euclid_4.miz
begin
reserve a,b,s,t,u,lambda for
Real,
n for
Nat;
reserve x,x1,x2,x3,y1,y2 for
Element of (
REAL n);
theorem ::
EUCLID_4:1
Th1: ((
0
* x)
+ x)
= x & (x
+ (
0* n))
= x
proof
reconsider x9 = x as
Element of (n
-tuples_on
REAL );
((
0
* x)
+ x)
= ((
0
* x9)
+ (1
* x9)) by
RVSUM_1: 52
.= ((
0
+ 1)
* x9) by
RVSUM_1: 50
.= x by
RVSUM_1: 52;
hence thesis by
RVSUM_1: 16;
end;
theorem ::
EUCLID_4:2
Th2: (a
* (
0* n))
= (
0* n)
proof
|.(a
* (
0* n)).|
= (
|.a.|
*
|.(
0* n).|) by
EUCLID: 11
.= (
|.a.|
*
0 ) by
EUCLID: 7
.=
0 ;
hence thesis by
EUCLID: 8;
end;
theorem ::
EUCLID_4:3
Th3: (1
* x)
= x & (
0
* x)
= (
0* n)
proof
reconsider x9 = x as
Element of (n
-tuples_on
REAL );
(
0
* x)
= (((
0
* x9)
+ x9)
- x9) by
RVSUM_1: 42
.= (x9
- x9) by
Th1
.= (
0* n) by
RVSUM_1: 37;
hence thesis by
RVSUM_1: 52;
end;
theorem ::
EUCLID_4:4
((a
* b)
* x)
= (a
* (b
* x)) by
RVSUM_1: 49;
theorem ::
EUCLID_4:5
(a
* x)
= (
0* n) implies a
=
0 or x
= (
0* n)
proof
assume that
A1: (a
* x)
= (
0* n) and
A2: a
<>
0 ;
thus x
= (1
* x) by
Th3
.= (((1
/ a)
* a)
* x) by
A2,
XCMPLX_1: 106
.= ((1
/ a)
* (a
* x)) by
RVSUM_1: 49
.= (
0* n) by
A1,
Th2;
end;
theorem ::
EUCLID_4:6
(a
* (x1
+ x2))
= ((a
* x1)
+ (a
* x2)) by
RVSUM_1: 51;
theorem ::
EUCLID_4:7
((a
+ b)
* x)
= ((a
* x)
+ (b
* x)) by
RVSUM_1: 50;
theorem ::
EUCLID_4:8
(a
* x1)
= (a
* x2) implies a
=
0 or x1
= x2
proof
assume that
A1: (a
* x1)
= (a
* x2) and
A2: a
<>
0 ;
(((1
/ a)
* a)
* x1)
= ((1
/ a)
* (a
* x2)) by
A1,
RVSUM_1: 49;
then (((1
/ a)
* a)
* x1)
= (((1
/ a)
* a)
* x2) by
RVSUM_1: 49;
then (1
* x1)
= (((1
/ a)
* a)
* x2) by
A2,
XCMPLX_1: 106;
then (1
* x1)
= (1
* x2) by
A2,
XCMPLX_1: 106;
hence x1
= (1
* x2) by
Th3
.= x2 by
Th3;
end;
definition
let n;
let x1,x2 be
Element of (
REAL n);
::
EUCLID_4:def1
func
Line (x1,x2) ->
Subset of (
REAL n) equals the set of all (((1
- lambda)
* x1)
+ (lambda
* x2));
coherence
proof
set A = the set of all (((1
- lambda)
* x1)
+ (lambda
* x2));
A
c= (
REAL n)
proof
let x be
object;
assume x
in A;
then ex lambda st x
= (((1
- lambda)
* x1)
+ (lambda
* x2));
hence thesis;
end;
hence thesis;
end;
end
registration
let n;
let x1,x2 be
Element of (
REAL n);
cluster (
Line (x1,x2)) -> non
empty;
coherence
proof
A1: (1
-
0 )
= 1 & (1
* x1)
= x1 by
Th3;
(
0
* x2)
= (
0* n) & (x1
+ (
0* n))
= x1 by
Th1,
Th3;
then x1
in (
Line (x1,x2)) by
A1;
hence thesis;
end;
end
Lm1: (
Line (x1,x2))
c= (
Line (x2,x1))
proof
let z be
object;
assume z
in (
Line (x1,x2));
then
consider t such that
A1: z
= (((1
- t)
* x1)
+ (t
* x2));
z
= (((1
- (1
- t))
* x2)
+ ((1
- t)
* x1)) by
A1;
hence thesis;
end;
definition
let n;
let x1,x2 be
Element of (
REAL n);
:: original:
Line
redefine
func
Line (x1,x2);
commutativity by
Lm1;
end
theorem ::
EUCLID_4:9
Th9: x1
in (
Line (x1,x2)) & x2
in (
Line (x1,x2))
proof
A1: (1
-
0 )
= 1 & (1
* x1)
= x1 by
Th3;
A2: (1
- 1)
=
0 & (
0
* x1)
= (
0* n) by
Th3;
A3: (1
* x2)
= x2 & ((
0* n)
+ x2)
= x2 by
Th1,
Th3;
(
0
* x2)
= (
0* n) & (x1
+ (
0* n))
= x1 by
Th1,
Th3;
hence thesis by
A1,
A2,
A3;
end;
Lm2: (x1
+ (x2
+ x3))
= ((x1
+ x2)
+ x3) by
FINSEQOP: 28;
theorem ::
EUCLID_4:10
Th10: y1
in (
Line (x1,x2)) & y2
in (
Line (x1,x2)) implies (
Line (y1,y2))
c= (
Line (x1,x2))
proof
assume y1
in (
Line (x1,x2));
then
consider t such that
A1: y1
= (((1
- t)
* x1)
+ (t
* x2));
assume y2
in (
Line (x1,x2));
then
consider s such that
A2: y2
= (((1
- s)
* x1)
+ (s
* x2));
let z be
object;
assume z
in (
Line (y1,y2));
then
consider u such that
A3: z
= (((1
- u)
* y1)
+ (u
* y2));
z
= ((((1
- u)
* ((1
- t)
* x1))
+ ((1
- u)
* (t
* x2)))
+ (u
* (((1
- s)
* x1)
+ (s
* x2)))) by
A1,
A2,
A3,
RVSUM_1: 51
.= ((((1
- u)
* ((1
- t)
* x1))
+ ((1
- u)
* (t
* x2)))
+ ((u
* ((1
- s)
* x1))
+ (u
* (s
* x2)))) by
RVSUM_1: 51
.= (((((1
- u)
* (1
- t))
* x1)
+ ((1
- u)
* (t
* x2)))
+ ((u
* ((1
- s)
* x1))
+ (u
* (s
* x2)))) by
RVSUM_1: 49
.= (((((1
- u)
* (1
- t))
* x1)
+ (((1
- u)
* t)
* x2))
+ ((u
* ((1
- s)
* x1))
+ (u
* (s
* x2)))) by
RVSUM_1: 49
.= (((((1
- u)
* (1
- t))
* x1)
+ (((1
- u)
* t)
* x2))
+ (((u
* (1
- s))
* x1)
+ (u
* (s
* x2)))) by
RVSUM_1: 49
.= (((((1
- u)
* (1
- t))
* x1)
+ (((1
- u)
* t)
* x2))
+ (((u
* (1
- s))
* x1)
+ ((u
* s)
* x2))) by
RVSUM_1: 49
.= ((((1
- u)
* (1
- t))
* x1)
+ ((((1
- u)
* t)
* x2)
+ (((u
* (1
- s))
* x1)
+ ((u
* s)
* x2)))) by
FINSEQOP: 28
.= ((((1
- u)
* (1
- t))
* x1)
+ (((u
* (1
- s))
* x1)
+ ((((1
- u)
* t)
* x2)
+ ((u
* s)
* x2)))) by
Lm2
.= (((((1
- u)
* (1
- t))
* x1)
+ ((u
* (1
- s))
* x1))
+ ((((1
- u)
* t)
* x2)
+ ((u
* s)
* x2))) by
FINSEQOP: 28
.= (((((1
- u)
* (1
- t))
+ (u
* (1
- s)))
* x1)
+ ((((1
- u)
* t)
* x2)
+ ((u
* s)
* x2))) by
RVSUM_1: 50
.= (((1
- (((1
* t)
- (u
* t))
+ (u
* s)))
* x1)
+ ((((1
* t)
- (u
* t))
+ (u
* s))
* x2)) by
RVSUM_1: 50;
hence z
in (
Line (x1,x2));
end;
theorem ::
EUCLID_4:11
Th11: y1
in (
Line (x1,x2)) & y2
in (
Line (x1,x2)) & y1
<> y2 implies (
Line (x1,x2))
c= (
Line (y1,y2))
proof
assume y1
in (
Line (x1,x2));
then
consider t such that
A1: y1
= (((1
- t)
* x1)
+ (t
* x2));
assume y2
in (
Line (x1,x2));
then
consider s such that
A2: y2
= (((1
- s)
* x1)
+ (s
* x2));
assume y1
<> y2;
then
A3: (t
- s)
<>
0 by
A1,
A2;
then (((1
- ((t
- 1)
/ (t
- s)))
* y1)
+ (((t
- 1)
/ (t
- s))
* y2))
= (((((1
* (t
- s))
- (t
- 1))
/ (t
- s))
* y1)
+ (((t
- 1)
/ (t
- s))
* y2)) by
XCMPLX_1: 127
.= ((((((
- s)
+ 1)
/ (t
- s))
* ((1
- t)
* x1))
+ ((((
- s)
+ 1)
/ (t
- s))
* (t
* x2)))
+ (((t
- 1)
/ (t
- s))
* (((1
- s)
* x1)
+ (s
* x2)))) by
A1,
A2,
RVSUM_1: 51
.= ((((((
- s)
+ 1)
/ (t
- s))
* ((1
- t)
* x1))
+ ((((
- s)
+ 1)
/ (t
- s))
* (t
* x2)))
+ ((((t
- 1)
/ (t
- s))
* ((1
- s)
* x1))
+ (((t
- 1)
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 51
.= (((((((
- s)
+ 1)
/ (t
- s))
* (1
- t))
* x1)
+ ((((
- s)
+ 1)
/ (t
- s))
* (t
* x2)))
+ ((((t
- 1)
/ (t
- s))
* ((1
- s)
* x1))
+ (((t
- 1)
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= (((((((
- s)
+ 1)
/ (t
- s))
* (1
- t))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ ((((t
- 1)
/ (t
- s))
* ((1
- s)
* x1))
+ (((t
- 1)
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= (((((((
- s)
+ 1)
/ (t
- s))
* (1
- t))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ (((t
- 1)
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= (((((((
- s)
+ 1)
/ (t
- s))
* (1
- t))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
RVSUM_1: 49
.= (((((((
- s)
+ 1)
* (1
/ (t
- s)))
* (1
- t))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
* (1
/ (t
- s)))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2)))
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
/ (t
- s))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* (1
/ (t
- s)))
* t)
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
* (1
/ (t
- s)))
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2)))
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
/ (t
- s))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
/ (t
- s)))
* (1
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
- s))
* (1
/ (t
- s)))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2)))
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((t
- 1)
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((t
- 1)
* (1
/ (t
- s)))
* s)
* x2))) by
XCMPLX_1: 99
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((t
- 1)
* s)
* (1
/ (t
- s)))
* x2)))
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
+ 1)
* t)
/ (t
- s))
* x2))
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((t
- 1)
* s)
/ (t
- s))
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
* x2)
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((t
- 1)
* s)
/ (t
- s))
* x2)))) by
FINSEQOP: 28
.= ((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ (((((t
- 1)
* (1
- s))
/ (t
- s))
* x1)
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
* x2)
+ ((((t
- 1)
* s)
/ (t
- s))
* x2)))) by
Lm2
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
* x1)
+ ((((t
- 1)
* (1
- s))
/ (t
- s))
* x1))
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
* x2)
+ ((((t
- 1)
* s)
/ (t
- s))
* x2))) by
FINSEQOP: 28
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
+ (((t
- 1)
* (1
- s))
/ (t
- s)))
* x1)
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
* x2)
+ ((((t
- 1)
* s)
/ (t
- s))
* x2))) by
RVSUM_1: 50
.= (((((((
- s)
+ 1)
* (1
- t))
/ (t
- s))
+ (((t
- 1)
* (1
- s))
/ (t
- s)))
* x1)
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
+ (((t
- 1)
* s)
/ (t
- s)))
* x2)) by
RVSUM_1: 50
.= (((((((
- s)
+ 1)
* (1
- t))
+ ((t
- 1)
* (1
- s)))
/ (t
- s))
* x1)
+ ((((((
- s)
+ 1)
* t)
/ (t
- s))
+ (((t
- 1)
* s)
/ (t
- s)))
* x2)) by
XCMPLX_1: 62
.= ((((((1
- t)
* (1
- s))
+ (
- ((1
- t)
* (1
- s))))
/ (t
- s))
* x1)
+ ((((((
- s)
+ 1)
* t)
+ ((t
- 1)
* s))
/ (t
- s))
* x2)) by
XCMPLX_1: 62
.= ((
0* n)
+ ((((((
- s)
+ 1)
* t)
+ ((t
- 1)
* s))
/ (t
- s))
* x2)) by
Th3
.= (((1
* (t
- s))
/ (t
- s))
* x2) by
Th1
.= (1
* x2) by
A3,
XCMPLX_1: 89
.= x2 by
Th3;
then
A4: x2
in (
Line (y1,y2));
(((1
- (t
/ (t
- s)))
* y1)
+ ((t
/ (t
- s))
* y2))
= (((((1
* (t
- s))
- t)
/ (t
- s))
* y1)
+ ((t
/ (t
- s))
* y2)) by
A3,
XCMPLX_1: 127
.= (((((
- s)
/ (t
- s))
* ((1
- t)
* x1))
+ (((
- s)
/ (t
- s))
* (t
* x2)))
+ ((t
/ (t
- s))
* (((1
- s)
* x1)
+ (s
* x2)))) by
A1,
A2,
RVSUM_1: 51
.= (((((
- s)
/ (t
- s))
* ((1
- t)
* x1))
+ (((
- s)
/ (t
- s))
* (t
* x2)))
+ (((t
/ (t
- s))
* ((1
- s)
* x1))
+ ((t
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 51
.= ((((((
- s)
/ (t
- s))
* (1
- t))
* x1)
+ (((
- s)
/ (t
- s))
* (t
* x2)))
+ (((t
/ (t
- s))
* ((1
- s)
* x1))
+ ((t
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= ((((((
- s)
/ (t
- s))
* (1
- t))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ (((t
/ (t
- s))
* ((1
- s)
* x1))
+ ((t
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= ((((((
- s)
/ (t
- s))
* (1
- t))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ ((t
/ (t
- s))
* (s
* x2)))) by
RVSUM_1: 49
.= ((((((
- s)
/ (t
- s))
* (1
- t))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
RVSUM_1: 49
.= ((((((
- s)
* (1
/ (t
- s)))
* (1
- t))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
* (1
/ (t
- s)))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2)))
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
/ (t
- s))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* (1
/ (t
- s)))
* t)
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
* (1
/ (t
- s)))
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2)))
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
/ (t
- s))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
/ (t
- s)))
* (1
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
- s))
* (1
/ (t
- s)))
* x1)
+ (((t
/ (t
- s))
* s)
* x2)))
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((t
/ (t
- s))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((t
* (1
/ (t
- s)))
* s)
* x2))) by
XCMPLX_1: 99
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((t
* s)
* (1
/ (t
- s)))
* x2)))
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((
- s)
* t)
/ (t
- s))
* x2))
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((t
* s)
/ (t
- s))
* x2))) by
XCMPLX_1: 99
.= (((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ (((((
- s)
* t)
/ (t
- s))
* x2)
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((t
* s)
/ (t
- s))
* x2)))) by
FINSEQOP: 28
.= (((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ ((((t
* (1
- s))
/ (t
- s))
* x1)
+ (((((
- s)
* t)
/ (t
- s))
* x2)
+ (((t
* s)
/ (t
- s))
* x2)))) by
Lm2
.= ((((((
- s)
* (1
- t))
/ (t
- s))
* x1)
+ (((t
* (1
- s))
/ (t
- s))
* x1))
+ (((((
- s)
* t)
/ (t
- s))
* x2)
+ (((t
* s)
/ (t
- s))
* x2))) by
FINSEQOP: 28
.= ((((((
- s)
* (1
- t))
/ (t
- s))
+ ((t
* (1
- s))
/ (t
- s)))
* x1)
+ (((((
- s)
* t)
/ (t
- s))
* x2)
+ (((t
* s)
/ (t
- s))
* x2))) by
RVSUM_1: 50
.= ((((((
- s)
* (1
- t))
/ (t
- s))
+ ((t
* (1
- s))
/ (t
- s)))
* x1)
+ (((((
- s)
* t)
/ (t
- s))
+ ((t
* s)
/ (t
- s)))
* x2)) by
RVSUM_1: 50
.= ((((((
- s)
* (1
- t))
+ (t
* (1
- s)))
/ (t
- s))
* x1)
+ (((((
- s)
* t)
/ (t
- s))
+ ((t
* s)
/ (t
- s)))
* x2)) by
XCMPLX_1: 62
.= ((((((
- s)
* (1
- t))
+ (t
* (1
- s)))
/ (t
- s))
* x1)
+ (((((
- s)
* t)
+ (t
* s))
/ (t
- s))
* x2)) by
XCMPLX_1: 62
.= ((((((
- s)
* (1
- t))
+ (t
* (1
- s)))
/ (t
- s))
* x1)
+ (
0* n)) by
Th3
.= (((1
* (t
- s))
/ (t
- s))
* x1) by
Th1
.= (1
* x1) by
A3,
XCMPLX_1: 89
.= x1 by
Th3;
then x1
in (
Line (y1,y2));
hence thesis by
A4,
Th10;
end;
definition
let n;
let A be
Subset of (
REAL n);
::
EUCLID_4:def2
attr A is
being_line means ex x1, x2 st x1
<> x2 & A
= (
Line (x1,x2));
end
Lm3: for A be
Subset of (
REAL n), x1, x2 holds A is
being_line & x1
in A & x2
in A & x1
<> x2 implies A
= (
Line (x1,x2)) by
Th10,
Th11;
theorem ::
EUCLID_4:12
for A,C be
Subset of (
REAL n), x1, x2 holds A is
being_line & C is
being_line & x1
in A & x2
in A & x1
in C & x2
in C implies x1
= x2 or A
= C
proof
let A,C be
Subset of (
REAL n);
let x1, x2;
assume that
A1: A is
being_line and
A2: C is
being_line and
A3: x1
in A & x2
in A and
A4: x1
in C & x2
in C;
assume
A5: x1
<> x2;
then A
= (
Line (x1,x2)) by
A1,
A3,
Lm3;
hence thesis by
A2,
A4,
A5,
Lm3;
end;
theorem ::
EUCLID_4:13
Th13: for A be
Subset of (
REAL n) st A is
being_line holds ex x1, x2 st x1
in A & x2
in A & x1
<> x2
proof
let A be
Subset of (
REAL n);
assume A is
being_line;
then
consider x1, x2 such that
A1: x1
<> x2 and
A2: A
= (
Line (x1,x2));
x1
in A & x2
in A by
A2,
Th9;
hence thesis by
A1;
end;
theorem ::
EUCLID_4:14
for A be
Subset of (
REAL n) st A is
being_line holds ex x2 st x1
<> x2 & x2
in A
proof
let A be
Subset of (
REAL n);
assume A is
being_line;
then
consider y1, y2 such that
A1: y1
in A and
A2: y2
in A & y1
<> y2 by
Th13;
x1
= y1 implies x1
<> y2 & y2
in A by
A2;
hence thesis by
A1;
end;
theorem ::
EUCLID_4:15
for x be
Element of (
REAL n) holds
|.x.|
= (
sqrt
|(x, x)|);
theorem ::
EUCLID_4:16
Th16: for x be
Element of (
REAL n) holds
|(x, x)|
=
0 iff
|.x.|
=
0
proof
let x be
Element of (
REAL n);
thus
|(x, x)|
=
0 implies
|.x.|
=
0
proof
assume
|(x, x)|
=
0 ;
then (
|.x.|
^2 )
=
0 by
EUCLID_2: 4;
hence thesis by
XCMPLX_1: 6;
end;
|.x.|
=
0 implies
|(x, x)|
= (
0
^2 ) by
EUCLID_2: 4;
hence thesis;
end;
theorem ::
EUCLID_4:17
Th17: for x be
Element of (
REAL n) holds
|(x, x)|
=
0 iff x
= (
0* n)
proof
let x be
Element of (
REAL n);
thus
|(x, x)|
=
0 implies x
= (
0* n)
proof
assume
|(x, x)|
=
0 ;
then
|.x.|
=
0 by
Th16;
hence thesis by
EUCLID: 8;
end;
thus x
= (
0* n) implies
|(x, x)|
=
0
proof
assume x
= (
0* n);
then
|(x, x)|
= ((1
/ 4)
* ((
|.((
0* n)
+ (
0* n)).|
^2 )
- (
|.((
0* n)
- (
0* n)).|
^2 ))) by
EUCLID_2: 3
.= ((1
/ 4)
* ((
|.(
0* n).|
^2 )
- (
|.((
0* n)
- (
0* n)).|
^2 ))) by
Th1
.= ((1
/ 4)
*
0 ) by
RVSUM_1: 32;
hence thesis;
end;
end;
theorem ::
EUCLID_4:18
Th18: for x be
Element of (
REAL n) holds
|(x, (
0* n))|
=
0
proof
let x be
Element of (
REAL n);
|(x, (
0* n))|
= ((1
/ 4)
* ((
|.(x
+ (
0* n)).|
^2 )
- (
|.(x
- (
0* n)).|
^2 ))) by
EUCLID_2: 3
.= ((1
/ 4)
* ((
|.x.|
^2 )
- (
|.(x
- (
0* n)).|
^2 ))) by
Th1
.= ((1
/ 4)
* ((
|.x.|
^2 )
- (
|.x.|
^2 ))) by
RVSUM_1: 32
.= ((1
/ 4)
*
0 );
hence thesis;
end;
theorem ::
EUCLID_4:19
for x be
Element of (
REAL n) holds
|((
0* n), x)|
=
0 by
Th18;
theorem ::
EUCLID_4:20
Th20: for x1,x2,x3 be
Element of (
REAL n) holds
|((x1
+ x2), x3)|
= (
|(x1, x3)|
+
|(x2, x3)|)
proof
let x1,x2,x3 be
Element of (
REAL n);
A1: (
len x3)
= n by
CARD_1:def 7;
(
len x1)
= n & (
len x2)
= n by
CARD_1:def 7;
hence thesis by
A1,
RVSUM_1: 120;
end;
theorem ::
EUCLID_4:21
Th21: for x1,x2 be
Element of (
REAL n), a be
Real holds
|((a
* x1), x2)|
= (a
*
|(x1, x2)|)
proof
let x1,x2 be
Element of (
REAL n), a be
Real;
(
len x1)
= n & (
len x2)
= n by
CARD_1:def 7;
hence thesis by
RVSUM_1: 121;
end;
theorem ::
EUCLID_4:22
for x1,x2 be
Element of (
REAL n), a be
Real holds
|(x1, (a
* x2))|
= (a
*
|(x1, x2)|) by
Th21;
theorem ::
EUCLID_4:23
Th23: for x1,x2 be
Element of (
REAL n) holds
|((
- x1), x2)|
= (
-
|(x1, x2)|)
proof
let x1,x2 be
Element of (
REAL n);
(
len x1)
= n & (
len x2)
= n by
CARD_1:def 7;
hence thesis by
RVSUM_1: 122;
end;
theorem ::
EUCLID_4:24
for x1,x2 be
Element of (
REAL n) holds
|(x1, (
- x2))|
= (
-
|(x1, x2)|) by
Th23;
theorem ::
EUCLID_4:25
for x1,x2 be
Element of (
REAL n) holds
|((
- x1), (
- x2))|
=
|(x1, x2)|
proof
let x1,x2 be
Element of (
REAL n);
thus
|((
- x1), (
- x2))|
= (
-
|(x1, (
- x2))|) by
Th23
.= ((
- 1)
*
|(x1, (
- x2))|)
.= ((
- 1)
* (
-
|(x1, x2)|)) by
Th23
.=
|(x1, x2)|;
end;
theorem ::
EUCLID_4:26
Th26: for x1,x2,x3 be
Element of (
REAL n) holds
|((x1
- x2), x3)|
= (
|(x1, x3)|
-
|(x2, x3)|)
proof
let x1,x2,x3 be
Element of (
REAL n);
A1: (
len x3)
= n by
CARD_1:def 7;
(
len x1)
= n & (
len x2)
= n by
CARD_1:def 7;
hence thesis by
A1,
RVSUM_1: 124;
end;
theorem ::
EUCLID_4:27
for a,b be
Real, x1,x2,x3 be
Element of (
REAL n) holds
|(((a
* x1)
+ (b
* x2)), x3)|
= ((a
*
|(x1, x3)|)
+ (b
*
|(x2, x3)|))
proof
let a,b be
Real, x1,x2,x3 be
Element of (
REAL n);
thus
|(((a
* x1)
+ (b
* x2)), x3)|
= (
|((a
* x1), x3)|
+
|((b
* x2), x3)|) by
Th20
.= ((a
*
|(x1, x3)|)
+
|((b
* x2), x3)|) by
Th21
.= ((a
*
|(x1, x3)|)
+ (b
*
|(x2, x3)|)) by
Th21;
end;
theorem ::
EUCLID_4:28
for x1,y1,y2 be
Element of (
REAL n) holds
|(x1, (y1
+ y2))|
= (
|(x1, y1)|
+
|(x1, y2)|) by
Th20;
theorem ::
EUCLID_4:29
for x1,y1,y2 be
Element of (
REAL n) holds
|(x1, (y1
- y2))|
= (
|(x1, y1)|
-
|(x1, y2)|) by
Th26;
theorem ::
EUCLID_4:30
Th30: for x1,x2,y1,y2 be
Element of (
REAL n) holds
|((x1
+ x2), (y1
+ y2))|
= (((
|(x1, y1)|
+
|(x1, y2)|)
+
|(x2, y1)|)
+
|(x2, y2)|)
proof
let x1,x2,y1,y2 be
Element of (
REAL n);
thus
|((x1
+ x2), (y1
+ y2))|
= (
|(x1, (y1
+ y2))|
+
|(x2, (y1
+ y2))|) by
Th20
.= ((
|(x1, y1)|
+
|(x1, y2)|)
+
|(x2, (y1
+ y2))|) by
Th20
.= ((
|(x1, y1)|
+
|(x1, y2)|)
+ (
|(x2, y1)|
+
|(x2, y2)|)) by
Th20
.= (((
|(x1, y1)|
+
|(x1, y2)|)
+
|(x2, y1)|)
+
|(x2, y2)|);
end;
theorem ::
EUCLID_4:31
Th31: for x1,x2,y1,y2 be
Element of (
REAL n) holds
|((x1
- x2), (y1
- y2))|
= (((
|(x1, y1)|
-
|(x1, y2)|)
-
|(x2, y1)|)
+
|(x2, y2)|)
proof
let x1,x2,y1,y2 be
Element of (
REAL n);
thus
|((x1
- x2), (y1
- y2))|
= (
|(x1, (y1
- y2))|
-
|(x2, (y1
- y2))|) by
Th26
.= ((
|(x1, y1)|
-
|(x1, y2)|)
-
|(x2, (y1
- y2))|) by
Th26
.= ((
|(x1, y1)|
-
|(x1, y2)|)
- (
|(x2, y1)|
-
|(x2, y2)|)) by
Th26
.= (((
|(x1, y1)|
-
|(x1, y2)|)
-
|(x2, y1)|)
+
|(x2, y2)|);
end;
theorem ::
EUCLID_4:32
Th32: for x,y be
Element of (
REAL n) holds
|((x
+ y), (x
+ y))|
= ((
|(x, x)|
+ (2
*
|(x, y)|))
+
|(y, y)|)
proof
let x,y be
Element of (
REAL n);
thus
|((x
+ y), (x
+ y))|
= (((
|(x, x)|
+
|(x, y)|)
+
|(y, x)|)
+
|(y, y)|) by
Th30
.= ((
|(x, x)|
+ (2
*
|(x, y)|))
+
|(y, y)|);
end;
theorem ::
EUCLID_4:33
Th33: for x,y be
Element of (
REAL n) holds
|((x
- y), (x
- y))|
= ((
|(x, x)|
- (2
*
|(x, y)|))
+
|(y, y)|)
proof
let x,y be
Element of (
REAL n);
thus
|((x
- y), (x
- y))|
= (((
|(x, x)|
-
|(x, y)|)
-
|(y, x)|)
+
|(y, y)|) by
Th31
.= ((
|(x, x)|
- (2
*
|(x, y)|))
+
|(y, y)|);
end;
theorem ::
EUCLID_4:34
for x,y be
Element of (
REAL n) holds (
|.(x
+ y).|
^2 )
= (((
|.x.|
^2 )
+ (2
*
|(x, y)|))
+ (
|.y.|
^2 ))
proof
let x,y be
Element of (
REAL n);
thus (
|.(x
+ y).|
^2 )
=
|((x
+ y), (x
+ y))| by
EUCLID_2: 4
.= ((
|(x, x)|
+ (2
*
|(x, y)|))
+
|(y, y)|) by
Th32
.= (((
|.x.|
^2 )
+ (2
*
|(x, y)|))
+
|(y, y)|) by
EUCLID_2: 4
.= (((
|.x.|
^2 )
+ (2
*
|(x, y)|))
+ (
|.y.|
^2 )) by
EUCLID_2: 4;
end;
theorem ::
EUCLID_4:35
for x,y be
Element of (
REAL n) holds (
|.(x
- y).|
^2 )
= (((
|.x.|
^2 )
- (2
*
|(x, y)|))
+ (
|.y.|
^2 ))
proof
let x,y be
Element of (
REAL n);
thus (
|.(x
- y).|
^2 )
=
|((x
- y), (x
- y))| by
EUCLID_2: 4
.= ((
|(x, x)|
- (2
*
|(x, y)|))
+
|(y, y)|) by
Th33
.= (((
|.x.|
^2 )
- (2
*
|(x, y)|))
+
|(y, y)|) by
EUCLID_2: 4
.= (((
|.x.|
^2 )
- (2
*
|(x, y)|))
+ (
|.y.|
^2 )) by
EUCLID_2: 4;
end;
theorem ::
EUCLID_4:36
for x,y be
Element of (
REAL n) holds ((
|.(x
+ y).|
^2 )
+ (
|.(x
- y).|
^2 ))
= (2
* ((
|.x.|
^2 )
+ (
|.y.|
^2 )))
proof
let x,y be
Element of (
REAL n);
(
len x)
= n & (
len y)
= n by
CARD_1:def 7;
hence thesis by
EUCLID_2: 13;
end;
theorem ::
EUCLID_4:37
for x,y be
Element of (
REAL n) holds ((
|.(x
+ y).|
^2 )
- (
|.(x
- y).|
^2 ))
= (4
*
|(x, y)|)
proof
let x,y be
Element of (
REAL n);
(
len x)
= n & (
len y)
= n by
CARD_1:def 7;
hence thesis by
EUCLID_2: 14;
end;
theorem ::
EUCLID_4:38
for x,y be
Element of (
REAL n) holds
|.
|(x, y)|.|
<= (
|.x.|
*
|.y.|)
proof
let x,y be
Element of (
REAL n);
(
len x)
= n & (
len y)
= n by
CARD_1:def 7;
hence thesis by
EUCLID_2: 15;
end;
Lm4: (
- (a
* x))
= ((
- a)
* x) & (
- (a
* x))
= (a
* (
- x))
proof
reconsider p = x as
Point of (
TOP-REAL n) by
EUCLID: 22;
reconsider x9 = p as
Element of (n
-tuples_on
REAL );
thus (
- (a
* x))
= (((
- 1)
* a)
* x9) by
RVSUM_1: 49
.= ((
- a)
* x);
hence (
- (a
* x))
= ((a
* (
- 1))
* x)
.= (a
* (
- x)) by
RVSUM_1: 49;
end;
Lm5: x1
<> x2 implies
|.(x1
- x2).|
<>
0
proof
now
assume that
A1: x1
<> x2 and
A2: not
|.(x1
- x2).|
<>
0 ;
|((x1
- x2), (x1
- x2))|
= (
0
^2 ) by
A2,
EUCLID_2: 4;
then (x1
- x2)
= (
0* n) by
Th17;
then x1
= (x1
- (x1
+ (
- x2))) by
RVSUM_1: 32
.= ((x1
- x1)
- (
- x2)) by
RVSUM_1: 39
.= ((
0* n)
- (
- x2)) by
RVSUM_1: 37
.= x2 by
RVSUM_1: 33;
hence contradiction by
A1;
end;
hence thesis;
end;
Lm6: for x1,x2 be
Element of (
REAL n) holds y1
in (
Line (x1,x2)) & y2
in (
Line (x1,x2)) implies ex a st (y1
- y2)
= (a
* (x1
- x2))
proof
let x1,x2 be
Element of (
REAL n);
assume y1
in (
Line (x1,x2));
then
consider t such that
A1: y1
= (((1
- t)
* x1)
+ (t
* x2));
assume y2
in (
Line (x1,x2));
then
consider s such that
A2: y2
= (((1
- s)
* x1)
+ (s
* x2));
take (s
- t);
(y1
- y2)
= (((((1
- t)
* x1)
+ (t
* x2))
- ((1
- s)
* x1))
- (s
* x2)) by
A1,
A2,
RVSUM_1: 39
.= (((((1
- t)
* x1)
+ (
- ((1
- s)
* x1)))
+ (t
* x2))
+ (
- (s
* x2))) by
Lm2
.= ((((1
- t)
* x1)
+ (
- ((1
- s)
* x1)))
+ ((t
* x2)
+ (
- (s
* x2)))) by
FINSEQOP: 28
.= ((((1
- t)
* x1)
+ ((
- (1
- s))
* x1))
+ ((t
* x2)
+ (
- (s
* x2)))) by
Lm4
.= ((((1
- t)
* x1)
+ ((
- (1
- s))
* x1))
+ ((t
* x2)
+ ((
- s)
* x2))) by
Lm4
.= ((((1
- t)
+ (
- (1
- s)))
* x1)
+ ((t
* x2)
+ ((
- s)
* x2))) by
RVSUM_1: 50
.= ((((1
- t)
- (1
- s))
* x1)
+ ((t
+ (
- s))
* x2)) by
RVSUM_1: 50
.= (((s
- t)
* x1)
+ ((
- (s
+ (
- t)))
* x2))
.= (((s
- t)
* x1)
+ (
- ((s
- t)
* x2))) by
Lm4
.= (((s
- t)
* x1)
+ ((s
- t)
* (
- x2))) by
Lm4
.= ((s
- t)
* (x1
- x2)) by
RVSUM_1: 51;
hence thesis;
end;
Lm7: for x1,x2,y1 be
Element of (
REAL n) holds ex y2 be
Element of (
REAL n) st y2
in (
Line (x1,x2)) & ((x1
- x2),(y1
- y2))
are_orthogonal & for x be
Element of (
REAL n) st x
in (
Line (x1,x2)) holds
|.(y1
- y2).|
<=
|.(y1
- x).|
proof
let x1,x2,y1 be
Element of (
REAL n);
now
per cases ;
case
A1: x1
<> x2;
set mu = (
- (
|((x1
- x2), (y1
- x1))|
/ (
|.(x1
- x2).|
^2 )));
set y2 = (((1
- mu)
* x1)
+ (mu
* x2));
|.(x1
- x2).|
<>
0 by
A1,
Lm5;
then
A2: (
|.(x1
- x2).|
^2 )
<>
0 by
SQUARE_1: 12;
|((x1
- x2), (y1
- y2))|
=
|((x1
- x2), ((y1
- ((1
+ (
- mu))
* x1))
- (mu
* x2)))| by
RVSUM_1: 39
.=
|((x1
- x2), ((y1
- ((1
* x1)
+ ((
- mu)
* x1)))
- (mu
* x2)))| by
RVSUM_1: 50
.=
|((x1
- x2), (((y1
- (1
* x1))
- ((
- mu)
* x1))
- (mu
* x2)))| by
RVSUM_1: 39
.=
|((x1
- x2), (((y1
- x1)
- ((
- mu)
* x1))
- (mu
* x2)))| by
Th3
.=
|((x1
- x2), ((y1
- x1)
- (((
- mu)
* x1)
+ (mu
* x2))))| by
RVSUM_1: 39
.=
|((x1
- x2), ((y1
- x1)
- (((
- mu)
* x1)
+ (
- ((
- mu)
* x2)))))| by
Lm4
.=
|((x1
- x2), ((y1
- x1)
- (((
- mu)
* x1)
+ ((
- mu)
* (
- x2)))))| by
Lm4
.=
|((x1
- x2), ((y1
- x1)
- ((
- mu)
* (x1
- x2))))| by
RVSUM_1: 51
.= (
|((x1
- x2), (y1
- x1))|
-
|((x1
- x2), ((
- mu)
* (x1
- x2)))|) by
Th26
.= (
|((x1
- x2), (y1
- x1))|
- ((
- mu)
*
|((x1
- x2), (x1
- x2))|)) by
Th21
.= (
|((x1
- x2), (y1
- x1))|
+ (mu
*
|((x1
- x2), (x1
- x2))|))
.= (
|((x1
- x2), (y1
- x1))|
+ (mu
* (
|.(x1
- x2).|
^2 ))) by
EUCLID_2: 4
.= (
|((x1
- x2), (y1
- x1))|
+ (((
-
|((x1
- x2), (y1
- x1))|)
/ (
|.(x1
- x2).|
^2 ))
* (
|.(x1
- x2).|
^2 ))) by
XCMPLX_1: 187
.= (
|((x1
- x2), (y1
- x1))|
+ (
-
|((x1
- x2), (y1
- x1))|)) by
A2,
XCMPLX_1: 87
.=
0 ;
hence y2
in (
Line (x1,x2)) & ((x1
- x2),(y1
- y2))
are_orthogonal ;
end;
case
A3: x1
= x2;
let mu be
Real;
set y2 = (((1
- mu)
* x1)
+ (mu
* x2));
take y2;
(x1
- x2)
= (
0* n) by
A3,
RVSUM_1: 37;
then
|((x1
- x2), (y1
- y2))|
=
0 by
Th18;
hence y2
in (
Line (x1,x2)) & ((x1
- x2),(y1
- y2))
are_orthogonal ;
end;
end;
then
consider y2 such that
A4: y2
in (
Line (x1,x2)) and
A5: ((x1
- x2),(y1
- y2))
are_orthogonal ;
A6:
|((x1
- x2), (y1
- y2))|
=
0 by
A5;
for x be
Element of (
REAL n) st x
in (
Line (x1,x2)) holds
|.(y1
- y2).|
<=
|.(y1
- x).|
proof
let x be
Element of (
REAL n);
assume x
in (
Line (x1,x2));
then
consider a such that
A7: (y2
- x)
= (a
* (x1
- x2)) by
A4,
Lm6;
((y2
- x)
+ (y1
- y2))
= ((((
- x)
+ y2)
+ (
- y2))
+ y1) by
Lm2
.= (((
- x)
+ (y2
- y2))
+ y1) by
FINSEQOP: 28
.= (((
- x)
+ (
0* n))
+ y1) by
RVSUM_1: 37
.= (y1
- x) by
Th1;
then (
|.(y1
- x).|
^2 )
=
|(((a
* (x1
- x2))
+ (y1
- y2)), ((a
* (x1
- x2))
+ (y1
- y2)))| by
A7,
EUCLID_2: 4
.= ((
|((a
* (x1
- x2)), (a
* (x1
- x2)))|
+ (2
*
|((a
* (x1
- x2)), (y1
- y2))|))
+
|((y1
- y2), (y1
- y2))|) by
Th32
.= (((a
*
|((x1
- x2), (a
* (x1
- x2)))|)
+ (2
*
|((a
* (x1
- x2)), (y1
- y2))|))
+
|((y1
- y2), (y1
- y2))|) by
Th21
.= (((a
* (a
*
|((x1
- x2), (x1
- x2))|))
+ (2
*
|((a
* (x1
- x2)), (y1
- y2))|))
+
|((y1
- y2), (y1
- y2))|) by
Th21
.= ((((a
^2 )
*
|((x1
- x2), (x1
- x2))|)
+ (2
*
|((a
* (x1
- x2)), (y1
- y2))|))
+
|((y1
- y2), (y1
- y2))|)
.= ((((a
^2 )
* (
|.(x1
- x2).|
^2 ))
+ (2
*
|((a
* (x1
- x2)), (y1
- y2))|))
+
|((y1
- y2), (y1
- y2))|) by
EUCLID_2: 4
.= ((((a
^2 )
* (
|.(x1
- x2).|
^2 ))
+ (2
* (a
*
|((x1
- x2), (y1
- y2))|)))
+
|((y1
- y2), (y1
- y2))|) by
Th21
.= (((a
*
|.(x1
- x2).|)
^2 )
+ (
|.(y1
- y2).|
^2 )) by
A6,
EUCLID_2: 4;
then
0
<= ((
|.(y1
- x).|
^2 )
- (
|.(y1
- y2).|
^2 )) by
XREAL_1: 63;
then
A8: (
|.(y1
- y2).|
^2 )
<= (
|.(y1
- x).|
^2 ) by
XREAL_1: 49;
0
<= (
|.(y1
- y2).|
^2 ) by
XREAL_1: 63;
then (
sqrt (
|.(y1
- y2).|
^2 ))
<= (
sqrt (
|.(y1
- x).|
^2 )) by
A8,
SQUARE_1: 26;
then
|.(y1
- y2).|
<= (
sqrt (
|.(y1
- x).|
^2 )) by
EUCLID: 9,
SQUARE_1: 22;
hence thesis by
EUCLID: 9,
SQUARE_1: 22;
end;
hence thesis by
A4,
A5;
end;
::$Canceled
theorem ::
EUCLID_4:40
for R be
Subset of
REAL , x1,x2,y1 be
Element of (
REAL n) st R
= {
|.(y1
- x).| where x be
Element of (
REAL n) : x
in (
Line (x1,x2)) } holds ex y2 be
Element of (
REAL n) st y2
in (
Line (x1,x2)) &
|.(y1
- y2).|
= (
lower_bound R) & ((x1
- x2),(y1
- y2))
are_orthogonal
proof
let R be
Subset of
REAL , x1,x2,y1 be
Element of (
REAL n);
consider y2 be
Element of (
REAL n) such that
A1: y2
in (
Line (x1,x2)) and
A2: ((x1
- x2),(y1
- y2))
are_orthogonal and
A3: for x be
Element of (
REAL n) st x
in (
Line (x1,x2)) holds
|.(y1
- y2).|
<=
|.(y1
- x).| by
Lm7;
assume
A4: R
= {
|.(y1
- x).| where x be
Element of (
REAL n) : x
in (
Line (x1,x2)) };
A5: for s be
Real st
0
< s holds ex r be
Real st r
in R & r
< (
|.(y1
- y2).|
+ s)
proof
let s be
Real;
assume
A6:
0
< s;
take
|.(y1
- y2).|;
thus thesis by
A4,
A1,
A6,
XREAL_1: 29;
end;
x1
in (
Line (x1,x2)) by
Th9;
then
A7:
|.(y1
- x1).|
in R by
A4;
A8: for r be
Real st r
in R holds
|.(y1
- y2).|
<= r
proof
let r be
Real;
assume r
in R;
then ex x0 be
Element of (
REAL n) st r
=
|.(y1
- x0).| & x0
in (
Line (x1,x2)) by
A4;
hence thesis by
A3;
end;
R is
bounded_below
proof
take
|.(y1
- y2).|;
let r be
ExtReal;
assume r
in R;
then ex x0 be
Element of (
REAL n) st r
=
|.(y1
- x0).| & x0
in (
Line (x1,x2)) by
A4;
hence thesis by
A3;
end;
then
|.(y1
- y2).|
= (
lower_bound R) by
A7,
A5,
A8,
SEQ_4:def 2;
hence thesis by
A1,
A2;
end;
definition
::$Canceled
end
reserve p1,p2,q1,q2 for
Point of (
TOP-REAL n);
Lm8: for p1,p2 be
Point of (
TOP-REAL n) holds ex x1,x2 be
Element of (
REAL n) st p1
= x1 & p2
= x2 & (
Line (x1,x2))
= (
Line (p1,p2))
proof
let p1,p2 be
Point of (
TOP-REAL n);
reconsider x1 = p1, x2 = p2 as
Element of (
REAL n) by
EUCLID: 22;
take x1, x2;
thus p1
= x1 & p2
= x2;
thus (
Line (x1,x2))
c= (
Line (p1,p2))
proof
let e be
object;
assume e
in (
Line (x1,x2));
then
consider lambda such that
A1: e
= (((1
- lambda)
* x1)
+ (lambda
* x2));
e
= (((1
- lambda)
* p1)
+ (lambda
* p2)) by
A1;
hence e
in (
Line (p1,p2));
end;
let e be
object;
assume e
in (
Line (p1,p2));
then
consider lambda such that
A2: e
= (((1
- lambda)
* p1)
+ (lambda
* p2));
e
= (((1
- lambda)
* x1)
+ (lambda
* x2)) by
A2;
hence e
in (
Line (x1,x2));
end;
theorem ::
EUCLID_4:41
p1
in (
Line (p1,p2)) & p2
in (
Line (p1,p2)) by
RLTOPSP1: 72;
theorem ::
EUCLID_4:42
q1
in (
Line (p1,p2)) & q2
in (
Line (p1,p2)) implies (
Line (q1,q2))
c= (
Line (p1,p2)) by
RLTOPSP1: 74;
theorem ::
EUCLID_4:43
q1
in (
Line (p1,p2)) & q2
in (
Line (p1,p2)) & q1
<> q2 implies (
Line (p1,p2))
c= (
Line (q1,q2)) by
RLTOPSP1: 75;
definition
let n;
let A be
Subset of (
TOP-REAL n);
::
EUCLID_4:def4
attr A is
being_line means ex p1, p2 st p1
<> p2 & A
= (
Line (p1,p2));
end
Lm9: for A be
Subset of (
TOP-REAL n), p1, p2 holds A is
being_line & p1
in A & p2
in A & p1
<> p2 implies A
= (
Line (p1,p2)) by
RLTOPSP1: 75;
theorem ::
EUCLID_4:44
for A,C be
Subset of (
TOP-REAL n) holds A is
being_line & C is
being_line & p1
in A & p2
in A & p1
in C & p2
in C implies p1
= p2 or A
= C
proof
let A,C be
Subset of (
TOP-REAL n);
assume that
A1: A is
being_line and
A2: C is
being_line and
A3: p1
in A & p2
in A and
A4: p1
in C & p2
in C;
assume
A5: p1
<> p2;
then A
= (
Line (p1,p2)) by
A1,
A3,
Lm9;
hence thesis by
A2,
A4,
A5,
Lm9;
end;
theorem ::
EUCLID_4:45
Th44: for A be
Subset of (
TOP-REAL n) st A is
being_line holds ex p1, p2 st p1
in A & p2
in A & p1
<> p2
proof
let A be
Subset of (
TOP-REAL n);
assume A is
being_line;
then
consider p1, p2 such that
A1: p1
<> p2 and
A2: A
= (
Line (p1,p2));
p1
in A & p2
in A by
A2,
RLTOPSP1: 72;
hence thesis by
A1;
end;
theorem ::
EUCLID_4:46
for A be
Subset of (
TOP-REAL n) st A is
being_line holds ex p2 st p1
<> p2 & p2
in A
proof
let A be
Subset of (
TOP-REAL n);
assume A is
being_line;
then
consider q1, q2 such that
A1: q1
in A and
A2: q2
in A & q1
<> q2 by
Th44;
p1
= q1 implies p1
<> q2 & q2
in A by
A2;
hence thesis by
A1;
end;
theorem ::
EUCLID_4:47
for R be
Subset of
REAL , p1,p2,q1 be
Point of (
TOP-REAL n) st R
= {
|.(q1
- p).| where p be
Point of (
TOP-REAL n) : p
in (
Line (p1,p2)) } holds ex q2 be
Point of (
TOP-REAL n) st q2
in (
Line (p1,p2)) &
|.(q1
- q2).|
= (
lower_bound R) & ((p1
- p2),(q1
- q2))
are_orthogonal
proof
let R be
Subset of
REAL , p1,p2,q1 be
Point of (
TOP-REAL n);
reconsider y1 = q1 as
Element of (
REAL n) by
EUCLID: 22;
consider x1,x2 be
Element of (
REAL n) such that
A1: p1
= x1 & p2
= x2 and
A2: (
Line (x1,x2))
= (
Line (p1,p2)) by
Lm8;
A3: (x1
- x2)
= (p1
- p2) by
A1;
consider y2 be
Element of (
REAL n) such that
A4: y2
in (
Line (x1,x2)) and
A5: ((x1
- x2),(y1
- y2))
are_orthogonal and
A6: for x be
Element of (
REAL n) st x
in (
Line (x1,x2)) holds
|.(y1
- y2).|
<=
|.(y1
- x).| by
Lm7;
reconsider q2 = y2 as
Point of (
TOP-REAL n) by
EUCLID: 22;
assume
A7: R
= {
|.(q1
- p).| where p be
Point of (
TOP-REAL n) : p
in (
Line (p1,p2)) };
A8: for s be
Real st
0
< s holds ex r be
Real st r
in R & r
< (
|.(q1
- q2).|
+ s)
proof
let s be
Real;
assume
A9:
0
< s;
take
|.(q1
- q2).|;
thus thesis by
A7,
A2,
A4,
A9,
XREAL_1: 29;
end;
p1
in (
Line (p1,p2)) by
RLTOPSP1: 72;
then
A10:
|.(q1
- p1).|
in R by
A7;
A11: for r be
Real st r
in R holds
|.(q1
- q2).|
<= r
proof
let r be
Real;
assume r
in R;
then
consider p0 be
Point of (
TOP-REAL n) such that
A12: r
=
|.(q1
- p0).| & p0
in (
Line (p1,p2)) by
A7;
the
carrier of (
Euclid n)
= the
carrier of (
TOP-REAL n) by
EUCLID: 67;
then
reconsider x = p0 as
Element of (
REAL n);
thus
|.(q1
- q2).|
<= r by
A2,
A6,
A12;
end;
R is
bounded_below
proof
take
|.(q1
- q2).|;
let r be
ExtReal;
assume r
in R;
then
consider p0 be
Point of (
TOP-REAL n) such that
A13: r
=
|.(q1
- p0).| & p0
in (
Line (p1,p2)) by
A7;
the
carrier of (
Euclid n)
= the
carrier of (
TOP-REAL n) by
EUCLID: 67;
then
reconsider x = p0 as
Element of (
REAL n);
thus
|.(q1
- q2).|
<= r by
A2,
A6,
A13;
end;
then (y1
- y2)
= (q1
- q2) &
|.(q1
- q2).|
= (
lower_bound R) by
A10,
A8,
A11,
SEQ_4:def 2;
hence thesis by
A2,
A4,
A5,
A3;
end;