vfunct_2.miz
begin
reserve M for non
empty
set;
reserve V for
ComplexNormSpace;
reserve f,f1,f2,f3 for
PartFunc of M, V;
reserve z,z1,z2 for
Complex;
definition
let M be non
empty
set;
let V be
ComplexNormSpace;
let f1 be
PartFunc of M,
COMPLEX ;
let f2 be
PartFunc of M, V;
deffunc
F(
Element of M) = ((f1
/. $1)
* (f2
/. $1));
defpred
P[
set] means $1
in ((
dom f1)
/\ (
dom f2));
set X = ((
dom f1)
/\ (
dom f2));
::
VFUNCT_2:def1
func f1
(#) f2 ->
PartFunc of M, V means
:
Def1: (
dom it )
= ((
dom f1)
/\ (
dom f2)) & for c be
Element of M st c
in (
dom it ) holds (it
/. c)
= ((f1
/. c)
* (f2
/. c));
existence
proof
consider F be
PartFunc of M, V such that
A1: for c be
Element of M holds c
in (
dom F) iff
P[c] and
A2: for c be
Element of M st c
in (
dom F) holds (F
/. c)
=
F(c) from
PARTFUN2:sch 2;
take F;
thus (
dom F)
= ((
dom f1)
/\ (
dom f2)) by
A1,
SUBSET_1: 3;
let c be
Element of M;
assume c
in (
dom F);
hence thesis by
A2;
end;
uniqueness
proof
thus for f,g be
PartFunc of M, V st ((
dom f)
= X & for c be
Element of M st c
in (
dom f) holds (f
/. c)
=
F(c)) & ((
dom g)
= X & for c be
Element of M st c
in (
dom g) holds (g
/. c)
=
F(c)) holds f
= g from
PARTFUN2:sch 3;
end;
end
definition
let X be non
empty
set;
let V be
ComplexNormSpace;
let f be
PartFunc of X, V;
let z be
Complex;
deffunc
F(
Element of X) = (z
* (f
/. $1));
defpred
P[
set] means $1
in (
dom f);
set M = (
dom f);
::
VFUNCT_2:def2
func z
(#) f ->
PartFunc of X, V means
:
Def2: (
dom it )
= (
dom f) & for x be
Element of X st x
in (
dom it ) holds (it
/. x)
= (z
* (f
/. x));
existence
proof
consider F be
PartFunc of X, V such that
A1: for x be
Element of X holds x
in (
dom F) iff
P[x] and
A2: for x be
Element of X st x
in (
dom F) holds (F
/. x)
=
F(x) from
PARTFUN2:sch 2;
take F;
thus (
dom F)
= (
dom f) by
A1,
SUBSET_1: 3;
let x be
Element of X;
assume x
in (
dom F);
hence thesis by
A2;
end;
uniqueness
proof
thus for f,g be
PartFunc of X, V st ((
dom f)
= M & for x be
Element of X st x
in (
dom f) holds (f
/. x)
=
F(x)) & ((
dom g)
= M & for x be
Element of X st x
in (
dom g) holds (g
/. x)
=
F(x)) holds f
= g from
PARTFUN2:sch 3;
end;
end
theorem ::
VFUNCT_2:1
for f1 be
PartFunc of M,
COMPLEX , f2 be
PartFunc of M, V holds ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
= (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
proof
let f1 be
PartFunc of M,
COMPLEX ;
let f2 be
PartFunc of M, V;
thus ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
c= (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
proof
let x be
object;
assume
A1: x
in ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}));
then
reconsider x1 = x as
Element of M;
A2: x
in (
dom (f1
(#) f2)) by
A1,
XBOOLE_0:def 5;
then
A3: x1
in ((
dom f1)
/\ (
dom f2)) by
Def1;
not x
in ((f1
(#) f2)
"
{(
0. V)}) by
A1,
XBOOLE_0:def 5;
then not ((f1
(#) f2)
/. x1)
in
{(
0. V)} by
A2,
PARTFUN2: 26;
then ((f1
(#) f2)
/. x1)
<> (
0. V) by
TARSKI:def 1;
then
A4: ((f1
/. x1)
* (f2
/. x1))
<> (
0. V) by
A2,
Def1;
then (f1
/. x1)
<>
0c by
CLVECT_1: 1;
then
A5: not (f1
/. x1)
in
{
0 } by
TARSKI:def 1;
(f2
/. x1)
<> (
0. V) by
A4,
CLVECT_1: 1;
then not (f2
/. x1)
in
{(
0. V)} by
TARSKI:def 1;
then
A6: not x1
in (f2
"
{(
0. V)}) by
PARTFUN2: 26;
x1
in (
dom f2) by
A3,
XBOOLE_0:def 4;
then
A7: x
in ((
dom f2)
\ (f2
"
{(
0. V)})) by
A6,
XBOOLE_0:def 5;
x1
in (
dom f1) by
A3,
XBOOLE_0:def 4;
then not (f1
. x1)
in
{
0 } by
A5,
PARTFUN1:def 6;
then
A8: not x1
in (f1
"
{
0 }) by
FUNCT_1:def 7;
x1
in (
dom f1) by
A3,
XBOOLE_0:def 4;
then x
in ((
dom f1)
\ (f1
"
{
0 })) by
A8,
XBOOLE_0:def 5;
hence thesis by
A7,
XBOOLE_0:def 4;
end;
thus (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})))
c= ((
dom (f1
(#) f2))
\ ((f1
(#) f2)
"
{(
0. V)}))
proof
let x be
object;
assume
A9: x
in (((
dom f1)
\ (f1
"
{
0 }))
/\ ((
dom f2)
\ (f2
"
{(
0. V)})));
then
reconsider x1 = x as
Element of M;
A10: x
in ((
dom f1)
\ (f1
"
{
0 })) by
A9,
XBOOLE_0:def 4;
then
A11: x
in (
dom f1) by
XBOOLE_0:def 5;
not x
in (f1
"
{
0 }) by
A10,
XBOOLE_0:def 5;
then not (f1
. x1)
in
{
0 } by
A11,
FUNCT_1:def 7;
then (f1
. x1)
<>
0 by
TARSKI:def 1;
then
A12: (f1
/. x1)
<>
0 by
A11,
PARTFUN1:def 6;
A13: x
in ((
dom f2)
\ (f2
"
{(
0. V)})) by
A9,
XBOOLE_0:def 4;
then
A14: x
in (
dom f2) by
XBOOLE_0:def 5;
then x1
in ((
dom f1)
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
then
A15: x1
in (
dom (f1
(#) f2)) by
Def1;
not x
in (f2
"
{(
0. V)}) by
A13,
XBOOLE_0:def 5;
then not (f2
/. x1)
in
{(
0. V)} by
A14,
PARTFUN2: 26;
then (f2
/. x1)
<> (
0. V) by
TARSKI:def 1;
then ((f1
/. x1)
* (f2
/. x1))
<> (
0. V) by
A12,
CLVECT_1: 2;
then ((f1
(#) f2)
/. x1)
<> (
0. V) by
A15,
Def1;
then not ((f1
(#) f2)
/. x1)
in
{(
0. V)} by
TARSKI:def 1;
then not x
in ((f1
(#) f2)
"
{(
0. V)}) by
PARTFUN2: 26;
hence thesis by
A15,
XBOOLE_0:def 5;
end;
end;
theorem ::
VFUNCT_2:2
(
||.f.||
"
{
0 })
= (f
"
{(
0. V)}) & ((
- f)
"
{(
0. V)})
= (f
"
{(
0. V)})
proof
now
let c be
Element of M;
thus c
in (
||.f.||
"
{
0 }) implies c
in (f
"
{(
0. V)})
proof
assume
A1: c
in (
||.f.||
"
{
0 });
then
A2: c
in (
dom
||.f.||) by
FUNCT_1:def 7;
(
||.f.||
. c)
in
{
0 } by
A1,
FUNCT_1:def 7;
then (
||.f.||
. c)
=
0 by
TARSKI:def 1;
then
||.(f
/. c).||
=
0 by
A2,
NORMSP_0:def 3;
then (f
/. c)
= (
0. V) by
NORMSP_0:def 5;
then
A3: (f
/. c)
in
{(
0. V)} by
TARSKI:def 1;
c
in (
dom f) by
A2,
NORMSP_0:def 3;
hence thesis by
A3,
PARTFUN2: 26;
end;
assume
A4: c
in (f
"
{(
0. V)});
then c
in (
dom f) by
PARTFUN2: 26;
then
A5: c
in (
dom
||.f.||) by
NORMSP_0:def 3;
(f
/. c)
in
{(
0. V)} by
A4,
PARTFUN2: 26;
then (f
/. c)
= (
0. V) by
TARSKI:def 1;
then
||.(f
/. c).||
=
0 by
NORMSP_0:def 6;
then (
||.f.||
. c)
=
0 by
A5,
NORMSP_0:def 3;
then (
||.f.||
. c)
in
{
0 } by
TARSKI:def 1;
hence c
in (
||.f.||
"
{
0 }) by
A5,
FUNCT_1:def 7;
end;
hence (
||.f.||
"
{
0 })
= (f
"
{(
0. V)}) by
SUBSET_1: 3;
now
let c be
Element of M;
thus c
in ((
- f)
"
{(
0. V)}) implies c
in (f
"
{(
0. V)})
proof
assume
A6: c
in ((
- f)
"
{(
0. V)});
then
A7: c
in (
dom (
- f)) by
PARTFUN2: 26;
((
- f)
/. c)
in
{(
0. V)} by
A6,
PARTFUN2: 26;
then ((
- f)
/. c)
= (
0. V) by
TARSKI:def 1;
then (
- (
- (f
/. c)))
= (
- (
0. V)) by
A7,
VFUNCT_1:def 5;
then (
- (
- (f
/. c)))
= (
0. V) by
RLVECT_1: 12;
then (f
/. c)
= (
0. V) by
RLVECT_1: 17;
then
A8: (f
/. c)
in
{(
0. V)} by
TARSKI:def 1;
c
in (
dom f) by
A7,
VFUNCT_1:def 5;
hence thesis by
A8,
PARTFUN2: 26;
end;
assume
A9: c
in (f
"
{(
0. V)});
then c
in (
dom f) by
PARTFUN2: 26;
then
A10: c
in (
dom (
- f)) by
VFUNCT_1:def 5;
(f
/. c)
in
{(
0. V)} by
A9,
PARTFUN2: 26;
then (f
/. c)
= (
0. V) by
TARSKI:def 1;
then ((
- f)
/. c)
= (
- (
0. V)) by
A10,
VFUNCT_1:def 5;
then ((
- f)
/. c)
= (
0. V) by
RLVECT_1: 12;
then ((
- f)
/. c)
in
{(
0. V)} by
TARSKI:def 1;
hence c
in ((
- f)
"
{(
0. V)}) by
A10,
PARTFUN2: 26;
end;
hence thesis by
SUBSET_1: 3;
end;
theorem ::
VFUNCT_2:3
z
<>
0c implies ((z
(#) f)
"
{(
0. V)})
= (f
"
{(
0. V)})
proof
assume
A1: z
<>
0c ;
now
let x be
Element of M;
thus x
in ((z
(#) f)
"
{(
0. V)}) implies x
in (f
"
{(
0. V)})
proof
assume
A2: x
in ((z
(#) f)
"
{(
0. V)});
then
A3: x
in (
dom (z
(#) f)) by
PARTFUN2: 26;
((z
(#) f)
/. x)
in
{(
0. V)} by
A2,
PARTFUN2: 26;
then ((z
(#) f)
/. x)
= (
0. V) by
TARSKI:def 1;
then (z
* (f
/. x))
= (
0. V) by
A3,
Def2;
then (z
* (f
/. x))
= (z
* (
0. V)) by
CLVECT_1: 1;
then (f
/. x)
= (
0. V) by
A1,
CLVECT_1: 11;
then
A4: (f
/. x)
in
{(
0. V)} by
TARSKI:def 1;
x
in (
dom f) by
A3,
Def2;
hence thesis by
A4,
PARTFUN2: 26;
end;
assume
A5: x
in (f
"
{(
0. V)});
then x
in (
dom f) by
PARTFUN2: 26;
then
A6: x
in (
dom (z
(#) f)) by
Def2;
(f
/. x)
in
{(
0. V)} by
A5,
PARTFUN2: 26;
then (z
* (f
/. x))
= (z
* (
0. V)) by
TARSKI:def 1;
then (z
* (f
/. x))
= (
0. V) by
CLVECT_1: 1;
then ((z
(#) f)
/. x)
= (
0. V) by
A6,
Def2;
then ((z
(#) f)
/. x)
in
{(
0. V)} by
TARSKI:def 1;
hence x
in ((z
(#) f)
"
{(
0. V)}) by
A6,
PARTFUN2: 26;
end;
hence thesis by
SUBSET_1: 3;
end;
theorem ::
VFUNCT_2:4
Th4: (f1
+ f2)
= (f2
+ f1);
definition
let M, V;
let f1, f2;
:: original:
+
redefine
func f1
+ f2;
commutativity by
Th4;
end
theorem ::
VFUNCT_2:5
((f1
+ f2)
+ f3)
= (f1
+ (f2
+ f3))
proof
A1: (
dom ((f1
+ f2)
+ f3))
= ((
dom (f1
+ f2))
/\ (
dom f3)) by
VFUNCT_1:def 1
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
VFUNCT_1:def 1
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
+ f3))) by
VFUNCT_1:def 1
.= (
dom (f1
+ (f2
+ f3))) by
VFUNCT_1:def 1;
now
let x be
Element of M;
assume
A2: x
in (
dom ((f1
+ f2)
+ f3));
then x
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
VFUNCT_1:def 1;
then
A3: x
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
x
in ((
dom f1)
/\ (
dom (f2
+ f3))) by
A1,
A2,
VFUNCT_1:def 1;
then
A4: x
in (
dom (f2
+ f3)) by
XBOOLE_0:def 4;
thus (((f1
+ f2)
+ f3)
/. x)
= (((f1
+ f2)
/. x)
+ (f3
/. x)) by
A2,
VFUNCT_1:def 1
.= (((f1
/. x)
+ (f2
/. x))
+ (f3
/. x)) by
A3,
VFUNCT_1:def 1
.= ((f1
/. x)
+ ((f2
/. x)
+ (f3
/. x))) by
RLVECT_1:def 3
.= ((f1
/. x)
+ ((f2
+ f3)
/. x)) by
A4,
VFUNCT_1:def 1
.= ((f1
+ (f2
+ f3))
/. x) by
A1,
A2,
VFUNCT_1:def 1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:6
for f1,f2 be
PartFunc of M,
COMPLEX , f3 be
PartFunc of M, V holds ((f1
(#) f2)
(#) f3)
= (f1
(#) (f2
(#) f3))
proof
let f1,f2 be
PartFunc of M,
COMPLEX ;
let f3 be
PartFunc of M, V;
A1: (
dom ((f1
(#) f2)
(#) f3))
= ((
dom (f1
(#) f2))
/\ (
dom f3)) by
Def1
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
VALUED_1:def 4
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
(#) f3))) by
Def1
.= (
dom (f1
(#) (f2
(#) f3))) by
Def1;
now
let x be
Element of M;
assume
A2: x
in (
dom ((f1
(#) f2)
(#) f3));
then x
in ((
dom (f1
(#) f2))
/\ (
dom f3)) by
Def1;
then
A3: x
in (
dom (f1
(#) f2)) by
XBOOLE_0:def 4;
A4: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
then x
in (
dom f1) by
A3,
XBOOLE_0:def 4;
then
A5: (f1
. x)
= (f1
/. x) by
PARTFUN1:def 6;
x
in (
dom f2) by
A3,
A4,
XBOOLE_0:def 4;
then
A6: (f2
. x)
= (f2
/. x) by
PARTFUN1:def 6;
A7: ((f1
(#) f2)
/. x)
= ((f1
(#) f2)
. x) by
A3,
PARTFUN1:def 6
.= ((f1
/. x)
* (f2
/. x)) by
A3,
A5,
A6,
VALUED_1:def 4;
x
in ((
dom f1)
/\ (
dom (f2
(#) f3))) by
A1,
A2,
Def1;
then
A8: x
in (
dom (f2
(#) f3)) by
XBOOLE_0:def 4;
thus (((f1
(#) f2)
(#) f3)
/. x)
= (((f1
(#) f2)
/. x)
* (f3
/. x)) by
A2,
Def1
.= ((f1
/. x)
* ((f2
/. x)
* (f3
/. x))) by
A7,
CLVECT_1:def 4
.= ((f1
/. x)
* ((f2
(#) f3)
/. x)) by
A8,
Def1
.= ((f1
(#) (f2
(#) f3))
/. x) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:7
for f1,f2 be
PartFunc of M,
COMPLEX holds ((f1
+ f2)
(#) f3)
= ((f1
(#) f3)
+ (f2
(#) f3))
proof
let f1,f2 be
PartFunc of M,
COMPLEX ;
A1: (
dom ((f1
+ f2)
(#) f3))
= ((
dom (f1
+ f2))
/\ (
dom f3)) by
Def1
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom f3)
/\ (
dom f3))) by
VALUED_1:def 1
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom f3))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f3))
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f3))
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom (f1
(#) f3))
/\ ((
dom f2)
/\ (
dom f3))) by
Def1
.= ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
Def1
.= (
dom ((f1
(#) f3)
+ (f2
(#) f3))) by
VFUNCT_1:def 1;
A2: (
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
now
let x be
Element of M;
assume
A3: x
in (
dom ((f1
+ f2)
(#) f3));
then
A4: x
in ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
A1,
VFUNCT_1:def 1;
then
A5: x
in (
dom (f1
(#) f3)) by
XBOOLE_0:def 4;
x
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
A3,
Def1;
then
A6: x
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
then x
in (
dom f1) by
A2,
XBOOLE_0:def 4;
then
A7: (f1
/. x)
= (f1
. x) by
PARTFUN1:def 6;
x
in (
dom f2) by
A2,
A6,
XBOOLE_0:def 4;
then
A8: (f2
/. x)
= (f2
. x) by
PARTFUN1:def 6;
A9: ((f1
+ f2)
/. x)
= ((f1
+ f2)
. x) by
A6,
PARTFUN1:def 6
.= ((f1
/. x)
+ (f2
/. x)) by
A6,
A7,
A8,
VALUED_1:def 1;
A10: x
in (
dom (f2
(#) f3)) by
A4,
XBOOLE_0:def 4;
thus (((f1
+ f2)
(#) f3)
/. x)
= (((f1
+ f2)
/. x)
* (f3
/. x)) by
A3,
Def1
.= (((f1
/. x)
* (f3
/. x))
+ ((f2
/. x)
* (f3
/. x))) by
A9,
CLVECT_1:def 3
.= (((f1
(#) f3)
/. x)
+ ((f2
/. x)
* (f3
/. x))) by
A5,
Def1
.= (((f1
(#) f3)
/. x)
+ ((f2
(#) f3)
/. x)) by
A10,
Def1
.= (((f1
(#) f3)
+ (f2
(#) f3))
/. x) by
A1,
A3,
VFUNCT_1:def 1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:8
for f3 be
PartFunc of M,
COMPLEX holds (f3
(#) (f1
+ f2))
= ((f3
(#) f1)
+ (f3
(#) f2))
proof
let f3 be
PartFunc of M,
COMPLEX ;
A1: (
dom (f3
(#) (f1
+ f2)))
= ((
dom f3)
/\ (
dom (f1
+ f2))) by
Def1
.= ((
dom f3)
/\ ((
dom f1)
/\ (
dom f2))) by
VFUNCT_1:def 1
.= ((((
dom f3)
/\ (
dom f3))
/\ (
dom f1))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((((
dom f3)
/\ (
dom f1))
/\ (
dom f3))
/\ (
dom f2)) by
XBOOLE_1: 16
.= (((
dom f3)
/\ (
dom f1))
/\ ((
dom f3)
/\ (
dom f2))) by
XBOOLE_1: 16
.= ((
dom (f3
(#) f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def1
.= ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
Def1
.= (
dom ((f3
(#) f1)
+ (f3
(#) f2))) by
VFUNCT_1:def 1;
now
let x be
Element of M;
assume
A2: x
in (
dom (f3
(#) (f1
+ f2)));
then x
in ((
dom f3)
/\ (
dom (f1
+ f2))) by
Def1;
then
A3: x
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
A4: x
in ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
A1,
A2,
VFUNCT_1:def 1;
then
A5: x
in (
dom (f3
(#) f1)) by
XBOOLE_0:def 4;
A6: x
in (
dom (f3
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((f3
(#) (f1
+ f2))
/. x)
= ((f3
/. x)
* ((f1
+ f2)
/. x)) by
A2,
Def1
.= ((f3
/. x)
* ((f1
/. x)
+ (f2
/. x))) by
A3,
VFUNCT_1:def 1
.= (((f3
/. x)
* (f1
/. x))
+ ((f3
/. x)
* (f2
/. x))) by
CLVECT_1:def 2
.= (((f3
(#) f1)
/. x)
+ ((f3
/. x)
* (f2
/. x))) by
A5,
Def1
.= (((f3
(#) f1)
/. x)
+ ((f3
(#) f2)
/. x)) by
A6,
Def1
.= (((f3
(#) f1)
+ (f3
(#) f2))
/. x) by
A1,
A2,
VFUNCT_1:def 1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:9
for f1 be
PartFunc of M,
COMPLEX holds (z
(#) (f1
(#) f2))
= ((z
(#) f1)
(#) f2)
proof
let f1 be
PartFunc of M,
COMPLEX ;
A1: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1;
A2: (
dom (z
(#) (f1
(#) f2)))
= (
dom (f1
(#) f2)) by
Def2
.= ((
dom (z
(#) f1))
/\ (
dom f2)) by
A1,
VALUED_1:def 5
.= (
dom ((z
(#) f1)
(#) f2)) by
Def1;
now
let x be
Element of M;
assume
A3: x
in (
dom (z
(#) (f1
(#) f2)));
then x
in ((
dom (z
(#) f1))
/\ (
dom f2)) by
A2,
Def1;
then x
in (
dom (z
(#) f1)) by
XBOOLE_0:def 4;
then
A4: ((z
(#) f1)
/. x)
= ((z
(#) f1)
. x) by
PARTFUN1:def 6;
A5: x
in (
dom (f1
(#) f2)) by
A3,
Def2;
then x
in (
dom f1) by
A1,
XBOOLE_0:def 4;
then
A6: (f1
/. x)
= (f1
. x) by
PARTFUN1:def 6;
thus ((z
(#) (f1
(#) f2))
/. x)
= (z
* ((f1
(#) f2)
/. x)) by
A3,
Def2
.= (z
* ((f1
/. x)
* (f2
/. x))) by
A5,
Def1
.= ((z
* (f1
/. x))
* (f2
/. x)) by
CLVECT_1:def 4
.= (((z
(#) f1)
/. x)
* (f2
/. x)) by
A4,
A6,
VALUED_1: 6
.= (((z
(#) f1)
(#) f2)
/. x) by
A2,
A3,
Def1;
end;
hence thesis by
A2,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:10
for f1 be
PartFunc of M,
COMPLEX holds (z
(#) (f1
(#) f2))
= (f1
(#) (z
(#) f2))
proof
let f1 be
PartFunc of M,
COMPLEX ;
A1: (
dom (z
(#) (f1
(#) f2)))
= (
dom (f1
(#) f2)) by
Def2
.= ((
dom f1)
/\ (
dom f2)) by
Def1
.= ((
dom f1)
/\ (
dom (z
(#) f2))) by
Def2
.= (
dom (f1
(#) (z
(#) f2))) by
Def1;
now
let x be
Element of M;
assume
A2: x
in (
dom (z
(#) (f1
(#) f2)));
then
A3: x
in (
dom (f1
(#) f2)) by
Def2;
x
in ((
dom f1)
/\ (
dom (z
(#) f2))) by
A1,
A2,
Def1;
then
A4: x
in (
dom (z
(#) f2)) by
XBOOLE_0:def 4;
thus ((z
(#) (f1
(#) f2))
/. x)
= (z
* ((f1
(#) f2)
/. x)) by
A2,
Def2
.= (z
* ((f1
/. x)
* (f2
/. x))) by
A3,
Def1
.= (((f1
/. x)
* z)
* (f2
/. x)) by
CLVECT_1:def 4
.= ((f1
/. x)
* (z
* (f2
/. x))) by
CLVECT_1:def 4
.= ((f1
/. x)
* ((z
(#) f2)
/. x)) by
A4,
Def2
.= ((f1
(#) (z
(#) f2))
/. x) by
A1,
A2,
Def1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:11
for f1,f2 be
PartFunc of M,
COMPLEX holds ((f1
- f2)
(#) f3)
= ((f1
(#) f3)
- (f2
(#) f3))
proof
let f1,f2 be
PartFunc of M,
COMPLEX ;
A1: (
dom ((f1
- f2)
(#) f3))
= ((
dom (f1
+ (
- f2)))
/\ (
dom f3)) by
Def1
.= (((
dom f1)
/\ (
dom (
- f2)))
/\ ((
dom f3)
/\ (
dom f3))) by
VALUED_1:def 1
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom f3)
/\ (
dom f3))) by
VALUED_1: 8
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom f3))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f3))
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f3))
/\ ((
dom f2)
/\ (
dom f3))) by
XBOOLE_1: 16
.= ((
dom (f1
(#) f3))
/\ ((
dom f2)
/\ (
dom f3))) by
Def1
.= ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
Def1
.= (
dom ((f1
(#) f3)
- (f2
(#) f3))) by
VFUNCT_1:def 2;
now
let x be
Element of M;
assume
A2: x
in (
dom ((f1
- f2)
(#) f3));
then
A3: x
in ((
dom (f1
(#) f3))
/\ (
dom (f2
(#) f3))) by
A1,
VFUNCT_1:def 2;
then
A4: x
in (
dom (f1
(#) f3)) by
XBOOLE_0:def 4;
x
in ((
dom (f1
- f2))
/\ (
dom f3)) by
A2,
Def1;
then
A5: x
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
then
A6: x
in ((
dom f1)
/\ (
dom (
- f2))) by
VALUED_1:def 1;
then
A7: x
in (
dom (
- f2)) by
XBOOLE_0:def 4;
x
in (
dom f1) by
A6,
XBOOLE_0:def 4;
then
A8: (f1
/. x)
= (f1
. x) by
PARTFUN1:def 6;
((f1
+ (
- f2))
/. x)
= ((f1
+ (
- f2))
. x) by
A5,
PARTFUN1:def 6;
then
A9: ((f1
+ (
- f2))
/. x)
= ((f1
. x)
+ ((
- f2)
. x)) by
A5,
VALUED_1:def 1
.= ((f1
/. x)
+ ((
- f2)
/. x)) by
A7,
A8,
PARTFUN1:def 6;
(
dom (
- f2))
= (
dom f2) by
VALUED_1: 8;
then
A10: ((
- f2)
. x)
= (
- (f2
. x)) & (f2
/. x)
= (f2
. x) by
A7,
PARTFUN1:def 6,
VALUED_1: 8;
A11: x
in (
dom (f2
(#) f3)) by
A3,
XBOOLE_0:def 4;
((
- f2)
/. x)
= ((
- f2)
. x) by
A7,
PARTFUN1:def 6;
hence (((f1
- f2)
(#) f3)
/. x)
= (((f1
/. x)
- (f2
/. x))
* (f3
/. x)) by
A2,
A10,
A9,
Def1
.= (((f1
/. x)
* (f3
/. x))
- ((f2
/. x)
* (f3
/. x))) by
CLVECT_1: 10
.= (((f1
(#) f3)
/. x)
- ((f2
/. x)
* (f3
/. x))) by
A4,
Def1
.= (((f1
(#) f3)
/. x)
- ((f2
(#) f3)
/. x)) by
A11,
Def1
.= (((f1
(#) f3)
- (f2
(#) f3))
/. x) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:12
for f3 be
PartFunc of M,
COMPLEX holds ((f3
(#) f1)
- (f3
(#) f2))
= (f3
(#) (f1
- f2))
proof
let f3 be
PartFunc of M,
COMPLEX ;
A1: (
dom ((f3
(#) f1)
- (f3
(#) f2)))
= ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
VFUNCT_1:def 2
.= ((
dom (f3
(#) f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def1
.= (((
dom f3)
/\ (
dom f1))
/\ ((
dom f3)
/\ (
dom f2))) by
Def1
.= (((
dom f3)
/\ ((
dom f3)
/\ (
dom f1)))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((((
dom f3)
/\ (
dom f3))
/\ (
dom f1))
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom f3)
/\ ((
dom f1)
/\ (
dom f2))) by
XBOOLE_1: 16
.= ((
dom f3)
/\ (
dom (f1
- f2))) by
VFUNCT_1:def 2
.= (
dom (f3
(#) (f1
- f2))) by
Def1;
now
let x be
Element of M;
assume
A2: x
in (
dom (f3
(#) (f1
- f2)));
then x
in ((
dom f3)
/\ (
dom (f1
- f2))) by
Def1;
then
A3: x
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
A4: x
in ((
dom (f3
(#) f1))
/\ (
dom (f3
(#) f2))) by
A1,
A2,
VFUNCT_1:def 2;
then
A5: x
in (
dom (f3
(#) f1)) by
XBOOLE_0:def 4;
A6: x
in (
dom (f3
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((f3
(#) (f1
- f2))
/. x)
= ((f3
/. x)
* ((f1
- f2)
/. x)) by
A2,
Def1
.= ((f3
/. x)
* ((f1
/. x)
- (f2
/. x))) by
A3,
VFUNCT_1:def 2
.= (((f3
/. x)
* (f1
/. x))
- ((f3
/. x)
* (f2
/. x))) by
CLVECT_1: 9
.= (((f3
(#) f1)
/. x)
- ((f3
/. x)
* (f2
/. x))) by
A5,
Def1
.= (((f3
(#) f1)
/. x)
- ((f3
(#) f2)
/. x)) by
A6,
Def1
.= (((f3
(#) f1)
- (f3
(#) f2))
/. x) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:13
(z
(#) (f1
+ f2))
= ((z
(#) f1)
+ (z
(#) f2))
proof
A1: (
dom (z
(#) (f1
+ f2)))
= (
dom (f1
+ f2)) by
Def2
.= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1
.= ((
dom f1)
/\ (
dom (z
(#) f2))) by
Def2
.= ((
dom (z
(#) f1))
/\ (
dom (z
(#) f2))) by
Def2
.= (
dom ((z
(#) f1)
+ (z
(#) f2))) by
VFUNCT_1:def 1;
now
let x be
Element of M;
assume
A2: x
in (
dom (z
(#) (f1
+ f2)));
then
A3: x
in (
dom (f1
+ f2)) by
Def2;
A4: x
in ((
dom (z
(#) f1))
/\ (
dom (z
(#) f2))) by
A1,
A2,
VFUNCT_1:def 1;
then
A5: x
in (
dom (z
(#) f1)) by
XBOOLE_0:def 4;
A6: x
in (
dom (z
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((z
(#) (f1
+ f2))
/. x)
= (z
* ((f1
+ f2)
/. x)) by
A2,
Def2
.= (z
* ((f1
/. x)
+ (f2
/. x))) by
A3,
VFUNCT_1:def 1
.= ((z
* (f1
/. x))
+ (z
* (f2
/. x))) by
CLVECT_1:def 2
.= (((z
(#) f1)
/. x)
+ (z
* (f2
/. x))) by
A5,
Def2
.= (((z
(#) f1)
/. x)
+ ((z
(#) f2)
/. x)) by
A6,
Def2
.= (((z
(#) f1)
+ (z
(#) f2))
/. x) by
A1,
A2,
VFUNCT_1:def 1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:14
Th14: ((z1
* z2)
(#) f)
= (z1
(#) (z2
(#) f))
proof
A1: (
dom ((z1
* z2)
(#) f))
= (
dom f) by
Def2
.= (
dom (z2
(#) f)) by
Def2
.= (
dom (z1
(#) (z2
(#) f))) by
Def2;
now
let x be
Element of M;
assume
A2: x
in (
dom ((z1
* z2)
(#) f));
then
A3: x
in (
dom (z2
(#) f)) by
A1,
Def2;
thus (((z1
* z2)
(#) f)
/. x)
= ((z1
* z2)
* (f
/. x)) by
A2,
Def2
.= (z1
* (z2
* (f
/. x))) by
CLVECT_1:def 4
.= (z1
* ((z2
(#) f)
/. x)) by
A3,
Def2
.= ((z1
(#) (z2
(#) f))
/. x) by
A1,
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:15
(z
(#) (f1
- f2))
= ((z
(#) f1)
- (z
(#) f2))
proof
A1: (
dom (z
(#) (f1
- f2)))
= (
dom (f1
- f2)) by
Def2
.= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 2
.= ((
dom f1)
/\ (
dom (z
(#) f2))) by
Def2
.= ((
dom (z
(#) f1))
/\ (
dom (z
(#) f2))) by
Def2
.= (
dom ((z
(#) f1)
- (z
(#) f2))) by
VFUNCT_1:def 2;
now
let x be
Element of M;
assume
A2: x
in (
dom (z
(#) (f1
- f2)));
then
A3: x
in (
dom (f1
- f2)) by
Def2;
A4: x
in ((
dom (z
(#) f1))
/\ (
dom (z
(#) f2))) by
A1,
A2,
VFUNCT_1:def 2;
then
A5: x
in (
dom (z
(#) f1)) by
XBOOLE_0:def 4;
A6: x
in (
dom (z
(#) f2)) by
A4,
XBOOLE_0:def 4;
thus ((z
(#) (f1
- f2))
/. x)
= (z
* ((f1
- f2)
/. x)) by
A2,
Def2
.= (z
* ((f1
/. x)
- (f2
/. x))) by
A3,
VFUNCT_1:def 2
.= ((z
* (f1
/. x))
- (z
* (f2
/. x))) by
CLVECT_1: 9
.= (((z
(#) f1)
/. x)
- (z
* (f2
/. x))) by
A5,
Def2
.= (((z
(#) f1)
/. x)
- ((z
(#) f2)
/. x)) by
A6,
Def2
.= (((z
(#) f1)
- (z
(#) f2))
/. x) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:16
(f1
- f2)
= ((
-
1r )
(#) (f2
- f1))
proof
A1: (
dom (f1
- f2))
= ((
dom f2)
/\ (
dom f1)) by
VFUNCT_1:def 2
.= (
dom (f2
- f1)) by
VFUNCT_1:def 2
.= (
dom ((
-
1r )
(#) (f2
- f1))) by
Def2;
now
A2: (
dom (f1
- f2))
= ((
dom f2)
/\ (
dom f1)) by
VFUNCT_1:def 2
.= (
dom (f2
- f1)) by
VFUNCT_1:def 2;
let x be
Element of M such that
A3: x
in (
dom (f1
- f2));
thus ((f1
- f2)
/. x)
= ((f1
/. x)
- (f2
/. x)) by
A3,
VFUNCT_1:def 2
.= (
- ((f2
/. x)
- (f1
/. x))) by
RLVECT_1: 33
.= ((
-
1r )
* ((f2
/. x)
- (f1
/. x))) by
CLVECT_1: 3
.= ((
-
1r )
* ((f2
- f1)
/. x)) by
A3,
A2,
VFUNCT_1:def 2
.= (((
-
1r )
(#) (f2
- f1))
/. x) by
A1,
A3,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:17
(f1
- (f2
+ f3))
= ((f1
- f2)
- f3)
proof
A1: (
dom (f1
- (f2
+ f3)))
= ((
dom f1)
/\ (
dom (f2
+ f3))) by
VFUNCT_1:def 2
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
VFUNCT_1:def 1
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
- f2))
/\ (
dom f3)) by
VFUNCT_1:def 2
.= (
dom ((f1
- f2)
- f3)) by
VFUNCT_1:def 2;
now
let x be
Element of M;
assume
A2: x
in (
dom (f1
- (f2
+ f3)));
then x
in ((
dom f1)
/\ (
dom (f2
+ f3))) by
VFUNCT_1:def 2;
then
A3: x
in (
dom (f2
+ f3)) by
XBOOLE_0:def 4;
x
in ((
dom (f1
- f2))
/\ (
dom f3)) by
A1,
A2,
VFUNCT_1:def 2;
then
A4: x
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
thus ((f1
- (f2
+ f3))
/. x)
= ((f1
/. x)
- ((f2
+ f3)
/. x)) by
A2,
VFUNCT_1:def 2
.= ((f1
/. x)
- ((f2
/. x)
+ (f3
/. x))) by
A3,
VFUNCT_1:def 1
.= (((f1
/. x)
- (f2
/. x))
- (f3
/. x)) by
RLVECT_1: 27
.= (((f1
- f2)
/. x)
- (f3
/. x)) by
A4,
VFUNCT_1:def 2
.= (((f1
- f2)
- f3)
/. x) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:18
Th18: (
1r
(#) f)
= f
proof
A1:
now
let c be
Element of M;
assume c
in (
dom (
1r
(#) f));
hence ((
1r
(#) f)
/. c)
= (
1r
* (f
/. c)) by
Def2
.= (f
/. c) by
CLVECT_1:def 5;
end;
(
dom (
1r
(#) f))
= (
dom f) by
Def2;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:19
(f1
- (f2
- f3))
= ((f1
- f2)
+ f3)
proof
A1: (
dom (f1
- (f2
- f3)))
= ((
dom f1)
/\ (
dom (f2
- f3))) by
VFUNCT_1:def 2
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
VFUNCT_1:def 2
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
- f2))
/\ (
dom f3)) by
VFUNCT_1:def 2
.= (
dom ((f1
- f2)
+ f3)) by
VFUNCT_1:def 1;
now
let c be
Element of M;
assume
A2: c
in (
dom (f1
- (f2
- f3)));
then c
in ((
dom f1)
/\ (
dom (f2
- f3))) by
VFUNCT_1:def 2;
then
A3: c
in (
dom (f2
- f3)) by
XBOOLE_0:def 4;
c
in ((
dom (f1
- f2))
/\ (
dom f3)) by
A1,
A2,
VFUNCT_1:def 1;
then
A4: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
thus ((f1
- (f2
- f3))
/. c)
= ((f1
/. c)
- ((f2
- f3)
/. c)) by
A2,
VFUNCT_1:def 2
.= ((f1
/. c)
- ((f2
/. c)
- (f3
/. c))) by
A3,
VFUNCT_1:def 2
.= (((f1
/. c)
- (f2
/. c))
+ (f3
/. c)) by
RLVECT_1: 29
.= (((f1
- f2)
/. c)
+ (f3
/. c)) by
A4,
VFUNCT_1:def 2
.= (((f1
- f2)
+ f3)
/. c) by
A1,
A2,
VFUNCT_1:def 1;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:20
(f1
+ (f2
- f3))
= ((f1
+ f2)
- f3)
proof
A1: (
dom (f1
+ (f2
- f3)))
= ((
dom f1)
/\ (
dom (f2
- f3))) by
VFUNCT_1:def 1
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
VFUNCT_1:def 2
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
XBOOLE_1: 16
.= ((
dom (f1
+ f2))
/\ (
dom f3)) by
VFUNCT_1:def 1
.= (
dom ((f1
+ f2)
- f3)) by
VFUNCT_1:def 2;
now
let c be
Element of M;
assume
A2: c
in (
dom (f1
+ (f2
- f3)));
then c
in ((
dom f1)
/\ (
dom (f2
- f3))) by
VFUNCT_1:def 1;
then
A3: c
in (
dom (f2
- f3)) by
XBOOLE_0:def 4;
c
in ((
dom (f1
+ f2))
/\ (
dom f3)) by
A1,
A2,
VFUNCT_1:def 2;
then
A4: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
thus ((f1
+ (f2
- f3))
/. c)
= ((f1
/. c)
+ ((f2
- f3)
/. c)) by
A2,
VFUNCT_1:def 1
.= ((f1
/. c)
+ ((f2
/. c)
- (f3
/. c))) by
A3,
VFUNCT_1:def 2
.= (((f1
/. c)
+ (f2
/. c))
- (f3
/. c)) by
RLVECT_1:def 3
.= (((f1
+ f2)
/. c)
- (f3
/. c)) by
A4,
VFUNCT_1:def 1
.= (((f1
+ f2)
- f3)
/. c) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:21
for f1 be
PartFunc of M,
COMPLEX holds
||.(f1
(#) f2).||
= (
|.f1.|
(#)
||.f2.||)
proof
let f1 be
PartFunc of M,
COMPLEX ;
A1: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
Def1;
A2: ((
dom f1)
/\ (
dom f2))
= ((
dom f1)
/\ (
dom
||.f2.||)) by
NORMSP_0:def 3
.= ((
dom
|.f1.|)
/\ (
dom
||.f2.||)) by
VALUED_1:def 11
.= (
dom (
|.f1.|
(#)
||.f2.||)) by
VALUED_1:def 4;
A3: (
dom
||.(f1
(#) f2).||)
= (
dom (f1
(#) f2)) by
NORMSP_0:def 3;
now
let c be
Element of M;
assume
A4: c
in (
dom
||.(f1
(#) f2).||);
then c
in ((
dom
|.f1.|)
/\ (
dom
||.f2.||)) by
A3,
A1,
A2,
VALUED_1:def 4;
then
A5: c
in (
dom
||.f2.||) by
XBOOLE_0:def 4;
A6: c
in (
dom (f1
(#) f2)) by
A4,
NORMSP_0:def 3;
then c
in (
dom f1) by
A1,
XBOOLE_0:def 4;
then
A7: (f1
/. c)
= (f1
. c) by
PARTFUN1:def 6;
thus (
||.(f1
(#) f2).||
. c)
=
||.((f1
(#) f2)
/. c).|| by
A4,
NORMSP_0:def 3
.=
||.((f1
/. c)
* (f2
/. c)).|| by
A6,
Def1
.= (
|.(f1
/. c).|
*
||.(f2
/. c).||) by
CLVECT_1:def 13
.= ((
|.f1.|
. c)
*
||.(f2
/. c).||) by
A7,
VALUED_1: 18
.= ((
|.f1.|
. c)
* (
||.f2.||
. c)) by
A5,
NORMSP_0:def 3
.= ((
|.f1.|
(#)
||.f2.||)
. c) by
VALUED_1: 5;
end;
hence thesis by
A3,
A1,
A2,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_2:22
||.(z
(#) f).||
= (
|.z.|
(#)
||.f.||)
proof
A1: (
dom
||.(z
(#) f).||)
= (
dom (z
(#) f)) by
NORMSP_0:def 3
.= (
dom f) by
Def2
.= (
dom
||.f.||) by
NORMSP_0:def 3
.= (
dom (
|.z.|
(#)
||.f.||)) by
VALUED_1:def 5;
now
let c be
Element of M;
assume
A2: c
in (
dom
||.(z
(#) f).||);
then
A3: c
in (
dom
||.f.||) by
A1,
VALUED_1:def 5;
A4: c
in (
dom (z
(#) f)) by
A2,
NORMSP_0:def 3;
thus (
||.(z
(#) f).||
. c)
=
||.((z
(#) f)
/. c).|| by
A2,
NORMSP_0:def 3
.=
||.(z
* (f
/. c)).|| by
A4,
Def2
.= (
|.z.|
*
||.(f
/. c).||) by
CLVECT_1:def 13
.= (
|.z.|
* (
||.f.||
. c)) by
A3,
NORMSP_0:def 3
.= ((
|.z.|
(#)
||.f.||)
. c) by
A1,
A2,
VALUED_1:def 5;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_2:23
Th23: (
- f)
= ((
-
1r )
(#) f)
proof
A1: (
dom (
- f))
= (
dom f) by
VFUNCT_1:def 5
.= (
dom ((
-
1r )
(#) f)) by
Def2;
now
let c be
Element of M;
assume
A2: c
in (
dom ((
-
1r )
(#) f));
hence ((
- f)
/. c)
= (
- (f
/. c)) by
A1,
VFUNCT_1:def 5
.= ((
-
1r )
* (f
/. c)) by
CLVECT_1: 3
.= (((
-
1r )
(#) f)
/. c) by
A2,
Def2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:24
Th24: (
- (
- f))
= f
proof
thus (
- (
- f))
= ((
-
1r )
(#) (
- f)) by
Th23
.= ((
-
1r )
(#) ((
-
1r )
(#) f)) by
Th23
.= (((
-
1r )
* (
-
1r ))
(#) f) by
Th14
.= f by
Th18,
COMPLEX1:def 4;
end;
theorem ::
VFUNCT_2:25
Th25: (f1
- f2)
= (f1
+ (
- f2))
proof
A1: (
dom (f1
- f2))
= ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 2
.= ((
dom f1)
/\ (
dom (
- f2))) by
VFUNCT_1:def 5
.= (
dom (f1
+ (
- f2))) by
VFUNCT_1:def 1;
now
let c be
Element of M;
assume
A2: c
in (
dom (f1
+ (
- f2)));
then c
in ((
dom f1)
/\ (
dom (
- f2))) by
VFUNCT_1:def 1;
then
A3: c
in (
dom (
- f2)) by
XBOOLE_0:def 4;
thus ((f1
+ (
- f2))
/. c)
= ((f1
/. c)
+ ((
- f2)
/. c)) by
A2,
VFUNCT_1:def 1
.= ((f1
/. c)
- (f2
/. c)) by
A3,
VFUNCT_1:def 5
.= ((f1
- f2)
/. c) by
A1,
A2,
VFUNCT_1:def 2;
end;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:26
(f1
- (
- f2))
= (f1
+ f2)
proof
thus (f1
- (
- f2))
= (f1
+ (
- (
- f2))) by
Th25
.= (f1
+ f2) by
Th24;
end;
reserve X,Y for
set;
theorem ::
VFUNCT_2:27
Th27: ((f1
+ f2)
| X)
= ((f1
| X)
+ (f2
| X)) & ((f1
+ f2)
| X)
= ((f1
| X)
+ f2) & ((f1
+ f2)
| X)
= (f1
+ (f2
| X))
proof
A1:
now
let c be
Element of M;
assume
A2: c
in (
dom ((f1
+ f2)
| X));
then
A3: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (f1
+ f2)) by
A3,
XBOOLE_0:def 4;
then
A6: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A7: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A6,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A8: c
in (
dom (f1
| X)) by
RELAT_1: 61;
then c
in ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
A7,
XBOOLE_0:def 4;
then
A9: c
in (
dom ((f1
| X)
+ (f2
| X))) by
VFUNCT_1:def 1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A2,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A5,
VFUNCT_1:def 1
.= (((f1
| X)
/. c)
+ (f2
/. c)) by
A8,
PARTFUN2: 15
.= (((f1
| X)
/. c)
+ ((f2
| X)
/. c)) by
A7,
PARTFUN2: 15
.= (((f1
| X)
+ (f2
| X))
/. c) by
A9,
VFUNCT_1:def 1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ (X
/\ X)) by
VFUNCT_1:def 1
.= ((
dom f1)
/\ ((
dom f2)
/\ (X
/\ X))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (((
dom f2)
/\ X)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (X
/\ (
dom (f2
| X)))) by
RELAT_1: 61
.= (((
dom f1)
/\ X)
/\ (
dom (f2
| X))) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom ((f1
| X)
+ (f2
| X))) by
VFUNCT_1:def 1;
hence ((f1
+ f2)
| X)
= ((f1
| X)
+ (f2
| X)) by
A1,
PARTFUN2: 1;
A10:
now
let c be
Element of M;
assume
A11: c
in (
dom ((f1
+ f2)
| X));
then
A12: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A13: c
in X by
XBOOLE_0:def 4;
A14: c
in (
dom (f1
+ f2)) by
A12,
XBOOLE_0:def 4;
then
A15: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A13,
XBOOLE_0:def 4;
then
A16: c
in (
dom (f1
| X)) by
RELAT_1: 61;
c
in (
dom f2) by
A15,
XBOOLE_0:def 4;
then c
in ((
dom (f1
| X))
/\ (
dom f2)) by
A16,
XBOOLE_0:def 4;
then
A17: c
in (
dom ((f1
| X)
+ f2)) by
VFUNCT_1:def 1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A11,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A14,
VFUNCT_1:def 1
.= (((f1
| X)
/. c)
+ (f2
/. c)) by
A16,
PARTFUN2: 15
.= (((f1
| X)
+ f2)
/. c) by
A17,
VFUNCT_1:def 1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
VFUNCT_1:def 1
.= (((
dom f1)
/\ X)
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom f2)) by
RELAT_1: 61
.= (
dom ((f1
| X)
+ f2)) by
VFUNCT_1:def 1;
hence ((f1
+ f2)
| X)
= ((f1
| X)
+ f2) by
A10,
PARTFUN2: 1;
A18:
now
let c be
Element of M;
assume
A19: c
in (
dom ((f1
+ f2)
| X));
then
A20: c
in ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61;
then
A21: c
in X by
XBOOLE_0:def 4;
A22: c
in (
dom (f1
+ f2)) by
A20,
XBOOLE_0:def 4;
then
A23: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A21,
XBOOLE_0:def 4;
then
A24: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A23,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ (
dom (f2
| X))) by
A24,
XBOOLE_0:def 4;
then
A25: c
in (
dom (f1
+ (f2
| X))) by
VFUNCT_1:def 1;
thus (((f1
+ f2)
| X)
/. c)
= ((f1
+ f2)
/. c) by
A19,
PARTFUN2: 15
.= ((f1
/. c)
+ (f2
/. c)) by
A22,
VFUNCT_1:def 1
.= ((f1
/. c)
+ ((f2
| X)
/. c)) by
A24,
PARTFUN2: 15
.= ((f1
+ (f2
| X))
/. c) by
A25,
VFUNCT_1:def 1;
end;
(
dom ((f1
+ f2)
| X))
= ((
dom (f1
+ f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
VFUNCT_1:def 1
.= ((
dom f1)
/\ ((
dom f2)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom (f1
+ (f2
| X))) by
VFUNCT_1:def 1;
hence thesis by
A18,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:28
for f1 be
PartFunc of M,
COMPLEX holds ((f1
(#) f2)
| X)
= ((f1
| X)
(#) (f2
| X)) & ((f1
(#) f2)
| X)
= ((f1
| X)
(#) f2) & ((f1
(#) f2)
| X)
= (f1
(#) (f2
| X))
proof
let f1 be
PartFunc of M,
COMPLEX ;
A1:
now
let c be
Element of M;
assume
A2: c
in (
dom ((f1
(#) f2)
| X));
then
A3: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (f1
(#) f2)) by
A3,
XBOOLE_0:def 4;
then
A6: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then
A7: c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A8: c
in (
dom (f1
| X)) by
RELAT_1: 61;
then
A9: ((f1
| X)
/. c)
= ((f1
| X)
. c) by
PARTFUN1:def 6
.= (f1
. c) by
A8,
FUNCT_1: 47
.= (f1
/. c) by
A7,
PARTFUN1:def 6;
c
in (
dom f2) by
A6,
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A10: c
in (
dom (f2
| X)) by
RELAT_1: 61;
then c
in ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
A8,
XBOOLE_0:def 4;
then
A11: c
in (
dom ((f1
| X)
(#) (f2
| X))) by
Def1;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A2,
PARTFUN2: 15
.= ((f1
/. c)
* (f2
/. c)) by
A5,
Def1
.= (((f1
| X)
/. c)
* ((f2
| X)
/. c)) by
A10,
A9,
PARTFUN2: 15
.= (((f1
| X)
(#) (f2
| X))
/. c) by
A11,
Def1;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ (X
/\ X)) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ (X
/\ X))) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (((
dom f2)
/\ X)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (X
/\ (
dom (f2
| X)))) by
RELAT_1: 61
.= (((
dom f1)
/\ X)
/\ (
dom (f2
| X))) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom ((f1
| X)
(#) (f2
| X))) by
Def1;
hence ((f1
(#) f2)
| X)
= ((f1
| X)
(#) (f2
| X)) by
A1,
PARTFUN2: 1;
A12:
now
let c be
Element of M;
assume
A13: c
in (
dom ((f1
(#) f2)
| X));
then
A14: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A15: c
in (
dom (f1
(#) f2)) by
XBOOLE_0:def 4;
then
A16: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then
A17: c
in (
dom f1) by
XBOOLE_0:def 4;
c
in X by
A14,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ X) by
A17,
XBOOLE_0:def 4;
then
A18: c
in (
dom (f1
| X)) by
RELAT_1: 61;
then
A19: ((f1
| X)
/. c)
= ((f1
| X)
. c) by
PARTFUN1:def 6
.= (f1
. c) by
A18,
FUNCT_1: 47;
c
in (
dom f2) by
A16,
XBOOLE_0:def 4;
then c
in ((
dom (f1
| X))
/\ (
dom f2)) by
A18,
XBOOLE_0:def 4;
then
A20: c
in (
dom ((f1
| X)
(#) f2)) by
Def1;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A13,
PARTFUN2: 15
.= ((f1
/. c)
* (f2
/. c)) by
A15,
Def1
.= (((f1
| X)
/. c)
* (f2
/. c)) by
A17,
A19,
PARTFUN1:def 6
.= (((f1
| X)
(#) f2)
/. c) by
A20,
Def1;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def1
.= (((
dom f1)
/\ X)
/\ (
dom f2)) by
XBOOLE_1: 16
.= ((
dom (f1
| X))
/\ (
dom f2)) by
RELAT_1: 61
.= (
dom ((f1
| X)
(#) f2)) by
Def1;
hence ((f1
(#) f2)
| X)
= ((f1
| X)
(#) f2) by
A12,
PARTFUN2: 1;
A21:
now
let c be
Element of M;
assume
A22: c
in (
dom ((f1
(#) f2)
| X));
then
A23: c
in ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61;
then
A24: c
in X by
XBOOLE_0:def 4;
A25: c
in (
dom (f1
(#) f2)) by
A23,
XBOOLE_0:def 4;
then
A26: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in ((
dom f2)
/\ X) by
A24,
XBOOLE_0:def 4;
then
A27: c
in (
dom (f2
| X)) by
RELAT_1: 61;
c
in (
dom f1) by
A26,
XBOOLE_0:def 4;
then c
in ((
dom f1)
/\ (
dom (f2
| X))) by
A27,
XBOOLE_0:def 4;
then
A28: c
in (
dom (f1
(#) (f2
| X))) by
Def1;
thus (((f1
(#) f2)
| X)
/. c)
= ((f1
(#) f2)
/. c) by
A22,
PARTFUN2: 15
.= ((f1
/. c)
* (f2
/. c)) by
A25,
Def1
.= ((f1
/. c)
* ((f2
| X)
/. c)) by
A27,
PARTFUN2: 15
.= ((f1
(#) (f2
| X))
/. c) by
A28,
Def1;
end;
(
dom ((f1
(#) f2)
| X))
= ((
dom (f1
(#) f2))
/\ X) by
RELAT_1: 61
.= (((
dom f1)
/\ (
dom f2))
/\ X) by
Def1
.= ((
dom f1)
/\ ((
dom f2)
/\ X)) by
XBOOLE_1: 16
.= ((
dom f1)
/\ (
dom (f2
| X))) by
RELAT_1: 61
.= (
dom (f1
(#) (f2
| X))) by
Def1;
hence thesis by
A21,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:29
Th29: ((
- f)
| X)
= (
- (f
| X)) & (
||.f.||
| X)
=
||.(f
| X).||
proof
A1:
now
let c be
Element of M;
assume
A2: c
in (
dom ((
- f)
| X));
then
A3: c
in ((
dom (
- f))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (
- f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
VFUNCT_1:def 5;
then c
in ((
dom f)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| X)) by
RELAT_1: 61;
then
A7: c
in (
dom (
- (f
| X))) by
VFUNCT_1:def 5;
thus (((
- f)
| X)
/. c)
= ((
- f)
/. c) by
A2,
PARTFUN2: 15
.= (
- (f
/. c)) by
A5,
VFUNCT_1:def 5
.= (
- ((f
| X)
/. c)) by
A6,
PARTFUN2: 15
.= ((
- (f
| X))
/. c) by
A7,
VFUNCT_1:def 5;
end;
(
dom ((
- f)
| X))
= ((
dom (
- f))
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
VFUNCT_1:def 5
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom (
- (f
| X))) by
VFUNCT_1:def 5;
hence ((
- f)
| X)
= (
- (f
| X)) by
A1,
PARTFUN2: 1;
A8: (
dom (
||.f.||
| X))
= ((
dom
||.f.||)
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
NORMSP_0:def 3
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom
||.(f
| X).||) by
NORMSP_0:def 3;
now
let c be
Element of M;
assume
A9: c
in (
dom (
||.f.||
| X));
then
A10: c
in (
dom (f
| X)) by
A8,
NORMSP_0:def 3;
c
in ((
dom
||.f.||)
/\ X) by
A9,
RELAT_1: 61;
then
A11: c
in (
dom
||.f.||) by
XBOOLE_0:def 4;
thus ((
||.f.||
| X)
. c)
= (
||.f.||
. c) by
A9,
FUNCT_1: 47
.=
||.(f
/. c).|| by
A11,
NORMSP_0:def 3
.=
||.((f
| X)
/. c).|| by
A10,
PARTFUN2: 15
.= (
||.(f
| X).||
. c) by
A8,
A9,
NORMSP_0:def 3;
end;
hence thesis by
A8,
PARTFUN1: 5;
end;
theorem ::
VFUNCT_2:30
((f1
- f2)
| X)
= ((f1
| X)
- (f2
| X)) & ((f1
- f2)
| X)
= ((f1
| X)
- f2) & ((f1
- f2)
| X)
= (f1
- (f2
| X))
proof
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= ((f1
| X)
+ ((
- f2)
| X)) by
Th27
.= ((f1
| X)
+ (
- (f2
| X))) by
Th29
.= ((f1
| X)
- (f2
| X)) by
Th25;
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= ((f1
| X)
+ (
- f2)) by
Th27
.= ((f1
| X)
- f2) by
Th25;
thus ((f1
- f2)
| X)
= ((f1
+ (
- f2))
| X) by
Th25
.= (f1
+ ((
- f2)
| X)) by
Th27
.= (f1
+ (
- (f2
| X))) by
Th29
.= (f1
- (f2
| X)) by
Th25;
end;
theorem ::
VFUNCT_2:31
((z
(#) f)
| X)
= (z
(#) (f
| X))
proof
A1:
now
let c be
Element of M;
assume
A2: c
in (
dom ((z
(#) f)
| X));
then
A3: c
in ((
dom (z
(#) f))
/\ X) by
RELAT_1: 61;
then
A4: c
in X by
XBOOLE_0:def 4;
A5: c
in (
dom (z
(#) f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def2;
then c
in ((
dom f)
/\ X) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| X)) by
RELAT_1: 61;
then
A7: c
in (
dom (z
(#) (f
| X))) by
Def2;
thus (((z
(#) f)
| X)
/. c)
= ((z
(#) f)
/. c) by
A2,
PARTFUN2: 15
.= (z
* (f
/. c)) by
A5,
Def2
.= (z
* ((f
| X)
/. c)) by
A6,
PARTFUN2: 15
.= ((z
(#) (f
| X))
/. c) by
A7,
Def2;
end;
(
dom ((z
(#) f)
| X))
= ((
dom (z
(#) f))
/\ X) by
RELAT_1: 61
.= ((
dom f)
/\ X) by
Def2
.= (
dom (f
| X)) by
RELAT_1: 61
.= (
dom (z
(#) (f
| X))) by
Def2;
hence thesis by
A1,
PARTFUN2: 1;
end;
theorem ::
VFUNCT_2:32
Th32: (f1 is
total & f2 is
total iff (f1
+ f2) is
total) & (f1 is
total & f2 is
total iff (f1
- f2) is
total)
proof
thus f1 is
total & f2 is
total iff (f1
+ f2) is
total
proof
thus f1 is
total & f2 is
total implies (f1
+ f2) is
total
proof
assume f1 is
total & f2 is
total;
then (
dom f1)
= M & (
dom f2)
= M;
hence (
dom (f1
+ f2))
= (M
/\ M) by
VFUNCT_1:def 1
.= M;
end;
assume (f1
+ f2) is
total;
then (
dom (f1
+ f2))
= M;
then ((
dom f1)
/\ (
dom f2))
= M by
VFUNCT_1:def 1;
then M
c= (
dom f1) & M
c= (
dom f2) by
XBOOLE_1: 17;
hence (
dom f1)
= M & (
dom f2)
= M;
end;
thus f1 is
total & f2 is
total iff (f1
- f2) is
total
proof
thus f1 is
total & f2 is
total implies (f1
- f2) is
total
proof
assume f1 is
total & f2 is
total;
then (
dom f1)
= M & (
dom f2)
= M;
hence (
dom (f1
- f2))
= (M
/\ M) by
VFUNCT_1:def 2
.= M;
end;
assume (f1
- f2) is
total;
then (
dom (f1
- f2))
= M;
then ((
dom f1)
/\ (
dom f2))
= M by
VFUNCT_1:def 2;
then M
c= (
dom f1) & M
c= (
dom f2) by
XBOOLE_1: 17;
hence (
dom f1)
= M & (
dom f2)
= M;
end;
end;
theorem ::
VFUNCT_2:33
Th33: for f1 be
PartFunc of M,
COMPLEX holds (f1 is
total & f2 is
total iff (f1
(#) f2) is
total)
proof
let f1 be
PartFunc of M,
COMPLEX ;
thus f1 is
total & f2 is
total implies (f1
(#) f2) is
total
proof
assume f1 is
total & f2 is
total;
then (
dom f1)
= M & (
dom f2)
= M;
hence (
dom (f1
(#) f2))
= (M
/\ M) by
Def1
.= M;
end;
assume (f1
(#) f2) is
total;
then (
dom (f1
(#) f2))
= M;
then ((
dom f1)
/\ (
dom f2))
= M by
Def1;
then M
c= (
dom f1) & M
c= (
dom f2) by
XBOOLE_1: 17;
hence (
dom f1)
= M & (
dom f2)
= M;
end;
theorem ::
VFUNCT_2:34
Th34: f is
total iff (z
(#) f) is
total by
Def2;
theorem ::
VFUNCT_2:35
Th35: f is
total iff (
- f) is
total
proof
thus f is
total implies (
- f) is
total
proof
assume
A1: f is
total;
(
- f)
= ((
-
1r )
(#) f) by
Th23;
hence thesis by
A1,
Th34;
end;
assume
A2: (
- f) is
total;
(
- f)
= ((
-
1r )
(#) f) by
Th23;
hence thesis by
A2,
Th34;
end;
theorem ::
VFUNCT_2:36
Th36: f is
total iff
||.f.|| is
total by
NORMSP_0:def 3;
theorem ::
VFUNCT_2:37
for x be
Element of M st f1 is
total & f2 is
total holds ((f1
+ f2)
/. x)
= ((f1
/. x)
+ (f2
/. x)) & ((f1
- f2)
/. x)
= ((f1
/. x)
- (f2
/. x))
proof
let x be
Element of M;
assume
A1: f1 is
total & f2 is
total;
then (f1
+ f2) is
total by
Th32;
then (
dom (f1
+ f2))
= M;
hence ((f1
+ f2)
/. x)
= ((f1
/. x)
+ (f2
/. x)) by
VFUNCT_1:def 1;
(f1
- f2) is
total by
A1,
Th32;
then (
dom (f1
- f2))
= M;
hence thesis by
VFUNCT_1:def 2;
end;
theorem ::
VFUNCT_2:38
for f1 be
PartFunc of M,
COMPLEX , x be
Element of M holds f1 is
total & f2 is
total implies ((f1
(#) f2)
/. x)
= ((f1
/. x)
* (f2
/. x))
proof
let f1 be
PartFunc of M,
COMPLEX ;
let x be
Element of M;
assume f1 is
total & f2 is
total;
then (f1
(#) f2) is
total by
Th33;
then (
dom (f1
(#) f2))
= M;
hence thesis by
Def1;
end;
theorem ::
VFUNCT_2:39
for x be
Element of M st f is
total holds ((z
(#) f)
/. x)
= (z
* (f
/. x))
proof
let x be
Element of M;
assume f is
total;
then (z
(#) f) is
total by
Th34;
then (
dom (z
(#) f))
= M;
hence thesis by
Def2;
end;
theorem ::
VFUNCT_2:40
for x be
Element of M st f is
total holds ((
- f)
/. x)
= (
- (f
/. x)) & (
||.f.||
. x)
=
||.(f
/. x).||
proof
let x be
Element of M;
assume
A1: f is
total;
then (
- f) is
total by
Th35;
then (
dom (
- f))
= M;
hence ((
- f)
/. x)
= (
- (f
/. x)) by
VFUNCT_1:def 5;
||.f.|| is
total by
A1,
Th36;
then (
dom
||.f.||)
= M;
hence thesis by
NORMSP_0:def 3;
end;
definition
let M;
let V;
let f, Y;
::
VFUNCT_2:def3
pred f
is_bounded_on Y means ex r be
Real st for x be
Element of M st x
in (Y
/\ (
dom f)) holds
||.(f
/. x).||
<= r;
end
theorem ::
VFUNCT_2:41
Y
c= X & f
is_bounded_on X implies f
is_bounded_on Y
proof
assume that
A1: Y
c= X and
A2: f
is_bounded_on X;
consider r be
Real such that
A3: for x be
Element of M st x
in (X
/\ (
dom f)) holds
||.(f
/. x).||
<= r by
A2;
take r;
let x be
Element of M;
assume x
in (Y
/\ (
dom f));
then x
in Y & x
in (
dom f) by
XBOOLE_0:def 4;
then x
in (X
/\ (
dom f)) by
A1,
XBOOLE_0:def 4;
hence thesis by
A3;
end;
theorem ::
VFUNCT_2:42
X
misses (
dom f) implies f
is_bounded_on X
proof
assume (X
/\ (
dom f))
=
{} ;
then for x be
Element of M holds x
in (X
/\ (
dom f)) implies
||.(f
/. x).||
<=
0 ;
hence thesis;
end;
theorem ::
VFUNCT_2:43
(
0c
(#) f)
is_bounded_on Y
proof
now
take p =
0 ;
let c be
Element of M;
(
|.
0c .|
*
||.(f
/. c).||)
<=
0 by
COMPLEX1: 44;
then
A1:
||.(
0c
* (f
/. c)).||
<=
0 by
CLVECT_1:def 13;
assume c
in (Y
/\ (
dom (
0c
(#) f)));
then c
in (
dom (
0c
(#) f)) by
XBOOLE_0:def 4;
hence
||.((
0c
(#) f)
/. c).||
<= p by
A1,
Def2;
end;
hence thesis;
end;
theorem ::
VFUNCT_2:44
Th44: f
is_bounded_on Y implies (z
(#) f)
is_bounded_on Y
proof
assume f
is_bounded_on Y;
then
consider r1 be
Real such that
A1: for c be
Element of M st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r1;
reconsider p = (
|.z.|
*
|.r1.|) as
Real;
take p;
let c be
Element of M;
assume
A2: c
in (Y
/\ (
dom (z
(#) f)));
then
A3: c
in Y by
XBOOLE_0:def 4;
A4: c
in (
dom (z
(#) f)) by
A2,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def2;
then c
in (Y
/\ (
dom f)) by
A3,
XBOOLE_0:def 4;
then
A5:
||.(f
/. c).||
<= r1 by
A1;
r1
<=
|.r1.| by
ABSVALUE: 4;
then
|.z.|
>=
0 &
||.(f
/. c).||
<=
|.r1.| by
A5,
COMPLEX1: 46,
XXREAL_0: 2;
then (
|.z.|
*
||.(f
/. c).||)
<= (
|.z.|
*
|.r1.|) by
XREAL_1: 64;
then
||.(z
* (f
/. c)).||
<= p by
CLVECT_1:def 13;
hence thesis by
A4,
Def2;
end;
theorem ::
VFUNCT_2:45
Th45: f
is_bounded_on Y implies (
||.f.||
| Y) is
bounded & (
- f)
is_bounded_on Y
proof
assume
A1: f
is_bounded_on Y;
then
consider r1 be
Real such that
A2: for c be
Element of M st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r1;
now
let c be
object;
assume
A3: c
in (Y
/\ (
dom
||.f.||));
then
A4: c
in Y by
XBOOLE_0:def 4;
A5: c
in (
dom
||.f.||) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
NORMSP_0:def 3;
then c
in (Y
/\ (
dom f)) by
A4,
XBOOLE_0:def 4;
then
||.(f
/. c).||
>=
0 &
||.(f
/. c).||
<= r1 by
A2,
CLVECT_1: 105;
then
|.
||.(f
/. c).||.|
<= r1 by
ABSVALUE:def 1;
hence
|.(
||.f.||
. c).|
<= r1 by
A5,
NORMSP_0:def 3;
end;
hence (
||.f.||
| Y) is
bounded by
RFUNCT_1: 73;
((
-
1r )
(#) f)
is_bounded_on Y by
A1,
Th44;
hence thesis by
Th23;
end;
theorem ::
VFUNCT_2:46
Th46: f1
is_bounded_on X & f2
is_bounded_on Y implies (f1
+ f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: f2
is_bounded_on Y;
consider r1 be
Real such that
A3: for c be
Element of M st c
in (X
/\ (
dom f1)) holds
||.(f1
/. c).||
<= r1 by
A1;
consider r2 be
Real such that
A4: for c be
Element of M st c
in (Y
/\ (
dom f2)) holds
||.(f2
/. c).||
<= r2 by
A2;
take r = (r1
+ r2);
let c be
Element of M;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
+ f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in Y by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
+ f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then c
in (
dom f2) by
XBOOLE_0:def 4;
then c
in (Y
/\ (
dom f2)) by
A7,
XBOOLE_0:def 4;
then
A10:
||.(f2
/. c).||
<= r2 by
A4;
A11: c
in X by
A6,
XBOOLE_0:def 4;
c
in (
dom f1) by
A9,
XBOOLE_0:def 4;
then c
in (X
/\ (
dom f1)) by
A11,
XBOOLE_0:def 4;
then
||.(f1
/. c).||
<= r1 by
A3;
then
||.((f1
/. c)
+ (f2
/. c)).||
<= (
||.(f1
/. c).||
+
||.(f2
/. c).||) & (
||.(f1
/. c).||
+
||.(f2
/. c).||)
<= r by
A10,
CLVECT_1:def 13,
XREAL_1: 7;
then
||.((f1
/. c)
+ (f2
/. c)).||
<= r by
XXREAL_0: 2;
hence thesis by
A8,
VFUNCT_1:def 1;
end;
theorem ::
VFUNCT_2:47
for f1 be
PartFunc of M,
COMPLEX holds (f1
| X) is
bounded & f2
is_bounded_on Y implies (f1
(#) f2)
is_bounded_on (X
/\ Y)
proof
let f1 be
PartFunc of M,
COMPLEX ;
assume that
A1: (f1
| X) is
bounded and
A2: f2
is_bounded_on Y;
consider r1 be
Real such that
A3: for c be
Element of M st c
in (X
/\ (
dom f1)) holds
|.(f1
/. c).|
<= r1 by
A1,
CFUNCT_1: 69;
consider r2 be
Real such that
A4: for c be
Element of M st c
in (Y
/\ (
dom f2)) holds
||.(f2
/. c).||
<= r2 by
A2;
reconsider r1 as
Real;
now
take r = (r1
* r2);
let c be
Element of M;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
(#) f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in X by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
(#) f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then c
in (X
/\ (
dom f1)) by
A7,
XBOOLE_0:def 4;
then
A10:
|.(f1
/. c).|
<= r1 by
A3;
A11: c
in Y by
A6,
XBOOLE_0:def 4;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then c
in (Y
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
then
A12:
||.(f2
/. c).||
<= r2 by
A4;
0
<=
|.(f1
/. c).| &
0
<=
||.(f2
/. c).|| by
CLVECT_1: 105,
COMPLEX1: 46;
then (
|.(f1
/. c).|
*
||.(f2
/. c).||)
<= r by
A10,
A12,
XREAL_1: 66;
then
||.((f1
/. c)
* (f2
/. c)).||
<= r by
CLVECT_1:def 13;
hence
||.((f1
(#) f2)
/. c).||
<= r by
A8,
Def1;
end;
hence thesis;
end;
theorem ::
VFUNCT_2:48
f1
is_bounded_on X & f2
is_bounded_on Y implies (f1
- f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: f2
is_bounded_on Y;
(
- f2)
is_bounded_on Y by
A2,
Th45;
then (f1
+ (
- f2))
is_bounded_on (X
/\ Y) by
A1,
Th46;
hence thesis by
Th25;
end;
theorem ::
VFUNCT_2:49
f
is_bounded_on X & f
is_bounded_on Y implies f
is_bounded_on (X
\/ Y)
proof
assume that
A1: f
is_bounded_on X and
A2: f
is_bounded_on Y;
consider r1 be
Real such that
A3: for c be
Element of M st c
in (X
/\ (
dom f)) holds
||.(f
/. c).||
<= r1 by
A1;
consider r2 be
Real such that
A4: for c be
Element of M st c
in (Y
/\ (
dom f)) holds
||.(f
/. c).||
<= r2 by
A2;
reconsider r = (
|.r1.|
+
|.r2.|) as
Real;
take r;
let c be
Element of M;
assume
A5: c
in ((X
\/ Y)
/\ (
dom f));
then
A6: c
in (
dom f) by
XBOOLE_0:def 4;
A7: c
in (X
\/ Y) by
A5,
XBOOLE_0:def 4;
now
per cases by
A7,
XBOOLE_0:def 3;
suppose c
in X;
then c
in (X
/\ (
dom f)) by
A6,
XBOOLE_0:def 4;
then
A8:
||.(f
/. c).||
<= r1 by
A3;
A9:
0
<=
|.r2.| by
COMPLEX1: 46;
r1
<=
|.r1.| by
ABSVALUE: 4;
then
||.(f
/. c).||
<=
|.r1.| by
A8,
XXREAL_0: 2;
then (
||.(f
/. c).||
+
0 )
<= r by
A9,
XREAL_1: 7;
hence thesis;
end;
suppose c
in Y;
then c
in (Y
/\ (
dom f)) by
A6,
XBOOLE_0:def 4;
then
A10:
||.(f
/. c).||
<= r2 by
A4;
A11:
0
<=
|.r1.| by
COMPLEX1: 46;
r2
<=
|.r2.| by
ABSVALUE: 4;
then
||.(f
/. c).||
<=
|.r2.| by
A10,
XXREAL_0: 2;
then (
0
+
||.(f
/. c).||)
<= r by
A11,
XREAL_1: 7;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
VFUNCT_2:50
(f1
| X) is
constant & (f2
| Y) is
constant implies ((f1
+ f2)
| (X
/\ Y)) is
constant & ((f1
- f2)
| (X
/\ Y)) is
constant
proof
assume that
A1: (f1
| X) is
constant and
A2: (f2
| Y) is
constant;
consider r1 be
VECTOR of V such that
A3: for c be
Element of M st c
in (X
/\ (
dom f1)) holds (f1
/. c)
= r1 by
A1,
PARTFUN2: 35;
consider r2 be
VECTOR of V such that
A4: for c be
Element of M st c
in (Y
/\ (
dom f2)) holds (f2
/. c)
= r2 by
A2,
PARTFUN2: 35;
now
let c be
Element of M;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
+ f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in X by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
+ f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then
A10: c
in (X
/\ (
dom f1)) by
A7,
XBOOLE_0:def 4;
A11: c
in Y by
A6,
XBOOLE_0:def 4;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then
A12: c
in (Y
/\ (
dom f2)) by
A11,
XBOOLE_0:def 4;
thus ((f1
+ f2)
/. c)
= ((f1
/. c)
+ (f2
/. c)) by
A8,
VFUNCT_1:def 1
.= (r1
+ (f2
/. c)) by
A3,
A10
.= (r1
+ r2) by
A4,
A12;
end;
hence ((f1
+ f2)
| (X
/\ Y)) is
constant by
PARTFUN2: 35;
now
let c be
Element of M;
assume
A13: c
in ((X
/\ Y)
/\ (
dom (f1
- f2)));
then
A14: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A15: c
in X by
XBOOLE_0:def 4;
A16: c
in (
dom (f1
- f2)) by
A13,
XBOOLE_0:def 4;
then
A17: c
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 2;
then c
in (
dom f1) by
XBOOLE_0:def 4;
then
A18: c
in (X
/\ (
dom f1)) by
A15,
XBOOLE_0:def 4;
A19: c
in Y by
A14,
XBOOLE_0:def 4;
c
in (
dom f2) by
A17,
XBOOLE_0:def 4;
then
A20: c
in (Y
/\ (
dom f2)) by
A19,
XBOOLE_0:def 4;
thus ((f1
- f2)
/. c)
= ((f1
/. c)
- (f2
/. c)) by
A16,
VFUNCT_1:def 2
.= (r1
- (f2
/. c)) by
A3,
A18
.= (r1
- r2) by
A4,
A20;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_2:51
for f1 be
PartFunc of M,
COMPLEX holds (f1
| X) is
constant & (f2
| Y) is
constant implies ((f1
(#) f2)
| (X
/\ Y)) is
constant
proof
let f1 be
PartFunc of M,
COMPLEX ;
assume that
A1: (f1
| X) is
constant and
A2: (f2
| Y) is
constant;
consider z1 be
Element of
COMPLEX such that
A3: for c be
Element of M st c
in (X
/\ (
dom f1)) holds (f1
. c)
= z1 by
A1,
PARTFUN2: 57;
consider r2 be
VECTOR of V such that
A4: for c be
Element of M st c
in (Y
/\ (
dom f2)) holds (f2
/. c)
= r2 by
A2,
PARTFUN2: 35;
now
let c be
Element of M;
assume
A5: c
in ((X
/\ Y)
/\ (
dom (f1
(#) f2)));
then
A6: c
in (X
/\ Y) by
XBOOLE_0:def 4;
then
A7: c
in Y by
XBOOLE_0:def 4;
A8: c
in (
dom (f1
(#) f2)) by
A5,
XBOOLE_0:def 4;
then
A9: c
in ((
dom f1)
/\ (
dom f2)) by
Def1;
then
A10: c
in (
dom f1) by
XBOOLE_0:def 4;
then
A11: (f1
/. c)
= (f1
. c) by
PARTFUN1:def 6;
c
in (
dom f2) by
A9,
XBOOLE_0:def 4;
then
A12: c
in (Y
/\ (
dom f2)) by
A7,
XBOOLE_0:def 4;
c
in X by
A6,
XBOOLE_0:def 4;
then
A13: c
in (X
/\ (
dom f1)) by
A10,
XBOOLE_0:def 4;
thus ((f1
(#) f2)
/. c)
= ((f1
/. c)
* (f2
/. c)) by
A8,
Def1
.= (z1
* (f2
/. c)) by
A3,
A13,
A11
.= (z1
* r2) by
A4,
A12;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_2:52
Th52: (f
| Y) is
constant implies ((z
(#) f)
| Y) is
constant
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c be
Element of M st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
now
let c be
Element of M;
assume
A2: c
in (Y
/\ (
dom (z
(#) f)));
then
A3: c
in Y by
XBOOLE_0:def 4;
A4: c
in (
dom (z
(#) f)) by
A2,
XBOOLE_0:def 4;
then c
in (
dom f) by
Def2;
then
A5: c
in (Y
/\ (
dom f)) by
A3,
XBOOLE_0:def 4;
thus ((z
(#) f)
/. c)
= (z
* (f
/. c)) by
A4,
Def2
.= (z
* r) by
A1,
A5;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_2:53
Th53: (f
| Y) is
constant implies (
||.f.||
| Y) is
constant & ((
- f)
| Y) is
constant
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c be
Element of M st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
A2:
||.r.||
in
REAL by
XREAL_0:def 1;
now
let c be
Element of M;
assume
A3: c
in (Y
/\ (
dom
||.f.||));
then
A4: c
in Y by
XBOOLE_0:def 4;
A5: c
in (
dom
||.f.||) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
NORMSP_0:def 3;
then
A6: c
in (Y
/\ (
dom f)) by
A4,
XBOOLE_0:def 4;
thus (
||.f.||
. c)
=
||.(f
/. c).|| by
A5,
NORMSP_0:def 3
.=
||.r.|| by
A1,
A6;
end;
hence (
||.f.||
| Y) is
constant by
PARTFUN2: 57,
A2;
now
take p = (
- r);
let c be
Element of M;
assume
A7: c
in (Y
/\ (
dom (
- f)));
then c
in (Y
/\ (
dom f)) by
VFUNCT_1:def 5;
then
A8: (
- (f
/. c))
= p by
A1;
c
in (
dom (
- f)) by
A7,
XBOOLE_0:def 4;
hence ((
- f)
/. c)
= p by
A8,
VFUNCT_1:def 5;
end;
hence thesis by
PARTFUN2: 35;
end;
theorem ::
VFUNCT_2:54
Th54: (f
| Y) is
constant implies f
is_bounded_on Y
proof
assume (f
| Y) is
constant;
then
consider r be
VECTOR of V such that
A1: for c be
Element of M st c
in (Y
/\ (
dom f)) holds (f
/. c)
= r by
PARTFUN2: 35;
now
reconsider p =
||.r.|| as
Real;
take p;
let c be
Element of M;
assume c
in (Y
/\ (
dom f));
hence
||.(f
/. c).||
<= p by
A1;
end;
hence thesis;
end;
theorem ::
VFUNCT_2:55
(f
| Y) is
constant implies (for z holds (z
(#) f)
is_bounded_on Y) & (
- f)
is_bounded_on Y & (
||.f.||
| Y) is
bounded
proof
assume
A1: (f
| Y) is
constant;
hereby
let z;
((z
(#) f)
| Y) is
constant by
A1,
Th52;
hence (z
(#) f)
is_bounded_on Y by
Th54;
end;
((
- f)
| Y) is
constant by
A1,
Th53;
hence (
- f)
is_bounded_on Y by
Th54;
(
||.f.||
| Y) is
constant by
A1,
Th53;
hence thesis;
end;
theorem ::
VFUNCT_2:56
f1
is_bounded_on X & (f2
| Y) is
constant implies (f1
+ f2)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: (f2
| Y) is
constant;
f2
is_bounded_on Y by
A2,
Th54;
hence thesis by
A1,
Th46;
end;
theorem ::
VFUNCT_2:57
f1
is_bounded_on X & (f2
| Y) is
constant implies (f1
- f2)
is_bounded_on (X
/\ Y) & (f2
- f1)
is_bounded_on (X
/\ Y)
proof
assume that
A1: f1
is_bounded_on X and
A2: (f2
| Y) is
constant;
A3: f2
is_bounded_on Y by
A2,
Th54;
then (
- f2)
is_bounded_on Y by
Th45;
then
A4: (f1
+ (
- f2))
is_bounded_on (X
/\ Y) by
A1,
Th46;
(
- f1)
is_bounded_on X by
A1,
Th45;
then (f2
+ (
- f1))
is_bounded_on (Y
/\ X) by
A3,
Th46;
hence thesis by
A4,
Th25;
end;