irrat_1.miz
begin
reserve k,m,n,p,K,N for
Nat;
reserve i for
Integer;
reserve x,y,eps for
Real;
reserve seq,seq1,seq2 for
Real_Sequence;
reserve sq for
FinSequence of
REAL ;
notation
let x be
Real;
antonym x is
irrational for x is
rational;
end
notation
let x,y be
Real;
synonym x
^ y for x
to_power y;
end
::$Notion-Name
theorem ::
IRRAT_1:1
Th1: p is
prime implies (
sqrt p) is
irrational
proof
assume
A1: p is
prime;
then
A2: p
> 1 by
INT_2:def 4;
assume (
sqrt p) is
rational;
then
consider i, n such that
A3: n
<>
0 and
A4: (
sqrt p)
= (i
/ n) and
A5: for i1 be
Integer, n1 be
Nat st n1
<>
0 & (
sqrt p)
= (i1
/ n1) holds n
<= n1 by
RAT_1: 9;
A6: i
= ((
sqrt p)
* n) by
A3,
A4,
XCMPLX_1: 87;
(
sqrt p)
>=
0 by
SQUARE_1:def 2;
then
reconsider m = i as
Element of
NAT by
A6,
INT_1: 3;
A7: (m
^2 )
= (((
sqrt p)
^2 )
* (n
^2 )) by
A6
.= (p
* (n
^2 )) by
SQUARE_1:def 2;
then p
divides (m
^2 ) by
NAT_D:def 3;
then p
divides m by
A1,
NEWTON: 80;
then
consider m1 be
Nat such that
A8: m
= (p
* m1) by
NAT_D:def 3;
(n
^2 )
= ((p
* (p
* (m1
^2 )))
/ p) by
A2,
A7,
A8,
XCMPLX_1: 89
.= (p
* (m1
^2 )) by
A2,
XCMPLX_1: 89;
then p
divides (n
^2 ) by
NAT_D:def 3;
then p
divides n by
A1,
NEWTON: 80;
then
consider n1 be
Nat such that
A9: n
= (p
* n1) by
NAT_D:def 3;
reconsider n1 as
Element of
NAT by
ORDINAL1:def 12;
A10: (m1
/ n1)
= (
sqrt p) by
A2,
A4,
A8,
A9,
XCMPLX_1: 91;
A11: n1
<>
0 by
A3,
A9;
then (p
* n1)
> (1
* n1) by
A2,
XREAL_1: 98;
hence contradiction by
A5,
A9,
A11,
A10;
end;
theorem ::
IRRAT_1:2
ex x, y st x is
irrational & y is
irrational & (x
^ y) is
rational
proof
set w = (
sqrt 2);
A1: ((w
^ w)
^ w)
= (w
^ (w
^2 )) by
POWER: 33,
SQUARE_1: 19
.= (w
^ 2) by
SQUARE_1:def 2
.= (w
^2 ) by
POWER: 46
.= 2 by
SQUARE_1:def 2;
reconsider dwa = 2 as
Real;
per cases ;
suppose
A2: (w
^ w) is
rational;
take w, w;
thus thesis by
A2,
Th1,
INT_2: 28;
end;
suppose
A3: (w
^ w) is
irrational;
take (w
^ w), w;
thus thesis by
A1,
A3,
Th1,
INT_2: 28;
end;
end;
begin
scheme ::
IRRAT_1:sch1
LambdaRealSeq { F(
set) ->
Real } :
(ex seq st for n holds (seq
. n)
= F(n)) & for seq1, seq2 st (for n holds (seq1
. n)
= F(n)) & (for n holds (seq2
. n)
= F(n)) holds seq1
= seq2;
thus ex seq st for n holds (seq
. n)
= F(n) from
SEQ_1:sch 1;
let seq1, seq2;
assume
A1: for n holds (seq1
. n)
= F(n);
assume
A2: for n holds (seq2
. n)
= F(n);
now
let n be
Element of
NAT ;
thus (seq1
. n)
= F(n) by
A1
.= (seq2
. n) by
A2;
end;
hence thesis by
FUNCT_2: 63;
end;
definition
let k be
Nat;
::
IRRAT_1:def1
func
aseq (k) ->
Real_Sequence means
:
Def1: for n holds (it
. n)
= ((n
- k)
/ n);
correctness
proof
deffunc
F(
Nat) = (($1
- k)
/ $1);
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2 from
LambdaRealSeq;
end;
::
IRRAT_1:def2
func
bseq (k) ->
Real_Sequence means
:
Def2: for n holds (it
. n)
= ((n
choose k)
* (n
^ (
- k)));
correctness
proof
deffunc
F(
Nat) = (($1
choose k)
* ($1
^ (
- k)));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2 from
LambdaRealSeq;
end;
end
definition
let n be
Nat;
::
IRRAT_1:def3
func
cseq (n) ->
Real_Sequence means
:
Def3: for k holds (it
. k)
= ((n
choose k)
* (n
^ (
- k)));
correctness
proof
deffunc
F(
Nat) = ((n
choose $1)
* (n
^ (
- $1)));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2 from
LambdaRealSeq;
end;
end
theorem ::
IRRAT_1:3
Th3: ((
cseq n)
. k)
= ((
bseq k)
. n)
proof
thus ((
cseq n)
. k)
= ((n
choose k)
* (n
^ (
- k))) by
Def3
.= ((
bseq k)
. n) by
Def2;
end;
definition
::
IRRAT_1:def4
func
dseq ->
Real_Sequence means
:
Def4: for n holds (it
. n)
= ((1
+ (1
/ n))
^ n);
correctness
proof
deffunc
F(
Nat) = ((1
+ (1
/ $1))
^ $1);
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2 from
LambdaRealSeq;
end;
end
definition
::
IRRAT_1:def5
func
eseq ->
Real_Sequence means
:
Def5: for k holds (it
. k)
= (1
/ (k
! ));
correctness
proof
deffunc
F(
Nat) = (1
/ ($1
! ));
thus (ex seq be
Real_Sequence st for n be
Nat holds (seq
. n)
=
F(n)) & for seq1,seq2 be
Real_Sequence st (for n be
Nat holds (seq1
. n)
=
F(n)) & (for n be
Nat holds (seq2
. n)
=
F(n)) holds seq1
= seq2 from
LambdaRealSeq;
end;
end
theorem ::
IRRAT_1:4
Th4: n
>
0 implies (n
^ (
- (k
+ 1)))
= ((n
^ (
- k))
/ n)
proof
assume
A1: n
>
0 ;
thus (n
^ (
- (k
+ 1)))
= (n
^ ((
- k)
- 1))
.= ((n
^ (
- k))
/ (n
^ 1)) by
A1,
POWER: 29
.= ((n
^ (
- k))
/ n);
end;
theorem ::
IRRAT_1:5
Th5: (n
choose (k
+ 1))
= (((n
- k)
/ (k
+ 1))
* (n
choose k))
proof
per cases ;
suppose
A1: (k
+ 1)
<= n;
then
reconsider l = (n
- (k
+ 1)) as
Element of
NAT by
INT_1: 5;
(l
+ 1)
= (n
- k);
then
reconsider l1 = (n
- k) as
Element of
NAT ;
k
<= (k
+ 1) by
NAT_1: 11;
then
A2: k
<= n by
A1,
XXREAL_0: 2;
thus (n
choose (k
+ 1))
= ((n
! )
/ (((k
+ 1)
! )
* (l
! ))) by
A1,
NEWTON:def 3
.= ((n
! )
/ (((k
! )
* (k
+ 1))
* (l
! ))) by
NEWTON: 15
.= ((n
! )
/ (((k
! )
* (k
+ 1))
* (((l
! )
* (l
+ 1))
/ (l
+ 1)))) by
XCMPLX_1: 89
.= ((n
! )
/ (((k
! )
* (k
+ 1))
* (((l
+ 1)
! )
/ (l
+ 1)))) by
NEWTON: 15
.= ((l1
/ (k
+ 1))
* ((n
! )
/ ((k
! )
* (l1
! )))) by
XCMPLX_1: 233
.= (((n
- k)
/ (k
+ 1))
* (n
choose k)) by
A2,
NEWTON:def 3;
end;
suppose
A3: (k
+ 1)
> n & k
<= n;
then k
>= n by
NAT_1: 13;
then k
= n by
A3,
XXREAL_0: 1;
hence thesis by
A3,
NEWTON:def 3;
end;
suppose
A4: (k
+ 1)
> n & k
> n;
hence (n
choose (k
+ 1))
= (((n
- k)
/ (k
+ 1))
*
0 ) by
NEWTON:def 3
.= (((n
- k)
/ (k
+ 1))
* (n
choose k)) by
A4,
NEWTON:def 3;
end;
end;
theorem ::
IRRAT_1:6
Th6: n
>
0 implies ((
bseq (k
+ 1))
. n)
= (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((
aseq k)
. n))
proof
assume
A1: n
>
0 ;
thus ((
bseq (k
+ 1))
. n)
= ((n
choose (k
+ 1))
* (n
^ (
- (k
+ 1)))) by
Def2
.= ((((n
- k)
/ (k
+ 1))
* (n
choose k))
* (n
^ (
- (k
+ 1)))) by
Th5
.= ((((n
- k)
/ (k
+ 1))
* (n
choose k))
* ((n
^ (
- k))
/ n)) by
A1,
Th4
.= ((((n
- k)
* ((k
+ 1)
" ))
* (n
choose k))
* ((n
^ (
- k))
/ n))
.= ((((n
- k)
* ((k
+ 1)
" ))
* (n
choose k))
* ((n
^ (
- k))
* (n
" )))
.= ((((k
+ 1)
" )
* ((n
choose k)
* (n
^ (
- k))))
* ((n
- k)
* (n
" )))
.= (((1
/ (k
+ 1))
* ((n
choose k)
* (n
^ (
- k))))
* ((n
- k)
* (n
" )))
.= (((1
/ (k
+ 1))
* ((n
choose k)
* (n
^ (
- k))))
* ((n
- k)
/ n))
.= (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((n
- k)
/ n)) by
Def2
.= (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((
aseq k)
. n)) by
Def1;
end;
theorem ::
IRRAT_1:7
Th7: n
>
0 implies ((
aseq k)
. n)
= (1
- (k
/ n))
proof
assume
A1: n
>
0 ;
thus ((
aseq k)
. n)
= ((n
- k)
/ n) by
Def1
.= ((n
/ n)
- (k
/ n))
.= (1
- (k
/ n)) by
A1,
XCMPLX_1: 60;
end;
theorem ::
IRRAT_1:8
Th8: (
aseq k) is
convergent & (
lim (
aseq k))
= 1
proof
A1: for eps be
Real st
0
< eps holds ex N st for n st N
<= n holds
|.(((
aseq k)
. n)
- 1).|
< eps
proof
let eps be
Real;
assume
A2: eps
>
0 ;
consider N such that
A3: N
> (k
/ eps) by
SEQ_4: 3;
take N;
let n;
assume
A4: n
>= N;
then n
> (k
/ eps) by
A3,
XXREAL_0: 2;
then ((k
/ eps)
* eps)
< (n
* eps) by
A2,
XREAL_1: 68;
then
A5: k
< (n
* eps) by
A2,
XCMPLX_1: 87;
A6: n
>
0 by
A2,
A3,
A4;
then
|.(((
aseq k)
. n)
- 1).|
=
|.((1
- (k
/ n))
- 1).| by
Th7
.=
|.(
- (k
/ n)).|
.=
|.(k
/ n).| by
COMPLEX1: 52
.= (k
/ n) by
ABSVALUE:def 1;
hence thesis by
A6,
A5,
XREAL_1: 83;
end;
thus (
aseq k) is
convergent by
A1;
hence thesis by
A1,
SEQ_2:def 7;
end;
theorem ::
IRRAT_1:9
Th9: for seq st for n be
Nat holds (seq
. n)
= x holds seq is
convergent & (
lim seq)
= x
proof
let seq;
assume
A1: for n be
Nat holds (seq
. n)
= x;
x
in
REAL by
XREAL_0:def 1;
then
A2: seq is
constant by
A1,
VALUED_0:def 18;
hence seq is
convergent;
thus (
lim seq)
= (seq
.
0 ) by
A2,
SEQ_4: 26
.= x by
A1;
end;
theorem ::
IRRAT_1:10
Th10: for n holds ((
bseq
0 )
. n)
= 1
proof
let n;
thus ((
bseq
0 )
. n)
= ((n
choose
0 )
* (n
^ (
-
0 ))) by
Def2
.= (1
* (n
^ (
-
0 ))) by
NEWTON: 19
.= 1 by
POWER: 24;
end;
theorem ::
IRRAT_1:11
Th11: ((1
/ (k
+ 1))
* (1
/ (k
! )))
= (1
/ ((k
+ 1)
! ))
proof
thus ((1
/ (k
+ 1))
* (1
/ (k
! )))
= (1
/ ((k
+ 1)
* (k
! ))) by
XCMPLX_1: 102
.= (1
/ ((k
+ 1)
! )) by
NEWTON: 15;
end;
theorem ::
IRRAT_1:12
Th12: (
bseq k) is
convergent & (
lim (
bseq k))
= (1
/ (k
! )) & (
lim (
bseq k))
= (
eseq
. k)
proof
defpred
P[
Nat] means (
bseq $1) is
convergent & (
lim (
bseq $1))
= (1
/ ($1
! ));
A1:
now
let k;
assume
A2:
P[k];
thus
P[(k
+ 1)]
proof
deffunc
F(
Nat) = ((1
/ (k
+ 1))
* ((
bseq k)
. $1));
consider seq such that
A3: for n holds (seq
. n)
=
F(n) from
SEQ_1:sch 1;
deffunc
G(
Nat) = ((seq
. $1)
* ((
aseq k)
. $1));
consider seq1 such that
A4: for n holds (seq1
. n)
=
G(n) from
SEQ_1:sch 1;
A5: for n st n
>= 1 holds ((
bseq (k
+ 1))
. n)
= (seq1
. n)
proof
let n;
assume n
>= 1;
hence ((
bseq (k
+ 1))
. n)
= (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((
aseq k)
. n)) by
Th6
.= ((seq
. n)
* ((
aseq k)
. n)) by
A3
.= (seq1
. n) by
A4;
end;
A6: seq
= ((1
/ (k
+ 1))
(#) (
bseq k)) by
A3,
SEQ_1: 9;
then
A7: seq is
convergent by
A2;
A8: (
lim seq)
= ((1
/ (k
+ 1))
* (1
/ (k
! ))) by
A2,
A6,
SEQ_2: 8
.= (1
/ ((k
+ 1)
! )) by
Th11;
A9: (
aseq k) is
convergent by
Th8;
A10: seq1
= (seq
(#) (
aseq k)) by
A4,
SEQ_1: 8;
then
A11: seq1 is
convergent by
A7,
A9;
hence (
bseq (k
+ 1)) is
convergent by
A5,
SEQ_4: 18;
(
lim seq1)
= ((
lim seq)
* (
lim (
aseq k))) by
A7,
A10,
A9,
SEQ_2: 15
.= (1
/ ((k
+ 1)
! )) by
A8,
Th8;
hence thesis by
A11,
A5,
SEQ_4: 19;
end;
end;
A12:
P[
0 ]
proof
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
set bseq0 = (
seq_const 1);
A13: for n be
Nat holds (bseq0
. n)
= 1 by
SEQ_1: 57;
A14: for n st n
>= 1 holds ((
bseq
0 )
. n)
= (bseq0
. n)
proof
let n;
assume n
>= 1;
thus ((
bseq
0 )
. n)
= 1 by
Th10
.= (bseq0
. n) by
SEQ_1: 57;
end;
hence (
bseq
0 ) is
convergent by
SEQ_4: 18;
(
lim bseq0)
= 1 by
A13,
Th9;
hence thesis by
A14,
NEWTON: 12,
SEQ_4: 19;
end;
for k holds
P[k] from
NAT_1:sch 2(
A12,
A1);
hence (
bseq k) is
convergent & (
lim (
bseq k))
= (1
/ (k
! ));
hence thesis by
Def5;
end;
theorem ::
IRRAT_1:13
Th13: k
< n implies
0
< ((
aseq k)
. n) & ((
aseq k)
. n)
<= 1
proof
A1: ((
aseq k)
. n)
= ((n
- k)
/ n) by
Def1;
assume
A2: k
< n;
then (n
- k)
>
0 by
XREAL_1: 50;
hence ((
aseq k)
. n)
>
0 by
A2,
A1,
XREAL_1: 139;
(1
- (k
/ n))
<= (1
-
0 ) by
XREAL_1: 6;
hence thesis by
A2,
Th7;
end;
theorem ::
IRRAT_1:14
Th14: n
>
0 implies
0
<= ((
bseq k)
. n) & ((
bseq k)
. n)
<= (1
/ (k
! )) & ((
bseq k)
. n)
<= (
eseq
. k) &
0
<= ((
cseq n)
. k) & ((
cseq n)
. k)
<= (1
/ (k
! )) & ((
cseq n)
. k)
<= (
eseq
. k)
proof
defpred
P[
Nat] means ((
bseq $1)
. n)
<= (1
/ ($1
! ));
assume
A1: n
>
0 ;
then
A2: (n
^ (
- k))
>
0 by
POWER: 34;
A3:
now
let k;
assume
A4:
P[k];
thus
P[(k
+ 1)]
proof
per cases ;
suppose
A5: k
< n;
((1
/ (k
+ 1))
* ((
bseq k)
. n))
<= ((1
/ (k
+ 1))
* (1
/ (k
! ))) by
A4,
XREAL_1: 64;
then
A6: ((1
/ (k
+ 1))
* ((
bseq k)
. n))
<= (1
/ ((k
+ 1)
! )) by
Th11;
((
aseq k)
. n)
>=
0 by
A5,
Th13;
then
A7: (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((
aseq k)
. n))
<= ((1
/ ((k
+ 1)
! ))
* ((
aseq k)
. n)) by
A6,
XREAL_1: 64;
((
aseq k)
. n)
<= 1 by
A5,
Th13;
then
A8: ((1
/ ((k
+ 1)
! ))
* ((
aseq k)
. n))
<= (1
/ ((k
+ 1)
! )) by
XREAL_1: 153;
((
bseq (k
+ 1))
. n)
= (((1
/ (k
+ 1))
* ((
bseq k)
. n))
* ((
aseq k)
. n)) by
A1,
Th6;
hence thesis by
A7,
A8,
XXREAL_0: 2;
end;
suppose k
>= n;
then
A9: (k
+ 1)
> n by
NAT_1: 13;
((
bseq (k
+ 1))
. n)
= ((n
choose (k
+ 1))
* (n
^ (
- (k
+ 1)))) by
Def2
.= (
0
* (n
^ (
- (k
+ 1)))) by
A9,
NEWTON:def 3
.=
0 ;
hence thesis;
end;
end;
end;
A10: ((
bseq k)
. n)
= ((n
choose k)
* (n
^ (
- k))) by
Def2;
hence
0
<= ((
bseq k)
. n) by
A2;
A11:
P[
0 ] by
Th10,
NEWTON: 12;
for k holds
P[k] from
NAT_1:sch 2(
A11,
A3);
hence
A12: ((
bseq k)
. n)
<= (1
/ (k
! ));
hence ((
bseq k)
. n)
<= (
eseq
. k) by
Def5;
hence thesis by
A10,
A2,
A12,
Th3;
end;
theorem ::
IRRAT_1:15
Th15: for seq st (seq
^\ 1) is
summable holds seq is
summable & (
Sum seq)
= ((seq
.
0 )
+ (
Sum (seq
^\ 1)))
proof
let seq;
assume
A1: (seq
^\ 1) is
summable;
hence seq is
summable by
SERIES_1: 13;
thus (
Sum seq)
= (((
Partial_Sums seq)
.
0 )
+ (
Sum (seq
^\ (1
+
0 )))) by
A1,
SERIES_1: 13,
SERIES_1: 15
.= ((seq
.
0 )
+ (
Sum (seq
^\ 1))) by
SERIES_1:def 1;
end;
theorem ::
IRRAT_1:16
Th16: for D be non
empty
set, sq be
FinSequence of D st 1
<= k & k
< (
len sq) holds ((sq
/^ 1)
. k)
= (sq
. (k
+ 1))
proof
let D be non
empty
set, sq be
FinSequence of D;
assume that
A1: 1
<= k and
A2: k
< (
len sq);
A3: (
len sq)
= (((
len sq)
- 1)
+ 1);
(k
+ 1)
<= (
len sq) by
A2,
NAT_1: 13;
then
A4: k
<= ((
len sq)
- 1) by
A3,
XREAL_1: 6;
A5: (
len sq)
>= 1 by
A1,
A2,
XXREAL_0: 2;
then (
len (sq
/^ 1))
= ((
len sq)
- 1) by
RFINSEQ:def 1;
then k
in (
dom (sq
/^ 1)) by
A1,
A4,
FINSEQ_3: 25;
hence thesis by
A5,
RFINSEQ:def 1;
end;
theorem ::
IRRAT_1:17
Th17: for sq st (
len sq)
>
0 holds (
Sum sq)
= ((sq
. 1)
+ (
Sum (sq
/^ 1)))
proof
let sq;
assume
A1: (
len sq)
>
0 ;
then (
0
+ 1)
<= (
len sq) by
NAT_1: 13;
then
A2: 1
in (
dom sq) by
FINSEQ_3: 25;
thus (
Sum sq)
= (
Sum (
<*(sq
/. 1)*>
^ (sq
/^ 1))) by
A1,
CARD_1: 27,
FINSEQ_5: 29
.= (
Sum (
<*(sq
. 1)*>
^ (sq
/^ 1))) by
A2,
PARTFUN1:def 6
.= ((sq
. 1)
+ (
Sum (sq
/^ 1))) by
RVSUM_1: 76;
end;
theorem ::
IRRAT_1:18
Th18: for n holds for seq, sq st (
len sq)
= n & (for k st k
< n holds (seq
. k)
= (sq
. (k
+ 1))) & (for k st k
>= n holds (seq
. k)
=
0 ) holds seq is
summable & (
Sum seq)
= (
Sum sq)
proof
defpred
P[
Nat] means for seq, sq st (
len sq)
= $1 & (for k st k
< $1 holds (seq
. k)
= (sq
. (k
+ 1))) & (for k st k
>= $1 holds (seq
. k)
=
0 ) holds seq is
summable & (
Sum seq)
= (
Sum sq);
now
let n;
assume
A1: for seq, sq st (
len sq)
= n & (for k st k
< n holds (seq
. k)
= (sq
. (k
+ 1))) & (for k st k
>= n holds (seq
. k)
=
0 ) holds seq is
summable & (
Sum seq)
= (
Sum sq);
let seq, sq;
assume that
A2: (
len sq)
= (n
+ 1) and
A3: for k st k
< (n
+ 1) holds (seq
. k)
= (sq
. (k
+ 1)) and
A4: for k st k
>= (n
+ 1) holds (seq
. k)
=
0 ;
A5:
now
let k;
A6: (k
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
assume k
< n;
then
A7: (k
+ 1)
< (n
+ 1) by
XREAL_1: 6;
thus ((seq
^\ 1)
. k)
= (seq
. (k
+ 1)) by
NAT_1:def 3
.= (sq
. ((k
+ 1)
+ 1)) by
A3,
A7
.= ((sq
/^ 1)
. (k
+ 1)) by
A2,
A7,
A6,
Th16;
end;
A8:
now
let k;
assume k
>= n;
then
A9: (k
+ 1)
>= (n
+ 1) by
XREAL_1: 6;
thus ((seq
^\ 1)
. k)
= (seq
. (k
+ 1)) by
NAT_1:def 3
.=
0 by
A4,
A9;
end;
(n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A10: (
len (sq
/^ 1))
= ((
len sq)
- 1) by
A2,
RFINSEQ:def 1
.= n by
A2;
then
A11: (
Sum (seq
^\ 1))
= (
Sum (sq
/^ 1)) by
A1,
A5,
A8;
A12: (seq
^\ 1) is
summable by
A1,
A10,
A5,
A8;
hence seq is
summable by
Th15;
thus (
Sum seq)
= ((seq
.
0 )
+ (
Sum (seq
^\ 1))) by
A12,
Th15
.= ((sq
. (
0
+ 1))
+ (
Sum (seq
^\ 1))) by
A3
.= (
Sum sq) by
A2,
A11,
Th17;
end;
then
A13:
P[k] implies
P[(k
+ 1)];
now
let seq, sq;
assume that
A14: (
len sq)
=
0 and for k st k
<
0 holds (seq
. k)
= (sq
. (k
+ 1)) and
A15: for k st k
>=
0 holds (seq
. k)
=
0 ;
sq is
Element of (
0
-tuples_on
REAL ) by
A14,
FINSEQ_2: 92;
then
A16: (
Sum sq)
=
0 by
RVSUM_1: 79;
defpred
P[
Nat] means ((
Partial_Sums seq)
. $1)
=
0 ;
A17:
now
let k be
Nat;
A18: ((
Partial_Sums seq)
. (k
+ 1))
= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))) by
SERIES_1:def 1;
assume
P[k];
hence
P[(k
+ 1)] by
A15,
A18;
end;
(seq
.
0 )
=
0 by
A15;
then
A19:
P[
0 ] by
SERIES_1:def 1;
A20: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A19,
A17);
then (
Partial_Sums seq) is
convergent by
Th9;
hence seq is
summable by
SERIES_1:def 2;
(
lim (
Partial_Sums seq))
=
0 by
A20,
Th9;
hence (
Sum seq)
= (
Sum sq) by
A16,
SERIES_1:def 3;
end;
then
A21:
P[
0 ];
thus
P[n] from
NAT_1:sch 2(
A21,
A13);
end;
theorem ::
IRRAT_1:19
Th19: k
<= n implies (((x,y)
In_Power n)
. (k
+ 1))
= (((n
choose k)
* (x
^ (n
- k)))
* (y
^ k))
proof
reconsider i1 = ((k
+ 1)
- 1) as
Element of
NAT by
ORDINAL1:def 12;
A1: (k
+ 1)
>= (
0
+ 1) & (
len ((x,y)
In_Power n))
= (n
+ 1) by
NEWTON:def 4,
XREAL_1: 6;
assume
A2: k
<= n;
then
reconsider l = (n
- i1) as
Element of
NAT by
INT_1: 5;
(k
+ 1)
<= (n
+ 1) by
A2,
XREAL_1: 6;
then (k
+ 1)
in (
dom ((x,y)
In_Power n)) by
A1,
FINSEQ_3: 25;
hence (((x,y)
In_Power n)
. (k
+ 1))
= (((n
choose i1)
* (x
^ l))
* (y
|^ i1)) by
NEWTON:def 4
.= (((n
choose k)
* (x
^ (n
- k)))
* (y
^ k));
end;
theorem ::
IRRAT_1:20
Th20: n
>
0 & k
<= n implies ((
cseq n)
. k)
= (((1,(1
/ n))
In_Power n)
. (k
+ 1))
proof
assume that
A1: n
>
0 and
A2: k
<= n;
thus (((1,(1
/ n))
In_Power n)
. (k
+ 1))
= (((n
choose k)
* (1
^ (n
- k)))
* ((1
/ n)
^ k)) by
A2,
Th19
.= (((n
choose k)
* 1)
* ((1
/ n)
^ k)) by
POWER: 26
.= ((n
choose k)
* (n
^ (
- k))) by
A1,
POWER: 32
.= ((
cseq n)
. k) by
Def3;
end;
theorem ::
IRRAT_1:21
Th21: n
>
0 implies (
cseq n) is
summable & (
Sum (
cseq n))
= ((1
+ (1
/ n))
^ n) & (
Sum (
cseq n))
= (
dseq
. n)
proof
A1:
now
let k;
assume k
>= (n
+ 1);
then
A2: k
> n by
NAT_1: 13;
thus ((
cseq n)
. k)
= ((n
choose k)
* (n
^ (
- k))) by
Def3
.= (
0
* (n
^ (
- k))) by
A2,
NEWTON:def 3
.=
0 ;
end;
assume
A3: n
>
0 ;
A4:
now
let k;
assume k
< (n
+ 1);
then k
<= n by
NAT_1: 13;
hence ((
cseq n)
. k)
= (((1,(1
/ n))
In_Power n)
. (k
+ 1)) by
A3,
Th20;
end;
A5: (
len ((1,(1
/ n))
In_Power n))
= (n
+ 1) by
NEWTON:def 4;
hence (
cseq n) is
summable by
A4,
A1,
Th18;
thus ((1
+ (1
/ n))
^ n)
= (
Sum ((1,(1
/ n))
In_Power n)) by
NEWTON: 30
.= (
Sum (
cseq n)) by
A5,
A4,
A1,
Th18;
hence thesis by
Def4;
end;
theorem ::
IRRAT_1:22
Th22:
dseq is
convergent & (
lim
dseq )
=
number_e
proof
A1:
now
let n be
Nat;
thus ((
dseq
^\ 1)
. n)
= (
dseq
. (n
+ 1)) by
NAT_1:def 3
.= ((1
+ (1
/ (n
+ 1)))
^ (n
+ 1)) by
Def4;
end;
then
A2: (
dseq
^\ 1) is
convergent by
POWER: 59;
hence
dseq is
convergent by
SEQ_4: 21;
for n be
Nat holds ((
dseq
^\ 1)
. n)
= ((1
+ (1
/ (n
+ 1)))
^ (n
+ 1)) by
A1;
then
number_e
= (
lim (
dseq
^\ 1)) by
POWER:def 4;
hence thesis by
A2,
SEQ_4: 22;
end;
theorem ::
IRRAT_1:23
Th23:
eseq is
summable & (
Sum
eseq )
= (
exp_R 1)
proof
now
let k be
Element of
NAT ;
thus (
eseq
. k)
= (1
/ (k
! )) by
Def5
.= ((1
|^ k)
/ (k
! ))
.= ((1
rExpSeq )
. k) by
SIN_COS:def 5;
end;
then
A1:
eseq
= (1
rExpSeq ) by
FUNCT_2: 63;
hence
eseq is
summable by
SIN_COS: 45;
thus (
exp_R 1)
= (
exp_R
. 1) by
SIN_COS:def 23
.= (
Sum
eseq ) by
A1,
SIN_COS:def 22;
end;
theorem ::
IRRAT_1:24
Th24: for K holds for dseqK be
Real_Sequence st for n holds (dseqK
. n)
= ((
Partial_Sums (
cseq n))
. K) holds dseqK is
convergent & (
lim dseqK)
= ((
Partial_Sums
eseq )
. K)
proof
defpred
P[
Nat] means for dseqK be
Real_Sequence st for n holds (dseqK
. n)
= ((
Partial_Sums (
cseq n))
. $1) holds dseqK is
convergent & (
lim dseqK)
= ((
Partial_Sums
eseq )
. $1);
now
let K;
deffunc
F(
Nat) = ((
Partial_Sums (
cseq $1))
. K);
consider dseqK be
Real_Sequence such that
A1: for n holds (dseqK
. n)
=
F(n) from
SEQ_1:sch 1;
assume
A2: for dseqK be
Real_Sequence st for n holds (dseqK
. n)
= ((
Partial_Sums (
cseq n))
. K) holds dseqK is
convergent & (
lim dseqK)
= ((
Partial_Sums
eseq )
. K);
then
A3: dseqK is
convergent by
A1;
let dseqK1 be
Real_Sequence;
assume
A4: for n holds (dseqK1
. n)
= ((
Partial_Sums (
cseq n))
. (K
+ 1));
now
let n be
Element of
NAT ;
thus (dseqK1
. n)
= ((
Partial_Sums (
cseq n))
. (K
+ 1)) by
A4
.= (((
Partial_Sums (
cseq n))
. K)
+ ((
cseq n)
. (K
+ 1))) by
SERIES_1:def 1
.= ((dseqK
. n)
+ ((
cseq n)
. (K
+ 1))) by
A1
.= ((dseqK
. n)
+ ((
bseq (K
+ 1))
. n)) by
Th3
.= ((dseqK
+ (
bseq (K
+ 1)))
. n) by
SEQ_1: 7;
end;
then
A5: dseqK1
= (dseqK
+ (
bseq (K
+ 1))) by
FUNCT_2: 63;
A6: (
lim dseqK)
= ((
Partial_Sums
eseq )
. K) by
A2,
A1;
A7: (
bseq (K
+ 1)) is
convergent by
Th12;
hence dseqK1 is
convergent by
A3,
A5;
thus (
lim dseqK1)
= ((
lim dseqK)
+ (
lim (
bseq (K
+ 1)))) by
A3,
A5,
A7,
SEQ_2: 6
.= (((
Partial_Sums
eseq )
. K)
+ (
eseq
. (K
+ 1))) by
A6,
Th12
.= ((
Partial_Sums
eseq )
. (K
+ 1)) by
SERIES_1:def 1;
end;
then
A8:
P[n] implies
P[(n
+ 1)];
now
let dseq0 be
Real_Sequence;
assume
A9: for n holds (dseq0
. n)
= ((
Partial_Sums (
cseq n))
.
0 );
now
let n be
Element of
NAT ;
thus (dseq0
. n)
= ((
Partial_Sums (
cseq n))
.
0 ) by
A9
.= ((
cseq n)
.
0 ) by
SERIES_1:def 1
.= ((
bseq
0 )
. n) by
Th3;
end;
then
A10: dseq0
= (
bseq
0 ) by
FUNCT_2: 63;
hence dseq0 is
convergent by
Th12;
thus (
lim dseq0)
= (
eseq
.
0 ) by
A10,
Th12
.= ((
Partial_Sums
eseq )
.
0 ) by
SERIES_1:def 1;
end;
then
A11:
P[
0 ];
thus
P[n] from
NAT_1:sch 2(
A11,
A8);
end;
theorem ::
IRRAT_1:25
Th25: seq is
convergent & (
lim seq)
= x implies for eps st eps
>
0 holds ex N st for n st n
>= N holds (seq
. n)
> (x
- eps)
proof
assume
A1: seq is
convergent & (
lim seq)
= x;
let eps;
assume eps
>
0 ;
then
consider N such that
A2: for n st n
>= N holds
|.((seq
. n)
- x).|
< eps by
A1,
SEQ_2:def 7;
take N;
let n;
assume n
>= N;
then
|.((seq
. n)
- x).|
< eps by
A2;
then ((seq
. n)
- x)
> (
- eps) by
SEQ_2: 1;
then (((seq
. n)
- x)
+ x)
> ((
- eps)
+ x) by
XREAL_1: 6;
hence thesis;
end;
theorem ::
IRRAT_1:26
Th26: (for eps st eps
>
0 holds ex N st for n st n
>= N holds (seq
. n)
> (x
- eps)) & (ex N st for n st n
>= N holds (seq
. n)
<= x) implies seq is
convergent & (
lim seq)
= x
proof
assume that
A1: for eps st eps
>
0 holds ex N st for n st n
>= N holds (seq
. n)
> (x
- eps) and
A2: ex N st for n st n
>= N holds (seq
. n)
<= x;
A3: for eps be
Real st eps
>
0 holds ex N st for n st n
>= N holds
|.((seq
. n)
- x).|
< eps
proof
let eps be
Real;
assume
A4: eps
>
0 ;
then
A5: (x
+ eps)
> (x
+
0 ) by
XREAL_1: 6;
consider N2 be
Nat such that
A6: for n st n
>= N2 holds (seq
. n)
<= x by
A2;
consider N1 be
Nat such that
A7: for n st n
>= N1 holds (seq
. n)
> (x
- eps) by
A1,
A4;
reconsider N = (
max (N1,N2)) as
Nat by
TARSKI: 1;
take N;
let n;
assume
A8: n
>= N;
then n
>= N1 by
XXREAL_0: 30;
then (seq
. n)
> (x
- eps) by
A7;
then
A9: ((seq
. n)
- x)
> ((x
- eps)
- x) by
XREAL_1: 9;
(seq
. n)
<= x by
A6,
A8,
XXREAL_0: 30;
then (seq
. n)
< (x
+ eps) by
A5,
XXREAL_0: 2;
then ((seq
. n)
- x)
< eps by
XREAL_1: 19;
hence thesis by
A9,
SEQ_2: 1;
end;
hence seq is
convergent;
hence thesis by
A3,
SEQ_2:def 7;
end;
theorem ::
IRRAT_1:27
Th27: seq is
summable implies for eps st eps
>
0 holds ex K st ((
Partial_Sums seq)
. K)
> ((
Sum seq)
- eps)
proof
assume seq is
summable;
then
A1: (
Partial_Sums seq) is
convergent by
SERIES_1:def 2;
let eps;
assume eps
>
0 ;
then
consider K such that
A2: for k st k
>= K holds ((
Partial_Sums seq)
. k)
> ((
lim (
Partial_Sums seq))
- eps) by
A1,
Th25;
take K;
(
Sum seq)
= (
lim (
Partial_Sums seq)) by
SERIES_1:def 3;
hence thesis by
A2;
end;
theorem ::
IRRAT_1:28
Th28: n
>= 1 implies (
dseq
. n)
<= (
Sum
eseq )
proof
assume
A1: n
>= 1;
then for k holds
0
<= ((
cseq n)
. k) & ((
cseq n)
. k)
<= (
eseq
. k) by
Th14;
then (
Sum (
cseq n))
<= (
Sum
eseq ) by
Th23,
SERIES_1: 20;
hence thesis by
A1,
Th21;
end;
theorem ::
IRRAT_1:29
Th29: seq is
summable & (for k holds (seq
. k)
>=
0 ) implies (
Sum seq)
>= ((
Partial_Sums seq)
. K)
proof
assume that
A1: seq is
summable and
A2: for k holds (seq
. k)
>=
0 ;
A3:
now
let k;
((seq
^\ (K
+ 1))
. k)
= (seq
. ((K
+ 1)
+ k)) by
NAT_1:def 3;
hence ((seq
^\ (K
+ 1))
. k)
>=
0 by
A2;
end;
(seq
^\ (K
+ 1)) is
summable by
A1,
SERIES_1: 12;
then (
Sum (seq
^\ (K
+ 1)))
>=
0 by
A3,
SERIES_1: 18;
then (((
Partial_Sums seq)
. K)
+ (
Sum (seq
^\ (K
+ 1))))
>= (((
Partial_Sums seq)
. K)
+
0 ) by
XREAL_1: 6;
hence thesis by
A1,
SERIES_1: 15;
end;
theorem ::
IRRAT_1:30
Th30:
dseq is
convergent & (
lim
dseq )
= (
Sum
eseq )
proof
for eps st eps
>
0 holds ex N st for n st n
>= N holds (
dseq
. n)
> ((
Sum
eseq )
- eps)
proof
let eps;
assume
A1: eps
>
0 ;
then
consider K such that
A2: ((
Partial_Sums
eseq )
. K)
> ((
Sum
eseq )
- (eps
/ 2)) by
Th23,
Th27,
XREAL_1: 139;
A3: (((
Partial_Sums
eseq )
. K)
- (eps
/ 2))
> (((
Sum
eseq )
- (eps
/ 2))
- (eps
/ 2)) by
A2,
XREAL_1: 9;
deffunc
F(
Nat) = ((
Partial_Sums (
cseq $1))
. K);
consider dseqK be
Real_Sequence such that
A4: for n holds (dseqK
. n)
=
F(n) from
SEQ_1:sch 1;
dseqK is
convergent & (
lim dseqK)
= ((
Partial_Sums
eseq )
. K) by
A4,
Th24;
then
consider N such that
A5: for n st n
>= N holds (dseqK
. n)
> (((
Partial_Sums
eseq )
. K)
- (eps
/ 2)) by
A1,
Th25,
XREAL_1: 139;
take N1 = (N
+ 1);
let n;
assume
A6: n
>= N1;
then (for k holds ((
cseq n)
. k)
>=
0 ) & (
cseq n) is
summable by
Th14,
Th21;
then (
Sum (
cseq n))
>= ((
Partial_Sums (
cseq n))
. K) by
Th29;
then (
dseq
. n)
>= ((
Partial_Sums (
cseq n))
. K) by
A6,
Th21;
then
A7: (
dseq
. n)
>= (dseqK
. n) by
A4;
(N
+ 1)
>= (N
+
0 ) by
XREAL_1: 6;
then n
>= N by
A6,
XXREAL_0: 2;
then (dseqK
. n)
> (((
Partial_Sums
eseq )
. K)
- (eps
/ 2)) by
A5;
then (
dseq
. n)
> (((
Partial_Sums
eseq )
. K)
- (eps
/ 2)) by
A7,
XXREAL_0: 2;
hence thesis by
A3,
XXREAL_0: 2;
end;
hence thesis by
Th26,
Th28;
end;
definition
:: original:
number_e
redefine
::
IRRAT_1:def6
func
number_e equals (
Sum
eseq );
compatibility by
Th22,
Th30;
end
definition
:: original:
number_e
redefine
::
IRRAT_1:def7
func
number_e equals (
exp_R 1);
compatibility by
Th23;
end
begin
theorem ::
IRRAT_1:31
Th31: x is
rational implies ex n st n
>= 2 & ((n
! )
* x) is
integer
proof
assume x is
rational;
then
consider i, n such that
A1: n
<>
0 and
A2: x
= (i
/ n) by
RAT_1: 8;
per cases ;
suppose
A3: n
< (1
+ 1);
A4: n
>= (
0
+ 1) by
A1,
NAT_1: 13;
n
<= 1 by
A3,
NAT_1: 13;
then n
= 1 by
A4,
XXREAL_0: 1;
then
reconsider x1 = x as
Integer by
A2;
take n = 2;
((n
! )
* x1) is
integer;
hence thesis;
end;
suppose
A5: n
>= 2;
take n;
thus n
>= 2 by
A5;
reconsider m = (n
- 1) as
Element of
NAT by
A5,
INT_1: 5,
XXREAL_0: 2;
((n
! )
* x)
= (((m
+ 1)
* (m
! ))
* x) by
NEWTON: 15
.= ((n
* x)
* (m
! ))
.= (i
* (m
! )) by
A1,
A2,
XCMPLX_1: 87;
hence thesis;
end;
end;
theorem ::
IRRAT_1:32
Th32: ((n
! )
* (
eseq
. k))
= ((n
! )
/ (k
! ))
proof
thus ((n
! )
* (
eseq
. k))
= ((n
! )
* (1
/ (k
! ))) by
Def5
.= ((n
! )
/ (k
! ));
end;
theorem ::
IRRAT_1:33
((n
! )
/ (k
! ))
>
0 by
XREAL_1: 139;
theorem ::
IRRAT_1:34
Th34: seq is
summable & (for n holds (seq
. n)
>
0 ) implies (
Sum seq)
>
0
proof
assume that
A1: seq is
summable and
A2: for n holds (seq
. n)
>
0 ;
A3: (
Sum seq)
= (((
Partial_Sums seq)
.
0 )
+ (
Sum (seq
^\ (
0
+ 1)))) by
A1,
SERIES_1: 15
.= ((seq
.
0 )
+ (
Sum (seq
^\ 1))) by
SERIES_1:def 1;
A4:
now
let n;
((seq
^\ 1)
. n)
= (seq
. (1
+ n)) by
NAT_1:def 3;
hence ((seq
^\ 1)
. n)
>=
0 by
A2;
end;
(seq
^\ 1) is
summable by
A1,
SERIES_1: 12;
then (
Sum (seq
^\ 1))
>=
0 by
A4,
SERIES_1: 18;
then (
Sum seq)
> (
0
+
0 ) by
A2,
A3,
XREAL_1: 8;
hence thesis;
end;
theorem ::
IRRAT_1:35
Th35: ((n
! )
* (
Sum (
eseq
^\ (n
+ 1))))
>
0
proof
A1:
now
let k;
((
eseq
^\ (n
+ 1))
. k)
= (
eseq
. ((n
+ 1)
+ k)) by
NAT_1:def 3
.= (1
/ (((n
+ 1)
+ k)
! )) by
Def5;
hence ((
eseq
^\ (n
+ 1))
. k)
>
0 ;
end;
(
eseq
^\ (n
+ 1)) is
summable by
Th23,
SERIES_1: 12;
then (n
! )
>
0 & (
Sum (
eseq
^\ (n
+ 1)))
>
0 by
A1,
Th34;
hence thesis by
XREAL_1: 129;
end;
theorem ::
IRRAT_1:36
Th36: k
<= n implies ((n
! )
/ (k
! )) is
integer
proof
defpred
P[
Nat] means ((($1
+ k)
! )
/ (k
! )) is
integer;
assume k
<= n;
then
reconsider m = (n
- k) as
Element of
NAT by
INT_1: 5;
A1: n
= (m
+ k);
now
let m;
A2: ((((m
+ 1)
+ k)
! )
/ (k
! ))
= ((((m
+ k)
+ 1)
* ((m
+ k)
! ))
* ((k
! )
" )) by
NEWTON: 15
.= (((m
+ k)
+ 1)
* (((m
+ k)
! )
* ((k
! )
" )))
.= (((m
+ k)
+ 1)
* (((m
+ k)
! )
/ (k
! )));
assume (((m
+ k)
! )
/ (k
! )) is
integer;
then
reconsider i = (((m
+ k)
! )
/ (k
! )) as
Integer;
(((m
+ k)
+ 1)
* i) is
Integer;
hence ((((m
+ 1)
+ k)
! )
/ (k
! )) is
integer by
A2;
end;
then
A3: for n be
Nat holds
P[n] implies
P[(n
+ 1)];
A4:
P[
0 ] by
XCMPLX_1: 60;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A3);
hence thesis by
A1;
end;
theorem ::
IRRAT_1:37
Th37: ((n
! )
* ((
Partial_Sums
eseq )
. n)) is
integer
proof
defpred
P[
Nat] means $1
<= n implies ((n
! )
* ((
Partial_Sums
eseq )
. $1)) is
integer;
now
let k;
assume
A1: k
<= n implies ((n
! )
* ((
Partial_Sums
eseq )
. k)) is
integer;
assume
A2: (k
+ 1)
<= n;
(k
+
0 )
<= (k
+ 1) by
XREAL_1: 6;
then
reconsider i = ((n
! )
* ((
Partial_Sums
eseq )
. k)) as
Integer by
A1,
A2,
XXREAL_0: 2;
((n
! )
* (
eseq
. (k
+ 1)))
= ((n
! )
/ ((k
+ 1)
! )) by
Th32;
then
reconsider j = ((n
! )
* (
eseq
. (k
+ 1))) as
Integer by
A2,
Th36;
A3: (i
+ j) is
Integer;
((n
! )
* ((
Partial_Sums
eseq )
. (k
+ 1)))
= ((n
! )
* (((
Partial_Sums
eseq )
. k)
+ (
eseq
. (k
+ 1)))) by
SERIES_1:def 1
.= (((n
! )
* ((
Partial_Sums
eseq )
. k))
+ ((n
! )
* (
eseq
. (k
+ 1))));
hence ((n
! )
* ((
Partial_Sums
eseq )
. (k
+ 1))) is
integer by
A3;
end;
then
A4:
P[k] implies
P[(k
+ 1)];
now
assume
0
<= n;
((n
! )
* ((
Partial_Sums
eseq )
.
0 ))
= ((n
! )
* (
eseq
.
0 )) by
SERIES_1:def 1
.= ((n
! )
/ (
0
! )) by
Th32;
hence ((n
! )
* ((
Partial_Sums
eseq )
.
0 )) is
integer by
Th36;
end;
then
A5:
P[
0 ];
for k holds
P[k] from
NAT_1:sch 2(
A5,
A4);
hence thesis;
end;
theorem ::
IRRAT_1:38
Th38: x
= (1
/ (n
+ 1)) implies ((n
! )
/ (((n
+ k)
+ 1)
! ))
<= (x
^ (k
+ 1))
proof
defpred
P[
Nat] means ((n
! )
/ (((n
+ $1)
+ 1)
! ))
<= (x
^ ($1
+ 1));
assume
A1: x
= (1
/ (n
+ 1));
A2:
now
let k;
assume
A3:
P[k];
A4: ((n
! )
/ (((n
+ (k
+ 1))
+ 1)
! ))
= ((n
! )
* ((((n
+ (k
+ 1))
+ 1)
! )
" ))
.= ((n
! )
* ((((n
+ (k
+ 1))
+ 1)
* (((n
+ k)
+ 1)
! ))
" )) by
NEWTON: 15
.= ((n
! )
* ((((n
+ (k
+ 1))
+ 1)
" )
* ((((n
+ k)
+ 1)
! )
" ))) by
XCMPLX_1: 204
.= (((n
! )
* ((((n
+ k)
+ 1)
! )
" ))
* (((n
+ (k
+ 1))
+ 1)
" ))
.= (((n
! )
/ (((n
+ k)
+ 1)
! ))
* (((n
+ (k
+ 1))
+ 1)
" ));
(n
+ (k
+ 1))
>= (n
+
0 ) by
XREAL_1: 6;
then ((n
+ (k
+ 1))
+ 1)
>= (n
+ 1) by
XREAL_1: 6;
then
A5: (((n
+ (k
+ 1))
+ 1)
" )
<= (1
/ (n
+ 1)) by
XREAL_1: 85;
((x
^ (k
+ 1))
* x)
= ((x
^ (k
+ 1))
* (x
^ 1))
.= (x
^ ((k
+ 1)
+ 1)) by
A1,
POWER: 27;
hence
P[(k
+ 1)] by
A1,
A3,
A5,
A4,
XREAL_1: 66;
end;
((n
! )
/ ((n
+ 1)
! ))
= ((n
! )
/ ((n
+ 1)
* (n
! ))) by
NEWTON: 15
.= ((n
! )
* (((n
+ 1)
* (n
! ))
" ))
.= ((n
! )
* (((n
+ 1)
" )
* ((n
! )
" ))) by
XCMPLX_1: 204
.= (((n
! )
* ((n
! )
" ))
* ((n
+ 1)
" ))
.= (1
* ((n
+ 1)
" )) by
XCMPLX_0:def 7
.= x by
A1;
then
A6:
P[
0 ];
for n holds
P[n] from
NAT_1:sch 2(
A6,
A2);
hence thesis;
end;
theorem ::
IRRAT_1:39
Th39: n
>
0 & x
= (1
/ (n
+ 1)) implies ((n
! )
* (
Sum (
eseq
^\ (n
+ 1))))
<= (x
/ (1
- x))
proof
assume that
A1: n
>
0 and
A2: x
= (1
/ (n
+ 1));
deffunc
F(
Nat) = (x
^ ($1
+ 1));
consider seq be
Real_Sequence such that
A3: for k holds (seq
. k)
=
F(k) from
SEQ_1:sch 1;
A4:
now
let k;
A5: (((n
! )
(#) (
eseq
^\ (n
+ 1)))
. k)
= ((n
! )
* ((
eseq
^\ (n
+ 1))
. k)) by
SEQ_1: 9
.= ((n
! )
* (
eseq
. ((n
+ 1)
+ k))) by
NAT_1:def 3
.= ((n
! )
* (1
/ (((n
+ k)
+ 1)
! ))) by
Def5
.= ((n
! )
/ (((n
+ k)
+ 1)
! ));
hence (((n
! )
(#) (
eseq
^\ (n
+ 1)))
. k)
>=
0 ;
(seq
. k)
= (x
^ (k
+ 1)) by
A3;
hence (((n
! )
(#) (
eseq
^\ (n
+ 1)))
. k)
<= (seq
. k) by
A2,
A5,
Th38;
end;
A6: (seq
.
0 )
= (x
^ (
0
+ 1)) by
A3
.= x;
A7: (
eseq
^\ (n
+ 1)) is
summable by
Th23,
SERIES_1: 12;
(n
+ 1)
> (
0
+ 1) by
A1,
XREAL_1: 6;
then
A8: x
< 1 by
A2,
XREAL_1: 212;
A9:
now
let k;
thus (seq
. (k
+ 1))
= (x
^ ((k
+ 1)
+ 1)) by
A3
.= ((x
^ 1)
* (x
^ (k
+ 1))) by
A2,
POWER: 27
.= (x
* (x
^ (k
+ 1)))
.= (x
* (seq
. k)) by
A3;
end;
|.x.|
= x by
A2,
ABSVALUE:def 1;
then seq is
summable by
A8,
A9,
SERIES_1: 25;
then
A10: (
Sum ((n
! )
(#) (
eseq
^\ (n
+ 1))))
<= (
Sum seq) by
A4,
SERIES_1: 20;
|.x.|
< 1 by
A2,
A8,
ABSVALUE:def 1;
then (
Sum seq)
= (x
/ (1
- x)) by
A6,
A9,
SERIES_1: 25;
hence thesis by
A7,
A10,
SERIES_1: 10;
end;
theorem ::
IRRAT_1:40
Th40: for n be
Real st n
>= 2 & x
= (1
/ (n
+ 1)) holds (x
/ (1
- x))
< 1
proof
let n be
Real;
assume that
A1: n
>= 2 and
A2: x
= (1
/ (n
+ 1));
(n
+ 1)
> n by
XREAL_1: 29;
then 2
< (n
+ 1) by
A1,
XXREAL_0: 2;
then (2
/ (n
+ 1))
< 1 by
XREAL_1: 189;
then (x
+ x)
< 1 by
A2;
then x
< (1
- x) by
XREAL_1: 20;
hence thesis by
A1,
A2,
XREAL_1: 189;
end;
::$Notion-Name
theorem ::
IRRAT_1:41
number_e is
irrational
proof
assume
number_e is
rational;
then
consider n such that
A1: n
>= 2 and
A2: ((n
! )
*
number_e ) is
integer by
Th31;
reconsider ne = ((n
! )
*
number_e ) as
Integer by
A2;
set x = (1
/ (n
+ 1));
reconsider ne1 = ((n
! )
* ((
Partial_Sums
eseq )
. n)) as
Integer by
Th37;
((n
! )
*
number_e )
= ((n
! )
* (((
Partial_Sums
eseq )
. n)
+ (
Sum (
eseq
^\ (n
+ 1))))) by
Th23,
SERIES_1: 15
.= (((n
! )
* ((
Partial_Sums
eseq )
. n))
+ ((n
! )
* (
Sum (
eseq
^\ (n
+ 1)))));
then
A3: ((n
! )
* (
Sum (
eseq
^\ (n
+ 1))))
= (ne
- ne1);
(x
/ (1
- x))
< 1 & ((n
! )
* (
Sum (
eseq
^\ (n
+ 1))))
<= (x
/ (1
- x)) by
A1,
Th39,
Th40;
then ((n
! )
* (
Sum (
eseq
^\ (n
+ 1))))
< (
0
+ 1) by
XXREAL_0: 2;
hence contradiction by
A3,
Th35,
INT_1: 7;
end;