bhsp_1.miz
begin
definition
struct (
RLSStruct)
UNITSTR
(# the
carrier ->
set,
the
ZeroF ->
Element of the carrier,
the
addF ->
BinOp of the carrier,
the
Mult ->
Function of
[:
REAL , the carrier:], the carrier,
the
scalar ->
Function of
[: the carrier, the carrier:],
REAL #)
attr strict
strict;
end
registration
cluster non
empty
strict for
UNITSTR;
existence
proof
set D = the non
empty
set, Z = the
Element of D, a = the
BinOp of D, m = the
Function of
[:
REAL , D:], D, s = the
Function of
[:D, D:],
REAL ;
take
UNITSTR (# D, Z, a, m, s #);
thus the
carrier of
UNITSTR (# D, Z, a, m, s #) is non
empty;
thus thesis;
end;
end
registration
let D be non
empty
set, Z be
Element of D, a be
BinOp of D, m be
Function of
[:
REAL , D:], D, s be
Function of
[:D, D:],
REAL ;
cluster
UNITSTR (# D, Z, a, m, s #) -> non
empty;
coherence ;
end
reserve X for non
empty
UNITSTR;
reserve a,b for
Real;
reserve x,y for
Point of X;
deffunc
09(
UNITSTR) = (
0. $1);
definition
let X;
let x, y;
::
BHSP_1:def1
func x
.|. y ->
Real equals (the
scalar of X
.
[x, y]);
correctness ;
end
set V0 = the
RealLinearSpace;
Lm1: the
carrier of (
(0). V0)
=
{(
0. V0)} by
RLSUB_1:def 3;
reconsider nilfunc = (
[:the
carrier of (
(0). V0), the
carrier of (
(0). V0):]
--> (
In (
0 ,
REAL ))) as
Function of
[:the
carrier of (
(0). V0), the
carrier of (
(0). V0):],
REAL ;
(for x,y be
VECTOR of (
(0). V0) holds (nilfunc
.
[x, y])
=
0 ) & (
0. V0)
in the
carrier of (
(0). V0) by
Lm1,
FUNCOP_1: 7,
TARSKI:def 1;
then
Lm2: (nilfunc
.
[(
0. V0), (
0. V0)])
=
0 ;
Lm3: for u,v be
VECTOR of (
(0). V0) holds (nilfunc
.
[u, v])
= (nilfunc
.
[v, u])
proof
let u,v be
VECTOR of (
(0). V0);
u
= (
0. V0) & v
= (
0. V0) by
Lm1,
TARSKI:def 1;
hence thesis;
end;
Lm4: for u,v,w be
VECTOR of (
(0). V0) holds (nilfunc
.
[(u
+ v), w])
= ((nilfunc
.
[u, w])
+ (nilfunc
.
[v, w]))
proof
let u,v,w be
VECTOR of (
(0). V0);
A1: w
= (
0. V0) by
Lm1,
TARSKI:def 1;
u
= (
0. V0) & v
= (
0. V0) by
Lm1,
TARSKI:def 1;
hence thesis by
A1,
Lm1,
Lm2,
TARSKI:def 1;
end;
Lm5: for u,v be
VECTOR of (
(0). V0), a holds (nilfunc
.
[(a
* u), v])
= (a
* (nilfunc
.
[u, v]))
proof
let u,v be
VECTOR of (
(0). V0);
let a;
u
= (
0. V0) & v
= (
0. V0) by
Lm1,
TARSKI:def 1;
hence thesis by
Lm1,
Lm2,
TARSKI:def 1;
end;
set X0 =
UNITSTR (# the
carrier of (
(0). V0), (
0. (
(0). V0)), the
addF of (
(0). V0), the
Mult of (
(0). V0), nilfunc #);
Lm6:
now
let x,y,z be
Point of X0;
let a;
09(X0)
= (
0. V0) by
RLSUB_1: 11;
hence (x
.|. x)
= (
In (
0 ,
REAL )) iff x
=
09(X0) by
Lm1,
FUNCOP_1: 7,
TARSKI:def 1;
thus
0
<= (x
.|. x) by
FUNCOP_1: 7;
thus (x
.|. y)
= (y
.|. x) by
Lm3;
thus ((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z))
proof
reconsider u = x, v = y, w = z as
VECTOR of (
(0). V0);
((x
+ y)
.|. z)
= (nilfunc
.
[(u
+ v), w]);
hence thesis by
Lm4;
end;
thus ((a
* x)
.|. y)
= (a
* (x
.|. y))
proof
reconsider u = x, v = y as
VECTOR of (
(0). V0);
((a
* x)
.|. y)
= (nilfunc
.
[(a
* u), v]);
hence thesis by
Lm5;
end;
end;
definition
let IT be non
empty
UNITSTR;
::
BHSP_1:def2
attr IT is
RealUnitarySpace-like means
:
Def2: for x,y,z be
Point of IT, a holds ((x
.|. x)
=
0 iff x
= (
0. IT)) &
0
<= (x
.|. x) & (x
.|. y)
= (y
.|. x) & ((x
+ y)
.|. z)
= ((x
.|. z)
+ (y
.|. z)) & ((a
* x)
.|. y)
= (a
* (x
.|. y));
end
registration
cluster
RealUnitarySpace-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable
strict for non
empty
UNITSTR;
existence
proof
take X0;
thus X0 is
RealUnitarySpace-like by
Lm6;
thus X0 is
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
proof
thus for a be
Real holds for v,w be
VECTOR of X0 holds (a
* (v
+ w))
= ((a
* v)
+ (a
* w))
proof
let a be
Real;
let v,w be
VECTOR of X0;
reconsider v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus (a
* (v
+ w))
= (a
* (v9
+ w9))
.= ((a
* v9)
+ (a
* w9)) by
RLVECT_1:def 5
.= ((a
* v)
+ (a
* w));
end;
thus for a,b be
Real holds for v be
VECTOR of X0 holds ((a
+ b)
* v)
= ((a
* v)
+ (b
* v))
proof
let a,b be
Real;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus ((a
+ b)
* v)
= ((a
+ b)
* v9)
.= ((a
* v9)
+ (b
* v9)) by
RLVECT_1:def 6
.= ((a
* v)
+ (b
* v));
end;
thus for a,b be
Real holds for v be
VECTOR of X0 holds ((a
* b)
* v)
= (a
* (b
* v))
proof
let a,b be
Real;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus ((a
* b)
* v)
= ((a
* b)
* v9)
.= (a
* (b
* v9)) by
RLVECT_1:def 7
.= (a
* (b
* v));
end;
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus (1
* v)
= (1
* v9)
.= v by
RLVECT_1:def 8;
end;
A1: for x,y be
VECTOR of X0 holds for x9,y9 be
VECTOR of (
(0). V0) st x
= x9 & y
= y9 holds (x
+ y)
= (x9
+ y9) & for a holds (a
* x)
= (a
* x9);
thus for v,w be
VECTOR of X0 holds (v
+ w)
= (w
+ v)
proof
let v,w be
VECTOR of X0;
reconsider v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus (v
+ w)
= (w9
+ v9) by
A1
.= (w
+ v);
end;
thus for u,v,w be
VECTOR of X0 holds ((u
+ v)
+ w)
= (u
+ (v
+ w))
proof
let u,v,w be
VECTOR of X0;
reconsider u9 = u, v9 = v, w9 = w as
VECTOR of (
(0). V0);
thus ((u
+ v)
+ w)
= ((u9
+ v9)
+ w9)
.= (u9
+ (v9
+ w9)) by
RLVECT_1:def 3
.= (u
+ (v
+ w));
end;
thus for v be
VECTOR of X0 holds (v
+ (
0. X0))
= v
proof
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
thus (v
+ (
0. X0))
= (v9
+ (
0. (
(0). V0)))
.= v by
RLVECT_1: 4;
end;
thus X0 is
right_complementable
proof
let v be
VECTOR of X0;
reconsider v9 = v as
VECTOR of (
(0). V0);
consider w9 be
VECTOR of (
(0). V0) such that
A2: (v9
+ w9)
= (
0. (
(0). V0)) by
ALGSTR_0:def 11;
reconsider w = w9 as
VECTOR of X0;
take w;
thus thesis by
A2;
end;
thus thesis;
end;
end
definition
mode
RealUnitarySpace is
RealUnitarySpace-like
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
Abelian
add-associative
right_zeroed
right_complementable non
empty
UNITSTR;
end
reserve X for
RealUnitarySpace;
reserve x,y,z,u,v for
Point of X;
definition
let X, x, y;
:: original:
.|.
redefine
func x
.|. y;
commutativity by
Def2;
end
theorem ::
BHSP_1:1
((
0. X)
.|. (
0. X))
=
0 by
Def2;
theorem ::
BHSP_1:2
(x
.|. (y
+ z))
= ((x
.|. y)
+ (x
.|. z)) by
Def2;
theorem ::
BHSP_1:3
(x
.|. (a
* y))
= (a
* (x
.|. y)) by
Def2;
theorem ::
BHSP_1:4
((a
* x)
.|. y)
= (x
.|. (a
* y))
proof
((a
* x)
.|. y)
= (a
* (x
.|. y)) by
Def2;
hence thesis by
Def2;
end;
theorem ::
BHSP_1:5
Th5: (((a
* x)
+ (b
* y))
.|. z)
= ((a
* (x
.|. z))
+ (b
* (y
.|. z)))
proof
(((a
* x)
+ (b
* y))
.|. z)
= (((a
* x)
.|. z)
+ ((b
* y)
.|. z)) by
Def2
.= ((a
* (x
.|. z))
+ ((b
* y)
.|. z)) by
Def2;
hence thesis by
Def2;
end;
theorem ::
BHSP_1:6
(x
.|. ((a
* y)
+ (b
* z)))
= ((a
* (x
.|. y))
+ (b
* (x
.|. z))) by
Th5;
theorem ::
BHSP_1:7
((
- x)
.|. y)
= (x
.|. (
- y))
proof
((
- x)
.|. y)
= (((
- 1)
* x)
.|. y) by
RLVECT_1: 16
.= ((
- 1)
* (x
.|. y)) by
Def2
.= (x
.|. ((
- 1)
* y)) by
Def2;
hence thesis by
RLVECT_1: 16;
end;
theorem ::
BHSP_1:8
Th8: ((
- x)
.|. y)
= (
- (x
.|. y))
proof
((
- x)
.|. y)
= (((
- 1)
* x)
.|. y) by
RLVECT_1: 16
.= ((
- 1)
* (x
.|. y)) by
Def2;
hence thesis;
end;
theorem ::
BHSP_1:9
(x
.|. (
- y))
= (
- (x
.|. y)) by
Th8;
theorem ::
BHSP_1:10
Th10: ((
- x)
.|. (
- y))
= (x
.|. y)
proof
((
- x)
.|. (
- y))
= (
- (x
.|. (
- y))) by
Th8
.= (
- (
- (x
.|. y))) by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:11
Th11: ((x
- y)
.|. z)
= ((x
.|. z)
- (y
.|. z))
proof
((x
- y)
.|. z)
= ((x
.|. z)
+ ((
- y)
.|. z)) by
Def2
.= ((x
.|. z)
+ (
- (y
.|. z))) by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:12
Th12: (x
.|. (y
- z))
= ((x
.|. y)
- (x
.|. z))
proof
(x
.|. (y
- z))
= ((x
.|. y)
+ (x
.|. (
- z))) by
Def2
.= ((x
.|. y)
+ (
- (x
.|. z))) by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:13
((x
- y)
.|. (u
- v))
= ((((x
.|. u)
- (x
.|. v))
- (y
.|. u))
+ (y
.|. v))
proof
((x
- y)
.|. (u
- v))
= ((x
.|. (u
- v))
- (y
.|. (u
- v))) by
Th11
.= (((x
.|. u)
- (x
.|. v))
- (y
.|. (u
- v))) by
Th12
.= (((x
.|. u)
- (x
.|. v))
- ((y
.|. u)
- (y
.|. v))) by
Th12;
hence thesis;
end;
theorem ::
BHSP_1:14
Th14: ((
0. X)
.|. x)
=
0
proof
(
09(X)
.|. x)
= ((x
+ (
- x))
.|. x) by
RLVECT_1: 5
.= ((x
.|. x)
+ ((
- x)
.|. x)) by
Def2
.= ((x
.|. x)
+ (
- (x
.|. x))) by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:15
(x
.|. (
0. X))
=
0 by
Th14;
theorem ::
BHSP_1:16
Th16: ((x
+ y)
.|. (x
+ y))
= (((x
.|. x)
+ (2
* (x
.|. y)))
+ (y
.|. y))
proof
((x
+ y)
.|. (x
+ y))
= ((x
.|. (x
+ y))
+ (y
.|. (x
+ y))) by
Def2
.= (((x
.|. x)
+ (x
.|. y))
+ (y
.|. (x
+ y))) by
Def2
.= (((x
.|. x)
+ (x
.|. y))
+ ((x
.|. y)
+ (y
.|. y))) by
Def2
.= (((x
.|. x)
+ ((x
.|. y)
+ (x
.|. y)))
+ (y
.|. y));
hence thesis;
end;
theorem ::
BHSP_1:17
((x
+ y)
.|. (x
- y))
= ((x
.|. x)
- (y
.|. y))
proof
((x
+ y)
.|. (x
- y))
= ((x
.|. (x
- y))
+ (y
.|. (x
- y))) by
Def2
.= (((x
.|. x)
- (x
.|. y))
+ (y
.|. (x
- y))) by
Th12
.= (((x
.|. x)
- (x
.|. y))
+ ((x
.|. y)
- (y
.|. y))) by
Th12;
hence thesis;
end;
theorem ::
BHSP_1:18
Th18: ((x
- y)
.|. (x
- y))
= (((x
.|. x)
- (2
* (x
.|. y)))
+ (y
.|. y))
proof
((x
- y)
.|. (x
- y))
= ((x
.|. (x
- y))
- (y
.|. (x
- y))) by
Th11
.= (((x
.|. x)
- (x
.|. y))
- (y
.|. (x
- y))) by
Th12
.= (((x
.|. x)
- (x
.|. y))
- ((x
.|. y)
- (y
.|. y))) by
Th12
.= (((x
.|. x)
- ((x
.|. y)
+ (x
.|. y)))
+ (y
.|. y));
hence thesis;
end;
theorem ::
BHSP_1:19
Th19:
|.(x
.|. y).|
<= ((
sqrt (x
.|. x))
* (
sqrt (y
.|. y)))
proof
A1: x
<>
09(X) implies
|.(x
.|. y).|
<= ((
sqrt (x
.|. x))
* (
sqrt (y
.|. y)))
proof
A2: for t be
Real holds ((((x
.|. x)
* (t
^2 ))
+ ((2
* (x
.|. y))
* t))
+ (y
.|. y))
>=
0
proof
let t be
Real;
reconsider t as
Real;
(((t
* x)
+ y)
.|. ((t
* x)
+ y))
>=
0 by
Def2;
then ((((t
* x)
.|. (t
* x))
+ (2
* ((t
* x)
.|. y)))
+ (y
.|. y))
>=
0 by
Th16;
then (((t
* (x
.|. (t
* x)))
+ (2
* ((t
* x)
.|. y)))
+ (y
.|. y))
>=
0 by
Def2;
then (((t
* (t
* (x
.|. x)))
+ (2
* ((t
* x)
.|. y)))
+ (y
.|. y))
>=
0 by
Def2;
then ((((x
.|. x)
* (t
^2 ))
+ (2
* ((x
.|. y)
* t)))
+ (y
.|. y))
>=
0 by
Def2;
hence thesis;
end;
A3: (x
.|. x)
>=
0 by
Def2;
assume x
<>
09(X);
then (x
.|. x)
<>
0 by
Def2;
then (
delta ((x
.|. x),(2
* (x
.|. y)),(y
.|. y)))
<=
0 by
A3,
A2,
QUIN_1: 10;
then (((2
* (x
.|. y))
^2 )
- ((4
* (x
.|. x))
* (y
.|. y)))
<=
0 by
QUIN_1:def 1;
then (4
* (((x
.|. y)
^2 )
- ((x
.|. x)
* (y
.|. y))))
<=
0 ;
then (((x
.|. y)
^2 )
- ((x
.|. x)
* (y
.|. y)))
<= (
0
/ 4) by
XREAL_1: 77;
then ((x
.|. y)
^2 )
<= ((x
.|. x)
* (y
.|. y)) by
XREAL_1: 50;
then (
|.(x
.|. y).|
^2 )
>=
0 & (
|.(x
.|. y).|
^2 )
<= ((x
.|. x)
* (y
.|. y)) by
COMPLEX1: 75,
XREAL_1: 63;
then (
sqrt (
|.(x
.|. y).|
^2 ))
<= (
sqrt ((x
.|. x)
* (y
.|. y))) by
SQUARE_1: 26;
then
A4:
|.(x
.|. y).|
<= (
sqrt ((x
.|. x)
* (y
.|. y))) by
COMPLEX1: 46,
SQUARE_1: 22;
(y
.|. y)
>=
0 by
Def2;
hence thesis by
A3,
A4,
SQUARE_1: 29;
end;
x
=
09(X) implies
|.(x
.|. y).|
<= ((
sqrt (x
.|. x))
* (
sqrt (y
.|. y)))
proof
assume x
=
09(X);
then (x
.|. y)
=
0 & (
sqrt (x
.|. x))
=
0 by
Th14,
SQUARE_1: 17;
hence thesis by
ABSVALUE: 2;
end;
hence thesis by
A1;
end;
definition
let X, x, y;
::
BHSP_1:def3
pred x,y
are_orthogonal means (x
.|. y)
=
0 ;
symmetry ;
end
theorem ::
BHSP_1:20
(x,y)
are_orthogonal implies (x,(
- y))
are_orthogonal
proof
assume (x,y)
are_orthogonal ;
then (
- (x
.|. y))
= (
-
0 );
then (x
.|. (
- y))
=
0 by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:21
(x,y)
are_orthogonal implies ((
- x),y)
are_orthogonal
proof
assume (x,y)
are_orthogonal ;
then (
- (x
.|. y))
= (
-
0 );
then ((
- x)
.|. y)
=
0 by
Th8;
hence thesis;
end;
theorem ::
BHSP_1:22
(x,y)
are_orthogonal implies ((
- x),(
- y))
are_orthogonal by
Th10;
theorem ::
BHSP_1:23
(x,(
0. X))
are_orthogonal by
Th14;
theorem ::
BHSP_1:24
(x,y)
are_orthogonal implies ((x
+ y)
.|. (x
+ y))
= ((x
.|. x)
+ (y
.|. y))
proof
assume (x,y)
are_orthogonal ;
then
A1: (x
.|. y)
=
0 ;
((x
+ y)
.|. (x
+ y))
= (((x
.|. x)
+ (2
* (x
.|. y)))
+ (y
.|. y)) by
Th16;
hence thesis by
A1;
end;
theorem ::
BHSP_1:25
(x,y)
are_orthogonal implies ((x
- y)
.|. (x
- y))
= ((x
.|. x)
+ (y
.|. y))
proof
assume (x,y)
are_orthogonal ;
then
A1: (x
.|. y)
=
0 ;
((x
- y)
.|. (x
- y))
= (((x
.|. x)
- (2
* (x
.|. y)))
+ (y
.|. y)) by
Th18
.= (((x
.|. x)
+ (y
.|. y))
-
0 ) by
A1;
hence thesis;
end;
definition
let X, x;
::
BHSP_1:def4
func
||.x.|| ->
Real equals (
sqrt (x
.|. x));
correctness ;
end
theorem ::
BHSP_1:26
Th26:
||.x.||
=
0 iff x
= (
0. X)
proof
thus
||.x.||
=
0 implies x
=
09(X)
proof
assume
A1:
||.x.||
=
0 ;
0
<= (x
.|. x) by
Def2;
then (x
.|. x)
=
0 by
A1,
SQUARE_1: 24;
hence thesis by
Def2;
end;
assume x
=
09(X);
hence thesis by
Def2,
SQUARE_1: 17;
end;
theorem ::
BHSP_1:27
Th27:
||.(a
* x).||
= (
|.a.|
*
||.x.||)
proof
A1:
0
<= (a
^2 ) &
0
<= (x
.|. x) by
Def2,
XREAL_1: 63;
||.(a
* x).||
= (
sqrt (a
* (x
.|. (a
* x)))) by
Def2
.= (
sqrt (a
* (a
* (x
.|. x)))) by
Def2
.= (
sqrt ((a
^2 )
* (x
.|. x)))
.= ((
sqrt (a
^2 ))
* (
sqrt (x
.|. x))) by
A1,
SQUARE_1: 29
.= (
|.a.|
* (
sqrt (x
.|. x))) by
COMPLEX1: 72;
hence thesis;
end;
theorem ::
BHSP_1:28
Th28:
0
<=
||.x.||
proof
0
<= (x
.|. x) by
Def2;
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
BHSP_1:29
|.(x
.|. y).|
<= (
||.x.||
*
||.y.||) by
Th19;
theorem ::
BHSP_1:30
Th30:
||.(x
+ y).||
<= (
||.x.||
+
||.y.||)
proof
A1: (
sqrt (
||.(x
+ y).||
^2 ))
= (
sqrt ((x
+ y)
.|. (x
+ y))) by
Th28,
SQUARE_1: 22;
((x
+ y)
.|. (x
+ y))
>=
0 & (
||.(x
+ y).||
^2 )
>=
0 by
Def2,
XREAL_1: 63;
then (
||.(x
+ y).||
^2 )
= ((x
+ y)
.|. (x
+ y)) by
A1,
SQUARE_1: 28;
then
A2: (
||.(x
+ y).||
^2 )
= (((x
.|. x)
+ (2
* (x
.|. y)))
+ (y
.|. y)) by
Th16;
(x
.|. x)
>=
0 by
Def2;
then
A3: (
||.(x
+ y).||
^2 )
= ((((
sqrt (x
.|. x))
^2 )
+ (2
* (x
.|. y)))
+ (y
.|. y)) by
A2,
SQUARE_1:def 2;
A4:
||.x.||
>=
0 &
||.y.||
>=
0 by
Th28;
|.(x
.|. y).|
<= (
||.x.||
*
||.y.||) & (x
.|. y)
<=
|.(x
.|. y).| by
Th19,
ABSVALUE: 4;
then (x
.|. y)
<= (
||.x.||
*
||.y.||) by
XXREAL_0: 2;
then (2
* (x
.|. y))
<= (2
* (
||.x.||
*
||.y.||)) by
XREAL_1: 64;
then ((
||.x.||
^2 )
+ (2
* (x
.|. y)))
<= ((
||.x.||
^2 )
+ ((2
*
||.x.||)
*
||.y.||)) by
XREAL_1: 7;
then
A5: (((
||.x.||
^2 )
+ (2
* (x
.|. y)))
+ (
||.y.||
^2 ))
<= (((
||.x.||
^2 )
+ ((2
*
||.x.||)
*
||.y.||))
+ (
||.y.||
^2 )) by
XREAL_1: 6;
(y
.|. y)
>=
0 by
Def2;
then (
||.(x
+ y).||
^2 )
<= ((
||.x.||
+
||.y.||)
^2 ) by
A3,
A5,
SQUARE_1:def 2;
hence thesis by
A4,
SQUARE_1: 16;
end;
theorem ::
BHSP_1:31
Th31:
||.(
- x).||
=
||.x.||
proof
A1:
|.(
- 1).|
= (
- (
- 1)) by
ABSVALUE:def 1;
||.(
- x).||
=
||.((
- 1)
* x).|| by
RLVECT_1: 16
.= (1
*
||.x.||) by
A1,
Th27;
hence thesis;
end;
theorem ::
BHSP_1:32
Th32: (
||.x.||
-
||.y.||)
<=
||.(x
- y).||
proof
((x
- y)
+ y)
= (x
- (y
- y)) by
RLVECT_1: 29
.= (x
-
09(X)) by
RLVECT_1: 15
.= x by
RLVECT_1: 13;
then
||.x.||
<= (
||.(x
- y).||
+
||.y.||) by
Th30;
hence thesis by
XREAL_1: 20;
end;
theorem ::
BHSP_1:33
|.(
||.x.||
-
||.y.||).|
<=
||.(x
- y).||
proof
((y
- x)
+ x)
= (y
- (x
- x)) by
RLVECT_1: 29
.= (y
-
09(X)) by
RLVECT_1: 15
.= y by
RLVECT_1: 13;
then
||.y.||
<= (
||.(y
- x).||
+
||.x.||) by
Th30;
then (
||.y.||
-
||.x.||)
<=
||.(y
- x).|| by
XREAL_1: 20;
then (
||.y.||
-
||.x.||)
<=
||.(
- (x
- y)).|| by
RLVECT_1: 33;
then (
||.y.||
-
||.x.||)
<=
||.(x
- y).|| by
Th31;
then
A1: (
-
||.(x
- y).||)
<= (
- (
||.y.||
-
||.x.||)) by
XREAL_1: 24;
(
||.x.||
-
||.y.||)
<=
||.(x
- y).|| by
Th32;
hence thesis by
A1,
ABSVALUE: 5;
end;
definition
let X, x, y;
::
BHSP_1:def5
func
dist (x,y) ->
Real equals
||.(x
- y).||;
correctness ;
commutativity
proof
let IT be
Real;
let x, y;
||.(x
- y).||
=
||.(
- (y
- x)).|| by
RLVECT_1: 33
.=
||.(y
- x).|| by
Th31;
hence thesis;
end;
end
theorem ::
BHSP_1:34
Th34: (
dist (x,x))
=
0
proof
thus (
dist (x,x))
=
||.
09(X).|| by
RLVECT_1: 15
.=
0 by
Th26;
end;
theorem ::
BHSP_1:35
(
dist (x,z))
<= ((
dist (x,y))
+ (
dist (y,z)))
proof
(
dist (x,z))
=
||.((x
- z)
+
09(X)).|| by
RLVECT_1: 4
.=
||.((x
- z)
+ (y
- y)).|| by
RLVECT_1: 15
.=
||.(x
- (z
- (y
- y))).|| by
RLVECT_1: 29
.=
||.(x
- (y
+ (z
- y))).|| by
RLVECT_1: 29
.=
||.((x
- y)
- (z
- y)).|| by
RLVECT_1: 27
.=
||.((x
- y)
+ (y
- z)).|| by
RLVECT_1: 33;
hence thesis by
Th30;
end;
theorem ::
BHSP_1:36
Th36: x
<> y iff (
dist (x,y))
<>
0
proof
thus x
<> y implies (
dist (x,y))
<>
0
proof
assume that
A1: x
<> y and
A2: (
dist (x,y))
=
0 ;
(x
- y)
=
09(X) by
A2,
Th26;
hence contradiction by
A1,
RLVECT_1: 21;
end;
thus thesis by
Th34;
end;
theorem ::
BHSP_1:37
(
dist (x,y))
>=
0 by
Th28;
theorem ::
BHSP_1:38
x
<> y iff (
dist (x,y))
>
0
proof
thus x
<> y implies (
dist (x,y))
>
0
proof
assume x
<> y;
then (
dist (x,y))
<>
0 by
Th36;
hence thesis by
Th28;
end;
thus thesis by
Th34;
end;
theorem ::
BHSP_1:39
(
dist (x,y))
= (
sqrt ((x
- y)
.|. (x
- y)));
theorem ::
BHSP_1:40
(
dist ((x
+ y),(u
+ v)))
<= ((
dist (x,u))
+ (
dist (y,v)))
proof
(
dist ((x
+ y),(u
+ v)))
=
||.(((
- u)
+ (
- v))
+ (x
+ y)).|| by
RLVECT_1: 31
.=
||.((x
+ ((
- u)
+ (
- v)))
+ y).|| by
RLVECT_1:def 3
.=
||.(((x
- u)
+ (
- v))
+ y).|| by
RLVECT_1:def 3
.=
||.((x
- u)
+ (y
- v)).|| by
RLVECT_1:def 3;
hence thesis by
Th30;
end;
theorem ::
BHSP_1:41
(
dist ((x
- y),(u
- v)))
<= ((
dist (x,u))
+ (
dist (y,v)))
proof
(
dist ((x
- y),(u
- v)))
=
||.(((x
- y)
- u)
+ v).|| by
RLVECT_1: 29
.=
||.((x
- (u
+ y))
+ v).|| by
RLVECT_1: 27
.=
||.(((x
- u)
- y)
+ v).|| by
RLVECT_1: 27
.=
||.((x
- u)
- (y
- v)).|| by
RLVECT_1: 29
.=
||.((x
- u)
+ (
- (y
- v))).||;
then (
dist ((x
- y),(u
- v)))
<= (
||.(x
- u).||
+
||.(
- (y
- v)).||) by
Th30;
hence thesis by
Th31;
end;
theorem ::
BHSP_1:42
(
dist ((x
- z),(y
- z)))
= (
dist (x,y))
proof
thus (
dist ((x
- z),(y
- z)))
=
||.(((x
- z)
- y)
+ z).|| by
RLVECT_1: 29
.=
||.((x
- (y
+ z))
+ z).|| by
RLVECT_1: 27
.=
||.(((x
- y)
- z)
+ z).|| by
RLVECT_1: 27
.=
||.((x
- y)
- (z
- z)).|| by
RLVECT_1: 29
.=
||.((x
- y)
-
09(X)).|| by
RLVECT_1: 15
.= (
dist (x,y)) by
RLVECT_1: 13;
end;
theorem ::
BHSP_1:43
(
dist ((x
- z),(y
- z)))
<= ((
dist (z,x))
+ (
dist (z,y)))
proof
(
dist ((x
- z),(y
- z)))
=
||.((x
- z)
+ (z
- y)).|| by
RLVECT_1: 33
.=
||.((
- (z
- x))
+ (z
- y)).|| by
RLVECT_1: 33;
then (
dist ((x
- z),(y
- z)))
<= (
||.(
- (z
- x)).||
+
||.(z
- y).||) by
Th30;
hence thesis by
Th31;
end;
reserve seq,seq1,seq2,seq3 for
sequence of X;
reserve n for
Nat;
definition
let X be non
empty
addLoopStr;
let seq be
sequence of X;
let x be
Point of X;
::
BHSP_1:def6
func seq
+ x ->
sequence of X means
:
Def6: for n holds (it
. n)
= ((seq
. n)
+ x);
existence
proof
deffunc
F(
Nat) = ((seq
. $1)
+ x);
consider seq be
sequence of X such that
A1: for n be
Element of
NAT holds (seq
. n)
=
F(n) from
FUNCT_2:sch 4;
take seq;
let n;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A1;
end;
uniqueness
proof
let seq1,seq2 be
sequence of X;
assume that
A2: for n holds (seq1
. n)
= ((seq
. n)
+ x) and
A3: for n holds (seq2
. n)
= ((seq
. n)
+ x);
let n be
Element of
NAT ;
(seq1
. n)
= ((seq
. n)
+ x) by
A2;
hence thesis by
A3;
end;
end
theorem ::
BHSP_1:44
Th44: for X be non
empty
addLoopStr, seq be
sequence of X holds ((
- seq)
. n)
= (
- (seq
. n))
proof
let X be non
empty
addLoopStr, seq be
sequence of X;
A1: (
dom (
- seq))
=
NAT by
FUNCT_2:def 1;
A2: (
dom seq)
=
NAT by
FUNCT_2:def 1;
A3: n
in
NAT by
ORDINAL1:def 12;
hence ((
- seq)
. n)
= ((
- seq)
/. n) by
PARTFUN1:def 6,
A1
.= (
- (seq
/. n)) by
A1,
VFUNCT_1:def 5,
A3
.= (
- (seq
. n)) by
A3,
PARTFUN1:def 6,
A2;
end;
definition
let X, seq1, seq2;
:: original:
+
redefine
func seq1
+ seq2;
commutativity
proof
let seq1, seq2;
let n be
Element of
NAT ;
thus ((seq1
+ seq2)
. n)
= ((seq2
. n)
+ (seq1
. n)) by
NORMSP_1:def 2
.= ((seq2
+ seq1)
. n) by
NORMSP_1:def 2;
end;
end
theorem ::
BHSP_1:45
(seq1
+ (seq2
+ seq3))
= ((seq1
+ seq2)
+ seq3)
proof
let n be
Element of
NAT ;
thus ((seq1
+ (seq2
+ seq3))
. n)
= ((seq1
. n)
+ ((seq2
+ seq3)
. n)) by
NORMSP_1:def 2
.= ((seq1
. n)
+ ((seq2
. n)
+ (seq3
. n))) by
NORMSP_1:def 2
.= (((seq1
. n)
+ (seq2
. n))
+ (seq3
. n)) by
RLVECT_1:def 3
.= (((seq1
+ seq2)
. n)
+ (seq3
. n)) by
NORMSP_1:def 2
.= (((seq1
+ seq2)
+ seq3)
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:46
seq1 is
constant & seq2 is
constant implies (seq1
+ seq2) is
constant
proof
assume that
A1: seq1 is
constant and
A2: seq2 is
constant;
set seq = (seq1
+ seq2);
consider x such that
A3: for n be
Nat holds (seq1
. n)
= x by
A1;
consider y such that
A4: for n be
Nat holds (seq2
. n)
= y by
A2;
take z = (x
+ y);
let n be
Nat;
thus (seq
. n)
= ((seq1
. n)
+ (seq2
. n)) by
NORMSP_1:def 2
.= (x
+ (seq2
. n)) by
A3
.= z by
A4;
end;
theorem ::
BHSP_1:47
seq1 is
constant & seq2 is
constant implies (seq1
- seq2) is
constant
proof
assume that
A1: seq1 is
constant and
A2: seq2 is
constant;
set seq = (seq1
- seq2);
consider x such that
A3: for n be
Nat holds (seq1
. n)
= x by
A1;
consider y such that
A4: for n be
Nat holds (seq2
. n)
= y by
A2;
take z = (x
- y);
let n be
Nat;
thus (seq
. n)
= ((seq1
. n)
- (seq2
. n)) by
NORMSP_1:def 3
.= (x
- (seq2
. n)) by
A3
.= z by
A4;
end;
theorem ::
BHSP_1:48
seq1 is
constant implies (a
* seq1) is
constant
proof
assume
A1: seq1 is
constant;
set seq = (a
* seq1);
consider x such that
A2: for n be
Nat holds (seq1
. n)
= x by
A1;
take z = (a
* x);
let n be
Nat;
thus (seq
. n)
= (a
* (seq1
. n)) by
NORMSP_1:def 5
.= z by
A2;
end;
theorem ::
BHSP_1:49
(seq1
- seq2)
= (seq1
+ (
- seq2))
proof
let n be
Element of
NAT ;
thus ((seq1
- seq2)
. n)
= ((seq1
. n)
- (seq2
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
+ ((
- seq2)
. n)) by
Th44
.= ((seq1
+ (
- seq2))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:50
seq
= (seq
+ (
0. X))
proof
let n be
Element of
NAT ;
thus ((seq
+
09(X))
. n)
= ((seq
. n)
+
09(X)) by
Def6
.= (seq
. n) by
RLVECT_1: 4;
end;
theorem ::
BHSP_1:51
(a
* (seq1
+ seq2))
= ((a
* seq1)
+ (a
* seq2))
proof
let n be
Element of
NAT ;
thus ((a
* (seq1
+ seq2))
. n)
= (a
* ((seq1
+ seq2)
. n)) by
NORMSP_1:def 5
.= (a
* ((seq1
. n)
+ (seq2
. n))) by
NORMSP_1:def 2
.= ((a
* (seq1
. n))
+ (a
* (seq2
. n))) by
RLVECT_1:def 5
.= (((a
* seq1)
. n)
+ (a
* (seq2
. n))) by
NORMSP_1:def 5
.= (((a
* seq1)
. n)
+ ((a
* seq2)
. n)) by
NORMSP_1:def 5
.= (((a
* seq1)
+ (a
* seq2))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:52
((a
+ b)
* seq)
= ((a
* seq)
+ (b
* seq))
proof
let n be
Element of
NAT ;
thus (((a
+ b)
* seq)
. n)
= ((a
+ b)
* (seq
. n)) by
NORMSP_1:def 5
.= ((a
* (seq
. n))
+ (b
* (seq
. n))) by
RLVECT_1:def 6
.= (((a
* seq)
. n)
+ (b
* (seq
. n))) by
NORMSP_1:def 5
.= (((a
* seq)
. n)
+ ((b
* seq)
. n)) by
NORMSP_1:def 5
.= (((a
* seq)
+ (b
* seq))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:53
((a
* b)
* seq)
= (a
* (b
* seq))
proof
let n be
Element of
NAT ;
thus (((a
* b)
* seq)
. n)
= ((a
* b)
* (seq
. n)) by
NORMSP_1:def 5
.= (a
* (b
* (seq
. n))) by
RLVECT_1:def 7
.= (a
* ((b
* seq)
. n)) by
NORMSP_1:def 5
.= ((a
* (b
* seq))
. n) by
NORMSP_1:def 5;
end;
theorem ::
BHSP_1:54
(1 qua
Real
* seq)
= seq
proof
let n be
Element of
NAT ;
thus ((1
* seq)
. n)
= (1
* (seq
. n)) by
NORMSP_1:def 5
.= (seq
. n) by
RLVECT_1:def 8;
end;
theorem ::
BHSP_1:55
((
- 1)
* seq)
= (
- seq)
proof
let n be
Element of
NAT ;
thus (((
- 1)
* seq)
. n)
= ((
- 1)
* (seq
. n)) by
NORMSP_1:def 5
.= (
- (seq
. n)) by
RLVECT_1: 16
.= ((
- seq)
. n) by
Th44;
end;
theorem ::
BHSP_1:56
(seq
- x)
= (seq
+ (
- x))
proof
let n be
Element of
NAT ;
thus ((seq
- x)
. n)
= ((seq
. n)
- x) by
NORMSP_1:def 4
.= ((seq
+ (
- x))
. n) by
Def6;
end;
theorem ::
BHSP_1:57
(seq1
- seq2)
= (
- (seq2
- seq1))
proof
let n be
Element of
NAT ;
thus ((seq1
- seq2)
. n)
= ((seq1
. n)
- (seq2
. n)) by
NORMSP_1:def 3
.= (
- ((seq2
. n)
- (seq1
. n))) by
RLVECT_1: 33
.= (
- ((seq2
- seq1)
. n)) by
NORMSP_1:def 3
.= ((
- (seq2
- seq1))
. n) by
Th44;
end;
theorem ::
BHSP_1:58
seq
= (seq
- (
0. X))
proof
let n be
Element of
NAT ;
thus ((seq
-
09(X))
. n)
= ((seq
. n)
-
09(X)) by
NORMSP_1:def 4
.= (seq
. n) by
RLVECT_1: 13;
end;
theorem ::
BHSP_1:59
seq
= (
- (
- seq))
proof
let n be
Element of
NAT ;
thus ((
- (
- seq))
. n)
= (
- ((
- seq)
. n)) by
Th44
.= (
- (
- (seq
. n))) by
Th44
.= (seq
. n) by
RLVECT_1: 17;
end;
theorem ::
BHSP_1:60
(seq1
- (seq2
+ seq3))
= ((seq1
- seq2)
- seq3)
proof
let n be
Element of
NAT ;
thus ((seq1
- (seq2
+ seq3))
. n)
= ((seq1
. n)
- ((seq2
+ seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
- ((seq2
. n)
+ (seq3
. n))) by
NORMSP_1:def 2
.= (((seq1
. n)
- (seq2
. n))
- (seq3
. n)) by
RLVECT_1: 27
.= (((seq1
- seq2)
. n)
- (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
- seq2)
- seq3)
. n) by
NORMSP_1:def 3;
end;
theorem ::
BHSP_1:61
((seq1
+ seq2)
- seq3)
= (seq1
+ (seq2
- seq3))
proof
let n be
Element of
NAT ;
thus (((seq1
+ seq2)
- seq3)
. n)
= (((seq1
+ seq2)
. n)
- (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
. n)
+ (seq2
. n))
- (seq3
. n)) by
NORMSP_1:def 2
.= ((seq1
. n)
+ ((seq2
. n)
- (seq3
. n))) by
RLVECT_1:def 3
.= ((seq1
. n)
+ ((seq2
- seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
+ (seq2
- seq3))
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:62
(seq1
- (seq2
- seq3))
= ((seq1
- seq2)
+ seq3)
proof
let n be
Element of
NAT ;
thus ((seq1
- (seq2
- seq3))
. n)
= ((seq1
. n)
- ((seq2
- seq3)
. n)) by
NORMSP_1:def 3
.= ((seq1
. n)
- ((seq2
. n)
- (seq3
. n))) by
NORMSP_1:def 3
.= (((seq1
. n)
- (seq2
. n))
+ (seq3
. n)) by
RLVECT_1: 29
.= (((seq1
- seq2)
. n)
+ (seq3
. n)) by
NORMSP_1:def 3
.= (((seq1
- seq2)
+ seq3)
. n) by
NORMSP_1:def 2;
end;
theorem ::
BHSP_1:63
(a
* (seq1
- seq2))
= ((a
* seq1)
- (a
* seq2))
proof
let n be
Element of
NAT ;
thus ((a
* (seq1
- seq2))
. n)
= (a
* ((seq1
- seq2)
. n)) by
NORMSP_1:def 5
.= (a
* ((seq1
. n)
- (seq2
. n))) by
NORMSP_1:def 3
.= ((a
* (seq1
. n))
- (a
* (seq2
. n))) by
RLVECT_1: 34
.= (((a
* seq1)
. n)
- (a
* (seq2
. n))) by
NORMSP_1:def 5
.= (((a
* seq1)
. n)
- ((a
* seq2)
. n)) by
NORMSP_1:def 5
.= (((a
* seq1)
- (a
* seq2))
. n) by
NORMSP_1:def 3;
end;