bvfunc11.miz
begin
reserve Y for non
empty
set,
a,b for
Function of Y,
BOOLEAN ,
G for
Subset of (
PARTITIONS Y),
A,B for
a_partition of Y;
theorem ::
BVFUNC11:1
Th1: for z be
Element of Y, PA,PB be
a_partition of Y st PA
'<' PB holds (
EqClass (z,PA))
c= (
EqClass (z,PB))
proof
let z be
Element of Y;
let PA,PB be
a_partition of Y;
assume PA
'<' PB;
then
A1: ex b be
set st b
in PB & (
EqClass (z,PA))
c= b by
SETFAM_1:def 2;
z
in (
EqClass (z,PA)) by
EQREL_1:def 6;
hence thesis by
A1,
EQREL_1:def 6;
end;
theorem ::
BVFUNC11:2
for z be
Element of Y, PA,PB be
a_partition of Y holds (
EqClass (z,PA))
c= (
EqClass (z,(PA
'\/' PB))) by
Th1,
PARTIT1: 16;
theorem ::
BVFUNC11:3
for z be
Element of Y, PA,PB be
a_partition of Y holds (
EqClass (z,(PA
'/\' PB)))
c= (
EqClass (z,PA)) by
Th1,
PARTIT1: 15;
theorem ::
BVFUNC11:4
for z be
Element of Y, PA be
a_partition of Y holds (
EqClass (z,PA))
c= (
EqClass (z,(
%O Y))) & (
EqClass (z,(
%I Y)))
c= (
EqClass (z,PA)) by
Th1,
PARTIT1: 32;
theorem ::
BVFUNC11:5
for G be
Subset of (
PARTITIONS Y), A,B be
a_partition of Y st G is
independent & G
=
{A, B} & A
<> B holds for a,b be
set st a
in A & b
in B holds a
meets b
proof
let G be
Subset of (
PARTITIONS Y);
let A,B be
a_partition of Y;
assume that
A1: G is
independent and
A2: G
=
{A, B} and
A3: A
<> B;
let a,b be
set;
assume that
A4: a
in A and
A5: b
in B;
set h2 = ((A,B)
--> (a,b));
A6: for d be
set st d
in G holds (h2
. d)
in d
proof
let d be
set;
assume d
in G;
then d
= A or d
= B by
A2,
TARSKI:def 2;
hence thesis by
A3,
A4,
A5,
FUNCT_4: 63;
end;
{a, b}
c= (
bool Y)
proof
let x be
object;
assume x
in
{a, b};
then x
= a or x
= b by
TARSKI:def 2;
hence thesis by
A4,
A5;
end;
then
reconsider SS =
{a, b} as
Subset-Family of Y;
A7: (
dom h2)
=
{A, B} by
FUNCT_4: 62;
(
rng h2)
= SS by
A3,
FUNCT_4: 64;
then (
Intersect SS)
<>
{} by
A1,
A2,
A7,
A6,
BVFUNC_2:def 5;
hence (a
/\ b)
<>
{} by
A4,
A5,
MSSUBFAM: 10;
end;
theorem ::
BVFUNC11:6
for G be
Subset of (
PARTITIONS Y), A,B be
a_partition of Y st G is
independent & G
=
{A, B} & A
<> B holds (
'/\' G)
= (A
'/\' B)
proof
let G be
Subset of (
PARTITIONS Y);
let A,B be
a_partition of Y;
assume that
A1: G is
independent and
A2: G
=
{A, B} and
A3: A
<> B;
A4: (
'/\' G)
c= (A
'/\' B)
proof
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume x
in (
'/\' G);
then
consider h be
Function, F be
Subset-Family of Y such that
A5: (
dom h)
= G and
A6: (
rng h)
= F and
A7: for d be
set st d
in G holds (h
. d)
in d and
A8: x
= (
Intersect F) and
A9: x
<>
{} by
BVFUNC_2:def 1;
A10: not x
in
{
{} } by
A9,
TARSKI:def 1;
A11: A
in G by
A2,
TARSKI:def 2;
then
A12: (h
. A)
in (
rng h) by
A5,
FUNCT_1:def 3;
then
A13: (
Intersect F)
= (
meet (
rng h)) by
A6,
SETFAM_1:def 9;
A14: ((h
. A)
/\ (h
. B))
c= xx
proof
A15: (
rng h)
=
{(h
. A), (h
. B)}
proof
thus (
rng h)
c=
{(h
. A), (h
. B)}
proof
let m be
object;
assume m
in (
rng h);
then
consider w be
object such that
A16: w
in (
dom h) and
A17: m
= (h
. w) by
FUNCT_1:def 3;
w
= A or w
= B by
A2,
A5,
A16,
TARSKI:def 2;
hence thesis by
A17,
TARSKI:def 2;
end;
let m be
object;
assume m
in
{(h
. A), (h
. B)};
then
A18: m
= (h
. A) or m
= (h
. B) by
TARSKI:def 2;
A19: B
in (
dom h) by
A2,
A5,
TARSKI:def 2;
A
in (
dom h) by
A2,
A5,
TARSKI:def 2;
hence thesis by
A18,
A19,
FUNCT_1:def 3;
end;
let m be
object;
assume
A20: m
in ((h
. A)
/\ (h
. B));
then
A21: m
in (h
. B) by
XBOOLE_0:def 4;
m
in (h
. A) by
A20,
XBOOLE_0:def 4;
then for y be
set holds y
in (
rng h) implies m
in y by
A21,
A15,
TARSKI:def 2;
hence thesis by
A8,
A12,
A13,
SETFAM_1:def 1;
end;
A22: B
in G by
A2,
TARSKI:def 2;
then
A23: (h
. B)
in B by
A7;
A24: (h
. B)
in (
rng h) by
A5,
A22,
FUNCT_1:def 3;
xx
c= ((h
. A)
/\ (h
. B))
proof
let m be
object;
assume
A25: m
in xx;
then
A26: m
in (h
. B) by
A8,
A24,
A13,
SETFAM_1:def 1;
m
in (h
. A) by
A8,
A12,
A13,
A25,
SETFAM_1:def 1;
hence thesis by
A26,
XBOOLE_0:def 4;
end;
then
A27: ((h
. A)
/\ (h
. B))
= x by
A14,
XBOOLE_0:def 10;
(h
. A)
in A by
A7,
A11;
then x
in (
INTERSECTION (A,B)) by
A23,
A27,
SETFAM_1:def 5;
then x
in ((
INTERSECTION (A,B))
\
{
{} }) by
A10,
XBOOLE_0:def 5;
hence thesis by
PARTIT1:def 4;
end;
(A
'/\' B)
c= (
'/\' G)
proof
let x be
object;
assume x
in (A
'/\' B);
then x
in ((
INTERSECTION (A,B))
\
{
{} }) by
PARTIT1:def 4;
then
consider X,Z be
set such that
A28: X
in A and
A29: Z
in B and
A30: x
= (X
/\ Z) by
SETFAM_1:def 5;
{X, Z}
c= (
bool Y)
proof
let m be
object;
assume m
in
{X, Z};
then m
= X or m
= Z by
TARSKI:def 2;
hence thesis by
A28,
A29;
end;
then
reconsider SS =
{X, Z} as
Subset-Family of Y;
A31: (X
/\ Z)
= (
Intersect SS) by
A28,
A29,
MSSUBFAM: 10;
set h = ((A,B)
--> (X,Z));
A32: for d be
set st d
in G holds (h
. d)
in d
proof
let d be
set;
assume d
in G;
then d
= A or d
= B by
A2,
TARSKI:def 2;
hence thesis by
A3,
A28,
A29,
FUNCT_4: 63;
end;
A33: (
dom h)
=
{A, B} by
FUNCT_4: 62;
A34: (
rng h)
= SS by
A3,
FUNCT_4: 64;
then (
Intersect SS)
<>
{} by
A1,
A2,
A33,
A32,
BVFUNC_2:def 5;
hence thesis by
A2,
A30,
A33,
A34,
A32,
A31,
BVFUNC_2:def 1;
end;
hence thesis by
A4;
end;
theorem ::
BVFUNC11:7
for G be
Subset of (
PARTITIONS Y), A,B be
a_partition of Y st G
=
{A, B} & A
<> B holds (
CompF (A,G))
= B
proof
let G be
Subset of (
PARTITIONS Y);
let A,B be
a_partition of Y;
assume that
A1: G
=
{A, B} and
A2: A
<> B;
A3: (
'/\'
{B})
c= B
proof
let x be
object;
assume x
in (
'/\'
{B});
then
consider h be
Function, F be
Subset-Family of Y such that
A4: (
dom h)
=
{B} and
A5: (
rng h)
= F and
A6: for d be
set st d
in
{B} holds (h
. d)
in d and
A7: x
= (
Intersect F) and x
<>
{} by
BVFUNC_2:def 1;
(
rng h)
=
{(h
. B)} by
A4,
FUNCT_1: 4;
then
A8: x
= (
meet
{(h
. B)}) by
A5,
A7,
SETFAM_1:def 9;
B
in
{B} by
TARSKI:def 1;
then (h
. B)
in B by
A6;
hence thesis by
A8,
SETFAM_1: 10;
end;
A9: B
c= (
'/\'
{B})
proof
let x be
object;
set h0 = (B
.--> x);
A10: (
dom h0)
=
{B};
assume
A11: x
in B;
A12: for d be
set st d
in
{B} holds (h0
. d)
in d
proof
let d be
set;
assume d
in
{B};
then d
= B by
TARSKI:def 1;
hence thesis by
A11,
FUNCOP_1: 72;
end;
A13: (
rng h0)
=
{x} by
FUNCOP_1: 8;
A14: x is
set by
TARSKI: 1;
(
rng h0)
c= (
bool Y)
proof
let m be
object;
assume m
in (
rng h0);
then m
= x by
A13,
TARSKI:def 1;
hence thesis by
A11;
end;
then
reconsider F0 = (
rng h0) as
Subset-Family of Y;
(
meet F0)
= (
Intersect F0) by
A13,
SETFAM_1:def 9;
then
A15: x
= (
Intersect F0) by
A13,
SETFAM_1: 10,
A14;
x
<>
{} by
A11,
EQREL_1:def 4;
hence thesis by
A10,
A12,
A15,
BVFUNC_2:def 1;
end;
A
in
{A} by
TARSKI:def 1;
then
A16: (
{A}
\
{A})
=
{} by
ZFMISC_1: 60;
(G
\
{A})
= ((
{A}
\/
{B})
\
{A}) by
A1,
ENUMSET1: 1
.= ((
{A}
\
{A})
\/ (
{B}
\
{A})) by
XBOOLE_1: 42
.= ((
{A}
\
{A})
\/
{B}) by
A2,
ZFMISC_1: 14;
then (
CompF (A,G))
= (
'/\'
{B}) by
A16,
BVFUNC_2:def 7;
hence thesis by
A3,
A9;
end;
begin
theorem ::
BVFUNC11:8
Th8: a
'<' b implies (
All (a,A,G))
'<' (
Ex (b,A,G))
proof
assume a
'<' b;
then
A1: (
All (a,A,G))
'<' (
All (b,A,G)) by
PARTIT_2: 12;
(
All (b,A,G))
'<' (
Ex (b,A,G)) by
BVFUNC_4: 17;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC11:9
Th9: G is
independent implies (
All ((
All (a,A,G)),B,G))
'<' (
Ex ((
All (a,B,G)),A,G))
proof
assume G is
independent;
then (
All ((
All (a,A,G)),B,G))
= (
All ((
All (a,B,G)),A,G)) by
PARTIT_2: 15;
hence thesis by
Th8;
end;
theorem ::
BVFUNC11:10
(
All ((
All (a,A,G)),B,G))
'<' (
Ex ((
Ex (a,B,G)),A,G))
proof
A1: (
All ((
All (a,A,G)),B,G))
'<' (
All (a,A,G)) by
BVFUNC_2: 11;
(
All (a,A,G))
'<' (
Ex ((
Ex (a,B,G)),A,G)) by
Th8,
BVFUNC_2: 12;
hence thesis by
A1,
BVFUNC_1: 15;
end;
theorem ::
BVFUNC11:11
G is
independent implies (
All ((
All (a,A,G)),B,G))
'<' (
All ((
Ex (a,B,G)),A,G))
proof
assume G is
independent;
then
A1: (
All ((
All (a,A,G)),B,G))
= (
All ((
All (a,B,G)),A,G)) by
PARTIT_2: 15;
(
All (a,B,G))
'<' (
Ex (a,B,G)) by
Th8;
hence thesis by
A1,
PARTIT_2: 12;
end;
theorem ::
BVFUNC11:12
(
All ((
Ex (a,A,G)),B,G))
'<' (
Ex ((
Ex (a,B,G)),A,G))
proof
A1: (
Ex (a,B,G))
= (
B_SUP (a,(
CompF (B,G)))) by
BVFUNC_2:def 10;
let z be
Element of Y;
assume
A2: ((
All ((
Ex (a,A,G)),B,G))
. z)
=
TRUE ;
A3:
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (B,G)))) holds ((
Ex (a,A,G))
. x)
=
TRUE );
then ((
B_INF ((
Ex (a,A,G)),(
CompF (B,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A2,
BVFUNC_2:def 9;
end;
A4: z
in (
EqClass (z,(
CompF (B,G)))) by
EQREL_1:def 6;
now
assume not (ex x be
Element of Y st x
in (
EqClass (z,(
CompF (A,G)))) & (a
. x)
=
TRUE );
then ((
B_SUP (a,(
CompF (A,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then ((
Ex (a,A,G))
. z)
=
FALSE by
BVFUNC_2:def 10;
hence contradiction by
A4,
A3;
end;
then
consider x1 be
Element of Y such that
A5: x1
in (
EqClass (z,(
CompF (A,G)))) and
A6: (a
. x1)
=
TRUE ;
x1
in (
EqClass (x1,(
CompF (B,G)))) by
EQREL_1:def 6;
then ((
Ex (a,B,G))
. x1)
=
TRUE by
A1,
A6,
BVFUNC_1:def 17;
then ((
B_SUP ((
Ex (a,B,G)),(
CompF (A,G))))
. z)
=
TRUE by
A5,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
theorem ::
BVFUNC11:13
Th13: (
'not' (
Ex ((
All (a,A,G)),B,G)))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
All (a,A,G))
= (
B_INF (a,(
CompF (A,G)))) by
BVFUNC_2:def 9;
let z be
Element of Y;
A2: z
in (
EqClass (z,(
CompF (B,G)))) by
EQREL_1:def 6;
assume ((
'not' (
Ex ((
All (a,A,G)),B,G)))
. z)
=
TRUE ;
then
A3: (
'not' ((
Ex ((
All (a,A,G)),B,G))
. z))
=
TRUE by
MARGREL1:def 19;
(
Ex ((
All (a,A,G)),B,G))
= (
B_SUP ((
All (a,A,G)),(
CompF (B,G)))) by
BVFUNC_2:def 10;
then ((
All (a,A,G))
. z)
<>
TRUE by
A3,
A2,
BVFUNC_1:def 17;
then
consider x1 be
Element of Y such that
A4: x1
in (
EqClass (z,(
CompF (A,G)))) and
A5: (a
. x1)
<>
TRUE by
A1,
BVFUNC_1:def 16;
(a
. x1)
=
FALSE by
A5,
XBOOLEAN:def 3;
then
A6: ((
'not' a)
. x1)
= (
'not'
FALSE ) by
MARGREL1:def 19;
A7: (
Ex ((
'not' a),B,G))
= (
B_SUP ((
'not' a),(
CompF (B,G)))) by
BVFUNC_2:def 10;
x1
in (
EqClass (x1,(
CompF (B,G)))) by
EQREL_1:def 6;
then ((
Ex ((
'not' a),B,G))
. x1)
=
TRUE by
A7,
A6,
BVFUNC_1:def 17;
then ((
B_SUP ((
Ex ((
'not' a),B,G)),(
CompF (A,G))))
. z)
=
TRUE by
A4,
BVFUNC_1:def 17;
hence thesis by
BVFUNC_2:def 10;
end;
theorem ::
BVFUNC11:14
Th14: G is
independent implies (
Ex ((
'not' (
All (a,A,G))),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then (
Ex ((
Ex ((
'not' a),B,G)),A,G))
= (
Ex ((
Ex ((
'not' a),A,G)),B,G)) by
PARTIT_2: 16;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:15
Th15: G is
independent implies (
'not' (
All ((
All (a,A,G)),B,G)))
= (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then (
All ((
All (a,A,G)),B,G))
= (
All ((
All (a,B,G)),A,G)) by
PARTIT_2: 15;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:16
G is
independent implies (
All ((
'not' (
All (a,A,G))),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then
A1: (
Ex ((
Ex ((
'not' a),B,G)),A,G))
= (
Ex ((
Ex ((
'not' a),A,G)),B,G)) by
PARTIT_2: 16;
(
'not' (
All (a,A,G)))
= (
Ex ((
'not' a),A,G)) by
BVFUNC_2: 18;
hence thesis by
A1,
Th8;
end;
theorem ::
BVFUNC11:17
G is
independent implies (
'not' (
All ((
All (a,A,G)),B,G)))
= (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
Ex ((
'not' a),B,G))
= (
'not' (
All (a,B,G))) by
BVFUNC_2: 18;
assume G is
independent;
hence thesis by
A1,
Th15;
end;
theorem ::
BVFUNC11:18
G is
independent implies (
'not' (
All ((
All (a,A,G)),B,G)))
'<' (
Ex ((
Ex ((
'not' a),A,G)),B,G))
proof
assume
A1: G is
independent;
then (
Ex ((
'not' (
All (a,B,G))),A,G))
'<' (
Ex ((
Ex ((
'not' a),A,G)),B,G)) by
Th14;
hence thesis by
A1,
Th15;
end;
theorem ::
BVFUNC11:19
Th19: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G))
proof
(
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 18;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:20
Th20: (
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
Ex ((
'not' a),A,G)),B,G))
proof
(
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
'not' (
All (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:21
Th21: (
'not' (
All ((
All (a,A,G)),B,G)))
= (
Ex ((
Ex ((
'not' a),A,G)),B,G))
proof
(
Ex ((
'not' (
All (a,A,G))),B,G))
= (
Ex ((
Ex ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 18;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:22
G is
independent implies (
Ex ((
All (a,A,G)),B,G))
'<' (
Ex ((
Ex (a,B,G)),A,G))
proof
assume G is
independent;
then
A1: (
Ex ((
Ex (a,B,G)),A,G))
= (
Ex ((
Ex (a,A,G)),B,G)) by
PARTIT_2: 16;
(
All (a,A,G))
'<' (
Ex (a,A,G)) by
Th8;
hence thesis by
A1,
PARTIT_2: 13;
end;
theorem ::
BVFUNC11:23
(
All ((
All (a,A,G)),B,G))
'<' (
All ((
Ex (a,A,G)),B,G))
proof
(
All (a,A,G))
'<' (
Ex (a,A,G)) by
Th8;
hence thesis by
PARTIT_2: 12;
end;
theorem ::
BVFUNC11:24
(
All ((
All (a,A,G)),B,G))
'<' (
Ex ((
Ex (a,A,G)),B,G))
proof
(
All (a,A,G))
'<' (
Ex (a,A,G)) by
Th8;
hence thesis by
Th8;
end;
theorem ::
BVFUNC11:25
(
Ex ((
All (a,A,G)),B,G))
'<' (
Ex ((
Ex (a,A,G)),B,G))
proof
(
All (a,A,G))
'<' (
Ex (a,A,G)) by
Th8;
hence thesis by
PARTIT_2: 13;
end;
theorem ::
BVFUNC11:26
Th26: G is
independent implies (
All ((
'not' (
All (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
assume G is
independent;
then (
All ((
All (a,B,G)),A,G))
= (
All ((
All (a,A,G)),B,G)) by
PARTIT_2: 15;
then (
All ((
'not' (
All (a,A,G))),B,G))
= (
'not' (
Ex ((
All (a,A,G)),B,G))) & (
All ((
All (a,B,G)),A,G))
'<' (
Ex ((
All (a,A,G)),B,G)) by
Th8,
BVFUNC_2: 19;
hence thesis by
PARTIT_2: 11;
end;
theorem ::
BVFUNC11:27
Th27: (
All ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
let z be
Element of Y;
A1: z
in (
EqClass (z,(
CompF (A,G)))) by
EQREL_1:def 6;
A2: z
in (
EqClass (z,(
CompF (B,G)))) by
EQREL_1:def 6;
assume
A3: ((
All ((
All ((
'not' a),A,G)),B,G))
. z)
=
TRUE ;
now
assume not (for x be
Element of Y st x
in (
EqClass (z,(
CompF (B,G)))) holds ((
All ((
'not' a),A,G))
. x)
=
TRUE );
then ((
B_INF ((
All ((
'not' a),A,G)),(
CompF (B,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
hence contradiction by
A3,
BVFUNC_2:def 9;
end;
then (
All ((
'not' a),A,G))
= (
B_INF ((
'not' a),(
CompF (A,G)))) & ((
All ((
'not' a),A,G))
. z)
=
TRUE by
A2,
BVFUNC_2:def 9;
then ((
'not' a)
. z)
=
TRUE by
A1,
BVFUNC_1:def 16;
then (
'not' (a
. z))
=
TRUE by
MARGREL1:def 19;
then ((
B_INF (a,(
CompF (B,G))))
. z)
=
FALSE by
A2,
BVFUNC_1:def 16;
then ((
All (a,B,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
then ((
B_INF ((
All (a,B,G)),(
CompF (A,G))))
. z)
=
FALSE by
A1,
BVFUNC_1:def 16;
then ((
All ((
All (a,B,G)),A,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
then (
'not' ((
All ((
All (a,B,G)),A,G))
. z))
=
TRUE ;
hence thesis by
MARGREL1:def 19;
end;
theorem ::
BVFUNC11:28
Th28: (
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
(
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th27;
end;
theorem ::
BVFUNC11:29
Th29: G is
independent implies (
All ((
Ex ((
'not' a),A,G)),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
(
Ex ((
'not' a),A,G))
= (
'not' (
All (a,A,G))) by
BVFUNC_2: 18;
then
A1: (
All ((
Ex ((
'not' a),A,G)),B,G))
= (
'not' (
Ex ((
All (a,A,G)),B,G))) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th9,
PARTIT_2: 11;
end;
theorem ::
BVFUNC11:30
G is
independent implies (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
assume
A1: G is
independent;
then (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
All ((
Ex ((
'not' a),B,G)),A,G)) & (
All ((
Ex ((
'not' a),B,G)),A,G))
'<' (
'not' (
All ((
All (a,A,G)),B,G))) by
Th29,
PARTIT_2: 17;
then (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
All ((
All (a,A,G)),B,G))) by
BVFUNC_1: 15;
hence thesis by
A1,
PARTIT_2: 15;
end;
theorem ::
BVFUNC11:31
Th31: G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
(
All (a,A,G))
'<' (
Ex (a,A,G)) by
Th8;
then
A1: (
All ((
All (a,A,G)),B,G))
'<' (
All ((
Ex (a,A,G)),B,G)) by
PARTIT_2: 12;
assume G is
independent;
then (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
'not' (
All ((
Ex (a,A,G)),B,G))) & (
All ((
All (a,B,G)),A,G))
= (
All ((
All (a,A,G)),B,G)) by
BVFUNC_2: 18,
PARTIT_2: 15;
hence thesis by
A1,
PARTIT_2: 11;
end;
theorem ::
BVFUNC11:32
G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G))) by
PARTIT_2: 11,
PARTIT_2: 17;
theorem ::
BVFUNC11:33
Th33: G is
independent implies (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G)))
proof
assume G is
independent;
then
A1: (
Ex ((
Ex (a,A,G)),B,G))
= (
Ex ((
Ex (a,B,G)),A,G)) by
PARTIT_2: 16;
(
All (a,B,G))
'<' (
Ex (a,B,G)) by
Th8;
then (
Ex ((
All (a,B,G)),A,G))
'<' (
Ex ((
Ex (a,A,G)),B,G)) by
A1,
PARTIT_2: 13;
hence thesis by
PARTIT_2: 11;
end;
theorem ::
BVFUNC11:34
Th34: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
All ((
Ex (a,B,G)),A,G)))
proof
let z be
Element of Y;
assume ((
'not' (
Ex ((
Ex (a,A,G)),B,G)))
. z)
=
TRUE ;
then
A1: (
'not' ((
Ex ((
Ex (a,A,G)),B,G))
. z))
=
TRUE by
MARGREL1:def 19;
A2:
now
assume ex x be
Element of Y st x
in (
EqClass (z,(
CompF (B,G)))) & ((
Ex (a,A,G))
. x)
=
TRUE ;
then ((
B_SUP ((
Ex (a,A,G)),(
CompF (B,G))))
. z)
=
TRUE by
BVFUNC_1:def 17;
then ((
Ex ((
Ex (a,A,G)),B,G))
. z)
=
TRUE by
BVFUNC_2:def 10;
hence contradiction by
A1;
end;
A3: (
Ex (a,A,G))
= (
B_SUP (a,(
CompF (A,G)))) by
BVFUNC_2:def 10;
A4: for x be
Element of Y st x
in (
EqClass (z,(
CompF (B,G)))) holds for y be
Element of Y st y
in (
EqClass (x,(
CompF (A,G)))) holds (a
. y)
<>
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (B,G))));
then ((
Ex (a,A,G))
. x)
<>
TRUE by
A2;
hence thesis by
A3,
BVFUNC_1:def 17;
end;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (B,G)))) holds (a
. x)
<>
TRUE
proof
let x be
Element of Y;
A5: x
in (
EqClass (x,(
CompF (A,G)))) by
EQREL_1:def 6;
assume x
in (
EqClass (z,(
CompF (B,G))));
hence thesis by
A4,
A5;
end;
then ((
B_SUP (a,(
CompF (B,G))))
. z)
=
FALSE by
BVFUNC_1:def 17;
then z
in (
EqClass (z,(
CompF (A,G)))) & ((
Ex (a,B,G))
. z)
=
FALSE by
BVFUNC_2:def 10,
EQREL_1:def 6;
then ((
B_INF ((
Ex (a,B,G)),(
CompF (A,G))))
. z)
=
FALSE by
BVFUNC_1:def 16;
then ((
All ((
Ex (a,B,G)),A,G))
. z)
=
FALSE by
BVFUNC_2:def 9;
then (
'not' ((
All ((
Ex (a,B,G)),A,G))
. z))
=
TRUE ;
hence thesis by
MARGREL1:def 19;
end;
theorem ::
BVFUNC11:35
G is
independent implies (
'not' (
Ex ((
All (a,A,G)),B,G)))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
assume G is
independent;
then (
All ((
'not' (
All (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) by
Th26;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:36
G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
assume G is
independent;
then
A1: (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) by
Th31;
(
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
hence thesis by
A1,
Th19;
end;
theorem ::
BVFUNC11:37
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
All ((
All (a,B,G)),A,G)))
proof
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) by
Th28;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:38
Th38: G is
independent implies (
'not' (
Ex ((
All (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then
A1: (
All ((
'not' (
All (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) by
Th26;
(
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
'not' (
All (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
A1,
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:39
Th39: G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then
A1: (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) by
Th31;
(
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) & (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19,
BVFUNC_2: 19;
hence thesis by
A1,
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:40
Th40: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
All (a,B,G)),A,G))) & (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
Th28,
BVFUNC_2: 19;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:41
Th41: G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G))) by
PARTIT_2: 11,
PARTIT_2: 17;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:42
Th42: G is
independent implies (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G))) by
Th33;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:43
Th43: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
Ex (a,B,G))),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
All ((
Ex (a,B,G)),A,G))) & (
Ex ((
'not' (
Ex (a,B,G))),A,G))
= (
Ex ((
All ((
'not' a),B,G)),A,G)) by
Th34,
BVFUNC_2: 19;
hence thesis by
Th19;
end;
theorem ::
BVFUNC11:44
Th44: G is
independent implies (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,B,G))),A,G))
proof
assume G is
independent;
then (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
'not' (
Ex ((
Ex (a,B,G)),A,G))) by
PARTIT_2: 16;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:45
Th45: G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G)) by
Th39;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:46
Th46: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G)) by
Th40;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:47
Th47: G is
independent implies (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
All ((
Ex ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
All ((
'not' (
All (a,B,G))),A,G)) by
Th41;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:48
Th48: G is
independent implies (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
All ((
Ex ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
All ((
'not' (
All (a,B,G))),A,G)) by
Th42;
hence thesis by
BVFUNC_2: 18;
end;
theorem ::
BVFUNC11:49
Th49: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
All ((
'not' a),B,G)),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
Ex ((
'not' (
Ex (a,B,G))),A,G)) by
Th43;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:50
Th50: G is
independent implies (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
All ((
'not' a),B,G)),A,G))
proof
assume G is
independent;
then (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,B,G))),A,G)) by
Th44;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:51
G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G)))
proof
assume G is
independent;
then
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G))) by
PARTIT_2: 11,
PARTIT_2: 17;
(
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19;
hence thesis by
A1,
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:52
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G)))
proof
let z be
Element of Y;
A1: (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
B_INF ((
'not' (
Ex (a,A,G))),(
CompF (B,G)))) & z
in (
EqClass (z,(
CompF (B,G)))) by
BVFUNC_2:def 9,
EQREL_1:def 6;
assume ((
All ((
'not' (
Ex (a,A,G))),B,G))
. z)
=
TRUE ;
then ((
'not' (
Ex (a,A,G)))
. z)
=
TRUE by
A1,
BVFUNC_1:def 16;
then
A2: (
Ex (a,A,G))
= (
B_SUP (a,(
CompF (A,G)))) & (
'not' ((
Ex (a,A,G))
. z))
=
TRUE by
BVFUNC_2:def 10,
MARGREL1:def 19;
A3: (
All (a,B,G))
= (
B_INF (a,(
CompF (B,G)))) by
BVFUNC_2:def 9;
for x be
Element of Y st x
in (
EqClass (z,(
CompF (A,G)))) holds ((
All (a,B,G))
. x)
<>
TRUE
proof
let x be
Element of Y;
assume x
in (
EqClass (z,(
CompF (A,G))));
then
A4: (a
. x)
<>
TRUE by
A2,
BVFUNC_1:def 17;
x
in (
EqClass (x,(
CompF (B,G)))) by
EQREL_1:def 6;
hence thesis by
A3,
A4,
BVFUNC_1:def 16;
end;
then (
Ex ((
All (a,B,G)),A,G))
= (
B_SUP ((
All (a,B,G)),(
CompF (A,G)))) & ((
B_SUP ((
All (a,B,G)),(
CompF (A,G))))
. z)
=
FALSE by
BVFUNC_1:def 17,
BVFUNC_2:def 10;
then (
'not' ((
Ex ((
All (a,B,G)),A,G))
. z))
=
TRUE ;
hence thesis by
MARGREL1:def 19;
end;
theorem ::
BVFUNC11:53
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
'not' (
All ((
Ex (a,B,G)),A,G)))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th34;
end;
theorem ::
BVFUNC11:54
G is
independent implies (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
'not' (
Ex ((
Ex (a,B,G)),A,G)))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
PARTIT_2: 16;
end;
theorem ::
BVFUNC11:55
G is
independent implies (
Ex ((
'not' (
All (a,A,G))),B,G))
= (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
All (a,A,G)),B,G)))
= (
Ex ((
'not' (
All (a,A,G))),B,G)) by
BVFUNC_2: 18;
assume G is
independent;
hence thesis by
A1,
Th15;
end;
theorem ::
BVFUNC11:56
G is
independent implies (
All ((
'not' (
All (a,A,G))),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
'not' (
All (a,A,G))),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th38;
end;
theorem ::
BVFUNC11:57
G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) & (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19,
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th39;
end;
theorem ::
BVFUNC11:58
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th40;
end;
theorem ::
BVFUNC11:59
G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) & (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19,
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th41;
end;
theorem ::
BVFUNC11:60
G is
independent implies (
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
assume G is
independent;
then (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
'<' (
All ((
'not' (
All (a,B,G))),A,G)) by
Th42;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:61
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
'not' (
Ex (a,B,G))),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th43;
end;
theorem ::
BVFUNC11:62
G is
independent implies (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
'not' (
Ex (a,B,G))),A,G))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th44;
end;
theorem ::
BVFUNC11:63
G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) & (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19,
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th45;
end;
theorem ::
BVFUNC11:64
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th46;
end;
theorem ::
BVFUNC11:65
G is
independent implies (
Ex ((
'not' (
Ex (a,A,G))),B,G))
'<' (
All ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) & (
Ex ((
'not' (
Ex (a,A,G))),B,G))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19,
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th47;
end;
theorem ::
BVFUNC11:66
G is
independent implies (
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
All ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th48;
end;
theorem ::
BVFUNC11:67
(
All ((
'not' (
Ex (a,A,G))),B,G))
'<' (
Ex ((
All ((
'not' a),B,G)),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th49;
end;
theorem ::
BVFUNC11:68
G is
independent implies (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),B,G)),A,G))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th50;
end;
theorem ::
BVFUNC11:69
G is
independent implies (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G)))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19;
assume G is
independent;
hence thesis by
A1,
PARTIT_2: 11,
PARTIT_2: 17;
end;
theorem ::
BVFUNC11:70
G is
independent implies (
All ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
Ex ((
All (a,B,G)),A,G)))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th33;
end;
theorem ::
BVFUNC11:71
(
All ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
All ((
Ex (a,B,G)),A,G)))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th34;
end;
theorem ::
BVFUNC11:72
G is
independent implies (
All ((
All ((
'not' a),A,G)),B,G))
'<' (
'not' (
Ex ((
Ex (a,B,G)),A,G)))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
PARTIT_2: 16;
end;
theorem ::
BVFUNC11:73
G is
independent implies (
Ex ((
Ex ((
'not' a),A,G)),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
All (a,A,G)),B,G)))
= (
Ex ((
Ex ((
'not' a),A,G)),B,G)) by
Th21;
assume G is
independent;
hence thesis by
A1,
Th15;
end;
theorem ::
BVFUNC11:74
G is
independent implies (
All ((
Ex ((
'not' a),A,G)),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
Ex ((
'not' a),A,G)),B,G)) by
Th20;
assume G is
independent;
hence thesis by
A1,
Th38;
end;
theorem ::
BVFUNC11:75
G is
independent implies (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19;
assume G is
independent;
hence thesis by
A1,
Th39;
end;
theorem ::
BVFUNC11:76
(
All ((
All ((
'not' a),A,G)),B,G))
'<' (
Ex ((
'not' (
All (a,B,G))),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th40;
end;
theorem ::
BVFUNC11:77
G is
independent implies (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19;
assume G is
independent;
hence thesis by
A1,
Th41;
end;
theorem ::
BVFUNC11:78
G is
independent implies (
All ((
All ((
'not' a),A,G)),B,G))
'<' (
All ((
'not' (
All (a,B,G))),A,G))
proof
A1: (
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
assume G is
independent;
hence thesis by
A1,
Th42;
end;
theorem ::
BVFUNC11:79
(
All ((
All ((
'not' a),A,G)),B,G))
'<' (
Ex ((
'not' (
Ex (a,B,G))),A,G))
proof
(
'not' (
Ex ((
Ex (a,A,G)),B,G)))
= (
All ((
'not' (
Ex (a,A,G))),B,G)) & (
All ((
'not' (
Ex (a,A,G))),B,G))
= (
All ((
All ((
'not' a),A,G)),B,G)) by
BVFUNC_2: 19;
hence thesis by
Th43;
end;
theorem ::
BVFUNC11:80
G is
independent implies (
All ((
All ((
'not' a),A,G)),B,G))
= (
All ((
'not' (
Ex (a,B,G))),A,G))
proof
assume G is
independent;
then (
All ((
All ((
'not' a),A,G)),B,G))
= (
All ((
All ((
'not' a),B,G)),A,G)) by
PARTIT_2: 15;
hence thesis by
BVFUNC_2: 19;
end;
theorem ::
BVFUNC11:81
(
All ((
Ex ((
'not' a),A,G)),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
(
'not' (
Ex ((
All (a,A,G)),B,G)))
= (
All ((
Ex ((
'not' a),A,G)),B,G)) by
Th20;
hence thesis by
Th13;
end;
theorem ::
BVFUNC11:82
G is
independent implies (
Ex ((
All ((
'not' a),A,G)),B,G))
'<' (
Ex ((
Ex ((
'not' a),B,G)),A,G))
proof
A1: (
'not' (
All ((
Ex (a,A,G)),B,G)))
= (
Ex ((
All ((
'not' a),A,G)),B,G)) by
Th19;
assume G is
independent;
hence thesis by
A1,
Th45;
end;