
      
    
    A1: ( 
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom f4) 
    = ( 
    dom f1) by 
    Def33,
    Def48;
    
      (
    dom (f4 
    <//> f2)) 
    = (( 
    dom f4) 
    /\ ( 
    dom f2)) by 
    Def48;
    
      hence
    
      
    
    A2: ( 
    dom (f4 
    <//> f2)) 
    = ( 
    dom ( 
    <-> f3)) by 
    A1,
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f4 
    <//> f2)); 
    
      then
    
      
    
    A4: x 
    in ( 
    dom f3) by 
    A1,
    Def48;
    
      then
    
      
    
    A5: x 
    in ( 
    dom ( 
    <-> f1)) by 
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((f4
    <//> f2) 
    . x) 
    = ((f4 
    . x) 
    /" (f2 
    . x)) by 
    A3,
    Def48
    
      .= ((
    - (f1 
    . x)) 
    /" (f2 
    . x)) by 
    A5,
    Def33
    
      .= (
    - ((f1 
    . x) 
    /" (f2 
    . x))) by 
    Th25
    
      .= (
    - (f3 
    . x)) by 
    A4,
    Def48
    
      .= ((
    <-> f3) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:92
    
    (f1
    <//> ( 
    <-> f2)) 
    = ( 
    <-> (f1 
    <//> f2)) 
    
    proof
    
      set f3 = (f1
    <//> f2), f4 = ( 
    <-> f2); 
    
      
    
      
    
    A1: ( 
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) & ( 
    dom f4) 
    = ( 
    dom f2) by 
    Def33,
    Def48;
    
      (
    dom (f1 
    <//> f4)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f4)) by 
    Def48;
    
      hence
    
      
    
    A2: ( 
    dom (f1 
    <//> f4)) 
    = ( 
    dom ( 
    <-> f3)) by 
    A1,
    Def33;
    
      let x be
    object;
    
      assume
    
      
    
    A3: x 
    in ( 
    dom (f1 
    <//> f4)); 
    
      then
    
      
    
    A4: x 
    in ( 
    dom f3) by 
    A1,
    Def48;
    
      then
    
      
    
    A5: x 
    in ( 
    dom ( 
    <-> f2)) by 
    A1,
    XBOOLE_0:def 4;
    
      
    
      thus ((f1
    <//> f4) 
    . x) 
    = ((f1 
    . x) 
    /" (f4 
    . x)) by 
    A3,
    Def48
    
      .= ((f1
    . x) 
    /" ( 
    - (f2 
    . x))) by 
    A5,
    Def33
    
      .= (
    - ((f1 
    . x) 
    /" (f2 
    . x))) by 
    Th27
    
      .= (
    - (f3 
    . x)) by 
    A4,
    Def48
    
      .= ((
    <-> f3) 
    . x) by 
    A2,
    A3,
    Def33;
    
    end;
    
    theorem :: 
    
    VALUED_2:93
    
    ((f
    <##> f1) 
    <//> f2) 
    = (f 
    <##> (f1 
    <//> f2)) 
    
    proof
    
      set f3 = (f
    <##> f1), f4 = (f1 
    <//> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <//> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def48;
    
      
    
      
    
    A2: ( 
    dom (f 
    <##> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def47;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def47,
    Def48;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <//> f2)) 
    = ( 
    dom (f 
    <##> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <//> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <//> f2) 
    . x) 
    = ((f3 
    . x) 
    /" (f2 
    . x)) by 
    A4,
    Def48
    
      .= (((f
    . x) 
    (#) (f1 
    . x)) 
    /" (f2 
    . x)) by 
    A6,
    Def47
    
      .= ((f
    . x) 
    (#) ((f1 
    . x) 
    /" (f2 
    . x))) by 
    Th19
    
      .= ((f
    . x) 
    (#) (f4 
    . x)) by 
    A5,
    Def48
    
      .= ((f
    <##> f4) 
    . x) by 
    A3,
    A4,
    Def47;
    
    end;
    
    theorem :: 
    
    VALUED_2:94
    
    ((f
    <//> f1) 
    <##> f2) 
    = ((f 
    <##> f2) 
    <//> f1) 
    
    proof
    
      set f3 = (f
    <//> f1), f4 = (f 
    <##> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <##> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def47;
    
      
    
      
    
    A2: ( 
    dom (f4 
    <//> f1)) 
    = (( 
    dom f4) 
    /\ ( 
    dom f1)) by 
    Def48;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f) 
    /\ ( 
    dom f2)) by 
    Def47,
    Def48;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <##> f2)) 
    = ( 
    dom (f4 
    <//> f1)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <##> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <##> f2) 
    . x) 
    = ((f3 
    . x) 
    (#) (f2 
    . x)) by 
    A4,
    Def47
    
      .= (((f
    . x) 
    /" (f1 
    . x)) 
    (#) (f2 
    . x)) by 
    A6,
    Def48
    
      .= (((f
    . x) 
    (#) (f2 
    . x)) 
    /" (f1 
    . x)) by 
    Th20
    
      .= ((f4
    . x) 
    /" (f1 
    . x)) by 
    A5,
    Def47
    
      .= ((f4
    <//> f1) 
    . x) by 
    A3,
    A4,
    Def48;
    
    end;
    
    theorem :: 
    
    VALUED_2:95
    
    ((f
    <//> f1) 
    <//> f2) 
    = (f 
    <//> (f1 
    <##> f2)) 
    
    proof
    
      set f3 = (f
    <//> f1), f4 = (f1 
    <##> f2); 
    
      
    
      
    
    A1: ( 
    dom (f3 
    <//> f2)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f2)) by 
    Def48;
    
      
    
      
    
    A2: ( 
    dom (f 
    <//> f4)) 
    = (( 
    dom f) 
    /\ ( 
    dom f4)) by 
    Def48;
    
      (
    dom f3) 
    = (( 
    dom f) 
    /\ ( 
    dom f1)) & ( 
    dom f4) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def47,
    Def48;
    
      hence
    
      
    
    A3: ( 
    dom (f3 
    <//> f2)) 
    = ( 
    dom (f 
    <//> f4)) by 
    A1,
    A2,
    XBOOLE_1: 16;
    
      let x be
    object;
    
      assume
    
      
    
    A4: x 
    in ( 
    dom (f3 
    <//> f2)); 
    
      then
    
      
    
    A5: x 
    in ( 
    dom f4) by 
    A2,
    A3,
    XBOOLE_0:def 4;
    
      
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A1,
    A4,
    XBOOLE_0:def 4;
    
      
    
      thus ((f3
    <//> f2) 
    . x) 
    = ((f3 
    . x) 
    /" (f2 
    . x)) by 
    A4,
    Def48
    
      .= (((f
    . x) 
    /" (f1 
    . x)) 
    /" (f2 
    . x)) by 
    A6,
    Def48
    
      .= ((f
    . x) 
    /" ((f1 
    . x) 
    (#) (f2 
    . x))) by 
    Th21
    
      .= ((f
    . x) 
    /" (f4 
    . x)) by 
    A5,
    Def47
    
      .= ((f
    <//> f4) 
    . x) by 
    A3,
    A4,
    Def48;
    
    end;
    
    theorem :: 
    
    VALUED_2:96
    
    ((f1
    <++> f2) 
    <//> f) 
    = ((f1 
    <//> f) 
    <++> (f2 
    <//> f)) 
    
    proof
    
      set f3 = (f1
    <//> f), f4 = (f2 
    <//> f), f5 = (f1 
    <++> f2); 
    
      
    
      
    
    A1: ( 
    dom (f5 
    <//> f)) 
    = (( 
    dom f) 
    /\ ( 
    dom f5)) by 
    Def48;
    
      
    
      
    
    A2: ( 
    dom f5) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def45;
    
      
    
      
    
    A3: ( 
    dom (f3 
    <++> f4)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f4)) by 
    Def45;
    
      (
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f)) & ( 
    dom f4) 
    = (( 
    dom f2) 
    /\ ( 
    dom f)) by 
    Def48;
    
      hence
    
      
    
    A4: ( 
    dom (f5 
    <//> f)) 
    = ( 
    dom (f3 
    <++> f4)) by 
    A1,
    A3,
    A2,
    Lm1;
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    dom (f5 
    <//> f)); 
    
      then
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      
    
    A7: x 
    in ( 
    dom f5) by 
    A1,
    A5,
    XBOOLE_0:def 4;
    
      
    
      
    
    A8: x 
    in ( 
    dom f4) by 
    A3,
    A4,
    A5,
    XBOOLE_0:def 4;
    
      
    
      thus ((f5
    <//> f) 
    . x) 
    = ((f5 
    . x) 
    /" (f 
    . x)) by 
    A5,
    Def48
    
      .= (((f1
    . x) 
    + (f2 
    . x)) 
    /" (f 
    . x)) by 
    A7,
    Def45
    
      .= (((f1
    . x) 
    /" (f 
    . x)) 
    + ((f2 
    . x) 
    /" (f 
    . x))) by 
    RFUNCT_1: 10
    
      .= ((f3
    . x) 
    + ((f2 
    . x) 
    /" (f 
    . x))) by 
    A6,
    Def48
    
      .= ((f3
    . x) 
    + (f4 
    . x)) by 
    A8,
    Def48
    
      .= ((f3
    <++> f4) 
    . x) by 
    A4,
    A5,
    Def45;
    
    end;
    
    theorem :: 
    
    VALUED_2:97
    
    ((f1
    <--> f2) 
    <//> f) 
    = ((f1 
    <//> f) 
    <--> (f2 
    <//> f)) 
    
    proof
    
      set f3 = (f1
    <//> f), f4 = (f2 
    <//> f), f5 = (f1 
    <--> f2); 
    
      
    
      
    
    A1: ( 
    dom (f5 
    <//> f)) 
    = (( 
    dom f) 
    /\ ( 
    dom f5)) by 
    Def48;
    
      
    
      
    
    A2: ( 
    dom f5) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    Def46;
    
      
    
      
    
    A3: ( 
    dom (f3 
    <--> f4)) 
    = (( 
    dom f3) 
    /\ ( 
    dom f4)) by 
    Def46;
    
      (
    dom f3) 
    = (( 
    dom f1) 
    /\ ( 
    dom f)) & ( 
    dom f4) 
    = (( 
    dom f2) 
    /\ ( 
    dom f)) by 
    Def48;
    
      hence
    
      
    
    A4: ( 
    dom (f5 
    <//> f)) 
    = ( 
    dom (f3 
    <--> f4)) by 
    A1,
    A3,
    A2,
    Lm1;
    
      let x be
    object;
    
      assume
    
      
    
    A5: x 
    in ( 
    dom (f5 
    <//> f)); 
    
      then
    
      
    
    A6: x 
    in ( 
    dom f3) by 
    A3,
    A4,
    XBOOLE_0:def 4;
    
      
    
      
    
    A7: x 
    in ( 
    dom f5) by 
    A1,
    A5,
    XBOOLE_0:def 4;
    
      
    
      
    
    A8: x 
    in ( 
    dom f4) by 
    A3,
    A4,
    A5,
    XBOOLE_0:def 4;
    
      
    
      thus ((f5
    <//> f) 
    . x) 
    = ((f5 
    . x) 
    /" (f 
    . x)) by 
    A5,
    Def48
    
      .= (((f1
    . x) 
    - (f2 
    . x)) 
    /" (f 
    . x)) by 
    A7,
    Def46
    
      .= (((f1
    . x) 
    /" (f 
    . x)) 
    - ((f2 
    . x) 
    /" (f 
    . x))) by 
    RFUNCT_1: 14
    
      .= ((f3
    . x) 
    - ((f2 
    . x) 
    /" (f 
    . x))) by 
    A6,
    Def48
    
      .= ((f3
    . x) 
    - (f4 
    . x)) by 
    A8,
    Def48
    
      .= ((f3
    <--> f4) 
    . x) by 
    A4,
    A5,
    Def46;
    
    end;