card_fin.miz
    
    begin
    
    reserve x,x1,x2,y,z,X9 for
    set, 
    
X,Y for
    finite  
    set, 
    
n,k,m for
    Nat, 
    
f for
    Function;
    
    ::$Canceled
    
    theorem :: 
    
    CARD_FIN:2
    
    
    
    
    
    Th1: for X, Y, x, y st (Y 
    =  
    {} implies X 
    =  
    {} ) & not x 
    in X holds ( 
    card ( 
    Funcs (X,Y))) 
    = ( 
    card { F where F be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) : (
    rng (F 
    | X)) 
    c= Y & (F 
    . x) 
    = y }) 
    
    proof
    
      defpred
    
    P[
    set, 
    set, 
    set] means 1
    = 1; 
    
      let X, Y, x, y;
    
      assume
    
      
    
    A1: Y 
    =  
    {} implies X 
    =  
    {} ; 
    
      set F2 = { f where f be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) :
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y }; 
    
      
    
      
    
    A2: for f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st (f
    . x) 
    = y holds 
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] iff
    P[(f
    | X), X, Y]; 
    
      set F1 = { f where f be
    Function of X, Y : 
    P[f, X, Y] };
    
      assume
    
      
    
    A3: not x 
    in X; 
    
      set F3 = { F where F be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) : (
    rng (F 
    | X)) 
    c= Y & (F 
    . x) 
    = y }; 
    
      
    
      
    
    A4: ( 
    Funcs (X,Y)) 
    c= F1 
    
      proof
    
        let F be
    object;
    
        assume F
    in ( 
    Funcs (X,Y)); 
    
        then F is
    Function of X, Y by 
    FUNCT_2: 66;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A5: F2 
    c= F3 
    
      proof
    
        let F be
    object;
    
        assume F
    in F2; 
    
        then ex f be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st f
    = F & 
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y; 
    
        hence thesis;
    
      end;
    
      
    
      
    
    A6: Y is 
    empty implies X is 
    empty by 
    A1;
    
      
    
      
    
    A7: ( 
    card F1) 
    = ( 
    card F2) from 
    STIRL2_1:sch 4(
    A6,
    A3,
    A2);
    
      
    
      
    
    A8: F3 
    c= F2 
    
      proof
    
        let F be
    object;
    
        assume F
    in F3; 
    
        then ex f be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st f
    = F & ( 
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y; 
    
        hence thesis;
    
      end;
    
      F1
    c= ( 
    Funcs (X,Y)) 
    
      proof
    
        let F be
    object;
    
        assume F
    in F1; 
    
        then ex f be
    Function of X, Y st f 
    = F & 
    P[f, X, Y];
    
        hence thesis by
    A1,
    FUNCT_2: 8;
    
      end;
    
      then (
    Funcs (X,Y)) 
    = F1 by 
    A4;
    
      hence thesis by
    A5,
    A8,
    A7,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    CARD_FIN:3
    
    
    
    
    
    Th2: for X, Y, x, y st not x 
    in X & y 
    in Y holds ( 
    card ( 
    Funcs (X,Y))) 
    = ( 
    card { F where F be 
    Function of (X 
    \/  
    {x}), Y : (F
    . x) 
    = y }) 
    
    proof
    
      let X, Y, x, y such that
    
      
    
    A1: not x 
    in X and 
    
      
    
    A2: y 
    in Y; 
    
      set F2 = { F where F be
    Function of (X 
    \/  
    {x}), Y : (F
    . x) 
    = y }; 
    
      set F1 = { F where F be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) : (
    rng (F 
    | X)) 
    c= Y & (F 
    . x) 
    = y }; 
    
      
    {y}
    c= Y by 
    A2,
    ZFMISC_1: 31;
    
      then
    
      
    
    A3: Y 
    = (Y 
    \/  
    {y}) by
    XBOOLE_1: 12;
    
      
    
      
    
    A4: F2 
    c= F1 
    
      proof
    
        let f be
    object;
    
        assume f
    in F2; 
    
        then
    
        consider F be
    Function of (X 
    \/  
    {x}), Y such that
    
        
    
    A5: f 
    = F & (F 
    . x) 
    = y; 
    
        (
    rng (F 
    | X)) 
    c= Y; 
    
        hence thesis by
    A3,
    A5;
    
      end;
    
      F1
    c= F2 
    
      proof
    
        let f be
    object;
    
        assume f
    in F1; 
    
        then ex F be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st f
    = F & ( 
    rng (F 
    | X)) 
    c= Y & (F 
    . x) 
    = y; 
    
        hence thesis by
    A3;
    
      end;
    
      then F1
    = F2 by 
    A4;
    
      hence thesis by
    A1,
    A2,
    Th1;
    
    end;
    
    theorem :: 
    
    CARD_FIN:4
    
    
    
    
    
    Th3: (Y 
    =  
    {} implies X 
    =  
    {} ) implies ( 
    card ( 
    Funcs (X,Y))) 
    = (( 
    card Y) 
    |^ ( 
    card X)) 
    
    proof
    
      assume
    
      
    
    A1: Y 
    =  
    {} implies X 
    =  
    {} ; 
    
      per cases ;
    
        suppose
    
        
    
    A2: Y is 
    empty;
    
        then (
    card ( 
    Funcs (X,Y))) 
    = 1 by 
    A1,
    CARD_1: 30,
    FUNCT_2: 127;
    
        hence thesis by
    A1,
    A2,
    NEWTON: 4;
    
      end;
    
        suppose
    
        
    
    A3: Y is non 
    empty;
    
        defpred
    
    P[
    Nat] means for X, Y st Y is non
    empty & ( 
    card X) 
    = $1 holds ( 
    card ( 
    Funcs (X,Y))) 
    = (( 
    card Y) 
    |^ ( 
    card X)); 
    
        
    
        
    
    A4: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
        proof
    
          defpred
    
    Q[
    set] means 1
    = 1; 
    
          let n such that
    
          
    
    A5: 
    P[n];
    
          let X, Y such that
    
          
    
    A6: Y is non 
    empty and 
    
          
    
    A7: ( 
    card X) 
    = (n 
    + 1); 
    
          reconsider nn = n as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          reconsider cY = ((
    card Y) 
    |^ nn) as 
    Element of 
    NAT ; 
    
          ((
    card Y),Y) 
    are_equipotent by 
    CARD_1:def 2;
    
          then
    
          consider f be
    Function such that 
    
          
    
    A8: f is 
    one-to-one and 
    
          
    
    A9: ( 
    dom f) 
    = ( 
    card Y) and 
    
          
    
    A10: ( 
    rng f) 
    = Y by 
    WELLORD2:def 4;
    
          reconsider f as
    Function of ( 
    card Y), Y by 
    A9,
    A10,
    FUNCT_2: 1;
    
          consider x be
    object such that 
    
          
    
    A11: x 
    in X by 
    A7,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
          reconsider x as
    set by 
    TARSKI: 1;
    
          
    
          
    
    A12: x 
    in X by 
    A11;
    
          
    
          
    
    A13: f is 
    onto
    one-to-one by 
    A8,
    A10,
    FUNCT_2:def 3;
    
          consider F be
    XFinSequence of 
    NAT such that 
    
          
    
    A14: ( 
    dom F) 
    = ( 
    card Y) and 
    
          
    
    A15: ( 
    card { g where g be 
    Function of X, Y : 
    Q[g] })
    = ( 
    Sum F) and 
    
          
    
    A16: for k st k 
    in ( 
    dom F) holds (F 
    . k) 
    = ( 
    card { g where g be 
    Function of X, Y : 
    Q[g] & (g
    . x) 
    = (f 
    . k) }) from 
    STIRL2_1:sch 6(
    A13,
    A6,
    A12);
    
          
    
          
    
    A17: for k be 
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    = cY 
    
          proof
    
            set Xx = (X
    \  
    {x});
    
            let k be
    Nat such that 
    
            
    
    A18: k 
    in ( 
    dom F); 
    
            
    
            
    
    A19: (f 
    . k) 
    in ( 
    rng f) by 
    A9,
    A14,
    A18,
    FUNCT_1:def 3;
    
            set F3 = { g where g be
    Function of X, Y : 
    Q[g] & (g
    . x) 
    = (f 
    . k) }; 
    
            set F2 = { g where g be
    Function of (Xx 
    \/  
    {x}), Y : (g
    . x) 
    = (f 
    . k) }; 
    
            
    
            
    
    A20: F3 
    c= F2 
    
            proof
    
              let G be
    object;
    
              assume G
    in F3; 
    
              then
    
              
    
    A21: ex g be 
    Function of X, Y st g 
    = G & 
    Q[g] & (g
    . x) 
    = (f 
    . k); 
    
              (Xx
    \/  
    {x})
    = X by 
    A12,
    ZFMISC_1: 116;
    
              hence thesis by
    A21;
    
            end;
    
            F2
    c= F3 
    
            proof
    
              let G be
    object;
    
              assume G
    in F2; 
    
              then
    
              
    
    A22: ex g be 
    Function of (Xx 
    \/  
    {x}), Y st g
    = G & (g 
    . x) 
    = (f 
    . k); 
    
              (Xx
    \/  
    {x})
    = X by 
    A12,
    ZFMISC_1: 116;
    
              hence thesis by
    A22;
    
            end;
    
            then
    
            
    
    A23: F2 
    = F3 by 
    A20;
    
            (
    card Xx) 
    = n by 
    A7,
    A12,
    STIRL2_1: 55;
    
            then
    
            
    
    A24: ( 
    card ( 
    Funcs (Xx,Y))) 
    = cY by 
    A5,
    A19;
    
            x
    in  
    {x} by
    TARSKI:def 1;
    
            then not x
    in Xx by 
    XBOOLE_0:def 5;
    
            then (
    card ( 
    Funcs (Xx,Y))) 
    = ( 
    card F2) by 
    A19,
    Th2;
    
            hence thesis by
    A16,
    A18,
    A23,
    A24;
    
          end;
    
          then for k be
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    >= cY; 
    
          then
    
          
    
    A25: ( 
    Sum F) 
    >= (( 
    len F) 
    * (( 
    card Y) 
    |^ n)) by 
    AFINSQ_2: 60;
    
          set F1 = { g where g be
    Function of X, Y : 
    Q[g] };
    
          
    
          
    
    A26: ( 
    Funcs (X,Y)) 
    c= F1 
    
          proof
    
            let G be
    object;
    
            assume G
    in ( 
    Funcs (X,Y)); 
    
            then G is
    Function of X, Y by 
    FUNCT_2: 66;
    
            hence thesis;
    
          end;
    
          F1
    c= ( 
    Funcs (X,Y)) 
    
          proof
    
            let G be
    object;
    
            assume G
    in F1; 
    
            then ex g be
    Function of X, Y st g 
    = G & 
    Q[g];
    
            hence thesis by
    A6,
    FUNCT_2: 8;
    
          end;
    
          then
    
          
    
    A27: ( 
    Funcs (X,Y)) 
    = F1 by 
    A26;
    
          for k be
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    <= cY by 
    A17;
    
          then (
    Sum F) 
    <= (( 
    len F) 
    * (( 
    card Y) 
    |^ n)) by 
    AFINSQ_2: 59;
    
          then (
    Sum F) 
    = (( 
    card Y) 
    * (( 
    card Y) 
    |^ n)) by 
    A14,
    A25,
    XXREAL_0: 1;
    
          hence thesis by
    A7,
    A15,
    A27,
    NEWTON: 6;
    
        end;
    
        
    
        
    
    A28: 
    P[
    0 ] 
    
        proof
    
          let X, Y such that Y is non
    empty and 
    
          
    
    A29: ( 
    card X) 
    =  
    0 ; 
    
          X is
    empty by 
    A29;
    
          then (
    Funcs (X,Y)) 
    =  
    {
    {} } by 
    FUNCT_5: 57;
    
          then (
    card ( 
    Funcs (X,Y))) 
    = 1 by 
    CARD_1: 30;
    
          hence thesis by
    A29,
    NEWTON: 4;
    
        end;
    
        for n holds
    P[n] from
    NAT_1:sch 2(
    A28,
    A4);
    
        hence thesis by
    A3;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:5
    
    
    
    
    
    Th4: for X, Y, x, y st (Y is 
    empty implies X is 
    empty) & not x
    in X & not y 
    in Y holds ( 
    card { F where F be 
    Function of X, Y : F is 
    one-to-one })
    = ( 
    card { F where F be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) : F is
    one-to-one & (F 
    . x) 
    = y }) 
    
    proof
    
      let X, Y, x, y such that
    
      
    
    A1: Y is 
    empty implies X is 
    empty and 
    
      
    
    A2: not x 
    in X and 
    
      
    
    A3: not y 
    in Y; 
    
      defpred
    
    P[
    Function, 
    set, 
    set] means $1 is
    one-to-one & ( 
    rng ($1 
    | X)) 
    c= Y; 
    
      
    
      
    
    A4: for f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st (f
    . x) 
    = y holds 
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] iff
    P[(f
    | X), X, Y] 
    
      proof
    
        let f be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) such that
    
        
    
    A5: (f 
    . x) 
    = y; 
    
        thus
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] implies
    P[(f
    | X), X, Y] by 
    FUNCT_1: 52;
    
        thus
    P[(f
    | X), X, Y] implies 
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})]
    
        proof
    
          ((X
    \/  
    {x})
    /\ X) 
    = X & ( 
    dom f) 
    = (X 
    \/  
    {x}) by
    FUNCT_2:def 1,
    XBOOLE_1: 21;
    
          then
    
          
    
    A6: ( 
    dom (f 
    | X)) 
    = X by 
    RELAT_1: 61;
    
          assume that
    
          
    
    A7: (f 
    | X) is 
    one-to-one and 
    
          
    
    A8: ( 
    rng ((f 
    | X) 
    | X)) 
    c= Y; 
    
          (
    rng (f 
    | X)) 
    c= Y by 
    A8;
    
          then (f
    | X) is 
    Function of X, Y by 
    A6,
    FUNCT_2: 2;
    
          hence thesis by
    A1,
    A3,
    A5,
    A7,
    A8,
    STIRL2_1: 58;
    
        end;
    
      end;
    
      set F3 = { F where F be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) : F is
    one-to-one & (F 
    . x) 
    = y }; 
    
      
    
      
    
    A9: F3 
    c= { f where f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) :
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y } 
    
      proof
    
        let z be
    object;
    
        assume z
    in F3; 
    
        then
    
        consider F be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) such that
    
        
    
    A10: z 
    = F and 
    
        
    
    A11: F is 
    one-to-one & (F 
    . x) 
    = y; 
    
        (
    rng (F 
    | X)) 
    c= Y 
    
        proof
    
          
    
          
    
    A12: ( 
    dom F) 
    = (X 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
          x
    in  
    {x} by
    TARSKI:def 1;
    
          then
    
          
    
    A13: x 
    in ( 
    dom F) by 
    A12,
    XBOOLE_0:def 3;
    
          assume not (
    rng (F 
    | X)) 
    c= Y; 
    
          then
    
          consider fz be
    object such that 
    
          
    
    A14: fz 
    in ( 
    rng (F 
    | X)) and 
    
          
    
    A15: not fz 
    in Y; 
    
          consider z be
    object such that 
    
          
    
    A16: z 
    in ( 
    dom (F 
    | X)) and 
    
          
    
    A17: fz 
    = ((F 
    | X) 
    . z) by 
    A14,
    FUNCT_1:def 3;
    
          
    
          
    
    A18: z 
    in ( 
    dom F) by 
    A16,
    RELAT_1: 57;
    
          
    
          
    
    A19: fz 
    in Y or fz 
    in  
    {y} by
    A14,
    XBOOLE_0:def 3;
    
          
    
          
    
    A20: z 
    in X by 
    A16;
    
          (F
    . z) 
    = ((F 
    | X) 
    . z) by 
    A16,
    FUNCT_1: 47;
    
          then y
    = (F 
    . z) by 
    A15,
    A17,
    A19,
    TARSKI:def 1;
    
          hence thesis by
    A2,
    A11,
    A13,
    A20,
    A18;
    
        end;
    
        hence thesis by
    A10,
    A11;
    
      end;
    
      
    
      
    
    A21: { f where f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) :
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y } 
    c= F3 
    
      proof
    
        let z be
    object;
    
        assume z
    in { f where f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) :
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y }; 
    
        then ex f be
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) st z
    = f & 
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y; 
    
        hence thesis;
    
      end;
    
      set F2 = { f where f be
    Function of X, Y : f is 
    one-to-one & ( 
    rng (f 
    | X)) 
    c= Y }; 
    
      set F1 = { F where F be
    Function of X, Y : F is 
    one-to-one };
    
      
    
      
    
    A22: F1 
    c= F2 
    
      proof
    
        let z be
    object;
    
        assume z
    in F1; 
    
        then
    
        consider F be
    Function of X, Y such that 
    
        
    
    A23: z 
    = F & F is 
    one-to-one;
    
        (
    rng (F 
    | X)) 
    c= ( 
    rng F); 
    
        hence thesis by
    A23;
    
      end;
    
      
    
      
    
    A24: not x 
    in X by 
    A2;
    
      
    
      
    
    A25: ( 
    card { f where f be 
    Function of X, Y : 
    P[f, X, Y] })
    = ( 
    card { f where f be 
    Function of (X 
    \/  
    {x}), (Y
    \/  
    {y}) :
    P[f, (X
    \/  
    {x}), (Y
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c= Y & (f 
    . x) 
    = y }) from 
    STIRL2_1:sch 4(
    A1,
    A24,
    A4);
    
      F2
    c= F1 
    
      proof
    
        let z be
    object;
    
        assume z
    in F2; 
    
        then ex f be
    Function of X, Y st z 
    = f & f is 
    one-to-one & ( 
    rng (f 
    | X)) 
    c= Y; 
    
        hence thesis;
    
      end;
    
      then F2
    = F1 by 
    A22;
    
      hence thesis by
    A9,
    A21,
    A25,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    CARD_FIN:6
    
    ((n
    ! ) 
    / ((n 
    -' k) 
    ! )) is 
    Element of 
    NAT  
    
    proof
    
      ((n
    ! ) 
    / ((n 
    -' k) 
    ! )) is 
    integer by 
    IRRAT_1: 36,
    NAT_D: 35;
    
      hence thesis by
    INT_1: 3;
    
    end;
    
    theorem :: 
    
    CARD_FIN:7
    
    
    
    
    
    Th6: ( 
    card X) 
    <= ( 
    card Y) implies ( 
    card { F where F be 
    Function of X, Y : F is 
    one-to-one })
    = ((( 
    card Y) 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) 
    
    proof
    
      defpred
    
    P[
    Nat] means for X, Y st (
    card Y) 
    = $1 & ( 
    card X) 
    <= ( 
    card Y) holds ( 
    card { F where F be 
    Function of X, Y : F is 
    one-to-one })
    = ((( 
    card Y) 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )); 
    
      
    
      
    
    A1: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n such that
    
        
    
    A2: 
    P[n];
    
        let X, Y such that
    
        
    
    A3: ( 
    card Y) 
    = (n 
    + 1) and 
    
        
    
    A4: ( 
    card X) 
    <= ( 
    card Y); 
    
        per cases ;
    
          suppose
    
          
    
    A5: X is 
    empty;
    
          set F1 = { F where F be
    Function of X, Y : F is 
    one-to-one };
    
          
    
          
    
    A6: F1 
    c=  
    {
    {} } 
    
          proof
    
            let x be
    object;
    
            assume x
    in F1; 
    
            then ex F be
    Function of X, Y st x 
    = F & F is 
    one-to-one;
    
            then x
    =  
    {} by 
    A5;
    
            hence thesis by
    TARSKI:def 1;
    
          end;
    
          
    
          
    
    A7: ( 
    rng  
    {} ) 
    c= Y; 
    
          ((
    card Y) 
    - ( 
    card X)) 
    = ( 
    card Y) by 
    A5;
    
          then
    
          
    
    A8: ((( 
    card Y) 
    -' ( 
    card X)) 
    ! ) 
    = (( 
    card Y) 
    ! ) by 
    XREAL_0:def 2;
    
          
    
          
    
    A9: ((( 
    card Y) 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) 
    = 1 by 
    A8,
    XCMPLX_1: 60;
    
          (
    dom  
    {} ) 
    = X by 
    A5;
    
          then
    {} is 
    Function of X, Y by 
    A7,
    FUNCT_2: 2;
    
          then
    {}  
    in F1; 
    
          then F1
    =  
    {
    {} } by 
    A6,
    ZFMISC_1: 33;
    
          hence thesis by
    A9,
    CARD_1: 30;
    
        end;
    
          suppose X is non
    empty;
    
          then
    
          consider x be
    object such that 
    
          
    
    A10: x 
    in X; 
    
          reconsider x as
    set by 
    TARSKI: 1;
    
          
    
          
    
    A11: x 
    in X by 
    A10;
    
          defpred
    
    F[
    Function] means $1 is
    one-to-one;
    
          ((
    card Y),Y) 
    are_equipotent by 
    CARD_1:def 2;
    
          then
    
          consider f be
    Function such that 
    
          
    
    A12: f is 
    one-to-one and 
    
          
    
    A13: ( 
    dom f) 
    = ( 
    card Y) and 
    
          
    
    A14: ( 
    rng f) 
    = Y by 
    WELLORD2:def 4;
    
          reconsider f as
    Function of ( 
    card Y), Y by 
    A13,
    A14,
    FUNCT_2: 1;
    
          
    
          
    
    A15: Y is non 
    empty by 
    A3;
    
          
    
          
    
    A16: f is 
    onto
    one-to-one by 
    A12,
    A14,
    FUNCT_2:def 3;
    
          consider F be
    XFinSequence of 
    NAT such that 
    
          
    
    A17: ( 
    dom F) 
    = ( 
    card Y) and 
    
          
    
    A18: ( 
    card { g where g be 
    Function of X, Y : 
    F[g] })
    = ( 
    Sum F) and 
    
          
    
    A19: for k st k 
    in ( 
    dom F) holds (F 
    . k) 
    = ( 
    card { g where g be 
    Function of X, Y : 
    F[g] & (g
    . x) 
    = (f 
    . k) }) from 
    STIRL2_1:sch 6(
    A16,
    A15,
    A11);
    
          
    
          
    
    A20: for k be 
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    = ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) 
    
          proof
    
            (
    card X) 
    >  
    0 by 
    A11;
    
            then
    
            reconsider cX1 = ((
    card X) 
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
            set Xx = (X
    \  
    {x});
    
            x
    in  
    {x} by
    TARSKI:def 1;
    
            then
    
            
    
    A21: not x 
    in Xx by 
    XBOOLE_0:def 5;
    
            
    
            
    
    A22: X 
    = (Xx 
    \/  
    {x}) by
    A11,
    ZFMISC_1: 116;
    
            
    
            
    
    A23: ((cX1 
    + 1) 
    - 1) 
    <= ((n 
    + 1) 
    - 1) by 
    A3,
    A4,
    XREAL_1: 9;
    
            then
    
            
    
    A24: (n 
    - cX1) 
    >= (cX1 
    - cX1) by 
    XREAL_1: 9;
    
            let k be
    Nat such that 
    
            
    
    A25: k 
    in ( 
    dom F); 
    
            
    
            
    
    A26: (f 
    . k) 
    in Y by 
    A13,
    A14,
    A17,
    A25,
    FUNCT_1:def 3;
    
            set Yy = (Y
    \  
    {(f
    . k)}); 
    
            
    
            
    
    A27: Y 
    = (Yy 
    \/  
    {(f
    . k)}) by 
    A26,
    ZFMISC_1: 116;
    
            (f
    . k) 
    in  
    {(f
    . k)} by 
    TARSKI:def 1;
    
            then
    
            
    
    A28: not (f 
    . k) 
    in Yy by 
    XBOOLE_0:def 5;
    
            (cX1
    + 1) 
    <= (n 
    + 1) by 
    A3,
    A4;
    
            then
    
            
    
    A29: ( 
    card Xx) 
    = cX1 by 
    A11,
    STIRL2_1: 55;
    
            
    
            
    
    A30: ( 
    card Yy) 
    = n by 
    A3,
    A26,
    STIRL2_1: 55;
    
            then
    
            
    
    A31: Yy is 
    empty implies Xx is 
    empty by 
    A23,
    A29;
    
            
    
            
    
    A32: ( 
    card { g where g be 
    Function of Xx, Yy : g is 
    one-to-one })
    = ((n 
    ! ) 
    / ((( 
    card Yy) 
    -' ( 
    card Xx)) 
    ! )) by 
    A2,
    A23,
    A29,
    A30;
    
            ((
    card Y) 
    - ( 
    card X)) 
    >= (( 
    card X) 
    - ( 
    card X)) by 
    A4,
    XREAL_1: 9;
    
            
    
            then ((
    card Y) 
    -' ( 
    card X)) 
    = (((( 
    card Yy) 
    + 1) 
    - 1) 
    - ((( 
    card Xx) 
    + 1) 
    - 1)) by 
    A3,
    A29,
    A30,
    XREAL_0:def 2
    
            .= ((
    card Yy) 
    -' ( 
    card Xx)) by 
    A29,
    A30,
    A24,
    XREAL_0:def 2;
    
            then (
    card { g where g be 
    Function of X, Y : g is 
    one-to-one & (g 
    . x) 
    = (f 
    . k) }) 
    = ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) by 
    A32,
    A27,
    A22,
    A28,
    A21,
    A31,
    Th4;
    
            hence thesis by
    A19,
    A25;
    
          end;
    
          then for k be
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    >= ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )); 
    
          then
    
          
    
    A33: ( 
    Sum F) 
    >= (( 
    len F) 
    * ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! ))) by 
    AFINSQ_2: 60;
    
          for k be
    Nat st k 
    in ( 
    dom F) holds (F 
    . k) 
    <= ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) by 
    A20;
    
          then (
    Sum F) 
    <= (( 
    len F) 
    * ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! ))) by 
    AFINSQ_2: 59;
    
          
    
          then (
    Sum F) 
    = ((n 
    + 1) 
    * ((n 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! ))) by 
    A3,
    A17,
    A33,
    XXREAL_0: 1
    
          .= (((n
    + 1) 
    * (n 
    ! )) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) by 
    XCMPLX_1: 74
    
          .= (((
    card Y) 
    ! ) 
    / ((( 
    card Y) 
    -' ( 
    card X)) 
    ! )) by 
    A3,
    NEWTON: 15;
    
          hence thesis by
    A18;
    
        end;
    
      end;
    
      
    
      
    
    A34: 
    P[
    0 ] 
    
      proof
    
        let X, Y such that
    
        
    
    A35: ( 
    card Y) 
    =  
    0 and 
    
        
    
    A36: ( 
    card X) 
    <= ( 
    card Y); 
    
        ((
    card Y) 
    - ( 
    card X)) 
    =  
    0 by 
    A35,
    A36;
    
        then
    
        
    
    A37: ((( 
    card Y) 
    -' ( 
    card X)) 
    ! ) 
    = 1 by 
    NEWTON: 12,
    XREAL_0:def 2;
    
        set F1 = { F where F be
    Function of X, Y : F is 
    one-to-one };
    
        
    
        
    
    A38: F1 
    c=  
    {
    {} } 
    
        proof
    
          let x be
    object;
    
          assume x
    in F1; 
    
          then
    
          
    
    A39: ex F be 
    Function of X, Y st x 
    = F & F is 
    one-to-one;
    
          Y
    =  
    {} by 
    A35;
    
          then x
    =  
    {} by 
    A39;
    
          hence thesis by
    TARSKI:def 1;
    
        end;
    
        (
    dom  
    {} ) 
    = X & ( 
    rng  
    {} ) 
    = Y by 
    A35,
    A36;
    
        then
    {} is 
    Function of X, Y by 
    FUNCT_2: 1;
    
        then
    {}  
    in F1; 
    
        then F1
    =  
    {
    {} } by 
    A38,
    ZFMISC_1: 33;
    
        hence thesis by
    A35,
    A37,
    CARD_1: 30,
    NEWTON: 12;
    
      end;
    
      for n holds
    P[n] from
    NAT_1:sch 2(
    A34,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:8
    
    
    
    
    
    Th7: ( 
    card { F where F be 
    Function of X, X : F is 
    Permutation of X }) 
    = (( 
    card X) 
    ! ) 
    
    proof
    
      set F1 = { F where F be
    Function of X, X : F is 
    one-to-one };
    
      set F2 = { F where F be
    Function of X, X : F is 
    Permutation of X }; 
    
      
    
      
    
    A1: F1 
    c= F2 
    
      proof
    
        let x be
    object;
    
        assume x
    in F1; 
    
        then
    
        consider F be
    Function of X, X such that 
    
        
    
    A2: x 
    = F and 
    
        
    
    A3: F is 
    one-to-one;
    
        (
    card X) 
    = ( 
    card X); 
    
        then F is
    onto by 
    A3,
    FINSEQ_4: 63;
    
        hence thesis by
    A2,
    A3;
    
      end;
    
      (((
    card X) 
    -' ( 
    card X)) 
    ! ) 
    = 1 by 
    NEWTON: 12,
    XREAL_1: 232;
    
      then
    
      
    
    A4: ((( 
    card X) 
    ! ) 
    / ((( 
    card X) 
    -' ( 
    card X)) 
    ! )) 
    = (( 
    card X) 
    ! ); 
    
      F2
    c= F1 
    
      proof
    
        let x be
    object;
    
        assume x
    in F2; 
    
        then ex F be
    Function of X, X st x 
    = F & F is 
    Permutation of X; 
    
        hence thesis;
    
      end;
    
      then F1
    = F2 by 
    A1;
    
      hence thesis by
    A4,
    Th6;
    
    end;
    
    definition
    
      let X, k;
    
      let x1,x2 be
    object;
    
      :: 
    
    CARD_FIN:def1
    
      func
    
    Choose (X,k,x1,x2) -> 
    Subset of ( 
    Funcs (X, 
    {x1, x2})) means
    
      :
    
    Def1: x 
    in it iff ex f be 
    Function of X, 
    {x1, x2} st f
    = x & ( 
    card (f 
    "  
    {x1}))
    = k; 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means ex f be
    Function of X, 
    {x1, x2} st $1
    = f & ( 
    card (f 
    "  
    {x1}))
    = k; 
    
        consider F be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in F iff x 
    in ( 
    bool  
    [:X,
    {x1, x2}:]) &
    P[x] from
    XBOOLE_0:sch 1;
    
        F
    c= ( 
    Funcs (X, 
    {x1, x2}))
    
        proof
    
          let x be
    object;
    
          assume x
    in F; 
    
          then ex f be
    Function of X, 
    {x1, x2} st x
    = f & ( 
    card (f 
    "  
    {x1}))
    = k by 
    A1;
    
          hence thesis by
    FUNCT_2: 8;
    
        end;
    
        then
    
        reconsider F as
    Subset of ( 
    Funcs (X, 
    {x1, x2}));
    
        take F;
    
        let x;
    
        thus x
    in F implies ex f be 
    Function of X, 
    {x1, x2} st x
    = f & ( 
    card (f 
    "  
    {x1}))
    = k by 
    A1;
    
        given f be
    Function of X, 
    {x1, x2} such that
    
        
    
    A2: x 
    = f & ( 
    card (f 
    "  
    {x1}))
    = k; 
    
        thus thesis by
    A1,
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let F1,F2 be
    Subset of ( 
    Funcs (X, 
    {x1, x2})) such that
    
        
    
    A3: x 
    in F1 iff ex f be 
    Function of X, 
    {x1, x2} st x
    = f & ( 
    card (f 
    "  
    {x1}))
    = k and 
    
        
    
    A4: x 
    in F2 iff ex f be 
    Function of X, 
    {x1, x2} st x
    = f & ( 
    card (f 
    "  
    {x1}))
    = k; 
    
        for x be
    object holds x 
    in F1 iff x 
    in F2 
    
        proof
    
          let x be
    object;
    
          x
    in F1 iff ex f be 
    Function of X, 
    {x1, x2} st x
    = f & ( 
    card (f 
    "  
    {x1}))
    = k by 
    A3;
    
          hence thesis by
    A4;
    
        end;
    
        hence thesis by
    TARSKI: 2;
    
      end;
    
    end
    
    theorem :: 
    
    CARD_FIN:9
    
    (
    card X) 
    <> k implies ( 
    Choose (X,k,x1,x1)) is 
    empty
    
    proof
    
      assume
    
      
    
    A1: ( 
    card X) 
    <> k; 
    
      assume (
    Choose (X,k,x1,x1)) is non 
    empty;
    
      then
    
      consider y be
    object such that 
    
      
    
    A2: y 
    in ( 
    Choose (X,k,x1,x1)); 
    
      consider f be
    Function of X, 
    {x1, x1} such that f
    = y and 
    
      
    
    A3: ( 
    card (f 
    "  
    {x1}))
    = k by 
    A2,
    Def1;
    
      per cases ;
    
        suppose
    
        
    
    A4: ( 
    rng f) is 
    empty;
    
        
    
        
    
    A5: ( 
    dom f) 
    = X by 
    FUNCT_2:def 1;
    
        (
    dom f) 
    =  
    {} by 
    A4,
    RELAT_1: 42;
    
        hence thesis by
    A1,
    A3,
    A5;
    
      end;
    
        suppose
    
        
    
    A6: ( 
    rng f) is non 
    empty;
    
        
    {x1, x1}
    =  
    {x1} by
    ENUMSET1: 29;
    
        then (
    rng f) 
    =  
    {x1} by
    A6,
    ZFMISC_1: 33;
    
        then (f
    "  
    {x1})
    = ( 
    dom f) by 
    RELAT_1: 134;
    
        hence thesis by
    A1,
    A3,
    FUNCT_2:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:10
    
    
    
    
    
    Th9: for x1,x2 be 
    object holds ( 
    card X) 
    < k implies ( 
    Choose (X,k,x1,x2)) is 
    empty
    
    proof
    
      let x1,x2 be
    object;
    
      assume
    
      
    
    A1: ( 
    card X) 
    < k; 
    
      assume (
    Choose (X,k,x1,x2)) is non 
    empty;
    
      then
    
      consider z be
    object such that 
    
      
    
    A2: z 
    in ( 
    Choose (X,k,x1,x2)); 
    
      ex f be
    Function of X, 
    {x1, x2} st f
    = z & ( 
    card (f 
    "  
    {x1}))
    = k by 
    A2,
    Def1;
    
      hence thesis by
    A1,
    NAT_1: 43;
    
    end;
    
    theorem :: 
    
    CARD_FIN:11
    
    
    
    
    
    Th10: for x1,x2 be 
    object holds x1 
    <> x2 implies ( 
    card ( 
    Choose (X, 
    0 ,x1,x2))) 
    = 1 
    
    proof
    
      let x1,x2 be
    object;
    
      assume
    
      
    
    A1: x1 
    <> x2; 
    
      per cases ;
    
        suppose
    
        
    
    A2: X is 
    empty;
    
        (
    dom  
    {} ) 
    = X by 
    A2;
    
        then
    
        reconsider Empty =
    {} as 
    Function of X, 
    {x1, x2} by
    XBOOLE_1: 2;
    
        
    
        
    
    A3: ( 
    Choose (X, 
    0 ,x1,x2)) 
    c=  
    {Empty}
    
        proof
    
          let z be
    object;
    
          assume z
    in ( 
    Choose (X, 
    0 ,x1,x2)); 
    
          then
    
          consider f be
    Function of X, 
    {x1, x2} such that
    
          
    
    A4: z 
    = f and ( 
    card (f 
    "  
    {x1}))
    =  
    0 by 
    Def1;
    
          (
    dom f) 
    = X by 
    FUNCT_2:def 1;
    
          then f
    = Empty; 
    
          hence thesis by
    A4,
    TARSKI:def 1;
    
        end;
    
        (Empty
    "  
    {x1})
    =  
    {} & ( 
    card  
    {} ) 
    =  
    0 ; 
    
        then Empty
    in ( 
    Choose (X, 
    0 ,x1,x2)) by 
    Def1;
    
        then (
    Choose (X, 
    0 ,x1,x2)) 
    =  
    {Empty} by
    A3,
    ZFMISC_1: 33;
    
        hence thesis by
    CARD_1: 30;
    
      end;
    
        suppose
    
        
    
    A5: X is non 
    empty;
    
        then
    
        consider f be
    Function such that 
    
        
    
    A6: ( 
    dom f) 
    = X and 
    
        
    
    A7: ( 
    rng f) 
    =  
    {x2} by
    FUNCT_1: 5;
    
        (
    rng f) 
    c=  
    {x1, x2} by
    A7,
    ZFMISC_1: 36;
    
        then
    
        
    
    A8: f is 
    Function of X, 
    {x1, x2} by
    A6,
    FUNCT_2: 2;
    
        
    
        
    
    A9: ( 
    Choose (X, 
    0 ,x1,x2)) 
    c=  
    {f}
    
        proof
    
          let z be
    object;
    
          assume z
    in ( 
    Choose (X, 
    0 ,x1,x2)); 
    
          then
    
          consider g be
    Function of X, 
    {x1, x2} such that
    
          
    
    A10: z 
    = g and 
    
          
    
    A11: ( 
    card (g 
    "  
    {x1}))
    =  
    0 by 
    Def1;
    
          (g
    "  
    {x1})
    =  
    {} by 
    A11;
    
          then not x1
    in ( 
    rng g) by 
    FUNCT_1: 72;
    
          then ( not (
    rng g) 
    =  
    {x1}) & not (
    rng g) 
    =  
    {x1, x2} by
    TARSKI:def 1,
    TARSKI:def 2;
    
          then (
    dom g) 
    = X & ( 
    rng g) 
    =  
    {x2} by
    A5,
    FUNCT_2:def 1,
    ZFMISC_1: 36;
    
          then g
    = f by 
    A6,
    A7,
    FUNCT_1: 7;
    
          hence thesis by
    A10,
    TARSKI:def 1;
    
        end;
    
         not x1
    in ( 
    rng f) by 
    A1,
    A7,
    TARSKI:def 1;
    
        then
    
        
    
    A12: (f 
    "  
    {x1})
    =  
    {} by 
    FUNCT_1: 72;
    
        (
    card  
    {} ) 
    =  
    0 ; 
    
        then f
    in ( 
    Choose (X, 
    0 ,x1,x2)) by 
    A12,
    A8,
    Def1;
    
        then (
    Choose (X, 
    0 ,x1,x2)) 
    =  
    {f} by
    A9,
    ZFMISC_1: 33;
    
        hence thesis by
    CARD_1: 30;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:12
    
    
    
    
    
    Th11: for x1,x2 be 
    object holds ( 
    card ( 
    Choose (X,( 
    card X),x1,x2))) 
    = 1 
    
    proof
    
      let x1,x2 be
    object;
    
      per cases ;
    
        suppose
    
        
    
    A1: X is 
    empty;
    
        (
    dom  
    {} ) 
    = X by 
    A1;
    
        then
    
        reconsider Empty =
    {} as 
    Function of X, 
    {x1, x2} by
    XBOOLE_1: 2;
    
        
    
        
    
    A2: ( 
    Choose (X,( 
    card X),x1,x2)) 
    c=  
    {Empty}
    
        proof
    
          let z be
    object;
    
          assume z
    in ( 
    Choose (X,( 
    card X),x1,x2)); 
    
          then
    
          consider f be
    Function of X, 
    {x1, x2} such that
    
          
    
    A3: z 
    = f and ( 
    card (f 
    "  
    {x1}))
    = ( 
    card X) by 
    Def1;
    
          (
    dom f) 
    = X by 
    FUNCT_2:def 1;
    
          then f
    = Empty; 
    
          hence thesis by
    A3,
    TARSKI:def 1;
    
        end;
    
        (Empty
    "  
    {x1})
    =  
    {} ; 
    
        then Empty
    in ( 
    Choose (X,( 
    card X),x1,x2)) by 
    A1,
    Def1;
    
        then (
    Choose (X,( 
    card X),x1,x2)) 
    =  
    {Empty} by
    A2,
    ZFMISC_1: 33;
    
        hence thesis by
    CARD_1: 30;
    
      end;
    
        suppose
    
        
    
    A4: X is non 
    empty;
    
        then
    
        consider f be
    Function such that 
    
        
    
    A5: ( 
    dom f) 
    = X and 
    
        
    
    A6: ( 
    rng f) 
    =  
    {x1} by
    FUNCT_1: 5;
    
        (
    rng f) 
    c=  
    {x1, x2} by
    A6,
    ZFMISC_1: 36;
    
        then
    
        
    
    A7: f is 
    Function of X, 
    {x1, x2} by
    A5,
    FUNCT_2: 2;
    
        
    
        
    
    A8: ( 
    Choose (X,( 
    card X),x1,x2)) 
    c=  
    {f}
    
        proof
    
          let z be
    object;
    
          assume z
    in ( 
    Choose (X,( 
    card X),x1,x2)); 
    
          then
    
          consider g be
    Function of X, 
    {x1, x2} such that
    
          
    
    A9: z 
    = g and 
    
          
    
    A10: ( 
    card (g 
    "  
    {x1}))
    = ( 
    card X) by 
    Def1;
    
          
    
    A11: 
    
          now
    
            per cases ;
    
              suppose x1
    = x2; 
    
              then
    {x1, x2}
    =  
    {x1} by
    ENUMSET1: 29;
    
              hence (
    rng g) 
    =  
    {x1} by
    A4,
    ZFMISC_1: 33;
    
            end;
    
              suppose
    
              
    
    A12: x1 
    <> x2; 
    
              (g
    "  
    {x2})
    =  
    {}  
    
              proof
    
                assume (g
    "  
    {x2})
    <>  
    {} ; 
    
                then
    
                consider z be
    object such that 
    
                
    
    A13: z 
    in (g 
    "  
    {x2}) by
    XBOOLE_0:def 1;
    
                (g
    . z) 
    in  
    {x2} by
    A13,
    FUNCT_1:def 7;
    
                then
    
                
    
    A14: (g 
    . z) 
    = x2 by 
    TARSKI:def 1;
    
                (g
    "  
    {x1})
    = X by 
    A10,
    CARD_2: 102;
    
                then (g
    . z) 
    in  
    {x1} by
    A13,
    FUNCT_1:def 7;
    
                hence thesis by
    A12,
    A14,
    TARSKI:def 1;
    
              end;
    
              then not x2
    in ( 
    rng g) by 
    FUNCT_1: 72;
    
              then ( not (
    rng g) 
    =  
    {x2}) & not (
    rng g) 
    =  
    {x1, x2} by
    TARSKI:def 1,
    TARSKI:def 2;
    
              hence (
    rng g) 
    =  
    {x1} by
    A4,
    ZFMISC_1: 36;
    
            end;
    
          end;
    
          (
    dom g) 
    = X by 
    FUNCT_2:def 1;
    
          then g
    = f by 
    A5,
    A6,
    A11,
    FUNCT_1: 7;
    
          hence thesis by
    A9,
    TARSKI:def 1;
    
        end;
    
        (
    card (f 
    "  
    {x1}))
    = ( 
    card X) by 
    A5,
    A6,
    RELAT_1: 134;
    
        then f
    in ( 
    Choose (X,( 
    card X),x1,x2)) by 
    A7,
    Def1;
    
        then (
    Choose (X,( 
    card X),x1,x2)) 
    =  
    {f} by
    A8,
    ZFMISC_1: 33;
    
        hence thesis by
    CARD_1: 30;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:13
    
    
    
    
    
    Th12: for z,x,y be 
    object holds not z 
    in X implies ( 
    card ( 
    Choose (X,k,x,y))) 
    = ( 
    card { f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x }) 
    
    proof
    
      let z,x,y be
    object;
    
      set F1 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x }; 
    
      defpred
    
    P[
    set, 
    set, 
    set] means for f be
    Function st f 
    = $1 holds ( 
    card ((f 
    | X) 
    "  
    {x}))
    = k; 
    
      
    
      
    
    A1: for f be 
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {x}) st (f
    . z) 
    = x holds 
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {x})] iff
    P[(f
    | X), X, 
    {x, y}]
    
      proof
    
        let f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {x}) such that (f
    . z) 
    = x; 
    
        (f
    | X) 
    = ((f 
    | X) 
    | X); 
    
        hence thesis;
    
      end;
    
      set F3 = { f where f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {x}) :
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {x})] & (
    rng (f 
    | X)) 
    c=  
    {x, y} & (f
    . z) 
    = x }; 
    
      set F2 = { f where f be
    Function of X, 
    {x, y} :
    P[f, X,
    {x, y}] };
    
      assume
    
      
    
    A2: not z 
    in X; 
    
      
    
      
    
    A3: F3 
    c= F1 
    
      proof
    
        (
    {x}
    \/  
    {x, y})
    =  
    {x, x, y} by
    ENUMSET1: 2;
    
        then
    
        
    
    A4: ( 
    {x, y}
    \/  
    {x})
    =  
    {x, y} by
    ENUMSET1: 30;
    
        z
    in  
    {z} by
    TARSKI:def 1;
    
        then
    
        
    
    A5: z 
    in (X 
    \/  
    {z}) by
    XBOOLE_0:def 3;
    
        let x1 be
    object;
    
        assume x1
    in F3; 
    
        then
    
        consider f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {x}) such that
    
        
    
    A6: x1 
    = f and 
    
        
    
    A7: 
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {x})] and (
    rng (f 
    | X)) 
    c=  
    {x, y} and
    
        
    
    A8: (f 
    . z) 
    = x; 
    
        (
    dom f) 
    = (X 
    \/  
    {z}) & ((X
    \/  
    {z})
    \  
    {z})
    = X by 
    A2,
    FUNCT_2:def 1,
    ZFMISC_1: 117;
    
        then
    
        
    
    A9: ( 
    {z}
    \/ ((f 
    | X) 
    "  
    {x}))
    = (f 
    "  
    {x}) by
    A8,
    A5,
    AFINSQ_2: 66;
    
         not z
    in (( 
    dom f) 
    /\ X) by 
    A2,
    XBOOLE_0:def 4;
    
        then not z
    in ( 
    dom (f 
    | X)) by 
    RELAT_1: 61;
    
        then
    
        
    
    A10: not z 
    in ((f 
    | X) 
    "  
    {x}) by
    FUNCT_1:def 7;
    
        (
    card ((f 
    | X) 
    "  
    {x}))
    = k by 
    A7;
    
        then (
    card (f 
    "  
    {x}))
    = (k 
    + 1) by 
    A9,
    A10,
    CARD_2: 41;
    
        hence thesis by
    A6,
    A8,
    A4;
    
      end;
    
      
    
      
    
    A11: F2 
    c= ( 
    Choose (X,k,x,y)) 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F2; 
    
        then
    
        consider f be
    Function of X, 
    {x, y} such that
    
        
    
    A12: x1 
    = f and 
    
        
    
    A13: 
    P[f, X,
    {x, y}];
    
        (f
    | X) 
    = f; 
    
        then (
    card (f 
    "  
    {x}))
    = k by 
    A13;
    
        hence thesis by
    A12,
    Def1;
    
      end;
    
      
    
      
    
    A14: ( 
    Choose (X,k,x,y)) 
    c= F2 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in ( 
    Choose (X,k,x,y)); 
    
        then
    
        consider f be
    Function of X, 
    {x, y} such that
    
        
    
    A15: x1 
    = f and 
    
        
    
    A16: ( 
    card (f 
    "  
    {x}))
    = k by 
    Def1;
    
        
    P[f, X,
    {x, y}] by
    A16;
    
        hence thesis by
    A15;
    
      end;
    
      
    
      
    
    A17: 
    {x, y} is
    empty implies X is 
    empty;
    
      
    
      
    
    A18: ( 
    card F2) 
    = ( 
    card F3) from 
    STIRL2_1:sch 4(
    A17,
    A2,
    A1);
    
      F1
    c= F3 
    
      proof
    
        z
    in  
    {z} by
    TARSKI:def 1;
    
        then
    
        
    
    A19: z 
    in (X 
    \/  
    {z}) by
    XBOOLE_0:def 3;
    
        let x1 be
    object;
    
        assume x1
    in F1; 
    
        then
    
        consider f be
    Function of (X 
    \/  
    {z}),
    {x, y} such that
    
        
    
    A20: x1 
    = f and 
    
        
    
    A21: ( 
    card (f 
    "  
    {x}))
    = (k 
    + 1) and 
    
        
    
    A22: (f 
    . z) 
    = x; 
    
         not z
    in (( 
    dom f) 
    /\ X) by 
    A2,
    XBOOLE_0:def 4;
    
        then not z
    in ( 
    dom (f 
    | X)) by 
    RELAT_1: 61;
    
        then
    
        
    
    A23: not z 
    in ((f 
    | X) 
    "  
    {x}) by
    FUNCT_1:def 7;
    
        (
    dom f) 
    = (X 
    \/  
    {z}) & ((X
    \/  
    {z})
    \  
    {z})
    = X by 
    A2,
    FUNCT_2:def 1,
    ZFMISC_1: 117;
    
        then (((f
    | X) 
    "  
    {x})
    \/  
    {z})
    = (f 
    "  
    {x}) by
    A22,
    A19,
    AFINSQ_2: 66;
    
        then ((
    card ((f 
    | X) 
    "  
    {x}))
    + 1) 
    = (k 
    + 1) by 
    A21,
    A23,
    CARD_2: 41;
    
        then
    
        
    
    A24: 
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {x})];
    
        (
    {x}
    \/  
    {x, y})
    =  
    {x, x, y} by
    ENUMSET1: 2;
    
        then (
    rng (f 
    | X)) 
    c=  
    {x, y} & f is
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {x}) by
    ENUMSET1: 30;
    
        hence thesis by
    A20,
    A22,
    A24;
    
      end;
    
      then F1
    = F3 by 
    A3;
    
      hence thesis by
    A11,
    A14,
    A18,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    CARD_FIN:14
    
    
    
    
    
    Th13: for z,x,y be 
    object holds not z 
    in X & x 
    <> y implies ( 
    card ( 
    Choose (X,k,x,y))) 
    = ( 
    card { f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = k & (f 
    . z) 
    = y }) 
    
    proof
    
      let z,x,y be
    object;
    
      assume that
    
      
    
    A1: not z 
    in X and 
    
      
    
    A2: x 
    <> y; 
    
      defpred
    
    P[
    set, 
    set, 
    set] means for f be
    Function st f 
    = $1 holds ( 
    card (f 
    "  
    {x}))
    = k; 
    
      
    
      
    
    A3: for f be 
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {y}) st (f
    . z) 
    = y holds 
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {y})] iff
    P[(f
    | X), X, 
    {x, y}]
    
      proof
    
        let f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {y}) such that
    
        
    
    A4: (f 
    . z) 
    = y; 
    
        ((X
    \/  
    {z})
    \  
    {z})
    = X & ( 
    dom f) 
    = (X 
    \/  
    {z}) by
    A1,
    FUNCT_2:def 1,
    ZFMISC_1: 117;
    
        then ((f
    | X) 
    "  
    {x})
    = (f 
    "  
    {x}) by
    A2,
    A4,
    AFINSQ_2: 67;
    
        hence thesis;
    
      end;
    
      set F2 = { f where f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {y}) :
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {y})] & (
    rng (f 
    | X)) 
    c=  
    {x, y} & (f
    . z) 
    = y }; 
    
      set F1 = { f where f be
    Function of X, 
    {x, y} :
    P[f, X,
    {x, y}] };
    
      
    
      
    
    A5: 
    {x, y} is
    empty implies X is 
    empty;
    
      
    
      
    
    A6: ( 
    card F1) 
    = ( 
    card F2) from 
    STIRL2_1:sch 4(
    A5,
    A1,
    A3);
    
      set F3 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = k & (f 
    . z) 
    = y }; 
    
      
    
      
    
    A7: F2 
    c= F3 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F2; 
    
        then
    
        consider f be
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {y}) such that
    
        
    
    A8: x1 
    = f and 
    
        
    
    A9: 
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {y})] and (
    rng (f 
    | X)) 
    c=  
    {x, y} and
    
        
    
    A10: (f 
    . z) 
    = y; 
    
        (
    {x, y}
    \/  
    {y})
    =  
    {y, y, x} by
    ENUMSET1: 2;
    
        then
    
        
    
    A11: f is 
    Function of (X 
    \/  
    {z}),
    {x, y} by
    ENUMSET1: 30;
    
        (
    card (f 
    "  
    {x}))
    = k by 
    A9;
    
        hence thesis by
    A8,
    A10,
    A11;
    
      end;
    
      
    
      
    
    A12: F3 
    c= F2 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F3; 
    
        then
    
        consider f be
    Function of (X 
    \/  
    {z}),
    {x, y} such that
    
        
    
    A13: f 
    = x1 and 
    
        
    
    A14: ( 
    card (f 
    "  
    {x}))
    = k and 
    
        
    
    A15: (f 
    . z) 
    = y; 
    
        (
    {x, y}
    \/  
    {y})
    =  
    {y, y, x} by
    ENUMSET1: 2;
    
        then
    
        
    
    A16: ( 
    rng (f 
    | X)) 
    c=  
    {x, y} & f is
    Function of (X 
    \/  
    {z}), (
    {x, y}
    \/  
    {y}) by
    ENUMSET1: 30;
    
        
    P[f, (X
    \/  
    {z}), (
    {x, y}
    \/  
    {y})] by
    A14;
    
        hence thesis by
    A13,
    A15,
    A16;
    
      end;
    
      
    
      
    
    A17: ( 
    Choose (X,k,x,y)) 
    c= F1 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in ( 
    Choose (X,k,x,y)); 
    
        then
    
        consider f be
    Function of X, 
    {x, y} such that
    
        
    
    A18: x1 
    = f and 
    
        
    
    A19: ( 
    card (f 
    "  
    {x}))
    = k by 
    Def1;
    
        
    P[f, X,
    {x, y}] by
    A19;
    
        hence thesis by
    A18;
    
      end;
    
      F1
    c= ( 
    Choose (X,k,x,y)) 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F1; 
    
        then
    
        consider f be
    Function of X, 
    {x, y} such that
    
        
    
    A20: x1 
    = f and 
    
        
    
    A21: 
    P[f, X,
    {x, y}];
    
        (
    card (f 
    "  
    {x}))
    = k by 
    A21;
    
        hence thesis by
    A20,
    Def1;
    
      end;
    
      then (
    Choose (X,k,x,y)) 
    = F1 by 
    A17;
    
      hence thesis by
    A7,
    A12,
    A6,
    XBOOLE_0:def 10;
    
    end;
    
    
    
    
    
    Lm1: for z,x,y be 
    object holds x 
    <> y implies ({ f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x } 
    \/ { f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = y }) 
    = ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) & { f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x } 
    misses { f where f be 
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = y } 
    
    proof
    
      let z,x,y be
    object;
    
      set F1 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x }; 
    
      set F2 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = y }; 
    
      assume
    
      
    
    A1: x 
    <> y; 
    
      
    
      
    
    A2: F1 
    misses F2 
    
      proof
    
        assume F1
    meets F2; 
    
        then (F1
    /\ F2) 
    <>  
    {} ; 
    
        then
    
        consider x1 be
    object such that 
    
        
    
    A3: x1 
    in (F1 
    /\ F2) by 
    XBOOLE_0:def 1;
    
        x1
    in F2 by 
    A3,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A4: ex f2 be 
    Function of (X 
    \/  
    {z}),
    {x, y} st x1
    = f2 & ( 
    card (f2 
    "  
    {x}))
    = (k 
    + 1) & (f2 
    . z) 
    = y; 
    
        x1
    in F1 by 
    A3,
    XBOOLE_0:def 4;
    
        then ex f1 be
    Function of (X 
    \/  
    {z}),
    {x, y} st x1
    = f1 & ( 
    card (f1 
    "  
    {x}))
    = (k 
    + 1) & (f1 
    . z) 
    = x; 
    
        hence thesis by
    A1,
    A4;
    
      end;
    
      
    
      
    
    A5: F2 
    c= ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F2; 
    
        then ex f be
    Function of (X 
    \/  
    {z}),
    {x, y} st x1
    = f & ( 
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = y; 
    
        hence thesis by
    Def1;
    
      end;
    
      
    
      
    
    A6: ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) 
    c= (F1 
    \/ F2) 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)); 
    
        then
    
        consider f be
    Function of (X 
    \/  
    {z}),
    {x, y} such that
    
        
    
    A7: f 
    = x1 & ( 
    card (f 
    "  
    {x}))
    = (k 
    + 1) by 
    Def1;
    
        z
    in  
    {z} by
    TARSKI:def 1;
    
        then
    
        
    
    A8: z 
    in (X 
    \/  
    {z}) by
    XBOOLE_0:def 3;
    
        (
    dom f) 
    = (X 
    \/  
    {z}) by
    FUNCT_2:def 1;
    
        then (f
    . z) 
    in ( 
    rng f) by 
    A8,
    FUNCT_1:def 3;
    
        then (f
    . z) 
    = x or (f 
    . z) 
    = y by 
    TARSKI:def 2;
    
        then x1
    in F1 or x1 
    in F2 by 
    A7;
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      F1
    c= ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) 
    
      proof
    
        let x1 be
    object;
    
        assume x1
    in F1; 
    
        then ex f be
    Function of (X 
    \/  
    {z}),
    {x, y} st x1
    = f & ( 
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x; 
    
        hence thesis by
    Def1;
    
      end;
    
      then (F1
    \/ F2) 
    c= ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) by 
    A5,
    XBOOLE_1: 8;
    
      hence thesis by
    A6,
    A2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:15
    
    
    
    
    
    Th14: for z,x,y be 
    object holds x 
    <> y & not z 
    in X implies ( 
    card ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y))) 
    = (( 
    card ( 
    Choose (X,(k 
    + 1),x,y))) 
    + ( 
    card ( 
    Choose (X,k,x,y)))) 
    
    proof
    
      let z,x,y be
    object;
    
      assume that
    
      
    
    A1: x 
    <> y and 
    
      
    
    A2: not z 
    in X; 
    
      set F2 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = y }; 
    
      set F1 = { f where f be
    Function of (X 
    \/  
    {z}),
    {x, y} : (
    card (f 
    "  
    {x}))
    = (k 
    + 1) & (f 
    . z) 
    = x }; 
    
      
    
      
    
    A3: (F1 
    \/ F2) 
    = ( 
    Choose ((X 
    \/  
    {z}),(k
    + 1),x,y)) by 
    A1,
    Lm1;
    
      F1
    c= (F1 
    \/ F2) & F2 
    c= (F1 
    \/ F2) by 
    XBOOLE_1: 7;
    
      then
    
      reconsider F1, F2 as
    finite  
    set by 
    A3;
    
      
    
      
    
    A4: ( 
    card F1) 
    = ( 
    card ( 
    Choose (X,k,x,y))) by 
    A2,
    Th12;
    
      (
    card (F1 
    \/ F2)) 
    = (( 
    card F1) 
    + ( 
    card F2)) & ( 
    card F2) 
    = ( 
    card ( 
    Choose (X,(k 
    + 1),x,y))) by 
    A1,
    A2,
    Lm1,
    Th13,
    CARD_2: 40;
    
      hence thesis by
    A1,
    A4,
    Lm1;
    
    end;
    
    ::$Notion-Name
    
    theorem :: 
    
    CARD_FIN:16
    
    
    
    
    
    Th15: for x,y be 
    object holds x 
    <> y implies ( 
    card ( 
    Choose (X,k,x,y))) 
    = (( 
    card X) 
    choose k) 
    
    proof
    
      let x,y be
    object;
    
      defpred
    
    P[
    Nat] means for k, X st (k
    + ( 
    card X)) 
    <= $1 holds ( 
    card ( 
    Choose (X,k,x,y))) 
    = (( 
    card X) 
    choose k); 
    
      assume
    
      
    
    A1: x 
    <> y; 
    
      
    
      
    
    A2: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n such that
    
        
    
    A3: 
    P[n];
    
        let k, X such that
    
        
    
    A4: (k 
    + ( 
    card X)) 
    <= (n 
    + 1); 
    
        per cases by
    A4,
    XXREAL_0: 1;
    
          suppose (k
    + ( 
    card X)) 
    < (n 
    + 1); 
    
          then (k
    + ( 
    card X)) 
    <= n by 
    NAT_1: 13;
    
          hence thesis by
    A3;
    
        end;
    
          suppose
    
          
    
    A5: (k 
    + ( 
    card X)) 
    = (n 
    + 1); 
    
          per cases ;
    
            suppose
    
            
    
    A6: k 
    =  
    0 & ( 
    card X) 
    >=  
    0 ; 
    
            then (
    card ( 
    Choose (X,k,x,y))) 
    = 1 by 
    A1,
    Th10;
    
            hence thesis by
    A6,
    NEWTON: 19;
    
          end;
    
            suppose
    
            
    
    A7: k 
    >  
    0 & ( 
    card X) 
    =  
    0 ; 
    
            then (
    Choose (X,k,x,y)) is 
    empty by 
    Th9;
    
            hence thesis by
    A7,
    NEWTON:def 3;
    
          end;
    
            suppose
    
            
    
    A8: k 
    >  
    0 & ( 
    card X) 
    >  
    0 ; 
    
            then
    
            reconsider cXz = ((
    card X) 
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
            reconsider k1 = (k
    - 1) as 
    Element of 
    NAT by 
    A8,
    NAT_1: 20;
    
            consider z be
    object such that 
    
            
    
    A9: z 
    in X by 
    A8,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
            set Xz = (X
    \  
    {z});
    
            z
    in  
    {z} by
    TARSKI:def 1;
    
            then
    
            
    
    A10: not z 
    in Xz by 
    XBOOLE_0:def 5;
    
            (Xz
    \/  
    {z})
    = X by 
    A9,
    ZFMISC_1: 116;
    
            then
    
            
    
    A11: ( 
    card ( 
    Choose (X,(k1 
    + 1),x,y))) 
    = (( 
    card ( 
    Choose (Xz,(k1 
    + 1),x,y))) 
    + ( 
    card ( 
    Choose (Xz,k1,x,y)))) by 
    A1,
    A10,
    Th14;
    
            (
    card X) 
    = (cXz 
    + 1); 
    
            then
    
            
    
    A12: ( 
    card Xz) 
    = cXz by 
    A9,
    STIRL2_1: 55;
    
            cXz
    < (cXz 
    + 1) by 
    NAT_1: 13;
    
            then
    
            
    
    A13: ( 
    card Xz) 
    < ( 
    card X) by 
    A9,
    STIRL2_1: 55;
    
            then (k
    + ( 
    card Xz)) 
    < (n 
    + 1) by 
    A5,
    XREAL_1: 8;
    
            then (k
    + ( 
    card Xz)) 
    <= n by 
    NAT_1: 13;
    
            then
    
            
    
    A14: ( 
    card ( 
    Choose (Xz,(k1 
    + 1),x,y))) 
    = (( 
    card Xz) 
    choose (k1 
    + 1)) by 
    A3;
    
            k1
    < (k1 
    + 1) by 
    NAT_1: 13;
    
            then (k1
    + ( 
    card Xz)) 
    < (n 
    + 1) by 
    A5,
    A13,
    XREAL_1: 8;
    
            then (k1
    + ( 
    card Xz)) 
    <= n by 
    NAT_1: 13;
    
            then
    
            
    
    A15: ( 
    card ( 
    Choose (Xz,k1,x,y))) 
    = (( 
    card Xz) 
    choose k1) by 
    A3;
    
            (
    card X) 
    = (cXz 
    + 1); 
    
            hence thesis by
    A14,
    A15,
    A11,
    A12,
    NEWTON: 22;
    
          end;
    
        end;
    
      end;
    
      
    
      
    
    A16: 
    P[
    0 ] 
    
      proof
    
        let k, X;
    
        
    
        
    
    A17: ( 
    0  
    choose  
    0 ) 
    = 1 by 
    NEWTON: 19;
    
        assume (k
    + ( 
    card X)) 
    <=  
    0 ; 
    
        then (k
    + ( 
    card X)) 
    =  
    0 & ( 
    card X) 
    =  
    0 ; 
    
        hence thesis by
    A1,
    Th10,
    A17;
    
      end;
    
      for n holds
    P[n] from
    NAT_1:sch 2(
    A16,
    A2);
    
      then
    P[(k
    + ( 
    card X))]; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:17
    
    
    
    
    
    Th16: for x,y be 
    object holds x 
    <> y implies ((Y 
    --> y) 
    +* (X 
    --> x)) 
    in ( 
    Choose ((X 
    \/ Y),( 
    card X),x,y)) 
    
    proof
    
      let x,y be
    object;
    
      set F = ((Y
    --> y) 
    +* (X 
    --> x)); 
    
      (
    dom (Y 
    --> y)) 
    = Y & ( 
    dom (X 
    --> x)) 
    = X; 
    
      then
    
      
    
    A1: ( 
    dom F) 
    = (X 
    \/ Y) by 
    FUNCT_4:def 1;
    
      
    {y}
    c=  
    {x, y} by
    ZFMISC_1: 7;
    
      then
    
      
    
    A2: ( 
    rng (Y 
    --> y)) 
    c=  
    {x, y};
    
      
    {x}
    c=  
    {x, y} by
    ZFMISC_1: 7;
    
      then (
    rng (X 
    --> x)) 
    c=  
    {x, y};
    
      then (
    rng F) 
    c= (( 
    rng (X 
    --> x)) 
    \/ ( 
    rng (Y 
    --> y))) & (( 
    rng (X 
    --> x)) 
    \/ ( 
    rng (Y 
    --> y))) 
    c=  
    {x, y} by
    A2,
    FUNCT_4: 17,
    XBOOLE_1: 8;
    
      then
    
      reconsider F as
    Function of (X 
    \/ Y), 
    {x, y} by
    A1,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
      assume
    
      
    
    A3: x 
    <> y; 
    
      
    
      
    
    A4: (F 
    "  
    {x})
    c= X 
    
      proof
    
        let z be
    object such that 
    
        
    
    A5: z 
    in (F 
    "  
    {x});
    
        
    
        
    
    A6: z 
    in X or z 
    in Y by 
    A5,
    XBOOLE_0:def 3;
    
        (F
    . z) 
    in  
    {x} by
    A5,
    FUNCT_1:def 7;
    
        then
    
        
    
    A7: (F 
    . z) 
    = x by 
    TARSKI:def 1;
    
        z
    in ( 
    dom F) by 
    A5,
    FUNCT_1:def 7;
    
        then
    
        
    
    A8: z 
    in (( 
    dom (X 
    --> x)) 
    \/ ( 
    dom (Y 
    --> y))); 
    
        assume
    
        
    
    A9: not z 
    in X; 
    
        (F
    . z) 
    = ((Y 
    --> y) 
    . z) by 
    A9,
    A8,
    FUNCT_4:def 1;
    
        hence contradiction by
    A3,
    A9,
    A6,
    A7,
    FUNCOP_1: 7;
    
      end;
    
      X
    c= (F 
    "  
    {x})
    
      proof
    
        let z be
    object such that 
    
        
    
    A10: z 
    in X; 
    
        
    
        
    
    A11: z 
    in ( 
    dom F) by 
    A1,
    A10,
    XBOOLE_0:def 3;
    
        z
    in ( 
    dom (X 
    --> x)) by 
    A10;
    
        then
    
        
    
    A12: (F 
    . z) 
    = ((X 
    --> x) 
    . z) by 
    FUNCT_4: 13;
    
        ((X
    --> x) 
    . z) 
    = x by 
    A10,
    FUNCOP_1: 7;
    
        then (F
    . z) 
    in  
    {x} by
    A12,
    TARSKI:def 1;
    
        hence thesis by
    A11,
    FUNCT_1:def 7;
    
      end;
    
      then X
    = (F 
    "  
    {x}) by
    A4;
    
      hence thesis by
    Def1;
    
    end;
    
    theorem :: 
    
    CARD_FIN:18
    
    
    
    
    
    Th17: x 
    <> y & X 
    misses Y implies ((X 
    --> x) 
    +* (Y 
    --> y)) 
    in ( 
    Choose ((X 
    \/ Y),( 
    card X),x,y)) 
    
    proof
    
      assume that
    
      
    
    A1: x 
    <> y and 
    
      
    
    A2: X 
    misses Y; 
    
      (
    dom (X 
    --> x)) 
    = X & ( 
    dom (Y 
    --> y)) 
    = Y; 
    
      then ((X
    --> x) 
    +* (Y 
    --> y)) 
    = ((Y 
    --> y) 
    +* (X 
    --> x)) by 
    A2,
    FUNCT_4: 35;
    
      hence thesis by
    A1,
    Th16;
    
    end;
    
    definition
    
      let F,Ch be
    Function, y be 
    object;
    
      :: 
    
    CARD_FIN:def2
    
      func
    
    Intersection (F,Ch,y) -> 
    Subset of ( 
    union ( 
    rng F)) means 
    
      :
    
    Def2: z 
    in it iff z 
    in ( 
    union ( 
    rng F)) & for x st x 
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y holds z 
    in (F 
    . x); 
    
      existence
    
      proof
    
        defpred
    
    P[
    object] means for x st x
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y holds $1 
    in (F 
    . x); 
    
        consider I be
    set such that 
    
        
    
    A1: for z be 
    object holds z 
    in I iff z 
    in ( 
    union ( 
    rng F)) & 
    P[z] from
    XBOOLE_0:sch 1;
    
        I
    c= ( 
    union ( 
    rng F)) by 
    A1;
    
        then
    
        reconsider I as
    Subset of ( 
    union ( 
    rng F)); 
    
        take I;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let I1,I2 be
    Subset of ( 
    union ( 
    rng F)) such that 
    
        
    
    A2: z 
    in I1 iff z 
    in ( 
    union ( 
    rng F)) & for x st x 
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y holds z 
    in (F 
    . x) and 
    
        
    
    A3: z 
    in I2 iff z 
    in ( 
    union ( 
    rng F)) & for x st x 
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y holds z 
    in (F 
    . x); 
    
        for z be
    object holds z 
    in I1 iff z 
    in I2 
    
        proof
    
          let z be
    object;
    
          z
    in I1 iff z 
    in ( 
    union ( 
    rng F)) & for x st x 
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y holds z 
    in (F 
    . x) by 
    A2;
    
          hence thesis by
    A3;
    
        end;
    
        hence thesis by
    TARSKI: 2;
    
      end;
    
    end
    
    reserve F,Ch for
    Function;
    
    theorem :: 
    
    CARD_FIN:19
    
    
    
    
    
    Th18: for F, Ch st (( 
    dom F) 
    /\ (Ch 
    "  
    {x})) is non
    empty holds y 
    in ( 
    Intersection (F,Ch,x)) iff for z st z 
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x holds y 
    in (F 
    . z) 
    
    proof
    
      let F, Ch such that
    
      
    
    A1: (( 
    dom F) 
    /\ (Ch 
    "  
    {x})) is non
    empty;
    
      thus y
    in ( 
    Intersection (F,Ch,x)) implies for z st z 
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x holds y 
    in (F 
    . z) by 
    Def2;
    
      thus (for z st z
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x holds y 
    in (F 
    . z)) implies y 
    in ( 
    Intersection (F,Ch,x)) 
    
      proof
    
        consider z be
    object such that 
    
        
    
    A2: z 
    in (( 
    dom F) 
    /\ (Ch 
    "  
    {x})) by
    A1;
    
        
    
        
    
    A3: z 
    in (Ch 
    "  
    {x}) by
    A2,
    XBOOLE_0:def 4;
    
        then (Ch
    . z) 
    in  
    {x} by
    FUNCT_1:def 7;
    
        then
    
        
    
    A4: (Ch 
    . z) 
    = x by 
    TARSKI:def 1;
    
        z
    in ( 
    dom F) by 
    A2,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A5: (F 
    . z) 
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
        assume
    
        
    
    A6: for z st z 
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x holds y 
    in (F 
    . z); 
    
        z
    in ( 
    dom Ch) by 
    A3,
    FUNCT_1:def 7;
    
        then y
    in (F 
    . z) by 
    A6,
    A4;
    
        then y
    in ( 
    union ( 
    rng F)) by 
    A5,
    TARSKI:def 4;
    
        hence thesis by
    A6,
    Def2;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:20
    
    
    
    
    
    Th19: ( 
    Intersection (F,Ch,y)) is non 
    empty implies (Ch 
    "  
    {y})
    c= ( 
    dom F) 
    
    proof
    
      assume (
    Intersection (F,Ch,y)) is non 
    empty;
    
      then
    
      consider z be
    object such that 
    
      
    
    A1: z 
    in ( 
    Intersection (F,Ch,y)); 
    
      assume not (Ch
    "  
    {y})
    c= ( 
    dom F); 
    
      then
    
      consider x be
    object such that 
    
      
    
    A2: x 
    in (Ch 
    "  
    {y}) and
    
      
    
    A3: not x 
    in ( 
    dom F); 
    
      (Ch
    . x) 
    in  
    {y} by
    A2,
    FUNCT_1:def 7;
    
      then
    
      
    
    A4: (Ch 
    . x) 
    = y by 
    TARSKI:def 1;
    
      x
    in ( 
    dom Ch) by 
    A2,
    FUNCT_1:def 7;
    
      then z
    in (F 
    . x) by 
    A1,
    A4,
    Def2;
    
      hence thesis by
    A3,
    FUNCT_1:def 2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:21
    
    (
    Intersection (F,Ch,y)) is non 
    empty implies for x1, x2 st x1 
    in (Ch 
    "  
    {y}) & x2
    in (Ch 
    "  
    {y}) holds (F
    . x1) 
    meets (F 
    . x2) 
    
    proof
    
      assume (
    Intersection (F,Ch,y)) is non 
    empty;
    
      then
    
      consider z be
    object such that 
    
      
    
    A1: z 
    in ( 
    Intersection (F,Ch,y)); 
    
      let x1, x2 such that
    
      
    
    A2: x1 
    in (Ch 
    "  
    {y}) and
    
      
    
    A3: x2 
    in (Ch 
    "  
    {y});
    
      (Ch
    . x2) 
    in  
    {y} by
    A3,
    FUNCT_1:def 7;
    
      then
    
      
    
    A4: (Ch 
    . x2) 
    = y by 
    TARSKI:def 1;
    
      (Ch
    . x1) 
    in  
    {y} by
    A2,
    FUNCT_1:def 7;
    
      then
    
      
    
    A5: (Ch 
    . x1) 
    = y by 
    TARSKI:def 1;
    
      x2
    in ( 
    dom Ch) by 
    A3,
    FUNCT_1:def 7;
    
      then
    
      
    
    A6: z 
    in (F 
    . x2) by 
    A1,
    A4,
    Def2;
    
      x1
    in ( 
    dom Ch) by 
    A2,
    FUNCT_1:def 7;
    
      then z
    in (F 
    . x1) by 
    A1,
    A5,
    Def2;
    
      hence thesis by
    A6,
    XBOOLE_0: 3;
    
    end;
    
    theorem :: 
    
    CARD_FIN:22
    
    
    
    
    
    Th21: z 
    in ( 
    Intersection (F,Ch,y)) & y 
    in ( 
    rng Ch) implies ex x st x 
    in ( 
    dom Ch) & (Ch 
    . x) 
    = y & z 
    in (F 
    . x) 
    
    proof
    
      assume that
    
      
    
    A1: z 
    in ( 
    Intersection (F,Ch,y)) and 
    
      
    
    A2: y 
    in ( 
    rng Ch); 
    
      (Ch
    "  
    {y})
    <>  
    {} by 
    A2,
    FUNCT_1: 72;
    
      then
    
      consider x be
    object such that 
    
      
    
    A3: x 
    in (Ch 
    "  
    {y}) by
    XBOOLE_0:def 1;
    
      (Ch
    . x) 
    in  
    {y} by
    A3,
    FUNCT_1:def 7;
    
      then
    
      
    
    A4: (Ch 
    . x) 
    = y by 
    TARSKI:def 1;
    
      
    
      
    
    A5: x 
    in ( 
    dom Ch) by 
    A3,
    FUNCT_1:def 7;
    
      x
    in ( 
    dom Ch) by 
    A3,
    FUNCT_1:def 7;
    
      then z
    in (F 
    . x) by 
    A1,
    A4,
    Def2;
    
      hence thesis by
    A4,
    A5;
    
    end;
    
    theorem :: 
    
    CARD_FIN:23
    
    F is
    empty or ( 
    union ( 
    rng F)) is 
    empty implies ( 
    Intersection (F,Ch,y)) 
    = ( 
    union ( 
    rng F)) by 
    RELAT_1: 38,
    ZFMISC_1: 2;
    
    theorem :: 
    
    CARD_FIN:24
    
    
    
    
    
    Th23: for y be 
    object holds (F 
    | (Ch 
    "  
    {y}))
    = ((Ch 
    "  
    {y})
    --> ( 
    union ( 
    rng F))) implies ( 
    Intersection (F,Ch,y)) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      let y be
    object;
    
      set ChF = ((Ch
    "  
    {y})
    --> ( 
    union ( 
    rng F))); 
    
      assume
    
      
    
    A1: (F 
    | (Ch 
    "  
    {y}))
    = ChF; 
    
      (
    union ( 
    rng F)) 
    c= ( 
    Intersection (F,Ch,y)) 
    
      proof
    
        let z be
    object such that 
    
        
    
    A2: z 
    in ( 
    union ( 
    rng F)); 
    
        now
    
          let x such that
    
          
    
    A3: x 
    in ( 
    dom Ch) and 
    
          
    
    A4: (Ch 
    . x) 
    = y; 
    
          (Ch
    . x) 
    in  
    {y} by
    A4,
    TARSKI:def 1;
    
          then
    
          
    
    A5: x 
    in (Ch 
    "  
    {y}) by
    A3,
    FUNCT_1:def 7;
    
          then (
    dom ChF) 
    = (Ch 
    "  
    {y}) & (ChF
    . x) 
    = ( 
    union ( 
    rng F)) by 
    FUNCOP_1: 7;
    
          hence z
    in (F 
    . x) by 
    A1,
    A2,
    A5,
    FUNCT_1: 47;
    
        end;
    
        hence thesis by
    A2,
    Def2;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:25
    
    (
    union ( 
    rng F)) is non 
    empty & ( 
    Intersection (F,Ch,y)) 
    = ( 
    union ( 
    rng F)) implies (F 
    | (Ch 
    "  
    {y}))
    = ((Ch 
    "  
    {y})
    --> ( 
    union ( 
    rng F))) 
    
    proof
    
      set ChF = ((Ch
    "  
    {y})
    --> ( 
    union ( 
    rng F))); 
    
      assume that
    
      
    
    A1: ( 
    union ( 
    rng F)) is non 
    empty and 
    
      
    
    A2: ( 
    Intersection (F,Ch,y)) 
    = ( 
    union ( 
    rng F)); 
    
      
    
      
    
    A3: (( 
    dom F) 
    /\ (Ch 
    "  
    {y}))
    = ( 
    dom (F 
    | (Ch 
    "  
    {y}))) by
    RELAT_1: 61;
    
      ((
    dom F) 
    /\ (Ch 
    "  
    {y}))
    = (Ch 
    "  
    {y}) by
    A1,
    A2,
    Th19,
    XBOOLE_1: 28;
    
      then
    
      
    
    A4: ( 
    dom (F 
    | (Ch 
    "  
    {y})))
    = ( 
    dom ChF) by 
    A3;
    
      assume (F
    | (Ch 
    "  
    {y}))
    <> ChF; 
    
      then
    
      consider x be
    object such that 
    
      
    
    A5: x 
    in ( 
    dom (F 
    | (Ch 
    "  
    {y}))) and
    
      
    
    A6: ((F 
    | (Ch 
    "  
    {y}))
    . x) 
    <> (ChF 
    . x) by 
    A4;
    
      x
    in (( 
    dom F) 
    /\ (Ch 
    "  
    {y})) by
    A5,
    RELAT_1: 61;
    
      then
    
      
    
    A7: x 
    in ( 
    dom F) by 
    XBOOLE_0:def 4;
    
      x
    in (( 
    dom F) 
    /\ (Ch 
    "  
    {y})) by
    A5,
    RELAT_1: 61;
    
      then
    
      
    
    A8: x 
    in (Ch 
    "  
    {y}) by
    XBOOLE_0:def 4;
    
      then
    
      
    
    A9: (ChF 
    . x) 
    = ( 
    union ( 
    rng F)) by 
    FUNCOP_1: 7;
    
      (Ch
    . x) 
    in  
    {y} by
    A8,
    FUNCT_1:def 7;
    
      then
    
      
    
    A10: (Ch 
    . x) 
    = y by 
    TARSKI:def 1;
    
      (F
    . x) 
    = ((F 
    | (Ch 
    "  
    {y}))
    . x) by 
    A5,
    FUNCT_1: 47;
    
      then ((F
    | (Ch 
    "  
    {y}))
    . x) 
    in ( 
    rng F) by 
    A7,
    FUNCT_1:def 3;
    
      then ((F
    | (Ch 
    "  
    {y}))
    . x) 
    c= (ChF 
    . x) by 
    A9,
    ZFMISC_1: 74;
    
      then not (
    union ( 
    rng F)) 
    c= ((F 
    | (Ch 
    "  
    {y}))
    . x) by 
    A6,
    A9;
    
      then
    
      consider z be
    object such that 
    
      
    
    A11: z 
    in ( 
    union ( 
    rng F)) and 
    
      
    
    A12: not z 
    in ((F 
    | (Ch 
    "  
    {y}))
    . x); 
    
      x
    in ( 
    dom Ch) by 
    A8,
    FUNCT_1:def 7;
    
      then z
    in (F 
    . x) by 
    A2,
    A11,
    A10,
    Def2;
    
      hence thesis by
    A5,
    A12,
    FUNCT_1: 47;
    
    end;
    
    theorem :: 
    
    CARD_FIN:26
    
    
    
    
    
    Th25: for y be 
    object holds ( 
    Intersection (F, 
    {} ,y)) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      let y be
    object;
    
      (F
    | ( 
    {}  
    "  
    {y}) qua
    set)
    = (( 
    {}  
    "  
    {y})
    --> ( 
    union ( 
    rng F))); 
    
      hence thesis by
    Th23;
    
    end;
    
    theorem :: 
    
    CARD_FIN:27
    
    
    
    
    
    Th26: for y be 
    object holds ( 
    Intersection (F,Ch,y)) 
    c= ( 
    Intersection (F,(Ch 
    | X9),y)) 
    
    proof
    
      let y be
    object;
    
      let z be
    object such that 
    
      
    
    A1: z 
    in ( 
    Intersection (F,Ch,y)); 
    
      now
    
        let x such that
    
        
    
    A2: x 
    in ( 
    dom (Ch 
    | X9)) and 
    
        
    
    A3: ((Ch 
    | X9) 
    . x) 
    = y; 
    
        x
    in (( 
    dom Ch) 
    /\ X9) by 
    A2,
    RELAT_1: 61;
    
        then
    
        
    
    A4: x 
    in ( 
    dom Ch) by 
    XBOOLE_0:def 4;
    
        (Ch
    . x) 
    = y by 
    A2,
    A3,
    FUNCT_1: 47;
    
        hence z
    in (F 
    . x) by 
    A1,
    A4,
    Def2;
    
      end;
    
      hence thesis by
    A1,
    Def2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:28
    
    
    
    
    
    Th27: (Ch 
    "  
    {y})
    = ((Ch 
    | X9) 
    "  
    {y}) implies (
    Intersection (F,Ch,y)) 
    = ( 
    Intersection (F,(Ch 
    | X9),y)) 
    
    proof
    
      assume
    
      
    
    A1: (Ch 
    "  
    {y})
    = ((Ch 
    | X9) 
    "  
    {y});
    
      
    
      
    
    A2: ( 
    Intersection (F,(Ch 
    | X9),y)) 
    c= ( 
    Intersection (F,Ch,y)) 
    
      proof
    
        let z be
    object such that 
    
        
    
    A3: z 
    in ( 
    Intersection (F,(Ch 
    | X9),y)); 
    
        now
    
          let x such that
    
          
    
    A4: x 
    in ( 
    dom Ch) and 
    
          
    
    A5: (Ch 
    . x) 
    = y; 
    
          (Ch
    . x) 
    in  
    {y} by
    A5,
    TARSKI:def 1;
    
          then
    
          
    
    A6: x 
    in ((Ch 
    | X9) 
    "  
    {y}) by
    A1,
    A4,
    FUNCT_1:def 7;
    
          then ((Ch
    | X9) 
    . x) 
    in  
    {y} by
    FUNCT_1:def 7;
    
          then
    
          
    
    A7: ((Ch 
    | X9) 
    . x) 
    = y by 
    TARSKI:def 1;
    
          x
    in ( 
    dom (Ch 
    | X9)) by 
    A6,
    FUNCT_1:def 7;
    
          hence z
    in (F 
    . x) by 
    A3,
    A7,
    Def2;
    
        end;
    
        hence thesis by
    A3,
    Def2;
    
      end;
    
      (
    Intersection (F,Ch,y)) 
    c= ( 
    Intersection (F,(Ch 
    | X9),y)) by 
    Th26;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:29
    
    
    
    
    
    Th28: ( 
    Intersection ((F 
    | X9),Ch,y)) 
    c= ( 
    Intersection (F,Ch,y)) 
    
    proof
    
      let z be
    object such that 
    
      
    
    A1: z 
    in ( 
    Intersection ((F 
    | X9),Ch,y)); 
    
      
    
    A2: 
    
      now
    
        
    
        
    
    A3: (Ch 
    "  
    {y})
    c= ( 
    dom (F 
    | X9)) by 
    A1,
    Th19;
    
        let x such that
    
        
    
    A4: x 
    in ( 
    dom Ch) and 
    
        
    
    A5: (Ch 
    . x) 
    = y; 
    
        (Ch
    . x) 
    in  
    {y} by
    A5,
    TARSKI:def 1;
    
        then
    
        
    
    A6: x 
    in (Ch 
    "  
    {y}) by
    A4,
    FUNCT_1:def 7;
    
        z
    in ((F 
    | X9) 
    . x) by 
    A1,
    A4,
    A5,
    Def2;
    
        hence z
    in (F 
    . x) by 
    A6,
    A3,
    FUNCT_1: 47;
    
      end;
    
      (
    union ( 
    rng (F 
    | X9))) 
    c= ( 
    union ( 
    rng F)) & z 
    in ( 
    union ( 
    rng (F 
    | X9))) by 
    A1,
    RELAT_1: 70,
    ZFMISC_1: 77;
    
      hence thesis by
    A2,
    Def2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:30
    
    
    
    
    
    Th29: y 
    in ( 
    rng Ch) & (Ch 
    "  
    {y})
    c= X9 implies ( 
    Intersection ((F 
    | X9),Ch,y)) 
    = ( 
    Intersection (F,Ch,y)) 
    
    proof
    
      assume that
    
      
    
    A1: y 
    in ( 
    rng Ch) and 
    
      
    
    A2: (Ch 
    "  
    {y})
    c= X9; 
    
      
    
      
    
    A3: ( 
    Intersection (F,Ch,y)) 
    c= ( 
    Intersection ((F 
    | X9),Ch,y)) 
    
      proof
    
        let z be
    object such that 
    
        
    
    A4: z 
    in ( 
    Intersection (F,Ch,y)); 
    
        
    
    A5: 
    
        now
    
          let x such that
    
          
    
    A6: x 
    in ( 
    dom Ch) and 
    
          
    
    A7: (Ch 
    . x) 
    = y; 
    
          (Ch
    . x) 
    in  
    {y} by
    A7,
    TARSKI:def 1;
    
          then
    
          
    
    A8: x 
    in (Ch 
    "  
    {y}) by
    A6,
    FUNCT_1:def 7;
    
          z
    in (F 
    . x) by 
    A4,
    A6,
    A7,
    Def2;
    
          then x
    in ( 
    dom F) by 
    FUNCT_1:def 2;
    
          then x
    in (( 
    dom F) 
    /\ X9) by 
    A2,
    A8,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A9: x 
    in ( 
    dom (F 
    | X9)) by 
    RELAT_1: 61;
    
          z
    in (F 
    . x) by 
    A4,
    A6,
    A7,
    Def2;
    
          hence z
    in ((F 
    | X9) 
    . x) by 
    A9,
    FUNCT_1: 47;
    
        end;
    
        consider x such that
    
        
    
    A10: x 
    in ( 
    dom Ch) and 
    
        
    
    A11: (Ch 
    . x) 
    = y and 
    
        
    
    A12: z 
    in (F 
    . x) by 
    A1,
    A4,
    Th21;
    
        (Ch
    . x) 
    in  
    {y} by
    A11,
    TARSKI:def 1;
    
        then
    
        
    
    A13: x 
    in (Ch 
    "  
    {y}) by
    A10,
    FUNCT_1:def 7;
    
        x
    in ( 
    dom F) by 
    A12,
    FUNCT_1:def 2;
    
        then x
    in (( 
    dom F) 
    /\ X9) by 
    A2,
    A13,
    XBOOLE_0:def 4;
    
        then x
    in ( 
    dom (F 
    | X9)) by 
    RELAT_1: 61;
    
        then
    
        
    
    A14: ((F 
    | X9) 
    . x) 
    in ( 
    rng (F 
    | X9)) by 
    FUNCT_1:def 3;
    
        z
    in ((F 
    | X9) 
    . x) by 
    A5,
    A10,
    A11;
    
        then z
    in ( 
    union ( 
    rng (F 
    | X9))) by 
    A14,
    TARSKI:def 4;
    
        hence thesis by
    A5,
    Def2;
    
      end;
    
      (
    Intersection ((F 
    | X9),Ch,y)) 
    c= ( 
    Intersection (F,Ch,y)) by 
    Th28;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    CARD_FIN:31
    
    
    
    
    
    Th30: for x,y be 
    object holds x 
    in (Ch 
    "  
    {y}) implies (
    Intersection (F,Ch,y)) 
    c= (F 
    . x) 
    
    proof
    
      let x,y be
    object;
    
      assume
    
      
    
    A1: x 
    in (Ch 
    "  
    {y});
    
      then
    
      
    
    A2: x 
    in ( 
    dom Ch) by 
    FUNCT_1:def 7;
    
      (Ch
    . x) 
    in  
    {y} by
    A1,
    FUNCT_1:def 7;
    
      then
    
      
    
    A3: (Ch 
    . x) 
    = y by 
    TARSKI:def 1;
    
      let z be
    object;
    
      assume z
    in ( 
    Intersection (F,Ch,y)); 
    
      hence thesis by
    A2,
    A3,
    Def2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:32
    
    
    
    
    
    Th31: for x,y be 
    object holds x 
    in (Ch 
    "  
    {y}) implies ((
    Intersection (F,(Ch 
    | (( 
    dom Ch) 
    \  
    {x})),y))
    /\ (F 
    . x)) 
    = ( 
    Intersection (F,Ch,y)) 
    
    proof
    
      let x,y be
    object;
    
      set d = ((
    dom Ch) 
    \  
    {x});
    
      set Chd = (Ch
    | d); 
    
      set I1 = (
    Intersection (F,Ch,y)); 
    
      set I2 = (
    Intersection (F,Chd,y)); 
    
      assume x
    in (Ch 
    "  
    {y});
    
      then
    
      
    
    A1: I1 
    c= (F 
    . x) by 
    Th30;
    
      
    
      
    
    A2: (I2 
    /\ (F 
    . x)) 
    c= I1 
    
      proof
    
        let z be
    object such that 
    
        
    
    A3: z 
    in (I2 
    /\ (F 
    . x)); 
    
        now
    
          let x1 such that
    
          
    
    A4: x1 
    in ( 
    dom Ch) and 
    
          
    
    A5: (Ch 
    . x1) 
    = y; 
    
          per cases by
    A4,
    XBOOLE_0:def 5;
    
            suppose
    
            
    
    A6: x1 
    in d; 
    
            
    
            
    
    A7: z 
    in I2 by 
    A3,
    XBOOLE_0:def 4;
    
            
    
            
    
    A8: (( 
    dom Ch) 
    /\ d) 
    = ( 
    dom Chd) & (( 
    dom Ch) 
    /\ d) 
    = d by 
    RELAT_1: 61,
    XBOOLE_1: 28;
    
            then (Chd
    . x1) 
    = y by 
    A5,
    A6,
    FUNCT_1: 47;
    
            hence z
    in (F 
    . x1) by 
    A6,
    A8,
    A7,
    Def2;
    
          end;
    
            suppose x1
    in  
    {x};
    
            then x1
    = x by 
    TARSKI:def 1;
    
            hence z
    in (F 
    . x1) by 
    A3,
    XBOOLE_0:def 4;
    
          end;
    
        end;
    
        hence thesis by
    A3,
    Def2;
    
      end;
    
      I1
    c= I2 by 
    Th26;
    
      then I1
    c= (I2 
    /\ (F 
    . x)) by 
    A1,
    XBOOLE_1: 19;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:33
    
    
    
    
    
    Th32: for x1,x2 be 
    object holds for Ch1,Ch2 be 
    Function st (Ch1 
    "  
    {x1})
    = (Ch2 
    "  
    {x2}) holds (
    Intersection (F,Ch1,x1)) 
    = ( 
    Intersection (F,Ch2,x2)) 
    
    proof
    
      let x1,x2 be
    object;
    
      let Ch1,Ch2 be
    Function such that 
    
      
    
    A1: (Ch1 
    "  
    {x1})
    = (Ch2 
    "  
    {x2});
    
      thus (
    Intersection (F,Ch1,x1)) 
    c= ( 
    Intersection (F,Ch2,x2)) 
    
      proof
    
        let z be
    object such that 
    
        
    
    A2: z 
    in ( 
    Intersection (F,Ch1,x1)); 
    
        now
    
          let x such that
    
          
    
    A3: x 
    in ( 
    dom Ch2) and 
    
          
    
    A4: (Ch2 
    . x) 
    = x2; 
    
          (Ch2
    . x) 
    in  
    {x2} by
    A4,
    TARSKI:def 1;
    
          then
    
          
    
    A5: x 
    in (Ch1 
    "  
    {x1}) by
    A1,
    A3,
    FUNCT_1:def 7;
    
          then (Ch1
    . x) 
    in  
    {x1} by
    FUNCT_1:def 7;
    
          then
    
          
    
    A6: (Ch1 
    . x) 
    = x1 by 
    TARSKI:def 1;
    
          x
    in ( 
    dom Ch1) by 
    A5,
    FUNCT_1:def 7;
    
          hence z
    in (F 
    . x) by 
    A2,
    A6,
    Def2;
    
        end;
    
        hence thesis by
    A2,
    Def2;
    
      end;
    
      thus (
    Intersection (F,Ch2,x2)) 
    c= ( 
    Intersection (F,Ch1,x1)) 
    
      proof
    
        let z be
    object such that 
    
        
    
    A7: z 
    in ( 
    Intersection (F,Ch2,x2)); 
    
        now
    
          let x such that
    
          
    
    A8: x 
    in ( 
    dom Ch1) and 
    
          
    
    A9: (Ch1 
    . x) 
    = x1; 
    
          (Ch1
    . x) 
    in  
    {x1} by
    A9,
    TARSKI:def 1;
    
          then
    
          
    
    A10: x 
    in (Ch2 
    "  
    {x2}) by
    A1,
    A8,
    FUNCT_1:def 7;
    
          then (Ch2
    . x) 
    in  
    {x2} by
    FUNCT_1:def 7;
    
          then
    
          
    
    A11: (Ch2 
    . x) 
    = x2 by 
    TARSKI:def 1;
    
          x
    in ( 
    dom Ch2) by 
    A10,
    FUNCT_1:def 7;
    
          hence z
    in (F 
    . x) by 
    A7,
    A11,
    Def2;
    
        end;
    
        hence thesis by
    A7,
    Def2;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:34
    
    
    
    
    
    Th33: for y be 
    object holds (Ch 
    "  
    {y})
    =  
    {} implies ( 
    Intersection (F,Ch,y)) 
    = ( 
    union ( 
    rng F)) 
    
    proof
    
      let y be
    object;
    
      reconsider E =
    {} as 
    set;
    
      
    
      
    
    A1: (Ch 
    | E) 
    =  
    {} & ( 
    Intersection (F, 
    {} ,y)) 
    = ( 
    union ( 
    rng F)) by 
    Th25;
    
      assume (Ch
    "  
    {y})
    =  
    {} ; 
    
      then ((Ch
    | E) 
    "  
    {y})
    = (Ch 
    "  
    {y});
    
      hence thesis by
    A1,
    Th32;
    
    end;
    
    theorem :: 
    
    CARD_FIN:35
    
    
    
    
    
    Th34: for x,y be 
    object holds 
    {x}
    = (Ch 
    "  
    {y}) implies (
    Intersection (F,Ch,y)) 
    = (F 
    . x) 
    
    proof
    
      let x,y be
    object;
    
      
    
      
    
    A1: (( 
    dom Ch) 
    \  
    {x})
    misses  
    {x} by
    XBOOLE_1: 79;
    
      assume
    
      
    
    A2: 
    {x}
    = (Ch 
    "  
    {y});
    
      then ((Ch
    | (( 
    dom Ch) 
    \  
    {x}))
    "  
    {y})
    = ((( 
    dom Ch) 
    \  
    {x})
    /\  
    {x}) by
    FUNCT_1: 70;
    
      then ((Ch
    | (( 
    dom Ch) 
    \  
    {x}))
    "  
    {y})
    =  
    {} by 
    A1;
    
      then
    
      
    
    A3: ( 
    Intersection (F,(Ch 
    | (( 
    dom Ch) 
    \  
    {x})),y))
    = ( 
    union ( 
    rng F)) by 
    Th33;
    
      x
    in (Ch 
    "  
    {y}) by
    A2,
    TARSKI:def 1;
    
      then
    
      
    
    A4: (( 
    union ( 
    rng F)) 
    /\ (F 
    . x)) 
    = ( 
    Intersection (F,Ch,y)) by 
    A3,
    Th31;
    
      per cases ;
    
        suppose x
    in ( 
    dom F); 
    
        then (F
    . x) 
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
        hence thesis by
    A4,
    XBOOLE_1: 28,
    ZFMISC_1: 74;
    
      end;
    
        suppose not x
    in ( 
    dom F); 
    
        then (F
    . x) 
    =  
    {} by 
    FUNCT_1:def 2;
    
        hence thesis by
    A4;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:36
    
    
    
    
    
    Th35: 
    {x1, x2}
    = (Ch 
    "  
    {y}) implies (
    Intersection (F,Ch,y)) 
    = ((F 
    . x1) 
    /\ (F 
    . x2)) 
    
    proof
    
      assume
    
      
    
    A1: 
    {x1, x2}
    = (Ch 
    "  
    {y});
    
      per cases ;
    
        suppose
    
        
    
    A2: x1 
    = x2; 
    
        then (Ch
    "  
    {y})
    =  
    {x1} by
    A1,
    ENUMSET1: 29;
    
        hence thesis by
    A2,
    Th34;
    
      end;
    
        suppose
    
        
    
    A3: x1 
    <> x2; 
    
        ((Ch
    "  
    {y})
    /\ (( 
    dom Ch) 
    \  
    {x1}))
    = (((Ch 
    "  
    {y})
    /\ ( 
    dom Ch)) 
    \  
    {x1}) & ((Ch
    "  
    {y})
    /\ ( 
    dom Ch)) 
    =  
    {x1, x2} by
    A1,
    RELAT_1: 132,
    XBOOLE_1: 28,
    XBOOLE_1: 49;
    
        then ((Ch
    "  
    {y})
    /\ (( 
    dom Ch) 
    \  
    {x1}))
    =  
    {x2} by
    A3,
    ZFMISC_1: 17;
    
        then
    
        
    
    A4: ((Ch 
    | (( 
    dom Ch) 
    \  
    {x1}))
    "  
    {y})
    =  
    {x2} by
    FUNCT_1: 70;
    
        x1
    in (Ch 
    "  
    {y}) by
    A1,
    TARSKI:def 2;
    
        then ((
    Intersection (F,(Ch 
    | (( 
    dom Ch) 
    \  
    {x1})),y))
    /\ (F 
    . x1)) 
    = ( 
    Intersection (F,Ch,y)) by 
    Th31;
    
        hence thesis by
    A4,
    Th34;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:37
    
    for F st F is non
    empty holds y 
    in ( 
    Intersection (F,(( 
    dom F) 
    --> x),x)) iff for z st z 
    in ( 
    dom F) holds y 
    in (F 
    . z) 
    
    proof
    
      let F such that
    
      
    
    A1: F is non 
    empty;
    
      set Ch = ((
    dom F) 
    --> x); 
    
      thus y
    in ( 
    Intersection (F,Ch,x)) implies for z st z 
    in ( 
    dom F) holds y 
    in (F 
    . z) 
    
      proof
    
        assume
    
        
    
    A2: y 
    in ( 
    Intersection (F,Ch,x)); 
    
        let z;
    
        assume z
    in ( 
    dom F); 
    
        then z
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x by 
    FUNCOP_1: 7;
    
        hence thesis by
    A2,
    Def2;
    
      end;
    
      (Ch
    "  
    {x})
    = ( 
    dom F) by 
    FUNCOP_1: 15;
    
      then
    
      
    
    A3: (( 
    dom F) 
    /\ (Ch 
    "  
    {x}))
    = ( 
    dom F); 
    
      assume for z st z
    in ( 
    dom F) holds y 
    in (F 
    . z); 
    
      then for z st z
    in ( 
    dom Ch) & (Ch 
    . z) 
    = x holds y 
    in (F 
    . z); 
    
      hence thesis by
    A1,
    A3,
    Th18;
    
    end;
    
    registration
    
      let F be
    finite-yielding  
    Function, X be 
    set;
    
      cluster (F 
    | X) -> 
    finite-yielding;
    
      coherence
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom (F 
    | X)); 
    
        then ((F
    | X) 
    . x) 
    = (F 
    . x) by 
    FUNCT_1: 47;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let F be
    finite-yielding  
    Function, G be 
    Function;
    
      cluster (F 
    * G) -> 
    finite-yielding;
    
      coherence
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom (F 
    * G)); 
    
        then ((F
    * G) 
    . x) 
    = (F 
    . (G 
    . x)) by 
    FUNCT_1: 12;
    
        hence thesis;
    
      end;
    
      cluster ( 
    Intersect (F,G)) -> 
    finite-yielding;
    
      coherence
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom ( 
    Intersect (F,G))); 
    
        then x
    in (( 
    dom F) 
    /\ ( 
    dom G)) by 
    YELLOW20:def 2;
    
        then ((
    Intersect (F,G)) 
    . x) 
    = ((F 
    . x) 
    /\ (G 
    . x)) by 
    YELLOW20:def 2;
    
        hence thesis;
    
      end;
    
    end
    
    reserve Fy for
    finite-yielding  
    Function;
    
    theorem :: 
    
    CARD_FIN:38
    
    y
    in ( 
    rng Ch) implies ( 
    Intersection (Fy,Ch,y)) is 
    finite
    
    proof
    
      assume y
    in ( 
    rng Ch); 
    
      then
    
      consider x be
    object such that 
    
      
    
    A1: x 
    in ( 
    dom Ch) and 
    
      
    
    A2: (Ch 
    . x) 
    = y by 
    FUNCT_1:def 3;
    
      (Ch
    . x) 
    in  
    {y} by
    A2,
    TARSKI:def 1;
    
      then x
    in (Ch 
    "  
    {y}) by
    A1,
    FUNCT_1:def 7;
    
      then (
    Intersection (Fy,Ch,y)) 
    c= (Fy 
    . x) by 
    Th30;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:39
    
    
    
    
    
    Th38: ( 
    dom Fy) is 
    finite implies ( 
    union ( 
    rng Fy)) is 
    finite
    
    proof
    
      assume (
    dom Fy) is 
    finite;
    
      then (
    rng Fy) is 
    finite by 
    FINSET_1: 8;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:40
    
    x
    in ( 
    Choose (n,k,1, 
    0 )) iff ex F be 
    XFinSequence of 
    NAT st F 
    = x & ( 
    dom F) 
    = n & ( 
    rng F) 
    c=  
    {
    0 , 1} & ( 
    Sum F) 
    = k 
    
    proof
    
      thus x
    in ( 
    Choose (n,k,1, 
    0 )) implies ex F be 
    XFinSequence of 
    NAT st F 
    = x & ( 
    dom F) 
    = n & ( 
    rng F) 
    c=  
    {
    0 , 1} & ( 
    Sum F) 
    = k 
    
      proof
    
        assume x
    in ( 
    Choose (n,k,1, 
    0 )); 
    
        then
    
        consider F be
    Function of n, 
    {
    0 , 1} such that 
    
        
    
    A1: x 
    = F & ( 
    card (F 
    "  
    {1}))
    = k by 
    Def1;
    
        
    
        
    
    A2: ( 
    rng F) 
    c=  
    {
    0 , 1}; 
    
        (
    dom F) 
    = n by 
    FUNCT_2:def 1;
    
        then
    
        reconsider F as
    XFinSequence by 
    AFINSQ_1: 5;
    
        (
    rng F) is 
    Subset of 
    NAT by 
    A2,
    XBOOLE_1: 1;
    
        then
    
        reconsider F as
    XFinSequence of 
    NAT by 
    RELAT_1:def 19;
    
        take F;
    
        (
    Sum F) 
    = (1 
    * ( 
    card (F 
    "  
    {1}))) by
    A2,
    AFINSQ_2: 68;
    
        hence thesis by
    A1,
    A2,
    FUNCT_2:def 1;
    
      end;
    
      given F be
    XFinSequence of 
    NAT such that 
    
      
    
    A3: F 
    = x and 
    
      
    
    A4: ( 
    dom F) 
    = n & ( 
    rng F) 
    c=  
    {
    0 , 1} & ( 
    Sum F) 
    = k; 
    
      (1
    * ( 
    card (F 
    "  
    {1})))
    = k & F is 
    Function of n, 
    {
    0 , 1} by 
    A4,
    AFINSQ_2: 68,
    FUNCT_2: 2;
    
      hence thesis by
    A3,
    Def1;
    
    end;
    
    
    
    
    
    Lm2: ex P be 
    Function of ( 
    card X), X st P is 
    one-to-one
    
    proof
    
      ((
    card X),X) 
    are_equipotent by 
    CARD_1:def 2;
    
      then
    
      consider P be
    Function such that 
    
      
    
    A1: P is 
    one-to-one and 
    
      
    
    A2: ( 
    dom P) 
    = ( 
    card X) & ( 
    rng P) 
    = X by 
    WELLORD2:def 4;
    
      P is
    Function of ( 
    card X), X by 
    A2,
    FUNCT_2: 1;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      ::$Canceled
    
      let k;
    
      let F be
    finite-yielding  
    Function;
    
      assume
    
      
    
    A1: ( 
    dom F) is 
    finite;
    
      :: 
    
    CARD_FIN:def4
    
      func
    
    Card_Intersection (F,k) -> 
    Element of 
    NAT means 
    
      :
    
    Def3: for x,y be 
    object, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)) st ( 
    dom F) 
    = X & P is 
    one-to-one & x 
    <> y holds ex XFS be 
    XFinSequence of 
    NAT st ( 
    dom XFS) 
    = ( 
    dom P) & (for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (F,f,x)))) & it 
    = ( 
    Sum XFS); 
    
      existence
    
      proof
    
        reconsider D = (
    dom F) as 
    finite  
    set by 
    A1;
    
        set Ch1 = (
    Choose (D,k, 
    0 ,1)); 
    
        ((
    card Ch1),Ch1) 
    are_equipotent by 
    CARD_1:def 2;
    
        then
    
        consider P1 be
    Function such that 
    
        
    
    A2: P1 is 
    one-to-one and 
    
        
    
    A3: ( 
    dom P1) 
    = ( 
    card Ch1) and 
    
        
    
    A4: ( 
    rng P1) 
    = Ch1 by 
    WELLORD2:def 4;
    
        reconsider P1 as
    Function of ( 
    card Ch1), Ch1 by 
    A3,
    A4,
    FUNCT_2: 1;
    
        defpred
    
    xfs1[
    object, 
    object] means for f st f
    = (P1 
    . $1) holds $2 
    = ( 
    card ( 
    Intersection (F,f, 
    0 ))); 
    
        
    
        
    
    A5: for x be 
    object st x 
    in ( 
    card Ch1) holds ex y be 
    object st y 
    in  
    NAT & 
    xfs1[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    card Ch1); 
    
          then x
    in ( 
    dom P1) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
          then (P1
    . x) 
    in ( 
    rng P1) by 
    FUNCT_1:def 3;
    
          then
    
          consider f be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A6: f 
    = (P1 
    . x) and ( 
    card (f 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          (
    union ( 
    rng F)) is 
    finite by 
    A1,
    Th38;
    
          then
    
          reconsider I = (
    Intersection (F,f, 
    0 )) as 
    finite  
    set;
    
          take (
    card I); 
    
          thus thesis by
    A6;
    
        end;
    
        consider XFS1 be
    Function of ( 
    card Ch1), 
    NAT such that 
    
        
    
    A7: for x be 
    object st x 
    in ( 
    card Ch1) holds 
    xfs1[x, (XFS1
    . x)] from 
    FUNCT_2:sch 1(
    A5);
    
        
    
        
    
    A8: ( 
    dom XFS1) 
    = ( 
    card Ch1) by 
    FUNCT_2:def 1;
    
        then
    
        reconsider XFS1 as
    XFinSequence by 
    AFINSQ_1: 5;
    
        reconsider XFS1 as
    XFinSequence of 
    NAT ; 
    
        reconsider S = (
    Sum XFS1) as 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        take S;
    
        let x,y be
    object, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)) such that 
    
        
    
    A9: ( 
    dom F) 
    = X and 
    
        
    
    A10: P is 
    one-to-one and 
    
        
    
    A11: x 
    <> y; 
    
        defpred
    
    perm[
    object, 
    object] means for f1 be
    Function of D, 
    {
    0 , 1}, f be 
    Function of X, 
    {x, y} st f1
    = (P1 
    . $1) & f 
    = (P 
    . $2) holds (f1 
    "  
    {
    0 }) 
    = (f 
    "  
    {x}) & for z st z
    in X holds ((f1 
    . z) 
    =  
    0 iff (f 
    . z) 
    = x) & ((f1 
    . z) 
    = 1 iff (f 
    . z) 
    = y); 
    
        set Ch = (
    Choose (X,k,x,y)); 
    
        
    
        
    
    A12: for x1 be 
    object st x1 
    in ( 
    card Ch1) holds ex x2 be 
    object st x2 
    in ( 
    card Ch1) & 
    perm[x1, x2]
    
        proof
    
          (
    card ( 
    card ( 
    Choose (X,k,x,y)))) 
    = ( 
    card ( 
    Choose (X,k,x,y))); 
    
          then P is
    onto by 
    A10,
    FINSEQ_4: 63;
    
          then
    
          
    
    A13: ( 
    rng P) 
    = Ch by 
    FUNCT_2:def 3;
    
          let x1 be
    object;
    
          assume x1
    in ( 
    card Ch1); 
    
          then (P1
    . x1) 
    in ( 
    rng P1) by 
    A3,
    FUNCT_1:def 3;
    
          then
    
          consider f1 be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A14: f1 
    = (P1 
    . x1) and 
    
          
    
    A15: ( 
    card (f1 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          defpred
    
    pf[
    object, 
    object] means ((f1
    . $1) 
    =  
    0 iff $2 
    = x) & ((f1 
    . $1) 
    = 1 iff $2 
    = y); 
    
          
    
          
    
    A16: for d be 
    object st d 
    in X holds ex fd be 
    object st fd 
    in  
    {x, y} &
    pf[d, fd]
    
          proof
    
            let d be
    object;
    
            assume d
    in X; 
    
            then d
    in ( 
    dom f1) by 
    A9,
    FUNCT_2:def 1;
    
            then (f1
    . d) 
    in ( 
    rng f1) by 
    FUNCT_1:def 3;
    
            then
    
            
    
    A17: (f1 
    . d) 
    =  
    0 or (f1 
    . d) 
    = 1 by 
    TARSKI:def 2;
    
            x
    in  
    {x, y} & y
    in  
    {x, y} by
    TARSKI:def 2;
    
            hence thesis by
    A11,
    A17;
    
          end;
    
          consider f be
    Function of X, 
    {x, y} such that
    
          
    
    A18: for d be 
    object st d 
    in X holds 
    pf[d, (f
    . d)] from 
    FUNCT_2:sch 1(
    A16);
    
          
    
          
    
    A19: ( 
    dom f1) 
    = D by 
    FUNCT_2:def 1;
    
          
    
          
    
    A20: (f1 
    "  
    {
    0 }) 
    c= (f 
    "  
    {x})
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A21: z 
    in (f1 
    "  
    {
    0 }); 
    
            then (f1
    . z) 
    in  
    {
    0 } by 
    FUNCT_1:def 7;
    
            then
    
            
    
    A22: (f1 
    . z) 
    =  
    0 by 
    TARSKI:def 1;
    
            
    
            
    
    A23: ( 
    dom f1) 
    = ( 
    dom f) by 
    A9,
    A19,
    FUNCT_2:def 1;
    
            then z
    in ( 
    dom f) by 
    A19,
    A21;
    
            then (f
    . z) 
    = x by 
    A18,
    A22;
    
            then (f
    . z) 
    in  
    {x} by
    TARSKI:def 1;
    
            hence thesis by
    A19,
    A21,
    A23,
    FUNCT_1:def 7;
    
          end;
    
          
    
          
    
    A24: (f 
    "  
    {x})
    c= (f1 
    "  
    {
    0 }) 
    
          proof
    
            let z be
    object;
    
            assume
    
            
    
    A25: z 
    in (f 
    "  
    {x});
    
            then (f
    . z) 
    in  
    {x} by
    FUNCT_1:def 7;
    
            then (f
    . z) 
    = x by 
    TARSKI:def 1;
    
            then (f1
    . z) 
    =  
    0 by 
    A18,
    A25;
    
            then (f1
    . z) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
            hence thesis by
    A9,
    A19,
    A25,
    FUNCT_1:def 7;
    
          end;
    
          then (f
    "  
    {x})
    = (f1 
    "  
    {
    0 }) by 
    A20;
    
          then f
    in Ch by 
    A15,
    Def1;
    
          then
    
          consider x2 be
    object such that 
    
          
    
    A26: x2 
    in ( 
    dom P) and 
    
          
    
    A27: (P 
    . x2) 
    = f by 
    A13,
    FUNCT_1:def 3;
    
          reconsider x2 as
    set by 
    TARSKI: 1;
    
          take x2;
    
          (
    card Ch) 
    = (( 
    card X) 
    choose k) & ( 
    card Ch1) 
    = (( 
    card D) 
    choose k) by 
    A11,
    Th15;
    
          hence x2
    in ( 
    card Ch1) by 
    A9,
    A26;
    
          let f19 be
    Function of D, 
    {
    0 , 1}, f9 be 
    Function of X, 
    {x, y} such that
    
          
    
    A28: f19 
    = (P1 
    . x1) & f9 
    = (P 
    . x2); 
    
          thus (f9
    "  
    {x})
    = (f19 
    "  
    {
    0 }) by 
    A14,
    A24,
    A20,
    A27,
    A28;
    
          let z;
    
          assume z
    in X; 
    
          hence thesis by
    A14,
    A18,
    A27,
    A28;
    
        end;
    
        consider Perm be
    Function of ( 
    card Ch1), ( 
    card Ch1) such that 
    
        
    
    A29: for x1 be 
    object st x1 
    in ( 
    card Ch1) holds 
    perm[x1, (Perm
    . x1)] from 
    FUNCT_2:sch 1(
    A12);
    
        now
    
          
    
          
    
    A30: Ch 
    =  
    {} implies ( 
    card Ch) 
    =  
    {} ; 
    
          let z1,z2 be
    object such that 
    
          
    
    A31: z1 
    in ( 
    dom Perm) and 
    
          
    
    A32: z2 
    in ( 
    dom Perm) and 
    
          
    
    A33: (Perm 
    . z1) 
    = (Perm 
    . z2); 
    
          
    
          
    
    A34: ( 
    card X) 
    = ( 
    card D) by 
    A9;
    
          (
    card Ch) 
    = (( 
    card X) 
    choose k) & ( 
    card Ch1) 
    = (( 
    card D) 
    choose k) by 
    A11,
    Th15;
    
          then (
    card Ch1) 
    = ( 
    card Ch) by 
    A34;
    
          then (Perm
    . z1) 
    in ( 
    card Ch) by 
    A31,
    FUNCT_2: 5;
    
          then (Perm
    . z1) 
    in ( 
    dom P) by 
    A30,
    FUNCT_2:def 1;
    
          then (P
    . (Perm 
    . z1)) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
          then
    
          consider PPermz1 be
    Function of X, 
    {x, y} such that
    
          
    
    A35: PPermz1 
    = (P 
    . (Perm 
    . z1)) and ( 
    card (PPermz1 
    "  
    {x}))
    = k by 
    Def1;
    
          (P1
    . z2) 
    in ( 
    rng P1) by 
    A3,
    A32,
    FUNCT_1:def 3;
    
          then
    
          consider P1z2 be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A36: (P1 
    . z2) 
    = P1z2 and ( 
    card (P1z2 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          (P1
    . z1) 
    in ( 
    rng P1) by 
    A3,
    A31,
    FUNCT_1:def 3;
    
          then
    
          consider P1z1 be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A37: (P1 
    . z1) 
    = P1z1 and ( 
    card (P1z1 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          
    
          
    
    A38: for z be 
    object st z 
    in ( 
    dom P1z1) holds (P1z1 
    . z) 
    = (P1z2 
    . z) 
    
          proof
    
            let z be
    object such that 
    
            
    
    A39: z 
    in ( 
    dom P1z1); 
    
            
    
            
    
    A40: (P1z1 
    . z) 
    in ( 
    rng P1z1) by 
    A39,
    FUNCT_1:def 3;
    
            per cases by
    A40,
    TARSKI:def 2;
    
              suppose
    
              
    
    A41: (P1z1 
    . z) 
    =  
    0 ; 
    
              then (PPermz1
    . z) 
    = x by 
    A9,
    A29,
    A31,
    A37,
    A35,
    A39;
    
              hence thesis by
    A9,
    A29,
    A32,
    A33,
    A36,
    A35,
    A39,
    A41;
    
            end;
    
              suppose
    
              
    
    A42: (P1z1 
    . z) 
    = 1; 
    
              then (PPermz1
    . z) 
    = y by 
    A9,
    A29,
    A31,
    A37,
    A35,
    A39;
    
              hence thesis by
    A9,
    A29,
    A32,
    A33,
    A36,
    A35,
    A39,
    A42;
    
            end;
    
          end;
    
          (
    dom P1z1) 
    = D & ( 
    dom P1z2) 
    = D by 
    FUNCT_2:def 1;
    
          then P1z1
    = P1z2 by 
    A38;
    
          hence z1
    = z2 by 
    A2,
    A3,
    A31,
    A32,
    A37,
    A36;
    
        end;
    
        then
    
        
    
    A43: Perm is 
    one-to-one;
    
        (
    card ( 
    card Ch1)) 
    = ( 
    card ( 
    card Ch1)); 
    
        then
    
        
    
    A44: Perm is 
    one-to-one
    onto by 
    A43,
    FINSEQ_4: 63;
    
        defpred
    
    xfs[
    object, 
    object] means for f st f
    = (P 
    . $1) holds $2 
    = ( 
    card ( 
    Intersection (F,f,x))); 
    
        
    
        
    
    A45: for x1 be 
    object st x1 
    in ( 
    card Ch) holds ex x2 be 
    object st x2 
    in  
    NAT & 
    xfs[x1, x2]
    
        proof
    
          let x1 be
    object;
    
          assume x1
    in ( 
    card Ch); 
    
          then x1
    in ( 
    dom P) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
          then (P
    . x1) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
          then
    
          consider f be
    Function of X, 
    {x, y} such that
    
          
    
    A46: f 
    = (P 
    . x1) and ( 
    card (f 
    "  
    {x}))
    = k by 
    Def1;
    
          (
    union ( 
    rng F)) is 
    finite by 
    A1,
    Th38;
    
          then
    
          reconsider I = (
    Intersection (F,f,x)) as 
    finite  
    set;
    
          take (
    card I); 
    
          thus thesis by
    A46;
    
        end;
    
        consider XFS be
    Function of ( 
    card Ch), 
    NAT such that 
    
        
    
    A47: for x1 be 
    object st x1 
    in ( 
    card Ch) holds 
    xfs[x1, (XFS
    . x1)] from 
    FUNCT_2:sch 1(
    A45);
    
        
    
        
    
    A48: ( 
    dom XFS) 
    = ( 
    card Ch) by 
    FUNCT_2:def 1;
    
        then
    
        reconsider XFS as
    XFinSequence by 
    AFINSQ_1: 5;
    
        reconsider XFS as
    XFinSequence of 
    NAT ; 
    
        take XFS;
    
        Ch
    =  
    {} implies ( 
    card Ch) 
    =  
    {} ; 
    
        then (
    dom P) 
    = ( 
    card Ch) by 
    FUNCT_2:def 1;
    
        hence
    
        
    
    A49: ( 
    dom XFS) 
    = ( 
    dom P) by 
    FUNCT_2:def 1;
    
        hence for z, f st z
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (F,f,x))) by 
    A47;
    
        
    
        
    
    A50: ( 
    card Ch1) 
    = (( 
    card D) 
    choose k) by 
    Th15;
    
        
    
        
    
    A51: ( 
    card Ch) 
    = (( 
    card X) 
    choose k) by 
    A11,
    Th15;
    
        then (
    card Ch1) 
    = ( 
    dom XFS) by 
    A9,
    A50,
    FUNCT_2:def 1;
    
        then
    
        reconsider Perm as
    Permutation of ( 
    dom XFS) by 
    A44;
    
        
    
        
    
    A52: ( 
    dom XFS) 
    = ( 
    dom XFS1) by 
    A9,
    A48,
    A50,
    A51,
    FUNCT_2:def 1;
    
        
    
        
    
    A53: for z be 
    object st z 
    in ( 
    dom XFS1) holds (XFS1 
    . z) 
    = ((XFS 
    * Perm) 
    . z) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A54: z 
    in ( 
    dom XFS1); 
    
          
    
          
    
    A55: z 
    in ( 
    dom Perm) by 
    A8,
    A54,
    FUNCT_2: 52;
    
          
    
          
    
    A56: (Perm 
    . z) 
    in ( 
    dom XFS) by 
    A52,
    A54,
    FUNCT_2: 5;
    
          then (P
    . (Perm 
    . z)) 
    in ( 
    rng P) by 
    A49,
    FUNCT_1:def 3;
    
          then
    
          consider p be
    Function of X, 
    {x, y} such that
    
          
    
    A57: p 
    = (P 
    . (Perm 
    . z)) and ( 
    card (p 
    "  
    {x}))
    = k by 
    Def1;
    
          
    
          
    
    A58: (XFS 
    . (Perm 
    . z)) 
    = ( 
    card ( 
    Intersection (F,p,x))) by 
    A47,
    A48,
    A57,
    A56;
    
          (P1
    . z) 
    in ( 
    rng P1) by 
    A3,
    A8,
    A54,
    FUNCT_1:def 3;
    
          then
    
          consider p1 be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A59: p1 
    = (P1 
    . z) and ( 
    card (p1 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          (p1
    "  
    {
    0 }) 
    = (p 
    "  
    {x}) by
    A8,
    A29,
    A54,
    A57,
    A59;
    
          then
    
          
    
    A60: ( 
    Intersection (F,p1, 
    0 )) 
    = ( 
    Intersection (F,p,x)) by 
    Th32;
    
          (XFS1
    . z) 
    = ( 
    card ( 
    Intersection (F,p1, 
    0 ))) by 
    A7,
    A8,
    A54,
    A59;
    
          hence thesis by
    A60,
    A58,
    A55,
    FUNCT_1: 13;
    
        end;
    
        (
    rng Perm) 
    c= ( 
    dom XFS) & ( 
    dom Perm) 
    = ( 
    dom XFS) by 
    FUNCT_2: 52;
    
        then (
    dom XFS1) 
    = ( 
    dom (XFS 
    * Perm)) by 
    A52,
    RELAT_1: 27;
    
        then XFS1
    = (XFS 
    * Perm) by 
    A53;
    
        then
    
        
    
    A61: ( 
    addnat  
    "**" XFS) 
    = ( 
    addnat  
    "**" XFS1) by 
    AFINSQ_2: 45;
    
        (
    addnat  
    "**" XFS1) 
    = ( 
    Sum XFS1) by 
    AFINSQ_2: 51;
    
        hence thesis by
    A61,
    AFINSQ_2: 51;
    
      end;
    
      uniqueness
    
      proof
    
        reconsider D = (
    dom F) as 
    finite  
    set by 
    A1;
    
        let n1,n2 be
    Element of 
    NAT such that 
    
        
    
    A62: for x,y be 
    object, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)) st ( 
    dom F) 
    = X & P is 
    one-to-one & x 
    <> y holds ex XFS be 
    XFinSequence of 
    NAT st ( 
    dom XFS) 
    = ( 
    dom P) & (for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (F,f,x)))) & n1 
    = ( 
    Sum XFS) and 
    
        
    
    A63: for x,y be 
    object, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)) st ( 
    dom F) 
    = X & P is 
    one-to-one & x 
    <> y holds ex XFS be 
    XFinSequence of 
    NAT st ( 
    dom XFS) 
    = ( 
    dom P) & (for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (F,f,x)))) & n2 
    = ( 
    Sum XFS); 
    
        set Ch1 = (
    Choose (D,k, 
    0 ,1)); 
    
        ((
    card Ch1),Ch1) 
    are_equipotent by 
    CARD_1:def 2;
    
        then
    
        consider P be
    Function such that 
    
        
    
    A64: P is 
    one-to-one and 
    
        
    
    A65: ( 
    dom P) 
    = ( 
    card Ch1) & ( 
    rng P) 
    = Ch1 by 
    WELLORD2:def 4;
    
        reconsider P as
    Function of ( 
    card Ch1), Ch1 by 
    A65,
    FUNCT_2: 1;
    
        consider XFS1 be
    XFinSequence of 
    NAT such that 
    
        
    
    A66: ( 
    dom XFS1) 
    = ( 
    dom P) and 
    
        
    
    A67: for z, f st z 
    in ( 
    dom XFS1) & f 
    = (P 
    . z) holds (XFS1 
    . z) 
    = ( 
    card ( 
    Intersection (F,f, 
    0 ))) and 
    
        
    
    A68: n1 
    = ( 
    Sum XFS1) by 
    A62,
    A64;
    
        consider XFS2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A69: ( 
    dom XFS2) 
    = ( 
    dom P) and 
    
        
    
    A70: for z, f st z 
    in ( 
    dom XFS2) & f 
    = (P 
    . z) holds (XFS2 
    . z) 
    = ( 
    card ( 
    Intersection (F,f, 
    0 ))) and 
    
        
    
    A71: n2 
    = ( 
    Sum XFS2) by 
    A63,
    A64;
    
        now
    
          let z be
    object such that 
    
          
    
    A72: z 
    in ( 
    dom XFS1); 
    
          (P
    . z) 
    in ( 
    rng P) by 
    A66,
    A72,
    FUNCT_1:def 3;
    
          then
    
          consider Pz be
    Function of D, 
    {
    0 , 1} such that 
    
          
    
    A73: Pz 
    = (P 
    . z) and ( 
    card (Pz 
    "  
    {
    0 })) 
    = k by 
    Def1;
    
          (XFS2
    . z) 
    = ( 
    card ( 
    Intersection (F,Pz, 
    0 ))) by 
    A66,
    A69,
    A70,
    A72,
    A73;
    
          hence (XFS2
    . z) 
    = (XFS1 
    . z) by 
    A67,
    A72,
    A73;
    
        end;
    
        hence thesis by
    A66,
    A68,
    A69,
    A71,
    FUNCT_1: 2;
    
      end;
    
    end
    
    theorem :: 
    
    CARD_FIN:41
    
    for x,y be
    set, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)) st ( 
    dom Fy) 
    = X & P is 
    one-to-one & x 
    <> y holds for XFS be 
    XFinSequence of 
    NAT st ( 
    dom XFS) 
    = ( 
    dom P) & (for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x)))) holds ( 
    Card_Intersection (Fy,k)) 
    = ( 
    Sum XFS) 
    
    proof
    
      let x,y be
    set, X be 
    finite  
    set, P be 
    Function of ( 
    card ( 
    Choose (X,k,x,y))), ( 
    Choose (X,k,x,y)); 
    
      assume (
    dom Fy) 
    = X & P is 
    one-to-one & x 
    <> y; 
    
      then
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A1: ( 
    dom XFS) 
    = ( 
    dom P) and 
    
      
    
    A2: for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x))) and 
    
      
    
    A3: ( 
    Card_Intersection (Fy,k)) 
    = ( 
    Sum XFS) by 
    Def3;
    
      let XFS1 be
    XFinSequence of 
    NAT such that 
    
      
    
    A4: ( 
    dom XFS1) 
    = ( 
    dom P) and 
    
      
    
    A5: for z, f st z 
    in ( 
    dom XFS1) & f 
    = (P 
    . z) holds (XFS1 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x))); 
    
      now
    
        let z be
    object such that 
    
        
    
    A6: z 
    in ( 
    dom XFS); 
    
        (P
    . z) 
    in ( 
    rng P) by 
    A1,
    A6,
    FUNCT_1:def 3;
    
        then
    
        consider Pz be
    Function of X, 
    {x, y} such that
    
        
    
    A7: Pz 
    = (P 
    . z) and ( 
    card (Pz 
    "  
    {x}))
    = k by 
    Def1;
    
        (XFS1
    . z) 
    = ( 
    card ( 
    Intersection (Fy,Pz,x))) by 
    A4,
    A5,
    A1,
    A6,
    A7;
    
        hence (XFS1
    . z) 
    = (XFS 
    . z) by 
    A2,
    A6,
    A7;
    
      end;
    
      hence thesis by
    A4,
    A1,
    A3,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    CARD_FIN:42
    
    (
    dom Fy) is 
    finite & k 
    =  
    0 implies ( 
    Card_Intersection (Fy,k)) 
    = ( 
    card ( 
    union ( 
    rng Fy))) 
    
    proof
    
      assume that
    
      
    
    A1: ( 
    dom Fy) is 
    finite and 
    
      
    
    A2: k 
    =  
    0 ; 
    
      reconsider X = (
    dom Fy) as 
    finite  
    set by 
    A1;
    
      set Ch = (
    Choose (X,k, 
    0 ,1)); 
    
      consider P be
    Function of ( 
    card Ch), Ch such that 
    
      
    
    A3: P is 
    one-to-one by 
    Lm2;
    
      
    
      
    
    A4: ( 
    card Ch) 
    = 1 by 
    A2,
    Th10;
    
      then
    
      
    
    A5: ( 
    dom P) 
    = 1 by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A6: ( 
    dom XFS) 
    = ( 
    dom P) and 
    
      
    
    A7: for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f, 
    0 ))) and 
    
      
    
    A8: ( 
    Card_Intersection (Fy,k)) 
    = ( 
    Sum XFS) by 
    A3,
    Def3;
    
      (
    len XFS) 
    = 1 by 
    A6,
    A4,
    CARD_1: 27,
    FUNCT_2:def 1;
    
      then XFS
    =  
    <%(XFS
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
      then
    
      
    
    A9: ( 
    addnat  
    "**" XFS) 
    = (XFS 
    .  
    0 ) by 
    AFINSQ_2: 37;
    
      
    
      
    
    A10: 
    0  
    in 1 by 
    CARD_1: 49,
    TARSKI:def 1;
    
      then (P
    .  
    0 ) 
    in ( 
    rng P) by 
    A5,
    FUNCT_1:def 3;
    
      then
    
      consider P0 be
    Function of X, 
    {
    0 , 1} such that 
    
      
    
    A11: P0 
    = (P 
    .  
    0 ) and 
    
      
    
    A12: ( 
    card (P0 
    "  
    {
    0 })) 
    =  
    0 by 
    A2,
    Def1;
    
      (P0
    "  
    {
    0 }) 
    =  
    {} by 
    A12;
    
      then
    
      
    
    A13: ( 
    Intersection (Fy,P0, 
    0 )) 
    = ( 
    union ( 
    rng Fy)) by 
    Th33;
    
      (XFS
    .  
    0 ) 
    = ( 
    card ( 
    Intersection (Fy,P0, 
    0 ))) by 
    A6,
    A7,
    A5,
    A10,
    A11;
    
      hence thesis by
    A8,
    A13,
    A9,
    AFINSQ_2: 51;
    
    end;
    
    theorem :: 
    
    CARD_FIN:43
    
    
    
    
    
    Th42: ( 
    dom Fy) 
    = X & k 
    > ( 
    card X) implies ( 
    Card_Intersection (Fy,k)) 
    =  
    0  
    
    proof
    
      assume that
    
      
    
    A1: ( 
    dom Fy) 
    = X and 
    
      
    
    A2: k 
    > ( 
    card X); 
    
      set Ch = (
    Choose (X,k, 
    0 ,1)); 
    
      consider P be
    Function of ( 
    card Ch), Ch such that 
    
      
    
    A3: P is 
    one-to-one by 
    Lm2;
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A4: ( 
    dom XFS) 
    = ( 
    dom P) and for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f, 
    0 ))) and 
    
      
    
    A5: ( 
    Card_Intersection (Fy,k)) 
    = ( 
    Sum XFS) by 
    A1,
    A3,
    Def3;
    
      Ch is
    empty by 
    A2,
    Th9;
    
      then XFS
    =  
    0 by 
    A4;
    
      hence thesis by
    A5;
    
    end;
    
    theorem :: 
    
    CARD_FIN:44
    
    
    
    
    
    Th43: for Fy, X st ( 
    dom Fy) 
    = X holds for P be 
    Function of ( 
    card X), X st P is 
    one-to-one holds ex XFS be 
    XFinSequence of 
    NAT st ( 
    dom XFS) 
    = ( 
    card X) & (for z st z 
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z))) & ( 
    Card_Intersection (Fy,1)) 
    = ( 
    Sum XFS) 
    
    proof
    
      let Fy, X such that
    
      
    
    A1: ( 
    dom Fy) 
    = X; 
    
      let P be
    Function of ( 
    card X), X such that 
    
      
    
    A2: P is 
    one-to-one;
    
      per cases ;
    
        suppose
    
        
    
    A3: X 
    =  
    {} ; 
    
        reconsider XFS =
    {} as 
    XFinSequence;
    
        (
    rng  
    {} ) 
    c=  
    {} & 
    {}  
    c=  
    NAT ; 
    
        then
    
        reconsider XFS as
    XFinSequence of 
    NAT by 
    RELAT_1:def 19;
    
        take XFS;
    
        thus (
    card X) 
    = ( 
    dom XFS) & for z st z 
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z)) by 
    A3;
    
        (
    Sum XFS) 
    =  
    0 ; 
    
        hence thesis by
    A1,
    A3,
    Th42,
    CARD_1: 27;
    
      end;
    
        suppose X
    <>  
    {} ; 
    
        then
    
        reconsider cX = (
    card X) as non 
    empty  
    set;
    
        deffunc
    
    xfs(
    Element of cX) = ( 
    card ((Fy 
    * P) 
    . $1)); 
    
        consider XFS be
    Function of cX, 
    NAT such that 
    
        
    
    A4: for x be 
    Element of cX holds (XFS 
    . x) 
    =  
    xfs(x) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A5: ( 
    dom XFS) 
    = cX by 
    FUNCT_2:def 1;
    
        then
    
        reconsider XFS as
    XFinSequence by 
    AFINSQ_1: 5;
    
        reconsider XFS as
    XFinSequence of 
    NAT ; 
    
        take XFS;
    
        thus (
    card X) 
    = ( 
    dom XFS) by 
    FUNCT_2:def 1;
    
        thus for z st z
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z)) by 
    A4,
    A5;
    
        thus (
    Card_Intersection (Fy,1)) 
    = ( 
    Sum XFS) 
    
        proof
    
          deffunc
    
    p1(
    object) = (((P
    . $1) 
    .-->  
    0 ) 
    +* ((X 
    \  
    {(P
    . $1)}) 
    --> 1)); 
    
          
    
          
    
    A6: for x be 
    object st x 
    in cX holds 
    p1(x)
    in ( 
    Choose (X,1, 
    0 ,1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in cX; 
    
            then x
    in ( 
    dom P) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
            then (P
    . x) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
            then
    
            
    
    A7: ( 
    {(P
    . x)} 
    \/ (X 
    \  
    {(P
    . x)})) 
    = X by 
    ZFMISC_1: 116;
    
            
    {(P
    . x)} 
    misses (X 
    \  
    {(P
    . x)}) & ( 
    card  
    {(P
    . x)}) 
    = 1 by 
    CARD_1: 30,
    XBOOLE_1: 79;
    
            hence thesis by
    A7,
    Th17;
    
          end;
    
          consider P1 be
    Function of cX, ( 
    Choose (X,1, 
    0 ,1)) such that 
    
          
    
    A8: for z be 
    object st z 
    in cX holds (P1 
    . z) 
    =  
    p1(z) from
    FUNCT_2:sch 2(
    A6);
    
          (
    Choose (X,1, 
    0 ,1)) 
    c= ( 
    rng P1) 
    
          proof
    
            (
    card X) 
    = ( 
    card ( 
    card X)); 
    
            then
    
            
    
    A9: P is 
    onto by 
    A2,
    FINSEQ_4: 63;
    
            let z be
    object;
    
            assume z
    in ( 
    Choose (X,1, 
    0 ,1)); 
    
            then
    
            consider F be
    Function of X, 
    {
    0 , 1} such that 
    
            
    
    A10: F 
    = z and 
    
            
    
    A11: ( 
    card (F 
    "  
    {
    0 })) 
    = 1 by 
    Def1;
    
            consider x1 be
    object such that 
    
            
    
    A12: (F 
    "  
    {
    0 }) 
    =  
    {x1} by
    A11,
    CARD_2: 42;
    
            
    
            
    
    A13: x1 
    in  
    {x1} by
    TARSKI:def 1;
    
            then x1
    in X by 
    A12;
    
            then x1
    in ( 
    rng P) by 
    A9,
    FUNCT_2:def 3;
    
            then
    
            consider x2 be
    object such that 
    
            
    
    A14: x2 
    in ( 
    dom P) and 
    
            
    
    A15: (P 
    . x2) 
    = x1 by 
    FUNCT_1:def 3;
    
            
    
            
    
    A16: (P1 
    . x2) 
    = F 
    
            proof
    
              set F1 = ((X
    \  
    {(P
    . x2)}) 
    --> 1); 
    
              set F0 = ((P
    . x2) 
    .-->  
    0 ); 
    
              set P1x = (F0
    +* F1); 
    
              
    
              
    
    A17: ( 
    {(P
    . x2)} 
    \/ (X 
    \  
    {(P
    . x2)})) 
    = X by 
    A12,
    A13,
    A15,
    ZFMISC_1: 116;
    
              
    
    A18: 
    
              now
    
                let d be
    object such that 
    
                
    
    A19: d 
    in ( 
    dom F); 
    
                now
    
                  per cases by
    A17,
    A19,
    XBOOLE_0:def 3;
    
                    suppose
    
                    
    
    A20: d 
    in  
    {(P
    . x2)}; 
    
                    
    
                    
    
    A21: 
    {(P
    . x2)} 
    misses (X 
    \  
    {(P
    . x2)}) by 
    XBOOLE_1: 79;
    
                    (
    dom F0) 
    =  
    {(P
    . x2)} & ( 
    dom F1) 
    = (X 
    \  
    {(P
    . x2)}); 
    
                    then (P1x
    . d) 
    = (F0 
    . d) by 
    A20,
    A21,
    FUNCT_4: 16;
    
                    then
    
                    
    
    A22: (P1x 
    . d) 
    =  
    0 ; 
    
                    (F
    . d) 
    in  
    {
    0 } by 
    A12,
    A15,
    A20,
    FUNCT_1:def 7;
    
                    hence (P1x
    . d) 
    = (F 
    . d) by 
    A22,
    TARSKI:def 1;
    
                  end;
    
                    suppose
    
                    
    
    A23: d 
    in (X 
    \  
    {(P
    . x2)}); 
    
                    then d
    in ( 
    dom F1); 
    
                    then (P1x
    . d) 
    = (F1 
    . d) by 
    FUNCT_4: 13;
    
                    then
    
                    
    
    A24: (P1x 
    . d) 
    = 1 by 
    A23,
    FUNCOP_1: 7;
    
                    
    
                    
    
    A25: X 
    = ( 
    dom F) by 
    FUNCT_2:def 1;
    
                     not d
    in  
    {x1} by
    A15,
    A23,
    XBOOLE_0:def 5;
    
                    then not (F
    . d) 
    in  
    {
    0 } by 
    A12,
    A23,
    A25,
    FUNCT_1:def 7;
    
                    then
    
                    
    
    A26: not (F 
    . d) 
    =  
    0 by 
    TARSKI:def 1;
    
                    (F
    . d) 
    in ( 
    rng F) by 
    A23,
    A25,
    FUNCT_1:def 3;
    
                    hence (P1x
    . d) 
    = (F 
    . d) by 
    A24,
    A26,
    TARSKI:def 2;
    
                  end;
    
                end;
    
                hence (P1x
    . d) 
    = (F 
    . d); 
    
              end;
    
              
    
              
    
    A27: X 
    = (( 
    dom F0) 
    \/ ( 
    dom F1)) by 
    A17;
    
              (
    dom F) 
    = X & ( 
    dom P1x) 
    = (( 
    dom F0) 
    \/ ( 
    dom F1)) by 
    FUNCT_2:def 1,
    FUNCT_4:def 1;
    
              then P1x
    = F by 
    A27,
    A18;
    
              hence thesis by
    A8,
    A14;
    
            end;
    
            (
    card ( 
    Choose (X,1, 
    0 ,1))) 
    = (( 
    card X) 
    choose 1) by 
    Th15;
    
            then (
    card ( 
    Choose (X,1, 
    0 ,1))) 
    = cX by 
    NAT_1: 14,
    NEWTON: 23;
    
            then (
    dom P1) 
    = cX by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
            hence thesis by
    A10,
    A14,
    A16,
    FUNCT_1:def 3;
    
          end;
    
          then
    
          
    
    A28: ( 
    Choose (X,1, 
    0 ,1)) 
    = ( 
    rng P1); 
    
          then
    
          
    
    A29: P1 is 
    onto by 
    FUNCT_2:def 3;
    
          (
    card ( 
    Choose (X,1, 
    0 ,1))) 
    = (( 
    card X) 
    choose 1) by 
    Th15;
    
          then
    
          
    
    A30: ( 
    card X) 
    = ( 
    card ( 
    Choose (X,1, 
    0 ,1))) by 
    A28,
    NAT_1: 14,
    NEWTON: 23;
    
          then
    
          reconsider P1 as
    Function of ( 
    card ( 
    Choose (X,1, 
    0 ,1))), ( 
    Choose (X,1, 
    0 ,1)); 
    
          (
    card ( 
    card X)) 
    = ( 
    card X); 
    
          then P1 is
    one-to-one by 
    A29,
    A30,
    FINSEQ_4: 63;
    
          then
    
          consider XFS1 be
    XFinSequence of 
    NAT such that 
    
          
    
    A31: ( 
    dom XFS1) 
    = ( 
    dom P1) and 
    
          
    
    A32: for z, f st z 
    in ( 
    dom XFS1) & f 
    = (P1 
    . z) holds (XFS1 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f, 
    0 ))) and 
    
          
    
    A33: ( 
    Card_Intersection (Fy,1)) 
    = ( 
    Sum XFS1) by 
    A1,
    Def3;
    
          (
    Choose (X,1, 
    0 ,1)) 
    =  
    {} implies ( 
    card ( 
    Choose (X,1, 
    0 ,1))) 
    =  
    {} ; 
    
          then
    
          
    
    A34: ( 
    dom P1) 
    = ( 
    card ( 
    Choose (X,1, 
    0 ,1))) by 
    FUNCT_2:def 1;
    
          
    
          
    
    A35: for z be 
    object st z 
    in ( 
    dom XFS1) holds (XFS1 
    . z) 
    = (XFS 
    . z) 
    
          proof
    
            let z be
    object such that 
    
            
    
    A36: z 
    in ( 
    dom XFS1); 
    
            
    p1(z)
    in ( 
    Choose (X,1, 
    0 ,1)) by 
    A6,
    A30,
    A31,
    A36;
    
            then
    
            consider f be
    Function of X, 
    {
    0 , 1} such that 
    
            
    
    A37: f 
    =  
    p1(z) and
    
            
    
    A38: ( 
    card (f 
    "  
    {
    0 })) 
    = 1 by 
    Def1;
    
            consider x1 be
    object such that 
    
            
    
    A39: (f 
    "  
    {
    0 }) 
    =  
    {x1} by
    A38,
    CARD_2: 42;
    
            (P1
    . z) 
    =  
    p1(z) by
    A8,
    A30,
    A31,
    A36;
    
            then
    
            
    
    A40: (XFS1 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f, 
    0 ))) by 
    A32,
    A36,
    A37;
    
            
    
            
    
    A41: 
    0  
    in  
    {
    0 } by 
    TARSKI:def 1;
    
            
    
            
    
    A43: (P 
    . z) 
    in  
    {(P
    . z)} by 
    TARSKI:def 1;
    
            
    
            
    
    A44: (P 
    . z) 
    in (( 
    dom ((P 
    . z) 
    .-->  
    0 )) 
    \/ ( 
    dom ((X 
    \  
    {(P
    . z)}) 
    --> 1))) by 
    A43,
    XBOOLE_0:def 3;
    
            ( not (P
    . z) 
    in (X 
    \  
    {(P
    . z)})) & (((P 
    . z) 
    .-->  
    0 ) 
    . (P 
    . z)) 
    =  
    0 by 
    A43,
    XBOOLE_0:def 5;
    
            then
    
            
    
    A45: ( 
    p1(z)
    . (P 
    . z)) 
    =  
    0 by 
    A44,
    FUNCT_4:def 1;
    
            (P
    . z) 
    in ( 
    dom  
    p1(z)) by
    A44,
    FUNCT_4:def 1;
    
            then
    
            
    
    A46: (P 
    . z) 
    in (f 
    "  
    {
    0 }) by 
    A37,
    A45,
    A41,
    FUNCT_1:def 7;
    
            then (P
    . z) 
    = x1 by 
    A39,
    TARSKI:def 1;
    
            then
    
            
    
    A47: ( 
    card ( 
    Intersection (Fy,f, 
    0 ))) 
    = ( 
    card (Fy 
    . (P 
    . z))) by 
    A39,
    Th34;
    
            
    
            
    
    A48: (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z)) by 
    A4,
    A30,
    A31,
    A36;
    
            z
    in ( 
    dom P) by 
    A30,
    A31,
    A34,
    A36,
    A46,
    FUNCT_2:def 1;
    
            hence thesis by
    A47,
    A40,
    A48,
    FUNCT_1: 13;
    
          end;
    
          (
    dom XFS1) 
    = ( 
    dom XFS) by 
    A30,
    A31,
    A34,
    FUNCT_2:def 1;
    
          hence thesis by
    A33,
    A35,
    FUNCT_1:def 11;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:45
    
    
    
    
    
    Th44: for x be 
    object holds ( 
    dom Fy) 
    = X implies ( 
    Card_Intersection (Fy,( 
    card X))) 
    = ( 
    card ( 
    Intersection (Fy,(X 
    --> x),x))) 
    
    proof
    
      let x be
    object;
    
      set Ch = (
    Choose (X,( 
    card X),x, 
    {x}));
    
      consider P be
    Function of ( 
    card Ch), Ch such that 
    
      
    
    A1: P is 
    one-to-one by 
    Lm2;
    
      
    
      
    
    S: x 
    in  
    {x} by
    TARSKI:def 1;
    
      then
    
      reconsider x as
    set;
    
       not x
    in x; 
    
      then
    
      
    
    A2: x 
    <>  
    {x} by
    S;
    
      assume (
    dom Fy) 
    = X; 
    
      then
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A3: ( 
    dom XFS) 
    = ( 
    dom P) and 
    
      
    
    A4: (for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x)))) & ( 
    Card_Intersection (Fy,( 
    card X))) 
    = ( 
    Sum XFS) by 
    A1,
    A2,
    Def3;
    
      
    
      
    
    A5: ( 
    card Ch) 
    = 1 by 
    Th11;
    
      then
    
      consider ch be
    object such that 
    
      
    
    A6: Ch 
    =  
    {ch} by
    CARD_2: 42;
    
      x
    in  
    {x} by
    TARSKI:def 1;
    
      then (X
    \/  
    {} ) 
    = X & 
    {x}
    <> x; 
    
      then ((
    {}  
    -->  
    {x})
    +* (X 
    --> x)) 
    in Ch by 
    Th16;
    
      then (
    {}  
    +* (X 
    --> x)) 
    in Ch; 
    
      then (X
    --> x) 
    in Ch; 
    
      then
    
      
    
    A7: (X 
    --> x) 
    = ch by 
    A6,
    TARSKI:def 1;
    
      
    
      
    
    A8: Ch 
    =  
    {} implies ( 
    card Ch) 
    =  
    {} ; 
    
      then
    
      
    
    A9: ( 
    dom P) 
    = ( 
    card Ch) by 
    FUNCT_2:def 1;
    
      then
    0  
    in ( 
    dom P) by 
    A5,
    CARD_1: 49,
    TARSKI:def 1;
    
      then (P
    .  
    0 ) 
    in ( 
    rng P) by 
    FUNCT_1:def 3;
    
      then
    
      
    
    A10: (P 
    .  
    0 ) 
    = ch by 
    A6,
    TARSKI:def 1;
    
      (
    len XFS) 
    = 1 by 
    A3,
    A8,
    A5,
    FUNCT_2:def 1;
    
      then XFS
    =  
    <%(XFS
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
      then (
    addnat  
    "**" XFS) 
    = (XFS 
    .  
    0 ) by 
    AFINSQ_2: 37;
    
      then
    
      
    
    A11: ( 
    Sum XFS) 
    = (XFS 
    .  
    0 ) by 
    AFINSQ_2: 51;
    
      
    0  
    in ( 
    dom XFS) by 
    A3,
    A5,
    A9,
    CARD_1: 49,
    TARSKI:def 1;
    
      hence thesis by
    A4,
    A11,
    A10,
    A7;
    
    end;
    
    theorem :: 
    
    CARD_FIN:46
    
    
    
    
    
    Th45: for x be 
    object holds Fy 
    = (x 
    .--> X) implies ( 
    Card_Intersection (Fy,1)) 
    = ( 
    card X) 
    
    proof
    
      let x be
    object;
    
      assume
    
      
    
    A1: Fy 
    = (x 
    .--> X); 
    
      then
    
      
    
    A2: ( 
    dom Fy) 
    =  
    {x};
    
      
    
      
    
    A3: x 
    in  
    {x} by
    TARSKI:def 1;
    
      then
    
      
    
    A4: ((x 
    .--> x) 
    "  
    {x})
    =  
    {x} by
    FUNCOP_1: 14;
    
      (Fy
    . x) 
    = X by 
    A1,
    A3,
    FUNCOP_1: 7;
    
      then 1
    = ( 
    card  
    {x}) & (
    Intersection (Fy,(x 
    .--> x),x)) 
    = X by 
    A4,
    Th34,
    CARD_1: 30;
    
      hence thesis by
    A2,
    Th44;
    
    end;
    
    theorem :: 
    
    CARD_FIN:47
    
    x
    <> y & Fy 
    = ((x,y) 
    --> (X,Y)) implies ( 
    Card_Intersection (Fy,1)) 
    = (( 
    card X) 
    + ( 
    card Y)) & ( 
    Card_Intersection (Fy,2)) 
    = ( 
    card (X 
    /\ Y)) 
    
    proof
    
      assume that
    
      
    
    A1: x 
    <> y and 
    
      
    
    A2: Fy 
    = ((x,y) 
    --> (X,Y)); 
    
      set P = ((
    0 ,1) 
    --> (x,y)); 
    
      
    
      
    
    A3: ( 
    dom P) 
    =  
    {
    0 , 1} & ( 
    rng P) 
    =  
    {x, y} by
    FUNCT_4: 62,
    FUNCT_4: 64;
    
      (
    card  
    {x, y})
    = 2 by 
    A1,
    CARD_2: 57;
    
      then
    
      reconsider P as
    Function of ( 
    card  
    {x, y}),
    {x, y} by
    A3,
    CARD_1: 50,
    FUNCT_2: 1;
    
      
    
      
    
    A4: ( 
    card ( 
    card  
    {x, y}))
    = ( 
    card  
    {x, y});
    
      
    
      
    
    A5: (P 
    .  
    0 ) 
    = x & (Fy 
    . x) 
    = X by 
    A1,
    A2,
    FUNCT_4: 63;
    
      
    
      
    
    A6: (P 
    . 1) 
    = y & (Fy 
    . y) 
    = Y by 
    A2,
    FUNCT_4: 63;
    
      
    
      
    
    A7: ( 
    dom Fy) 
    =  
    {x, y} by
    A2,
    FUNCT_4: 62;
    
      (
    rng P) 
    =  
    {x, y} by
    FUNCT_4: 64;
    
      then P is
    onto by 
    FUNCT_2:def 3;
    
      then P is
    one-to-one by 
    A4,
    FINSEQ_4: 63;
    
      then
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A8: ( 
    dom XFS) 
    = ( 
    card  
    {x, y}) and
    
      
    
    A9: for z st z 
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z)) and 
    
      
    
    A10: ( 
    Card_Intersection (Fy,1)) 
    = ( 
    Sum XFS) by 
    A7,
    Th43;
    
      (
    len XFS) 
    = 2 by 
    A1,
    A8,
    CARD_2: 57;
    
      then
    
      
    
    A11: XFS 
    =  
    <%(XFS
    .  
    0 ), (XFS 
    . 1)%> by 
    AFINSQ_1: 38;
    
      
    
      
    
    A12: ( 
    dom P) 
    =  
    {
    0 , 1} by 
    FUNCT_4: 62;
    
      then 1
    in ( 
    dom P) by 
    TARSKI:def 2;
    
      then
    
      
    
    A13: ((Fy 
    * P) 
    . 1) 
    = (Fy 
    . (P 
    . 1)) by 
    FUNCT_1: 13;
    
      
    0  
    in  
    {
    0 } by 
    TARSKI:def 1;
    
      then
    
      
    
    A14: (( 
    {x, y}
    -->  
    0 ) 
    "  
    {
    0 }) 
    =  
    {x, y} by
    FUNCOP_1: 14;
    
      (Fy
    . x) 
    = X & (Fy 
    . y) 
    = Y by 
    A1,
    A2,
    FUNCT_4: 63;
    
      then
    
      
    
    A15: ( 
    Intersection (Fy,( 
    {x, y}
    -->  
    0 ), 
    0 )) 
    = (X 
    /\ Y) by 
    A14,
    Th35;
    
      
    0  
    in ( 
    dom P) by 
    A12,
    TARSKI:def 2;
    
      then
    
      
    
    A16: ((Fy 
    * P) 
    .  
    0 ) 
    = (Fy 
    . (P 
    .  
    0 )) by 
    FUNCT_1: 13;
    
      
    
      
    
    A17: ( 
    dom XFS) 
    = 2 by 
    A1,
    A8,
    CARD_2: 57;
    
      then 1
    in ( 
    dom XFS) by 
    CARD_1: 50,
    TARSKI:def 2;
    
      then
    
      
    
    A18: (XFS 
    . 1) 
    = ( 
    card Y) by 
    A9,
    A6,
    A13;
    
      
    0  
    in ( 
    dom XFS) by 
    A17,
    CARD_1: 50,
    TARSKI:def 2;
    
      then (XFS
    .  
    0 ) 
    = ( 
    card X) by 
    A9,
    A5,
    A16;
    
      then (
    addnat  
    "**" XFS) 
    = ( 
    addnat  
    . (( 
    card X),( 
    card Y))) by 
    A11,
    A18,
    AFINSQ_2: 38;
    
      then
    
      
    
    A19: ( 
    addnat  
    "**" XFS) 
    = (( 
    card X) 
    + ( 
    card Y)) by 
    BINOP_2:def 23;
    
      (
    card  
    {x, y})
    = 2 & ( 
    dom Fy) 
    =  
    {x, y} by
    A1,
    A2,
    CARD_2: 57,
    FUNCT_4: 62;
    
      hence thesis by
    A10,
    A19,
    A15,
    Th44,
    AFINSQ_2: 51;
    
    end;
    
    theorem :: 
    
    CARD_FIN:48
    
    
    
    
    
    Th47: for Fy, x st ( 
    dom Fy) is 
    finite & x 
    in ( 
    dom Fy) holds ( 
    Card_Intersection (Fy,1)) 
    = (( 
    Card_Intersection ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),1))
    + ( 
    card (Fy 
    . x))) 
    
    proof
    
      let Fy, x such that
    
      
    
    A1: ( 
    dom Fy) is 
    finite and 
    
      
    
    A2: x 
    in ( 
    dom Fy); 
    
      reconsider X = (
    dom Fy) as 
    finite  
    set by 
    A1;
    
      (
    card X) 
    >  
    0 by 
    A2;
    
      then
    
      reconsider k = ((
    card X) 
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
      set Xx = (X
    \  
    {x});
    
      
    
      
    
    A3: Xx 
    =  
    {} implies ( 
    card Xx) 
    =  
    {} ; 
    
      consider Px be
    Function of ( 
    card Xx), Xx such that 
    
      
    
    A4: Px is 
    one-to-one by 
    Lm2;
    
       not (
    card Xx) 
    in ( 
    card Xx); 
    
      then
    
      consider P be
    Function of (( 
    card Xx) 
    \/  
    {(
    card Xx)}), (Xx 
    \/  
    {x}) such that
    
      
    
    A5: (P 
    | ( 
    card Xx)) 
    = Px and 
    
      
    
    A6: (P 
    . ( 
    card Xx)) 
    = x by 
    A3,
    STIRL2_1: 57;
    
       not x
    in Xx by 
    ZFMISC_1: 56;
    
      then
    
      
    
    A7: P is 
    one-to-one by 
    A4,
    A3,
    A5,
    A6,
    STIRL2_1: 58;
    
      
    
      
    
    A8: ( 
    card X) 
    = ( 
    Segm (k 
    + 1)); 
    
      then
    
      
    
    A9: ( 
    card Xx) 
    = ( 
    Segm k) by 
    A2,
    STIRL2_1: 55;
    
      then (
    card X) 
    = (( 
    card Xx) 
    \/  
    {(
    card Xx)}) by 
    A8,
    AFINSQ_1: 2;
    
      then
    
      reconsider P as
    Function of ( 
    card X), X by 
    A2,
    ZFMISC_1: 116;
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A10: ( 
    dom XFS) 
    = ( 
    card X) and 
    
      
    
    A11: for z st z 
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = ( 
    card ((Fy 
    * P) 
    . z)) and 
    
      
    
    A12: ( 
    Card_Intersection (Fy,1)) 
    = ( 
    Sum XFS) by 
    A7,
    Th43;
    
      
    
      
    
    A13: (P 
    . k) 
    = x by 
    A2,
    A6,
    A8,
    STIRL2_1: 55;
    
      (X
    /\ Xx) 
    = Xx by 
    XBOOLE_1: 28;
    
      then (
    dom (Fy 
    | Xx)) 
    = Xx by 
    RELAT_1: 61;
    
      then
    
      consider XFSx be
    XFinSequence of 
    NAT such that 
    
      
    
    A14: ( 
    dom XFSx) 
    = ( 
    card Xx) and 
    
      
    
    A15: for z st z 
    in ( 
    dom XFSx) holds (XFSx 
    . z) 
    = ( 
    card (((Fy 
    | Xx) 
    * Px) 
    . z)) and 
    
      
    
    A16: ( 
    Card_Intersection ((Fy 
    | Xx),1)) 
    = ( 
    Sum XFSx) by 
    A4,
    Th43;
    
      k
    < (k 
    + 1) by 
    NAT_1: 13;
    
      then
    
      
    
    A17: ( 
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
      
    
      
    
    A18: for y be 
    object st y 
    in ( 
    dom XFSx) holds (XFS 
    . y) 
    = (XFSx 
    . y) 
    
      proof
    
        
    
        
    
    A19: Xx 
    = (X 
    /\ Xx) & (X 
    /\ Xx) 
    = ( 
    dom (Fy 
    | Xx)) by 
    RELAT_1: 61,
    XBOOLE_1: 28;
    
        let y be
    object such that 
    
        
    
    A20: y 
    in ( 
    dom XFSx); 
    
        
    
        
    
    A21: (XFS 
    . y) 
    = ( 
    card ((Fy 
    * P) 
    . y)) by 
    A14,
    A9,
    A10,
    A11,
    A17,
    A20;
    
        
    
        
    
    A22: ( 
    dom Px) 
    = k by 
    A3,
    A9,
    FUNCT_2:def 1;
    
        then (Px
    . y) 
    in ( 
    rng Px) by 
    A14,
    A9,
    A20,
    FUNCT_1:def 3;
    
        then
    
        
    
    A23: ((Fy 
    | Xx) 
    . (Px 
    . y)) 
    = (Fy 
    . (Px 
    . y)) by 
    A19,
    FUNCT_1: 47;
    
        (
    dom P) 
    = (k 
    + 1) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
        then
    
        
    
    A24: ((Fy 
    * P) 
    . y) 
    = (Fy 
    . (P 
    . y)) by 
    A14,
    A9,
    A17,
    A20,
    FUNCT_1: 13;
    
        (Px
    . y) 
    = (P 
    . y) by 
    A14,
    A5,
    A9,
    A20,
    A22,
    FUNCT_1: 47;
    
        then ((Fy
    * P) 
    . y) 
    = (((Fy 
    | Xx) 
    * Px) 
    . y) by 
    A14,
    A9,
    A20,
    A22,
    A24,
    A23,
    FUNCT_1: 13;
    
        hence thesis by
    A15,
    A20,
    A21;
    
      end;
    
      k
    < (k 
    + 1) by 
    NAT_1: 13;
    
      then
    
      
    
    A25: k 
    in ( 
    Segm (k 
    + 1)) by 
    NAT_1: 44;
    
      then k
    in ( 
    dom P) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
      then
    
      
    
    A26: ((Fy 
    * P) 
    . k) 
    = (Fy 
    . (P 
    . k)) by 
    FUNCT_1: 13;
    
      ((
    dom XFS) 
    /\ k) 
    = ( 
    dom XFSx) by 
    A14,
    A9,
    A10,
    A17,
    XBOOLE_1: 28;
    
      then (XFS
    | k) 
    = XFSx by 
    A18,
    FUNCT_1: 46;
    
      then
    
      
    
    A27: (( 
    Sum XFSx) 
    + (XFS 
    . k)) 
    = ( 
    Sum (XFS 
    | (k 
    + 1))) by 
    A10,
    A25,
    AFINSQ_2: 65;
    
      (XFS
    . k) 
    = ( 
    card ((Fy 
    * P) 
    . k)) by 
    A10,
    A11,
    A25;
    
      hence thesis by
    A16,
    A10,
    A12,
    A27,
    A26,
    A13;
    
    end;
    
    theorem :: 
    
    CARD_FIN:49
    
    
    
    
    
    Th48: ( 
    dom ( 
    Intersect (F,(( 
    dom F) 
    --> X9)))) 
    = ( 
    dom F) & for x st x 
    in ( 
    dom F) holds (( 
    Intersect (F,(( 
    dom F) 
    --> X9))) 
    . x) 
    = ((F 
    . x) 
    /\ X9) 
    
    proof
    
      
    
      
    
    A1: (( 
    dom F) 
    /\ ( 
    dom (( 
    dom F) 
    --> X9))) 
    = ( 
    dom F); 
    
      hence (
    dom F) 
    = ( 
    dom ( 
    Intersect (F,(( 
    dom F) 
    --> X9)))) by 
    YELLOW20:def 2;
    
      let x;
    
      assume
    
      
    
    A2: x 
    in ( 
    dom F); 
    
      then ((
    Intersect (F,(( 
    dom F) 
    --> X9))) 
    . x) 
    = ((F 
    . x) 
    /\ ((( 
    dom F) 
    --> X9) 
    . x)) by 
    A1,
    YELLOW20:def 2;
    
      hence thesis by
    A2,
    FUNCOP_1: 7;
    
    end;
    
    theorem :: 
    
    CARD_FIN:50
    
    
    
    
    
    Th49: (( 
    union ( 
    rng F)) 
    /\ X9) 
    = ( 
    union ( 
    rng ( 
    Intersect (F,(( 
    dom F) 
    --> X9))))) 
    
    proof
    
      set I = (
    Intersect (F,(( 
    dom F) 
    --> X9))); 
    
      thus ((
    union ( 
    rng F)) 
    /\ X9) 
    c= ( 
    union ( 
    rng I)) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A1: x 
    in (( 
    union ( 
    rng F)) 
    /\ X9); 
    
        
    
        
    
    A2: x 
    in X9 by 
    A1,
    XBOOLE_0:def 4;
    
        x
    in ( 
    union ( 
    rng F)) by 
    A1,
    XBOOLE_0:def 4;
    
        then
    
        consider Fx be
    set such that 
    
        
    
    A3: x 
    in Fx and 
    
        
    
    A4: Fx 
    in ( 
    rng F) by 
    TARSKI:def 4;
    
        consider x1 be
    object such that 
    
        
    
    A5: x1 
    in ( 
    dom F) and 
    
        
    
    A6: (F 
    . x1) 
    = Fx by 
    A4,
    FUNCT_1:def 3;
    
        x1
    in ( 
    dom I) by 
    A5,
    Th48;
    
        then
    
        
    
    A7: (I 
    . x1) 
    in ( 
    rng I) by 
    FUNCT_1:def 3;
    
        (I
    . x1) 
    = (Fx 
    /\ X9) by 
    A5,
    A6,
    Th48;
    
        then x
    in (I 
    . x1) by 
    A3,
    A2,
    XBOOLE_0:def 4;
    
        hence thesis by
    A7,
    TARSKI:def 4;
    
      end;
    
      thus (
    union ( 
    rng I)) 
    c= (( 
    union ( 
    rng F)) 
    /\ X9) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    union ( 
    rng I)); 
    
        then
    
        consider Ix be
    set such that 
    
        
    
    A8: x 
    in Ix and 
    
        
    
    A9: Ix 
    in ( 
    rng I) by 
    TARSKI:def 4;
    
        consider x1 be
    object such that 
    
        
    
    A10: x1 
    in ( 
    dom I) and 
    
        
    
    A11: (I 
    . x1) 
    = Ix by 
    A9,
    FUNCT_1:def 3;
    
        
    
        
    
    A12: x1 
    in ( 
    dom F) by 
    A10,
    Th48;
    
        then
    
        
    
    A13: (F 
    . x1) 
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
        
    
        
    
    A14: (I 
    . x1) 
    = ((F 
    . x1) 
    /\ X9) by 
    A12,
    Th48;
    
        then x
    in (F 
    . x1) by 
    A8,
    A11,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A15: x 
    in ( 
    union ( 
    rng F)) by 
    A13,
    TARSKI:def 4;
    
        x
    in X9 by 
    A8,
    A11,
    A14,
    XBOOLE_0:def 4;
    
        hence thesis by
    A15,
    XBOOLE_0:def 4;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:51
    
    
    
    
    
    Th50: (( 
    Intersection (F,Ch,y)) 
    /\ X9) 
    = ( 
    Intersection (( 
    Intersect (F,(( 
    dom F) 
    --> X9))),Ch,y)) 
    
    proof
    
      set I = (
    Intersect (F,(( 
    dom F) 
    --> X9))); 
    
      set Int1 = (
    Intersection (F,Ch,y)); 
    
      set Int2 = (
    Intersection (I,Ch,y)); 
    
      thus (Int1
    /\ X9) 
    c= Int2 
    
      proof
    
        let x be
    object such that 
    
        
    
    A1: x 
    in (Int1 
    /\ X9); 
    
        
    
        
    
    A2: for z st z 
    in ( 
    dom Ch) & (Ch 
    . z) 
    = y holds x 
    in (I 
    . z) 
    
        proof
    
          
    
          
    
    A3: x 
    in Int1 by 
    A1,
    XBOOLE_0:def 4;
    
          let z;
    
          assume z
    in ( 
    dom Ch) & (Ch 
    . z) 
    = y; 
    
          then
    
          
    
    A4: x 
    in (F 
    . z) by 
    A3,
    Def2;
    
          then
    
          
    
    A5: z 
    in ( 
    dom F) by 
    FUNCT_1:def 2;
    
          x
    in X9 by 
    A1,
    XBOOLE_0:def 4;
    
          then x
    in ((F 
    . z) 
    /\ X9) by 
    A4,
    XBOOLE_0:def 4;
    
          hence thesis by
    A5,
    Th48;
    
        end;
    
        x
    in X9 by 
    A1,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    union ( 
    rng F)) 
    /\ X9) by 
    A1,
    XBOOLE_0:def 4;
    
        then x
    in ( 
    union ( 
    rng I)) by 
    Th49;
    
        hence thesis by
    A2,
    Def2;
    
      end;
    
      thus Int2
    c= (Int1 
    /\ X9) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A6: x 
    in Int2; 
    
        x
    in ( 
    union ( 
    rng I)) by 
    A6;
    
        then
    
        
    
    A7: x 
    in (( 
    union ( 
    rng F)) 
    /\ X9) by 
    Th49;
    
        then
    
        
    
    A8: x 
    in X9 by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A9: for z st z 
    in ( 
    dom Ch) & (Ch 
    . z) 
    = y holds x 
    in (F 
    . z) 
    
        proof
    
          
    
          
    
    A10: ( 
    dom I) 
    = ( 
    dom F) by 
    Th48;
    
          let z;
    
          assume z
    in ( 
    dom Ch) & (Ch 
    . z) 
    = y; 
    
          then
    
          
    
    A11: x 
    in (I 
    . z) by 
    A6,
    Def2;
    
          then z
    in ( 
    dom I) by 
    FUNCT_1:def 2;
    
          then x
    in ((F 
    . z) 
    /\ X9) by 
    A11,
    A10,
    Th48;
    
          hence thesis by
    XBOOLE_0:def 4;
    
        end;
    
        x
    in ( 
    union ( 
    rng F)) by 
    A7,
    XBOOLE_0:def 4;
    
        then x
    in Int1 by 
    A9,
    Def2;
    
        hence thesis by
    A8,
    XBOOLE_0:def 4;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:52
    
    
    
    
    
    Th51: for F,G be 
    XFinSequence st F is 
    one-to-one & G is 
    one-to-one & ( 
    rng F) 
    misses ( 
    rng G) holds (F 
    ^ G) is 
    one-to-one
    
    proof
    
      let F,G be
    XFinSequence such that 
    
      
    
    A1: F is 
    one-to-one and 
    
      
    
    A2: G is 
    one-to-one and 
    
      
    
    A3: ( 
    rng F) 
    misses ( 
    rng G); 
    
      ((
    len F),( 
    rng F)) 
    are_equipotent by 
    A1,
    WELLORD2:def 4;
    
      then
    
      
    
    A4: ( 
    card ( 
    len F)) 
    = ( 
    card ( 
    rng F)) by 
    CARD_1: 5;
    
      ((
    len G),( 
    rng G)) 
    are_equipotent by 
    A2,
    WELLORD2:def 4;
    
      then
    
      
    
    A5: ( 
    card ( 
    len G)) 
    = ( 
    card ( 
    rng G)) by 
    CARD_1: 5;
    
      reconsider FG = (F
    ^ G) as 
    Function of ( 
    dom (F 
    ^ G)), ( 
    rng (F 
    ^ G)) by 
    FUNCT_2: 1;
    
      
    
      
    
    A6: ( 
    dom (F 
    ^ G)) 
    = (( 
    len F) 
    + ( 
    len G)) by 
    AFINSQ_1:def 3;
    
      
    
      
    
    A7: FG is 
    onto by 
    FUNCT_2:def 3;
    
      (
    card (( 
    rng F) 
    \/ ( 
    rng G))) 
    = (( 
    card ( 
    rng F)) 
    + ( 
    card ( 
    rng G))) by 
    A3,
    CARD_2: 40;
    
      then (
    card ( 
    dom (F 
    ^ G))) 
    = ( 
    card ( 
    rng (F 
    ^ G))) by 
    A4,
    A5,
    A6,
    AFINSQ_1: 26;
    
      hence thesis by
    A7,
    FINSEQ_4: 63;
    
    end;
    
    theorem :: 
    
    CARD_FIN:53
    
    
    
    
    
    Th52: for Fy, X, x, n st ( 
    dom Fy) 
    = X & x 
    in ( 
    dom Fy) & k 
    >  
    0 holds ( 
    Card_Intersection (Fy,(k 
    + 1))) 
    = (( 
    Card_Intersection ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),(k
    + 1))) 
    + ( 
    Card_Intersection (( 
    Intersect ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),(((
    dom Fy) 
    \  
    {x})
    --> (Fy 
    . x)))),k))) 
    
    proof
    
      let Fy, X, x, n such that
    
      
    
    A1: ( 
    dom Fy) 
    = X and 
    
      
    
    A2: x 
    in ( 
    dom Fy) and 
    
      
    
    A3: k 
    >  
    0 ; 
    
      set Xx = (X
    \  
    {x});
    
      
    
      
    
    A4: (Xx 
    \/  
    {x})
    = X by 
    A1,
    A2,
    ZFMISC_1: 116;
    
      set I = (
    Intersect ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),(((
    dom Fy) 
    \  
    {x})
    --> (Fy 
    . x)))); 
    
      set X1 = { f where f be
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } : ( 
    card (f 
    "  
    {1}))
    = (k 
    + 1) & (f 
    . x) 
    = 1 }; 
    
      set X0 = { f where f be
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } : ( 
    card (f 
    "  
    {1}))
    = (k 
    + 1) & (f 
    . x) 
    =  
    0 }; 
    
      (X0
    \/ X1) 
    = ( 
    Choose ((Xx 
    \/  
    {x}),(k
    + 1),1, 
    0 )) by 
    Lm1;
    
      then
    
      reconsider X0, X1 as
    finite  
    set by 
    FINSET_1: 1,
    XBOOLE_1: 7;
    
      consider P1 be
    Function of ( 
    card X1), X1 such that 
    
      
    
    A5: P1 is 
    one-to-one by 
    Lm2;
    
       not x
    in Xx by 
    ZFMISC_1: 56;
    
      then
    
      
    
    A6: ( 
    card ( 
    Choose (Xx,k,1, 
    0 ))) 
    = ( 
    card X1) by 
    Th12;
    
      defpred
    
    p1[
    object, 
    object] means ex f st f
    = (P1 
    . $1) & f 
    in X1 & $2 
    = (f 
    | Xx); 
    
      
    
      
    
    A7: for x1 be 
    object st x1 
    in ( 
    card X1) holds ex P1x1 be 
    object st P1x1 
    in ( 
    Choose (Xx,k,1, 
    0 )) & 
    p1[x1, P1x1]
    
      proof
    
         not x
    in Xx by 
    ZFMISC_1: 56;
    
        then
    
        
    
    A8: ((Xx 
    \/  
    {x})
    \  
    {x})
    = Xx by 
    ZFMISC_1: 117;
    
        let x1 be
    object;
    
        assume x1
    in ( 
    card X1); 
    
        then x1
    in ( 
    dom P1) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
        then
    
        
    
    A9: (P1 
    . x1) 
    in ( 
    rng P1) by 
    FUNCT_1:def 3;
    
        then (P1
    . x1) 
    in X1; 
    
        then
    
        consider P1x1 be
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } such that 
    
        
    
    A10: (P1 
    . x1) 
    = P1x1 and 
    
        
    
    A11: ( 
    card (P1x1 
    "  
    {1}))
    = (k 
    + 1) and 
    
        
    
    A12: (P1x1 
    . x) 
    = 1; 
    
        
    
        
    
    A13: ( 
    dom P1x1) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        
    
        
    
    A14: ( 
    rng (P1x1 
    | Xx)) 
    c=  
    {1,
    0 }; 
    
        ((Xx
    \/  
    {x})
    /\ Xx) 
    = Xx by 
    XBOOLE_1: 7,
    XBOOLE_1: 28;
    
        then (
    dom (P1x1 
    | Xx)) 
    = Xx by 
    A13,
    RELAT_1: 61;
    
        then
    
        reconsider Px = (P1x1
    | Xx) as 
    Function of Xx, 
    {1,
    0 } by 
    A14,
    FUNCT_2: 2;
    
        
    
        
    
    A15: not x 
    in (Px 
    "  
    {1}) by
    ZFMISC_1: 56;
    
        x
    in  
    {x} & (
    dom P1x1) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1,
    TARSKI:def 1;
    
        then x
    in ( 
    dom P1x1) by 
    XBOOLE_0:def 3;
    
        then (P1x1
    "  
    {1})
    = ((Px 
    "  
    {1})
    \/  
    {x}) by
    A12,
    A13,
    A8,
    AFINSQ_2: 66;
    
        then (k
    + 1) 
    = (( 
    card (Px 
    "  
    {1}))
    + 1) by 
    A11,
    A15,
    CARD_2: 41;
    
        then Px
    in ( 
    Choose (Xx,k,1, 
    0 )) by 
    Def1;
    
        hence thesis by
    A9,
    A10;
    
      end;
    
      consider P1x be
    Function of ( 
    card X1), ( 
    Choose (Xx,k,1, 
    0 )) such that 
    
      
    
    A16: for x1 be 
    object st x1 
    in ( 
    card X1) holds 
    p1[x1, (P1x
    . x1)] from 
    FUNCT_2:sch 1(
    A7);
    
      for x1,x2 be
    object st x1 
    in ( 
    dom P1x) & x2 
    in ( 
    dom P1x) & (P1x 
    . x1) 
    = (P1x 
    . x2) holds x1 
    = x2 
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A17: x1 
    in ( 
    dom P1x) and 
    
        
    
    A18: x2 
    in ( 
    dom P1x) and 
    
        
    
    A19: (P1x 
    . x1) 
    = (P1x 
    . x2); 
    
        consider f2 be
    Function such that 
    
        
    
    A20: f2 
    = (P1 
    . x2) and 
    
        
    
    A21: f2 
    in X1 and 
    
        
    
    A22: (P1x 
    . x2) 
    = (f2 
    | Xx) by 
    A16,
    A18;
    
        consider f1 be
    Function such that 
    
        
    
    A23: f1 
    = (P1 
    . x1) and 
    
        
    
    A24: f1 
    in X1 and 
    
        
    
    A25: (P1x 
    . x1) 
    = (f1 
    | Xx) by 
    A16,
    A17;
    
        
    
        
    
    A26: ex F be 
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } st f1 
    = F & ( 
    card (F 
    "  
    {1}))
    = (k 
    + 1) & (F 
    . x) 
    = 1 by 
    A24;
    
        then
    
        
    
    A27: ( 
    dom f1) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        
    
        
    
    A28: ex F be 
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } st f2 
    = F & ( 
    card (F 
    "  
    {1}))
    = (k 
    + 1) & (F 
    . x) 
    = 1 by 
    A21;
    
        then
    
        
    
    A29: ( 
    dom f2) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        for z be
    object st z 
    in ( 
    dom f1) holds (f1 
    . z) 
    = (f2 
    . z) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A30: z 
    in ( 
    dom f1); 
    
          now
    
            per cases by
    A27,
    A30,
    XBOOLE_0:def 3;
    
              suppose
    
              
    
    A31: z 
    in Xx; 
    
              then z
    in (( 
    dom f1) 
    /\ Xx) by 
    A30,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A32: ((f1 
    | Xx) 
    . z) 
    = (f1 
    . z) by 
    FUNCT_1: 48;
    
              z
    in (( 
    dom f2) 
    /\ Xx) by 
    A27,
    A29,
    A30,
    A31,
    XBOOLE_0:def 4;
    
              hence thesis by
    A19,
    A25,
    A22,
    A32,
    FUNCT_1: 48;
    
            end;
    
              suppose z
    in  
    {x};
    
              then z
    = x by 
    TARSKI:def 1;
    
              hence thesis by
    A26,
    A28;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        then
    
        
    
    A33: f1 
    = f2 by 
    A27,
    A29;
    
        X1
    =  
    {} implies ( 
    card X1) 
    =  
    {} ; 
    
        then (
    dom P1) 
    = ( 
    card X1) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A5,
    A17,
    A18,
    A23,
    A20,
    A33;
    
      end;
    
      then
    
      
    
    A34: P1x is 
    one-to-one;
    
      (Xx
    /\ X) 
    = Xx by 
    XBOOLE_1: 28;
    
      then
    
      
    
    A35: ( 
    dom (Fy 
    | (( 
    dom Fy) 
    \  
    {x})))
    = Xx by 
    A1,
    RELAT_1: 61;
    
      then (
    dom I) 
    = Xx by 
    A1,
    Th48;
    
      then
    
      consider XFS1 be
    XFinSequence of 
    NAT such that 
    
      
    
    A36: ( 
    dom XFS1) 
    = ( 
    dom P1x) and 
    
      
    
    A37: for z, f st z 
    in ( 
    dom XFS1) & f 
    = (P1x 
    . z) holds (XFS1 
    . z) 
    = ( 
    card ( 
    Intersection (I,f,1))) and 
    
      
    
    A38: ( 
    Card_Intersection (I,k)) 
    = ( 
    Sum XFS1) by 
    A6,
    A34,
    Def3;
    
      
    
      
    
    A39: ( 
    addnat  
    "**" XFS1) 
    = ( 
    Card_Intersection (I,k)) by 
    A38,
    AFINSQ_2: 51;
    
       not x
    in Xx by 
    ZFMISC_1: 56;
    
      then
    
      
    
    A40: ( 
    card ( 
    Choose (Xx,(k 
    + 1),1, 
    0 ))) 
    = ( 
    card X0) by 
    Th13;
    
      set Ch = (
    Choose (X,(k 
    + 1),1, 
    0 )); 
    
      consider P0 be
    Function of ( 
    card X0), X0 such that 
    
      
    
    A41: P0 is 
    one-to-one by 
    Lm2;
    
      
    
      
    
    A42: X1 
    =  
    {} implies ( 
    card X1) 
    =  
    {} ; 
    
      then
    
      
    
    A43: ( 
    dom P1) 
    = ( 
    card X1) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A44: X0 
    =  
    {} implies ( 
    card X0) 
    =  
    {} ; 
    
      then (
    dom P0) 
    = ( 
    card X0) by 
    FUNCT_2:def 1;
    
      then
    
      reconsider XP0 = P0, XP1 = P1 as
    XFinSequence by 
    A43,
    AFINSQ_1: 5;
    
      
    
      
    
    A45: ( 
    card X0) 
    = ( 
    len XP0) by 
    A44,
    FUNCT_2:def 1;
    
      defpred
    
    p0[
    object, 
    object] means ex f st f
    = (P0 
    . $1) & f 
    in X0 & $2 
    = (f 
    | Xx); 
    
      
    
      
    
    A46: for x0 be 
    object st x0 
    in ( 
    card X0) holds ex P0x0 be 
    object st P0x0 
    in ( 
    Choose (Xx,(k 
    + 1),1, 
    0 )) & 
    p0[x0, P0x0]
    
      proof
    
        let x0 be
    object;
    
        assume x0
    in ( 
    card X0); 
    
        then x0
    in ( 
    dom P0) by 
    CARD_1: 27,
    FUNCT_2:def 1;
    
        then
    
        
    
    A47: (P0 
    . x0) 
    in ( 
    rng P0) by 
    FUNCT_1:def 3;
    
        then (P0
    . x0) 
    in X0; 
    
        then
    
        consider P0x0 be
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } such that 
    
        
    
    A48: (P0 
    . x0) 
    = P0x0 and 
    
        
    
    A49: ( 
    card (P0x0 
    "  
    {1}))
    = (k 
    + 1) and 
    
        
    
    A50: (P0x0 
    . x) 
    =  
    0 ; 
    
        
    
        
    
    A51: ( 
    dom P0x0) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        
    
        
    
    A52: ( 
    rng (P0x0 
    | Xx)) 
    c=  
    {1,
    0 }; 
    
        ((Xx
    \/  
    {x})
    /\ Xx) 
    = Xx by 
    XBOOLE_1: 7,
    XBOOLE_1: 28;
    
        then (
    dom (P0x0 
    | Xx)) 
    = Xx by 
    A51,
    RELAT_1: 61;
    
        then
    
        reconsider Px = (P0x0
    | Xx) as 
    Function of Xx, 
    {1,
    0 } by 
    A52,
    FUNCT_2: 2;
    
         not x
    in Xx by 
    ZFMISC_1: 56;
    
        then ((Xx
    \/  
    {x})
    \  
    {x})
    = Xx by 
    ZFMISC_1: 117;
    
        then (P0x0
    "  
    {1})
    = (Px 
    "  
    {1}) by
    A50,
    A51,
    AFINSQ_2: 67;
    
        then Px
    in ( 
    Choose (Xx,(k 
    + 1),1, 
    0 )) by 
    A49,
    Def1;
    
        hence thesis by
    A47,
    A48;
    
      end;
    
      consider P0x be
    Function of ( 
    card X0), ( 
    Choose (Xx,(k 
    + 1),1, 
    0 )) such that 
    
      
    
    A53: for x1 be 
    object st x1 
    in ( 
    card X0) holds 
    p0[x1, (P0x
    . x1)] from 
    FUNCT_2:sch 1(
    A46);
    
      ((
    rng P0) 
    \/ ( 
    rng P1)) 
    c= (X0 
    \/ X1) by 
    XBOOLE_1: 13;
    
      then (
    rng (XP0 
    ^ XP1)) 
    c= (X0 
    \/ X1) by 
    AFINSQ_1: 26;
    
      then
    
      
    
    A54: ( 
    rng (XP0 
    ^ XP1)) 
    c= Ch by 
    A4,
    Lm1;
    
      
    
      
    
    A55: ( 
    card X1) 
    = ( 
    len XP1) by 
    A42,
    FUNCT_2:def 1;
    
      for x1,x2 be
    object st x1 
    in ( 
    dom P0x) & x2 
    in ( 
    dom P0x) & (P0x 
    . x1) 
    = (P0x 
    . x2) holds x1 
    = x2 
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A56: x1 
    in ( 
    dom P0x) and 
    
        
    
    A57: x2 
    in ( 
    dom P0x) and 
    
        
    
    A58: (P0x 
    . x1) 
    = (P0x 
    . x2); 
    
        consider f2 be
    Function such that 
    
        
    
    A59: f2 
    = (P0 
    . x2) and 
    
        
    
    A60: f2 
    in X0 and 
    
        
    
    A61: (P0x 
    . x2) 
    = (f2 
    | Xx) by 
    A53,
    A57;
    
        consider f1 be
    Function such that 
    
        
    
    A62: f1 
    = (P0 
    . x1) and 
    
        
    
    A63: f1 
    in X0 and 
    
        
    
    A64: (P0x 
    . x1) 
    = (f1 
    | Xx) by 
    A53,
    A56;
    
        
    
        
    
    A65: ex F be 
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } st f1 
    = F & ( 
    card (F 
    "  
    {1}))
    = (k 
    + 1) & (F 
    . x) 
    =  
    0 by 
    A63;
    
        then
    
        
    
    A66: ( 
    dom f1) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        
    
        
    
    A67: ex F be 
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } st f2 
    = F & ( 
    card (F 
    "  
    {1}))
    = (k 
    + 1) & (F 
    . x) 
    =  
    0 by 
    A60;
    
        then
    
        
    
    A68: ( 
    dom f2) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        for z be
    object st z 
    in ( 
    dom f1) holds (f1 
    . z) 
    = (f2 
    . z) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A69: z 
    in ( 
    dom f1); 
    
          now
    
            per cases by
    A66,
    A69,
    XBOOLE_0:def 3;
    
              suppose
    
              
    
    A70: z 
    in Xx; 
    
              then z
    in (( 
    dom f1) 
    /\ Xx) by 
    A69,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A71: ((f1 
    | Xx) 
    . z) 
    = (f1 
    . z) by 
    FUNCT_1: 48;
    
              z
    in (( 
    dom f2) 
    /\ Xx) by 
    A66,
    A68,
    A69,
    A70,
    XBOOLE_0:def 4;
    
              hence thesis by
    A58,
    A64,
    A61,
    A71,
    FUNCT_1: 48;
    
            end;
    
              suppose z
    in  
    {x};
    
              then z
    = x by 
    TARSKI:def 1;
    
              hence thesis by
    A65,
    A67;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        then
    
        
    
    A72: f1 
    = f2 by 
    A66,
    A68;
    
        X0
    =  
    {} implies ( 
    card X0) 
    =  
    {} ; 
    
        then (
    dom P0) 
    = ( 
    card X0) by 
    FUNCT_2:def 1;
    
        hence thesis by
    A41,
    A56,
    A57,
    A62,
    A59,
    A72;
    
      end;
    
      then P0x is
    one-to-one;
    
      then
    
      consider XFS0 be
    XFinSequence of 
    NAT such that 
    
      
    
    A73: ( 
    dom XFS0) 
    = ( 
    dom P0x) and 
    
      
    
    A74: for z, f st z 
    in ( 
    dom XFS0) & f 
    = (P0x 
    . z) holds (XFS0 
    . z) 
    = ( 
    card ( 
    Intersection ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),f,1))) and
    
      
    
    A75: ( 
    Card_Intersection ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),(k
    + 1))) 
    = ( 
    Sum XFS0) by 
    A40,
    A35,
    Def3;
    
      (
    Choose (Xx,(k 
    + 1),1, 
    0 )) 
    =  
    {} implies ( 
    card ( 
    Choose (Xx,(k 
    + 1),1, 
    0 ))) 
    =  
    {} ; 
    
      then
    
      
    
    A76: ( 
    dom P0x) 
    = ( 
    card X0) by 
    A40,
    FUNCT_2:def 1;
    
       not x
    in Xx by 
    ZFMISC_1: 56;
    
      then ((
    card X0) 
    + ( 
    card X1)) 
    = ( 
    card Ch) by 
    A40,
    A6,
    A4,
    Th14;
    
      then (
    dom (XP0 
    ^ XP1)) 
    = ( 
    card Ch) by 
    A45,
    A55,
    AFINSQ_1:def 3;
    
      then
    
      reconsider XP01 = (XP0
    ^ XP1) as 
    Function of ( 
    card Ch), Ch by 
    A54,
    FUNCT_2: 2;
    
      (
    rng P0) 
    misses ( 
    rng P1) by 
    Lm1,
    XBOOLE_1: 64;
    
      then XP01 is
    one-to-one by 
    A41,
    A5,
    Th51;
    
      then
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A77: ( 
    dom XFS) 
    = ( 
    dom XP01) and 
    
      
    
    A78: for z, f st z 
    in ( 
    dom XFS) & f 
    = (XP01 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,1))) and 
    
      
    
    A79: ( 
    Card_Intersection (Fy,(k 
    + 1))) 
    = ( 
    Sum XFS) by 
    A1,
    Def3;
    
      
    
      
    
    A80: ( 
    addnat  
    "**" XFS) 
    = ( 
    Card_Intersection (Fy,(k 
    + 1))) by 
    A79,
    AFINSQ_2: 51;
    
      (
    Choose (Xx,k,1, 
    0 )) 
    =  
    {} implies ( 
    card ( 
    Choose (Xx,k,1, 
    0 ))) 
    =  
    {} ; 
    
      then
    
      
    
    A81: ( 
    dom P1x) 
    = ( 
    card X1) by 
    A6,
    FUNCT_2:def 1;
    
      
    
      
    
    A82: for n be 
    Nat st n 
    in ( 
    dom XFS0) holds (XFS 
    . n) 
    = (XFS0 
    . n) 
    
      proof
    
        let n be
    Nat such that 
    
        
    
    A83: n 
    in ( 
    dom XFS0); 
    
        consider fx be
    Function such that 
    
        
    
    A84: fx 
    = (P0 
    . n) and 
    
        
    
    A85: fx 
    in X0 and 
    
        
    
    A86: (P0x 
    . n) 
    = (fx 
    | Xx) by 
    A53,
    A73,
    A83;
    
        
    
        
    
    A87: (XFS0 
    . n) 
    = ( 
    card ( 
    Intersection ((Fy 
    | Xx),(fx 
    | Xx),1))) by 
    A1,
    A74,
    A83,
    A86;
    
        
    
        
    
    A88: ex fx9 be 
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } st fx 
    = fx9 & ( 
    card (fx9 
    "  
    {1}))
    = (k 
    + 1) & (fx9 
    . x) 
    =  
    0 by 
    A85;
    
        then
    
        consider x1 be
    object such that 
    
        
    
    A89: x1 
    in (fx 
    "  
    {1}) by
    CARD_1: 27,
    XBOOLE_0:def 1;
    
        (fx
    . x1) 
    in  
    {1} by
    A89,
    FUNCT_1:def 7;
    
        then
    
        
    
    A90: (fx 
    . x1) 
    = 1 by 
    TARSKI:def 1;
    
        x1
    in ( 
    dom fx) by 
    A89,
    FUNCT_1:def 7;
    
        then
    
        
    
    A91: 1 
    in ( 
    rng fx) by 
    A90,
    FUNCT_1:def 3;
    
        
    
        
    
    A92: (Xx 
    \/  
    {x})
    = X by 
    A1,
    A2,
    ZFMISC_1: 116;
    
        
    
        
    
    A93: (( 
    dom XFS0) 
    +  
    0 qua 
    Nat)
    <= (( 
    dom XFS0) 
    + ( 
    dom XFS1)) by 
    XREAL_1: 7;
    
        (
    dom fx) 
    = (Xx 
    \/  
    {x}) by
    A88,
    FUNCT_2:def 1;
    
        then
    
        
    
    A94: (fx 
    "  
    {1})
    = ((fx 
    | Xx) 
    "  
    {1}) by
    A88,
    A92,
    AFINSQ_2: 67;
    
        n
    < ( 
    len XFS0) by 
    A83,
    AFINSQ_1: 86;
    
        then n
    < (( 
    len XFS0) 
    + ( 
    dom XFS1)) by 
    A93,
    XXREAL_0: 2;
    
        then n
    < ( 
    len XFS) by 
    A73,
    A36,
    A45,
    A55,
    A77,
    A76,
    A81,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A95: n 
    in ( 
    dom XFS) by 
    AFINSQ_1: 86;
    
        (XP01
    . n) 
    = (XP0 
    . n) by 
    A73,
    A45,
    A83,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A96: (XFS 
    . n) 
    = ( 
    card ( 
    Intersection (Fy,fx,1))) by 
    A78,
    A84,
    A95;
    
        ((fx
    | Xx) 
    "  
    {1})
    c= ( 
    dom (fx 
    | Xx)) & ( 
    dom (fx 
    | Xx)) 
    c= Xx by 
    RELAT_1: 58,
    RELAT_1: 132;
    
        then (
    Intersection ((Fy 
    | Xx),fx,1)) 
    = ( 
    Intersection (Fy,fx,1)) by 
    A94,
    A91,
    Th29,
    XBOOLE_1: 1;
    
        hence thesis by
    A94,
    A96,
    A87,
    Th27;
    
      end;
    
      X1
    =  
    {} implies ( 
    card X1) 
    =  
    {} ; 
    
      then
    
      
    
    A97: ( 
    dom P1) 
    = ( 
    card X1) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A98: for n be 
    Nat st n 
    in ( 
    dom XFS1) holds (XFS 
    . (( 
    len XFS0) 
    + n)) 
    = (XFS1 
    . n) 
    
      proof
    
        
    
        
    
    A99: (Xx 
    \/  
    {x})
    = X by 
    A1,
    A2,
    ZFMISC_1: 116;
    
        let n be
    Nat such that 
    
        
    
    A100: n 
    in ( 
    dom XFS1); 
    
        consider fx be
    Function such that 
    
        
    
    A101: fx 
    = (P1 
    . n) and 
    
        
    
    A102: fx 
    in X1 and 
    
        
    
    A103: (P1x 
    . n) 
    = (fx 
    | Xx) by 
    A16,
    A36,
    A100;
    
        consider fx9 be
    Function of (Xx 
    \/  
    {x}),
    {1,
    0 } such that 
    
        
    
    A104: fx 
    = fx9 and 
    
        
    
    A105: ( 
    card (fx9 
    "  
    {1}))
    = (k 
    + 1) and 
    
        
    
    A106: (fx9 
    . x) 
    = 1 by 
    A102;
    
        
    
        
    
    A107: ( 
    Intersection (( 
    Intersect ((Fy 
    | Xx),(Xx 
    --> (Fy 
    . x)))),(fx 
    | Xx),1)) 
    = (( 
    Intersection ((Fy 
    | Xx),(fx 
    | Xx),1)) 
    /\ (Fy 
    . x)) by 
    A1,
    A35,
    Th50;
    
        
    
        
    
    A108: ( 
    dom fx9) 
    = (Xx 
    \/  
    {x}) by
    FUNCT_2:def 1;
    
        then
    
        
    
    A109: ( 
    dom fx) 
    = X by 
    A1,
    A2,
    A104,
    ZFMISC_1: 116;
    
        
    
        
    
    A110: 1 
    in ( 
    rng (fx 
    | Xx)) & ((fx 
    | Xx) 
    "  
    {1})
    c= Xx 
    
        proof
    
          
    
          
    
    A111: ((fx 
    | Xx) 
    "  
    {1})
    c= ( 
    dom (fx 
    | Xx)) & ( 
    dom (fx 
    | Xx)) 
    = (( 
    dom fx) 
    /\ Xx) by 
    RELAT_1: 61,
    RELAT_1: 132;
    
          reconsider fx1 = ((fx
    | Xx) 
    "  
    {1}) as
    finite  
    set;
    
           not x
    in Xx by 
    ZFMISC_1: 56;
    
          then not x
    in (( 
    dom fx) 
    /\ Xx) by 
    XBOOLE_0:def 4;
    
          then not x
    in ( 
    dom (fx 
    | Xx)) by 
    RELAT_1: 61;
    
          then
    
          
    
    A112: not x 
    in fx1 by 
    FUNCT_1:def 7;
    
          (
    {x}
    \/ fx1) 
    = (fx 
    "  
    {1}) by
    A1,
    A2,
    A104,
    A106,
    A109,
    AFINSQ_2: 66;
    
          then ((
    card fx1) 
    + 1) 
    = (k 
    + 1) by 
    A104,
    A105,
    A112,
    CARD_2: 41;
    
          then
    
          consider y be
    object such that 
    
          
    
    A113: y 
    in fx1 by 
    A3,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
          y
    in ( 
    dom (fx 
    | Xx)) by 
    A113,
    FUNCT_1:def 7;
    
          then
    
          
    
    A114: ((fx 
    | Xx) 
    . y) 
    in ( 
    rng (fx 
    | Xx)) by 
    FUNCT_1:def 3;
    
          ((
    dom fx) 
    /\ Xx) 
    c= Xx & ((fx 
    | Xx) 
    . y) 
    in  
    {1} by
    A113,
    FUNCT_1:def 7,
    XBOOLE_1: 17;
    
          hence thesis by
    A111,
    A114,
    TARSKI:def 1;
    
        end;
    
        n
    < ( 
    len XFS1) by 
    A100,
    AFINSQ_1: 86;
    
        then ((
    len XFS0) 
    + n) 
    < (( 
    dom XFS0) 
    + ( 
    dom XFS1)) by 
    XREAL_1: 8;
    
        then ((
    dom XFS0) 
    + n) 
    < ( 
    len XFS) by 
    A73,
    A36,
    A45,
    A55,
    A77,
    A76,
    A81,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A115: (( 
    dom XFS0) 
    + n) 
    in ( 
    dom XFS) by 
    AFINSQ_1: 86;
    
        (XP01
    . (n 
    + ( 
    len XP0))) 
    = fx by 
    A36,
    A97,
    A100,
    A101,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A116: (XFS 
    . (( 
    dom XFS0) 
    + n)) 
    = ( 
    card ( 
    Intersection (Fy,fx,1))) by 
    A73,
    A45,
    A78,
    A76,
    A115;
    
        (fx
    . x) 
    in  
    {1} by
    A104,
    A106,
    TARSKI:def 1;
    
        then
    
        
    
    A117: x 
    in (fx 
    "  
    {1}) by
    A1,
    A2,
    A104,
    A108,
    A99,
    FUNCT_1:def 7;
    
        (XFS1
    . n) 
    = ( 
    card ( 
    Intersection (( 
    Intersect ((Fy 
    | Xx),(Xx 
    --> (Fy 
    . x)))),(fx 
    | Xx),1))) by 
    A1,
    A37,
    A100,
    A103;
    
        then (XFS1
    . n) 
    = ( 
    card (( 
    Intersection (Fy,(fx 
    | Xx),1)) 
    /\ (Fy 
    . x))) by 
    A110,
    A107,
    Th29;
    
        hence thesis by
    A117,
    A109,
    A116,
    Th31;
    
      end;
    
      (
    dom XFS) 
    = (( 
    len XFS0) 
    + ( 
    len XFS1)) by 
    A73,
    A36,
    A45,
    A55,
    A77,
    A76,
    A81,
    AFINSQ_1:def 3;
    
      then XFS
    = (XFS0 
    ^ XFS1) by 
    A82,
    A98,
    AFINSQ_1:def 3;
    
      then
    
      
    
    A118: ( 
    addnat  
    "**" XFS) 
    = ( 
    addnat  
    . (( 
    addnat  
    "**" XFS0),( 
    addnat  
    "**" XFS1))) by 
    AFINSQ_2: 42;
    
      (
    addnat  
    "**" XFS0) 
    = ( 
    Card_Intersection ((Fy 
    | (( 
    dom Fy) 
    \  
    {x})),(k
    + 1))) by 
    A75,
    AFINSQ_2: 51;
    
      hence thesis by
    A118,
    A39,
    A80,
    BINOP_2:def 23;
    
    end;
    
    theorem :: 
    
    CARD_FIN:54
    
    
    
    
    
    Th53: x 
    in ( 
    dom F) implies ( 
    union ( 
    rng F)) 
    = (( 
    union ( 
    rng (F 
    | (( 
    dom F) 
    \  
    {x}))))
    \/ (F 
    . x)) 
    
    proof
    
      set d = ((
    dom F) 
    \  
    {x});
    
      set Fd = (F
    | d); 
    
      
    
      
    
    A1: (F 
    | ( 
    dom F)) 
    = F; 
    
      assume
    
      
    
    A2: x 
    in ( 
    dom F); 
    
      then (d
    \/  
    {x})
    = ( 
    dom F) by 
    ZFMISC_1: 116;
    
      then F
    = (Fd 
    \/ (F 
    |  
    {x})) by
    A1,
    RELAT_1: 78;
    
      then
    
      
    
    A3: ( 
    rng F) 
    = (( 
    rng Fd) 
    \/ ( 
    rng (F 
    |  
    {x}))) by
    RELAT_1: 12;
    
      (
    Im (F,x)) 
    =  
    {(F
    . x)} by 
    A2,
    FUNCT_1: 59;
    
      then (
    rng (F 
    |  
    {x}))
    =  
    {(F
    . x)} by 
    RELAT_1: 115;
    
      then (
    union ( 
    rng F)) 
    = (( 
    union ( 
    rng Fd)) 
    \/ ( 
    union  
    {(F
    . x)})) by 
    A3,
    ZFMISC_1: 78;
    
      hence thesis by
    ZFMISC_1: 25;
    
    end;
    
    theorem :: 
    
    CARD_FIN:55
    
    
    
    
    
    Th54: for Fy be 
    finite-yielding  
    Function, X holds ex XFS be 
    XFinSequence of 
    INT st ( 
    dom XFS) 
    = ( 
    card X) & for n st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))) 
    
    proof
    
      let Fy be
    finite-yielding  
    Function, X; 
    
      defpred
    
    P[
    set, 
    set] means for n st n
    = $1 holds $2 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))); 
    
      
    
      
    
    A1: for k st k 
    in ( 
    Segm ( 
    card X)) holds ex x be 
    Element of 
    INT st 
    P[k, x]
    
      proof
    
        let k such that k
    in ( 
    Segm ( 
    card X)); 
    
        reconsider C = (((
    - 1) 
    |^ k) 
    * ( 
    Card_Intersection (Fy,(k 
    + 1)))) as 
    Element of 
    INT by 
    INT_1:def 2;
    
        take C;
    
        thus thesis;
    
      end;
    
      consider XFS be
    XFinSequence of 
    INT such that 
    
      
    
    A2: ( 
    dom XFS) 
    = ( 
    Segm ( 
    card X)) & for k st k 
    in ( 
    Segm ( 
    card X)) holds 
    P[k, (XFS
    . k)] from 
    STIRL2_1:sch 5(
    A1);
    
      take XFS;
    
      thus thesis by
    A2;
    
    end;
    
    ::$Notion-Name
    
    theorem :: 
    
    CARD_FIN:56
    
    
    
    
    
    Th55: for Fy be 
    finite-yielding  
    Function, X st ( 
    dom Fy) 
    = X holds for XFS be 
    XFinSequence of 
    INT st ( 
    dom XFS) 
    = ( 
    card X) & for n st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))) holds ( 
    card ( 
    union ( 
    rng Fy))) 
    = ( 
    Sum XFS) 
    
    proof
    
      defpred
    
    P[
    Nat] means for Fy be
    finite-yielding  
    Function, X st ( 
    dom Fy) 
    = X & ( 
    card X) 
    = $1 holds for XFS be 
    XFinSequence of 
    INT st ( 
    dom XFS) 
    = ( 
    card X) & for n st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))) holds ( 
    card ( 
    union ( 
    rng Fy))) 
    = ( 
    Sum XFS); 
    
      
    
      
    
    A1: for k st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k such that
    
        
    
    A2: 
    P[k];
    
        let Fy be
    finite-yielding  
    Function, X such that 
    
        
    
    A3: ( 
    dom Fy) 
    = X and 
    
        
    
    A4: ( 
    card X) 
    = (k 
    + 1); 
    
        (
    rng Fy) is 
    finite & for x st x 
    in ( 
    rng Fy) holds x is 
    finite by 
    A3,
    FINSET_1: 8;
    
        then
    
        reconsider urngFy = (
    union ( 
    rng Fy)) as 
    finite  
    set;
    
        let XFS be
    XFinSequence of 
    INT such that 
    
        
    
    A5: ( 
    dom XFS) 
    = ( 
    card X) and 
    
        
    
    A6: for n st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))); 
    
        per cases ;
    
          suppose
    
          
    
    A7: k 
    =  
    0 ; 
    
          then (
    len XFS) 
    = 1 by 
    A4,
    A5;
    
          then
    
          
    
    A8: XFS 
    =  
    <%(XFS
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
          (XFS
    .  
    0 ) is 
    Element of 
    INT by 
    INT_1:def 2;
    
          then
    
          
    
    A9: ( 
    addint  
    "**" XFS) 
    = (XFS 
    .  
    0 ) by 
    A8,
    AFINSQ_2: 37;
    
          
    0  
    in ( 
    dom XFS) by 
    A4,
    A5,
    A7,
    CARD_1: 49,
    TARSKI:def 1;
    
          then
    
          
    
    A10: (XFS 
    .  
    0 ) 
    = ((( 
    - 1) 
    |^  
    0 ) 
    * ( 
    Card_Intersection (Fy,( 
    0 qua 
    Nat
    + 1)))) by 
    A6;
    
          consider x be
    object such that 
    
          
    
    A11: ( 
    dom Fy) 
    =  
    {x} by
    A3,
    A4,
    A7,
    CARD_2: 42;
    
          
    
          
    
    A12: ( 
    rng Fy) 
    =  
    {(Fy
    . x)} by 
    A11,
    FUNCT_1: 4;
    
          then
    
          
    
    A13: ( 
    union ( 
    rng Fy)) 
    = (Fy 
    . x) by 
    ZFMISC_1: 25;
    
          ((
    - 1) 
    |^  
    0 ) 
    = 1 & Fy 
    = (x 
    .--> (Fy 
    . x)) by 
    A11,
    A12,
    FUNCOP_1: 9,
    NEWTON: 4;
    
          then (XFS
    .  
    0 ) 
    = ( 
    card ( 
    union ( 
    rng Fy))) by 
    Th45,
    A13,
    A10;
    
          hence thesis by
    A9,
    AFINSQ_2: 50;
    
        end;
    
          suppose
    
          
    
    A14: k 
    >  
    0 ; 
    
          consider x be
    object such that 
    
          
    
    A15: x 
    in ( 
    dom Fy) by 
    A3,
    A4,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
          reconsider x as
    set by 
    TARSKI: 1;
    
          set Xx = (X
    \  
    {x});
    
          
    
          
    
    A16: ( 
    card Xx) 
    = k by 
    A3,
    A4,
    A15,
    STIRL2_1: 55;
    
          set FyX = (Fy
    | Xx); 
    
          reconsider urngFyX = (
    union ( 
    rng FyX)) as 
    finite  
    set;
    
          set Fyx = (Fy
    . x); 
    
          set I = (
    Intersect (FyX,(( 
    dom FyX) 
    --> (Fy 
    . x)))); 
    
          consider XFyX be
    XFinSequence of 
    INT such that 
    
          
    
    A17: ( 
    dom XFyX) 
    = ( 
    card Xx) and 
    
          
    
    A18: for n st n 
    in ( 
    dom XFyX) holds (XFyX 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (FyX,(n 
    + 1)))) by 
    Th54;
    
          (urngFyX
    /\ (Fy 
    . x)) 
    = ( 
    union ( 
    rng I)) by 
    Th49;
    
          then
    
          reconsider urngI = (
    union ( 
    rng I)) as 
    finite  
    set;
    
          consider XI be
    XFinSequence of 
    INT such that 
    
          
    
    A19: ( 
    dom XI) 
    = ( 
    card Xx) and 
    
          
    
    A20: for n st n 
    in ( 
    dom XI) holds (XI 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (I,(n 
    + 1)))) by 
    Th54;
    
          set XI1 = ((
    - 1) 
    (#) XI); 
    
          reconsider XI1 as
    XFinSequence of 
    INT ; 
    
          reconsider XcF =
    <%(
    card Fyx)%>, X0 = 
    <%
    0 %> as 
    XFinSequence of 
    INT ; 
    
          reconsider F1 = (
    <%(
    card Fyx)%> 
    ^ XI1), F2 = (XFyX 
    ^  
    <%
    0 %>) as 
    XFinSequence of 
    INT ; 
    
          
    
          
    
    A21: ( 
    card Xx) 
    = k by 
    A3,
    A4,
    A15,
    STIRL2_1: 55;
    
          reconsider zz =
    0 as 
    Element of 
    INT by 
    INT_1:def 2;
    
          
    
          
    
    A22: ( 
    addint  
    "**" X0) 
    = zz by 
    AFINSQ_2: 37;
    
          (
    card Fyx) is 
    Element of 
    INT by 
    INT_1:def 2;
    
          then
    
          
    
    A23: ( 
    addint  
    "**" XcF) 
    = ( 
    card Fyx) by 
    AFINSQ_2: 37;
    
          
    
          
    
    A24: (( 
    - 1) 
    * ( 
    Sum XI)) 
    = ( 
    Sum XI1) by 
    AFINSQ_2: 64;
    
          
    
          
    
    A25: ( 
    addint  
    "**" F1) 
    = ( 
    addint  
    . (( 
    card Fyx),( 
    addint  
    "**" XI1))) by 
    A23,
    AFINSQ_2: 42
    
          .= ((
    card Fyx) 
    + ( 
    addint  
    "**" XI1)) by 
    BINOP_2:def 20
    
          .= ((
    card Fyx) 
    + ( 
    Sum XI1)) by 
    AFINSQ_2: 50;
    
          
    
          
    
    A26: ( 
    addint  
    "**" F2) 
    = ( 
    addint  
    . (( 
    addint  
    "**" XFyX), 
    0 )) by 
    A22,
    AFINSQ_2: 42
    
          .= ((
    addint  
    "**" XFyX) 
    + zz) by 
    BINOP_2:def 20
    
          .= (
    Sum XFyX) by 
    AFINSQ_2: 50;
    
          
    
          
    
    A27: ( 
    Sum (F1 
    ^ F2)) 
    = (( 
    Sum F1) 
    + ( 
    Sum F2)) by 
    AFINSQ_2: 55
    
          .= ((
    addint  
    "**" F1) 
    + ( 
    Sum F2)) by 
    AFINSQ_2: 50
    
          .= (((
    card Fyx) 
    + (( 
    - 1) 
    * ( 
    Sum XI))) 
    + ( 
    Sum XFyX)) by 
    A24,
    A25,
    A26,
    AFINSQ_2: 50;
    
          
    
          
    
    A28: (urngFyX 
    \/ Fyx) 
    = urngFy by 
    A3,
    A15,
    Th53;
    
          
    
          
    
    A29: (urngFyX 
    /\ Fyx) 
    = urngI by 
    Th49;
    
          
    
          
    
    A30: ( 
    dom FyX) 
    = Xx by 
    A3,
    RELAT_1: 62;
    
          then (
    dom I) 
    = Xx by 
    Th48;
    
          then
    
          
    
    A31: ( 
    card urngI) 
    = ( 
    Sum XI) by 
    A2,
    A19,
    A20,
    A21;
    
          (
    len  
    <%(
    card Fyx)%>) 
    = 1 & ( 
    len XI1) 
    = ( 
    card Xx) by 
    A19,
    AFINSQ_1: 33,
    VALUED_1:def 5;
    
          then
    
          
    
    A32: ( 
    len F1) 
    = (k 
    + 1) by 
    A16,
    AFINSQ_1: 17;
    
          
    
          
    
    A33: for n be 
    Nat st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ( 
    addint  
    . ((F1 
    . n),(F2 
    . n))) 
    
          proof
    
            let n be
    Nat such that 
    
            
    
    A34: n 
    in ( 
    dom XFS); 
    
            
    
            
    
    A35: n 
    < ( 
    len XFS) by 
    A34,
    AFINSQ_1: 86;
    
            reconsider N = n as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            per cases ;
    
              suppose
    
              
    
    A36: n 
    =  
    0 ; 
    
              
    
              
    
    A37: 
    0  
    in ( 
    Segm k) by 
    A14,
    NAT_1: 44;
    
              k
    = ( 
    dom XFyX) by 
    A3,
    A4,
    A15,
    A17,
    STIRL2_1: 55;
    
              then
    
              
    
    A38: (F2 
    .  
    0 ) 
    = (XFyX 
    .  
    0 ) & (XFyX 
    .  
    0 ) 
    = ((( 
    - 1) 
    |^  
    0 ) 
    * ( 
    Card_Intersection (FyX,( 
    0 qua 
    Nat
    + 1)))) by 
    A18,
    AFINSQ_1:def 3,
    A37;
    
              (F1
    .  
    0 ) 
    = ( 
    card Fyx) & (( 
    - 1) 
    |^  
    0 ) 
    = 1 by 
    AFINSQ_1: 35,
    NEWTON: 4;
    
              then
    
              
    
    A39: ( 
    addint  
    . ((F1 
    .  
    0 ),(F2 
    .  
    0 ))) 
    = (( 
    card Fyx) 
    + ( 
    Card_Intersection (FyX,( 
    0 qua 
    Nat
    + 1)))) by 
    A38,
    BINOP_2:def 20;
    
              
    
              
    
    A40: (( 
    - 1) 
    |^  
    0 ) 
    = 1 by 
    NEWTON: 4;
    
              (XFS
    .  
    0 ) 
    = ((( 
    - 1) 
    |^  
    0 ) 
    * ( 
    Card_Intersection (Fy,( 
    0 qua 
    Nat
    + 1)))) by 
    A6,
    A34,
    A36;
    
              hence thesis by
    A3,
    A15,
    A36,
    A39,
    A40,
    Th47;
    
            end;
    
              suppose
    
              
    
    A41: n 
    >  
    0 ; 
    
              then
    
              reconsider n1 = (n
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
              
    
              
    
    A42: ( 
    len  
    <%(
    card Fyx)%>) 
    = 1 by 
    AFINSQ_1: 33;
    
              
    
              
    
    A43: ( 
    card Xx) 
    = k by 
    A3,
    A4,
    A15,
    STIRL2_1: 55;
    
              
    
              
    
    A44: n 
    < (k 
    + 1) by 
    A4,
    A5,
    A35;
    
              then
    
              
    
    A45: n 
    <= k by 
    NAT_1: 13;
    
              
    
              
    
    A46: n1 
    < (n1 
    + 1) by 
    NAT_1: 13;
    
              then n1
    < k by 
    A45,
    XXREAL_0: 2;
    
              then n1
    < ( 
    len XI) by 
    A19,
    A43;
    
              then n1
    in ( 
    dom XI) by 
    AFINSQ_1: 86;
    
              then
    
              
    
    A47: (XI1 
    . n1) 
    = (( 
    - 1) 
    * (XI 
    . n1)) & (XI 
    . n1) 
    = ((( 
    - 1) 
    |^ n1) 
    * ( 
    Card_Intersection (I,(n1 
    + 1)))) by 
    A20,
    VALUED_1: 6;
    
              (
    0 qua 
    Nat
    + 1) 
    <= n by 
    A46,
    NAT_1: 13;
    
              then (F1
    . n) 
    = ((( 
    - 1) 
    * (( 
    - 1) 
    |^ n1)) 
    * ( 
    Card_Intersection (I,(n1 
    + 1)))) by 
    A32,
    A44,
    A42,
    A47,
    AFINSQ_1: 19;
    
              then
    
              
    
    A48: (F1 
    . n) 
    = ((( 
    - 1) 
    |^ (n1 
    + 1)) 
    * ( 
    Card_Intersection (I,(n1 
    + 1)))) by 
    NEWTON: 6;
    
              
    
              
    
    A49: (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))) by 
    A6,
    A34;
    
              (
    Card_Intersection (Fy,(n 
    + 1))) 
    = (( 
    Card_Intersection (FyX,(n 
    + 1))) 
    + ( 
    Card_Intersection (I,N))) by 
    A3,
    A15,
    A30,
    A41,
    Th52;
    
              then
    
              
    
    A50: (XFS 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (FyX,(n 
    + 1)))) 
    + ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (I,N)))) by 
    A49;
    
              per cases by
    A45,
    XXREAL_0: 1;
    
                suppose n
    < k; 
    
                then
    
                
    
    A51: n 
    in ( 
    Segm k) by 
    NAT_1: 44;
    
                (
    card Xx) 
    = k by 
    A3,
    A4,
    A15,
    STIRL2_1: 55;
    
                then (XFyX
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (FyX,(n 
    + 1)))) & (F2 
    . n) 
    = (XFyX 
    . n) by 
    A17,
    A18,
    A51,
    AFINSQ_1:def 3;
    
                hence thesis by
    A50,
    A48,
    BINOP_2:def 20;
    
              end;
    
                suppose
    
                
    
    A52: n 
    = k; 
    
                then n
    = ( 
    card Xx) by 
    A3,
    A4,
    A15,
    STIRL2_1: 55;
    
                then (n
    + 1) 
    > ( 
    card Xx) by 
    NAT_1: 13;
    
                then
    
                
    
    A53: ( 
    Card_Intersection (FyX,(n 
    + 1))) 
    =  
    0 by 
    A30,
    Th42;
    
                n
    = ( 
    len XFyX) by 
    A3,
    A4,
    A15,
    A17,
    A52,
    STIRL2_1: 55;
    
                then (F2
    . n) 
    =  
    0 by 
    AFINSQ_1: 36;
    
                hence thesis by
    A50,
    A48,
    A53,
    BINOP_2:def 20;
    
              end;
    
            end;
    
          end;
    
          (
    card urngFyX) 
    = ( 
    Sum XFyX) by 
    A2,
    A30,
    A17,
    A18,
    A21;
    
          then
    
          
    
    A54: ( 
    card urngFy) 
    = ((( 
    Sum XFyX) 
    + ( 
    card Fyx)) 
    - ( 
    Sum XI)) by 
    A31,
    A28,
    A29,
    CARD_2: 45;
    
          
    
          
    
    A55: ( 
    len  
    <%
    0 %>) 
    = 1 by 
    AFINSQ_1: 33;
    
          (
    len XFyX) 
    = ( 
    card Xx) by 
    A17;
    
          then
    
          
    
    A56: ( 
    len F2) 
    = (k 
    + 1) by 
    A55,
    A16,
    AFINSQ_1: 17;
    
          
    
          
    
    A57: ( 
    len XFS) 
    = (k 
    + 1) by 
    A4,
    A5;
    
          (
    Sum XFS) 
    = ( 
    addint  
    "**" XFS) by 
    AFINSQ_2: 50
    
          .= (
    addint  
    "**" (F1 
    ^ F2)) by 
    A32,
    A56,
    A33,
    A57,
    AFINSQ_2: 46
    
          .= (
    Sum (F1 
    ^ F2)) by 
    AFINSQ_2: 50;
    
          hence thesis by
    A27,
    A54;
    
        end;
    
      end;
    
      
    
      
    
    A58: 
    P[
    0 ] 
    
      proof
    
        let Fy be
    finite-yielding  
    Function, X such that 
    
        
    
    A59: ( 
    dom Fy) 
    = X and 
    
        
    
    A60: ( 
    card X) 
    =  
    0 ; 
    
        (
    dom Fy) 
    =  
    {} by 
    A59,
    A60;
    
        then
    
        
    
    A61: ( 
    rng Fy) 
    =  
    {} by 
    RELAT_1: 42;
    
        let XFS be
    XFinSequence of 
    INT such that 
    
        
    
    A62: ( 
    dom XFS) 
    = ( 
    card X) and for n st n 
    in ( 
    dom XFS) holds (XFS 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))); 
    
        (
    len XFS) 
    =  
    0 by 
    A60,
    A62;
    
        
    
        then (
    addint  
    "**" XFS) 
    = ( 
    the_unity_wrt  
    addint ) by 
    AFINSQ_2:def 8
    
        .=
    0 by 
    BINOP_2: 4;
    
        hence thesis by
    A61,
    AFINSQ_2: 50,
    ZFMISC_1: 2;
    
      end;
    
      for k holds
    P[k] from
    NAT_1:sch 2(
    A58,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:57
    
    
    
    
    
    Th56: for Fy, X, n, k st ( 
    dom Fy) 
    = X holds (ex x, y st x 
    <> y & for f st f 
    in ( 
    Choose (X,k,x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = n) implies ( 
    Card_Intersection (Fy,k)) 
    = (n 
    * (( 
    card X) 
    choose k)) 
    
    proof
    
      let Fy, X, n, k such that
    
      
    
    A1: X 
    = ( 
    dom Fy); 
    
      assume ex x, y st x
    <> y & for f st f 
    in ( 
    Choose (X,k,x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = n; 
    
      then
    
      consider x, y such that
    
      
    
    A2: x 
    <> y and 
    
      
    
    A3: for f st f 
    in ( 
    Choose (X,k,x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = n; 
    
      set Ch = (
    Choose (X,k,x,y)); 
    
      consider P be
    Function of ( 
    card Ch), Ch such that 
    
      
    
    A4: P is 
    one-to-one by 
    Lm2;
    
      consider XFS be
    XFinSequence of 
    NAT such that 
    
      
    
    A5: ( 
    dom XFS) 
    = ( 
    dom P) and 
    
      
    
    A6: for z, f st z 
    in ( 
    dom XFS) & f 
    = (P 
    . z) holds (XFS 
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x))) and 
    
      
    
    A7: ( 
    Card_Intersection (Fy,k)) 
    = ( 
    Sum XFS) by 
    A1,
    A2,
    A4,
    Def3;
    
      for z be
    object st z 
    in ( 
    dom XFS) holds (XFS 
    . z) 
    = n 
    
      proof
    
        let z be
    object such that 
    
        
    
    A8: z 
    in ( 
    dom XFS); 
    
        
    
        
    
    A9: (P 
    . z) 
    in ( 
    rng P) by 
    A5,
    A8,
    FUNCT_1:def 3;
    
        then
    
        consider f be
    Function of X, 
    {x, y} such that
    
        
    
    A10: f 
    = (P 
    . z) and ( 
    card (f 
    "  
    {x}))
    = k by 
    Def1;
    
        (XFS
    . z) 
    = ( 
    card ( 
    Intersection (Fy,f,x))) by 
    A6,
    A8,
    A10;
    
        hence thesis by
    A3,
    A9,
    A10;
    
      end;
    
      then
    
      
    
    A11: XFS 
    = (( 
    dom XFS) 
    --> n) by 
    FUNCOP_1: 11;
    
      then
    
      
    
    A12: ( 
    rng XFS) 
    c=  
    {n} by
    FUNCOP_1: 13;
    
      Ch
    =  
    {} implies ( 
    card Ch) 
    =  
    {} ; 
    
      then
    
      
    
    A13: ( 
    dom P) 
    = ( 
    card Ch) by 
    FUNCT_2:def 1;
    
      n
    in  
    {n} by
    TARSKI:def 1;
    
      then
    {n}
    c=  
    {
    0 , n} & (XFS 
    "  
    {n})
    = ( 
    dom P) by 
    A5,
    A11,
    FUNCOP_1: 14,
    ZFMISC_1: 7;
    
      then (
    Sum XFS) 
    = (n 
    * ( 
    card ( 
    card Ch))) by 
    A12,
    A13,
    AFINSQ_2: 68,
    XBOOLE_1: 1;
    
      hence thesis by
    A2,
    A7,
    Th15;
    
    end;
    
    theorem :: 
    
    CARD_FIN:58
    
    
    
    
    
    Th57: for Fy, X st ( 
    dom Fy) 
    = X holds for XF be 
    XFinSequence of 
    NAT st ( 
    dom XF) 
    = ( 
    card X) & for n st n 
    in ( 
    dom XF) holds ex x, y st x 
    <> y & for f st f 
    in ( 
    Choose (X,(n 
    + 1),x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = (XF 
    . n) holds ex F be 
    XFinSequence of 
    INT st ( 
    dom F) 
    = ( 
    card X) & ( 
    card ( 
    union ( 
    rng Fy))) 
    = ( 
    Sum F) & for n st n 
    in ( 
    dom F) holds (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card X) 
    choose (n 
    + 1))) 
    
    proof
    
      let Fy, X such that
    
      
    
    A1: ( 
    dom Fy) 
    = X; 
    
      let XF be
    XFinSequence of 
    NAT such that 
    
      
    
    A2: ( 
    dom XF) 
    = ( 
    card X) & for n st n 
    in ( 
    dom XF) holds ex x, y st x 
    <> y & for f st f 
    in ( 
    Choose (X,(n 
    + 1),x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = (XF 
    . n); 
    
      defpred
    
    f[
    object, 
    object] means for n st n
    = $1 holds $2 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card X) 
    choose (n 
    + 1))); 
    
      
    
      
    
    A3: for x be 
    object st x 
    in ( 
    card X) holds ex y be 
    object st y 
    in  
    INT & 
    f[x, y]
    
      proof
    
        
    
        
    
    A4: ( 
    card X) is 
    Subset of 
    NAT by 
    STIRL2_1: 8;
    
        let x be
    object;
    
        assume x
    in ( 
    card X); 
    
        then
    
        reconsider x9 = x as
    Element of 
    NAT by 
    A4;
    
        reconsider xx = (((
    - 1) 
    |^ x9) 
    * (XF 
    . x9)) as 
    Integer;
    
        reconsider ch = ((
    card X) 
    choose (x9 
    + 1)) as 
    Integer;
    
        take (xx
    * ch); 
    
        thus thesis by
    INT_1:def 2;
    
      end;
    
      consider F be
    Function of ( 
    card X), 
    INT such that 
    
      
    
    A5: for x be 
    object st x 
    in ( 
    card X) holds 
    f[x, (F
    . x)] from 
    FUNCT_2:sch 1(
    A3);
    
      
    
      
    
    A6: ( 
    dom F) 
    = ( 
    card X) by 
    FUNCT_2:def 1;
    
      then
    
      reconsider F as
    XFinSequence by 
    AFINSQ_1: 5;
    
      reconsider F as
    XFinSequence of 
    INT ; 
    
      take F;
    
      for n st n
    in ( 
    dom F) holds (F 
    . n) 
    = ((( 
    - 1) 
    |^ n) 
    * ( 
    Card_Intersection (Fy,(n 
    + 1)))) 
    
      proof
    
        let n such that
    
        
    
    A7: n 
    in ( 
    dom F); 
    
        ex x, y st x
    <> y & for f st f 
    in ( 
    Choose (X,(n 
    + 1),x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = (XF 
    . n) by 
    A2,
    A6,
    A7;
    
        then
    
        
    
    A8: ( 
    Card_Intersection (Fy,(n 
    + 1))) 
    = ((XF 
    . n) 
    * (( 
    card X) 
    choose (n 
    + 1))) by 
    A1,
    Th56;
    
        (F
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card X) 
    choose (n 
    + 1))) by 
    A5,
    A6,
    A7;
    
        hence thesis by
    A8;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    Th55;
    
    end;
    
    
    
    
    
    Lm3: for X,Y be 
    finite  
    set st X is non 
    empty & Y is non 
    empty holds ex F be 
    XFinSequence of 
    INT st ( 
    dom F) 
    = ( 
    card Y) & ((( 
    card Y) 
    |^ ( 
    card X)) 
    - ( 
    Sum F)) 
    = ( 
    card { f where f be 
    Function of X, Y : f is 
    onto }) & for n st n
    in ( 
    dom F) holds (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card Y) 
    choose (n 
    + 1))) 
    * (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X))) 
    
    proof
    
      let X,Y be
    finite  
    set such that 
    
      
    
    A1: X is non 
    empty and 
    
      
    
    A2: Y is non 
    empty;
    
      defpred
    
    xf[
    object, 
    object] means for n st n
    = $1 holds $2 
    = (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X)); 
    
      
    
      
    
    A3: for x be 
    object st x 
    in ( 
    Segm ( 
    card Y)) holds ex y be 
    object st y 
    in  
    NAT & 
    xf[x, y]
    
      proof
    
        let x be
    object such that 
    
        
    
    A4: x 
    in ( 
    Segm ( 
    card Y)); 
    
        reconsider n = x as
    Element of 
    NAT by 
    A4;
    
        n
    < ( 
    card Y) by 
    A4,
    NAT_1: 44;
    
        then (n
    + 1) 
    <= ( 
    card Y) by 
    NAT_1: 13;
    
        then
    
        reconsider k = ((
    card Y) 
    - (n 
    + 1)) as 
    Element of 
    NAT by 
    NAT_1: 21;
    
        
    xf[n, (k
    |^ ( 
    card X))]; 
    
        hence thesis;
    
      end;
    
      consider XF be
    Function of ( 
    Segm ( 
    card Y)), 
    NAT such that 
    
      
    
    A5: for x be 
    object st x 
    in ( 
    Segm ( 
    card Y)) holds 
    xf[x, (XF
    . x)] from 
    FUNCT_2:sch 1(
    A3);
    
      set Onto = { f where f be
    Function of X, Y : f is 
    onto };
    
      deffunc
    
    fy(
    object) = { f where f be
    Function of X, Y : not $1 
    in ( 
    rng f) }; 
    
      
    
      
    
    A6: for x be 
    object st x 
    in Y holds 
    fy(x)
    in ( 
    bool ( 
    Funcs (X,Y))) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A7: x 
    in Y; 
    
        
    fy(x)
    c= ( 
    Funcs (X,Y)) 
    
        proof
    
          let y be
    object;
    
          assume y
    in  
    fy(x);
    
          then ex f be
    Function of X, Y st y 
    = f & not x 
    in ( 
    rng f); 
    
          hence thesis by
    A7,
    FUNCT_2: 8;
    
        end;
    
        hence thesis;
    
      end;
    
      consider Fy9 be
    Function of Y, ( 
    bool ( 
    Funcs (X,Y))) such that 
    
      
    
    A8: for x be 
    object st x 
    in Y holds (Fy9 
    . x) 
    =  
    fy(x) from
    FUNCT_2:sch 2(
    A6);
    
      for y be
    object st y 
    in ( 
    dom Fy9) holds (Fy9 
    . y) is 
    finite
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    dom Fy9); 
    
        then (Fy9
    . y) 
    in ( 
    rng Fy9) by 
    FUNCT_1:def 3;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider Fy = Fy9 as
    finite-yielding  
    Function by 
    FINSET_1:def 4;
    
      (
    union ( 
    rng Fy9)) 
    c= ( 
    union ( 
    bool ( 
    Funcs (X,Y)))) by 
    ZFMISC_1: 77;
    
      then
    
      
    
    A9: ( 
    union ( 
    rng Fy)) 
    c= ( 
    Funcs (X,Y)) by 
    ZFMISC_1: 81;
    
      reconsider u = (
    union ( 
    rng Fy)) as 
    finite  
    set;
    
      
    
      
    
    A10: ( 
    dom XF) 
    = ( 
    card Y) by 
    FUNCT_2:def 1;
    
      then
    
      reconsider XF as
    XFinSequence by 
    AFINSQ_1: 5;
    
      reconsider XF as
    XFinSequence of 
    NAT ; 
    
      
    
      
    
    A11: for n st n 
    in ( 
    dom XF) holds ex x, y st x 
    <> y & for f st f 
    in ( 
    Choose (Y,(n 
    + 1),x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = (XF 
    . n) 
    
      proof
    
        let n such that
    
        
    
    A12: n 
    in ( 
    dom XF); 
    
        take
    0 , 1; 
    
        thus
    0  
    <> 1; 
    
        let f9 be
    Function;
    
        assume f9
    in ( 
    Choose (Y,(n 
    + 1), 
    0 ,1)); 
    
        then
    
        consider f be
    Function of Y, 
    {
    0 , 1} such that 
    
        
    
    A13: f 
    = f9 and 
    
        
    
    A14: ( 
    card (f 
    "  
    {
    0 })) 
    = (n 
    + 1) by 
    Def1;
    
        
    
        
    
    A15: ( 
    Intersection (Fy,f, 
    0 )) 
    c= ( 
    Funcs (X,(Y 
    \ (f 
    "  
    {
    0 })))) 
    
        proof
    
          let z be
    object such that 
    
          
    
    A16: z 
    in ( 
    Intersection (Fy,f, 
    0 )); 
    
          
    0  
    in ( 
    rng f) by 
    A14,
    CARD_1: 27,
    FUNCT_1: 72;
    
          then
    
          consider x1 such that
    
          
    
    A17: x1 
    in ( 
    dom f) and (f 
    . x1) 
    =  
    0 and 
    
          
    
    A18: z 
    in (Fy 
    . x1) by 
    A16,
    Th21;
    
          z
    in  
    fy(x1) by
    A8,
    A17,
    A18;
    
          then
    
          consider g be
    Function of X, Y such that 
    
          
    
    A19: z 
    = g and not x1 
    in ( 
    rng g); 
    
          
    
          
    
    A20: ( 
    rng g) 
    c= (Y 
    \ (f 
    "  
    {
    0 })) 
    
          proof
    
            let gy be
    object such that 
    
            
    
    A21: gy 
    in ( 
    rng g); 
    
            assume not gy
    in (Y 
    \ (f 
    "  
    {
    0 })); 
    
            then
    
            
    
    A22: gy 
    in (f 
    "  
    {
    0 }) by 
    A21,
    XBOOLE_0:def 5;
    
            then (f
    . gy) 
    in  
    {
    0 } by 
    FUNCT_1:def 7;
    
            then
    
            
    
    A23: (f 
    . gy) 
    =  
    0 by 
    TARSKI:def 1;
    
            gy
    in ( 
    dom f) by 
    A22,
    FUNCT_1:def 7;
    
            then g
    in (Fy 
    . gy) by 
    A16,
    A19,
    A23,
    Def2;
    
            then g
    in  
    fy(gy) by
    A8,
    A21;
    
            then ex h be
    Function of X, Y st g 
    = h & not gy 
    in ( 
    rng h); 
    
            hence contradiction by
    A21;
    
          end;
    
          (
    dom g) 
    = X by 
    A17,
    FUNCT_2:def 1;
    
          hence thesis by
    A19,
    A20,
    FUNCT_2:def 2;
    
        end;
    
        reconsider I = (
    Intersection (Fy,f, 
    0 )) as 
    finite  
    set;
    
        
    
        
    
    A24: ( 
    card (Y 
    \ (f 
    "  
    {
    0 }))) 
    = (( 
    card Y) 
    - (n 
    + 1)) by 
    A14,
    CARD_2: 44;
    
        (
    Funcs (X,(Y 
    \ (f 
    "  
    {
    0 })))) 
    c= ( 
    Intersection (Fy,f, 
    0 )) 
    
        proof
    
          let g9 be
    object;
    
          assume g9
    in ( 
    Funcs (X,(Y 
    \ (f 
    "  
    {
    0 })))); 
    
          then
    
          consider g be
    Function such that 
    
          
    
    A25: g9 
    = g and 
    
          
    
    A26: ( 
    dom g) 
    = X and 
    
          
    
    A27: ( 
    rng g) 
    c= (Y 
    \ (f 
    "  
    {
    0 })) by 
    FUNCT_2:def 2;
    
          reconsider gg = g as
    Function of X, Y by 
    A26,
    A27,
    FUNCT_2: 2,
    XBOOLE_1: 1;
    
          consider y be
    object such that 
    
          
    
    A28: y 
    in (f 
    "  
    {
    0 }) by 
    A14,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
           not y
    in ( 
    rng g) by 
    A27,
    A28,
    XBOOLE_0:def 5;
    
          then
    
          
    
    A29: gg 
    in  
    fy(y);
    
          (
    dom Fy) 
    = Y by 
    FUNCT_2:def 1;
    
          then
    
          
    
    A30: (Fy9 
    . y) 
    in ( 
    rng Fy9) by 
    A28,
    FUNCT_1:def 3;
    
          
    
          
    
    A31: for z st z 
    in ( 
    dom f) & (f 
    . z) 
    =  
    0 holds g 
    in (Fy 
    . z) 
    
          proof
    
            let z such that
    
            
    
    A32: z 
    in ( 
    dom f) and 
    
            
    
    A33: (f 
    . z) 
    =  
    0 ; 
    
            (f
    . z) 
    in  
    {
    0 } by 
    A33,
    TARSKI:def 1;
    
            then z
    in (f 
    "  
    {
    0 }) by 
    A32,
    FUNCT_1:def 7;
    
            then
    
            
    
    A34: not z 
    in ( 
    rng gg) by 
    A27,
    XBOOLE_0:def 5;
    
            (Fy
    . z) 
    =  
    fy(z) by
    A8,
    A32;
    
            hence thesis by
    A34;
    
          end;
    
          
    fy(y)
    = (Fy9 
    . y) by 
    A8,
    A28;
    
          then g
    in ( 
    union ( 
    rng Fy)) by 
    A30,
    A29,
    TARSKI:def 4;
    
          hence thesis by
    A25,
    A31,
    Def2;
    
        end;
    
        then
    
        
    
    A35: ( 
    Funcs (X,(Y 
    \ (f 
    "  
    {
    0 })))) 
    = ( 
    Intersection (Fy,f, 
    0 )) by 
    A15;
    
        now
    
          per cases ;
    
            suppose (Y
    \ (f 
    "  
    {
    0 })) 
    =  
    {} ; 
    
            then (
    card I) 
    =  
    0 & (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X)) 
    =  
    0 by 
    A1,
    A15,
    A24,
    NAT_1: 14,
    NEWTON: 11;
    
            hence thesis by
    A5,
    A10,
    A12,
    A13;
    
          end;
    
            suppose
    
            
    
    A36: (Y 
    \ (f 
    "  
    {
    0 })) 
    <>  
    {} ; 
    
            (XF
    . n) 
    = (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X)) by 
    A5,
    A10,
    A12;
    
            hence thesis by
    A13,
    A35,
    A24,
    A36,
    Th3;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      (
    dom XF) 
    = ( 
    card Y) & ( 
    dom Fy) 
    = Y by 
    FUNCT_2:def 1;
    
      then
    
      consider F be
    XFinSequence of 
    INT such that 
    
      
    
    A37: ( 
    dom F) 
    = ( 
    card Y) and 
    
      
    
    A38: ( 
    card ( 
    union ( 
    rng Fy))) 
    = ( 
    Sum F) and 
    
      
    
    A39: for n st n 
    in ( 
    dom F) holds (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card Y) 
    choose (n 
    + 1))) by 
    A11,
    Th57;
    
      take F;
    
      thus (
    dom F) 
    = ( 
    card Y) by 
    A37;
    
      
    
      
    
    A40: ( 
    card (( 
    Funcs (X,Y)) 
    \ u)) 
    = (( 
    card ( 
    Funcs (X,Y))) 
    - ( 
    card u)) by 
    A9,
    CARD_2: 44;
    
      
    
      
    
    A41: Onto 
    c= (( 
    Funcs (X,Y)) 
    \ ( 
    union ( 
    rng Fy))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in Onto; 
    
        then
    
        consider f be
    Function of X, Y such that 
    
        
    
    A42: x 
    = f and 
    
        
    
    A43: f is 
    onto;
    
        assume
    
        
    
    A44: not x 
    in (( 
    Funcs (X,Y)) 
    \ ( 
    union ( 
    rng Fy))); 
    
        f
    in ( 
    Funcs (X,Y)) by 
    A2,
    FUNCT_2: 8;
    
        then f
    in ( 
    union ( 
    rng Fy)) by 
    A42,
    A44,
    XBOOLE_0:def 5;
    
        then
    
        consider Fyy be
    set such that 
    
        
    
    A45: f 
    in Fyy and 
    
        
    
    A46: Fyy 
    in ( 
    rng Fy) by 
    TARSKI:def 4;
    
        consider y be
    object such that 
    
        
    
    A47: y 
    in ( 
    dom Fy) and 
    
        
    
    A48: (Fy 
    . y) 
    = Fyy by 
    A46,
    FUNCT_1:def 3;
    
        y
    in Y by 
    A47,
    FUNCT_2:def 1;
    
        then f
    in  
    fy(y) by
    A8,
    A45,
    A48;
    
        then
    
        
    
    A49: ex g be 
    Function of X, Y st f 
    = g & not y 
    in ( 
    rng g); 
    
        y
    in Y by 
    A47,
    FUNCT_2:def 1;
    
        hence contradiction by
    A43,
    A49,
    FUNCT_2:def 3;
    
      end;
    
      
    
      
    
    A50: (( 
    Funcs (X,Y)) 
    \ ( 
    union ( 
    rng Fy))) 
    c= Onto 
    
      proof
    
        let x be
    object such that 
    
        
    
    A51: x 
    in (( 
    Funcs (X,Y)) 
    \ ( 
    union ( 
    rng Fy))); 
    
        consider f such that
    
        
    
    A52: x 
    = f and 
    
        
    
    A53: ( 
    dom f) 
    = X & ( 
    rng f) 
    c= Y by 
    A51,
    FUNCT_2:def 2;
    
        reconsider f as
    Function of X, Y by 
    A53,
    FUNCT_2: 2;
    
        assume not x
    in Onto; 
    
        then not f is
    onto by 
    A52;
    
        then (
    rng f) 
    <> Y by 
    FUNCT_2:def 3;
    
        then not Y
    c= ( 
    rng f); 
    
        then
    
        consider y be
    object such that 
    
        
    
    A54: y 
    in Y and 
    
        
    
    A55: not y 
    in ( 
    rng f); 
    
        y
    in ( 
    dom Fy9) by 
    A54,
    FUNCT_2:def 1;
    
        then (Fy9
    . y) 
    in ( 
    rng Fy9) by 
    FUNCT_1:def 3;
    
        then
    
        
    
    A56: 
    fy(y)
    in ( 
    rng Fy9) by 
    A8,
    A54;
    
        f
    in  
    fy(y) by
    A55;
    
        then f
    in ( 
    union ( 
    rng Fy)) by 
    A56,
    TARSKI:def 4;
    
        hence thesis by
    A51,
    A52,
    XBOOLE_0:def 5;
    
      end;
    
      (
    card ( 
    Funcs (X,Y))) 
    = (( 
    card Y) 
    |^ ( 
    card X)) by 
    A2,
    Th3;
    
      hence (
    card Onto) 
    = ((( 
    card Y) 
    |^ ( 
    card X)) 
    - ( 
    Sum F)) by 
    A38,
    A50,
    A41,
    A40,
    XBOOLE_0:def 10;
    
      let n such that
    
      
    
    A57: n 
    in ( 
    dom F); 
    
      
    
      
    
    A58: (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card Y) 
    choose (n 
    + 1))) by 
    A39,
    A57;
    
      (XF
    . n) 
    = (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X)) by 
    A5,
    A37,
    A57;
    
      hence thesis by
    A58;
    
    end;
    
    theorem :: 
    
    CARD_FIN:59
    
    
    
    
    
    Th58: for X,Y be 
    finite  
    set st X is non 
    empty & Y is non 
    empty holds ex F be 
    XFinSequence of 
    INT st ( 
    dom F) 
    = (( 
    card Y) 
    + 1) & ( 
    Sum F) 
    = ( 
    card { f where f be 
    Function of X, Y : f is 
    onto }) & for n st n
    in ( 
    dom F) holds (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card Y) 
    choose n)) 
    * ((( 
    card Y) 
    - n) 
    |^ ( 
    card X))) 
    
    proof
    
      let X,Y be
    finite  
    set such that 
    
      
    
    A1: X is non 
    empty & Y is non 
    empty;
    
      reconsider c = ((
    card Y) 
    |^ ( 
    card X)) as 
    Element of 
    INT by 
    INT_1:def 2;
    
      
    
      
    
    A2: ( 
    len  
    <%c%>)
    = 1 by 
    AFINSQ_1: 33;
    
      set Onto = { f where f be
    Function of X, Y : f is 
    onto };
    
      consider F be
    XFinSequence of 
    INT such that 
    
      
    
    A3: ( 
    dom F) 
    = ( 
    card Y) and 
    
      
    
    A4: ((( 
    card Y) 
    |^ ( 
    card X)) 
    - ( 
    Sum F)) 
    = ( 
    card Onto) and 
    
      
    
    A5: for n st n 
    in ( 
    dom F) holds (F 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card Y) 
    choose (n 
    + 1))) 
    * (((( 
    card Y) 
    - n) 
    - 1) 
    |^ ( 
    card X))) by 
    A1,
    Lm3;
    
      set F1 = ((
    - 1) 
    (#) F); 
    
      reconsider F1 as
    XFinSequence of 
    INT ; 
    
      
    
      
    
    A6: ( 
    dom F1) 
    = ( 
    dom F) & ( 
    dom F) 
    = ( 
    card Y) by 
    A3,
    VALUED_1:def 5;
    
      reconsider GF1 = (
    <%c%>
    ^ F1) as 
    XFinSequence of 
    INT ; 
    
      take GF1;
    
      (
    len F1) 
    = ( 
    card Y) by 
    A3,
    VALUED_1:def 5;
    
      hence
    
      
    
    A7: ( 
    dom GF1) 
    = (( 
    card Y) 
    + 1) by 
    A2,
    AFINSQ_1:def 3;
    
      ((
    - 1) 
    * ( 
    Sum F)) 
    = ( 
    Sum F1) by 
    AFINSQ_2: 64;
    
      
    
      then (c
    - ( 
    Sum F)) 
    = (c 
    + ( 
    Sum F1)) 
    
      .= (
    addint  
    . (c,( 
    Sum F1))) by 
    BINOP_2:def 20
    
      .= (
    addint  
    . (( 
    addint  
    "**"  
    <%c%>),(
    Sum F1))) by 
    AFINSQ_2: 37
    
      .= (
    addint  
    . (( 
    addint  
    "**"  
    <%c%>),(
    addint  
    "**" F1))) by 
    AFINSQ_2: 50
    
      .= (
    addint  
    "**" GF1) by 
    AFINSQ_2: 42
    
      .= (
    Sum GF1) by 
    AFINSQ_2: 50;
    
      hence (
    Sum GF1) 
    = ( 
    card Onto) by 
    A4;
    
      let n such that
    
      
    
    A8: n 
    in ( 
    dom GF1); 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A9: n 
    =  
    0 ; 
    
          then ((
    - 1) 
    |^ n) 
    = 1 & (( 
    card Y) 
    choose n) 
    = 1 by 
    NEWTON: 4,
    NEWTON: 19;
    
          hence thesis by
    A9,
    AFINSQ_1: 35;
    
        end;
    
          suppose n
    >  
    0 ; 
    
          then
    
          reconsider n1 = (n
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
          n
    < ( 
    len GF1) by 
    A8,
    AFINSQ_1: 86;
    
          then n
    < (( 
    card Y) 
    + 1) by 
    A7;
    
          then (n1
    + 1) 
    <= ( 
    card Y) by 
    NAT_1: 13;
    
          then n1
    < ( 
    card Y) by 
    NAT_1: 13;
    
          then n1
    < ( 
    len F1) by 
    A6;
    
          then
    
          
    
    A10: n1 
    in ( 
    dom F1) by 
    AFINSQ_1: 86;
    
          then
    
          
    
    A11: (F 
    . n1) 
    = (((( 
    - 1) 
    |^ n1) 
    * (( 
    card Y) 
    choose (n1 
    + 1))) 
    * (((( 
    card Y) 
    - n1) 
    - 1) 
    |^ ( 
    card X))) by 
    A5,
    A6;
    
          (
    len  
    <%c%>)
    = 1 by 
    AFINSQ_1: 33;
    
          then
    
          
    
    A12: (GF1 
    . (n1 
    + 1)) 
    = (F1 
    . n1) by 
    A10,
    AFINSQ_1:def 3;
    
          then
    
          
    
    A13: (( 
    - 1) 
    * (( 
    - 1) 
    |^ n1)) 
    = (( 
    - 1) 
    |^ n) by 
    NEWTON: 6;
    
          (GF1
    . (n1 
    + 1)) 
    = (( 
    - 1) 
    * (F 
    . n1)) by 
    A12,
    VALUED_1: 6;
    
          hence thesis by
    A11,
    A13;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:60
    
    for n, k st k
    <= n holds ex F be 
    XFinSequence of 
    INT st (n 
    block k) 
    = ((1 
    / (k 
    ! )) 
    * ( 
    Sum F)) & ( 
    dom F) 
    = (k 
    + 1) & for m st m 
    in ( 
    dom F) holds (F 
    . m) 
    = (((( 
    - 1) 
    |^ m) 
    * (k 
    choose m)) 
    * ((k 
    - m) 
    |^ n)) 
    
    proof
    
      let n, k such that
    
      
    
    A1: k 
    <= n; 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A2: n 
    =  
    0 & k 
    =  
    0 ; 
    
          reconsider I = 1 as
    Element of 
    INT by 
    INT_1:def 2;
    
          set F =
    <%I%>;
    
          take F;
    
          (
    addint  
    "**"  
    <%I%>)
    = 1 by 
    AFINSQ_2: 37;
    
          then (
    Sum F) 
    = 1 by 
    AFINSQ_2: 50;
    
          hence (n
    block k) 
    = ((1 
    / (k 
    ! )) 
    * ( 
    Sum F)) by 
    A2,
    NEWTON: 12,
    STIRL2_1: 26;
    
          thus (
    dom F) 
    = (k 
    + 1) by 
    A2,
    AFINSQ_1: 33;
    
          let m;
    
          assume m
    in ( 
    dom F); 
    
          then
    
          
    
    A3: m 
    in  
    {
    0 } by 
    AFINSQ_1: 33,
    CARD_1: 49;
    
          then m
    =  
    0 by 
    TARSKI:def 1;
    
          then
    
          
    
    A4: (( 
    - 1) 
    |^ m) 
    = 1 by 
    NEWTON: 4;
    
          
    
          
    
    A5: ((k 
    - m) 
    |^ n) 
    = 1 by 
    A2,
    NEWTON: 4;
    
          
    
          
    
    A6: ( 
    0  
    choose  
    0 ) 
    = 1 by 
    NEWTON: 19;
    
          m
    =  
    0 by 
    A3,
    TARSKI:def 1;
    
          hence (F
    . m) 
    = (((( 
    - 1) 
    |^ m) 
    * (k 
    choose m)) 
    * ((k 
    - m) 
    |^ n)) by 
    A2,
    A4,
    A5,
    A6;
    
        end;
    
          suppose
    
          
    
    A7: n 
    <>  
    0 & k 
    =  
    0 ; 
    
          set F = ((k
    + 1) 
    -->  
    0 ); 
    
          reconsider Fi = F as
    XFinSequence of 
    INT ; 
    
          reconsider Fn = F as
    XFinSequence of 
    NAT ; 
    
          take Fi;
    
          (
    rng F) 
    c=  
    {
    0 } & 
    {
    0 } 
    c=  
    {
    0 , 
    0 } by 
    ENUMSET1: 29,
    FUNCOP_1: 13;
    
          then (
    Sum Fn) 
    = ( 
    0  
    * ( 
    card (Fn 
    "  
    {
    0 }))) by 
    AFINSQ_2: 68,
    XBOOLE_1: 1;
    
          hence (n
    block k) 
    = ((1 
    / (k 
    ! )) 
    * ( 
    Sum Fi)) & ( 
    dom Fi) 
    = (k 
    + 1) by 
    A7,
    STIRL2_1: 31;
    
          let m such that m
    in ( 
    dom Fi); 
    
          now
    
            per cases ;
    
              suppose m
    =  
    0 ; 
    
              then ((k
    - m) 
    |^ n) 
    =  
    0 by 
    A7,
    NAT_1: 14,
    NEWTON: 11;
    
              hence ((k
    choose m) 
    * ((k 
    - m) 
    |^ n)) 
    =  
    0 ; 
    
            end;
    
              suppose m
    >  
    0 ; 
    
              then (k
    choose m) 
    =  
    0 by 
    A7,
    NEWTON:def 3;
    
              hence ((k
    choose m) 
    * ((k 
    - m) 
    |^ n)) 
    =  
    0 ; 
    
            end;
    
          end;
    
          then
    
          
    
    A9: ((( 
    - 1) 
    |^ m) 
    * ((k 
    choose m) 
    * ((k 
    - m) 
    |^ n))) 
    =  
    0 ; 
    
          thus (Fi
    . m) 
    = (((( 
    - 1) 
    |^ m) 
    * (k 
    choose m)) 
    * ((k 
    - m) 
    |^ n)) by 
    A9;
    
        end;
    
          suppose
    
          
    
    A10: n 
    <>  
    0 & k 
    <>  
    0 ; 
    
          set Perm = { p where p be
    Function of k, k : p is 
    Permutation of k }; 
    
          (
    card Perm) 
    = (( 
    card k) 
    ! ) by 
    Th7;
    
          then
    
          reconsider Perm as
    finite  
    set;
    
          reconsider Bloc = { f where f be
    Function of ( 
    Segm n), ( 
    Segm k) : f is 
    onto
    "increasing } as
    finite  
    set by 
    STIRL2_1: 24;
    
          set Onto = { f where f be
    Function of n, k : f is 
    onto };
    
          defpred
    
    P[
    object, 
    object] means for p be
    Function of k, k, f be 
    Function of n, k st $1 
    =  
    [p, f] holds $2
    = (p 
    * f); 
    
          reconsider N = n, K = k as non
    empty  
    Subset of 
    NAT by 
    A10,
    STIRL2_1: 8;
    
          
    
          
    
    A11: ( 
    card  
    [:Perm, Bloc:])
    = (( 
    card Perm) 
    * ( 
    card Bloc)) by 
    CARD_2: 46;
    
          
    
          
    
    A12: for x be 
    object st x 
    in  
    [:Perm, Bloc:] holds ex y be
    object st y 
    in Onto & 
    P[x, y]
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    [:Perm, Bloc:];
    
            then
    
            consider p9,f9 be
    object such that 
    
            
    
    A13: p9 
    in Perm and 
    
            
    
    A14: f9 
    in Bloc and 
    
            
    
    A15: x 
    =  
    [p9, f9] by
    ZFMISC_1:def 2;
    
            consider f be
    Function of ( 
    Segm n), ( 
    Segm k) such that 
    
            
    
    A16: f 
    = f9 and 
    
            
    
    A17: f is 
    onto
    "increasing by 
    A14;
    
            
    
            
    
    A18: ( 
    rng f) 
    = ( 
    Segm k) by 
    A17,
    FUNCT_2:def 3;
    
            consider p be
    Function of ( 
    Segm k), ( 
    Segm k) such that 
    
            
    
    A19: p 
    = p9 and 
    
            
    
    A20: p is 
    Permutation of ( 
    Segm k) by 
    A13;
    
            reconsider pf = (p
    * f) as 
    Function of ( 
    Segm n), ( 
    Segm k); 
    
            take pf;
    
            
    
            
    
    A21: ( 
    dom p) 
    = ( 
    Segm k) by 
    A10,
    FUNCT_2:def 1;
    
            (
    rng p) 
    = k by 
    A20,
    FUNCT_2:def 3;
    
            then (
    rng (p 
    * f)) 
    = k by 
    A18,
    A21,
    RELAT_1: 28;
    
            then pf is
    onto by 
    FUNCT_2:def 3;
    
            hence pf
    in Onto; 
    
            let p1 be
    Function of k, k, f1 be 
    Function of n, k such that 
    
            
    
    A22: x 
    =  
    [p1, f1];
    
            p1
    = p by 
    A15,
    A19,
    A22,
    XTUPLE_0: 1;
    
            hence thesis by
    A15,
    A16,
    A22,
    XTUPLE_0: 1;
    
          end;
    
          consider FP be
    Function of 
    [:Perm, Bloc:], Onto such that
    
          
    
    A23: for x be 
    object st x 
    in  
    [:Perm, Bloc:] holds
    P[x, (FP
    . x)] from 
    FUNCT_2:sch 1(
    A12);
    
          
    
          
    
    A24: FP is 
    one-to-one
    
          proof
    
            let x1,x2 be
    object such that 
    
            
    
    A25: x1 
    in ( 
    dom FP) and 
    
            
    
    A26: x2 
    in ( 
    dom FP) and 
    
            
    
    A27: (FP 
    . x1) 
    = (FP 
    . x2); 
    
            consider p19,f19 be
    object such that 
    
            
    
    A28: p19 
    in Perm and 
    
            
    
    A29: f19 
    in Bloc and 
    
            
    
    A30: x1 
    =  
    [p19, f19] by
    A25,
    ZFMISC_1:def 2;
    
            consider p1 be
    Function of k, k such that 
    
            
    
    A31: p19 
    = p1 and 
    
            
    
    A32: p1 is 
    Permutation of k by 
    A28;
    
            consider p29,f29 be
    object such that 
    
            
    
    A33: p29 
    in Perm and 
    
            
    
    A34: f29 
    in Bloc and 
    
            
    
    A35: x2 
    =  
    [p29, f29] by
    A26,
    ZFMISC_1:def 2;
    
            (FP
    . x1) 
    in ( 
    rng FP) by 
    A25,
    FUNCT_1:def 3;
    
            then (FP
    . x1) 
    in Onto; 
    
            then
    
            consider fp be
    Function of N, K such that 
    
            
    
    A36: (FP 
    . x1) 
    = fp and 
    
            
    
    A37: fp is 
    onto;
    
            
    
            
    
    A38: ( 
    rng fp) 
    = K by 
    A37,
    FUNCT_2:def 3;
    
            consider p2 be
    Function of k, k such that 
    
            
    
    A39: p29 
    = p2 and 
    
            
    
    A40: p2 is 
    Permutation of k by 
    A33;
    
            consider f2 be
    Function of ( 
    Segm n), ( 
    Segm k) such that 
    
            
    
    A41: f29 
    = f2 and 
    
            
    
    A42: f2 is 
    onto
    "increasing by 
    A34;
    
            (
    rng fp) 
    = K by 
    A37,
    FUNCT_2:def 3;
    
            then
    
            reconsider p199 = p1, p299 = p2 as
    Permutation of ( 
    rng fp) by 
    A32,
    A40;
    
            consider f1 be
    Function of ( 
    Segm n), ( 
    Segm k) such that 
    
            
    
    A43: f19 
    = f1 and 
    
            
    
    A44: f1 is 
    onto
    "increasing by 
    A29;
    
            reconsider f199 = f1, f299 = f2 as
    Function of N, K; 
    
            
    
            
    
    A45: ( 
    rng f2) 
    = K by 
    A42,
    FUNCT_2:def 3;
    
            for l,m be
    Nat st l 
    in ( 
    rng f1) & m 
    in ( 
    rng f1) & l 
    < m holds ( 
    min* (f1 
    "  
    {l}))
    < ( 
    min* (f1 
    "  
    {m})) by
    A44,
    STIRL2_1:def 1;
    
            then
    
            
    
    A46: f199 is 
    'increasing by 
    STIRL2_1:def 3;
    
            for l,m be
    Nat st l 
    in ( 
    rng f2) & m 
    in ( 
    rng f2) & l 
    < m holds ( 
    min* (f2 
    "  
    {l}))
    < ( 
    min* (f2 
    "  
    {m})) by
    A42,
    STIRL2_1:def 1;
    
            then
    
            
    
    A47: f299 is 
    'increasing by 
    STIRL2_1:def 3;
    
            
    
            
    
    A48: fp 
    = (p199 
    * f199) by 
    A23,
    A25,
    A30,
    A31,
    A43,
    A36;
    
            
    
            
    
    A49: ( 
    rng f1) 
    = K by 
    A44,
    FUNCT_2:def 3;
    
            
    
            
    
    A50: fp 
    = (p299 
    * f299) by 
    A23,
    A26,
    A27,
    A35,
    A39,
    A41,
    A36;
    
            then p199
    = p299 by 
    A46,
    A47,
    A49,
    A45,
    A48,
    A38,
    STIRL2_1: 65;
    
            hence thesis by
    A30,
    A31,
    A43,
    A35,
    A39,
    A41,
    A46,
    A47,
    A49,
    A45,
    A48,
    A50,
    A38,
    STIRL2_1: 65;
    
          end;
    
          consider h be
    Function of ( 
    Segm n), ( 
    Segm k) such that 
    
          
    
    A51: h is 
    onto
    "increasing by 
    A1,
    A10,
    STIRL2_1: 23;
    
          Onto
    c= ( 
    rng FP) 
    
          proof
    
            let x be
    object;
    
            assume x
    in Onto; 
    
            then
    
            consider f be
    Function of n, k such that 
    
            
    
    A52: f 
    = x and 
    
            
    
    A53: f is 
    onto;
    
            (
    rng f) 
    = K by 
    A53,
    FUNCT_2:def 3;
    
            then
    
            consider I be
    Function of N, K, P be 
    Permutation of K such that 
    
            
    
    A54: f 
    = (P 
    * I) and 
    
            
    
    A55: K 
    = ( 
    rng I) and 
    
            
    
    A56: I is 
    'increasing by 
    STIRL2_1: 63;
    
            set p = P;
    
            reconsider i = I as
    Function of ( 
    Segm n), ( 
    Segm k); 
    
            for l,m be
    Nat st l 
    in ( 
    rng I) & m 
    in ( 
    rng I) & l 
    < m holds ( 
    min* (I 
    "  
    {l}))
    < ( 
    min* (I 
    "  
    {m})) by
    A56,
    STIRL2_1:def 3;
    
            then
    
            
    
    A57: i is 
    "increasing by 
    STIRL2_1:def 1;
    
            i is
    onto by 
    A55,
    FUNCT_2:def 3;
    
            then p
    in Perm & i 
    in Bloc by 
    A57;
    
            then
    
            
    
    A58: 
    [p, i]
    in  
    [:Perm, Bloc:] by
    ZFMISC_1:def 2;
    
            h
    in Onto by 
    A51;
    
            then
    
            
    
    A59: 
    [p, i]
    in ( 
    dom FP) by 
    A58,
    FUNCT_2:def 1;
    
            (FP
    .  
    [p, i])
    = f by 
    A23,
    A54,
    A58;
    
            hence thesis by
    A52,
    A59,
    FUNCT_1:def 3;
    
          end;
    
          then
    
          
    
    A60: ( 
    rng FP) 
    = Onto; 
    
          h
    in Onto by 
    A51;
    
          then (
    dom FP) 
    =  
    [:Perm, Bloc:] by
    FUNCT_2:def 1;
    
          then (Onto,
    [:Perm, Bloc:])
    are_equipotent by 
    A24,
    A60,
    WELLORD2:def 4;
    
          then
    
          
    
    A61: ( 
    card Onto) 
    = (( 
    card Perm) 
    * ( 
    card Bloc)) by 
    A11,
    CARD_1: 5;
    
          
    
          
    
    A62: (((k 
    ! ) 
    * ( 
    card Bloc)) 
    / (k 
    ! )) 
    = (( 
    card Bloc) 
    * ((k 
    ! ) 
    / (k 
    ! ))) & ((k 
    ! ) 
    / (k 
    ! )) 
    = 1 by 
    XCMPLX_1: 60,
    XCMPLX_1: 74;
    
          consider F be
    XFinSequence of 
    INT such that 
    
          
    
    A63: ( 
    dom F) 
    = (( 
    card k) 
    + 1) and 
    
          
    
    A64: ( 
    Sum F) 
    = ( 
    card { f where f be 
    Function of n, k : f is 
    onto }) and
    
          
    
    A65: for m st m 
    in ( 
    dom F) holds (F 
    . m) 
    = (((( 
    - 1) 
    |^ m) 
    * (( 
    card k) 
    choose m)) 
    * ((( 
    card k) 
    - m) 
    |^ ( 
    card n))) by 
    A10,
    Th58;
    
          take F;
    
          (
    card Perm) 
    = (( 
    card k) 
    ! ) by 
    Th7;
    
          then (
    Sum F) 
    = ((k 
    ! ) 
    * ( 
    card Bloc)) by 
    A64,
    A61;
    
          then (n
    block k) 
    = ((( 
    Sum F) 
    * 1) 
    / (k 
    ! )) by 
    A62,
    STIRL2_1:def 2;
    
          hence (n
    block k) 
    = ((1 
    / (k 
    ! )) 
    * ( 
    Sum F)) by 
    XCMPLX_1: 74;
    
          thus (
    dom F) 
    = (k 
    + 1) by 
    A63;
    
          let m;
    
          assume m
    in ( 
    dom F); 
    
          hence (F
    . m) 
    = (((( 
    - 1) 
    |^ m) 
    * (k 
    choose m)) 
    * ((k 
    - m) 
    |^ n)) by 
    A65;
    
        end;
    
          suppose n
    =  
    0 & k 
    <>  
    0 ; 
    
          hence thesis by
    A1;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CARD_FIN:61
    
    
    
    
    
    Th60: for X1,Y1,X be 
    finite  
    set st (Y1 is 
    empty implies X1 is 
    empty) & X
    c= X1 holds for F be 
    Function of X1, Y1 st F is 
    one-to-one & ( 
    card X1) 
    = ( 
    card Y1) holds ((( 
    card X1) 
    -' ( 
    card X)) 
    ! ) 
    = ( 
    card { f where f be 
    Function of X1, Y1 : f is 
    one-to-one & ( 
    rng (f 
    | (X1 
    \ X))) 
    c= (F 
    .: (X1 
    \ X)) & for x st x 
    in X holds (f 
    . x) 
    = (F 
    . x) }) 
    
    proof
    
      let X1,Y1,X be
    finite  
    set such that 
    
      
    
    A1: Y1 is 
    empty implies X1 is 
    empty and 
    
      
    
    A2: X 
    c= X1; 
    
      set XX = (X1
    \ X); 
    
      let F be
    Function of X1, Y1 such that 
    
      
    
    A3: F is 
    one-to-one and 
    
      
    
    A4: ( 
    card X1) 
    = ( 
    card Y1); 
    
      deffunc
    
    F(
    set) = (F
    . $1); 
    
      defpred
    
    P[
    Function, 
    set, 
    set] means $1 is
    one-to-one & ( 
    rng ($1 
    | XX)) 
    = (F 
    .: XX); 
    
      reconsider FX = (F
    .: XX) as 
    finite  
    set;
    
      set F1 = { f where f be
    Function of XX, (F 
    .: XX) : f is 
    one-to-one };
    
      
    
      
    
    A5: ( 
    card XX) 
    = (( 
    card X1) 
    - ( 
    card X)) by 
    A2,
    CARD_2: 44;
    
      
    
      
    
    A6: for f be 
    Function of X1, Y1 st (for x st x 
    in (X1 
    \ XX) holds 
    F(x)
    = (f 
    . x)) holds 
    P[f, X1, Y1] iff
    P[(f
    | XX), XX, (F 
    .: XX)] 
    
      proof
    
        let f be
    Function of X1, Y1 such that 
    
        
    
    A7: for x st x 
    in (X1 
    \ XX) holds 
    F(x)
    = (f 
    . x); 
    
        thus
    P[f, X1, Y1] implies
    P[(f
    | XX), XX, (F 
    .: XX)] by 
    FUNCT_1: 52;
    
        thus
    P[(f
    | XX), XX, (F 
    .: XX)] implies 
    P[f, X1, Y1]
    
        proof
    
          F is
    onto by 
    A3,
    A4,
    FINSEQ_4: 63;
    
          then
    
          
    
    A8: ( 
    rng F) 
    = Y1 by 
    FUNCT_2:def 3;
    
          
    
          
    
    A9: ( 
    rng (f 
    | XX)) 
    = (f 
    .: XX) & (F 
    .: ((X1 
    \ XX) 
    \/ XX)) 
    = ((F 
    .: (X1 
    \ XX)) 
    \/ (F 
    .: XX)) by 
    RELAT_1: 115,
    RELAT_1: 120;
    
          
    
          
    
    A10: ( 
    dom (F 
    | (X1 
    \ XX))) 
    = (( 
    dom F) 
    /\ (X1 
    \ XX)) & ( 
    dom F) 
    = X1 by 
    A1,
    FUNCT_2:def 1,
    RELAT_1: 61;
    
          
    
          
    
    A11: ( 
    dom (f 
    | (X1 
    \ XX))) 
    = (( 
    dom f) 
    /\ (X1 
    \ XX)) & ( 
    dom f) 
    = X1 by 
    A1,
    FUNCT_2:def 1,
    RELAT_1: 61;
    
          now
    
            
    
            
    
    A12: (X1 
    \ XX) 
    = (X 
    /\ X1) & (X 
    /\ X1) 
    = X by 
    A2,
    XBOOLE_1: 28,
    XBOOLE_1: 48;
    
            let x be
    object such that 
    
            
    
    A13: x 
    in ( 
    dom (F 
    | (X1 
    \ XX))); 
    
            (f
    . x) 
    = ((f 
    | (X1 
    \ XX)) 
    . x) by 
    A11,
    A10,
    A13,
    FUNCT_1: 47;
    
            hence (F
    . x) 
    = ((f 
    | (X1 
    \ XX)) 
    . x) by 
    A7,
    A10,
    A13,
    A12;
    
          end;
    
          then (f
    | (X1 
    \ XX)) 
    = (F 
    | (X1 
    \ XX)) by 
    A11,
    A10,
    FUNCT_1: 46;
    
          then
    
          
    
    A14: ( 
    rng (f 
    | (X1 
    \ XX))) 
    = (F 
    .: (X1 
    \ XX)) by 
    RELAT_1: 115;
    
          
    
          
    
    A15: ((X1 
    \ XX) 
    \/ XX) 
    = X1 & ( 
    rng (f 
    | (X1 
    \ XX))) 
    = (f 
    .: (X1 
    \ XX)) by 
    RELAT_1: 115,
    XBOOLE_1: 45;
    
          
    
          
    
    A16: X1 
    = ( 
    dom F) & X1 
    = ( 
    dom f) by 
    A1,
    FUNCT_2:def 1;
    
          
    
          
    
    A17: (F 
    .: ( 
    dom F)) 
    = ( 
    rng F) by 
    RELAT_1: 113;
    
          assume
    
          
    
    A18: 
    P[(f
    | XX), XX, (F 
    .: XX)]; 
    
          then (
    rng (f 
    | XX)) 
    = (F 
    .: XX); 
    
          then (F
    .: X1) 
    = (f 
    .: X1) by 
    A14,
    A15,
    A9,
    RELAT_1: 120;
    
          then (
    rng F) 
    = ( 
    rng f) by 
    A16,
    A17,
    RELAT_1: 113;
    
          then f is
    onto by 
    A8,
    FUNCT_2:def 3;
    
          hence thesis by
    A4,
    A18,
    FINSEQ_4: 63;
    
        end;
    
      end;
    
      set F2 = { f where f be
    Function of X1, Y1 : f is 
    one-to-one & ( 
    rng (f 
    | XX)) 
    c= (F 
    .: XX) & for x st x 
    in X holds (f 
    . x) 
    = (F 
    . x) }; 
    
      set S2 = { f where f be
    Function of X1, Y1 : 
    P[f, X1, Y1] & (
    rng (f 
    | XX)) 
    c= (F 
    .: XX) & (for x st x 
    in (X1 
    \ XX) holds (f 
    . x) 
    =  
    F(x)) };
    
      
    
      
    
    A19: (X1 
    \ XX) 
    = (X 
    /\ X1) & (X 
    /\ X1) 
    = X by 
    A2,
    XBOOLE_1: 28,
    XBOOLE_1: 48;
    
      
    
      
    
    A20: S2 
    c= F2 
    
      proof
    
        let x be
    object;
    
        assume x
    in S2; 
    
        then ex f be
    Function of X1, Y1 st x 
    = f & 
    P[f, X1, Y1] & (
    rng (f 
    | XX)) 
    c= (F 
    .: XX) & for x st x 
    in (X1 
    \ XX) holds (f 
    . x) 
    =  
    F(x);
    
        hence thesis by
    A19;
    
      end;
    
      (
    dom F) 
    = X1 by 
    A1,
    FUNCT_2:def 1;
    
      then (XX,(F
    .: XX)) 
    are_equipotent by 
    A3,
    CARD_1: 33;
    
      then
    
      
    
    A21: ( 
    card XX) 
    = ( 
    card (F 
    .: XX)) by 
    CARD_1: 5;
    
      then (
    card F1) 
    = ((( 
    card XX) 
    ! ) 
    / ((( 
    card FX) 
    -' ( 
    card XX)) 
    ! )) & (( 
    card FX) 
    -' ( 
    card XX)) 
    =  
    0 by 
    Th6,
    XREAL_1: 232;
    
      then
    
      
    
    A22: ( 
    card F1) 
    = ((( 
    card X1) 
    -' ( 
    card X)) 
    ! ) by 
    A5,
    NEWTON: 12,
    XREAL_0:def 2;
    
      set S1 = { f where f be
    Function of XX, (F 
    .: XX) : 
    P[f, XX, (F
    .: XX)] }; 
    
      
    
      
    
    A23: for x st x 
    in (X1 
    \ XX) holds 
    F(x)
    in Y1 
    
      proof
    
        
    
        
    
    A24: X1 
    = ( 
    dom F) by 
    A1,
    FUNCT_2:def 1;
    
        let x;
    
        assume x
    in (X1 
    \ XX); 
    
        then (F
    . x) 
    in ( 
    rng F) by 
    A24,
    FUNCT_1:def 3;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A25: F1 
    c= S1 
    
      proof
    
        let x be
    object;
    
        assume x
    in F1; 
    
        then
    
        consider f be
    Function of XX, FX such that 
    
        
    
    A26: x 
    = f and 
    
        
    
    A27: f is 
    one-to-one;
    
        
    
        
    
    A28: (f 
    | XX) 
    = f; 
    
        f is
    onto by 
    A21,
    A27,
    FINSEQ_4: 63;
    
        then (
    rng f) 
    = FX by 
    FUNCT_2:def 3;
    
        hence thesis by
    A26,
    A27,
    A28;
    
      end;
    
      S1
    c= F1 
    
      proof
    
        let x be
    object;
    
        assume x
    in S1; 
    
        then ex f be
    Function of XX, FX st f 
    = x & 
    P[f, XX, (F
    .: XX)]; 
    
        hence thesis;
    
      end;
    
      then
    
      
    
    A29: F1 
    = S1 by 
    A25;
    
      
    
      
    
    A30: F2 
    c= S2 
    
      proof
    
        let x be
    object;
    
        assume x
    in F2; 
    
        then
    
        consider f be
    Function of X1, Y1 such that 
    
        
    
    A31: x 
    = f and 
    
        
    
    A32: f is 
    one-to-one and 
    
        
    
    A33: ( 
    rng (f 
    | XX)) 
    c= (F 
    .: XX) and 
    
        
    
    A34: for x st x 
    in X holds (f 
    . x) 
    = (F 
    . x); 
    
        (
    dom f) 
    = X1 by 
    A1,
    FUNCT_2:def 1;
    
        then (XX,(f
    .: XX)) 
    are_equipotent by 
    A32,
    CARD_1: 33;
    
        then (
    card XX) 
    = ( 
    card (f 
    .: XX)) by 
    CARD_1: 5;
    
        then (
    card FX) 
    = ( 
    card ( 
    rng (f 
    | XX))) by 
    A21,
    RELAT_1: 115;
    
        then (
    rng (f 
    | XX)) 
    = FX by 
    A33,
    CARD_2: 102;
    
        hence thesis by
    A19,
    A31,
    A32,
    A34;
    
      end;
    
      
    
      
    
    A35: XX 
    c= X1 & (F 
    .: XX) 
    c= Y1; 
    
      then XX
    c= ( 
    dom F) by 
    A1,
    FUNCT_2:def 1;
    
      then
    
      
    
    A36: (F 
    .: XX) is 
    empty implies XX is 
    empty by 
    RELAT_1: 119;
    
      (
    card S1) 
    = ( 
    card S2) from 
    STIRL2_1:sch 3(
    A23,
    A35,
    A36,
    A6);
    
      hence thesis by
    A20,
    A30,
    A22,
    A29,
    XBOOLE_0:def 10;
    
    end;
    
    
    
    
    
    Lm4: for X, Y holds for F be 
    Function of X, Y st ( 
    dom F) 
    = X & F is 
    one-to-one holds ex XF be 
    XFinSequence of 
    INT st ( 
    dom XF) 
    = ( 
    card X) & ((( 
    card X) 
    ! ) 
    - ( 
    Sum XF)) 
    = ( 
    card { h where h be 
    Function of X, ( 
    rng F) : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> (F 
    . x) }) & for n st n 
    in ( 
    dom XF) holds (XF 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card X) 
    ! )) 
    / ((n 
    + 1) 
    ! )) 
    
    proof
    
      let X, Y;
    
      let F be
    Function of X, Y such that 
    
      
    
    A1: ( 
    dom F) 
    = X and 
    
      
    
    A2: F is 
    one-to-one;
    
      deffunc
    
    fy(
    object) = { h where h be
    Function of X, ( 
    rng F) : h is 
    one-to-one & (h 
    . $1) 
    = (F 
    . $1) }; 
    
      
    
      
    
    A3: for x be 
    object st x 
    in X holds 
    fy(x)
    in ( 
    bool ( 
    Funcs (X,( 
    rng F)))) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A4: x 
    in X; 
    
        
    fy(x)
    c= ( 
    Funcs (X,( 
    rng F))) 
    
        proof
    
          let y be
    object;
    
          assume y
    in  
    fy(x);
    
          then
    
          
    
    A5: ex h be 
    Function of X, ( 
    rng F) st y 
    = h & h is 
    one-to-one & (h 
    . x) 
    = (F 
    . x); 
    
          (
    rng F) 
    <>  
    {} by 
    A1,
    A4,
    RELAT_1: 42;
    
          hence thesis by
    A5,
    FUNCT_2: 8;
    
        end;
    
        hence thesis;
    
      end;
    
      consider Fy9 be
    Function of X, ( 
    bool ( 
    Funcs (X,( 
    rng F)))) such that 
    
      
    
    A6: for x be 
    object st x 
    in X holds (Fy9 
    . x) 
    =  
    fy(x) from
    FUNCT_2:sch 2(
    A3);
    
      defpred
    
    xf[
    object, 
    object] means for n, k st n
    = $1 & k 
    = (( 
    card X) 
    - (n 
    + 1)) holds $2 
    = (k 
    ! ); 
    
      
    
      
    
    A7: for x be 
    object st x 
    in ( 
    Segm ( 
    card X)) holds ex y be 
    object st y 
    in  
    NAT & 
    xf[x, y]
    
      proof
    
        let x be
    object such that 
    
        
    
    A8: x 
    in ( 
    Segm ( 
    card X)); 
    
        reconsider n = x as
    Element of 
    NAT by 
    A8;
    
        n
    < ( 
    card X) by 
    A8,
    NAT_1: 44;
    
        then (n
    + 1) 
    <= ( 
    card X) by 
    NAT_1: 13;
    
        then
    
        reconsider k = ((
    card X) 
    - (n 
    + 1)) as 
    Element of 
    NAT by 
    NAT_1: 21;
    
        
    xf[n, (k
    ! )]; 
    
        hence thesis;
    
      end;
    
      consider XF be
    Function of ( 
    Segm ( 
    card X)), 
    NAT such that 
    
      
    
    A9: for x be 
    object st x 
    in ( 
    Segm ( 
    card X)) holds 
    xf[x, (XF
    . x)] from 
    FUNCT_2:sch 1(
    A7);
    
      for y be
    object st y 
    in ( 
    dom Fy9) holds (Fy9 
    . y) is 
    finite
    
      proof
    
        let y be
    object;
    
        assume y
    in ( 
    dom Fy9); 
    
        then (Fy9
    . y) 
    in ( 
    rng Fy9) by 
    FUNCT_1:def 3;
    
        hence thesis;
    
      end;
    
      then
    
      reconsider Fy = Fy9 as
    finite-yielding  
    Function by 
    FINSET_1:def 4;
    
      reconsider rngF = (
    rng F) as 
    finite  
    set;
    
      
    
      
    
    A10: ( 
    dom XF) 
    = ( 
    card X) by 
    FUNCT_2:def 1;
    
      then
    
      reconsider XF as
    XFinSequence by 
    AFINSQ_1: 5;
    
      reconsider XF as
    XFinSequence of 
    NAT ; 
    
      
    
      
    
    A11: for n st n 
    in ( 
    dom XF) holds ex x, y st x 
    <> y & for f st f 
    in ( 
    Choose (X,(n 
    + 1),x,y)) holds ( 
    card ( 
    Intersection (Fy,f,x))) 
    = (XF 
    . n) 
    
      proof
    
        let n such that
    
        
    
    A12: n 
    in ( 
    dom XF); 
    
        n
    < ( 
    len XF) by 
    A12,
    AFINSQ_1: 86;
    
        then n
    < ( 
    card X) by 
    A10;
    
        then
    
        
    
    A13: (n 
    + 1) 
    <= ( 
    card X) by 
    NAT_1: 13;
    
        then
    
        reconsider c = ((
    card X) 
    - (n 
    + 1)) as 
    Element of 
    NAT by 
    NAT_1: 21;
    
        
    
        
    
    A14: (( 
    card X) 
    -' (n 
    + 1)) 
    = c by 
    A13,
    XREAL_1: 233;
    
        take
    0 , 1; 
    
        thus
    0  
    <> 1; 
    
        let f9 be
    Function;
    
        assume f9
    in ( 
    Choose (X,(n 
    + 1), 
    0 ,1)); 
    
        then
    
        consider f be
    Function of X, 
    {
    0 , 1} such that 
    
        
    
    A15: f 
    = f9 and 
    
        
    
    A16: ( 
    card (f 
    "  
    {
    0 })) 
    = (n 
    + 1) by 
    Def1;
    
        reconsider f0 = (f
    "  
    {
    0 }) as 
    finite  
    set;
    
        set Xf0 = (X
    \ f0); 
    
        set S = { h where h be
    Function of X, rngF : h is 
    one-to-one & ( 
    rng (h 
    | Xf0)) 
    c= (F 
    .: Xf0) & for x st x 
    in f0 holds (h 
    . x) 
    = (F 
    . x) }; 
    
        
    
        
    
    A17: ( 
    Intersection (Fy,f, 
    0 )) 
    c= S 
    
        proof
    
          assume not (
    Intersection (Fy,f, 
    0 )) 
    c= S; 
    
          then
    
          consider z be
    object such that 
    
          
    
    A18: z 
    in ( 
    Intersection (Fy,f, 
    0 )) and 
    
          
    
    A19: not z 
    in S; 
    
          consider x9 be
    object such that 
    
          
    
    A20: x9 
    in (f 
    "  
    {
    0 }) by 
    A16,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
          (f
    . x9) 
    in  
    {
    0 } by 
    A20,
    FUNCT_1:def 7;
    
          then
    
          
    
    A21: (f 
    . x9) 
    =  
    0 by 
    TARSKI:def 1;
    
          x9
    in ( 
    dom f) by 
    A20,
    FUNCT_1:def 7;
    
          then
    0  
    in ( 
    rng f) by 
    A21,
    FUNCT_1:def 3;
    
          then
    
          consider x such that
    
          
    
    A22: x 
    in ( 
    dom f) and (f 
    . x) 
    =  
    0 and 
    
          
    
    A23: z 
    in (Fy 
    . x) by 
    A18,
    Th21;
    
          z
    in  
    fy(x) by
    A6,
    A22,
    A23;
    
          then
    
          consider h be
    Function of X, ( 
    rng F) such that 
    
          
    
    A24: z 
    = h and 
    
          
    
    A25: h is 
    one-to-one and (h 
    . x) 
    = (F 
    . x); 
    
          
    
          
    
    A26: for x1 st x1 
    in f0 holds (h 
    . x1) 
    = (F 
    . x1) 
    
          proof
    
            let x1 such that
    
            
    
    A27: x1 
    in f0; 
    
            (f
    . x1) 
    in  
    {
    0 } by 
    A27,
    FUNCT_1:def 7;
    
            then
    
            
    
    A28: (f 
    . x1) 
    =  
    0 by 
    TARSKI:def 1;
    
            (Fy9
    . x1) 
    =  
    fy(x1) & x1
    in ( 
    dom f) by 
    A6,
    A27,
    FUNCT_1:def 7;
    
            then h
    in  
    fy(x1) by
    A18,
    A24,
    A28,
    Def2;
    
            then ex h9 be
    Function of X, ( 
    rng F) st h 
    = h9 & h9 is 
    one-to-one & (h9 
    . x1) 
    = (F 
    . x1); 
    
            hence thesis;
    
          end;
    
          (
    rng (h 
    | Xf0)) 
    c= (F 
    .: Xf0) 
    
          proof
    
            assume not (
    rng (h 
    | Xf0)) 
    c= (F 
    .: Xf0); 
    
            then
    
            consider y be
    object such that 
    
            
    
    A29: y 
    in ( 
    rng (h 
    | Xf0)) and 
    
            
    
    A30: not y 
    in (F 
    .: Xf0); 
    
            consider x1 be
    object such that 
    
            
    
    A31: x1 
    in ( 
    dom (h 
    | Xf0)) and 
    
            
    
    A32: ((h 
    | Xf0) 
    . x1) 
    = y by 
    A29,
    FUNCT_1:def 3;
    
            
    
            
    
    A33: (h 
    . x1) 
    = y by 
    A31,
    A32,
    FUNCT_1: 47;
    
            x1
    in (( 
    dom h) 
    /\ Xf0) by 
    A31,
    RELAT_1: 61;
    
            then
    
            
    
    A34: x1 
    in Xf0 by 
    XBOOLE_0:def 4;
    
            
    
            
    
    A35: (F 
    .: (X 
    \ Xf0)) 
    = ((F 
    .: X) 
    \ (F 
    .: Xf0)) by 
    A2,
    FUNCT_1: 64;
    
            rngF
    = (F 
    .: X) by 
    A1,
    RELAT_1: 113;
    
            then y
    in ((F 
    .: X) 
    \ (F 
    .: Xf0)) by 
    A29,
    A30,
    XBOOLE_0:def 5;
    
            then
    
            consider x2 be
    object such that 
    
            
    
    A36: x2 
    in ( 
    dom F) and 
    
            
    
    A37: x2 
    in (X 
    \ Xf0) and 
    
            
    
    A38: y 
    = (F 
    . x2) by 
    A35,
    FUNCT_1:def 6;
    
            y
    in ( 
    rng F) by 
    A36,
    A38,
    FUNCT_1:def 3;
    
            then
    
            
    
    A39: X 
    = ( 
    dom h) by 
    FUNCT_2:def 1;
    
            (X
    \ Xf0) 
    = (X 
    /\ (f 
    "  
    {
    0 })) by 
    XBOOLE_1: 48;
    
            then x2
    in (f 
    "  
    {
    0 }) by 
    A37,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A40: (h 
    . x2) 
    = y by 
    A26,
    A38;
    
             not x2
    in Xf0 by 
    A37,
    XBOOLE_0:def 5;
    
            hence contradiction by
    A25,
    A36,
    A40,
    A33,
    A39,
    A34;
    
          end;
    
          hence thesis by
    A19,
    A24,
    A25,
    A26;
    
        end;
    
        
    
        
    
    A41: (X,rngF) 
    are_equipotent by 
    A1,
    A2,
    WELLORD2:def 4;
    
        then
    
        
    
    A42: ( 
    card rngF) 
    = ( 
    card X) by 
    CARD_1: 5;
    
        (
    card rngF) 
    = ( 
    card X) by 
    A41,
    CARD_1: 5;
    
        then
    
        
    
    A43: rngF 
    =  
    {} implies X is 
    empty;
    
        
    
        
    
    A44: F is 
    Function of X, rngF by 
    A1,
    FUNCT_2: 1;
    
        S
    c= ( 
    Intersection (Fy,f, 
    0 )) 
    
        proof
    
          assume not S
    c= ( 
    Intersection (Fy,f, 
    0 )); 
    
          then
    
          consider z be
    object such that 
    
          
    
    A45: z 
    in S and 
    
          
    
    A46: not z 
    in ( 
    Intersection (Fy,f, 
    0 )); 
    
          consider h be
    Function of X, ( 
    rng F) such that 
    
          
    
    A47: h 
    = z and 
    
          
    
    A48: h is 
    one-to-one and ( 
    rng (h 
    | Xf0)) 
    c= (F 
    .: Xf0) and 
    
          
    
    A49: for x st x 
    in f0 holds (h 
    . x) 
    = (F 
    . x) by 
    A45;
    
          consider x be
    object such that 
    
          
    
    A50: x 
    in (f 
    "  
    {
    0 }) by 
    A16,
    CARD_1: 27,
    XBOOLE_0:def 1;
    
          x
    in X by 
    A50;
    
          then x
    in ( 
    dom Fy9) by 
    FUNCT_2:def 1;
    
          then
    
          
    
    A51: (Fy9 
    . x) 
    in ( 
    rng Fy9) by 
    FUNCT_1:def 3;
    
          
    
          
    
    A52: (Fy9 
    . x) 
    =  
    fy(x) by
    A6,
    A50;
    
          (h
    . x) 
    = (F 
    . x) by 
    A49,
    A50;
    
          then h
    in (Fy9 
    . x) by 
    A48,
    A52;
    
          then h
    in ( 
    union ( 
    rng Fy9)) by 
    A51,
    TARSKI:def 4;
    
          then
    
          consider y such that
    
          
    
    A53: y 
    in ( 
    dom f) and 
    
          
    
    A54: (f 
    . y) 
    =  
    0 and 
    
          
    
    A55: not h 
    in (Fy 
    . y) by 
    A46,
    A47,
    Def2;
    
          (f
    . y) 
    in  
    {
    0 } by 
    A54,
    TARSKI:def 1;
    
          then y
    in (f 
    "  
    {
    0 }) by 
    A53,
    FUNCT_1:def 7;
    
          then (h
    . y) 
    = (F 
    . y) by 
    A49;
    
          then h
    in  
    fy(y) by
    A48;
    
          hence contradiction by
    A6,
    A53,
    A55;
    
        end;
    
        then S
    = ( 
    Intersection (Fy,f, 
    0 )) by 
    A17;
    
        then (
    card ( 
    Intersection (Fy,f, 
    0 ))) 
    = ((( 
    card X) 
    -' (n 
    + 1)) 
    ! ) by 
    A2,
    A16,
    A43,
    A44,
    A42,
    Th60;
    
        hence thesis by
    A9,
    A10,
    A12,
    A15,
    A14;
    
      end;
    
      
    
      
    
    A56: (X,rngF) 
    are_equipotent by 
    A1,
    A2,
    WELLORD2:def 4;
    
      then (
    card rngF) 
    = ( 
    card X) by 
    CARD_1: 5;
    
      then
    
      
    
    A57: ((( 
    card rngF) 
    -' ( 
    card X)) 
    ! ) 
    = 1 & ( 
    card { f where f be 
    Function of X, rngF : f is 
    one-to-one })
    = ((( 
    card rngF) 
    ! ) 
    / ((( 
    card rngF) 
    -' ( 
    card X)) 
    ! )) by 
    Th6,
    NEWTON: 12,
    XREAL_1: 232;
    
      then
    
      reconsider One = { f where f be
    Function of X, ( 
    rng F) : f is 
    one-to-one } as
    finite  
    set;
    
      set S = { h where h be
    Function of X, ( 
    rng F) : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> (F 
    . x) }; 
    
      (
    dom XF) 
    = ( 
    card X) & ( 
    dom Fy) 
    = X by 
    FUNCT_2:def 1;
    
      then
    
      consider F9 be
    XFinSequence of 
    INT such that 
    
      
    
    A58: ( 
    dom F9) 
    = ( 
    card X) and 
    
      
    
    A59: ( 
    card ( 
    union ( 
    rng Fy))) 
    = ( 
    Sum F9) and 
    
      
    
    A60: for n st n 
    in ( 
    dom F9) holds (F9 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card X) 
    choose (n 
    + 1))) by 
    A11,
    Th57;
    
      
    
      
    
    A61: ( 
    union ( 
    rng Fy9)) 
    c= One 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    union ( 
    rng Fy9)); 
    
        then
    
        consider Fyx be
    set such that 
    
        
    
    A62: x 
    in Fyx and 
    
        
    
    A63: Fyx 
    in ( 
    rng Fy9) by 
    TARSKI:def 4;
    
        consider x1 be
    object such that 
    
        
    
    A64: x1 
    in ( 
    dom Fy9) & (Fy 
    . x1) 
    = Fyx by 
    A63,
    FUNCT_1:def 3;
    
        x
    in  
    fy(x1) by
    A6,
    A62,
    A64;
    
        then ex h be
    Function of X, ( 
    rng F) st h 
    = x & h is 
    one-to-one & (h 
    . x1) 
    = (F 
    . x1); 
    
        hence thesis;
    
      end;
    
      reconsider u = (
    union ( 
    rng Fy)) as 
    finite  
    set;
    
      
    
      
    
    A65: ( 
    card (One 
    \ u)) 
    = (( 
    card One) 
    - ( 
    card u)) by 
    A61,
    CARD_2: 44;
    
      take F9;
    
      thus (
    dom F9) 
    = ( 
    card X) by 
    A58;
    
      
    
      
    
    A66: (One 
    \ ( 
    union ( 
    rng Fy))) 
    c= S 
    
      proof
    
        let x be
    object such that 
    
        
    
    A67: x 
    in (One 
    \ ( 
    union ( 
    rng Fy))); 
    
        x
    in One by 
    A67;
    
        then
    
        consider f be
    Function of X, ( 
    rng F) such that 
    
        
    
    A68: f 
    = x and 
    
        
    
    A69: f is 
    one-to-one;
    
        assume not x
    in S; 
    
        then
    
        consider x such that
    
        
    
    A70: x 
    in X and 
    
        
    
    A71: (f 
    . x) 
    = (F 
    . x) by 
    A68,
    A69;
    
        x
    in ( 
    dom Fy) by 
    A70,
    FUNCT_2:def 1;
    
        then (Fy
    . x) 
    in ( 
    rng Fy) by 
    FUNCT_1:def 3;
    
        then
    
        
    
    A72: 
    fy(x)
    in ( 
    rng Fy) by 
    A6,
    A70;
    
        f
    in  
    fy(x) by
    A69,
    A71;
    
        then f
    in ( 
    union ( 
    rng Fy)) by 
    A72,
    TARSKI:def 4;
    
        hence thesis by
    A67,
    A68,
    XBOOLE_0:def 5;
    
      end;
    
      
    
      
    
    A73: S 
    c= (One 
    \ ( 
    union ( 
    rng Fy))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in S; 
    
        then
    
        consider f be
    Function of X, ( 
    rng F) such that 
    
        
    
    A74: x 
    = f and 
    
        
    
    A75: f is 
    one-to-one and 
    
        
    
    A76: for x st x 
    in X holds (f 
    . x) 
    <> (F 
    . x); 
    
        assume
    
        
    
    A77: not x 
    in (One 
    \ ( 
    union ( 
    rng Fy))); 
    
        f
    in One by 
    A75;
    
        then f
    in ( 
    union ( 
    rng Fy)) by 
    A74,
    A77,
    XBOOLE_0:def 5;
    
        then
    
        consider Fyy be
    set such that 
    
        
    
    A78: f 
    in Fyy and 
    
        
    
    A79: Fyy 
    in ( 
    rng Fy) by 
    TARSKI:def 4;
    
        consider y be
    object such that 
    
        
    
    A80: y 
    in ( 
    dom Fy) and 
    
        
    
    A81: (Fy 
    . y) 
    = Fyy by 
    A79,
    FUNCT_1:def 3;
    
        y
    in X by 
    A80,
    FUNCT_2:def 1;
    
        then f
    in  
    fy(y) by
    A6,
    A78,
    A81;
    
        then
    
        
    
    A82: ex g be 
    Function of X, ( 
    rng F) st f 
    = g & g is 
    one-to-one & (g 
    . y) 
    = (F 
    . y); 
    
        y
    in X by 
    A80,
    FUNCT_2:def 1;
    
        hence contradiction by
    A76,
    A82;
    
      end;
    
      (
    card One) 
    = (( 
    card X) 
    ! ) by 
    A56,
    A57,
    CARD_1: 5;
    
      hence (
    card S) 
    = ((( 
    card X) 
    ! ) 
    - ( 
    Sum F9)) by 
    A59,
    A66,
    A73,
    A65,
    XBOOLE_0:def 10;
    
      let n such that
    
      
    
    A83: n 
    in ( 
    dom F9); 
    
      n
    < ( 
    len F9) by 
    A83,
    AFINSQ_1: 86;
    
      then n
    < ( 
    card X) by 
    A58;
    
      then
    
      
    
    A84: (n 
    + 1) 
    <= ( 
    card X) by 
    NAT_1: 13;
    
      then
    
      reconsider c = ((
    card X) 
    - (n 
    + 1)) as 
    Element of 
    NAT by 
    NAT_1: 21;
    
      
    
      
    
    A85: (( 
    card X) 
    choose (n 
    + 1)) 
    = ((( 
    card X) 
    ! ) 
    / ((c 
    ! ) 
    * ((n 
    + 1) 
    ! ))) by 
    A84,
    NEWTON:def 3;
    
      (XF
    . n) 
    = (c 
    ! ) by 
    A9,
    A58,
    A83;
    
      
    
      then
    
      
    
    A87: ((XF 
    . n) 
    * (( 
    card X) 
    choose (n 
    + 1))) 
    = (((c 
    ! ) 
    * (( 
    card X) 
    ! )) 
    / ((c 
    ! ) 
    * ((n 
    + 1) 
    ! ))) by 
    A85,
    XCMPLX_1: 74
    
      .= (((
    card X) 
    ! ) 
    * ((c 
    ! ) 
    / ((c 
    ! ) 
    * ((n 
    + 1) 
    ! )))) by 
    XCMPLX_1: 74
    
      .= (((
    card X) 
    ! ) 
    * (((c 
    ! ) 
    / (c 
    ! )) 
    / ((n 
    + 1) 
    ! ))) by 
    XCMPLX_1: 78
    
      .= (((
    card X) 
    ! ) 
    * (1 
    / ((n 
    + 1) 
    ! ))) by 
    XCMPLX_1: 60
    
      .= ((((
    card X) 
    ! ) 
    * 1) 
    / ((n 
    + 1) 
    ! )) by 
    XCMPLX_1: 74;
    
      (F9
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (XF 
    . n)) 
    * (( 
    card X) 
    choose (n 
    + 1))) by 
    A60,
    A83
    
      .= (((
    - 1) 
    |^ n) 
    * ((( 
    card X) 
    ! ) 
    / ((n 
    + 1) 
    ! ))) by 
    A87;
    
      hence thesis by
    XCMPLX_1: 74;
    
    end;
    
    theorem :: 
    
    CARD_FIN:62
    
    
    
    
    
    Th61: for F be 
    Function st ( 
    dom F) 
    = X & F is 
    one-to-one holds ex XF be 
    XFinSequence of 
    INT st ( 
    Sum XF) 
    = ( 
    card { h where h be 
    Function of X, ( 
    rng F) : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> (F 
    . x) }) & ( 
    dom XF) 
    = (( 
    card X) 
    + 1) & for n st n 
    in ( 
    dom XF) holds (XF 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card X) 
    ! )) 
    / (n 
    ! )) 
    
    proof
    
      let F9 be
    Function such that 
    
      
    
    A1: ( 
    dom F9) 
    = X and 
    
      
    
    A2: F9 is 
    one-to-one;
    
      (X,(
    rng F9)) 
    are_equipotent by 
    A1,
    A2,
    WELLORD2:def 4;
    
      then (
    card X) 
    = ( 
    card ( 
    rng F9)) by 
    CARD_1: 5;
    
      then
    
      reconsider rngF = (
    rng F9) as 
    finite  
    set;
    
      reconsider F = F9 as
    Function of X, rngF by 
    A1,
    FUNCT_2: 1;
    
      set S = { h where h be
    Function of X, ( 
    rng F9) : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> (F9 
    . x) }; 
    
      (
    rng F9) 
    = ( 
    rng F); 
    
      then
    
      consider Xf be
    XFinSequence of 
    INT such that 
    
      
    
    A3: ( 
    dom Xf) 
    = ( 
    card X) and 
    
      
    
    A4: ((( 
    card X) 
    ! ) 
    - ( 
    Sum Xf)) 
    = ( 
    card S) and 
    
      
    
    A5: for n st n 
    in ( 
    dom Xf) holds (Xf 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card X) 
    ! )) 
    / ((n 
    + 1) 
    ! )) by 
    A1,
    A2,
    Lm4;
    
      reconsider c = ((
    card X) 
    ! ) as 
    Element of 
    INT by 
    INT_1:def 2;
    
      
    
      
    
    A6: ( 
    len  
    <%c%>)
    = 1 by 
    AFINSQ_1: 33;
    
      set F1 = ((
    - 1) 
    (#) Xf); 
    
      
    
      
    
    A7: ( 
    dom F1) 
    = ( 
    card X) by 
    A3,
    VALUED_1:def 5;
    
      reconsider F1 as
    XFinSequence of 
    INT ; 
    
      set XF = (
    <%c%>
    ^ F1); 
    
      take XF;
    
      ((
    - 1) 
    * ( 
    Sum Xf)) 
    = ( 
    Sum F1) by 
    AFINSQ_2: 64;
    
      
    
      then (c
    - ( 
    Sum Xf)) 
    = (c 
    + ( 
    Sum F1)) 
    
      .= (
    addint  
    . (c,( 
    Sum F1))) by 
    BINOP_2:def 20
    
      .= (
    addint  
    . (( 
    addint  
    "**"  
    <%c%>),(
    Sum F1))) by 
    AFINSQ_2: 37
    
      .= (
    addint  
    . (( 
    addint  
    "**"  
    <%c%>),(
    addint  
    "**" F1))) by 
    AFINSQ_2: 50
    
      .= (
    addint  
    "**" XF) by 
    AFINSQ_2: 42
    
      .= (
    Sum XF) by 
    AFINSQ_2: 50;
    
      hence (
    Sum XF) 
    = ( 
    card S) by 
    A4;
    
      (
    len F1) 
    = ( 
    card X) by 
    A3,
    VALUED_1:def 5;
    
      hence
    
      
    
    A8: ( 
    dom XF) 
    = (( 
    card X) 
    + 1) by 
    A6,
    AFINSQ_1:def 3;
    
      let n such that
    
      
    
    A9: n 
    in ( 
    dom XF); 
    
      per cases ;
    
        suppose
    
        
    
    A10: n 
    =  
    0 ; 
    
        then ((
    - 1) 
    |^ n) 
    = 1 by 
    NEWTON: 4;
    
        hence thesis by
    A10,
    AFINSQ_1: 35,
    NEWTON: 12;
    
      end;
    
        suppose n
    >  
    0 ; 
    
        then
    
        reconsider n1 = (n
    - 1) as 
    Element of 
    NAT by 
    NAT_1: 20;
    
        (n1
    + 1) 
    = n; 
    
        then
    
        
    
    A11: (( 
    - 1) 
    * (( 
    - 1) 
    |^ n1)) 
    = (( 
    - 1) 
    |^ n) by 
    NEWTON: 6;
    
        n
    < ( 
    len XF) by 
    A9,
    AFINSQ_1: 86;
    
        then n
    < (( 
    card X) 
    + 1) by 
    A8;
    
        then (n1
    + 1) 
    <= ( 
    card X) by 
    NAT_1: 13;
    
        then n1
    < ( 
    len F1) by 
    A7,
    NAT_1: 13;
    
        then
    
        
    
    A12: n1 
    in ( 
    dom F1) by 
    AFINSQ_1: 86;
    
        (
    len  
    <%c%>)
    = 1 by 
    AFINSQ_1: 33;
    
        then (XF
    . (n1 
    + 1)) 
    = (F1 
    . n1) by 
    A12,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A13: (XF 
    . (n1 
    + 1)) 
    = (( 
    - 1) 
    * (Xf 
    . n1)) by 
    VALUED_1: 6;
    
        (Xf
    . n1) 
    = (((( 
    - 1) 
    |^ n1) 
    * (( 
    card X) 
    ! )) 
    / ((n1 
    + 1) 
    ! )) by 
    A3,
    A5,
    A7,
    A12;
    
        then (XF
    . n) 
    = ((( 
    - 1) 
    * ((( 
    - 1) 
    |^ n1) 
    * (( 
    card X) 
    ! ))) 
    / (n 
    ! )) by 
    A13,
    XCMPLX_1: 74;
    
        hence thesis by
    A11;
    
      end;
    
    end;
    
    theorem :: 
    
    CARD_FIN:63
    
    ex XF be
    XFinSequence of 
    INT st ( 
    Sum XF) 
    = ( 
    card { h where h be 
    Function of X, X : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> x }) & ( 
    dom XF) 
    = (( 
    card X) 
    + 1) & for n st n 
    in ( 
    dom XF) holds (XF 
    . n) 
    = (((( 
    - 1) 
    |^ n) 
    * (( 
    card X) 
    ! )) 
    / (n 
    ! )) 
    
    proof
    
      set S1 = { h where h be
    Function of X, X : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> (( 
    id X) 
    . x) }; 
    
      set S2 = { h where h be
    Function of X, X : h is 
    one-to-one & for x st x 
    in X holds (h 
    . x) 
    <> x }; 
    
      
    
      
    
    A1: S2 
    c= S1 
    
      proof
    
        let x be
    object;
    
        assume x
    in S2; 
    
        then
    
        consider h be
    Function of X, X such that 
    
        
    
    A2: h 
    = x & h is 
    one-to-one and 
    
        
    
    A3: for y st y 
    in X holds (h 
    . y) 
    <> y; 
    
        for y st y
    in X holds (( 
    id X) 
    . y) 
    <> (h 
    . y) by 
    A3,
    FUNCT_1: 17;
    
        hence thesis by
    A2;
    
      end;
    
      
    
      
    
    A4: ( 
    dom ( 
    id X)) 
    = X & ( 
    rng ( 
    id X)) 
    = X; 
    
      S1
    c= S2 
    
      proof
    
        let x be
    object;
    
        assume x
    in S1; 
    
        then
    
        consider h be
    Function of X, X such that 
    
        
    
    A5: h 
    = x & h is 
    one-to-one and 
    
        
    
    A6: for y st y 
    in X holds (h 
    . y) 
    <> (( 
    id X) 
    . y); 
    
        now
    
          let y such that
    
          
    
    A7: y 
    in X; 
    
          ((
    id X) 
    . y) 
    = y by 
    A7,
    FUNCT_1: 17;
    
          hence (h
    . y) 
    <> y by 
    A6,
    A7;
    
        end;
    
        hence thesis by
    A5;
    
      end;
    
      then S1
    = S2 by 
    A1;
    
      hence thesis by
    A4,
    Th61;
    
    end;