zmodul05.miz
    
    begin
    
    reserve V,W for
    Z_Module;
    
    registration
    
      let V be
    LeftMod of 
    INT.Ring ; 
    
      let A be
    finite  
    Subset of V; 
    
      cluster ( 
    Lin A) -> 
    finitely-generated;
    
      correctness
    
      proof
    
        for x be
    object st x 
    in A holds x 
    in the 
    carrier of ( 
    Lin A) 
    
        proof
    
          let x be
    object such that 
    
          
    
    A1: x 
    in A; 
    
          x
    in ( 
    Lin A) by 
    A1,
    MOD_3: 5;
    
          hence thesis;
    
        end;
    
        then A
    c= the 
    carrier of ( 
    Lin A); 
    
        then
    
        reconsider AA = A as
    finite  
    Subset of ( 
    Lin A); 
    
        (
    Lin AA) 
    = ( 
    Lin A) by 
    ZMODUL03: 20;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    ZMODUL05:1
    
    
    
    
    
    RL5Th33: for V be 
    finite-rank
    free  
    Z_Module holds ( 
    rank V) 
    =  
    0 iff ( 
    (Omega). V) 
    = ( 
    (0). V) 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      consider I be
    finite  
    Subset of V such that 
    
      
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
      hereby
    
        consider I be
    finite  
    Subset of V such that 
    
        
    
    A2: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
        assume (
    rank V) 
    =  
    0 ; 
    
        then (
    card I) 
    =  
    0 by 
    A2,
    ZMODUL03:def 5;
    
        then
    
        
    
    A3: I 
    = ( 
    {} the 
    carrier of V); 
    
        (
    (Omega). V) 
    = ( 
    Lin I) by 
    A2,
    VECTSP_7:def 3
    
        .= (
    (0). V) by 
    A3,
    ZMODUL02: 67;
    
        hence (
    (Omega). V) 
    = ( 
    (0). V); 
    
      end;
    
      assume (
    (Omega). V) 
    = ( 
    (0). V); 
    
      then (
    Lin I) 
    = ( 
    (0). V) by 
    A1,
    VECTSP_7:def 3;
    
      then I
    =  
    {} or I 
    =  
    {(
    0. V)} by 
    ZMODUL02: 68;
    
      hence thesis by
    A1,
    VECTSP_7:def 3,
    ZMODUL03:def 5,
    CARD_1: 27;
    
    end;
    
    registration
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      cluster 
    finite for 
    Basis of V; 
    
      existence
    
      proof
    
        consider A be
    finite  
    Subset of V such that 
    
        
    
    A1: A is 
    Basis of V by 
    ZMODUL03:def 3;
    
        reconsider A as
    Basis of V by 
    A1;
    
        take A;
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      cluster -> 
    finite for 
    Basis of V; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    ZMODUL05:2
    
    
    
    
    
    RL5Th29: for V be 
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V holds ( 
    rank W) 
    <= ( 
    rank V) 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V; 
    
      consider I be
    finite  
    Subset of V such that 
    
      
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
      W is
    finite-rank;
    
      then
    
      consider A be
    finite  
    Subset of W such that 
    
      
    
    A2: A is 
    Basis of W; 
    
      reconsider AA = A as
    linearly-independent  
    Subset of V by 
    A2,
    ZMODUL03: 15,
    VECTSP_7:def 3;
    
      (
    card AA) 
    c= ( 
    card I) by 
    A1,
    ZMODUL04: 20;
    
      then (
    card A) 
    c< ( 
    card I) or ( 
    card A) 
    = ( 
    card I); 
    
      then (
    card ( 
    card A)) 
    < ( 
    card ( 
    card I)) or ( 
    card A) 
    = ( 
    card I) by 
    CARD_2: 48;
    
      then (
    card A) 
    <= ( 
    rank V) by 
    A1,
    ZMODUL03:def 5;
    
      hence thesis by
    A2,
    ZMODUL03:def 5;
    
    end;
    
    theorem :: 
    
    ZMODUL05:3
    
    
    
    
    
    RL5Th30: for V be 
    Z_Module, A be 
    finite
    linearly-independent  
    Subset of V holds ( 
    card A) 
    = ( 
    rank ( 
    Lin A)) 
    
    proof
    
      let V be
    Z_Module, A be 
    finite
    linearly-independent  
    Subset of V; 
    
      set W = (
    Lin A); 
    
      now
    
        let x be
    object;
    
        assume x
    in A; 
    
        then x
    in W by 
    ZMODUL02: 65;
    
        hence x
    in the 
    carrier of W; 
    
      end;
    
      then
    
      reconsider B = A as
    finite
    linearly-independent  
    Subset of W by 
    ZMODUL03: 16,
    TARSKI:def 3;
    
      W
    = ( 
    Lin B) by 
    ZMODUL03: 20;
    
      then
    
      reconsider B as
    Basis of W by 
    VECTSP_7:def 3;
    
      (
    card B) 
    = ( 
    rank W) by 
    ZMODUL03:def 5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:4
    
    for V be
    finite-rank
    free  
    Z_Module holds ( 
    rank V) 
    = ( 
    rank ( 
    (Omega). V)) 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      consider I be
    finite  
    Subset of V such that 
    
      
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
      
    
      
    
    A2: ( 
    (Omega). V) 
    = ( 
    Lin I) by 
    A1,
    VECTSP_7:def 3;
    
      (
    card I) 
    = ( 
    rank V) & I is 
    linearly-independent by 
    A1,
    ZMODUL03:def 5,
    VECTSP_7:def 3;
    
      hence thesis by
    A2,
    RL5Th30;
    
    end;
    
    theorem :: 
    
    ZMODUL05:5
    
    for V be
    finite-rank
    free  
    Z_Module holds ( 
    rank V) 
    = 1 iff ex v be 
    VECTOR of V st v 
    <> ( 
    0. V) & ( 
    (Omega). V) 
    = ( 
    Lin  
    {v})
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      hereby
    
        consider I be
    finite  
    Subset of V such that 
    
        
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
        assume (
    rank V) 
    = 1; 
    
        then (
    card I) 
    = 1 by 
    A1,
    ZMODUL03:def 5;
    
        then
    
        consider v be
    object such that 
    
        
    
    A2: I 
    =  
    {v} by
    CARD_2: 42;
    
        v
    in I by 
    A2,
    TARSKI:def 1;
    
        then
    
        reconsider v as
    VECTOR of V; 
    
        
    
        
    
    A3: v 
    <> ( 
    0. V) by 
    A1,
    A2,
    VECTSP_7:def 3;
    
        (
    Lin  
    {v})
    = the ModuleStr of V by 
    A1,
    A2,
    VECTSP_7:def 3;
    
        hence ex v be
    VECTOR of V st v 
    <> ( 
    0. V) & ( 
    (Omega). V) 
    = ( 
    Lin  
    {v}) by
    A3;
    
      end;
    
      given v be
    VECTOR of V such that 
    
      
    
    A4: v 
    <> ( 
    0. V) & ( 
    (Omega). V) 
    = ( 
    Lin  
    {v});
    
      
    {v} is
    linearly-independent & ( 
    Lin  
    {v})
    = the ModuleStr of V by 
    A4,
    ZMODUL02: 59;
    
      then
    
      
    
    A5: 
    {v} is
    Basis of V by 
    VECTSP_7:def 3;
    
      (
    card  
    {v})
    = 1 by 
    CARD_1: 30;
    
      hence thesis by
    A5,
    ZMODUL03:def 5;
    
    end;
    
    theorem :: 
    
    ZMODUL05:6
    
    for V be
    finite-rank
    free  
    Z_Module holds ( 
    rank V) 
    = 2 iff ex u,v be 
    VECTOR of V st u 
    <> v & 
    {u, v} is
    linearly-independent & ( 
    (Omega). V) 
    = ( 
    Lin  
    {u, v})
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      hereby
    
        consider I be
    finite  
    Subset of V such that 
    
        
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
        assume (
    rank V) 
    = 2; 
    
        then
    
        
    
    A2: ( 
    card I) 
    = 2 by 
    A1,
    ZMODUL03:def 5;
    
        then
    
        consider u be
    object such that 
    
        
    
    A3: u 
    in I by 
    CARD_1: 27,
    XBOOLE_0:def 1;
    
        reconsider u as
    VECTOR of V by 
    A3;
    
        now
    
          assume I
    c=  
    {u};
    
          then (
    card I) 
    <= ( 
    card  
    {u}) by
    NAT_1: 43;
    
          then 2
    <= 1 by 
    A2,
    CARD_1: 30;
    
          hence contradiction;
    
        end;
    
        then
    
        consider v be
    object such that 
    
        
    
    A4: v 
    in I and 
    
        
    
    A5: not v 
    in  
    {u};
    
        reconsider v as
    VECTOR of V by 
    A4;
    
        
    
        
    
    A6: v 
    <> u by 
    A5,
    TARSKI:def 1;
    
        
    
    A7: 
    
        now
    
          assume not I
    c=  
    {u, v};
    
          then
    
          consider w be
    object such that 
    
          
    
    A8: w 
    in I and 
    
          
    
    A9: not w 
    in  
    {u, v};
    
          
    {u, v, w}
    c= I by 
    A3,
    A4,
    A8,
    ENUMSET1:def 1;
    
          then
    
          
    
    A10: ( 
    card  
    {u, v, w})
    <= ( 
    card I) by 
    NAT_1: 43;
    
          w
    <> u & w 
    <> v by 
    A9,
    TARSKI:def 2;
    
          then 3
    <= 2 by 
    A2,
    A6,
    A10,
    CARD_2: 58;
    
          hence contradiction;
    
        end;
    
        
    {u, v}
    c= I by 
    A3,
    A4,
    TARSKI:def 2;
    
        then
    
        
    
    A11: I 
    =  
    {u, v} by
    A7;
    
        then
    
        
    
    A12: 
    {u, v} is
    linearly-independent by 
    A1,
    VECTSP_7:def 3;
    
        (
    Lin  
    {u, v})
    = ( 
    (Omega). V) by 
    A1,
    A11,
    VECTSP_7:def 3;
    
        hence ex u,v be
    VECTOR of V st u 
    <> v & 
    {u, v} is
    linearly-independent & ( 
    (Omega). V) 
    = ( 
    Lin  
    {u, v}) by
    A6,
    A12;
    
      end;
    
      given u,v be
    VECTOR of V such that 
    
      
    
    A13: u 
    <> v and 
    
      
    
    A14: 
    {u, v} is
    linearly-independent and 
    
      
    
    A15: ( 
    (Omega). V) 
    = ( 
    Lin  
    {u, v});
    
      
    
      
    
    A16: 
    {u, v} is
    Basis of V by 
    A14,
    A15,
    VECTSP_7:def 3;
    
      (
    card  
    {u, v})
    = 2 by 
    A13,
    CARD_2: 57;
    
      hence thesis by
    A16,
    ZMODUL03:def 5;
    
    end;
    
    
    
    
    
    RL5Lm2: for V be 
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V, n be 
    Nat holds n 
    <= ( 
    rank V) implies ex W be 
    strict
    free  
    Submodule of V st ( 
    rank W) 
    = n 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V, n be 
    Nat;
    
      consider I be
    finite  
    Subset of V such that 
    
      
    
    A1: I is 
    Basis of V by 
    ZMODUL03:def 3;
    
      assume n
    <= ( 
    rank V); 
    
      then n
    <= ( 
    card I) by 
    A1,
    ZMODUL03:def 5;
    
      then
    
      consider A be
    finite  
    Subset of I such that 
    
      
    
    A2: ( 
    card A) 
    = n by 
    FINSEQ_4: 72;
    
      reconsider A as
    finite  
    Subset of V by 
    XBOOLE_1: 1;
    
      reconsider W = (
    Lin A) as 
    strict
    finite-rank
    free  
    Submodule of V; 
    
      A is
    linearly-independent by 
    ZMODUL02: 56,
    A1,
    VECTSP_7:def 3;
    
      then (
    rank W) 
    = n by 
    A2,
    RL5Th30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:7
    
    for V be
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V, n be 
    Nat holds n 
    <= ( 
    rank V) iff ex W be 
    strict
    free  
    Submodule of V st ( 
    rank W) 
    = n by 
    RL5Lm2,
    RL5Th29;
    
    definition
    
      let V be
    finite-rank
    free  
    Z_Module, n be 
    Nat;
    
      :: 
    
    ZMODUL05:def1
    
      func n
    
    Submodules_of V -> 
    set means 
    
      :
    
    RL5Def4: for x be 
    object holds x 
    in it iff ex W be 
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n; 
    
      existence
    
      proof
    
        set S = { (
    Lin A) where A be 
    finite  
    Subset of V : A is 
    linearly-independent & ( 
    card A) 
    = n }; 
    
        take S;
    
        for x be
    object holds x 
    in S iff ex W be 
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume x
    in S; 
    
            then
    
            
    
    A1: ex A be 
    finite  
    Subset of V st x 
    = ( 
    Lin A) & A is 
    linearly-independent & ( 
    card A) 
    = n; 
    
            then
    
            reconsider W = x as
    strict
    free  
    Submodule of V; 
    
            (
    rank W) 
    = n by 
    A1,
    RL5Th30;
    
            hence ex W be
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n; 
    
          end;
    
          given W be
    strict
    free  
    Submodule of V such that 
    
          
    
    A2: W 
    = x and 
    
          
    
    A3: ( 
    rank W) 
    = n; 
    
          consider A be
    finite  
    Subset of W such that 
    
          
    
    A4: A is 
    Basis of W by 
    ZMODUL03:def 3;
    
          reconsider A as
    Subset of W; 
    
          reconsider B = A as
    linearly-independent  
    Subset of V by 
    A4,
    ZMODUL03: 15,
    VECTSP_7:def 3;
    
          
    
          
    
    A5: x 
    = ( 
    Lin A) by 
    A2,
    A4,
    VECTSP_7:def 3
    
          .= (
    Lin B) by 
    ZMODUL03: 20;
    
          then (
    card B) 
    = n by 
    A2,
    A3,
    RL5Th30;
    
          hence thesis by
    A5;
    
        end;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let S1,S2 be
    set;
    
        assume that
    
        
    
    A6: for x be 
    object holds x 
    in S1 iff ex W be 
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n and 
    
        
    
    A7: for x be 
    object holds x 
    in S2 iff ex W be 
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n; 
    
        for x be
    object holds x 
    in S1 iff x 
    in S2 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume x
    in S1; 
    
            then ex W be
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n by 
    A6;
    
            hence x
    in S2 by 
    A7;
    
          end;
    
          assume x
    in S2; 
    
          then ex W be
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n by 
    A7;
    
          hence thesis by
    A6;
    
        end;
    
        hence thesis by
    TARSKI: 2;
    
      end;
    
    end
    
    theorem :: 
    
    ZMODUL05:8
    
    for V be
    finite-rank
    free  
    Z_Module, n be 
    Nat holds n 
    <= ( 
    rank V) implies (n 
    Submodules_of V) is non 
    empty
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, n be 
    Nat;
    
      assume n
    <= ( 
    rank V); 
    
      then ex W be
    strict
    free  
    Submodule of V st ( 
    rank W) 
    = n by 
    RL5Lm2;
    
      hence thesis by
    RL5Def4;
    
    end;
    
    theorem :: 
    
    ZMODUL05:9
    
    for V be
    finite-rank
    free  
    Z_Module, n be 
    Nat holds ( 
    rank V) 
    < n implies (n 
    Submodules_of V) 
    =  
    {}  
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, n be 
    Nat;
    
      assume that
    
      
    
    A1: ( 
    rank V) 
    < n and 
    
      
    
    A2: (n 
    Submodules_of V) 
    <>  
    {} ; 
    
      consider x be
    object such that 
    
      
    
    A3: x 
    in (n 
    Submodules_of V) by 
    A2,
    XBOOLE_0:def 1;
    
      ex W be
    strict
    free  
    Submodule of V st W 
    = x & ( 
    rank W) 
    = n by 
    A3,
    RL5Def4;
    
      hence contradiction by
    A1,
    RL5Th29;
    
    end;
    
    theorem :: 
    
    ZMODUL05:10
    
    for V be
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V, n be 
    Nat holds (n 
    Submodules_of W) 
    c= (n 
    Submodules_of V) 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, W be 
    Submodule of V, n be 
    Nat;
    
      let x be
    object;
    
      assume x
    in (n 
    Submodules_of W); 
    
      then
    
      consider W1 be
    strict
    free  
    Submodule of W such that 
    
      
    
    A1: W1 
    = x and 
    
      
    
    A2: ( 
    rank W1) 
    = n by 
    RL5Def4;
    
      reconsider W1 as
    strict
    free  
    Submodule of V by 
    ZMODUL01: 42;
    
      W1
    in (n 
    Submodules_of V) by 
    A2,
    RL5Def4;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    ZMODUL05:11
    
    for F,G be
    FinSequence of 
    INT , v be 
    Integer holds ( 
    len F) 
    = (( 
    len G) 
    + 1) & G 
    = (F 
    | ( 
    dom G)) & v 
    = (F 
    . ( 
    len F)) implies ( 
    Sum F) 
    = (( 
    Sum G) 
    + v) 
    
    proof
    
      let F,G be
    FinSequence of 
    INT , v be 
    Integer;
    
      assume that
    
      
    
    A1: ( 
    len F) 
    = (( 
    len G) 
    + 1) and 
    
      
    
    A2: G 
    = (F 
    | ( 
    dom G)) and 
    
      
    
    A3: v 
    = (F 
    . ( 
    len F)); 
    
      reconsider Fr = F, Gr = G as
    real-valued  
    FinSequence;
    
      reconsider vr = v as
    Real;
    
      set k = (
    len G); 
    
      (
    dom G) 
    = ( 
    Seg k) by 
    FINSEQ_1:def 3;
    
      then Fr
    = (Gr 
    ^  
    <*vr*>) by
    A1,
    A2,
    A3,
    FINSEQ_3: 55;
    
      hence thesis by
    RVSUM_1: 74;
    
    end;
    
    theorem :: 
    
    ZMODUL05:12
    
    
    
    
    
    RLVECT142: for F,G be 
    FinSequence of 
    INT st ( 
    rng F) 
    = ( 
    rng G) & F is 
    one-to-one & G is 
    one-to-one holds ( 
    Sum F) 
    = ( 
    Sum G) 
    
    proof
    
      let F,G be
    FinSequence of 
    INT ; 
    
      assume
    
      
    
    A1: ( 
    rng F) 
    = ( 
    rng G) & F is 
    one-to-one & G is 
    one-to-one;
    
      
    
      thus (
    Sum F) 
    = ( 
    addint  
    $$ F) by 
    GR_CY_1: 2
    
      .= (
    addint  
    $$ G) by 
    A1,
    FINSOP_1: 8
    
      .= (
    Sum G) by 
    GR_CY_1: 2;
    
    end;
    
    definition
    
      let T be
    finite  
    Subset of the 
    carrier of 
    INT.Ring ; 
    
      :: 
    
    ZMODUL05:def2
    
      func
    
    Sum T -> 
    Element of 
    INT.Ring means ex F be 
    FinSequence of 
    INT st ( 
    rng F) 
    = T & F is 
    one-to-one & it 
    = ( 
    Sum F); 
    
      existence
    
      proof
    
        consider p be
    FinSequence such that 
    
        
    
    A1: ( 
    rng p) 
    = T and 
    
        
    
    A2: p is 
    one-to-one by 
    FINSEQ_4: 58;
    
        reconsider p as
    FinSequence of the 
    carrier of 
    INT.Ring by 
    A1,
    FINSEQ_1:def 4;
    
        
    INT  
    = the 
    carrier of 
    INT.Ring by 
    INT_3:def 3;
    
        then
    
        reconsider F = p as
    FinSequence of 
    INT ; 
    
        reconsider Sp = (
    Sum F) as 
    Element of 
    INT.Ring by 
    INT_3:def 3;
    
        take Sp, F;
    
        thus (
    rng F) 
    = T & F is 
    one-to-one & ( 
    Sum F) 
    = Sp by 
    A1,
    A2;
    
      end;
    
      uniqueness by
    RLVECT142;
    
    end
    
    theorem :: 
    
    ZMODUL05:13
    
    
    
    
    
    RF9: for K be 
    Ring holds for R1,R2 be 
    FinSequence of K st (R1,R2) 
    are_fiberwise_equipotent holds ( 
    Sum R1) 
    = ( 
    Sum R2) 
    
    proof
    
      let K be
    Ring;
    
      let R1,R2 be
    FinSequence of K; 
    
      defpred
    
    P[
    Nat] means for f,g be
    FinSequence of K st (f,g) 
    are_fiberwise_equipotent & ( 
    len f) 
    = $1 holds ( 
    Sum f) 
    = ( 
    Sum g); 
    
      assume
    
      
    
    A1: (R1,R2) 
    are_fiberwise_equipotent ; 
    
      
    
      
    
    A2: ( 
    len R1) 
    = ( 
    len R1); 
    
      
    
      
    
    A3: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A4: 
    P[n];
    
        let f,g be
    FinSequence of K; 
    
        assume that
    
        
    
    A5: (f,g) 
    are_fiberwise_equipotent and 
    
        
    
    A6: ( 
    len f) 
    = (n 
    + 1); 
    
        set a = (f
    /. (n 
    + 1)); 
    
        
    
        
    
    A7: ( 
    rng f) 
    = ( 
    rng g) by 
    A5,
    CLASSES1: 75;
    
        (
    0 qua 
    Nat
    + 1) 
    <= (n 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    Z: (n 
    + 1) 
    in ( 
    dom f) by 
    A6,
    FINSEQ_3: 25;
    
        then
    
        
    
    X: a 
    = (f 
    . (n 
    + 1)) by 
    PARTFUN1:def 6;
    
        then a
    in ( 
    rng g) by 
    A7,
    FUNCT_1:def 3,
    Z;
    
        then
    
        consider m be
    Nat such that 
    
        
    
    A8: m 
    in ( 
    dom g) and 
    
        
    
    A9: (g 
    . m) 
    = a by 
    FINSEQ_2: 10;
    
        set gg = (g
    /^ m), gm = (g 
    | m); 
    
        m
    <= ( 
    len g) by 
    A8,
    FINSEQ_3: 25;
    
        then
    
        
    
    A10: ( 
    len gm) 
    = m by 
    FINSEQ_1: 59;
    
        
    
        
    
    A11: 1 
    <= m by 
    A8,
    FINSEQ_3: 25;
    
        then (
    max ( 
    0 ,(m 
    - 1))) 
    = (m 
    - 1) by 
    FINSEQ_2: 4;
    
        then
    
        reconsider m1 = (m
    - 1) as 
    Element of 
    NAT by 
    FINSEQ_2: 5;
    
        
    
        
    
    A12: m 
    = (m1 
    + 1); 
    
        then
    
        
    
    A13: ( 
    Seg m1) 
    c= ( 
    Seg m) by 
    FINSEQ_1: 5,
    NAT_1: 11;
    
        m
    in ( 
    Seg m) by 
    A11;
    
        then (gm
    . m) 
    = a by 
    A8,
    A9,
    RFINSEQ: 6;
    
        then
    
        
    
    A14: gm 
    = ((gm 
    | m1) 
    ^  
    <*a*>) by
    A10,
    A12,
    RFINSEQ: 7;
    
        set fn = (f
    | n); 
    
        
    
        
    
    A15: g 
    = ((g 
    | m) 
    ^ (g 
    /^ m)) by 
    RFINSEQ: 8;
    
        
    
        
    
    A16: (gm 
    | m1) 
    = (gm 
    | ( 
    Seg m1)) 
    
        .= ((g
    | ( 
    Seg m)) 
    | ( 
    Seg m1)) 
    
        .= (g
    | (( 
    Seg m) 
    /\ ( 
    Seg m1))) by 
    RELAT_1: 71
    
        .= (g
    | ( 
    Seg m1)) by 
    A13,
    XBOOLE_1: 28
    
        .= (g
    | m1); 
    
        
    
        
    
    A17: f 
    = (fn 
    ^  
    <*a*>) by
    A6,
    RFINSEQ: 7,
    X;
    
        now
    
          let x be
    object;
    
          (
    card ( 
    Coim (f,x))) 
    = ( 
    card ( 
    Coim (g,x))) by 
    A5;
    
          
    
          then ((
    card (fn 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    = ( 
    card ((((g 
    | m1) 
    ^  
    <*a*>)
    ^ (g 
    /^ m)) 
    "  
    {x})) by
    A15,
    A14,
    A16,
    A17,
    FINSEQ_3: 57
    
          .= ((
    card (((g 
    | m1) 
    ^  
    <*a*>)
    "  
    {x}))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x}))) by
    FINSEQ_3: 57
    
          .= (((
    card ((g 
    | m1) 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x}))) by
    FINSEQ_3: 57
    
          .= (((
    card ((g 
    | m1) 
    "  
    {x}))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x})))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    
          .= ((
    card (((g 
    | m1) 
    ^ (g 
    /^ m)) 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x}))) by
    FINSEQ_3: 57;
    
          hence (
    card ( 
    Coim (fn,x))) 
    = ( 
    card ( 
    Coim (((g 
    | m1) 
    ^ (g 
    /^ m)),x))); 
    
        end;
    
        then
    
        
    
    A18: (fn,((g 
    | m1) 
    ^ (g 
    /^ m))) 
    are_fiberwise_equipotent ; 
    
        (
    len fn) 
    = n by 
    A6,
    FINSEQ_1: 59,
    NAT_1: 11;
    
        then (
    Sum fn) 
    = ( 
    Sum ((g 
    | m1) 
    ^ gg)) by 
    A4,
    A18;
    
        
    
        hence (
    Sum f) 
    = (( 
    Sum ((g 
    | m1) 
    ^ gg)) 
    + ( 
    Sum  
    <*a*>)) by
    A17,
    RLVECT_1: 41
    
        .= (((
    Sum (g 
    | m1)) 
    + ( 
    Sum gg)) 
    + ( 
    Sum  
    <*a*>)) by
    RLVECT_1: 41
    
        .= ((
    Sum (g 
    | m1)) 
    + (( 
    Sum gg) 
    + ( 
    Sum  
    <*a*>))) by
    RLVECT_1:def 3
    
        .= ((
    Sum (g 
    | m1)) 
    + (( 
    Sum  
    <*a*>)
    + ( 
    Sum gg))) 
    
        .= (((
    Sum (g 
    | m1)) 
    + ( 
    Sum  
    <*a*>))
    + ( 
    Sum gg)) by 
    RLVECT_1:def 3
    
        .= ((
    Sum gm) 
    + ( 
    Sum gg)) by 
    A14,
    A16,
    RLVECT_1: 41
    
        .= (
    Sum g) by 
    A15,
    RLVECT_1: 41;
    
      end;
    
      
    
      
    
    A19: 
    P[
    0 ] 
    
      proof
    
        let f,g be
    FinSequence of K; 
    
        assume (f,g)
    are_fiberwise_equipotent & ( 
    len f) 
    =  
    0 ; 
    
        then
    
        
    
    A20: ( 
    len g) 
    =  
    0 & f 
    = ( 
    <*> the 
    carrier of 
    INT.Ring ) by 
    RFINSEQ: 3;
    
        then g
    = ( 
    <*> the 
    carrier of 
    INT.Ring ); 
    
        hence thesis by
    A20;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A19,
    A3);
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    ::$Canceled
    
    definition
    
      ::$Canceled
    
    end
    
    theorem :: 
    
    ZMODUL05:16
    
    
    
    
    
    MATRLIN16: for R be 
    Ring holds for V1,V2 be 
    LeftMod of R holds for f be 
    Function of V1, V2 holds for p be 
    FinSequence of V1 st f is 
    additive
    homogeneous holds (f 
    . ( 
    Sum p)) 
    = ( 
    Sum (f 
    * p)) 
    
    proof
    
      let R be
    Ring;
    
      let V1,V2 be
    LeftMod of R, f be 
    Function of V1, V2; 
    
      let p be
    FinSequence of V1; 
    
      defpred
    
    P[
    FinSequence of V1] means (f 
    . ( 
    Sum $1)) 
    = ( 
    Sum (f 
    * $1)); 
    
      assume
    
      
    
    A1: f is 
    additive
    homogeneous;
    
      
    
      
    
    A2: for p be 
    FinSequence of V1 holds for w be 
    Element of V1 st 
    P[p] holds
    P[(p
    ^  
    <*w*>)]
    
      proof
    
        let p be
    FinSequence of V1; 
    
        let w be
    Element of V1 such that 
    
        
    
    A3: (f 
    . ( 
    Sum p)) 
    = ( 
    Sum (f 
    * p)); 
    
        
    
        thus (f
    . ( 
    Sum (p 
    ^  
    <*w*>)))
    = (f 
    . (( 
    Sum p) 
    + ( 
    Sum  
    <*w*>))) by
    RLVECT_1: 41
    
        .= ((
    Sum (f 
    * p)) 
    + (f 
    . ( 
    Sum  
    <*w*>))) by
    A1,
    A3
    
        .= ((
    Sum (f 
    * p)) 
    + (f 
    . w)) by 
    RLVECT_1: 44
    
        .= ((
    Sum (f 
    * p)) 
    + ( 
    Sum  
    <*(f
    . w)*>)) by 
    RLVECT_1: 44
    
        .= (
    Sum ((f 
    * p) 
    ^  
    <*(f
    . w)*>)) by 
    RLVECT_1: 41
    
        .= (
    Sum (f 
    * (p 
    ^  
    <*w*>))) by
    FINSEQOP: 8;
    
      end;
    
      (f
    . ( 
    Sum ( 
    <*> the 
    carrier of V1))) 
    = (f 
    . ( 
    0. V1)) by 
    RLVECT_1: 43
    
      .= (f
    . (( 
    0. R) 
    * ( 
    0. V1))) by 
    VECTSP_1: 14
    
      .= ((
    0. R) 
    * (f 
    . ( 
    0. V1))) by 
    A1
    
      .= (
    0. V2) by 
    VECTSP_1: 14
    
      .= (
    Sum ( 
    <*> the 
    carrier of V2)) by 
    RLVECT_1: 43
    
      .= (
    Sum (f 
    * ( 
    <*> the 
    carrier of V1))); 
    
      then
    
      
    
    A4: 
    P[(
    <*> the 
    carrier of V1)]; 
    
      for p be
    FinSequence of V1 holds 
    P[p] from
    FINSEQ_2:sch 2(
    A4,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:17
    
    for V be
    free  
    Z_Module st ( 
    [#] V) is 
    finite holds ( 
    (Omega). V) 
    = ( 
    (0). V) 
    
    proof
    
      let V be
    free  
    Z_Module;
    
      assume
    
      
    
    A1: ( 
    [#] V) is 
    finite;
    
      assume
    
      
    
    A2: ( 
    (Omega). V) 
    <> ( 
    (0). V); 
    
      consider A be
    Subset of V such that 
    
      
    
    a3: A is 
    base by 
    VECTSP_7:def 4;
    
      per cases ;
    
        suppose A
    =  
    {} ; 
    
        
    
        then (
    Lin A) 
    = ( 
    Lin ( 
    {} the 
    carrier of V)) 
    
        .= (
    (0). V) by 
    VECTSP_7: 9;
    
        hence contradiction by
    A2,
    a3;
    
      end;
    
        suppose A
    <>  
    {} ; 
    
        then
    
        consider v be
    object such that 
    
        
    
    A4: v 
    in A by 
    XBOOLE_0:def 1;
    
        reconsider v as
    VECTOR of V by 
    A4;
    
        
    {v} is
    linearly-independent by 
    a3,
    A4,
    ZFMISC_1: 31,
    ZMODUL02: 56;
    
        then
    
        
    
    A5: v 
    <> ( 
    0. V); 
    
        deffunc
    
    F(
    Element of 
    INT.Ring ) = ($1 
    * v); 
    
        consider f be
    Function of the 
    carrier of 
    INT.Ring , the 
    carrier of V such that 
    
        
    
    A6: for x be 
    Element of 
    INT.Ring holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A7: ( 
    dom f) 
    = the 
    carrier of 
    INT.Ring & ( 
    rng f) 
    c= the 
    carrier of V by 
    FUNCT_2:def 1;
    
        for x1,x2 be
    object st x1 
    in the 
    carrier of 
    INT.Ring & x2 
    in the 
    carrier of 
    INT.Ring & (f 
    . x1) 
    = (f 
    . x2) holds x1 
    = x2 
    
        proof
    
          let x1,x2 be
    object;
    
          assume
    
          
    
    A8: x1 
    in the 
    carrier of 
    INT.Ring & x2 
    in the 
    carrier of 
    INT.Ring & (f 
    . x1) 
    = (f 
    . x2); 
    
          then
    
          reconsider a1 = x1, a2 = x2 as
    Element of 
    INT.Ring ; 
    
          (a1
    * v) 
    = (f 
    . a2) by 
    A6,
    A8
    
          .= (a2
    * v) by 
    A6;
    
          then ((a1
    * v) 
    - (a2 
    * v)) 
    = ( 
    0. V) by 
    RLVECT_1: 5;
    
          then ((a1
    - a2) 
    * v) 
    = ( 
    0. V) by 
    ZMODUL01: 9;
    
          then (a1
    - a2) 
    = ( 
    0.  
    INT.Ring ) by 
    A5,
    ZMODUL01:def 7;
    
          hence x1
    = x2 by 
    INT_3:def 3;
    
        end;
    
        then f is
    one-to-one by 
    FUNCT_2: 19;
    
        then (
    card the 
    carrier of 
    INT.Ring ) 
    c= ( 
    card the 
    carrier of V) by 
    A7,
    CARD_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
    end;
    
    begin
    
    reserve T for
    linear-transformation of V, W; 
    
    theorem :: 
    
    ZMODUL05:18
    
    for F be
    Ring, V,W be 
    VectSp of F, T be 
    linear-transformation of V, W holds for x,y be 
    Element of V holds ((T 
    . x) 
    - (T 
    . y)) 
    = (T 
    . (x 
    - y)) by 
    RANKNULL: 8;
    
    theorem :: 
    
    ZMODUL05:19
    
    (T
    . ( 
    0. V)) 
    = ( 
    0. W) by 
    RANKNULL: 9;
    
    theorem :: 
    
    ZMODUL05:20
    
    for x be
    Element of V holds x 
    in ( 
    ker T) iff (T 
    . x) 
    = ( 
    0. W) by 
    RANKNULL: 10;
    
    theorem :: 
    
    ZMODUL05:21
    
    (
    0. V) 
    in ( 
    ker T) by 
    RANKNULL: 11;
    
    theorem :: 
    
    ZMODUL05:22
    
    for X be
    Subset of V holds (T 
    .: X) is 
    Subset of ( 
    im T) by 
    RANKNULL: 12;
    
    theorem :: 
    
    ZMODUL05:23
    
    for y be
    Element of W holds y 
    in ( 
    im T) iff ex x be 
    Element of V st y 
    = (T 
    . x) by 
    RANKNULL: 13;
    
    theorem :: 
    
    ZMODUL05:24
    
    for x be
    Element of ( 
    ker T) holds (T 
    . x) 
    = ( 
    0. W) by 
    RANKNULL: 14;
    
    theorem :: 
    
    ZMODUL05:25
    
    T is
    one-to-one implies ( 
    ker T) 
    = ( 
    (0). V) by 
    RANKNULL: 15;
    
    theorem :: 
    
    ZMODUL05:26
    
    for V be
    finite-rank
    free  
    Z_Module holds ( 
    rank ( 
    (0). V)) 
    =  
    0  
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module;
    
      (
    (Omega). ( 
    (0). V)) 
    = ( 
    (0). ( 
    (0). V)) by 
    ZMODUL01: 51;
    
      hence thesis by
    RL5Th33;
    
    end;
    
    theorem :: 
    
    ZMODUL05:27
    
    
    
    
    
    Th17: for x,y be 
    Element of V st (T 
    . x) 
    = (T 
    . y) holds (x 
    - y) 
    in ( 
    ker T) by 
    RANKNULL: 17;
    
    theorem :: 
    
    ZMODUL05:28
    
    
    
    
    
    Th18: for A be 
    Subset of V, x,y be 
    Element of V st (x 
    - y) 
    in ( 
    Lin A) holds x 
    in ( 
    Lin (A 
    \/  
    {y})) by
    RANKNULL: 18;
    
    begin
    
    theorem :: 
    
    ZMODUL05:29
    
    for X be
    Subset of V st V is 
    Submodule of W holds X is 
    Subset of W 
    
    proof
    
      let X be
    Subset of V; 
    
      assume V is
    Submodule of W; 
    
      then
    
      
    
    A1: ( 
    [#] V) 
    c= ( 
    [#] W) by 
    VECTSP_4:def 2;
    
      X
    c= ( 
    [#] W) by 
    A1;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:30
    
    
    
    
    
    ThLin4: for R be 
    Ring holds for V be 
    LeftMod of R, A be 
    Subset of V holds A is 
    Subset of ( 
    Lin A) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let A be
    Subset of V; 
    
      for x be
    object st x 
    in A holds x 
    in the 
    carrier of ( 
    Lin A) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A1: x 
    in A; 
    
        x
    in ( 
    Lin A) by 
    A1,
    MOD_3: 5;
    
        hence thesis;
    
      end;
    
      then A
    c= the 
    carrier of ( 
    Lin A); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:31
    
    
    
    
    
    ThLin7: for V be 
    LeftMod of 
    INT.Ring , A be 
    linearly-independent  
    Subset of V holds A is 
    Basis of ( 
    Lin A) 
    
    proof
    
      let V be
    LeftMod of 
    INT.Ring , A be 
    linearly-independent  
    Subset of V; 
    
      reconsider AA = A as
    Subset of ( 
    Lin A) by 
    ThLin4;
    
      (
    (Omega). ( 
    Lin A)) 
    = ( 
    Lin AA) by 
    ZMODUL03: 20;
    
      hence thesis by
    ZMODUL03: 16,
    VECTSP_7:def 3;
    
    end;
    
    theorem :: 
    
    ZMODUL05:32
    
    
    
    
    
    Th21: for V be 
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, x be 
    Element of V st x 
    in ( 
    Lin A) & not x 
    in A holds (A 
    \/  
    {x}) is
    linearly-dependent
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, x be 
    Element of V such that 
    
      
    
    A1: x 
    in ( 
    Lin A) and 
    
      
    
    A2: not x 
    in A; 
    
      per cases ;
    
        suppose
    
        
    
    A3: A is 
    linearly-independent;
    
        reconsider X =
    {x} as
    Subset of ( 
    Lin A) by 
    A1,
    SUBSET_1: 41;
    
        reconsider A9 = A as
    Basis of ( 
    Lin A) by 
    A3,
    ThLin7;
    
        reconsider B = (A9
    \/ X) as 
    Subset of ( 
    Lin A); 
    
        X
    misses A9 
    
        proof
    
          assume X
    meets A9; 
    
          then ex y be
    object st y 
    in X & y 
    in A9 by 
    XBOOLE_0: 3;
    
          hence contradiction by
    A2,
    TARSKI:def 1;
    
        end;
    
        then B is
    linearly-dependent by 
    ZMODUL03: 18;
    
        hence thesis by
    ZMODUL03: 16;
    
      end;
    
        suppose A is
    linearly-dependent;
    
        hence thesis by
    ZMODUL02: 56,
    XBOOLE_1: 7;
    
      end;
    
    end;
    
    registration
    
      let V be
    finite-rank
    free  
    Z_Module, W be 
    Z_Module;
    
      let T be
    linear-transformation of V, W; 
    
      cluster ( 
    ker T) -> 
    finite-rank
    free;
    
      correctness ;
    
    end
    
    reserve T for
    linear-transformation of V, W; 
    
    theorem :: 
    
    ZMODUL05:33
    
    
    
    
    
    Th22: for V be 
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, B be 
    Basis of V, T be 
    linear-transformation of V, W st A is 
    Basis of ( 
    ker T) & A 
    c= B holds (T 
    | (B 
    \ A)) is 
    one-to-one
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, B be 
    Basis of V, T be 
    linear-transformation of V, W such that 
    
      
    
    A1: A is 
    Basis of ( 
    ker T) and 
    
      
    
    A2: A 
    c= B; 
    
      reconsider A9 = A as
    Subset of V; 
    
      set f = (T
    | (B 
    \ A)); 
    
      let x1,x2 be
    object such that 
    
      
    
    A3: x1 
    in ( 
    dom f) and 
    
      
    
    A4: x2 
    in ( 
    dom f) and 
    
      
    
    A5: (f 
    . x1) 
    = (f 
    . x2) and 
    
      
    
    A6: x1 
    <> x2; 
    
      x2
    in ( 
    dom T) by 
    A4,
    RELAT_1: 57;
    
      then
    
      reconsider x2 as
    Element of V; 
    
      x1
    in ( 
    dom T) by 
    A3,
    RELAT_1: 57;
    
      then
    
      reconsider x1 as
    Element of V; 
    
      
    
      
    
    A7: not x1 
    in (A9 
    \/  
    {x2})
    
      proof
    
        assume
    
        
    
    A8: x1 
    in (A9 
    \/  
    {x2});
    
        per cases by
    A8,
    XBOOLE_0:def 3;
    
          suppose x1
    in A9; 
    
          hence contradiction by
    A3,
    XBOOLE_0:def 5;
    
        end;
    
          suppose x1
    in  
    {x2};
    
          hence contradiction by
    A6,
    TARSKI:def 1;
    
        end;
    
      end;
    
      
    
      
    
    A9: (f 
    . x2) 
    = (T 
    . x2) by 
    A4,
    FUNCT_1: 49;
    
      reconsider A as
    Subset of ( 
    ker T) by 
    A1;
    
      reconsider A as
    Basis of ( 
    ker T) by 
    A1;
    
      
    
      
    
    A10: ( 
    ker T) 
    = ( 
    Lin A) by 
    VECTSP_7:def 3;
    
      (f
    . x1) 
    = (T 
    . x1) by 
    A3,
    FUNCT_1: 49;
    
      then (x1
    - x2) 
    in ( 
    ker T) by 
    A5,
    A9,
    Th17;
    
      then (x1
    - x2) 
    in ( 
    Lin A9) by 
    A10,
    ZMODUL03: 20;
    
      then
    
      
    
    A11: x1 
    in ( 
    Lin (A9 
    \/  
    {x2})) by
    Th18;
    
      (
    {x2}
    \/  
    {x1})
    =  
    {x1, x2} by
    ENUMSET1: 1;
    
      then
    
      
    
    A12: ((A9 
    \/  
    {x2})
    \/  
    {x1})
    = (A9 
    \/  
    {x1, x2}) by
    XBOOLE_1: 4;
    
      
    {x1, x2}
    c= B 
    
      proof
    
        let z be
    object such that 
    
        
    
    A13: z 
    in  
    {x1, x2};
    
        per cases by
    A13,
    TARSKI:def 2;
    
          suppose z
    = x1; 
    
          hence thesis by
    A3,
    XBOOLE_0:def 5;
    
        end;
    
          suppose z
    = x2; 
    
          hence thesis by
    A4,
    XBOOLE_0:def 5;
    
        end;
    
      end;
    
      then
    
      
    
    A14: (A9 
    \/  
    {x1, x2})
    c= B by 
    A2,
    XBOOLE_1: 8;
    
      B is
    linearly-independent by 
    VECTSP_7:def 3;
    
      hence thesis by
    A7,
    A11,
    A12,
    A14,
    Th21,
    ZMODUL02: 56;
    
    end;
    
    theorem :: 
    
    ZMODUL05:34
    
    for R be
    Ring, V be 
    LeftMod of R holds for A be 
    Subset of V, l be 
    Linear_Combination of A, x be 
    Element of V, a be 
    Element of R holds (l 
    +* (x,a)) is 
    Linear_Combination of (A 
    \/  
    {x})
    
    proof
    
      let R be
    Ring, V be 
    LeftMod of R; 
    
      let A be
    Subset of V, l be 
    Linear_Combination of A, x be 
    Element of V, a be 
    Element of R; 
    
      set m = (l
    +* (x,a)); 
    
      
    
      
    
    A1: ( 
    dom m) 
    = ( 
    dom l) by 
    FUNCT_7: 30
    
      .= (
    [#] V) by 
    FUNCT_2:def 1;
    
      (
    rng m) 
    c= the 
    carrier of R; 
    
      then
    
      reconsider m as
    Element of ( 
    Funcs (( 
    [#] V),the 
    carrier of R)) by 
    A1,
    FUNCT_2:def 2;
    
      set T = ((
    Carrier l) 
    \/  
    {x});
    
      for v be
    Element of V st not v 
    in T holds (m 
    . v) 
    = ( 
    0. R) 
    
      proof
    
        let v be
    Element of V such that 
    
        
    
    A7: not v 
    in T; 
    
         not v
    in  
    {x} by
    A7,
    XBOOLE_0:def 3;
    
        then v
    <> x by 
    TARSKI:def 1;
    
        then
    
        
    
    A8: (m 
    . v) 
    = (l 
    . v) by 
    FUNCT_7: 32;
    
         not v
    in ( 
    Carrier l) by 
    A7,
    XBOOLE_0:def 3;
    
        hence thesis by
    A8;
    
      end;
    
      then
    
      reconsider m as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
      
    
      
    
    A9: ( 
    Carrier m) 
    c= T 
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    Carrier m); 
    
        then
    
        consider z be
    Element of V such that 
    
        
    
    A10: y 
    = z and 
    
        
    
    A11: (m 
    . z) 
    <> ( 
    0. R); 
    
        per cases ;
    
          suppose
    
          
    
    A12: z 
    = x; 
    
          x
    in  
    {x} &
    {x}
    c= T by 
    TARSKI:def 1,
    XBOOLE_1: 7;
    
          hence thesis by
    A10,
    A12;
    
        end;
    
          suppose z
    <> x; 
    
          then (m
    . z) 
    = (l 
    . z) by 
    FUNCT_7: 32;
    
          then
    
          
    
    A13: z 
    in ( 
    Carrier l) by 
    A11;
    
          (
    Carrier l) 
    c= T by 
    XBOOLE_1: 7;
    
          hence thesis by
    A10,
    A13;
    
        end;
    
      end;
    
      T
    c= (A 
    \/  
    {x}) by
    XBOOLE_1: 9,
    VECTSP_6:def 4;
    
      then (
    Carrier m) 
    c= (A 
    \/  
    {x}) by
    A9;
    
      hence thesis by
    VECTSP_6:def 4;
    
    end;
    
    reserve l for
    Linear_Combination of V; 
    
    registration
    
      let R be non
    degenerated  
    Ring, V be 
    LeftMod of R; 
    
      cluster 
    linearly-dependent for 
    Subset of V; 
    
      existence
    
      proof
    
        reconsider S =
    {(
    0. V)} as 
    Subset of V; 
    
        take S;
    
        thus thesis;
    
      end;
    
    end
    
    definition
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, l be 
    Linear_Combination of V, A be 
    Subset of V; 
    
      :: 
    
    ZMODUL05:def6
    
      func l
    
    ! A -> 
    Linear_Combination of A equals ((l 
    | A) 
    +* ((A 
    ` ) 
    --> ( 
    0. R))); 
    
      coherence
    
      proof
    
        set f = ((l
    | A) 
    +* ((A 
    ` ) 
    --> ( 
    0. R))); 
    
        
    
        
    
    A1: ( 
    dom f) 
    = (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R)))) by 
    FUNCT_4:def 1;
    
        (
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
        then (
    dom (l 
    | A)) 
    = A by 
    RELAT_1: 62;
    
        then
    
        
    
    A4: ( 
    dom f) 
    = ( 
    [#] V) by 
    A1,
    XBOOLE_1: 45;
    
        (
    rng f) 
    c= (( 
    rng (l 
    | A)) 
    \/ ( 
    rng ((A 
    ` ) 
    --> ( 
    0. R)))) & (( 
    rng (l 
    | A)) 
    \/ ( 
    rng ((A 
    ` ) 
    --> ( 
    0. R)))) 
    c= ( 
    [#] R) by 
    FUNCT_4: 17;
    
        then (
    rng f) 
    c= the 
    carrier of R; 
    
        then
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] V),the 
    carrier of R)) by 
    A4,
    FUNCT_2:def 2;
    
        ex T be
    finite  
    Subset of V st for v be 
    Element of V st not v 
    in T holds (f 
    . v) 
    = ( 
    0. R) 
    
        proof
    
          set D = { v where v be
    Element of V : (f 
    . v) 
    <> ( 
    0. R) }; 
    
          D
    c= ( 
    [#] V) 
    
          proof
    
            let x be
    object;
    
            assume x
    in D; 
    
            then ex v be
    Element of V st x 
    = v & (f 
    . v) 
    <> ( 
    0. R); 
    
            hence thesis;
    
          end;
    
          then
    
          reconsider D as
    Subset of V; 
    
          set C = (
    Carrier l); 
    
          D
    c= C 
    
          proof
    
            let x be
    object;
    
            assume x
    in D; 
    
            then
    
            consider v be
    Element of V such that 
    
            
    
    A10: x 
    = v and 
    
            
    
    A11: (f 
    . v) 
    <> ( 
    0. R); 
    
            
    
    A13: 
    
            now
    
              assume
    
              
    
    A14: v 
    in (A 
    ` ); 
    
              
    
              then (f
    . v) 
    = (((A 
    ` ) 
    --> ( 
    0. R)) 
    . v) by 
    A1,
    A4,
    FUNCT_4:def 1
    
              .= (
    0. R) by 
    A14,
    FUNCOP_1: 7;
    
              hence contradiction by
    A11;
    
            end;
    
            then v
    in A by 
    XBOOLE_0:def 5;
    
            then
    
            
    
    A15: ((l 
    | A) 
    . v) 
    = (l 
    . v) by 
    FUNCT_1: 49;
    
             not v
    in ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R))) by 
    A13;
    
            then (f
    . v) 
    = ((l 
    | A) 
    . v) by 
    FUNCT_4: 11;
    
            hence thesis by
    A10,
    A11,
    A15;
    
          end;
    
          then
    
          reconsider D as
    finite  
    Subset of V; 
    
          take D;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
        (
    Carrier f) 
    c= A 
    
        proof
    
          let x be
    object such that 
    
          
    
    A16: x 
    in ( 
    Carrier f); 
    
          reconsider x as
    Element of V by 
    A16;
    
          now
    
            assume not x
    in A; 
    
            then
    
            
    
    A17: x 
    in (A 
    ` ) by 
    XBOOLE_0:def 5;
    
            then x
    in (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R)))) by 
    XBOOLE_0:def 3;
    
            then (f
    . x) 
    = (((A 
    ` ) 
    --> ( 
    0. R)) 
    . x) by 
    A17,
    FUNCT_4:def 1;
    
            hence contradiction by
    A16,
    A17,
    FUNCOP_1: 7,
    VECTSP_6: 2;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    VECTSP_6:def 4;
    
      end;
    
    end
    
    theorem :: 
    
    ZMODUL05:35
    
    
    
    
    
    Th24: for R be 
    Ring holds for V be 
    LeftMod of R, l be 
    Linear_Combination of V holds l 
    = (l 
    ! ( 
    Carrier l)) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, l be 
    Linear_Combination of V; 
    
      set f = (l
    | ( 
    Carrier l)); 
    
      set g = (((
    Carrier l) 
    ` ) 
    --> ( 
    0. R)); 
    
      set m = (f
    +* g); 
    
      
    
      
    
    A2: ( 
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      then (
    dom f) 
    = ( 
    Carrier l) by 
    RELAT_1: 62;
    
      then
    
      
    
    A3: (( 
    dom f) 
    \/ ( 
    dom g)) 
    = ( 
    [#] V) by 
    XBOOLE_1: 45;
    
      for x be
    object st x 
    in ( 
    dom l) holds (l 
    . x) 
    = (m 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom l); 
    
        then
    
        reconsider x as
    Element of V; 
    
        per cases ;
    
          suppose
    
          
    
    A5: x 
    in ( 
    Carrier l); 
    
          then not x
    in ( 
    dom g) by 
    XBOOLE_0:def 5;
    
          then (m
    . x) 
    = (f 
    . x) by 
    A3,
    FUNCT_4:def 1;
    
          hence thesis by
    A5,
    FUNCT_1: 49;
    
        end;
    
          suppose
    
          
    
    A6: not x 
    in ( 
    Carrier l); 
    
          then x
    in (( 
    Carrier l) 
    ` ) by 
    XBOOLE_0:def 5;
    
          then (m
    . x) 
    = (g 
    . x) & (g 
    . x) 
    = ( 
    0. R) by 
    A3,
    FUNCOP_1: 7,
    FUNCT_4:def 1;
    
          hence thesis by
    A6;
    
        end;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm1: for R be 
    Ring holds for V be 
    LeftMod of R holds for l be 
    Linear_Combination of V holds for X be 
    Subset of V holds (l 
    .: X) is 
    finite
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V; 
    
      let X be
    Subset of V; 
    
      
    
      
    
    A1: l 
    = (l 
    ! ( 
    Carrier l)) by 
    Th24;
    
      ((
    rng (l 
    | ( 
    Carrier l))) 
    \/ ( 
    rng ((( 
    Carrier l) 
    ` ) 
    --> ( 
    0. R)))) is 
    finite;
    
      then (
    rng l) is 
    finite by 
    A1,
    FINSET_1: 1,
    FUNCT_4: 17;
    
      hence thesis by
    FINSET_1: 1,
    RELAT_1: 111;
    
    end;
    
    theorem :: 
    
    ZMODUL05:36
    
    
    
    
    
    Th25: for R be 
    Ring holds for V be 
    LeftMod of R holds for l be 
    Linear_Combination of V holds for A be 
    Subset of V, v be 
    Element of V st v 
    in A holds ((l 
    ! A) 
    . v) 
    = (l 
    . v) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V; 
    
      let A be
    Subset of V, v be 
    Element of V such that 
    
      
    
    A1: v 
    in A; 
    
      (
    dom (l 
    ! A)) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      then
    
      
    
    A2: (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R)))) 
    = ( 
    [#] V) by 
    FUNCT_4:def 1;
    
       not v
    in ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R))) by 
    A1,
    XBOOLE_0:def 5;
    
      
    
      then ((l
    ! A) 
    . v) 
    = ((l 
    | A) 
    . v) by 
    A2,
    FUNCT_4:def 1
    
      .= (l
    . v) by 
    A1,
    FUNCT_1: 49;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:37
    
    
    
    
    
    Th26: for R be 
    Ring, V be 
    LeftMod of R holds for l be 
    Linear_Combination of V holds for A be 
    Subset of V, v be 
    Element of V st not v 
    in A holds ((l 
    ! A) 
    . v) 
    = ( 
    0. R) 
    
    proof
    
      let R be
    Ring, V be 
    LeftMod of R; 
    
      let l be
    Linear_Combination of V; 
    
      let A be
    Subset of V, v be 
    Element of V; 
    
      assume not v
    in A; 
    
      then
    
      
    
    A1: v 
    in (A 
    ` ) by 
    XBOOLE_0:def 5;
    
      
    
      
    
    A2: ( 
    dom (l 
    ! A)) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      (
    dom ((A 
    ` ) 
    --> ( 
    0. R))) 
    = (A 
    ` ) & ( 
    dom (l 
    ! A)) 
    = (( 
    dom (l 
    | A)) 
    \/ ( 
    dom ((A 
    ` ) 
    --> ( 
    0. R)))) by 
    FUNCT_4:def 1;
    
      
    
      then ((l
    ! A) 
    . v) 
    = (((A 
    ` ) 
    --> ( 
    0. R)) 
    . v) by 
    A1,
    A2,
    FUNCT_4:def 1
    
      .= (
    0. R) by 
    A1,
    FUNCOP_1: 7;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ZMODUL05:38
    
    
    
    
    
    Th27: for R be 
    Ring, V be 
    LeftMod of R holds for A,B be 
    Subset of V, l be 
    Linear_Combination of B st A 
    c= B holds l 
    = ((l 
    ! A) 
    + (l 
    ! (B 
    \ A))) 
    
    proof
    
      let R be
    Ring, V be 
    LeftMod of R; 
    
      let A,B be
    Subset of V, l be 
    Linear_Combination of B such that 
    
      
    
    A1: A 
    c= B; 
    
      set r = ((l
    ! A) 
    + (l 
    ! (B 
    \ A))); 
    
      let v be
    Element of V; 
    
      
    
      
    
    A2: v 
    in B implies (v 
    in A or v 
    in (B 
    \ A)) 
    
      proof
    
        assume
    
        
    
    A3: v 
    in B; 
    
        B
    = (A 
    \/ (B 
    \ A)) by 
    A1,
    XBOOLE_1: 45;
    
        hence thesis by
    A3,
    XBOOLE_0:def 3;
    
      end;
    
      per cases by
    A2;
    
        suppose
    
        
    
    A4: v 
    in A; 
    
        then not v
    in (B 
    \ A) by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A5: ((l 
    ! (B 
    \ A)) 
    . v) 
    = ( 
    0. R) by 
    Th26;
    
        ((l
    ! A) 
    . v) 
    = (l 
    . v) by 
    A4,
    Th25;
    
        
    
        then (r
    . v) 
    = ((l 
    . v) 
    + ( 
    0. R)) by 
    A5,
    VECTSP_6: 22
    
        .= (l
    . v); 
    
        hence (l
    . v) 
    = (r 
    . v); 
    
      end;
    
        suppose
    
        
    
    A6: v 
    in (B 
    \ A); 
    
        then not v
    in A by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A7: ((l 
    ! A) 
    . v) 
    = ( 
    0. R) by 
    Th26;
    
        ((l
    ! (B 
    \ A)) 
    . v) 
    = (l 
    . v) by 
    A6,
    Th25;
    
        
    
        then (r
    . v) 
    = (( 
    0. R) 
    + (l 
    . v)) by 
    A7,
    VECTSP_6: 22
    
        .= (l
    . v); 
    
        hence (l
    . v) 
    = (r 
    . v); 
    
      end;
    
        suppose
    
        
    
    A8: not v 
    in B; 
    
        (
    Carrier l) 
    c= B by 
    VECTSP_6:def 4;
    
        then
    
        
    
    A9: not v 
    in ( 
    Carrier l) by 
    A8;
    
         not v
    in (B 
    \ A) by 
    A8,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A10: ((l 
    ! (B 
    \ A)) 
    . v) 
    = ( 
    0. R) by 
    Th26;
    
        ((l
    ! A) 
    . v) 
    = ( 
    0. R) by 
    A1,
    A8,
    Th26;
    
        
    
        then (r
    . v) 
    = (( 
    0. R) 
    + ( 
    0. R)) by 
    A10,
    VECTSP_6: 22
    
        .= (
    0. R); 
    
        hence (l
    . v) 
    = (r 
    . v) by 
    A9;
    
      end;
    
    end;
    
    registration
    
      let R be
    Ring, V be 
    LeftMod of R, l be 
    Linear_Combination of V, X be 
    Subset of V; 
    
      cluster (l 
    .: X) -> 
    finite;
    
      coherence by
    Lm1;
    
    end
    
    theorem :: 
    
    ZMODUL05:39
    
    
    
    
    
    Th28: for R be 
    Ring, V be 
    LeftMod of R, l be 
    Linear_Combination of V holds for X be 
    Subset of V st X 
    misses ( 
    Carrier l) holds (l 
    .: X) 
    c=  
    {(
    0. R)} 
    
    proof
    
      let R be
    Ring, V be 
    LeftMod of R, l be 
    Linear_Combination of V; 
    
      let X be
    Subset of V such that 
    
      
    
    A1: X 
    misses ( 
    Carrier l); 
    
      set M = (l
    .: X); 
    
      for y be
    object st y 
    in (l 
    .: X) holds y 
    in  
    {(
    0. R)} 
    
      proof
    
        let y be
    object;
    
        assume y
    in M; 
    
        then
    
        consider x be
    object such that x 
    in ( 
    dom l) and 
    
        
    
    A2: x 
    in X and 
    
        
    
    A3: y 
    = (l 
    . x) by 
    FUNCT_1:def 6;
    
        reconsider x as
    Element of V by 
    A2;
    
        now
    
          assume (l
    . x) 
    <> ( 
    0. R); 
    
          then x
    in ( 
    Carrier l); 
    
          hence contradiction by
    A1,
    A2,
    XBOOLE_0:def 4;
    
        end;
    
        hence thesis by
    A3,
    TARSKI:def 1;
    
      end;
    
      hence (l
    .: X) 
    c=  
    {(
    0. R)}; 
    
    end;
    
    definition
    
      let K be
    Ring;
    
      let V,W be
    VectSp of K, l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      let w be
    Element of W; 
    
      :: 
    
    ZMODUL05:def7
    
      func
    
    lCFST (l,T,w) -> the 
    carrier of K 
    -valued  
    FinSequence equals (l 
    * ( 
    canFS ((T 
    "  
    {w})
    /\ ( 
    Carrier l)))); 
    
      correctness
    
      proof
    
        set p = (l
    * ( 
    canFS ((T 
    "  
    {w})
    /\ ( 
    Carrier l)))); 
    
        set f = (
    canFS ((T 
    "  
    {w})
    /\ ( 
    Carrier l))); 
    
        (
    dom l) 
    = the 
    carrier of V by 
    FUNCT_2:def 1;
    
        then (
    rng f) 
    c= ( 
    dom l) by 
    XBOOLE_1: 1;
    
        hence thesis by
    FINSEQ_1: 16;
    
      end;
    
    end
    
    reserve V,W for
    Z_Module;
    
    reserve l for
    Linear_Combination of V; 
    
    reserve T for
    linear-transformation of V, W; 
    
    theorem :: 
    
    ZMODUL05:40
    
    
    
    
    
    ThTF3C0: for V,W be non 
    empty  
    set, f be 
    FinSequence, l be 
    Function of V, W st ( 
    rng f) 
    c= V holds (l 
    * f) is W 
    -valued
    FinSequence-like
    
    proof
    
      let V,W be non
    empty  
    set, f be 
    FinSequence, l be 
    Function of V, W; 
    
      assume (
    rng f) 
    c= V; 
    
      then (
    rng f) 
    c= ( 
    dom l) by 
    FUNCT_2:def 1;
    
      hence thesis by
    FINSEQ_1: 16;
    
    end;
    
    registration
    
      let V,W be non
    empty  
    set, f be V 
    -valued  
    FinSequence, l be 
    Function of V, W; 
    
      cluster (l 
    * f) -> W 
    -valued
    FinSequence-like;
    
      coherence
    
      proof
    
        (
    rng f) 
    c= V; 
    
        hence (l
    * f) is W 
    -valued
    FinSequence-like by 
    ThTF3C0;
    
      end;
    
    end
    
    
    
    
    
    ThTF3C1: for V,W be non 
    empty  
    set, A be 
    finite  
    Subset of V, l be 
    Function of V, W holds (l 
    * ( 
    canFS A)) is W 
    -valued
    FinSequence-like
    
    proof
    
      let V,W be non
    empty  
    set, A be 
    finite  
    Subset of V, l be 
    Function of V, W; 
    
      set p = (l
    * ( 
    canFS A)); 
    
      set f = (
    canFS A); 
    
      (
    dom l) 
    = V by 
    FUNCT_2:def 1;
    
      then (
    rng f) 
    c= ( 
    dom l) by 
    XBOOLE_1: 1;
    
      hence thesis by
    FINSEQ_1: 16;
    
    end;
    
    registration
    
      let V,W be non
    empty  
    set, A be 
    finite  
    Subset of V, l be 
    Function of V, W; 
    
      cluster (l 
    * ( 
    canFS A)) -> W 
    -valued
    FinSequence-like;
    
      coherence by
    ThTF3C1;
    
    end
    
    registration
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, A be 
    finite  
    Subset of V, l be 
    Linear_Combination of V; 
    
      cluster (l 
    * ( 
    canFS A)) -> the 
    carrier of R 
    -valued
    FinSequence-like;
    
      coherence ;
    
    end
    
    theorem :: 
    
    ZMODUL05:41
    
    
    
    
    
    ThTF3C3: for V,W be non 
    empty  
    set, f,g be V 
    -valued  
    FinSequence, l be 
    Function of V, W holds (l 
    * (f 
    ^ g)) 
    = ((l 
    * f) 
    ^ (l 
    * g)) 
    
    proof
    
      let V,W be non
    empty  
    set, f,g be V 
    -valued  
    FinSequence, l be 
    Function of V, W; 
    
      
    
      
    
    A1: ( 
    dom l) 
    = V by 
    FUNCT_2:def 1;
    
      
    
      
    
    A2: ( 
    rng f) 
    c= V; 
    
      
    
      
    
    A3: ( 
    rng g) 
    c= V; 
    
      
    
      
    
    A4: ( 
    rng (f 
    ^ g)) 
    = (( 
    rng f) 
    \/ ( 
    rng g)) by 
    FINSEQ_1: 31;
    
      
    
      
    
    A5: ( 
    dom (l 
    * f)) 
    = ( 
    dom f) by 
    A1,
    A2,
    RELAT_1: 27
    
      .= (
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A6: ( 
    len (l 
    * f)) 
    = ( 
    len f) by 
    FINSEQ_1:def 3;
    
      (
    dom (l 
    * g)) 
    = ( 
    dom g) by 
    A1,
    A3,
    RELAT_1: 27
    
      .= (
    Seg ( 
    len g)) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A7: ( 
    len (l 
    * g)) 
    = ( 
    len g) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A8: ( 
    dom (f 
    ^ g)) 
    = ( 
    Seg ( 
    len (f 
    ^ g))) by 
    FINSEQ_1:def 3
    
      .= (
    Seg (( 
    len f) 
    + ( 
    len g))) by 
    FINSEQ_1: 22;
    
      
    
      
    
    A9: ( 
    len ((l 
    * f) 
    ^ (l 
    * g))) 
    = (( 
    len (l 
    * f)) 
    + ( 
    len (l 
    * g))) by 
    FINSEQ_1: 22
    
      .= ((
    len f) 
    + ( 
    len g)) by 
    A5,
    A7,
    FINSEQ_1:def 3;
    
      
    
      
    
    A10: ( 
    dom ((l 
    * f) 
    ^ (l 
    * g))) 
    = ( 
    Seg (( 
    len f) 
    + ( 
    len g))) by 
    A9,
    FINSEQ_1:def 3;
    
      now
    
        let k be
    object;
    
        assume
    
        
    
    A11: k 
    in ( 
    dom (l 
    * (f 
    ^ g))); 
    
        then
    
        reconsider i = k as
    Nat;
    
        
    
        
    
    A12: i 
    in ( 
    dom (f 
    ^ g)) by 
    A1,
    A4,
    A11,
    RELAT_1: 27;
    
        per cases by
    A12,
    FINSEQ_1: 25;
    
          suppose
    
          
    
    A13: i 
    in ( 
    dom f); 
    
          then
    
          
    
    A14: i 
    in ( 
    dom (l 
    * f)) by 
    A1,
    A2,
    RELAT_1: 27;
    
          
    
          thus ((l
    * (f 
    ^ g)) 
    . k) 
    = (l 
    . ((f 
    ^ g) 
    . i)) by 
    A11,
    FUNCT_1: 12
    
          .= (l
    . (f 
    . i)) by 
    A13,
    FINSEQ_1:def 7
    
          .= ((l
    * f) 
    . i) by 
    A13,
    FUNCT_1: 13
    
          .= (((l
    * f) 
    ^ (l 
    * g)) 
    . k) by 
    A14,
    FINSEQ_1:def 7;
    
        end;
    
          suppose ex n be
    Nat st n 
    in ( 
    dom g) & i 
    = (( 
    len f) 
    + n); 
    
          then
    
          consider n be
    Nat such that 
    
          
    
    A15: n 
    in ( 
    dom g) & i 
    = (( 
    len f) 
    + n); 
    
          
    
          
    
    A16: n 
    in ( 
    dom (l 
    * g)) by 
    A1,
    A3,
    A15,
    RELAT_1: 27;
    
          
    
          thus ((l
    * (f 
    ^ g)) 
    . k) 
    = (l 
    . ((f 
    ^ g) 
    . i)) by 
    A11,
    FUNCT_1: 12
    
          .= (l
    . (g 
    . n)) by 
    A15,
    FINSEQ_1:def 7
    
          .= ((l
    * g) 
    . n) by 
    A15,
    FUNCT_1: 13
    
          .= (((l
    * f) 
    ^ (l 
    * g)) 
    . k) by 
    A6,
    A15,
    A16,
    FINSEQ_1:def 7;
    
        end;
    
      end;
    
      hence thesis by
    A1,
    A4,
    A8,
    A10,
    FUNCT_1: 2,
    RELAT_1: 27;
    
    end;
    
    theorem :: 
    
    ZMODUL05:42
    
    
    
    
    
    ThTF3C2: for R be 
    Ring holds for V be 
    LeftMod of R, A,B be 
    finite  
    Subset of V, l be 
    Linear_Combination of V, l0,l1,l2 be 
    FinSequence of R st (A 
    /\ B) 
    =  
    {} & l0 
    = (l 
    * ( 
    canFS (A 
    \/ B))) & l1 
    = (l 
    * ( 
    canFS A)) & l2 
    = (l 
    * ( 
    canFS B)) holds ( 
    Sum l0) 
    = (( 
    Sum l1) 
    + ( 
    Sum l2)) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, A,B be 
    finite  
    Subset of V, l be 
    Linear_Combination of V, l0,l1,l2 be 
    FinSequence of R; 
    
      assume
    
      
    
    A1: (A 
    /\ B) 
    =  
    {} ; 
    
      assume
    
      
    
    TT: l0 
    = (l 
    * ( 
    canFS (A 
    \/ B))) & l1 
    = (l 
    * ( 
    canFS A)) & l2 
    = (l 
    * ( 
    canFS B)); 
    
      per cases ;
    
        suppose
    
        
    
    A2: (A 
    \/ B) 
    =  
    {} ; 
    
        then
    
        
    
    A3: A 
    =  
    {} ; 
    
        
    
        
    
    a3: B 
    =  
    {} by 
    A2;
    
        (
    rng (l 
    * ( 
    canFS B))) 
    c= the 
    carrier of R; 
    
        then
    
        reconsider lC = (l
    * ( 
    canFS B)) as 
    FinSequence of R by 
    FINSEQ_1:def 4;
    
        lC
    = ( 
    <*> the 
    carrier of R) by 
    a3;
    
        
    
        then (
    Sum lC) 
    = ( 
    0. R) by 
    RLVECT_1: 43
    
        .= (
    0. R); 
    
        hence (
    Sum l0) 
    = (( 
    Sum l1) 
    + ( 
    Sum l2)) by 
    A2,
    A3,
    TT;
    
      end;
    
        suppose
    
        
    
    A5: (A 
    \/ B) 
    <>  
    {} ; 
    
        (
    rng ( 
    canFS A)) 
    = A by 
    FUNCT_2:def 3;
    
        then
    
        reconsider ca = (
    canFS A) as the 
    carrier of V 
    -valued  
    FinSequence by 
    RELAT_1:def 19;
    
        (
    rng ( 
    canFS B)) 
    = B by 
    FUNCT_2:def 3;
    
        then
    
        reconsider cb = (
    canFS B) as the 
    carrier of V 
    -valued  
    FinSequence by 
    RELAT_1:def 19;
    
        set la = (
    len ( 
    canFS A)); 
    
        set lb = (
    len ( 
    canFS B)); 
    
        set lab = (
    len (( 
    canFS A) 
    ^ ( 
    canFS B))); 
    
        set lavb = (
    len ( 
    canFS (A 
    \/ B))); 
    
        set F = (l
    * ( 
    canFS (A 
    \/ B))); 
    
        set G = (l1
    ^ l2); 
    
        set H = (((
    canFS (A 
    \/ B)) 
    " ) 
    * (( 
    canFS A) 
    ^ ( 
    canFS B))); 
    
        
    
        
    
    A6: la 
    = ( 
    card A) by 
    FINSEQ_1: 93;
    
        
    
        
    
    A7: lavb 
    = ( 
    card (A 
    \/ B)) by 
    FINSEQ_1: 93
    
        .= ((
    card A) 
    + ( 
    card B)) by 
    A1,
    CARD_2: 40,
    XBOOLE_0:def 7
    
        .= (la
    + lb) by 
    A6,
    FINSEQ_1: 93;
    
        
    
        
    
    A8: lab 
    = (la 
    + lb) by 
    FINSEQ_1: 22;
    
        then
    
        
    
    A9: ( 
    dom (( 
    canFS A) 
    ^ ( 
    canFS B))) 
    = ( 
    Seg (la 
    + lb)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A10: ( 
    rng (( 
    canFS A) 
    ^ ( 
    canFS B))) 
    = (( 
    rng ( 
    canFS A)) 
    \/ ( 
    rng ( 
    canFS B))) by 
    FINSEQ_1: 31
    
        .= (A
    \/ ( 
    rng ( 
    canFS B))) by 
    FUNCT_2:def 3
    
        .= (A
    \/ B) by 
    FUNCT_2:def 3;
    
        reconsider AB = ((
    canFS A) 
    ^ ( 
    canFS B)) as 
    Function of ( 
    Seg (la 
    + lb)), (A 
    \/ B) by 
    A9,
    A10,
    FUNCT_2: 1;
    
        
    
        
    
    A11: ( 
    rng ( 
    canFS (A 
    \/ B))) 
    = (A 
    \/ B) by 
    FUNCT_2:def 3;
    
        reconsider INVAB = ((
    canFS (A 
    \/ B)) 
    " ) as 
    Function of (A 
    \/ B), ( 
    Seg ( 
    card (A 
    \/ B))) by 
    FINSEQ_1: 95;
    
        
    
        
    
    A12: (INVAB 
    * ( 
    canFS (A 
    \/ B))) 
    = ( 
    id ( 
    dom ( 
    canFS (A 
    \/ B)))) & (( 
    canFS (A 
    \/ B)) 
    * INVAB) 
    = ( 
    id ( 
    rng ( 
    canFS (A 
    \/ B)))) by 
    FUNCT_1: 39;
    
        
    
        
    
    A13: ( 
    dom ( 
    canFS (A 
    \/ B))) 
    = ( 
    Seg ( 
    len ( 
    canFS (A 
    \/ B)))) by 
    FINSEQ_1:def 3
    
        .= (
    Seg ( 
    card (A 
    \/ B))) by 
    FINSEQ_1: 93;
    
        then
    
        
    
    A14: ( 
    canFS (A 
    \/ B)) is 
    Function of ( 
    Seg ( 
    card (A 
    \/ B))), (A 
    \/ B) by 
    A11,
    FUNCT_2: 1;
    
        
    
        
    
    A15: ( 
    dom INVAB) 
    = (A 
    \/ B) by 
    A5,
    FUNCT_2:def 1;
    
        
    
        
    
    A16: ( 
    rng INVAB) 
    = ( 
    Seg ( 
    card (A 
    \/ B))) by 
    A12,
    A13,
    A14,
    FUNCT_2: 18
    
        .= (
    Seg (( 
    card A) 
    + ( 
    card B))) by 
    A1,
    CARD_2: 40,
    XBOOLE_0:def 7
    
        .= (
    Seg (la 
    + lb)) by 
    A6,
    FINSEQ_1: 93;
    
        
    
        
    
    A17: ( 
    dom H) 
    = ( 
    dom (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    A10,
    A15,
    RELAT_1: 27
    
        .= (
    Seg (la 
    + lb)) by 
    A8,
    FINSEQ_1:def 3;
    
        
    
        
    
    A18: ( 
    rng H) 
    = ( 
    Seg (la 
    + lb)) by 
    A10,
    A15,
    A16,
    RELAT_1: 28;
    
        
    
        
    
    A19: the 
    carrier of V 
    = ( 
    dom l) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A20: ( 
    dom F) 
    = ( 
    dom ( 
    canFS (A 
    \/ B))) by 
    A11,
    A19,
    RELAT_1: 27
    
        .= (
    Seg (la 
    + lb)) by 
    A7,
    FINSEQ_1:def 3;
    
        (
    rng ( 
    canFS A)) 
    = A by 
    FUNCT_2:def 3;
    
        
    
        then (
    dom (l 
    * ( 
    canFS A))) 
    = ( 
    dom ( 
    canFS A)) by 
    A19,
    RELAT_1: 27
    
        .= (
    Seg la) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A21: ( 
    len (l 
    * ( 
    canFS A))) 
    = la by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A22: ( 
    rng ( 
    canFS B)) 
    = B by 
    FUNCT_2:def 3;
    
        
    
        then (
    dom (l 
    * ( 
    canFS B))) 
    = ( 
    dom ( 
    canFS B)) by 
    A19,
    RELAT_1: 27
    
        .= (
    Seg lb) by 
    FINSEQ_1:def 3;
    
        then
    
        
    
    A23: ( 
    len (l 
    * ( 
    canFS B))) 
    = lb by 
    FINSEQ_1:def 3;
    
        set G = ((l
    * ( 
    canFS A)) 
    ^ (l 
    * ( 
    canFS B))); 
    
        
    
        
    
    A24: ( 
    len G) 
    = (la 
    + lb) by 
    A21,
    A23,
    FINSEQ_1: 22;
    
        (
    rng ( 
    canFS A)) 
    misses ( 
    rng ( 
    canFS B)) by 
    A1,
    A22,
    FUNCT_2:def 3;
    
        then
    
        
    
    A25: (( 
    canFS A) 
    ^ ( 
    canFS B)) is 
    one-to-one by 
    FINSEQ_3: 91;
    
        
    
        
    
    A26: ( 
    dom H) 
    = ( 
    dom G) by 
    A17,
    A24,
    FINSEQ_1:def 3;
    
        
    
        
    
    A27: (F 
    * H) 
    = (((l 
    * ( 
    canFS (A 
    \/ B))) 
    * (( 
    canFS (A 
    \/ B)) 
    " )) 
    * (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    RELAT_1: 36
    
        .= ((l
    * (( 
    canFS (A 
    \/ B)) 
    * (( 
    canFS (A 
    \/ B)) 
    " ))) 
    * (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    RELAT_1: 36
    
        .= ((l
    * ( 
    id ( 
    rng ( 
    canFS (A 
    \/ B))))) 
    * (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    FUNCT_1: 39
    
        .= ((l
    * ( 
    id (A 
    \/ B))) 
    * (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    FUNCT_2:def 3
    
        .= (l
    * (( 
    id (A 
    \/ B)) 
    * AB)) by 
    RELAT_1: 36
    
        .= (l
    * (( 
    canFS A) 
    ^ ( 
    canFS B))) by 
    FUNCT_2: 17
    
        .= ((l
    * ca) 
    ^ (l 
    * cb)) by 
    ThTF3C3
    
        .= G;
    
        
    
        
    
    Z2: ( 
    rng G) 
    = (( 
    rng (l 
    * ( 
    canFS A))) 
    \/ ( 
    rng (l 
    * ( 
    canFS B)))) by 
    FINSEQ_1: 31;
    
        (
    rng F) 
    c= the 
    carrier of R; 
    
        then
    
        reconsider FR = F as
    FinSequence of R by 
    FINSEQ_1:def 4;
    
        reconsider GR = G as
    FinSequence of R by 
    Z2,
    FINSEQ_1:def 4;
    
        
    
        thus (
    Sum l0) 
    = ( 
    Sum FR) by 
    TT
    
        .= (
    Sum GR) by 
    A18,
    A20,
    A25,
    A26,
    A27,
    CLASSES1: 77,
    RF9
    
        .= (
    Sum (l1 
    ^ l2)) by 
    TT
    
        .= ((
    Sum (l 
    * ( 
    canFS A))) 
    + ( 
    Sum (l 
    * ( 
    canFS B)))) by 
    TT,
    RLVECT_1: 41
    
        .= ((
    Sum l1) 
    + ( 
    Sum l2)) by 
    TT;
    
      end;
    
    end;
    
    theorem :: 
    
    ZMODUL05:43
    
    
    
    
    
    ThTF3C3: for R be 
    Ring holds for V be 
    LeftMod of R, A be 
    finite  
    Subset of V, l,l0 be 
    Linear_Combination of V st (l 
    | ( 
    Carrier l0)) 
    = (l0 
    | ( 
    Carrier l0)) & ( 
    Carrier l0) 
    c= ( 
    Carrier l) & A 
    c= ( 
    Carrier l0) holds ( 
    Sum (l 
    * ( 
    canFS A))) 
    = ( 
    Sum (l0 
    * ( 
    canFS A))) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, A be 
    finite  
    Subset of V, l,l0 be 
    Linear_Combination of V; 
    
      assume
    
      
    
    A1: (l 
    | ( 
    Carrier l0)) 
    = (l0 
    | ( 
    Carrier l0)) & ( 
    Carrier l0) 
    c= ( 
    Carrier l) & A 
    c= ( 
    Carrier l0); 
    
      (
    dom l0) 
    = the 
    carrier of V by 
    FUNCT_2:def 1;
    
      then (
    dom (l0 
    | ( 
    Carrier l0))) 
    = ( 
    Carrier l0) by 
    RELAT_1: 62;
    
      then
    
      
    
    A2: ( 
    rng ( 
    canFS A)) 
    c= ( 
    dom (l0 
    | ( 
    Carrier l0))) by 
    A1;
    
      then (l
    * ( 
    canFS A)) 
    = ((l0 
    | ( 
    Carrier l0)) 
    * ( 
    canFS A)) by 
    A1,
    RELAT_1: 165;
    
      hence thesis by
    A2,
    RELAT_1: 165;
    
    end;
    
    definition
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R, l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      :: 
    
    ZMODUL05:def8
    
      func T
    
    @* l -> 
    Linear_Combination of W means 
    
      :
    
    LDef5: ( 
    Carrier it ) 
    c= (T 
    .: ( 
    Carrier l)) & for w be 
    Element of W holds (it 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w))); 
    
      existence
    
      proof
    
        defpred
    
    P[
    object, 
    object] means ex w be
    Element of W st $1 
    = w & $2 
    = ( 
    Sum ( 
    lCFST (l,T,w))); 
    
        
    
        
    
    A1: for x be 
    object st x 
    in ( 
    [#] W) holds ex y be 
    object st 
    P[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    [#] W); 
    
          then
    
          reconsider x as
    Element of W; 
    
          take (
    Sum ( 
    lCFST (l,T,x))); 
    
          thus thesis;
    
        end;
    
        consider f be
    Function such that 
    
        
    
    A2: ( 
    dom f) 
    = ( 
    [#] W) and 
    
        
    
    A3: for x be 
    object st x 
    in ( 
    [#] W) holds 
    P[x, (f
    . x)] from 
    CLASSES1:sch 1(
    A1);
    
        
    
        
    
    A4: ( 
    rng f) 
    c= the 
    carrier of R 
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng f); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A5: x 
    in ( 
    dom f) and 
    
          
    
    A6: (f 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
          consider w be
    Element of W such that 
    
          
    
    A7: x 
    = w & (f 
    . x) 
    = ( 
    Sum ( 
    lCFST (l,T,w))) by 
    A2,
    A3,
    A5;
    
          thus thesis by
    A6,
    A7;
    
        end;
    
        
    
        
    
    A8: for w be 
    Element of W holds (f 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w))) 
    
        proof
    
          let w be
    Element of W; 
    
          ex w9 be
    Element of W st w 
    = w9 & (f 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w9))) by 
    A3;
    
          hence thesis;
    
        end;
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] W),the 
    carrier of R)) by 
    A2,
    A4,
    FUNCT_2:def 2;
    
        set X = { w where w be
    Element of W : (f 
    . w) 
    <> ( 
    0. R) }; 
    
        X
    c= ( 
    [#] W) 
    
        proof
    
          let x be
    object;
    
          assume x
    in X; 
    
          then ex w be
    Element of W st x 
    = w & (f 
    . w) 
    <> ( 
    0. R); 
    
          hence thesis;
    
        end;
    
        then
    
        reconsider X as
    Subset of W; 
    
        set C = (
    Carrier l); 
    
        reconsider TC = (T
    .: C) as 
    Subset of W; 
    
        
    
        
    
    A9: X 
    c= TC 
    
        proof
    
          let x be
    object;
    
          assume x
    in X; 
    
          then
    
          consider w be
    Element of W such that 
    
          
    
    A10: x 
    = w and 
    
          
    
    A11: (f 
    . w) 
    <> ( 
    0. R); 
    
          (T
    "  
    {w})
    meets ( 
    Carrier l) 
    
          proof
    
            assume (T
    "  
    {w})
    misses ( 
    Carrier l); 
    
            then (
    lCFST (l,T,w)) 
    = ( 
    <*> the 
    carrier of R); 
    
            then (
    Sum ( 
    lCFST (l,T,w))) 
    = ( 
    0. R) by 
    RLVECT_1: 43;
    
            hence contradiction by
    A8,
    A11;
    
          end;
    
          then
    
          consider y be
    object such that 
    
          
    
    A13: y 
    in (T 
    "  
    {w}) and
    
          
    
    A14: y 
    in ( 
    Carrier l) by 
    XBOOLE_0: 3;
    
          
    
          
    
    A15: ( 
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
          reconsider y as
    Element of V by 
    A14;
    
          (T
    . y) 
    in  
    {w} by
    A13,
    FUNCT_1:def 7;
    
          then (T
    . y) 
    = w by 
    TARSKI:def 1;
    
          hence thesis by
    A10,
    A14,
    A15,
    FUNCT_1:def 6;
    
        end;
    
        then
    
        reconsider X as
    finite  
    Subset of W; 
    
        ex T be
    finite  
    Subset of W st for w be 
    Element of W st not w 
    in T holds (f 
    . w) 
    = ( 
    0. R) 
    
        proof
    
          take X;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of W by 
    VECTSP_6:def 1;
    
        take f;
    
        for w be
    Element of W holds (f 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w))) 
    
        proof
    
          let w be
    Element of W; 
    
          ex w9 be
    Element of W st w 
    = w9 & (f 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w9))) by 
    A3;
    
          hence thesis;
    
        end;
    
        hence thesis by
    A9;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Linear_Combination of W such that 
    
        
    
    A16: ( 
    Carrier f) 
    c= (T 
    .: ( 
    Carrier l)) & for w be 
    Element of W holds (f 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w))) and 
    
        
    
    A17: ( 
    Carrier g) 
    c= (T 
    .: ( 
    Carrier l)) & for w be 
    Element of W holds (g 
    . w) 
    = ( 
    Sum ( 
    lCFST (l,T,w))); 
    
        
    
        
    
    A18: for x be 
    object st x 
    in ( 
    dom f) holds (f 
    . x) 
    = (g 
    . x) 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    dom f); 
    
          then
    
          reconsider x as
    Element of W; 
    
          (f
    . x) 
    = ( 
    Sum ( 
    lCFST (l,T,x))) by 
    A16;
    
          hence thesis by
    A17;
    
        end;
    
        (
    dom f) 
    = ( 
    [#] W) & ( 
    dom g) 
    = ( 
    [#] W) by 
    FUNCT_2: 92;
    
        hence thesis by
    A18;
    
      end;
    
    end
    
    theorem :: 
    
    ZMODUL05:44
    
    
    
    
    
    LTh29: for R be 
    Ring holds for V,W be 
    LeftMod of R, l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W holds (T 
    @* l) is 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      (
    Carrier (T 
    @* l)) 
    c= (T 
    .: ( 
    Carrier l)) by 
    LDef5;
    
      hence thesis by
    VECTSP_6:def 4;
    
    end;
    
    theorem :: 
    
    ZMODUL05:45
    
    
    
    
    
    ThTF3B2: for K be 
    Ring holds for V,W be 
    LeftMod of K, T be 
    linear-transformation of V, W, s be 
    Vector of W holds (for A be 
    Subset of V, l be 
    Linear_Combination of A st (for v be 
    Vector of V st v 
    in ( 
    Carrier l) holds (T 
    . v) 
    = s) holds (T 
    . ( 
    Sum l)) 
    = (( 
    Sum ( 
    lCFST (l,T,s))) 
    * s)) 
    
    proof
    
      let K be
    Ring;
    
      let V,W be
    LeftMod of K, T be 
    linear-transformation of V, W, s be 
    Vector of W; 
    
      
    
      
    
    A1: T is 
    additive;
    
      defpred
    
    P[
    Nat] means for A be
    Subset of V, l be 
    Linear_Combination of A st ( 
    card ( 
    Carrier l)) 
    = $1 & (for v be 
    Vector of V st v 
    in ( 
    Carrier l) holds (T 
    . v) 
    = s) holds (T 
    . ( 
    Sum l)) 
    = (( 
    Sum ( 
    lCFST (l,T,s))) 
    * s); 
    
      reconsider SZ0 =
    {(
    0. K)} as 
    finite  
    Subset of K; 
    
      
    
      
    
    A2: 
    P[
    0 ] 
    
      proof
    
        let A be
    Subset of V, l be 
    Linear_Combination of A; 
    
        assume (
    card ( 
    Carrier l)) 
    =  
    0 & for v be 
    Vector of V st v 
    in ( 
    Carrier l) holds (T 
    . v) 
    = s; 
    
        then
    
        
    
    A3: ( 
    Carrier l) 
    =  
    {} ; 
    
        
    
        then
    
        
    
    A4: (T 
    . ( 
    Sum l)) 
    = (T 
    . ( 
    0. V)) by 
    VECTSP_6: 19
    
        .= (T
    . (( 
    0. K) 
    * ( 
    0. V))) by 
    VECTSP_1: 14
    
        .= ((
    0. K) 
    * (T 
    . ( 
    0. V))) by 
    MOD_2:def 2
    
        .= (
    0. W) by 
    VECTSP_1: 14;
    
        set g = (
    canFS ((T 
    "  
    {s})
    /\ ( 
    Carrier l))); 
    
        (
    lCFST (l,T,s)) 
    = ( 
    <*> the 
    carrier of K) by 
    A3;
    
        then (
    Sum ( 
    lCFST (l,T,s))) 
    = ( 
    0. K) by 
    RLVECT_1: 43;
    
        hence (T
    . ( 
    Sum l)) 
    = (( 
    Sum ( 
    lCFST (l,T,s))) 
    * s) by 
    A4,
    VECTSP_1: 14;
    
      end;
    
      
    
      
    
    A5: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A6: 
    P[n];
    
        let A be
    Subset of V, l be 
    Linear_Combination of A; 
    
        assume
    
        
    
    A7: ( 
    card ( 
    Carrier l)) 
    = (n 
    + 1) & (for v be 
    Vector of V st v 
    in ( 
    Carrier l) holds (T 
    . v) 
    = s); 
    
        then (
    Carrier l) 
    <>  
    {} ; 
    
        then
    
        consider w be
    object such that 
    
        
    
    A8: w 
    in ( 
    Carrier l) by 
    XBOOLE_0:def 1;
    
        reconsider w as
    Element of the 
    carrier of V by 
    A8;
    
        
    
        
    
    A9: ( 
    card (( 
    Carrier l) 
    \  
    {w}))
    = (( 
    card ( 
    Carrier l)) 
    - ( 
    card  
    {w})) by
    A8,
    CARD_2: 44,
    ZFMISC_1: 31
    
        .= ((n
    + 1) 
    - 1) by 
    A7,
    CARD_2: 42
    
        .= n;
    
        reconsider A0 = ((
    Carrier l) 
    \  
    {w}) as
    finite  
    Subset of V; 
    
        reconsider B0 =
    {w} as
    finite  
    Subset of V; 
    
        defpred
    
    PA0[
    object, 
    object] means $1 is
    Vector of V implies ($1 
    in A0 & $2 
    = (l 
    . $1)) or ( not $1 
    in A0 & $2 
    = ( 
    0. K)); 
    
        
    
        
    
    A10: for x be 
    object st x 
    in the 
    carrier of V holds ex y be 
    object st y 
    in the 
    carrier of K & 
    PA0[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider x9 = x as
    Vector of V; 
    
          per cases ;
    
            suppose
    
            
    
    A11: x 
    in A0; 
    
            (l
    . x9) 
    in the 
    carrier of K; 
    
            hence thesis by
    A11;
    
          end;
    
            suppose not x
    in A0; 
    
            hence thesis;
    
          end;
    
        end;
    
        consider l0 be
    Function of the 
    carrier of V, the 
    carrier of K such that 
    
        
    
    A13: for x be 
    object st x 
    in the 
    carrier of V holds 
    PA0[x, (l0
    . x)] from 
    FUNCT_2:sch 1(
    A10);
    
        
    
        
    
    A14: for v be 
    Vector of V st not v 
    in A0 holds (l0 
    . v) 
    = ( 
    0. K) by 
    A13;
    
        reconsider l0 as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of K)) by 
    FUNCT_2: 8;
    
        reconsider l0 as
    Linear_Combination of V by 
    A14,
    VECTSP_6:def 1;
    
        
    
        
    
    A15: for x be 
    object holds x 
    in A0 iff x 
    in ( 
    Carrier l0) 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume
    
            
    
    A16: x 
    in A0; 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            
    
    A17: (l0 
    . v) 
    = (l 
    . v) by 
    A13,
    A16;
    
            v
    in ( 
    Carrier l) by 
    A16,
    XBOOLE_0:def 5;
    
            then (l0
    . v) 
    <> ( 
    0. K) by 
    A17,
    VECTSP_6: 2;
    
            hence x
    in ( 
    Carrier l0); 
    
          end;
    
          assume
    
          
    
    A18: x 
    in ( 
    Carrier l0); 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          ex v9 be
    Vector of V st v9 
    = v & (l0 
    . v9) 
    <> ( 
    0. K) by 
    A18;
    
          hence x
    in A0 by 
    A13;
    
        end;
    
        then
    
        
    
    A19: ( 
    Carrier l0) 
    = A0 by 
    TARSKI: 2;
    
        then
    
        reconsider l0 as
    Linear_Combination of A0 by 
    VECTSP_6:def 4;
    
        
    
        
    
    A20: (l0 
    | ( 
    Carrier l0)) 
    = (l 
    | ( 
    Carrier l0)) 
    
        proof
    
          reconsider L0 = l0 as
    Function of V, K; 
    
          reconsider L1 = l as
    Function of V, K; 
    
          reconsider L00 = (L0
    | ( 
    Carrier l0)) as 
    Function of ( 
    Carrier l0), the 
    carrier of K by 
    FUNCT_2: 32;
    
          reconsider L11 = (L1
    | ( 
    Carrier l0)) as 
    Function of ( 
    Carrier l0), the 
    carrier of K by 
    FUNCT_2: 32;
    
          now
    
            let x be
    object;
    
            assume
    
            
    
    A21: x 
    in ( 
    Carrier l0); 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            thus (L00
    . x) 
    = (l0 
    . v) by 
    A21,
    FUNCT_1: 49
    
            .= (l
    . v) by 
    A13,
    A19,
    A21
    
            .= (L11
    . x) by 
    A21,
    FUNCT_1: 49;
    
          end;
    
          hence thesis by
    FUNCT_2: 12;
    
        end;
    
        defpred
    
    PB0[
    object, 
    object] means $1 is
    Vector of V implies ($1 
    in B0 & $2 
    = (l 
    . $1)) or ( not $1 
    in B0 & $2 
    = ( 
    0. K)); 
    
        
    
        
    
    A22: for x be 
    object st x 
    in the 
    carrier of V holds ex y be 
    object st y 
    in the 
    carrier of K & 
    PB0[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider x9 = x as
    Vector of V; 
    
          per cases ;
    
            suppose
    
            
    
    A23: x 
    in B0; 
    
            (l
    . x9) 
    in the 
    carrier of K; 
    
            hence thesis by
    A23;
    
          end;
    
            suppose not x
    in B0; 
    
            hence thesis;
    
          end;
    
        end;
    
        consider l1 be
    Function of V, K such that 
    
        
    
    A25: for x be 
    object st x 
    in the 
    carrier of V holds 
    PB0[x, (l1
    . x)] from 
    FUNCT_2:sch 1(
    A22);
    
        
    
        
    
    A26: for v be 
    Vector of V st not v 
    in B0 holds (l1 
    . v) 
    = ( 
    0. K) by 
    A25;
    
        reconsider l1 as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of K)) by 
    FUNCT_2: 8;
    
        reconsider l1 as
    Linear_Combination of V by 
    A26,
    VECTSP_6:def 1;
    
        for x be
    object holds x 
    in B0 iff x 
    in ( 
    Carrier l1) 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume
    
            
    
    A27: x 
    in B0; 
    
            then
    
            
    
    A28: x 
    = w by 
    TARSKI:def 1;
    
            then
    
            
    
    A29: (l1 
    . w) 
    = (l 
    . w) by 
    A25,
    A27;
    
            (l
    . w) 
    <> ( 
    0. K) by 
    A8,
    VECTSP_6: 2;
    
            hence x
    in ( 
    Carrier l1) by 
    A28,
    A29;
    
          end;
    
          assume
    
          
    
    A30: x 
    in ( 
    Carrier l1); 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          ex v9 be
    Vector of V st v9 
    = v & (l1 
    . v9) 
    <> ( 
    0. K) by 
    A30;
    
          hence x
    in B0 by 
    A25;
    
        end;
    
        then (
    Carrier l1) 
    = B0 by 
    TARSKI: 2;
    
        then
    
        reconsider l1 as
    Linear_Combination of B0 by 
    VECTSP_6:def 4;
    
        for v be
    Element of V holds (l 
    . v) 
    = ((l0 
    + l1) 
    . v) 
    
        proof
    
          let v be
    Element of V; 
    
          per cases ;
    
            suppose
    
            
    
    A31: not v 
    in ( 
    Carrier l); 
    
            then
    
            
    
    A32: (l 
    . v) 
    = ( 
    0. K); 
    
             not v
    in A0 by 
    A31,
    XBOOLE_0:def 5;
    
            then (l0
    . v) 
    = ( 
    0. K) by 
    A13;
    
            then (l
    . v) 
    = ((l0 
    . v) 
    + (l1 
    . v)) by 
    A25,
    A32;
    
            hence thesis by
    VECTSP_6: 22;
    
          end;
    
            suppose
    
            
    
    A34: v 
    in ( 
    Carrier l); 
    
            per cases ;
    
              suppose
    
              
    
    A35: v 
    in  
    {w};
    
              then not v
    in A0 by 
    XBOOLE_0:def 5;
    
              then (l0
    . v) 
    = ( 
    0. K) by 
    A13;
    
              then (l
    . v) 
    = ((l0 
    . v) 
    + (l1 
    . v)) by 
    A25,
    A35;
    
              hence thesis by
    VECTSP_6: 22;
    
            end;
    
              suppose
    
              
    
    A37: not v 
    in  
    {w};
    
              then
    
              
    
    A38: v 
    in A0 by 
    A34,
    XBOOLE_0:def 5;
    
              (l1
    . v) 
    = ( 
    0. K) by 
    A25,
    A37;
    
              then (l
    . v) 
    = ((l0 
    . v) 
    + (l1 
    . v)) by 
    A13,
    A38;
    
              hence thesis by
    VECTSP_6: 22;
    
            end;
    
          end;
    
        end;
    
        then l
    = (l0 
    + l1); 
    
        then
    
        
    
    A39: ( 
    Sum l) 
    = (( 
    Sum l0) 
    + ( 
    Sum l1)) by 
    VECTSP_6: 44;
    
        for v be
    Vector of V st v 
    in ( 
    Carrier l0) holds (T 
    . v) 
    = s 
    
        proof
    
          let v be
    Vector of V; 
    
          assume v
    in ( 
    Carrier l0); 
    
          then v
    in ( 
    Carrier l) by 
    A19,
    XBOOLE_0:def 5;
    
          hence thesis by
    A7;
    
        end;
    
        then
    
        
    
    A40: (T 
    . ( 
    Sum l0)) 
    = (( 
    Sum ( 
    lCFST (l0,T,s))) 
    * s) by 
    A6,
    A9,
    A19;
    
        
    
        
    
    A41: (A0 
    \/ B0) 
    = (( 
    Carrier l) 
    \/ B0) by 
    XBOOLE_1: 39
    
        .= (
    Carrier l) by 
    A8,
    XBOOLE_1: 12,
    ZFMISC_1: 31;
    
        
    
        
    
    A42: w 
    in B0 by 
    TARSKI:def 1;
    
        
    
        
    
    A43: (T 
    . ( 
    Sum l1)) 
    = (T 
    . ((l1 
    . w) 
    * w)) by 
    VECTSP_6: 17
    
        .= ((l1
    . w) 
    * (T 
    . w)) by 
    MOD_2:def 2
    
        .= ((l1
    . w) 
    * s) by 
    A7,
    A8
    
        .= ((l
    . w) 
    * s) by 
    A25,
    A42
    
        .= ((
    Sum  
    <*(l
    . w)*>) 
    * s) by 
    RLVECT_1: 44;
    
        set WW = ((
    lCFST (l0,T,s)) 
    ^  
    <*(l
    /. w)*>); 
    
        (
    rng WW) 
    = (( 
    rng ( 
    lCFST (l0,T,s))) 
    \/ ( 
    rng  
    <*(l
    /. w)*>)) by 
    FINSEQ_1: 31;
    
        then
    
        reconsider WW as
    FinSequence of K by 
    FINSEQ_1:def 4;
    
        reconsider L = (
    Sum WW) as 
    Element of K; 
    
        
    
        
    
    A44: ((T 
    "  
    {s})
    /\ ( 
    Carrier l)) 
    = (((T 
    "  
    {s})
    /\ A0) 
    \/ ((T 
    "  
    {s})
    /\ B0)) by 
    A41,
    XBOOLE_1: 23
    
        .= (((T
    "  
    {s})
    /\ ( 
    Carrier l0)) 
    \/ ((T 
    "  
    {s})
    /\ B0)) by 
    A15,
    TARSKI: 2;
    
        reconsider S1 = ((T
    "  
    {s})
    /\ ( 
    Carrier l0)) as 
    finite  
    Subset of V; 
    
        now
    
          let z be
    object;
    
          assume
    
          
    
    A45: z 
    in B0; 
    
          (T
    . w) 
    = s by 
    A7,
    A8;
    
          then
    
          
    
    A46: (T 
    . w) 
    in  
    {s} by
    TARSKI:def 1;
    
          w
    in (T 
    "  
    {s}) by
    A46,
    FUNCT_2: 38;
    
          hence z
    in (T 
    "  
    {s}) by
    A45,
    TARSKI:def 1;
    
        end;
    
        then B0
    c= (T 
    "  
    {s});
    
        then
    
        
    
    A47: ((T 
    "  
    {s})
    /\ B0) 
    =  
    {w} by
    XBOOLE_1: 28;
    
        reconsider S2 = ((T
    "  
    {s})
    /\ B0) as 
    finite  
    Subset of the 
    carrier of V; 
    
        
    
        
    
    A48: ((( 
    Carrier l) 
    \  
    {w})
    /\ B0) 
    = ((B0 
    /\ ( 
    Carrier l)) 
    \ B0) by 
    XBOOLE_1: 49
    
        .=
    {} by 
    XBOOLE_1: 17,
    XBOOLE_1: 37;
    
        
    
        
    
    A49: (S1 
    /\ S2) 
    = ((((T 
    "  
    {s})
    /\ ( 
    Carrier l0)) 
    /\ B0) 
    /\ (T 
    "  
    {s})) by
    XBOOLE_1: 16
    
        .= ((((T
    "  
    {s})
    /\ (( 
    Carrier l) 
    \  
    {w}))
    /\ B0) 
    /\ (T 
    "  
    {s})) by
    A15,
    TARSKI: 2
    
        .= (((T
    "  
    {s})
    /\  
    {} ) 
    /\ (T 
    "  
    {s})) by
    A48,
    XBOOLE_1: 16
    
        .=
    {} ; 
    
        
    
        
    
    A50: ( 
    Carrier l0) 
    c= ( 
    Carrier l) by 
    A19,
    XBOOLE_1: 36;
    
        reconsider ll = l as
    Function of the 
    carrier of V, the 
    carrier of K; 
    
        
    
        
    
    A51: (l 
    * ( 
    canFS S2)) 
    = (ll 
    *  
    <*w*>) by
    A47,
    FINSEQ_1: 94
    
        .=
    <*(ll
    . w)*> by 
    FINSEQ_2: 35;
    
        (
    rng (l 
    * ( 
    canFS S1))) 
    c= the 
    carrier of K; 
    
        then
    
        reconsider l1 = (l
    * ( 
    canFS S1)) as 
    FinSequence of K by 
    FINSEQ_1:def 4;
    
        reconsider l2 = (l
    * ( 
    canFS S2)) as 
    FinSequence of K by 
    A51;
    
        (
    rng ( 
    lCFST (l,T,s))) 
    c= the 
    carrier of K; 
    
        then
    
        reconsider ll0 = (
    lCFST (l,T,s)) as 
    FinSequence of K by 
    FINSEQ_1:def 4;
    
        
    
        
    
    A52: ( 
    Sum ll0) 
    = (( 
    Sum l1) 
    + ( 
    Sum l2)) by 
    A44,
    A49,
    ThTF3C2
    
        .= ((
    Sum ( 
    lCFST (l0,T,s))) 
    + ( 
    Sum  
    <*(l
    . w)*>)) by 
    A20,
    A50,
    A51,
    ThTF3C3,
    XBOOLE_1: 17;
    
        
    
        thus (T
    . ( 
    Sum l)) 
    = ((( 
    Sum ( 
    lCFST (l0,T,s))) 
    * s) 
    + (( 
    Sum  
    <*(l
    . w)*>) 
    * s)) by 
    A1,
    A39,
    A40,
    A43
    
        .= ((
    Sum ( 
    lCFST (l,T,s))) 
    * s) by 
    A52,
    VECTSP_1:def 15;
    
      end;
    
      
    
      
    
    A53: for n be 
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A2,
    A5);
    
      let A be
    Subset of V, l be 
    Linear_Combination of A; 
    
      assume
    
      
    
    A54: for v be 
    Vector of V st v 
    in ( 
    Carrier l) holds (T 
    . v) 
    = s; 
    
      (
    card ( 
    Carrier l)) is 
    Nat;
    
      hence thesis by
    A53,
    A54;
    
    end;
    
    theorem :: 
    
    ZMODUL05:46
    
    for K be
    Ring holds for V,W be 
    LeftMod of K, T be 
    linear-transformation of V, W, A be 
    Subset of V, l be 
    Linear_Combination of A, Tl be 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) st Tl 
    = (T 
    @* l) holds (T 
    . ( 
    Sum l)) 
    = ( 
    Sum Tl) 
    
    proof
    
      let K be
    Ring;
    
      let V,W be
    LeftMod of K, T be 
    linear-transformation of V, W; 
    
      
    
      
    
    A1: T is 
    additive;
    
      
    
      
    
    A2: ( 
    dom T) 
    = the 
    carrier of V by 
    FUNCT_2:def 1;
    
      defpred
    
    P[
    Nat] means for A be
    Subset of V, l be 
    Linear_Combination of A, Tl be 
    Linear_Combination of (T 
    .: ( 
    Carrier l)) st Tl 
    = (T 
    @* l) & ( 
    card (T 
    .: ( 
    Carrier l))) 
    = $1 holds (T 
    . ( 
    Sum l)) 
    = ( 
    Sum Tl); 
    
      
    
      
    
    A3: 
    P[
    0 ] 
    
      proof
    
        let A be
    Subset of V, l be 
    Linear_Combination of A, Tl be 
    Linear_Combination of (T 
    .: ( 
    Carrier l)); 
    
        assume
    
        
    
    P1: Tl 
    = (T 
    @* l) & ( 
    card (T 
    .: ( 
    Carrier l))) 
    =  
    0 ; 
    
        
    
        
    
    A4: (T 
    .: ( 
    Carrier l)) 
    =  
    {} by 
    P1;
    
        (
    Carrier l) 
    =  
    {} or not ( 
    Carrier l) 
    c= ( 
    dom T) by 
    P1;
    
        
    
        then
    
        
    
    A5: (T 
    . ( 
    Sum l)) 
    = (T 
    . ( 
    0. V)) by 
    A2,
    VECTSP_6: 19
    
        .= (T
    . (( 
    0. K) 
    * ( 
    0. V))) by 
    VECTSP_1: 14
    
        .= ((
    0. K) 
    * (T 
    . ( 
    0. V))) by 
    MOD_2:def 2
    
        .= (
    0. W) by 
    VECTSP_1: 14;
    
        (
    Carrier (T 
    @* l)) 
    c=  
    {} by 
    A4,
    LDef5;
    
        then (
    Carrier (T 
    @* l)) 
    =  
    {} ; 
    
        hence (T
    . ( 
    Sum l)) 
    = ( 
    Sum Tl) by 
    A5,
    P1,
    VECTSP_6: 19;
    
      end;
    
      
    
      
    
    A6: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A21: 
    P[n];
    
        let A be
    Subset of V, l be 
    Linear_Combination of A, Tl be 
    Linear_Combination of (T 
    .: ( 
    Carrier l)); 
    
        assume
    
        
    
    A7: Tl 
    = (T 
    @* l) & ( 
    card (T 
    .: ( 
    Carrier l))) 
    = (n 
    + 1); 
    
        then (T
    .: ( 
    Carrier l)) 
    <>  
    {} ; 
    
        then
    
        consider w be
    object such that 
    
        
    
    A8: w 
    in (T 
    .: ( 
    Carrier l)) by 
    XBOOLE_0:def 1;
    
        reconsider w as
    Element of the 
    carrier of W by 
    A8;
    
        
    
        
    
    A9: ( 
    card ((T 
    .: ( 
    Carrier l)) 
    \  
    {w}))
    = (( 
    card (T 
    .: ( 
    Carrier l))) 
    - ( 
    card  
    {w})) by
    A8,
    CARD_2: 44,
    ZFMISC_1: 31
    
        .= ((n
    + 1) 
    - 1) by 
    A7,
    CARD_2: 42
    
        .= n;
    
        reconsider A0 = ((
    Carrier l) 
    \ (T 
    "  
    {w})) as
    finite  
    Subset of V; 
    
        reconsider B0 = ((T
    "  
    {w})
    /\ ( 
    Carrier l)) as 
    Subset of V; 
    
        reconsider B0 as
    finite  
    Subset of V; 
    
        defpred
    
    PA0[
    object, 
    object] means $1 is
    Vector of V implies ($1 
    in A0 & $2 
    = (l 
    . $1)) or ( not $1 
    in A0 & $2 
    = ( 
    0. K)); 
    
        
    
        
    
    A10: for x be 
    object st x 
    in the 
    carrier of V holds ex y be 
    object st y 
    in the 
    carrier of K & 
    PA0[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider x9 = x as
    Vector of V; 
    
          per cases ;
    
            suppose
    
            
    
    A11: x 
    in A0; 
    
            (l
    . x9) 
    in the 
    carrier of K; 
    
            hence thesis by
    A11;
    
          end;
    
            suppose not x
    in A0; 
    
            hence thesis;
    
          end;
    
        end;
    
        consider l0 be
    Function of the 
    carrier of V, the 
    carrier of K such that 
    
        
    
    A13: for x be 
    object st x 
    in the 
    carrier of V holds 
    PA0[x, (l0
    . x)] from 
    FUNCT_2:sch 1(
    A10);
    
        
    
        
    
    A14: for v be 
    Vector of V st not v 
    in A0 holds (l0 
    . v) 
    = ( 
    0. K) by 
    A13;
    
        reconsider l0 as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of K)) by 
    FUNCT_2: 8;
    
        reconsider l0 as
    Linear_Combination of V by 
    A14,
    VECTSP_6:def 1;
    
        
    
        
    
    A15: for x be 
    object holds x 
    in A0 iff x 
    in ( 
    Carrier l0) 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume
    
            
    
    A16: x 
    in A0; 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            
    
    A17: (l0 
    . v) 
    = (l 
    . v) by 
    A13,
    A16;
    
            v
    in ( 
    Carrier l) by 
    A16,
    XBOOLE_0:def 5;
    
            then (l0
    . v) 
    <> ( 
    0. K) by 
    A17,
    VECTSP_6: 2;
    
            hence x
    in ( 
    Carrier l0); 
    
          end;
    
          assume
    
          
    
    A18: x 
    in ( 
    Carrier l0); 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          ex v9 be
    Vector of V st v9 
    = v & (l0 
    . v9) 
    <> ( 
    0. K) by 
    A18;
    
          hence x
    in A0 by 
    A13;
    
        end;
    
        then
    
        
    
    A19: ( 
    Carrier l0) 
    = A0 by 
    TARSKI: 2;
    
        then
    
        reconsider l0 as
    Linear_Combination of A0 by 
    VECTSP_6:def 4;
    
        
    
        
    
    A20: (l0 
    | ( 
    Carrier l0)) 
    = (l 
    | ( 
    Carrier l0)) 
    
        proof
    
          set L0 = l0;
    
          set L1 = l;
    
          reconsider L00 = (L0
    | ( 
    Carrier l0)) as 
    Function of ( 
    Carrier l0), the 
    carrier of K by 
    FUNCT_2: 32;
    
          reconsider L11 = (L1
    | ( 
    Carrier l0)) as 
    Function of ( 
    Carrier l0), the 
    carrier of K by 
    FUNCT_2: 32;
    
          now
    
            let x be
    object;
    
            assume
    
            
    
    A21: x 
    in ( 
    Carrier l0); 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            thus (L00
    . x) 
    = (L0 
    . x) by 
    A21,
    FUNCT_1: 49
    
            .= (l
    . v) by 
    A13,
    A19,
    A21
    
            .= (L11
    . x) by 
    A21,
    FUNCT_1: 49;
    
          end;
    
          hence thesis by
    FUNCT_2: 12;
    
        end;
    
        defpred
    
    PB0[
    object, 
    object] means $1 is
    Vector of V implies ($1 
    in B0 & $2 
    = (l 
    . $1)) or ( not $1 
    in B0 & $2 
    = ( 
    0. K)); 
    
        
    
        
    
    A22: for x be 
    object st x 
    in the 
    carrier of V holds ex y be 
    object st y 
    in the 
    carrier of K & 
    PB0[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in the 
    carrier of V; 
    
          then
    
          reconsider x9 = x as
    Vector of V; 
    
          per cases ;
    
            suppose
    
            
    
    A23: x 
    in B0; 
    
            (l
    . x9) 
    in the 
    carrier of K; 
    
            hence thesis by
    A23;
    
          end;
    
            suppose not x
    in B0; 
    
            hence thesis;
    
          end;
    
        end;
    
        consider l1 be
    Function of the 
    carrier of V, the 
    carrier of K such that 
    
        
    
    A25: for x be 
    object st x 
    in the 
    carrier of V holds 
    PB0[x, (l1
    . x)] from 
    FUNCT_2:sch 1(
    A22);
    
        
    
        
    
    A26: for v be 
    Vector of V st not v 
    in B0 holds (l1 
    . v) 
    = ( 
    0. K) by 
    A25;
    
        reconsider l1 as
    Element of ( 
    Funcs (the 
    carrier of V,the 
    carrier of K)) by 
    FUNCT_2: 8;
    
        reconsider l1 as
    Linear_Combination of V by 
    A26,
    VECTSP_6:def 1;
    
        
    
        
    
    A27: for x be 
    object holds x 
    in B0 iff x 
    in ( 
    Carrier l1) 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume
    
            
    
    A28: x 
    in B0; 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            
    
    A29: (l1 
    . v) 
    = (l 
    . v) by 
    A25,
    A28;
    
            v
    in ( 
    Carrier l) by 
    A28,
    XBOOLE_0:def 4;
    
            then (l1
    . v) 
    <> ( 
    0. K) by 
    A29,
    VECTSP_6: 2;
    
            hence x
    in ( 
    Carrier l1); 
    
          end;
    
          assume
    
          
    
    X1: x 
    in ( 
    Carrier l1); 
    
          then
    
          reconsider v = x as
    Vector of V; 
    
          ex v9 be
    Vector of V st v9 
    = v & (l1 
    . v9) 
    <> ( 
    0. K) by 
    X1;
    
          hence x
    in B0 by 
    A25;
    
        end;
    
        then
    
        
    
    A30: ( 
    Carrier l1) 
    = B0 by 
    TARSKI: 2;
    
        then
    
        reconsider l1 as
    Linear_Combination of B0 by 
    VECTSP_6:def 4;
    
        
    
        
    
    A31: (l1 
    | ( 
    Carrier l1)) 
    = (l 
    | ( 
    Carrier l1)) 
    
        proof
    
          reconsider L0 = l1 as
    Function of V, K; 
    
          reconsider L1 = l as
    Function of V, K; 
    
          reconsider L00 = (L0
    | ( 
    Carrier l1)) as 
    Function of ( 
    Carrier l1), the 
    carrier of K by 
    FUNCT_2: 32;
    
          reconsider L11 = (L1
    | ( 
    Carrier l1)) as 
    Function of ( 
    Carrier l1), the 
    carrier of K by 
    FUNCT_2: 32;
    
          now
    
            let x be
    object;
    
            assume
    
            
    
    A32: x 
    in ( 
    Carrier l1); 
    
            then
    
            reconsider v = x as
    Vector of V; 
    
            
    
            thus (L00
    . x) 
    = (L0 
    . x) by 
    A32,
    FUNCT_1: 49
    
            .= (l
    . v) by 
    A25,
    A30,
    A32
    
            .= (L11
    . x) by 
    A32,
    FUNCT_1: 49;
    
          end;
    
          hence thesis by
    FUNCT_2: 12;
    
        end;
    
        
    
        
    
    A33: for v be 
    Element of V holds (l 
    . v) 
    = ((l0 
    + l1) 
    . v) 
    
        proof
    
          let v be
    Element of V; 
    
          per cases ;
    
            suppose
    
            
    
    A34: not v 
    in ( 
    Carrier l); 
    
            then
    
            
    
    A35: (l 
    . v) 
    = ( 
    0. K); 
    
             not v
    in A0 by 
    A34,
    XBOOLE_0:def 5;
    
            then
    
            
    
    A36: (l0 
    . v) 
    = ( 
    0. K) by 
    A13;
    
            (l
    . v) 
    = ((l1 
    . v) 
    + (l0 
    . v)) by 
    A25,
    A35,
    A36;
    
            hence (l
    . v) 
    = ((l0 
    + l1) 
    . v) by 
    VECTSP_6: 22;
    
          end;
    
            suppose
    
            
    
    A37: v 
    in ( 
    Carrier l); 
    
            per cases ;
    
              suppose
    
              
    
    A38: v 
    in (T 
    "  
    {w});
    
              then not v
    in A0 by 
    XBOOLE_0:def 5;
    
              then
    
              
    
    A39: (l0 
    . v) 
    = ( 
    0. K) by 
    A13;
    
              v
    in B0 by 
    A37,
    A38,
    XBOOLE_0:def 4;
    
              then (l
    . v) 
    = ((l1 
    . v) 
    + (l0 
    . v)) by 
    A25,
    A39;
    
              hence (l
    . v) 
    = ((l0 
    + l1) 
    . v) by 
    VECTSP_6: 22;
    
            end;
    
              suppose
    
              
    
    A40: not v 
    in (T 
    "  
    {w});
    
              then
    
              
    
    A41: v 
    in A0 by 
    A37,
    XBOOLE_0:def 5;
    
               not v
    in B0 by 
    A40,
    XBOOLE_0:def 4;
    
              then (l1
    . v) 
    = ( 
    0. K) by 
    A25;
    
              then (l
    . v) 
    = ((l1 
    . v) 
    + (l0 
    . v)) by 
    A13,
    A41;
    
              hence (l
    . v) 
    = ((l0 
    + l1) 
    . v) by 
    VECTSP_6: 22;
    
            end;
    
          end;
    
        end;
    
        then
    
        
    
    A42: l 
    = (l0 
    + l1); 
    
        reconsider Tl0 = (T
    @* l0) as 
    Linear_Combination of (T 
    .: ( 
    Carrier l0)) by 
    LTh29;
    
        reconsider Tl1 = (T
    @* l1) as 
    Linear_Combination of (T 
    .: ( 
    Carrier l1)) by 
    LTh29;
    
        
    
        
    
    A43: ((T 
    .: ( 
    Carrier l0)) 
    /\ (T 
    .: ( 
    Carrier l1))) 
    =  
    {}  
    
        proof
    
          assume ((T
    .: ( 
    Carrier l0)) 
    /\ (T 
    .: ( 
    Carrier l1))) 
    <>  
    {} ; 
    
          then
    
          consider y be
    object such that 
    
          
    
    A44: y 
    in ((T 
    .: ( 
    Carrier l0)) 
    /\ (T 
    .: ( 
    Carrier l1))) by 
    XBOOLE_0:def 1;
    
          
    
          
    
    A45: y 
    in (T 
    .: ( 
    Carrier l0)) & y 
    in (T 
    .: ( 
    Carrier l1)) by 
    A44,
    XBOOLE_0:def 4;
    
          then
    
          consider x be
    object such that 
    
          
    
    A46: x 
    in the 
    carrier of V & x 
    in ( 
    Carrier l0) & y 
    = (T 
    . x) by 
    FUNCT_2: 64;
    
          consider z be
    object such that 
    
          
    
    A47: z 
    in the 
    carrier of V & z 
    in ( 
    Carrier l1) & y 
    = (T 
    . z) by 
    A45,
    FUNCT_2: 64;
    
          x
    in (( 
    Carrier l) 
    \ (T 
    "  
    {w})) by
    A15,
    A46;
    
          then not x
    in (T 
    "  
    {w}) by
    XBOOLE_0:def 5;
    
          then
    
          
    
    A48: not y 
    in  
    {w} by
    A46,
    FUNCT_2: 38;
    
          z
    in ((T 
    "  
    {w})
    /\ ( 
    Carrier l)) by 
    A27,
    A47;
    
          then z
    in (T 
    "  
    {w}) by
    XBOOLE_0:def 4;
    
          hence contradiction by
    A47,
    A48,
    FUNCT_2: 38;
    
        end;
    
        
    
        
    
    A49: (T 
    .: ( 
    Carrier l)) 
    c= (T 
    .: (( 
    Carrier l1) 
    \/ ( 
    Carrier l0))) by 
    A42,
    RELAT_1: 123,
    VECTSP_6: 23;
    
        
    
        
    
    A50: for w be 
    Vector of W st w 
    in (T 
    .: ( 
    Carrier l0)) holds (Tl 
    . w) 
    = (Tl0 
    . w) 
    
        proof
    
          let v be
    Vector of W; 
    
          assume v
    in (T 
    .: ( 
    Carrier l0)); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A51: x 
    in the 
    carrier of V & x 
    in ( 
    Carrier l0) & v 
    = (T 
    . x) by 
    FUNCT_2: 64;
    
          reconsider x as
    Vector of V by 
    A51;
    
          
    
          
    
    A52: (Tl0 
    . v) 
    = ( 
    Sum ( 
    lCFST (l0,T,v))) by 
    LDef5;
    
          
    
          
    
    A53: (Tl 
    . v) 
    = ( 
    Sum ( 
    lCFST (l,T,v))) by 
    A7,
    LDef5;
    
          
    
          
    
    A54: ( 
    Carrier l0) 
    c= ( 
    Carrier l) by 
    A19,
    XBOOLE_1: 36;
    
          now
    
            let s be
    object;
    
            assume s
    in ((T 
    "  
    {v})
    /\ ( 
    Carrier l)); 
    
            then
    
            
    
    A55: s 
    in (T 
    "  
    {v}) & s
    in ( 
    Carrier l) by 
    XBOOLE_0:def 4;
    
            then s
    in the 
    carrier of V & (T 
    . s) 
    in  
    {v} by
    FUNCT_2: 38;
    
            then
    
            
    
    A56: (T 
    . s) 
    = (T 
    . x) by 
    A51,
    TARSKI:def 1;
    
             not s
    in (T 
    "  
    {w})
    
            proof
    
              assume s
    in (T 
    "  
    {w});
    
              then (T
    . x) 
    in  
    {w} by
    A56,
    FUNCT_2: 38;
    
              then x
    in (T 
    "  
    {w}) by
    FUNCT_2: 38;
    
              hence contradiction by
    A19,
    A51,
    XBOOLE_0:def 5;
    
            end;
    
            then s
    in ( 
    Carrier l0) by 
    A19,
    A55,
    XBOOLE_0:def 5;
    
            hence s
    in ((T 
    "  
    {v})
    /\ ( 
    Carrier l0)) by 
    A55,
    XBOOLE_0:def 4;
    
          end;
    
          then ((T
    "  
    {v})
    /\ ( 
    Carrier l)) 
    c= ((T 
    "  
    {v})
    /\ ( 
    Carrier l0)); 
    
          then
    
          
    
    A57: ((T 
    "  
    {v})
    /\ ( 
    Carrier l0)) 
    = ((T 
    "  
    {v})
    /\ ( 
    Carrier l)) by 
    A19,
    XBOOLE_1: 26,
    XBOOLE_1: 36;
    
          reconsider XX = ((T
    "  
    {v})
    /\ ( 
    Carrier l0)) as 
    finite  
    Subset of V; 
    
          thus thesis by
    A20,
    A52,
    A53,
    A54,
    A57,
    ThTF3C3,
    XBOOLE_1: 17;
    
        end;
    
        
    
        
    
    A58: for w be 
    Vector of W st w 
    in (T 
    .: ( 
    Carrier l1)) holds (Tl 
    . w) 
    = (Tl1 
    . w) 
    
        proof
    
          let v be
    Vector of W; 
    
          assume v
    in (T 
    .: ( 
    Carrier l1)); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A59: x 
    in the 
    carrier of V & x 
    in ( 
    Carrier l1) & v 
    = (T 
    . x) by 
    FUNCT_2: 64;
    
          reconsider x as
    Vector of V by 
    A59;
    
          
    
          
    
    A60: (Tl1 
    . v) 
    = ( 
    Sum ( 
    lCFST (l1,T,v))) by 
    LDef5;
    
          
    
          
    
    A61: (Tl 
    . v) 
    = ( 
    Sum ( 
    lCFST (l,T,v))) by 
    A7,
    LDef5;
    
          
    
          
    
    A62: ( 
    Carrier l1) 
    c= ( 
    Carrier l) by 
    A30,
    XBOOLE_1: 17;
    
          now
    
            let s be
    object;
    
            assume
    
            
    
    A63: s 
    in ((T 
    "  
    {v})
    /\ ( 
    Carrier l)); 
    
            then
    
            
    
    A64: s 
    in (T 
    "  
    {v}) & s
    in ( 
    Carrier l) by 
    XBOOLE_0:def 4;
    
            then s
    in the 
    carrier of V & (T 
    . s) 
    in  
    {v} by
    FUNCT_2: 38;
    
            then
    
            
    
    A65: (T 
    . s) 
    = (T 
    . x) by 
    A59,
    TARSKI:def 1;
    
            x
    in (T 
    "  
    {w}) by
    A30,
    A59,
    XBOOLE_0:def 4;
    
            then (T
    . s) 
    in  
    {w} by
    A65,
    FUNCT_2: 38;
    
            then s
    in (T 
    "  
    {w}) by
    A63,
    FUNCT_2: 38;
    
            then s
    in ( 
    Carrier l1) by 
    A30,
    A64,
    XBOOLE_0:def 4;
    
            hence s
    in ((T 
    "  
    {v})
    /\ ( 
    Carrier l1)) by 
    A64,
    XBOOLE_0:def 4;
    
          end;
    
          then ((T
    "  
    {v})
    /\ ( 
    Carrier l)) 
    c= ((T 
    "  
    {v})
    /\ ( 
    Carrier l1)); 
    
          then
    
          
    
    A66: ((T 
    "  
    {v})
    /\ ( 
    Carrier l1)) 
    = ((T 
    "  
    {v})
    /\ ( 
    Carrier l)) by 
    A30,
    XBOOLE_1: 17,
    XBOOLE_1: 26;
    
          reconsider XX = ((T
    "  
    {v})
    /\ ( 
    Carrier l1)) as 
    finite  
    Subset of V; 
    
          thus thesis by
    A31,
    A60,
    A61,
    A62,
    A66,
    ThTF3C3,
    XBOOLE_1: 17;
    
        end;
    
        
    
        
    
    A67: for x be 
    object st x 
    in ( 
    Carrier Tl0) holds x 
    in ( 
    Carrier Tl) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A68: x 
    in ( 
    Carrier Tl0); 
    
          then
    
          reconsider v = x as
    Vector of W; 
    
          
    
          
    
    A69: v 
    in (T 
    .: ( 
    Carrier l0)) by 
    A68,
    LDef5,
    TARSKI:def 3;
    
          (Tl0
    . v) 
    <> ( 
    0. K) by 
    A68,
    VECTSP_6: 2;
    
          then (Tl
    . v) 
    <> ( 
    0. K) by 
    A50,
    A69;
    
          hence x
    in ( 
    Carrier Tl); 
    
        end;
    
        
    
        
    
    A70: for x be 
    object st x 
    in ( 
    Carrier Tl1) holds x 
    in ( 
    Carrier Tl) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A71: x 
    in ( 
    Carrier Tl1); 
    
          then
    
          reconsider v = x as
    Vector of W; 
    
          
    
          
    
    A72: v 
    in (T 
    .: ( 
    Carrier l1)) by 
    A71,
    LDef5,
    TARSKI:def 3;
    
          (Tl1
    . v) 
    <> ( 
    0. K) by 
    A71,
    VECTSP_6: 2;
    
          then (Tl
    . v) 
    <> ( 
    0. K) by 
    A58,
    A72;
    
          hence x
    in ( 
    Carrier Tl); 
    
        end;
    
        
    
        
    
    A73: (T 
    .: ( 
    Carrier l0)) 
    = (T 
    .: (( 
    Carrier l) 
    \ (T 
    "  
    {w}))) by
    A15,
    TARSKI: 2;
    
        then
    
        
    
    A74: ((T 
    .: ( 
    Carrier l)) 
    \ (T 
    .: (T 
    "  
    {w})))
    c= (T 
    .: ( 
    Carrier l0)) by 
    RELAT_1: 122;
    
        
    
        
    
    A75: (T 
    .: ( 
    Carrier l)) 
    c= (T 
    .: ( 
    dom T)) by 
    RELAT_1: 114;
    
        
    
        
    
    A76: (T 
    .: ( 
    Carrier l)) 
    c= ( 
    rng T) by 
    A75,
    RELAT_1: 113;
    
        for x be
    object st x 
    in (T 
    .: ( 
    Carrier l0)) holds x 
    in ((T 
    .: ( 
    Carrier l)) 
    \  
    {w})
    
        proof
    
          let x be
    object;
    
          assume x
    in (T 
    .: ( 
    Carrier l0)); 
    
          then
    
          consider z be
    object such that 
    
          
    
    A77: z 
    in the 
    carrier of V & z 
    in (( 
    Carrier l) 
    \ (T 
    "  
    {w})) & x
    = (T 
    . z) by 
    A73,
    FUNCT_2: 64;
    
          z
    in ( 
    Carrier l) by 
    A77,
    XBOOLE_0:def 5;
    
          then
    
          
    
    A78: x 
    in (T 
    .: ( 
    Carrier l)) by 
    A77,
    FUNCT_2: 35;
    
           not x
    in  
    {w}
    
          proof
    
            assume
    
            
    
    A79: x 
    in  
    {w};
    
            z
    in ( 
    dom T) by 
    A77,
    FUNCT_2:def 1;
    
            then z
    in (T 
    "  
    {w}) by
    A77,
    A79,
    FUNCT_1:def 7;
    
            hence contradiction by
    A77,
    XBOOLE_0:def 5;
    
          end;
    
          hence x
    in ((T 
    .: ( 
    Carrier l)) 
    \  
    {w}) by
    A78,
    XBOOLE_0:def 5;
    
        end;
    
        then (T
    .: ( 
    Carrier l0)) 
    c= ((T 
    .: ( 
    Carrier l)) 
    \  
    {w});
    
        then
    
        
    
    A80: (T 
    .: ( 
    Carrier l0)) 
    = ((T 
    .: ( 
    Carrier l)) 
    \  
    {w}) by
    A8,
    A74,
    A76,
    FUNCT_1: 77,
    ZFMISC_1: 31;
    
        for y be
    object st y 
    in ( 
    Carrier Tl1) holds y 
    in  
    {w}
    
        proof
    
          let y be
    object;
    
          assume
    
          
    
    A81: y 
    in ( 
    Carrier Tl1); 
    
          then
    
          reconsider v = y as
    Vector of W; 
    
          
    
          
    
    A83: (Tl1 
    . v) 
    = ( 
    Sum ( 
    lCFST (l1,T,v))) by 
    LDef5;
    
          y
    = w 
    
          proof
    
            assume
    
            
    
    A84: y 
    <> w; 
    
            
    
            
    
    A85: ((T 
    "  
    {v})
    /\ (T 
    "  
    {w}))
    =  
    {}  
    
            proof
    
              assume ((T
    "  
    {v})
    /\ (T 
    "  
    {w}))
    <>  
    {} ; 
    
              then
    
              consider x be
    object such that 
    
              
    
    A86: x 
    in ((T 
    "  
    {v})
    /\ (T 
    "  
    {w})) by
    XBOOLE_0:def 1;
    
              x
    in (T 
    "  
    {v}) & x
    in (T 
    "  
    {w}) by
    A86,
    XBOOLE_0:def 4;
    
              then (T
    . x) 
    in  
    {v} & (T
    . x) 
    in  
    {w} by
    FUNCT_1:def 7;
    
              then (T
    . x) 
    = v & (T 
    . x) 
    = w by 
    TARSKI:def 1;
    
              hence contradiction by
    A84;
    
            end;
    
            set g = (
    canFS ((T 
    "  
    {v})
    /\ ( 
    Carrier l1))); 
    
            ((T
    "  
    {v})
    /\ ( 
    Carrier l1)) 
    = ((T 
    "  
    {v})
    /\ ((T 
    "  
    {w})
    /\ ( 
    Carrier l))) by 
    A27,
    TARSKI: 2
    
            .= (
    {}  
    /\ ( 
    Carrier l)) by 
    A85,
    XBOOLE_1: 16
    
            .=
    {} ; 
    
            then (
    lCFST (l1,T,v)) 
    = ( 
    <*> the 
    carrier of K); 
    
            hence contradiction by
    A81,
    A83,
    RLVECT_1: 43,
    VECTSP_6: 2;
    
          end;
    
          hence y
    in  
    {w} by
    TARSKI:def 1;
    
        end;
    
        then
    
        
    
    A87: ( 
    Carrier Tl1) 
    c=  
    {w};
    
        
    
        
    
    A88: (T 
    . ( 
    Sum l1)) 
    = ( 
    Sum Tl1) 
    
        proof
    
          
    
          
    
    A89: (Tl1 
    . w) 
    = ( 
    Sum ( 
    lCFST (l1,T,w))) by 
    LDef5;
    
          reconsider w as
    Vector of W; 
    
          
    
          
    
    A90: for v be 
    Vector of V st v 
    in ( 
    Carrier l1) holds (T 
    . v) 
    = w 
    
          proof
    
            let v be
    Vector of V; 
    
            assume v
    in ( 
    Carrier l1); 
    
            then v
    in ((T 
    "  
    {w})
    /\ ( 
    Carrier l)) by 
    A27;
    
            then v
    in (T 
    "  
    {w}) by
    XBOOLE_0:def 4;
    
            then (T
    . v) 
    in  
    {w} by
    FUNCT_1:def 7;
    
            hence (T
    . v) 
    = w by 
    TARSKI:def 1;
    
          end;
    
          per cases ;
    
            suppose
    
            
    
    A91: ( 
    Sum ( 
    lCFST (l1,T,w))) 
    = ( 
    0. K); 
    
            then
    
            
    
    A92: not w 
    in ( 
    Carrier Tl1) by 
    A89,
    VECTSP_6: 2;
    
            
    
            
    
    A93: ( 
    Carrier Tl1) 
    =  
    {}  
    
            proof
    
              assume (
    Carrier Tl1) 
    <>  
    {} ; 
    
              then
    
              consider x be
    object such that 
    
              
    
    A94: x 
    in ( 
    Carrier Tl1) by 
    XBOOLE_0:def 1;
    
              thus contradiction by
    A87,
    A92,
    A94,
    TARSKI:def 1;
    
            end;
    
            (T
    . ( 
    Sum l1)) 
    = (( 
    0. K) 
    * w) by 
    A90,
    A91,
    ThTF3B2
    
            .= (
    0. W) by 
    VECTSP_1: 14;
    
            hence (T
    . ( 
    Sum l1)) 
    = ( 
    Sum Tl1) by 
    A93,
    VECTSP_6: 19;
    
          end;
    
            suppose (
    Sum ( 
    lCFST (l1,T,w))) 
    <> ( 
    0. K); 
    
            then w
    in ( 
    Carrier Tl1) by 
    A89;
    
            then
    
            
    
    A95: 
    {w}
    = ( 
    Carrier Tl1) by 
    A87,
    ZFMISC_1: 31;
    
            (
    Sum Tl1) 
    = (( 
    Sum ( 
    lCFST (l1,T,w))) 
    * w) by 
    A89,
    A95,
    VECTSP_6: 20
    
            .= (T
    . ( 
    Sum l1)) by 
    A90,
    ThTF3B2;
    
            hence (T
    . ( 
    Sum l1)) 
    = ( 
    Sum Tl1); 
    
          end;
    
        end;
    
        for w be
    Element of W holds (Tl 
    . w) 
    = ((Tl0 
    + Tl1) 
    . w) 
    
        proof
    
          let w be
    Element of W; 
    
          per cases ;
    
            suppose
    
            
    
    A96: not w 
    in ( 
    Carrier Tl); 
    
            then
    
            
    
    A97: (Tl 
    . w) 
    = ( 
    0. K); 
    
             not w
    in ( 
    Carrier Tl0) by 
    A67,
    A96;
    
            then
    
            
    
    A98: (Tl0 
    . w) 
    = ( 
    0. K); 
    
             not w
    in ( 
    Carrier Tl1) by 
    A70,
    A96;
    
            then (Tl
    . w) 
    = ((Tl1 
    . w) 
    + (Tl0 
    . w)) by 
    A97,
    A98;
    
            hence (Tl
    . w) 
    = ((Tl0 
    + Tl1) 
    . w) by 
    VECTSP_6: 22;
    
          end;
    
            suppose w
    in ( 
    Carrier Tl); 
    
            then w
    in (T 
    .: ( 
    Carrier l)) by 
    TARSKI:def 3,
    VECTSP_6:def 4;
    
            then w
    in (T 
    .: (( 
    Carrier l0) 
    \/ ( 
    Carrier l1))) by 
    A49;
    
            then
    
            
    
    A99: w 
    in ((T 
    .: ( 
    Carrier l0)) 
    \/ (T 
    .: ( 
    Carrier l1))) by 
    RELAT_1: 120;
    
            thus (Tl
    . w) 
    = ((Tl0 
    + Tl1) 
    . w) 
    
            proof
    
              per cases by
    A99,
    XBOOLE_0:def 3;
    
                suppose
    
                
    
    A100: w 
    in (T 
    .: ( 
    Carrier l1)); 
    
                 not w
    in (T 
    .: ( 
    Carrier l0)) by 
    A43,
    A100,
    XBOOLE_0:def 4;
    
                then not w
    in ( 
    Carrier Tl0) by 
    LDef5,
    TARSKI:def 3;
    
                then (Tl0
    . w) 
    = ( 
    0. K); 
    
                then (Tl
    . w) 
    = ((Tl1 
    . w) 
    + (Tl0 
    . w)) by 
    A58,
    A100;
    
                hence (Tl
    . w) 
    = ((Tl0 
    + Tl1) 
    . w) by 
    VECTSP_6: 22;
    
              end;
    
                suppose
    
                
    
    A101: w 
    in (T 
    .: ( 
    Carrier l0)); 
    
                 not w
    in (T 
    .: ( 
    Carrier l1)) by 
    A43,
    A101,
    XBOOLE_0:def 4;
    
                then not w
    in ( 
    Carrier Tl1) by 
    LDef5,
    TARSKI:def 3;
    
                then (Tl1
    . w) 
    = ( 
    0. K); 
    
                then (Tl
    . w) 
    = ((Tl1 
    . w) 
    + (Tl0 
    . w)) by 
    A50,
    A101;
    
                hence (Tl
    . w) 
    = ((Tl0 
    + Tl1) 
    . w) by 
    VECTSP_6: 22;
    
              end;
    
            end;
    
          end;
    
        end;
    
        then
    
        
    
    A102: Tl 
    = (Tl0 
    + Tl1); 
    
        l
    = (l0 
    + l1) by 
    A33;
    
        
    
        hence (T
    . ( 
    Sum l)) 
    = (T 
    . (( 
    Sum l0) 
    + ( 
    Sum l1))) by 
    VECTSP_6: 44
    
        .= ((T
    . ( 
    Sum l0)) 
    + (T 
    . ( 
    Sum l1))) by 
    A1
    
        .= ((
    Sum Tl0) 
    + ( 
    Sum Tl1)) by 
    A9,
    A21,
    A80,
    A88
    
        .= (
    Sum Tl) by 
    A102,
    VECTSP_6: 44;
    
      end;
    
      
    
      
    
    A103: for n be 
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A3,
    A6);
    
      let A be
    Subset of V, l be 
    Linear_Combination of A, Tl be 
    Linear_Combination of (T 
    .: ( 
    Carrier l)); 
    
      assume
    
      
    
    A104: Tl 
    = (T 
    @* l); 
    
      (
    card (T 
    .: ( 
    Carrier l))) is 
    Nat;
    
      hence thesis by
    A103,
    A104;
    
    end;
    
    theorem :: 
    
    ZMODUL05:47
    
    
    
    
    
    Th31: for R be 
    Ring holds for V be 
    LeftMod of R holds for l,m be 
    Linear_Combination of V st ( 
    Carrier l) 
    misses ( 
    Carrier m) holds ( 
    Carrier (l 
    + m)) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let l,m be
    Linear_Combination of V such that 
    
      
    
    A1: ( 
    Carrier l) 
    misses ( 
    Carrier m); 
    
      thus (
    Carrier (l 
    + m)) 
    c= (( 
    Carrier l) 
    \/ ( 
    Carrier m)) by 
    VECTSP_6: 23;
    
      thus ((
    Carrier l) 
    \/ ( 
    Carrier m)) 
    c= ( 
    Carrier (l 
    + m)) 
    
      proof
    
        let v be
    object such that 
    
        
    
    A2: v 
    in (( 
    Carrier l) 
    \/ ( 
    Carrier m)); 
    
        per cases by
    A2,
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    A3: v 
    in ( 
    Carrier l); 
    
          then
    
          reconsider v as
    Element of V; 
    
           not v
    in ( 
    Carrier m) by 
    A1,
    A2,
    A3,
    XBOOLE_0: 5;
    
          then
    
          
    
    A4: ((l 
    + m) 
    . v) 
    = ((l 
    . v) 
    + (m 
    . v)) & (m 
    . v) 
    = ( 
    0. R) by 
    VECTSP_6: 22;
    
          (l
    . v) 
    <> ( 
    0. R) by 
    A3,
    VECTSP_6: 2;
    
          hence thesis by
    A4;
    
        end;
    
          suppose
    
          
    
    A5: v 
    in ( 
    Carrier m); 
    
          then
    
          reconsider v as
    Element of V; 
    
           not v
    in ( 
    Carrier l) by 
    A1,
    A2,
    A5,
    XBOOLE_0: 5;
    
          then
    
          
    
    A6: ((l 
    + m) 
    . v) 
    = ((l 
    . v) 
    + (m 
    . v)) & (l 
    . v) 
    = ( 
    0. R) by 
    VECTSP_6: 22;
    
          (m
    . v) 
    <> ( 
    0. R) by 
    A5,
    VECTSP_6: 2;
    
          hence thesis by
    A6;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    ZMODUL05:48
    
    
    
    
    
    Th32: for R be 
    Ring holds for V be 
    LeftMod of R holds for l,m be 
    Linear_Combination of V st ( 
    Carrier l) 
    misses ( 
    Carrier m) holds ( 
    Carrier (l 
    - m)) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let l,m be
    Linear_Combination of V such that 
    
      
    
    A1: ( 
    Carrier l) 
    misses ( 
    Carrier m); 
    
      (
    Carrier ( 
    - m)) 
    = ( 
    Carrier m) by 
    VECTSP_6: 38;
    
      hence thesis by
    A1,
    Th31;
    
    end;
    
    theorem :: 
    
    ZMODUL05:49
    
    for R be
    Ring holds for V be 
    LeftMod of R, A be 
    Subset of V, l1,l2 be 
    Linear_Combination of A st ( 
    Carrier l1) 
    misses ( 
    Carrier l2) holds ( 
    Carrier (l1 
    - l2)) 
    = (( 
    Carrier l1) 
    \/ ( 
    Carrier l2)) 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R; 
    
      let A be
    Subset of V, l1,l2 be 
    Linear_Combination of A such that 
    
      
    
    A1: ( 
    Carrier l1) 
    misses ( 
    Carrier l2); 
    
      
    
      
    
    A2: ( 
    Carrier l1) 
    misses ( 
    Carrier ( 
    - l2)) by 
    A1,
    VECTSP_6: 38;
    
      
    
      thus (
    Carrier (l1 
    - l2)) 
    = ( 
    Carrier (l1 
    + ( 
    - l2))) 
    
      .= ((
    Carrier l1) 
    \/ ( 
    Carrier ( 
    - l2))) by 
    A2,
    Th31
    
      .= ((
    Carrier l1) 
    \/ ( 
    Carrier l2)) by 
    VECTSP_6: 38;
    
    end;
    
    theorem :: 
    
    ZMODUL05:50
    
    for V be
    free  
    Z_Module, A,B be 
    Subset of V st A 
    c= B & B is 
    Basis of V holds V 
    is_the_direct_sum_of (( 
    Lin A),( 
    Lin (B 
    \ A))) 
    
    proof
    
      let V be
    free  
    Z_Module, A,B be 
    Subset of V such that 
    
      
    
    A1: A 
    c= B and 
    
      
    
    A2: B is 
    Basis of V; 
    
      
    
      
    
    A3: (( 
    Lin A) 
    /\ ( 
    Lin (B 
    \ A))) 
    = ( 
    (0). V) 
    
      proof
    
        set U = ((
    Lin A) 
    /\ ( 
    Lin (B 
    \ A))); 
    
        reconsider W = (
    (0). V) as 
    strict  
    Submodule of U by 
    ZMODUL01: 54;
    
        for v be
    Element of U holds v 
    in W 
    
        proof
    
          let v be
    Element of U; 
    
          
    
          
    
    A4: B is 
    linearly-independent by 
    A2,
    VECTSP_7:def 3;
    
          
    
          
    
    A5: v 
    in U; 
    
          then v
    in ( 
    Lin A) by 
    ZMODUL01: 94;
    
          then
    
          consider l be
    Linear_Combination of A such that 
    
          
    
    A6: v 
    = ( 
    Sum l) by 
    ZMODUL02: 64;
    
          v
    in ( 
    Lin (B 
    \ A)) by 
    A5,
    ZMODUL01: 94;
    
          then
    
          consider m be
    Linear_Combination of (B 
    \ A) such that 
    
          
    
    A7: v 
    = ( 
    Sum m) by 
    ZMODUL02: 64;
    
          
    
          
    
    A8: ( 
    0. V) 
    = (( 
    Sum l) 
    - ( 
    Sum m)) by 
    A6,
    A7,
    VECTSP_1: 19
    
          .= (
    Sum (l 
    - m)) by 
    ZMODUL02: 55;
    
          
    
          
    
    A9: ( 
    Carrier (l 
    - m)) 
    c= (( 
    Carrier l) 
    \/ ( 
    Carrier m)) & (A 
    \/ (B 
    \ A)) 
    = B by 
    A1,
    XBOOLE_1: 45,
    ZMODUL02: 40;
    
          
    
          
    
    A10: ( 
    Carrier l) 
    c= A & ( 
    Carrier m) 
    c= (B 
    \ A) by 
    VECTSP_6:def 4;
    
          then ((
    Carrier l) 
    \/ ( 
    Carrier m)) 
    c= (A 
    \/ (B 
    \ A)) by 
    XBOOLE_1: 13;
    
          then (
    Carrier (l 
    - m)) 
    c= B by 
    A9;
    
          then
    
          reconsider n = (l
    - m) as 
    Linear_Combination of B by 
    VECTSP_6:def 4;
    
          A
    misses (B 
    \ A) by 
    XBOOLE_1: 79;
    
          then (
    Carrier n) 
    = (( 
    Carrier l) 
    \/ ( 
    Carrier m)) by 
    A10,
    Th32,
    XBOOLE_1: 64;
    
          then (
    Carrier l) 
    =  
    {} by 
    A4,
    A8;
    
          then l
    = ( 
    ZeroLC V) by 
    VECTSP_6:def 3;
    
          then (
    Sum l) 
    = ( 
    0. V) by 
    ZMODUL02: 19;
    
          hence thesis by
    A6,
    ZMODUL02: 66;
    
        end;
    
        hence thesis by
    ZMODUL01: 149;
    
      end;
    
      (
    (Omega). V) 
    = (( 
    Lin A) 
    + ( 
    Lin (B 
    \ A))) 
    
      proof
    
        set U = ((
    Lin A) 
    + ( 
    Lin (B 
    \ A))); 
    
        
    
        
    
    A11: ( 
    [#] V) 
    c= ( 
    [#] U) 
    
        proof
    
          let v be
    object;
    
          assume v
    in ( 
    [#] V); 
    
          then
    
          reconsider v as
    Element of V; 
    
          v
    in ( 
    Lin B) by 
    A2,
    ZMODUL03: 14;
    
          then
    
          consider l be
    Linear_Combination of B such that 
    
          
    
    A12: v 
    = ( 
    Sum l) by 
    ZMODUL02: 64;
    
          set n = (l
    ! (B 
    \ A)); 
    
          set m = (l
    ! A); 
    
          
    
          
    
    A13: l 
    = (m 
    + n) by 
    A1,
    Th27;
    
          ex v1,v2 be
    Element of V st v1 
    in ( 
    Lin A) & v2 
    in ( 
    Lin (B 
    \ A)) & v 
    = (v1 
    + v2) 
    
          proof
    
            take (
    Sum m), ( 
    Sum n); 
    
            thus thesis by
    A12,
    A13,
    ZMODUL02: 52,
    ZMODUL02: 64;
    
          end;
    
          then v
    in (( 
    Lin A) 
    + ( 
    Lin (B 
    \ A))) by 
    ZMODUL01: 92;
    
          hence thesis;
    
        end;
    
        (
    [#] U) 
    = ( 
    [#] V) by 
    A11,
    VECTSP_4:def 2;
    
        hence thesis by
    ZMODUL01: 45;
    
      end;
    
      hence thesis by
    A3,
    VECTSP_5:def 4;
    
    end;
    
    theorem :: 
    
    ZMODUL05:51
    
    for R be
    Ring holds for V,W be 
    LeftMod of R holds for A be 
    Subset of V, l be 
    Linear_Combination of A, T be 
    linear-transformation of V, W, v be 
    Element of V st (T 
    | A) is 
    one-to-one & v 
    in A holds ex X be 
    Subset of V st X 
    misses A & (T 
    "  
    {(T
    . v)}) 
    = ( 
    {v}
    \/ X) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let A be
    Subset of V, l be 
    Linear_Combination of A, T be 
    linear-transformation of V, W, v be 
    Element of V such that 
    
      
    
    A1: (T 
    | A) is 
    one-to-one and 
    
      
    
    A2: v 
    in A; 
    
      set X = ((T
    "  
    {(T
    . v)}) 
    \  
    {v});
    
      
    
      
    
    A3: X 
    misses A 
    
      proof
    
        (
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
        then
    
        
    
    A4: ( 
    dom (T 
    | A)) 
    = A by 
    RELAT_1: 62;
    
        assume X
    meets A; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A5: x 
    in X and 
    
        
    
    A6: x 
    in A by 
    XBOOLE_0: 3;
    
         not x
    in  
    {v} by
    A5,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A7: x 
    <> v by 
    TARSKI:def 1;
    
        x
    in (T 
    "  
    {(T
    . v)}) by 
    A5,
    XBOOLE_0:def 5;
    
        then (T
    . x) 
    in  
    {(T
    . v)} by 
    FUNCT_1:def 7;
    
        then
    
        
    
    A8: (T 
    . x) 
    = (T 
    . v) by 
    TARSKI:def 1;
    
        (T
    . x) 
    = ((T 
    | A) 
    . x) by 
    A6,
    FUNCT_1: 49;
    
        then ((T
    | A) 
    . v) 
    = ((T 
    | A) 
    . x) by 
    A2,
    A8,
    FUNCT_1: 49;
    
        hence contradiction by
    A1,
    A2,
    A4,
    A6,
    A7,
    FUNCT_1:def 4;
    
      end;
    
      take X;
    
      
    {v}
    c= (T 
    "  
    {(T
    . v)}) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {v};
    
        then
    
        
    
    A9: x 
    = v by 
    TARSKI:def 1;
    
        (
    dom T) 
    = ( 
    [#] V) & (T 
    . v) 
    in  
    {(T
    . v)} by 
    TARSKI:def 1,
    RANKNULL: 7;
    
        hence thesis by
    A9,
    FUNCT_1:def 7;
    
      end;
    
      hence thesis by
    A3,
    XBOOLE_1: 45;
    
    end;
    
    theorem :: 
    
    ZMODUL05:52
    
    for R be
    Ring holds for V be 
    LeftMod of R, A be 
    Subset of V, l be 
    Linear_Combination of A holds for X be 
    Subset of V st X 
    misses ( 
    Carrier l) & X 
    <>  
    {} holds (l 
    .: X) 
    =  
    {(
    0. R)} 
    
    proof
    
      let R be
    Ring;
    
      let V be
    LeftMod of R, A be 
    Subset of V; 
    
      let l be
    Linear_Combination of A; 
    
      let X be
    Subset of V such that 
    
      
    
    A1: X 
    misses ( 
    Carrier l) and 
    
      
    
    A2: X 
    <>  
    {} ; 
    
      (
    dom l) 
    = ( 
    [#] V) by 
    FUNCT_2: 92;
    
      hence thesis by
    A1,
    A2,
    Th28,
    ZFMISC_1: 33;
    
    end;
    
    theorem :: 
    
    ZMODUL05:53
    
    
    
    
    
    Th36: for R be 
    Ring holds for V,W be 
    LeftMod of R holds for l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W holds for w be 
    Element of W st w 
    in ( 
    Carrier (T 
    @* l)) holds (T 
    "  
    {w})
    meets ( 
    Carrier l) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      let w be
    Element of W; 
    
      assume w
    in ( 
    Carrier (T 
    @* l)); 
    
      then
    
      
    
    A1: ((T 
    @* l) 
    . w) 
    <> ( 
    0. R) by 
    ZMODUL02: 8;
    
      assume (T
    "  
    {w})
    misses ( 
    Carrier l); 
    
      then (
    lCFST (l,T,w)) 
    = ( 
    <*> the 
    carrier of R); 
    
      then (
    Sum ( 
    lCFST (l,T,w))) 
    = ( 
    0. R) by 
    RLVECT_1: 43;
    
      hence thesis by
    A1,
    LDef5;
    
    end;
    
    theorem :: 
    
    ZMODUL05:54
    
    
    
    
    
    Th37: for R be 
    Ring holds for V,W be 
    LeftMod of R holds for l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W holds for v be 
    Element of V st (T 
    | ( 
    Carrier l)) is 
    one-to-one & v 
    in ( 
    Carrier l) holds ((T 
    @* l) 
    . (T 
    . v)) 
    = (l 
    . v) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      let v be
    Element of V such that 
    
      
    
    A1: (T 
    | ( 
    Carrier l)) is 
    one-to-one and 
    
      
    
    A2: v 
    in ( 
    Carrier l); 
    
      v
    in the 
    carrier of V; 
    
      then
    
      
    
    A3: v 
    in ( 
    dom l) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A4: ( 
    dom T) 
    = the 
    carrier of V by 
    FUNCT_2:def 1;
    
      for x be
    object holds x 
    in ((T 
    "  
    {(T
    . v)}) 
    /\ ( 
    Carrier l)) iff x 
    in  
    {v}
    
      proof
    
        let x be
    object;
    
        hereby
    
          assume x
    in ((T 
    "  
    {(T
    . v)}) 
    /\ ( 
    Carrier l)); 
    
          then
    
          
    
    A5: x 
    in (T 
    "  
    {(T
    . v)}) & x 
    in ( 
    Carrier l) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A6: x 
    in the 
    carrier of V & (T 
    . x) 
    in  
    {(T
    . v)} by 
    FUNCT_2: 38;
    
          
    
          
    
    A7: ((T 
    | ( 
    Carrier l)) 
    . x) 
    = (T 
    . x) by 
    A5,
    FUNCT_1: 49
    
          .= (T
    . v) by 
    A6,
    TARSKI:def 1
    
          .= ((T
    | ( 
    Carrier l)) 
    . v) by 
    A2,
    FUNCT_1: 49;
    
          
    
          
    
    A8: x 
    in ( 
    dom (T 
    | ( 
    Carrier l))) by 
    A4,
    A5,
    RELAT_1: 57;
    
          v
    in ( 
    dom (T 
    | ( 
    Carrier l))) by 
    A2,
    A4,
    RELAT_1: 57;
    
          then x
    = v by 
    A1,
    A7,
    A8,
    FUNCT_1:def 4;
    
          hence x
    in  
    {v} by
    TARSKI:def 1;
    
        end;
    
        assume x
    in  
    {v};
    
        then
    
        
    
    A9: x 
    = v by 
    TARSKI:def 1;
    
        x
    in the 
    carrier of V & (T 
    . x) 
    in  
    {(T
    . v)} by 
    A9,
    TARSKI:def 1;
    
        then x
    in (T 
    "  
    {(T
    . v)}) by 
    FUNCT_2: 38;
    
        hence thesis by
    A2,
    A9,
    XBOOLE_0:def 4;
    
      end;
    
      then ((T
    "  
    {(T
    . v)}) 
    /\ ( 
    Carrier l)) 
    =  
    {v} by
    TARSKI: 2;
    
      then (
    canFS ((T 
    "  
    {(T
    . v)}) 
    /\ ( 
    Carrier l))) 
    =  
    <*v*> by
    FINSEQ_1: 94;
    
      then (
    lCFST (l,T,(T 
    . v))) 
    =  
    <*(l
    . v)*> by 
    A3,
    FINSEQ_2: 34;
    
      then (
    Sum ( 
    lCFST (l,T,(T 
    . v)))) 
    = (l 
    . v) by 
    RLVECT_1: 44;
    
      hence thesis by
    LDef5;
    
    end;
    
    theorem :: 
    
    ZMODUL05:55
    
    
    
    
    
    Th38: for R be 
    Ring holds for V,W be 
    LeftMod of R holds for l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W holds for G be 
    FinSequence of V st ( 
    rng G) 
    = ( 
    Carrier l) & (T 
    | ( 
    Carrier l)) is 
    one-to-one holds (T 
    * (l 
    (#) G)) 
    = ((T 
    @* l) 
    (#) (T 
    * G)) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      let G be
    FinSequence of V such that 
    
      
    
    A1: ( 
    rng G) 
    = ( 
    Carrier l) and 
    
      
    
    A2: (T 
    | ( 
    Carrier l)) is 
    one-to-one;
    
      reconsider R = ((T
    @* l) 
    (#) (T 
    * G)) as 
    FinSequence of W; 
    
      reconsider L = (T
    * (l 
    (#) G)) as 
    FinSequence of W; 
    
      
    
      
    
    A3: ( 
    len R) 
    = ( 
    len (T 
    * G)) by 
    VECTSP_6:def 5
    
      .= (
    len G) by 
    FINSEQ_2: 33;
    
      
    
      
    
    A4: ( 
    len L) 
    = ( 
    len (l 
    (#) G)) by 
    FINSEQ_2: 33
    
      .= (
    len G) by 
    VECTSP_6:def 5;
    
      for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len L) holds (L 
    . k) 
    = (R 
    . k) 
    
      proof
    
        
    
        
    
    A5: ( 
    dom R) 
    = ( 
    Seg ( 
    len G)) by 
    A3,
    FINSEQ_1:def 3;
    
        let k be
    Nat such that 
    
        
    
    A6: 1 
    <= k & k 
    <= ( 
    len L); 
    
        reconsider gk = (G
    /. k) as 
    Element of V; 
    
        (
    len (l 
    (#) G)) 
    = ( 
    len G) by 
    VECTSP_6:def 5;
    
        then
    
        
    
    A7: ( 
    dom (l 
    (#) G)) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3;
    
        
    
        
    
    A8: k 
    in ( 
    dom (l 
    (#) G)) by 
    A4,
    A6,
    A7;
    
        then
    
        
    
    A9: k 
    in ( 
    dom G) by 
    A7,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A10: (G 
    . k) 
    = (G 
    /. k) by 
    PARTFUN1:def 6;
    
        then
    
        reconsider Gk = (G
    . k) as 
    Element of V; 
    
        ((T
    * G) 
    . k) 
    = (T 
    . Gk) by 
    A9,
    FUNCT_1: 13;
    
        then
    
        reconsider TGk = ((T
    * G) 
    . k) as 
    Element of W; 
    
        ((l
    (#) G) 
    . k) 
    = ((l 
    . gk) 
    * gk) by 
    A8,
    VECTSP_6:def 5;
    
        
    
        then
    
        
    
    A11: (L 
    . k) 
    = (T 
    . ((l 
    . gk) 
    * gk)) by 
    A8,
    FUNCT_1: 13
    
        .= ((l
    . gk) 
    * (T 
    . gk)) by 
    MOD_2:def 2
    
        .= ((l
    . Gk) 
    * TGk) by 
    A9,
    A10,
    FUNCT_1: 13;
    
        (G
    . k) 
    in ( 
    rng G) & ((T 
    * G) 
    . k) 
    = (T 
    . (G 
    . k)) by 
    A9,
    FUNCT_1: 3,
    FUNCT_1: 13;
    
        then
    
        
    
    A12: ((T 
    @* l) 
    . ((T 
    * G) 
    . k)) 
    = (l 
    . (G 
    . k)) by 
    A1,
    A2,
    Th37;
    
        (
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
        then (
    dom (T 
    * G)) 
    = ( 
    dom G) by 
    A1,
    RELAT_1: 27;
    
        then ((T
    * G) 
    /. k) 
    = ((T 
    * G) 
    . k) by 
    A9,
    PARTFUN1:def 6;
    
        hence thesis by
    A5,
    A7,
    A8,
    A11,
    A12,
    VECTSP_6:def 5;
    
      end;
    
      hence thesis by
    A3,
    A4;
    
    end;
    
    theorem :: 
    
    ZMODUL05:56
    
    
    
    
    
    Th39: for R be 
    Ring holds for V,W be 
    LeftMod of R holds for l be 
    Linear_Combination of V, T be 
    linear-transformation of V, W holds (T 
    | ( 
    Carrier l)) is 
    one-to-one implies (T 
    .: ( 
    Carrier l)) 
    = ( 
    Carrier (T 
    @* l)) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R; 
    
      let l be
    Linear_Combination of V, T be 
    linear-transformation of V, W; 
    
      assume
    
      
    
    A1: (T 
    | ( 
    Carrier l)) is 
    one-to-one;
    
      
    
      
    
    A2: (T 
    .: ( 
    Carrier l)) 
    c= ( 
    Carrier (T 
    @* l)) 
    
      proof
    
        let w be
    object;
    
        assume w
    in (T 
    .: ( 
    Carrier l)); 
    
        then
    
        consider v be
    object such that 
    
        
    
    A3: v 
    in ( 
    dom T) and 
    
        
    
    A4: v 
    in ( 
    Carrier l) and 
    
        
    
    A5: (T 
    . v) 
    = w by 
    FUNCT_1:def 6;
    
        reconsider v as
    Element of V by 
    A3;
    
        ((T
    @* l) 
    . (T 
    . v)) 
    = (l 
    . v) & (l 
    . v) 
    <> ( 
    0. R) by 
    A1,
    A4,
    Th37,
    ZMODUL02: 8;
    
        hence thesis by
    A5;
    
      end;
    
      thus thesis by
    LDef5,
    A2;
    
    end;
    
    theorem :: 
    
    ZMODUL05:57
    
    for V be
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, B be 
    Basis of V, T be 
    linear-transformation of V, W, l be 
    Linear_Combination of (B 
    \ A) st A is 
    Basis of ( 
    ker T) & A 
    c= B holds (T 
    . ( 
    Sum l)) 
    = ( 
    Sum (T 
    @* l)) 
    
    proof
    
      let V be
    finite-rank
    free  
    Z_Module, A be 
    Subset of V, B be 
    Basis of V, T be 
    linear-transformation of V, W, l be 
    Linear_Combination of (B 
    \ A); 
    
      assume A is
    Basis of ( 
    ker T) & A 
    c= B; 
    
      then
    
      
    
    A1: (T 
    | (B 
    \ A)) is 
    one-to-one by 
    Th22;
    
      
    
      
    
    A2: ((T 
    | (B 
    \ A)) 
    | ( 
    Carrier l)) 
    = (T 
    | ( 
    Carrier l)) by 
    RELAT_1: 74,
    VECTSP_6:def 4;
    
      then
    
      
    
    A3: (T 
    | ( 
    Carrier l)) is 
    one-to-one by 
    A1,
    FUNCT_1: 52;
    
      consider G be
    FinSequence of V such that 
    
      
    
    A4: G is 
    one-to-one and 
    
      
    
    A5: ( 
    rng G) 
    = ( 
    Carrier l) and 
    
      
    
    A6: ( 
    Sum l) 
    = ( 
    Sum (l 
    (#) G)) by 
    VECTSP_6:def 6;
    
      set H = (T
    * G); 
    
      reconsider H as
    FinSequence of W; 
    
      
    
      
    
    A7: ( 
    rng H) 
    = (T 
    .: ( 
    Carrier l)) by 
    A5,
    RELAT_1: 127
    
      .= (
    Carrier (T 
    @* l)) by 
    A3,
    Th39;
    
      (
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
      then H is
    one-to-one by 
    A1,
    A2,
    A4,
    A5,
    FUNCT_1: 52,
    RANKNULL: 1;
    
      then
    
      
    
    A8: ( 
    Sum (T 
    @* l)) 
    = ( 
    Sum ((T 
    @* l) 
    (#) H)) by 
    A7,
    VECTSP_6:def 6;
    
      (T
    * (l 
    (#) G)) 
    = ((T 
    @* l) 
    (#) H) by 
    A3,
    A5,
    Th38;
    
      hence thesis by
    A6,
    A8,
    MATRLIN16;
    
    end;
    
    theorem :: 
    
    ZMODUL05:58
    
    for X be
    Subset of V st X is 
    linearly-dependent holds ex l be 
    Linear_Combination of X st ( 
    Carrier l) 
    <>  
    {} & ( 
    Sum l) 
    = ( 
    0. V); 
    
    definition
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R, X be 
    Subset of V, T be 
    linear-transformation of V, W, l be 
    Linear_Combination of (T 
    .: X); 
    
      assume
    
      
    
    A1: (T 
    | X) is 
    one-to-one;
    
      :: 
    
    ZMODUL05:def9
    
      func T
    
    # l -> 
    Linear_Combination of X equals 
    
      :
    
    Def6: ((l 
    * T) 
    +* ((X 
    ` ) 
    --> ( 
    0. R))); 
    
      coherence
    
      proof
    
        reconsider SZ0 =
    {(
    0. R)} as 
    finite  
    Subset of R; 
    
        (
    dom l) 
    = ( 
    [#] W) by 
    FUNCT_2: 92;
    
        then (
    rng T) 
    c= ( 
    dom l); 
    
        then
    
        
    
    A3: ( 
    dom (l 
    * T)) 
    = ( 
    dom T) by 
    RELAT_1: 27;
    
        set f = ((l
    * T) 
    +* ((X 
    ` ) 
    --> ( 
    0. R))); 
    
        
    
        
    
    A4: ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))) 
    = (X 
    ` ); 
    
        (
    rng f) 
    c= (( 
    rng (l 
    * T)) 
    \/ ( 
    rng ((X 
    ` ) 
    --> ( 
    0. R)))) & (( 
    rng (l 
    * T)) 
    \/ ( 
    rng ((X 
    ` ) 
    --> ( 
    0. R)))) 
    c= the 
    carrier of R by 
    FUNCT_4: 17;
    
        then
    
        
    
    A5: ( 
    rng f) 
    c= the 
    carrier of R; 
    
        (
    dom T) 
    = ( 
    [#] V) & (( 
    [#] V) 
    \/ (( 
    [#] V) 
    \ X)) 
    = ( 
    [#] V) by 
    RANKNULL: 7,
    XBOOLE_1: 12;
    
        then (
    dom f) 
    = ( 
    [#] V) by 
    A3,
    A4,
    FUNCT_4:def 1;
    
        then
    
        reconsider f as
    Element of ( 
    Funcs (( 
    [#] V),the 
    carrier of R)) by 
    A5,
    FUNCT_2:def 2;
    
        ex T be
    finite  
    Subset of V st for v be 
    Element of V st not v 
    in T holds (f 
    . v) 
    = ( 
    0. R) 
    
        proof
    
          set C = { v where v be
    Element of V : (f 
    . v) 
    <> ( 
    0. R) }; 
    
          C
    c= ( 
    [#] V) 
    
          proof
    
            let x be
    object;
    
            assume x
    in C; 
    
            then ex v be
    Element of V st v 
    = x & (f 
    . v) 
    <> ( 
    0. R); 
    
            hence thesis;
    
          end;
    
          then
    
          reconsider C as
    Subset of V; 
    
          ex g be
    Function st g is 
    one-to-one & ( 
    dom g) 
    = C & ( 
    rng g) 
    c= ( 
    Carrier l) 
    
          proof
    
            set S = ((T
    " ( 
    Carrier l)) 
    /\ X); 
    
            set g = (T
    | S); 
    
            take g;
    
            
    
            
    
    A6: C 
    c= S 
    
            proof
    
              let x be
    object such that 
    
              
    
    A7: x 
    in C; 
    
              
    
              
    
    A8: ex v be 
    Element of V st v 
    = x & (f 
    . v) 
    <> ( 
    0. R) by 
    A7;
    
              reconsider x as
    Element of V by 
    A7;
    
              
    
    A9: 
    
              now
    
                assume not x
    in X; 
    
                then
    
                
    
    A10: x 
    in (X 
    ` ) by 
    XBOOLE_0:def 5;
    
                then x
    in ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))); 
    
                then (f
    . x) 
    = (((X 
    ` ) 
    --> ( 
    0. R)) 
    . x) by 
    FUNCT_4: 13;
    
                hence contradiction by
    A8,
    A10,
    FUNCOP_1: 7;
    
              end;
    
              then not x
    in (X 
    ` ) by 
    XBOOLE_0:def 5;
    
              then
    
              
    
    A11: (f 
    . x) 
    = ((l 
    * T) 
    . x) by 
    A4,
    FUNCT_4: 11;
    
              
    
              
    
    A12: ( 
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
              then ((l
    * T) 
    . x) 
    = (l 
    . (T 
    . x)) by 
    FUNCT_1: 13;
    
              then (T
    . x) 
    in ( 
    Carrier l) by 
    A8,
    A11;
    
              then x
    in (T 
    " ( 
    Carrier l)) by 
    A12,
    FUNCT_1:def 7;
    
              hence thesis by
    A9,
    XBOOLE_0:def 4;
    
            end;
    
            
    
            
    
    A13: ( 
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
            
    
            
    
    A14: ( 
    rng g) 
    c= ( 
    Carrier l) 
    
            proof
    
              let y be
    object;
    
              assume y
    in ( 
    rng g); 
    
              then
    
              consider x be
    object such that 
    
              
    
    A15: x 
    in ( 
    dom g) and 
    
              
    
    A16: y 
    = (g 
    . x) by 
    FUNCT_1:def 3;
    
              x
    in (T 
    " ( 
    Carrier l)) by 
    A15,
    XBOOLE_0:def 4;
    
              then (T
    . x) 
    in ( 
    Carrier l) by 
    FUNCT_1:def 7;
    
              hence thesis by
    A15,
    A16,
    FUNCT_1: 49;
    
            end;
    
            S
    c= C 
    
            proof
    
              let x be
    object such that 
    
              
    
    A17: x 
    in S; 
    
              
    
              
    
    A18: x 
    in X by 
    A17,
    XBOOLE_0:def 4;
    
              
    
              
    
    A19: x 
    in (T 
    " ( 
    Carrier l)) by 
    A17,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A20: x 
    in ( 
    dom T) by 
    FUNCT_1:def 7;
    
              
    
              
    
    A21: (T 
    . x) 
    in ( 
    Carrier l) by 
    A19,
    FUNCT_1:def 7;
    
              reconsider x as
    Element of V by 
    A17;
    
              
    
              
    
    A22: (l 
    . (T 
    . x)) 
    <> ( 
    0. R) by 
    A21,
    ZMODUL02: 8;
    
               not x
    in ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))) by 
    A18,
    XBOOLE_0:def 5;
    
              then
    
              
    
    A23: (f 
    . x) 
    = ((l 
    * T) 
    . x) by 
    FUNCT_4: 11;
    
              ((l
    * T) 
    . x) 
    = (l 
    . (T 
    . x)) by 
    A20,
    FUNCT_1: 13;
    
              hence thesis by
    A22,
    A23;
    
            end;
    
            hence thesis by
    A1,
    A6,
    A13,
    A14,
    RANKNULL: 2,
    RELAT_1: 62,
    XBOOLE_1: 17;
    
          end;
    
          then (
    card C) 
    c= ( 
    card ( 
    Carrier l)) by 
    CARD_1: 10;
    
          then
    
          reconsider C as
    finite  
    Subset of V; 
    
          take C;
    
          thus thesis;
    
        end;
    
        then
    
        reconsider f as
    Linear_Combination of V by 
    VECTSP_6:def 1;
    
        (
    Carrier f) 
    c= X 
    
        proof
    
          let x be
    object such that 
    
          
    
    A24: x 
    in ( 
    Carrier f); 
    
          reconsider x as
    Element of V by 
    A24;
    
          now
    
            assume not x
    in X; 
    
            then
    
            
    
    A25: x 
    in (X 
    ` ) by 
    XBOOLE_0:def 5;
    
            
    
            then (f
    . x) 
    = (((X 
    ` ) 
    --> ( 
    0. R)) 
    . x) by 
    A4,
    FUNCT_4: 13
    
            .= (
    0. R) by 
    A25,
    FUNCOP_1: 7;
    
            hence contradiction by
    A24,
    ZMODUL02: 8;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    VECTSP_6:def 4;
    
      end;
    
    end
    
    theorem :: 
    
    ZMODUL05:59
    
    
    
    
    
    Th42: for R be 
    Ring holds for V,W be 
    LeftMod of R, X be 
    Subset of V, T be 
    linear-transformation of V, W holds for X be 
    Subset of V, l be 
    Linear_Combination of (T 
    .: X), v be 
    Element of V st v 
    in X & (T 
    | X) is 
    one-to-one holds ((T 
    # l) 
    . v) 
    = (l 
    . (T 
    . v)) 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R, X be 
    Subset of V, T be 
    linear-transformation of V, W; 
    
      let X be
    Subset of V, l be 
    Linear_Combination of (T 
    .: X); 
    
      let v be
    Element of V; 
    
      assume v
    in X & (T 
    | X) is 
    one-to-one;
    
      then not v
    in ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))) & (T 
    # l) 
    = ((l 
    * T) 
    +* ((X 
    ` ) 
    --> ( 
    0. R))) by 
    Def6,
    XBOOLE_0:def 5;
    
      then
    
      
    
    A1: ((T 
    # l) 
    . v) 
    = ((l 
    * T) 
    . v) by 
    FUNCT_4: 11;
    
      (
    dom T) 
    = ( 
    [#] V) by 
    RANKNULL: 7;
    
      hence thesis by
    A1,
    FUNCT_1: 13;
    
    end;
    
    theorem :: 
    
    ZMODUL05:60
    
    for R be
    Ring holds for V,W be 
    LeftMod of R, X be 
    Subset of V, T be 
    linear-transformation of V, W, X be 
    Subset of V, l be 
    Linear_Combination of (T 
    .: X) st (T 
    | X) is 
    one-to-one holds (T 
    @* (T 
    # l)) 
    = l 
    
    proof
    
      let R be
    Ring;
    
      let V,W be
    LeftMod of R, X be 
    Subset of V, T be 
    linear-transformation of V, W; 
    
      let X be
    Subset of V, l be 
    Linear_Combination of (T 
    .: X) such that 
    
      
    
    A1: (T 
    | X) is 
    one-to-one;
    
      let w be
    Element of W; 
    
      set m = (T
    @* (T 
    # l)); 
    
      reconsider SZ0 =
    {(
    0. R)} as 
    finite  
    Subset of R; 
    
      per cases ;
    
        suppose
    
        
    
    A2: w 
    in ( 
    Carrier l); 
    
        (
    Carrier l) 
    c= (T 
    .: X) by 
    VECTSP_6:def 4;
    
        then
    
        consider v be
    object such that 
    
        
    
    A3: v 
    in ( 
    dom T) and 
    
        
    
    A4: v 
    in X and 
    
        
    
    A5: w 
    = (T 
    . v) by 
    A2,
    FUNCT_1:def 6;
    
        reconsider v as
    Element of V by 
    A3;
    
        w
    in the 
    carrier of W; 
    
        then
    
        
    
    A6: w 
    in ( 
    dom l) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A7: v 
    in the 
    carrier of V; 
    
        for x be
    object holds x 
    in ((T 
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l))) iff x 
    in ( 
    {v}
    /\ ( 
    Carrier (T 
    # l))) 
    
        proof
    
          let x be
    object;
    
          hereby
    
            assume
    
            
    
    A8: x 
    in ((T 
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l))); 
    
            then
    
            
    
    A9: x 
    in (T 
    "  
    {w}) & x
    in ( 
    Carrier (T 
    # l)) by 
    XBOOLE_0:def 4;
    
            then
    
            
    
    A10: x 
    in X by 
    TARSKI:def 3,
    VECTSP_6:def 4;
    
            x
    in the 
    carrier of V by 
    A8;
    
            then
    
            
    
    A11: x 
    in ( 
    dom T) by 
    FUNCT_2:def 1;
    
            
    
            
    
    A12: x 
    in the 
    carrier of V & (T 
    . x) 
    in  
    {w} by
    A9,
    FUNCT_2: 38;
    
            
    
            
    
    A13: ((T 
    | X) 
    . x) 
    = (T 
    . x) by 
    A10,
    FUNCT_1: 49
    
            .= (T
    . v) by 
    A5,
    A12,
    TARSKI:def 1
    
            .= ((T
    | X) 
    . v) by 
    A4,
    FUNCT_1: 49;
    
            
    
            
    
    A14: x 
    in ( 
    dom (T 
    | X)) by 
    A10,
    A11,
    RELAT_1: 57;
    
            v
    in ( 
    dom (T 
    | X)) by 
    A3,
    A4,
    RELAT_1: 57;
    
            then x
    = v by 
    A1,
    A13,
    A14,
    FUNCT_1:def 4;
    
            then x
    in  
    {v} by
    TARSKI:def 1;
    
            hence x
    in ( 
    {v}
    /\ ( 
    Carrier (T 
    # l))) by 
    A9,
    XBOOLE_0:def 4;
    
          end;
    
          assume x
    in ( 
    {v}
    /\ ( 
    Carrier (T 
    # l))); 
    
          then
    
          
    
    A15: x 
    in  
    {v} & x
    in ( 
    Carrier (T 
    # l)) by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A16: x 
    = v by 
    TARSKI:def 1;
    
          x
    in the 
    carrier of V & (T 
    . x) 
    in  
    {w} by
    A5,
    A16,
    TARSKI:def 1;
    
          then x
    in (T 
    "  
    {w}) by
    FUNCT_2: 38;
    
          hence x
    in ((T 
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l))) by 
    A15,
    XBOOLE_0:def 4;
    
        end;
    
        then
    
        
    
    A17: ((T 
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l))) 
    = ( 
    {v}
    /\ ( 
    Carrier (T 
    # l))) by 
    TARSKI: 2;
    
        per cases ;
    
          suppose
    
          
    
    A18: not v 
    in ( 
    Carrier (T 
    # l)); 
    
          (
    {v}
    /\ ( 
    Carrier (T 
    # l))) 
    =  
    {}  
    
          proof
    
            assume (
    {v}
    /\ ( 
    Carrier (T 
    # l))) 
    <>  
    {} ; 
    
            then
    
            consider x be
    object such that 
    
            
    
    A19: x 
    in ( 
    {v}
    /\ ( 
    Carrier (T 
    # l))) by 
    XBOOLE_0:def 1;
    
            
    
            
    
    A20: x 
    in  
    {v} by
    A19,
    XBOOLE_0:def 4;
    
            x
    in ( 
    Carrier (T 
    # l)) by 
    A19,
    XBOOLE_0:def 4;
    
            hence contradiction by
    A18,
    A20,
    TARSKI:def 1;
    
          end;
    
          then
    
          
    
    b1: ( 
    lCFST ((T 
    # l),T,w)) 
    = ( 
    <*> the 
    carrier of R) by 
    A17;
    
          ((T
    @* (T 
    # l)) 
    . w) 
    = ( 
    Sum ( 
    lCFST ((T 
    # l),T,w))) by 
    LDef5;
    
          then
    
          
    
    A21: ((T 
    @* (T 
    # l)) 
    . w) 
    = ( 
    0. R) by 
    RLVECT_1: 43,
    b1;
    
          
    
          
    
    A22: ((T 
    # l) 
    . v) 
    = ( 
    0. R) by 
    A18;
    
          
    
          
    
    A23: not v 
    in ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))) by 
    A4,
    XBOOLE_0:def 5;
    
          (T
    # l) 
    = ((l 
    * T) 
    +* ((X 
    ` ) 
    --> ( 
    0. R))) by 
    A1,
    Def6;
    
          then ((T
    # l) 
    . v) 
    = ((l 
    * T) 
    . v) by 
    A23,
    FUNCT_4: 11;
    
          hence ((T
    @* (T 
    # l)) 
    . w) 
    = (l 
    . w) by 
    A3,
    A5,
    A21,
    A22,
    FUNCT_1: 13;
    
        end;
    
          suppose v
    in ( 
    Carrier (T 
    # l)); 
    
          then ((T
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l))) 
    =  
    {v} by
    A17,
    XBOOLE_1: 28,
    ZFMISC_1: 31;
    
          then
    
          
    
    A24: ( 
    canFS ((T 
    "  
    {w})
    /\ ( 
    Carrier (T 
    # l)))) 
    =  
    <*v*> by
    FINSEQ_1: 94;
    
          
    
          
    
    A25: not v 
    in ( 
    dom ((X 
    ` ) 
    --> ( 
    0. R))) by 
    A4,
    XBOOLE_0:def 5;
    
          
    
          
    
    A26: (T 
    # l) 
    = ((l 
    * T) 
    +* ((X 
    ` ) 
    --> ( 
    0. R))) by 
    A1,
    Def6;
    
          
    
          
    
    A27: v 
    in ( 
    dom (T 
    # l)) by 
    A7,
    FUNCT_2:def 1;
    
          
    
          
    
    A28: v 
    in ( 
    dom (l 
    * T)) by 
    A7,
    FUNCT_2:def 1;
    
          ((T
    # l) 
    *  
    <*v*>)
    =  
    <*((T
    # l) 
    . v)*> by 
    A27,
    FINSEQ_2: 34
    
          .=
    <*((l
    * T) 
    . v)*> by 
    A25,
    A26,
    FUNCT_4: 11
    
          .= ((l
    * T) 
    *  
    <*v*>) by
    A28,
    FINSEQ_2: 34
    
          .= (l
    * (T 
    *  
    <*v*>)) by
    RELAT_1: 36
    
          .= (l
    *  
    <*(T
    . v)*>) by 
    A3,
    FINSEQ_2: 34
    
          .=
    <*(l
    . w)*> by 
    A5,
    A6,
    FINSEQ_2: 34;
    
          then (
    Sum ( 
    lCFST ((T 
    # l),T,w))) 
    = (l 
    . w) by 
    A24,
    RLVECT_1: 44;
    
          hence (m
    . w) 
    = (l 
    . w) by 
    LDef5;
    
        end;
    
      end;
    
        suppose
    
        
    
    A29: not w 
    in ( 
    Carrier l); 
    
        then
    
        
    
    A30: (l 
    . w) 
    = ( 
    0. R); 
    
        now
    
          assume
    
          
    
    A31: (m 
    . w) 
    <> ( 
    0. R); 
    
          then w
    in ( 
    Carrier m); 
    
          then
    
          consider v be
    Element of V such that 
    
          
    
    A32: v 
    in (T 
    "  
    {w}) and
    
          
    
    A33: v 
    in ( 
    Carrier (T 
    # l)) by 
    RANKNULL: 3,
    Th36;
    
          (T
    . v) 
    in  
    {w} by
    A32,
    FUNCT_1:def 7;
    
          then
    
          
    
    A34: (T 
    . v) 
    = w by 
    TARSKI:def 1;
    
          
    
          
    
    A35: ( 
    Carrier (T 
    # l)) 
    c= X by 
    VECTSP_6:def 4;
    
          (T
    | ( 
    Carrier (T 
    # l))) is 
    one-to-one by 
    A1,
    RANKNULL: 2,
    VECTSP_6:def 4;
    
          
    
          then (m
    . w) 
    = ((T 
    # l) 
    . v) by 
    A33,
    A34,
    Th37
    
          .= (
    0. R) by 
    A1,
    A30,
    A33,
    A34,
    A35,
    Th42;
    
          hence contradiction by
    A31;
    
        end;
    
        hence thesis by
    A29;
    
      end;
    
    end;